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Abstract 
To provide good classification accuracy on unseen examples, a decision tree, learned by an 
algorithm such as ID3, must have sufficient structure and also identify the correct majority class in 
each of its leaves. If there are inadequacies in respect of either of these, the tree will have a 
percentage classification rate below that of the maximum possible for the domain, namely (100 - 
Bayes error rate). An error decomposition is introduced which enables the relative contributions of 
deficiencies in structure and in incorrect determination of majority class to be isolated and 
quantified. A sub-decomposition of majority class error permits separation of the sampling error at 
the leaves from the possible bias introduced by the attribute selection method of the induction 
algorithm. It is shown that sampling error can extend to 25% when there are more than two 
classes. Decompositions are obtained from experiments on several data sets. For ID3, the effect of 
selection bias is shown to vary from being statistically non-significant to being quite substantial, 
with the latter appearing to be associated with a simple underlying model.  

Keywords: decision tree learning, error decomposition, majority classes, sampling error, attribute 
selection bias   

1 Introduction 
The ID3 algorithm (Quinlan, 1986) learns classification rules by inducing a decision tree from 
classified training examples expressed in an attribute-value description language. A rule is 
extracted from the tree by associating a path from the root to a leaf (the rule condition) with the 
majority class at the leaf (the rule conclusion). The majority class is simply that having the 
greatest frequency in the class distribution of training examples reaching the leaf. The set of such 
rules, one for each path, is the induced classifier and can be used to classify unseen examples.  
Many different trees may adequately fit a training set. The bias of ID3 is that, through use of an 
information gain heuristic (expected entropy) to select attributes for tree expansion, it will tend to 
produce small, that is, shallower, trees (Mitchell, 1997). 

For good generalization accuracy, the induced tree must have sufficient structure, that is, 
depth, to fully extract the conditions of each rule and, in addition, must identify the correct 
majority class in each leaf. Yet, as is well-known, a major weakness of decision tree induction 
lies in its progressive sub-division of the training set as the tree develops (divide and conquer). 
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This causes the two requirements work to against each other: deepening the tree to create the 
necessary structure reduces the sample sizes in the leaves upon which inferences about majority 
classes are based. In a real-world domain there may be hundreds of attributes and it would require 
a massive training set to build a full tree having an adequate number of examples reaching each 
leaf.  

In the literature, building trees has received the most attention. There has been comparatively 
little investigation into whether the class designated as the majority using the leaf sample 
distribution will be the true majority class. Frank (2000) provided some analysis, for two classes, 
of the error in classification arising from a random sample. Weiss and Hirsh (2000) noted that 
small disjuncts (rules with low coverage extracted from the tree) contribute disproportionately to 
classification error and that this behaviour is related to noise level. A sister problem, that of 
estimating probability distributions in the leaves of the grown tree, has been discussed by Provost 
and Domingos (2003) but this has little direct bearing on the problem faced here. 

The classification rate of an induced tree on unseen examples is limited by the Bayes rate, 
BCR = (100 - Bayes error rate), which is the probability (expressed as a percentage) that a correct 
classification would be obtained if the underlying rules in the domain were used as the classifier. 
This is 100% in a noise-free domain but decreases accordingly with increasing noise. It is an 
asymptote in the learning curve of accuracy against training set size.   

If the classification rate of an induced tree is CR, then the shortfall in accuracy compared to 
the maximum that can be achieved is BCR - CR. Throughout the paper this shortfall will be called 
the (total) inductive error of the induced tree. Thus here error is relative to the best performance 
possible, which differs from the usual practice that defines classification error as complementary 
to classification rate, that is, 100 - CR.  The intention is to assign blame for inductive error 
partially to inadequacies in tree structure and partially to inadequacies in majority class 
identification.   

In this paper, a decomposition of inductive error for decision trees will be introduced. 
Initially this will separate inductive error into the two components mentioned above. The 
component for majority class determination will then be further broken down to allow the 
sampling behaviour at the leaves and the bias introduced by the induction algorithm’s attribute 
selection competition to be isolated and quantified.  

Such a decomposition is reminiscent of the bias-variance decomposition of induced classifier 
performance that has received considerable attention recently. In the latter, the intention is to 
account for expected mean square loss for a given loss function defined on the classification 
process. In part this deviation is due to the classifier being 'off target' (bias) and in part to its 
variability over learning trials (variance). A major feature of the work of the authors involved has 
been the pursuit of an appropriate definition of the loss function for the classification problem.  
James (2003) provides a general framework for bias-variance decomposition and compares the 
different approaches that have been proposed. 

The decomposition of inductive error that will be discussed below differs from bias-variance 
decomposition in that there is no term representing variability. Instead, the focus will be solely on 
average performance as assessed by classification rate. The analysis will require complete 
knowledge of the probabilistic model of the domain although it is estimable from a sufficiently 
large data set.  

Nevertheless, it may be that aspects of these two different types of decomposition are 
indirectly related in some way but this will not be investigated further here.     

In Section 2, the notion of a classification model and its decision tree representation are 
discussed. The fundamental notion of a core tree is defined. In Section 3, the main decomposition 
for inductive error and for a sub-decomposition are introduced. In Section 4, an analysis of the 
probability of selecting the correct majority class from a random sample is presented and this is 
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applied to the decomposition. In Section 5, experiments are carried out on data from the well-
known LED domain to show the behaviour of the error decompositions along the learning curve. 
In Section 6, an automatic classification model generator is described and is used to obtain 
several models. Error decompositions are then obtained from experiments on data generated from 
these models. The results show how the decomposition is influenced by the major factors in 
induction, that is, training set size, complexity of the underlying rules, noise level and numbers of 
irrelevant attributes. In Section 7, the decomposition is applied to a large real data set. 

2 The Class Model and its Representation by a Decision Tree 
A model for a set of attributes, consisting of description attributes and a class attribute, can be 
specified by the joint probability distribution of all the attributes. This will be called a domain 
here. From the domain may be derived the class model, that is, a set of rules specifying the 
mapping associating a description attribute vector with a probability distribution over classes 
(Hickey, 1996). The class model is analogous to a regression model in statistics with the class 
attribute as the dependent variable and the description attributes as the independent variables. 
Noise in the relationship is then explicated by the class distributions (analogous to the Normal 
error distribution is regression). As discussed in Hickey (1996), these distributions account for all 
physical sources of uncertainty in the relationship between example descriptions and class, 
namely attribute noise, class noise and inadequacy of attributes. The model may contain pure 
noise attributes.1 These are irrelevant to the determination of class. Their presence, however, 
usually makes learning more difficult.  

A class model may be represented in a number of different ways. If all attributes are finite 
discrete (to which case we limit ourselves here) then a fully extensional representation is a table 
relating fully instantiated description vectors to class distributions. At the other end of the scale, it 
may be possible to represent the model using a small number of very general rules. It is an 
obvious but important point that altering the representation does not alter the model. Finding a 
representation to satisfy some requirement, for example, that with the smallest number of rules, 
will usually require a search.  

A decision tree2 can be used to represent a class model (Hartmann et al., 1982; Hickey, 
1992). Each leaf would contain the class probability distribution conditional on the path to the 
leaf. Such a distribution is the theoretical analogue of the class frequency distribution in a leaf of 
a tree induced from training examples. Using the tree as a classifier, where the assigned class is 
the majority class in the appropriate leaf, will achieve the Bayes classification rate.  

Often, only the mapping of description attribute vector to majority class is of interest. This is 
typically the case in ID3 induction. Recently there has been work on estimating the full class 
model, that is, including the class distributions, by inducing probability estimation trees (Provost 
and Domingos, 2003).   

To fully represent a class model a tree must have sufficient depth. The notion of the core of a 
tree is central to the development below.  

