
Journal of Machine Learning Research 8 (2007) 1893-1918 Submitted 11/06; Revised 4/07; Published 8/07

Fast Iterative Kernel Principal Component Analysis

Simon Günter SIMON.GUENTER@NICTA.COM.AU

Nicol N. Schraudolph NIC.SCHRAUDOLPH@NICTA.COM.AU

S.V.N. Vishwanathan SVN.VISHWANATHAN@NICTA.COM.AU

Research School of Information Sciences and Engineering
Australian National University –and–
Statistical Machine Learning Program
National ICT Australia, Locked Bag 8001
Canberra ACT 2601, Australia

Editor: Aapo Hyvarinen

Abstract
We develop gain adaptation methods that improve convergence of the kernel Hebbian algorithm
(KHA) for iterative kernel PCA (Kim et al., 2005). KHA has a scalar gain parameter which is
either held constant or decreased according to a predetermined annealing schedule, leading to slow
convergence. We accelerate it by incorporating the reciprocal of the current estimated eigenvalues
as part of a gain vector. An additional normalization term then allows us to eliminate a tuning
parameter in the annealing schedule. Finally we derive and apply stochastic meta-descent (SMD)
gain vector adaptation (Schraudolph, 1999, 2002) in reproducing kernel Hilbert space to further
speed up convergence. Experimental results on kernel PCA and spectral clustering of USPS digits,
motion capture and image denoising, and image super-resolution tasks confirm that our methods
converge substantially faster than conventional KHA. To demonstrate scalability, we perform kernel
PCA on the entire MNIST data set.
Keywords: step size adaptation, gain vector adaptation, stochastic meta-descent, kernel Hebbian
algorithm, online learning

1. Introduction

Principal components analysis (PCA) is a standard linear technique for dimensionality reduction.
Given a matrix X ∈R

n×l of l centered, n-dimensional observations, PCA performs an eigendecom-
position of the covariance matrix Q := XX>. The r×n matrix W whose rows are the eigenvectors
of Q associated with the r ≤ n largest eigenvalues minimizes the least-squares reconstruction error

‖X −W>WX‖F , (1)

where ‖ · ‖F is the Frobenius norm.
As it takes O(n2l) time to compute Q and O(n3) time to eigendecompose it, PCA can be pro-

hibitively expensive for large amounts of high-dimensional data. Iterative methods exist that do
not compute Q explicitly, and thereby reduce the computational cost to O(rn) per iteration. They
assume that each individual observation x is drawn from a statistical distribution1, and the aim is
to maximize the variance of y := Wx, subject to some orthonormality constraints on the weight

1. It is customary to assume that the distribution is centered, that is, E[x] = 0.

c©2007 Simon Günter, Nicol N. Schraudolph and S.V.N. Vishwanathan.

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

matrix W . In particular, we obtain the so-called hierarchical PCA network if we assume that the
ith row of W must have unit norm and must be orthogonal to the jth row, where j = 1, . . . , i− 1
(Karhunen, 1994). By using Lagrange multipliers to incorporate the constraints into the objective,
we can rewrite the merit function J(W) succinctly as (Karhunen and Joutsensalo, 1994):

J(W) = E[x>W>Wx]+ 1
2 tr[Λ(WW>−I)], (2)

where the Lagrange multiplier matrix Λ is constrained to be lower triangular. Taking gradients with
respect to W and setting to zero yields

∂W J(W) = E[Wx]x>+ΛW = 0. (3)

As a consequence of the KKT conditions (Boyd and Vandenberghe, 2004), at optimality

Λ(WW>−I) = 0. (4)

Right multiplying (3) by W >, using (4), and noting that Λ must be lower triangular yields

Λ = −lt(E [Wx]x>W>) = −lt(E[y]y>), (5)

where lt(·) makes its argument lower triangular by zeroing all elements above the diagonal. Plug-
ging (5) into (3) and stochastically approximating the expectation E[y] with its instantaneous esti-
mate yt := Wtxt , where xt ∈ R

n is the observation at time t, yields

∂Wt J(W) = ytx
>
t − lt(yty

>
t)Wt . (6)

Gradient ascent in (6) gives the generalized Hebbian algorithm (GHA) of Sanger (1989):

Wt+1 = Wt +ηt [ytx
>
t − lt(yty

>
t)Wt]. (7)

For an appropriate scalar gain, ηt , (7) will tend to converge to the principal component solution as
t → ∞; though its global convergence is not proven (Kim et al., 2005).

A closely related algorithm by Oja and Karhunen (1985, Section 5) omits the lt operator:

Wt+1 = Wt +ηt [ytx
>
t −yty

>
t Wt]. (8)

This update is also motivated by maximizing the variance of Wx subject to orthonormality con-
straints on W. In contrast to GHA it requires the ith row of W to be orthogonal to all other rows of
W, that is, that W be orthonormal. The resulting algorithm converges to an arbitrary orthonormal
basis—not necessarily the eigen-basis—for the subspace spanned by the first r eigenvectors.