Definition 1.  With regard to the representation of a class model, a decision tree is said to be a 
core tree if un-expansion of any set of sibling leaves would result in a reduction in expected 

                                                      
1As a property of an attribute, the notion of pure noise as used by Breiman et al. (1984) and Hickey (1996) corresponds 
to that of irrelevant as defined by Kohavi and John (1997). Also, the latter's the notion of weakly relevant corresponds 
to redundant in Hickey (1996).   
2 The discussion here is limited to trees in which node expansion is based on the values of a single attribute. 
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information3 about class. If, in addition, there is no expansion of the leaves of the core to any 
depth that would increase the expected information then the tree is said to be a complete core; 
else it is incomplete. The leaf nodes of a core are referred to collectively as its edge. � 

A complete core, together with the appropriate class distributions in its leaves, adequately 
represents the class model (and any further expansion is superfluous) whereas an incomplete core 
under represents it. 

Any given tree has a unique core and can be reduced to this by recursively un-expanding its 
leaves until sibling nodes having different distributions are first encountered. This is analogous to 
post-pruning of an induced tree but, of course, does not involve statistical inference because all 
distributions are known. Expansions thus removed may involve attributes, which, while being 
locally uninformative, are globally informative, and hence appear elsewhere in the tree. Pure 
noise attributes will also have been removed as they are always locally uninformative.  

In addition, the core may also contain internal 'locked-in' pure noise nodes (Liu and White, 
1994) and is said to be inflated by them. A core that does not contain internal splits on pure noise 
attributes is said to be deflated. A deflated complete core offers an economical tree representation 
of a class model: it has no wasteful expansion on pure noise attributes either internal to the core 
or beyond its edge. 

2.1 Deterministic Classifiers and the Reduced Core 
Replacing each class distribution in the leaf of a tree with a majority class for that distribution 
will produce a deterministic classification tree. To achieve the Bayes rate in classification, this 
tree must have sufficient structure. Sufficient structure will normally mean a complete core 
(whether inflated or not); the tree may extend beyond the core. The only exception to this occurs 
when, near the edge of the core, there is a final internal node, N, all of whose children (leaves of 
the core) possess the same true majority class. In this case, it is possible to have a sub-complete 
tree, with N as a leaf node, which achieves the Bayes rate. Cutting back the core in such a 
situation will be called same majority class pruning. A tree thus obtained will be referred to as a 
reduced core. This lossless pruning applies only to the building of a deterministic classification 
tree, not to a probability estimation tree. A reduced core deterministic classification tree which 
achieves the Bayes rate is called complete. 

Since the concern here is with inducing trees for deterministic classification, it will be 
assumed, in what follows, that all core trees are reduced.  

3 A Decomposition of Inductive Error 
Insufficient tree structure and inaccurate majority class identification both contribute to inductive 
error in trees. It is possible to break down the overall inductive error into components that are 
attributable to these separate sources.  

3.1 Tree Structure and Majority Class Errors 
Let the classification rate of an induced tree, T, be CR(T). The correct majority classes for any 
tree can be determined from the class model. Altering an induced tree to label each leaf with the 
true majority class, as distinct from the leaf sample estimate of this, produces the corrected 
majority class version of the tree, T(maj). The classification rate of this tree is called the 
corrected majority class classification rate. For any tree it follows that  

                                                      
3 This is the usual entropy-based definition applied to domain probabilities; however any strong information measure 
can be used. See Hickey (1996) for a general discussion on information measures.  
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CR(T) ≤  CR(T(maj)) ≤ BCR. 

Recall that inductive error is BCR - CR. Correcting majority classes as indicated above removes 
majority class determination as a source of inductive error. Thus, the amount by which 
CR(T(maj)) falls short of BCR is solely a measure of inadequacy of the tree structure. This 
component of inductive error will be called (tree) structure error so that 

structure error = BCR - CR(T(maj)) . 

The amount by which CR falls short of CR(T(maj)) is then attributable to incorrect determination 
of majority classes in the fully-grown tree. This is called majority class error so that 

majority class error = CR(T(maj)) – CR . 

This gives the initial decomposition: 
 

BCR - CR  = ( BCR - CR(T(maj)) ) +  ( CR(T(maj)) - CR ) . (1)
That is: 

inductive error = structure error + majority class error . 

Let Tcore be the reduced core of T. This core can also be majority class corrected. From the 
definition of a core, it is easy to see that the corrected core and the corrected full tree must have 
the same classification rate, that is: 

CR(T(maj)) = CR (Tcore(maj)) . 

Structure error can then be re-expressed as: 

structure error = BCR - CR(Tcore(maj)) . 

Since the core is the essential structural element of the tree, this reinforces the notion of structure 
error. The completeness of a core can be expressed in terms of structure error: the reduced core of 
a tree is complete if and only if structure error is zero. 

3.2 A Sub-decomposition of Majority Class Error 
As noted by Frank (2000), the majority class as determined from the leaf of an induced tree may 
be the wrong one because it is based on a small sample and also because that sample is obtained 
as a result of competitions taking place, as the tree is grown, to select which attribute to use to 
expand the tree. The latter is an example of a multiple comparison problem (MCP) as discussed 
by Jensen and Cohen (2000). In theory, though, the effect of this could be to improve majority 
class estimation: the intelligence in the selection procedure might increase the chance that the 
majority class in the leaf is the correct one. 

It is possible to decompose majority class error, as defined above, into two terms that reflect 
the contribution of each of these factors, namely sampling and (attribute) selection bias.   

Ideally, the sample arriving at a leaf should be a random sample from the probability 
distribution at the leaf as derived from the class model. In the induced tree, the sample in each 
leaf can be replaced by a new random sample of the same size generated from this distribution. 
This new tree will be called the corrected sample tree, T(ran).  

The classification rate of this tree, CR(T(ran)), depends on the particular random samples 
obtained at each of its leaves. Let E( CR(T(ran)) ) be the expectation of CR(T(ran)) over all 
possible random samples of the appropriate size at each leaf of T and then over all leaves. If there 
is a difference between E( CR(T(ran)) ) and CR(T) then this indicates that the samples reaching 
the leaves of T are not random. The selection bias error can thus be defined as 



HICKEY 

 1752 

selection bias error = E( CR(T(ran)) ) - CR(T) 

and can be positive, negative or zero.  
The complementary component of majority class error is then 

CR(T(maj)) – E( CR(T(ran)) ) . 

This term measures the shortcoming of the random sample in determining the correct majority 
class and can thus be called sampling error. It must be non-negative since failure to determine 
one or more leaf majority classes correctly can only reduce the classification rate.  

Majority class error can now be decomposed as: 

CR(T(maj)) – CR(T) = ( CR(T(maj)) – E( CR(T(ran)) )  ) + ( E( CR(T(ran)) ) – CR(T) ) . (2)

That is: 

majority class error = sampling error + selection bias error . 

Taken together, the two decompositions in Equations 1 and 2 yield an overall decomposition of 
inductive error into three components as 
 

inductive error = structure error + sampling error + selection bias error. (3)

4 Identifying Majority Class from a Random Sample and Leaf Sampling Error 
The extent of sampling error is dependent on the probability that the majority class in a random 
sample is the correct one. By 'correct class' is meant a class (or one of several), called a majority 
class, which has the largest probability of occurrence at that leaf as determined from the model.  
Bechofer et al. (1959) and Kesten and Morse (1959) investigated the problem of correct selection 
with a view to determining the least favourable distribution, defined as that which minimizes, 
subject to constraints, the probability that the correct class will be identified.  

In a k class problem (k ≥ 2), suppose the probability distribution of the classes at a leaf node 
according to the class model is 1( ,..., )kp p . Assume throughout this discussion, following 
Bechofer et al. (1959), that the ip are re-arranged so that 1i ip p +≤ for all i. A majority class is then 
one having probability kp . Given a random sample of n from 1( ,..., )kp p with frequency 
distribution 1( ,..., )kF f f= across classes, the usual estimate of majority class based on F is: 

arg max( )majclass F= . 

For various n, k and 1( ,..., )kp p , the probability, corrP , that this selection will be correct can be 
calculated from the multinomial distribution as:  

( )majcorr majP P class class= =  

where majclass is a majority class. 

4.1 Properties of Pcorr 
Henceforth, kp will be denoted majp .  corrP ≥ majp and increases with n (unless majp = 1/k in which 

case, corrP = 1/k for all n). corrP has the same value for n =1 as for n = 2. For k = 2 and odd n, 

corrP has the same value for n and n + 1.  
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Intuitively, for a given n, corrP should be greater in situations where 1k majp p− since the 

majority class has less competition and, conversely, should be small when all the ip are fairly 
equal. Based on the work of Kesten and Morse (1959), Marshall and Olkin (1979) used 
majorisation theory to establish that, for fixed and unique majp , corrP is Schur-concave in the 

residual probabilities 1 1( ,..., )kp p − . That is, corrP is non-decreasing under an equalization 
operation on these probabilities in the sense of de-majorisation Hickey (1996).  

For k = 2, majp determines the complete distribution (1 , )maj majp p− . For k > 2 and fixed majp , 
the greatest equalization occurs when all residual probabilities are identical, that is, each is 
(1 ) /( 1)majp k− − . This will be referred to as the equal residue distribution and will be 
denoted ( , )e majD p k . Thus, corrP is maximised amongst all distributions on k classes with 
given majp  by ( , )e majD p k .  At the other end of the scale, assuming 1/ 2majp > , then concentration 
of the residue at a single class produces the minimum corrP for that n and kp . Note that this latter 
situation is identical to that of a two-class problem with distribution (1 , )maj majp p− . An 
implication of this is that, for 0.5majp >  and any given n, corrP for the two class problem provides 

a lower bound for corrP over all distributions on k classes, k > 2. 
Bechofer et al. (1959) were concerned with the probability of correct selection when a 

(unique) majority class had at least a given margin of probability over the next largest, expressed 
as a multiplicative factor, a. Kesten and Morse (1959) showed that under the constraint 

1, 1maj kp ap a−≥ >  

corrP is minimized by the distribution 
1 1, ,...,

1 1 1
a

a k a k a k
⎛ ⎞
⎜ ⎟+ − + − + −⎝ ⎠

. 

The proof of this intuitive result is quite complex. An alternative proof was provided by Marshall 
and Olkin (1979) using the Schur-concavity property of corrP for fixed majp discussed above. 

For ( , )e majD p k , corrP increases with k for fixed majp and increases with majp for fixed k. The 

first of these results follows from the Schur-concavity of corrP in the residual probabilities for 
fixed majp  because for k < k′, ( , )e majD p k  can be viewed as a distribution on k′  classes. The 
second follows immediately from the Kesten and Morse theorem stated above because 
when majp is increased it will still satisfy the constraint 1, 1maj kp ap a−≥ >  for the value of a 
applicable before the increase.  

The value of majp has considerable impact on the value of corrP for given n. For example, for k 
= 2 and n = 10, majp = 0.6 produces corrP of approximately 73% whereas for majp = 0.8, corrP will be 
98%. When k = 3 and n = 10, majp = 0.6 gives ( ,3)e majD p  = (0.2, 0.2, 0.6) and corrP = 89%. The 
least favourable distribution here is (0, 0.4, 0.6) with corrP = 73% as noted above. 

When k > 2, it is possible that majp < 0.5. In this case, accumulating the residual probabilities 
on a single class will result in that class becoming the majority and thus the lower bound 
for corrP offered by the corresponding two class problem does not hold.  
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Also, when k > 2, there may be tied majority classes in the leaf class probability distribution. 
Any of these when identified from the sample will qualify as a correct selection. Thus it is 
possible for majp to be very small and yet corrP be large.  

Bechofer et al. (1959) provide tables of corrP for various values of the multiplicative factor a 
in the Kesten and Morse theorem and offer a large sample approximation for corrP . Frank (2000) 
also considered the problem for k = 2 and graphs 1- corrP against majp . 

4.2 Leaf Classification Rate and Leaf Sampling Error 
The sampling error of an induced tree is contributed to by the individual classifications taking 
place at each leaf of the tree. Inability to determine the correct majority class at a leaf impairs the 
classification rate locally at the leaf. The best rate that can be obtained at a leaf, that is, its local 
Bayes rate, is majp from its class probability distribution. The expected actual rate from a random 
sample, that is, the expectation of the probability of the selected class, will be called the 
(expected) leaf classification rate (LCR). Thus LCR ≤ majp . 

LCR can be calculated as an expectation over two events: either the correct majority class has 
been identified giving a conditional percentage classification rate of 100 * majp or it has not giving 

a conditional rate of 100* ( ( ))majresE P class , where ( ( ))majresE P class is the conditional expected 
probability of the estimated majority class when it is incorrect, that is, over the residual 
probabilities. Thus, expressed as a percentage, 

100*( * ( ( )) * (1- ))majmaj corr res corrLCR p P E P class P= + . (4)

The Schur-concavity of corrP for given majp does not extend to LCR. In Equation 4, for given majp , 

corrP will increase as the residue probabilities are equalized, however this may be offset by the 

decrease in ( ( ))majresE P class as the larger residue probabilities decrease. For example, when k = 4, 

majp = 0.4 and n = 3, the distribution (0, 0.3, 0.3, 0.4) has LCR = 34.2%. Equalising the residue 
probabilities to (0.4,4)eD = (0.2, 0.2, 0.2, 0.4) reduces LCR to 29.0%. On the other hand when k = 
5, majp = 0.8 and n = 3, the distribution (0, 0, 0, 0.2, 0.8) has LCR = 73.8% whereas for the equal 

residue distribution (0.8,5)eD = (0.05, 0.05, 0.05, 0.05, 0.8) this increases slightly to 74.0%.  
For ( , )e majD p k , Equation 4 becomes: 

100*( * (1- )* (1- ) /( -1))maj corr maj corrLCR p P p P k= + . (5)

Using results stated above for ( , )e majD p k , it is straightforward to show that, for given n and k, 
LCR in Equation 5 increases with majp .  

The shortfall100* majp - LCR is the expected loss in classification rate at a leaf due to the 
determination of majority class from a random sample and thus can be called the leaf sampling 
error (LSE). As noted above, the expectation of LSE over leaves in a tree is the sampling error as 
defined in Section 3.2.  

In Table 1, LCR and LSE for ( , )e majD p k are shown for n = 1, 2, 4 and 10 for several values of 
k and a range of values of majp . For given n and k it is seen that, although LCR increases 
with majp , as noted above, LSE increases and decreases again. When majp is large, majority class is 
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very likely to be correctly determined and hence sampling error is low. When majp is low, then the 
consequence of wrongful determination of majority class, although more likely, is cushioned by 
the complimentary probability being only slightly less than majp and so loss of classification rate is 
again minimal. As k and n increase, the maximum value of LSE tends to occur at smaller majp . 
  