One can do better than PCA in minimizing the reconstruction error (1) by allowing nonlin-
ear projections of the data into r dimensions. Unfortunately such approaches often pose difficult
nonlinear optimization problems. Kernel methods (Schölkopf and Smola, 2002) provide a way
to incorporate non-linearity without unduly complicating the optimization problem. Kernel PCA
(Schölkopf et al., 1998) performs an eigendecomposition on the kernel expansion of the data, an
l × l matrix. To reduce the attendant O(l2) space and O(l3) time complexity, Kim et al. (2005)
introduced the kernel Hebbian algorithm (KHA) by kernelizing GHA.

1894

FAST ITERATIVE KERNEL PCA

Both GHA and KHA are examples of stochastic approximation algorithms, whose iterative up-
dates employ individual observations in place of—but, in the limit, approximating—statistical prop-
erties of the entire data. By interleaving their updates with the passage through the data, stochastic
approximation algorithms can greatly outperform conventional methods on large, redundant data
sets, even though their convergence is comparatively slow.

Both GHA and KHA updates incorporate a scalar gain parameter ηt , which is either held fixed or
annealed according to some predefined schedule. Robbins and Monro (1951) were first to establish
conditions on the sequence of ηt that guarantee the convergence of many stochastic approximation
algorithms on stationary input. A widely used annealing schedule (Darken and Moody, 1992) that
obeys these conditions is

ηt =
τ

t + τ
η0, (9)

where t denotes the iteration number, and η0,τ are positive tuning parameters. τ determines the
length of an initial search phase with near-constant gain (ηt ≈ η0 for t � τ), before the gain decays
asymptotically as τ/t (for t � τ) in the annealing phase (Darken and Moody, 1992). For non-
stationary inputs (e.g., in a online setting) Kim et al. (2005) suggest a small constant gain.

Here we propose the inclusion of a gain vector in the KHA, which provides each estimated
eigenvector with its individual gain parameter. In Section 3.1 we describe our KHA/et* algorithm,
which sets the gain for each eigenvector inversely proportional to its estimated eigenvalue, in ad-
dition to using (9) for annealing. Our KHA/et algorithm in Section 3.3 additionally multiplies the
gain vector by the length of the vector of estimated eigenvalues; this allows us to eliminate the τ
tuning parameter.

We then derive and apply the stochastic meta-descent (SMD) gain vector adaptation technique
(Schraudolph, 1999, 2002) to KHA/et* and KHA/et to further speed up their convergence. Our
resulting KHA-SMD* and KHA-SMD methods (Section 4.2) adapt gains in a reproducing kernel
Hilbert space (RKHS), as pioneered in the recent Online SVMD algorithm (Vishwanathan et al.,
2006). The application of SMD to the KHA is not trivial; a naive implementation would require
O(rl2) time per update. By incrementally maintaining and updating two auxiliary matrices we re-
duce this cost to O(rl). Our experiments in Section 5 show that the combination of preconditioning
by the estimated eigenvalues and SMD can yield much faster convergence than either technique
applied in isolation.

The following section summarizes the KHA, before we provide our eigenvalue-based gain mod-
ifications in Section 3. Section 4 describes SMD and its application to the KHA. We report the
results of our experiments with these algorithms in Section 5, then conclude with a discussion of
our findings.

2. Kernel Hebbian Algorithm

Kim et al. (2005) adapt Sanger’s (1989) GHA algorithm to work with data mapped into a reproduc-
ing kernel Hilbert space (RKHS) H via a feature map Φ : X → H (Schölkopf and Smola, 2002).
Here X is the input space, and H and Φ are implicitly defined by the kernel k : X ×X → H with
the property ∀x,x′ ∈ X : k(x,x′) = 〈Φ(x),Φ(x′)〉H , where 〈·, ·〉H denotes the inner product in H .
Let Φ denote the transposed data vector in feature space:

Φ := [Φ(x1),Φ(x2), . . . Φ(xl)]
>. (10)

1895

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

This assumes a fixed set of l observations whereas GHA relies on an infinite sequence of observa-
tions for convergence. Following Kim et al. (2005), we use an indexing function p : N → Zl which
concatenates random permutations of Zl to reconcile this discrepancy. Our implementations loop
through a fixed data set, permuting it anew before each pass.

PCA, GHA, and hence KHA all assume that the data is centered. Since the kernel which maps
the data into feature space does not necessarily preserve such centering, we must re-center the data
in feature space:

Φ
′ := Φ−MΦ, (11)

where M denotes the l × l matrix with entries all equal to 1/l. This is achieved by replacing the
kernel matrix K := ΦΦ

> (that is, [K]i j := k(xi,x j)) by its centered version

K ′ := Φ
′
Φ

′> = (Φ−MΦ)(Φ−MΦ)>

= ΦΦ
>−MΦΦ

>−ΦΦ
>M> +MΦΦ

>M> (12)

= K −MK − (MK)> +MKM .

Since all rows of MK are identical (as are all elements of MKM) we can pre-calculate each row
in O(l2) time and store it in O(l) space to efficiently implement operations with the centered kernel.
The kernel centered on the training data is also used when testing the trained system on new data.