 

k 100* majp  

 10 20 30 40 50 60 70 80 90 

     n = 1, 2     

2      52.0+8.0 58.0+12.0 68.0+12.0 82.0+8.0 

3    34.0+ 6.0 37.5+12.5 44.0+16.0 53.5+16.5 66.0+14.0  81.5+8.5 

4   25.3+4.7 28.0+12.0 33.3+16.7 41.3+18.7 52.0+18.0 65.3+14.7 81.3+8.7 

5   21.3+8.7 25.0+15.0 31.3+18.7 40.0+20.0 51.3+18.7 65.0+15.0 81.3+8.7 

10  11.1+8.9 14.4+15.6 20.0+20.0 27.8+22.2 37.8+22.2 50.0+20.0 64.4+15.5 81.1+8.9 

15 6.8+3.2 8.6+11.4 12.5+17.5 18.6+21.4 26.8+23.2 37.1+22.9 49.6+20.4 64.3+15.7 81.1+8.9 

     n = 4     

2      53.0+7.0 61.4+8.6 73.8+6.2 87.8+2.2 

3    34.3+5.7 39.8+10.2 49.4+10.6 61.8+8.2 75.4+4.6 88.7+1.3 

4   25.5+4.5 29.7+10.3 38.0+12.0 49.3+10.7 62.6+7.4 76.2+3.8 89.0+1.0 

5   21.9+8.1 27.9+12.1 37.4+12.6 49.6+10.4 63.1+6.9 76.7+3.3 89.2+0.8 

10  11.6+8.4 16.8+13.2 25.5+14.5 37.1+12.9 50.4+9.6 64.3+5.7 77.6+2.4 89.5+0.5 

15 6.8+3.2 9.4+10.6 15.5+14.5 25.0+15.0 37.2+12.8 50.8+9.2 64.7+5.3 77.8+2.2 89.6+0.4 

     n = 10     

2      54.7+5.3 66.0+4.0 78.8+1.2 89.9+0.1 

3    35.0+ 5.0 43.2+ 6.8 55.5+ 4.5 68.3+ 1.7 79.7+ 0.3 90.0+ 0.0 

4   25.8+ 4.2 32.3+ 7.7 43.8+ 6.2 56.9+ 3.1 69.0+ 1.0 79.9+ 0.1 90.0+ 0.0 

5   23.1+ 6.9 32.2+ 7.8 44.7+ 5.3 57.7+ 2.3 69.4+ 0.6 79.9+ 0.1 90.0+ 0.0 

10  12.8+ 7.2 21.5+ 8.5 34.0+ 6.0 47.0+ 3.0 59.0+ 1.0 69.8+ 0.2 80.0+ 0.0 90.0+ 0.0 

15 6.9+ 3.1 11.7+ 8.3 22.1+ 7.9 35.0+ 5.0 47.8+ 2.2 59.3+ 0.7 69.9+ 0.1 80.0+ 0.0 90.0+ 0.0 

Table 1: Leaf classification rate (LCR) and leaf sampling error (LSE) for leaf sample size n = 1, 
2, 4 and 10 for various k and majp under ( , )e majD p k . Cell format is LCR + LSE, both 
expressed as percentages; largest LSE for each k is shown bolded. 

For k = 2, LSE reaches a maximum of approximately 12% when n = 1, 2 and majp lies 
between 0.7 and 0.8. For k > 2, LSE has the potential to be much larger than for k = 2 when n is 
small. For n = 1, 2, corrP = majp and, from Equation 5, LCR for ( , )e majD p k  can be expressed as: 
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2 2100*(   (1- ) /( -1))maj majLCR p p k= +  

which decreases with k to 2100* majp . Thus, as k increases, LSE for ( , )e majD p k  tends to 

2100* 100* = 100* (1 )maj maj maj majp p p p− −  

which has a maximum value of 25% at majp = 0.5. Table 1 shows that LSE can be 20% or above 
for k ≥ 5.  

For n > 2 and given majp , LCR for ( , )e majD p k can increase or decrease with k. This is because 
LCR, in Equation 5, is a convex combination of majp  and (1- ) /( -1))majp k  weighted by corrP and 
1 corrP−  respectively. As k increases, corrP increases and (1- ) /( -1))majp k , which by definition is 
less than majp , decreases but its weight,1 corrP− , is also decreasing. 

Since the sampling error of the tree is the average of its leaf sampling errors, the behaviour of 
leaf sampling error should be reflected in the overall sampling error. As training set size 
increases, induced trees will tend to have more structure and so the leaf class probability 
distributions will be more informative with the result that individual majp in the leaf distributions 
will tend to increase. Thus the pattern of increase and decrease in sampling error with increases in 

majp noted above for LSE should be observable in the sampling error for the whole tree.  

5 The LED Domain Revisited 
To illustrate the error decompositions described in Section 3 and to motivate further discussion, 
decompositions will be calculated for decision trees induced using training data generated from 
the LED artificial domain (Breiman et al., 1984). An LED display for digits has seven binary 
indicators as illustrated in Figure 1. Each of these is corrupted, that is, inverted, independently 
with a given probability. If each digit has the same prior probability of being selected for display, 
then a complete probability model on attributes (x1 , … , x7, class) has been defined. The class 
model can be derived and represented, extensionally, as a set of 128 rules whose conditions 
express the instantiation of  (x1, …, x7) and associate this with a probability distribution on the 
vector of ten classes, (1, … , 9, 0).  
 
 
 
 
 
 
 
 

Figure 1: Mapping of attributes in the LED display. 

5.1 Experimental Results 
Experiments to induce ID3 trees were carried out on data generated from the LED domain with 
corruption probability 0.1 for which the Bayes rate is 74.0%. These were repeated on the 24 
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attribute domain obtained by augmenting the seven attributes with 17 mutually independent 
binary pure noise attributes (Breiman et al., 1984). In a final series of experiments, random 
attribute selection was used for induction on the 24 attribute domain. 

A number of replications were performed at each of several points along the learning curve 
varying from 10000 at sample size 25 down to 10 at sample size 10000. For each trial, the error 
decomposition in Equation 1 and the sub-decomposition of majority class error in Equation 2 
were obtained yielding the overall decomposition in Equation 3.  

Sampling error was estimated in a tree by replacing each leaf with a freshly drawn random 
sample of the same size and obtaining the classification rate of the resulting tree. This produces 
an unbiased estimate of sampling error over replications and is more efficient than calculating the 
exact sampling error from the leaf class probability distribution, particularly when the sample 
reaching a leaf is large. The results are shown in Table 2. 

For the seven attribute domain shown in Table 2(a), structure error decreases with sample 
size and is virtually eliminated at size 1000. For most of the learning curve, it is dominated by 
majority class error and the sub-decomposition shows that this is due mostly to sampling error 
with selection bias being either negative or approximately zero. Sampling error decreases with 
sample size due to the rapid increase in examples reaching the leaves. For sample sizes 25 and 50 
the negative selection biases are two-tailed significant at the 5% level. The attribute selection 
competition here is aiding the determination of majority class: the sample reaching a leaf is better 
able to determine majority class than is an independent random sample.  

Table 2 (b) shows that, with the addition of 17 pure noise attributes, the full trees are now 
much larger and that total error, structure and majority class error are considerably larger than for 
the seven attribute domain. There is still structure error at sample size 10000. Core trees are 
initially smaller but become larger as they inflate with locked in pure noise attributes. The large 
majority class error is due to both sampling and selection bias errors. Because of the availability 
of attributes for expansion, leaf sample sizes do not increase to reduce sampling error.  

There is also some evidence of an increase and then decrease in sampling error due to a 
gradual increase in information in the leaf distributions as noted Section 4.2.  In contrast to the 
seven attribute case, selection bias is now two-tailed significant at the 1% level along the learning 
curve apart from size 25, where, as for the seven attribute domain, it is significantly negative. As 
tree depth increases, there are fewer attributes available for selection, yet selection bias continues 
to increase along the learning curve suggesting that it accumulates with depth, that is, a leaf 
inherits a selection bias from its parent and adds to it.  

Comparing Table 2 (c) with Table 2 (b) shows that random attribute selection produces much 
larger trees with fewer examples reaching each leaf. Core trees are also considerably inflated as is 
to be expected.  The increase in error is accounted for by the much greater structure error. In 
contrast, the majority class error is generally much lower due to the reduction in selection bias 
error, which more than compensates for the larger sampling error. There is a modest increase in 
selection bias error along the learning curve becoming statistically different from zero at the 5% 
level from size 250 onwards. The process of tree expansion produces child node frequency 
configurations constrained to add up to that of the parent and which are, therefore, not genuinely 
independent of one another. Thus although there is no attribute selection competition, the process 
of repeatedly sub-dividing a single overall sample into progressively smaller constrained sub-
samples does produce a small bias. 

The experiments above were repeated for corruption probabilities 0.05 and 0.2. The results 
(not shown) exhibit similar characteristics to those reported above.  Errors, particularly majority 
class error, worsen as corruption probability increases. 
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 Full Tree Core Tree   Err Decomp Maj Err 

Sub Decomp 

Samp 
Size 

No. 
Leaves 

Av. 
Leaf 
Size 

Av. 
Depth 

No. 
Leaves 

Av. 
Leaf 
Size 

Av. 
Depth 

CR 
(%) 

Err 
(%) 

Struct 
Err 
(%) 

Maj 
Err 
(%) 

Samp 
Err 
(%) 

Sel 
Bias 
Err 
(%) 

(a) ID3 inductions on the seven attribute LED domain with corruption probability 0.1    

25 13 2.0 4.0 10 2.6 3.5 53.9 20.1 13.6 6.5 11.0 -4.5 
50 20 2.5 4.7 13 4.1 4.0 61.6 12.4 6.4 6.0 7.3 -1.3 

100 32 3.1 5.4 16 6.4 4.3 66.6 7.4 3.6 3.8 3.9 -0.1 
250 55 4.6 6.0 23 11 4.9 69.6 4.4 1.3 3.1 3.0 0.1 
500 72 6.9 6.4 26 20 5.1 71.6 2.4 0.4 2.0 2.1 -0.1 

1000 88 11 6.6 27 38 5.1 73.0 1.0 0.1 0.9 0.9 0.0 
2500 108 23 6.8 29 87 5.3 73.6 0.4 0.0 0.4 0.4 0.0 
5000 118 43 6.9 29 174 5.2 73.8 0.2 0.0 0.2 0.1 0.1 

10000 124 81 7.0 28 363 5.2 73.9 0.1 0.0 0.1 0.1 0.0 

(b) ID3 inductions on the 24 attribute LED domain with corruption probability 0.1    

25 11 2.3 3.7 6.1 4.4 2.7 33.0 41.0 36.8 4.2 6.0 -1.8 
50 19 2.7 4.6 8.4 6.2 3.3 42.4 31.6 22.1 9.5 7.0 2.5 

100 34 3.0 5.6 10 10 3.6 47.9 26.1 13.0 13.2 6.9 6.3 
250 76 3.3 6.8 14 19 4.2 51.7 22.3 8.8 13.5 5.7 7.8 
500 145 3.5 7.9 20 26 4.8 53.2 20.8 7.4 13.4 5.2 8.2 

1000 288 3.5 9.1 25 41 5.2 53.9 20.1 5.7 14.4 5.0 9.4 
2500 711 3.5 10.7 32 80 5.8 54.6 19.4 4.2 15.2 5.1 10.1 
5000 1447 3.5 11.9 46 112 7.1 54.8 19.3 4.1 15.2 5.0 10.2 

10000 2935 3.4 13.0 60 181 7.9 54.8 19.2 3.4 15.8 5.1 10.7 

(c) Inductions using random attribute selection on the 24 attribute LED domain with corruption probability 0.1    

25 30 0.9 5.8 17 1.7 4.9 17.1 56.9 52.2 4.7 4.8 -0.1 
50 59 0.9 6.9 33 1.6 6.1 19.0 55.0 49.3 5.7 5.7 0.0 

100 116 0.9 8.0 63 1.7 7.1 21.1 52.9 46.4 6.6 6.5 0.1 
250 283 0.9 9.3 151 1.7 8.5 23.5 50.6 43.3 7.3 7.1 0.2 
500 554 0.9 10.4 284 1.8 9.6 26.1 48.0 39.7 8.3 8.0 0.3 

1000 1089 0.9 11.4 524 2.0 10.6 28.8 45.2 36.0 9.2 8.7 0.5 
2500 2618 1.0 12.8 1192 2.2 11.9 31.8 42.2 31.7 10.5 9.5 1.0 
5000 5082 1.0 13.8 2285 2.2 12.9 34.5 39.5 28.7 10.8 9.8 1.0 

10000 9956 1.0 14.8 4441 2.3 13.9 36.1 37.9 26.5 11.4 10.1 1.3 

Table 2:  Tree statistics (No. Leaves = number of leaves in the tree; Av. Leaf Size = average 
number of examples in the leaves of the tree; Av. Depth = average depth of the tree), 
classification rate (CR), inductive error (Err) and error decompositions for tree 
inductions on examples generated from the LED domain. All results are averages over 
replications.  



STRUCTURE AND MAJORITY CLASSES IN DECISION TREE LEARNING 

 1759 

6 Experiments with the Autouniv Classification Model Generator 
It is important to establish the extent to which the results from the LED domain, regarding the 
behaviour of the error decompositions, hold in general and how they change under different 
model characteristics. To investigate this, an artificial model generator, Autouniv, was built. 

6.1 An Outline of the Autouniv Procedure 
Autouniv produces a class model together with a joint distribution of the description 

attributes. At present the generator is implemented for discrete attributes only. To create a model, 
the number of informative attributes, pure noise attributes and classes are specified; the number 
of values for an attribute is specified as either a range across attributes or as the same fixed value 
for all attributes.  

To create the joint attribute distribution, attributes are separated randomly into independent 
factors with the maximum number of attributes allowable in a factor also being specified. A pure 
noise attribute cannot be in the same factor as an informative attribute. The joint probability 
distribution for each factor is then generated at random. If the number of values for the attributes 
was specified as a range then, for each attribute, the actual number is randomized separately 
within this range.  

To create the class model, a decision tree is generated and a class distribution is built at each 
leaf. The tree is then converted to a rule set. The tree is built in a random fashion as follows. At 
each expansion, an available attribute is selected at random from one of the informative factors. 
Pure noise attributes are never used for expansion. A minimum depth for the tree is set. After the 
tree has been built to this depth, further expansion along a path is controlled by a stopping 
probability, which is chosen at random between specified lower and upper limits and is generated 
independently at each leaf. This probability is then used in a ‘coin toss’ to determine whether the 
current node will be expanded. Finally, lower and upper limits are specified for the number of 
leaves of the tree. A tree will be rejected if its size is outside these limits. It will also be rejected if 
there is an informative factor at least one of whose attributes does not appear in the tree. 

The class distribution at a leaf is created in two stages. First the majority class is selected 
from a specified distribution; ties are possible. Then the probability of this majority class (classes) 
is determined at random between given limits; these limits can be set differently for different 
classes. For the remaining non-majority classes, a subset of these is selected at random to receive 
positive probability which is assigned randomly. 

The Autouniv procedure was developed to facilitate simple construction of a rich variety of 
realistic models. The tree building mechanism permits a degree of control of model complexity 
through specification of the number of informative attributes, the minimum depth of the tree, 
stopping probability range and the number of leaves. It also guarantees that all attributes declared 
as informative will be informative but also, through the factoring mechanism, that some of these 
may be redundant (Hickey, 1996). The procedure for constructing class distributions allows for 
specification of noise at different levels (and hence differing Bayes rates). It also permits 
heterogeneity in the noise across rules within a particular model. Some classes can be made 
noisier than others and class base rates can vary with one or more classes made rare if required. 

In spite of the control provided by the parameters, some of the properties of the generated 
model remain implicit. An example is the degree of interaction of the description attributes. In 
some models most of the information about class will be carried by a small number of attributes 
whereas in others it will be distributed across a large number with no one or two attributes 
dominating.   

Because of the generality of the Autouniv procedure, which can produce models from simple 
to very complex, with differing noise levels and degrees of attribute interaction, there is no reason 
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to suppose that it might be biased towards creating models for which induced trees exhibit a 
particular pattern of error decomposition, such as unusually large majority class error. 

Once it has been generated, a model can be queried for a supply of training examples: an 
example description is obtained randomly from the attribute joint distribution, the matching rule 
is looked up and a class determined using the class distribution for that rule.   

Finally, the parameters settings can themselves be randomized between given limits. This 
allows for easy generation of a heterogeneous series of models for experimentation.  

6.2 Experiments with Autouniv 
Ten models were generated to give variety with regard to the number of attributes and classes, 
default classification rate, lift, noise levels and model complexity. A summary of the main 
characteristics of these models is given in Table 3. All but three have pure noise attributes. The 
first five models have two classes; the remaining five have more than two classes. The columns 
headed No. Rules and No. conditions in a rule give an indication of model complexity. Most 
models are heterogeneous in the lengths of rule conditions. 

Experiments similar to those performed on the LED domains in Section 5 were carried out on 
these 10 models. The results are shown in Table 4 (for the first five models) and in Table 5 (for 
the remaining five). The principal model characteristics from Table 3 are summarized in the first 
columns of Tables 4 and 5 for convenience. A classification rate (CR) which is less than the 
default classification rate (DCR) for the model is shown in italics in Tables 4 and 5. For several 
models the classification rate remains below the default well into the learning curve indicating 
that interaction of several attributes is required for lift. 

For all models, structure error falls along the learning curve and for most is almost eliminated 
by size 10000. The exception is model 4. From Table 3, model 4 is quite complex in that the 
minimum rule condition length is 8, which is greater than for the other models. Majority class 
error is substantial for all models and, for most, exceeds structure error in the latter part of the 
learning curve, remaining high even when structure error has almost been eliminated. 

 
Model No. 

atts 
No. 
rel 
atts 

No. 
pure 
noise 
atts 

No. of 
vals of  an 

att 

(Min-Max 
or 

constant)  

No. 
Classes 

No. 
Rules 

No. 
conditions in 

a rule 

(Min-Av-Max) 

Def 
Rate, 
DCR 
(%) 

Bayes 
Rate, 
BCR 
(%) 

Lift 
(%) 

1 5 5 0 7 2 11467 3 - 5 - 5 59.5 82.7 23.2 
2 8 2 6 2 - 3 2 6 2 - 2 - 2 76.9 87.6 10.7 
3 30 20 10 2 2 28 3 - 7.3 - 12 51.2 92.6 41.4 
4 40 20 20 2 2 438 8 - 9.4 - 17 50.9 76.8 25.9 
5 50 5 45 2 - 6 2 1030 3 - 4.8 - 5 61.6 81.7 20.1 
           

6 8 2 6 2 - 5 10 4 2 - 2 - 2 81.0 91.7 10.7 
7 12 12 0 2 - 4 4 530 1 - 10.3 - 12 42.9 98.3 55.4 
8 15 15 0 3 13 1981 2 - 13.9 - 15 29.0 46.3 17.3 
9 23 7 16 2 3 9 3 - 3.2 - 4 59.8 79.9 20.1 

10 37 12 25 2 - 4 15 74 3 - 6.3 - 12 16.9 44.1 27.2 

Table 3: Details of 10 models generated by Autouniv. 
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  Full Tree   Err Decomp Maj Err 
Sub Decomp 

Model  Sample 
Size 

No. 
Leaves 

Av. 
Leaf  
Size 

Av. 
Depth 

CR 
(%) 

Err 
(%) 

Struct 
Err 
(%) 

Maj 
Err 
(%) 

Samp 
Err 
(%) 

Sel 
Bias 
Err 
(%) 

25 34 0.8 2.1 52.3 30.4 23.0 7.4 7.2 0.2 
50 67 0.8 2.5 52.7 30.0 22.6 7.4 7.7 -0.3 

100 139 0.7 2.9 53.4 29.3 21.8 7.5 7.4 0.1 
500 716 0.7 3.8 56.5 26.2 18.0 8.2 8.9 -0.7 

1000 1435 0.7 4.2 57.7 25.0 15.5 9.5 9.8 -0.3 
5000 5161 1.0 4.7 66.6 16.1 5.4 10.7 10.4 0.3 

1 
 
No. Atts: 5 
No. Classes: 2 
No. Rules: 11467 
DCR (%): 59.5 
BCR (%):  82.7 10000 7482 1.3 4.8 70.8 11.9 2.6 9.3 9.1 0.2 

25 9 3.1 2.8 74.9 12.7 2.9 9.8 5.0 4.8 
50 16 3.3 3.6 76.5 11.1 1.4 9.7 4.1 5.6 

100 33 3.1 4.7 77.9 9.7 0.5 9.2 3.5 5.7 
500 129 3.9 6.4 81.1 6.5 0.0 6.5 3.1 3.4 

1000 206 4.9 6.8 82.8 4.8 0.0 4.8 2.4 2.4 
5000 455 11.0 7.5 86.4 1.2 0.0 1.2 0.8 0.4 

2 
 
No. Atts: 8 
No. Classes: 2 
No. Rules: 6 
DCR (%): 76.9 
BCR (%): 87.6 10000 573 17.5 7.7 87.1 0.5 0.0 0.5 0.3 0.2 

25 7 3.7 3.2 64.4 28.2 22.3 5.9 4.3 1.6 
50 12 4.5 4.2 71.3 21.3 13.2 8.1 4.0 4.1 

100 20 5.3 5.1 78.4 14.2 5.8 8.4 1.9 6.5 
500 78 6.5 7.9 82.5 10.1 1.5 8.6 1.6 7.0 

1000 149 6.8 9.5 83.7 8.9 1.0 7.9 1.6 6.3 
5000 760 6.6 12.6 84.0 8.6 0.4 8.2 1.2 7.0 

3  
 
No. Atts: 30 
No. Classes: 2 
No. Rules: 28 
DCR (%): 51.2 
BCR (%): 92.6 10000 1588 6.3 14.4 84.4 8.2 0.1 8.1 1.1 7.0 

25 7 3.5 3.3 50.2 26.6 25.4 1.2 1.4 -0.2 
50 14 3.5 4.4 50.3 26.5 25.0 1.5 1.7 -0.2 

100 28 3.6 5.5 50.4 26.4 24.8 1.6 1.8 -0.2 
500 144 3.5 8.1 50.9 25.9 23.5 2.4 3.0 -0.6 

1000 291 3.5 9.2 51.0 25.8 23.0 2.8 2.8 0.0 
5000 1427 3.5 11.6 54.1 22.7 16.8 5.9 5.0 0.9 

4 
 
No. Atts: 40 
No. Classes: 2 
No. Rules: 438 
DCR (%): 50.9 
BCR (%): 76.8 10000 2846 3.5 12.7 55.3 21.5 14.6 6.9 5.0 1.9 

25 18 1.5 1.9 53.9 27.8 20.0 7.8 6.6 1.2 
50 33 1.6 2.4 54.2 27.5 19.7 7.8 7.1 0.7 

100 66 1.5 2.8 54.1 27.6 19.4 8.2 7.0 1.2 
500 309 1.6 3.9 56.9 24.8 15.7 9.1 7.3 1.8 

1000 607 1.7 4.6 60.2 21.5 12.1 9.4 7.0 2.4 
5000 2680 1.9 5.5 65.6 16.1 4.6 11.5 7.4 4.1 

5  
 
No. Atts: 50 
No. Classes: 2 
No. Rules: 1030 
DCR (%): 61.6 
BCR (%): 81.7 10000 5133 2.0 6.1 66.4 15.3 3.0 12.3 7.8 4.5 

Table 4:  Tree statistics and inductive error decomposition for ID3 tree inductions on examples 
generated from models 1 to 5 in Table 3. 
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Sub Decomp 
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No. 
Leaves 

Av. 
Leaf 
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Av. 
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CR 
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(%) 

Struct 
Err 
(%) 
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Err 
(%) 
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Err 
(%) 
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Bias 
Err 
(%) 

25 10 3.5 2.4 79.7 12.0 3.8 8.2 3.9 4.3 
50 19 3.3 3.3 81.8 9.9 1.7 8.2 2.2 6.0 

100 38 2.8 4.2 83.2 8.5 0.5 8.0 2.5 5.5 
500 181 2.8 5.8 84.4 7.3 0.0 7.3 2.3 5.0 

1000 320 3.1 6.2 85.4 6.3 0.0 6.3 2.4 3.9 
5000 1070 4.7 7.0 88.2 3.5 0.0 3.5 1.5 2.0 

6 
 
No. Atts: 8 
No. Classes: 10 
No. Rules: 4 
DCR (%): 81.0 
BCR (%):  91.7 10000 1610 6.2 7.2 89.6 2.1 0.0 2.1 1.0 1.1 

25 11 2.5 2.1 72.8 25.5 19.3 6.2 4.7 1.5 
50 17 3.0 2.7 76.7 21.6 15.6 6.0 4.6 1.4 

100 28 3.8 3.4 83.3 15.0 9.6 5.4 4.2 1.2 
500 75 6.8 4.5 92.5 5.8 2.7 3.1 1.4 1.7 

1000 138 7.4 5.1 93.1 5.2 1.8 3.4 1.0 2.4 
5000 525 9.6 6.5 95.0 3.3 0.6 2.7 0.7 2.0 

7 
 
No. Atts: 12 
No. Classes: 4 
No. Rules: 530 
DCR (%): 42.9 
BCR (%): 98.3 10000 1071 9.3 7.3 95.7 2.6 0.4 2.2 0.3 1.9 

25 22 1.1 3.0 20.0 26.3 14.3 12.0 12.1 -0.1 
50 43 1.2 3.7 25.0 21.3 10.5 10.8 10.6 0.2 

100 82 1.2 4.4 27.6 18.7 7.3 11.4 10.2 1.2 
500 382 1.3 5.8 31.9 14.4 1.6 12.8 11.0 1.8 

1000 760 1.3 6.5 32.5 13.8 1.0 12.8 11.5 1.3 
5000 3899 1.3 8.1 33.2 13.1 0.2 12.9 11.5 1.4 

8  
 
No. Atts: 15 
No. Classes: 13 
No. Rules: 1981 
DCR (%): 29.0 
BCR (%): 46.3 10000 7997 1.3 8.8 33.7 12.6 0.1 12.5 11.2 1.3 

25 8 3.2 3.5 61.7 18.2 2.3 15.9 5.8 10.1 
50 15 3.4 4.7 63.1 16.8 0.1 16.7 5.7 11.0 

100 31 3.3 6.1 63.9 16.0 0.0 16.0 5.6 10.4 
500 161 3.1 9.1 63.8 16.1 0.0 16.1 5.6 10.5 

1000 345 2.9 10.6 64.1 15.8 0.0 15.8 5.6 10.2 
5000 1817 2.8 13.6 64.7 15.2 0.0 15.2 6.4 8.8 

9 
 
No. Atts: 23 
No. Classes: 3 
No. Rules: 9 
DCR (%): 59.8 
BCR (%): 79.9 10000 3718 2.7 15.0 64.9 15.0 0.0 15.0 6.6 8.4 

25 27 1.0 2.6 11.2 32.9 24.1 8.8 9.0 -0.2 
50 51 1.0 3.1 12.6 31.5 22.0 9.5 9.7 -0.2 

100 101 1.0 3.7 13.8 30.3 20.3 10.0 10.1 -0.1 
500 428 1.2 5.3 23.7 20.4 8.5 11.9 10.9 1.0 

1000 786 1.3 6.1 27.6 16.5 4.9 11.6 10.4 1.2 
5000 3664 1.4 7.7 32.0 12.1 0.2 11.9 10.5 1.4 

10  
 
No. Atts: 37 
No. Classes: 15 
No. Rules: 74 
DCR (%): 16.9 
BCR (%): 44.1 10000 7296 1.4 8.3 33.2 10.9 0.1 10.8 9.2 1.6 

Table 5: Tree statistics and inductive error decomposition for ID3 tree inductions on examples 
generated from models 6 to 10 in Table 3. 
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Sampling errors are consistent with those expected from the discussion in Section 4.2 and 
from Table 1. In model 4, which has the lowest initial sampling error, the default rate is 50.9% 
indicating that near the beginning of the learning curve there is little penalty from obtaining an 
incorrect majority class. As the trees acquire structure, sampling error rises while the sample size 
at the leaf remains constant. The largest sampling error occurs for models 8 and 10, which have 
13 and 15 classes respectively and quite low default and Bayes rates. Leaf sample sizes are 
smallest for these models. Sampling errors, though, fall short of the maxima in Table 1. 

Selection bias error shows a more complex pattern. There are instances of very high bias and 
of virtually non-existent bias and the extent seems comparatively unrelated to the number of 
attributes and other characteristics of the model. For model 1 with five attributes, it is similar to 
that seen for the seven attribute LED domain. For model 2, however, with eight attributes, it is 
fairly large at the beginning of the learning curve when the leaf sample size is small, falling later 
on when it increases. In contrast, for model 4, with 40 attributes, 20 of which are pure noise, 
selection bias error only becomes statistically significant from size 5000.  

There is some indication that the occurrence of larger selection bias is associated with simpler 
models such as 2, 3, 6 and 9. A possible explanation for this is that when structure error is low, 
the attribute selection competition is taking place amongst attributes none of which can offer 
much information gain. The competition is then more vulnerable to spurious leaf distributions.  

6.2.1  RANDOM TREES 
All experiments were repeated with random attribute selection. The random trees were much 
larger for all models, typically having between 2 and 4 times as many leaves as the corresponding 
ID3 trees. For all models, except model 1, the classification rates along the learning curve were 
significantly lower than for the corresponding ID3 curve. 

The random trees for model 1 matched the classification rates for ID3, with no significant 
difference all along the learning curve. Likewise there was no significant difference in 
decomposition errors. This is due to there being only five attributes all of which are relevant. 
Moreover, from Table 4, the classification rates are less than the default until after sample size 
1000 so that the lift is shared amongst the attributes rather than being concentrated in one or two. 
Thus, as noted by Liu and White (1994), there is little benefit from selection based on maximising 
information gain over that offered by random selection.  

For nearly all models, the selection bias error was virtually eliminated along the learning 
curve. Only for models 6 and 9 was here a slight increase as was observed for the LED domain. 

These results broadly confirm the findings of Liu and White (1994). Their poorer 
performance is due to much larger structure error caused by the interference of pure noise 
attributes. They tend to have very much larger reduced cores indicating a high degree of inflation. 
Where the ID3 tree has significant selection bias error, this will be almost eliminated in the 
random tree but this benefit, which may be accompanied anyway by larger sampling error due to 
smaller leaf samples, is usually not sufficient to compensate for the increased structure error. 

7 Experiments with Real Data 
Determination of the error decomposition requires knowledge of the joint probability distribution 
of the description attributes and the class. This is necessary to calculate, for example, the Bayes 
rate and the correct majority class at a leaf.  Only the sub-decomposition of majority class into 
sampling and selection bias errors was estimated from sample data for convenience as explained 
in Section 5. If a large data set is available then it is possible to estimate the whole 
decomposition. To illustrate the procedures involved, the Forest Cover data set (UCI KDD 
Archive) will be used.   
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In the Forest Cover data, seven species of tree are classified using 54 attributes that describe 
their location. The data consists of 581012 examples. There are no missing values. Five of the 
classes are comparatively rare. These were combined into a single class called ‘other’. There are 
40 binary attributes that describe soil type. These were eliminated. Four binary attributes 
describing wilderness area were combined into a single four-valued wilderness attribute. 

The remaining 10 attributes are all continuous. These were made discrete by binning each 
into four bins with labels 1, 2, 3 and 4 as shown in Table 6. 
 

Attribute Binning Ranges for Bins 1 - 4 
 1 2 3 4 

Elevation < 2400 2400 < 3000 3000 < 3300 ≥ 3300 
Aspect  < 60 60 < 180 180 < 300  ≥ 300 
Slope  < 11 11 < 33 33 < 55  ≥ 55 

Horizontal_Distance_To_Hydrology  < 233 233 < 699 699 < 1165  ≥ 1165 
Vertical_Distance_To_Hydrology  < -44 -44 < 214 214 <472  ≥ 472 

Horizontal_Distance_To_Roadways  < 1187 1187 < 3559 3559 < 5930  ≥ 5930 
Hillshade_9am  < 42.3 42.3 < 127.0 127.0 < 211.7  ≥ 211.7 

Hillshade_Noon  < 42.3 42.3 < 127.0 127.0 < 211.7  ≥ 211.7 
Hillshade_3pm  < 42.3 42.3 < 127.0 127.0 < 211.7  ≥ 211.7 

Horizontal_Distance_To_Fire_Points  < 1196 1196 < 3587 3587 < 5978  ≥ 5978 

Table 6: Continuous to discrete conversion of 10 Forest Cover attributes. 

The final data set consists of 11 discrete attributes and three classes. This was split randomly 
into approximately 75% to represent the model and 25% to be used as a test set. Statistics relating 
to these sets are shown in Table 7.  
 
 

  Class Distribution 

Data Set Size Lodgepole Pine Spruce/Fir Other 

Whole 581012 
(100%) 

283301 
(48.76%) 

211840 
(36.46%) 

85871 
(14.78%) 

Model 436169 
(75.1%) 

212587 
(48.74%) 

158968 
(36.45%) 

64614 
(14.81%) 

Test 144843 
(24.9%) 

70714  
(48.82%) 

52872 
(36.50%) 

21257 
(14.68%) 

Table 7:  Statistics for the revised Forest Cover data with 11 attributes and three classes obtained 
from a random partitioning into model and test subsets. 

To estimate the Bayes rate, the CART algorithm was applied to the model set to build a 
decision tree. The twoing measure was used for attribute selection. Cost complexity pruning with 
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the 1 standard error setting was applied. The resulting tree, which is an approximation to the true 
model, had 1131 leaves. The rule set derived from this tree was applied to the test set producing a 
classification rate of 73.78% as an estimate of the true Bayes rate. From Table 7, the default 
classification rate in the test set is 48.82% giving a lift of 24.96%. 

Experiments similar to those in Sections 5 and 6 were carried out on the revised data. 
Training examples were drawn randomly from the model data set. To determine structure and 
majority class error, an estimate of the true majority class at a leaf in an induced tree needs to be 
obtained.  This was provided by applying the rule condition associated with the leaf to the whole 
of the model data set. The majority class amongst examples matching this condition was then 
taken as the estimate of the true majority class. Such estimates are typically based on fairly large 
numbers of matching examples. For example, if a tree induced from 10000 examples has a leaf 
containing two examples then the expectation, from Table 7, is that there would be 2 * 
436169/10000 = 87 matching examples in the model set. These estimates of majority class were 
also used to estimate the reduced core of each induced tree through same majority class pruning. 

Sampling error was calculated by the method described in Section 5 using random samples 
obtained from the model data set. All classification rates needed for the decomposition were 
estimated from the test data set. 

The results, shown in Table 8, exhibit similar patterns of decomposition to those seen earlier. 
A sample of about 30000 is required to virtually eliminate structure error. Majority class error 
dominates structure error all along the learning curve. This is mostly due to sampling error. The 
low selection bias error across the learning curve is consistent with that observed for the more 
complex artificial models in Section 6. 
  
 

 Full Tree Core Tree   Err Decomp Maj Err 
Sub Decomp 

Samp
Size 

No. 
Leaves 

Av. 
Leaf 
Size 

Av. 
Depth 

No. 
Leaves 

Av. 
 Leaf 
Size 

Av. 
Depth 

CR 
(%) 

Err 
(%) 

Struct 
Err 
(%) 

Maj 
Err 
(%) 

Samp 
Err 
(%) 

Sel 
Bias 
Err 
(%) 

25 25 1.1 2.9 16 1.8 2.5 52.6 21.2 9.4 11.8 11.0 0.8 
50 51 1.0 3.7 29 1.9 3.2 55.3 18.5 6.8 11.7 9.9 1.8 

100 102 1.0 4.5 55 1.9 4.0 56.6 17.2 5.8 11.4 9.4 2.0 
500 502 1.0 6.3 241 2.1 5.6 60.0 13.8 3.6 10.2 8.2 2.0 

1000 908 1.1 6.8 425 2.4 6.2 62.1 11.7 2.7 9.0 7.5 1.5 
2500 1746 1.4 7.3 799 3.1 6.6 65.2 8.6 1.6 7.0 5.9 1.1 
5000 2633 1.9 7.7 1195 4.2 7.0 67.8 6.0 1.1 4.9 4.2 0.7 

10000 3671 2.7 7.9 1597 6.3 7.2 69.8 4.0 0.6 3.4 3.1 0.3 
20000 4971 4.0 8.1 2065 9.7 7.4 71.4 2.4 0.4 2.0 1.7 0.3 
30000 5727 5.2 8.2 2402 12.5 7.5 72.3 1.5 0.2 1.3 1.3 0.0 

Table 8:  Tree statistics and inductive error decomposition for ID3 inductions on examples 
generated from the revised Forest Cover data.  
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8 Conclusion and Future Work 
The contribution of this paper has been the introduction of a method of decomposition of the 
classification error occurring in decision tree induction. Its application has been demonstrated on 
both artificial and real data. Instead of comparing tree induction algorithms in terms of 
classification error is it now possible to provide further insight into how this arose, specifically 
whether it is due to failure to grow sufficient tree structure or to successfully estimate majority 
class at the leaves. 

It has been shown that majority class error is often quite substantial and that it can be further 
broken down into sampling error and selection bias error with the extent of these sources being 
quantified.  

By factoring out the effects of selection bias, the sub-decomposition of majority class error 
permits a statistical analysis of sampling error not previously possible because of the biased 
samples reaching the leaves. For two classes, sampling error appears to be limited to a maximum 
of about 12%. For more than two classes it could be as much as 25%. Sampling error does 
decrease reasonably quickly when the size of sample reaching the leaves eventually begins to 
increase, particularly if the level of noise in the domain is low.  

In ID3, selection bias error is due to the corruption in the sample reaching a leaf caused by 
the multiple comparison effect of the competition to select the best attribute with which to expand 
the tree. It may be insignificantly different from zero along the learning curve even when there 
are a large number of attributes involved in the selection competition and yet may be large when 
there are only a small number of attributes. The initial evidence provided here supports the 
hypothesis that if the underlying model is sufficiently complex, then this offers some protection 
against selection bias error. Although regarded here as a source of majority class error, selection 
bias error could, conceivably, be viewed as part of the error in forming tree structure. 

The results provided here offer further insight into why ID3 typically outperforms trees 
grown with random attribute selection. It is due to a largely successful trade-off in forming 
structure efficiently at the expense of creating selection bias error.   

The challenge for future work is to use the decomposition to develop better tree induction 
algorithms. For example, it may be possible to find a better trade-off between forming structure 
and incurring selection bias than that offered by ID3. The decomposition can be applied to 
induced trees however constructed. In particular, it can be obtained for trees that have been 
pruned and so should enhance investigation into issues relating to overfitting avoidance (Schaffer, 
1993) and the properties of methods of pruning (Oates and Jensen, 1997; 1999). 

It may also be possible to extend the approach to investigate the behaviour of bagging and 
boosting techniques for decision trees.   

Majority class error was decomposed into sampling and selection bias errors. It is possible, 
instead, to decompose it in a way that reflects contributions from the reduced core and from 
extension beyond the core. Such an alternative sub-decomposition may be especially useful in 
investigating overfitting avoidance. Structure error can also be decomposed to isolate the effect of 
pure noise attributes on the induction. Work is being undertaken on both of these.  
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