From kernel PCA (Schölkopf et al., 1998) it is known that the principal components must lie
in the span of the centered data in feature space; we can therefore express the GHA weight matrix
as Wt = AtΦ

′, where A is an r× l matrix of expansion coefficients, and r the desired number of
principal components. The GHA weight update (7) thus becomes

At+1Φ
′ = AtΦ

′ + ηt [ytΦ′(xp(t))
>− lt(yty

>
t)AtΦ

′], (13)

where lt(·) extracts the lower triangular part of its matrix argument (by setting all matrix elements
above the diagonal to zero), and

yt := WtΦ′(xp(t)) = AtΦ
′Φ′(xp(t)) = Atk

′
p(t), (14)

using k′
i to denote the ith column of the centered kernel matrix K ′. Since we have Φ′(xi)

> =
e>

i Φ
′, where ei is the unit vector in direction i, (13) can be rewritten solely in terms of expansion

coefficients as

At+1 = At + ηt [yte
>
p(t) − lt(yty

>
t)At]. (15)

Introducing the update coefficient matrix

Γt := yte
>
p(t)− lt(yty

>
t)At (16)

we obtain the compact update rule

At+1 = At +ηtΓt . (17)

In their experiments, Kim et al. (2005) employed the KHA update (17) with a constant scalar gain
ηt = η0; they also proposed letting the gain decay as ηt = η0/t. Our implementation (which we
denote KHA/t) employs the more general (9) instead, from which an η0/(t + 1) decay is obtained
by setting τ = 1, and a constant gain in the limit as τ → ∞.

1896

FAST ITERATIVE KERNEL PCA

3. Gain Decay with Reciprocal Eigenvalues

Consider the term ytx
>
t = Wtxtx

>
t appearing on the right-hand side of the GHA update (7). At the

desired solution, the rows of Wt contain the principal components, that is, the leading eigenvectors
of Q = XX>. The elements of yt thus scale with the associated eigenvalues of Q. Large differences
in eigenvalues can therefore lead to ill-conditioning (hence slow convergence) of the GHA; the same
holds for the KHA.

We counteract this problem by furnishing the KHA with a gain vector ηt ∈ R
r
+ that provides

each eigenvector estimate with its individual gain parameter; we will discuss how to set ηt below.
The update rule (17) thus becomes

At+1 = At +diag(ηt)Γt , (18)

where diag(·) maps a vector into a diagonal matrix.

3.1 The KHA/et* Algorithm

To improve the KHA’s convergence, we set ηt proportional to the reciprocal of the estimated eigen-
values. Let λt ∈R

r
+ denote the vector of eigenvalues associated with the current estimate of the first

r eigenvectors. Our KHA/et* algorithm sets the ith component of ηt to

[ηt]i =
1

[λt]i

τ
t + τ

η0, (19)

with η0 and τ positive tuning parameters as in (9) before. Since we do not want the annealing phase
to start before we have seen all observations at least once, we tune τ in small integer multiples of
the data set size l.

KHA/et* thus conditions the KHA update by proportionately decreasing (increasing) the gain
(19) for rows of At associated with large (small) eigenvalues. A similar approach (with a simple 1/t
gain decay) was applied by Chen and Chang (1995) to GHA for neural network feature selection.

3.2 Calculating the Eigenvalues

The above update (19) requires the first r eigenvalues of K ′—but the KHA is an algorithm for
estimating these eigenvalues and their associated eigenvectors in the first place. The true eigenvalues
are therefore not available at run-time. Instead we use the eigenvalues associated with the KHA’s
current eigenvector estimate in At , computed as

[λt]i =
‖K ′[At]

>
i∗‖2

‖[At]
>
i∗‖2

, (20)

where [At]i∗ denotes the ith row of At , and ‖·‖2 the 2-norm of a vector. This can be stated compactly
as

λt =

√

diag(AtK ′(AtK ′)>)

diag(AtA
>
t)

, (21)

where the division and square root operation are performed element-wise, and diag(·) applied to a
matrix extracts the vector of elements along the matrix diagonal.

1897

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

The main computational effort for calculating λt lies in computing AtK
′, which—if done

naively—is quite expensive: O(rl2). Fortunately it is not necessary to do this at every iteration,
since the eigenvalues evolve but gradually. We empirically found it sufficient to update λt and
ηt only once after each pass through the data, that is, every l iterations—see Figure 4. Finally,
Section 4.2 below introduces incremental updates (33) and (34) that reduce the cost of calculating
AtK

′ to O(rl).

3.3 The KHA/et Algorithm

The τ parameter of the KHA/et* update (19) above determines at what point in the iterative kernel
PCA we gradually shift from the initial search phase (with near-constant ηt) into the asymptotic
annealing phase (with ηt near-proportional to 1/t). It would be advantageous if this parameter
could be determined adaptively (Darken and Moody, 1992), obviating the manual tuning required
in KHA/et*.

One way to achieve this is to have some measure of progress counteract the gain decay: As
long as we are making rapid progress, we are in the search phase, and do not want to decrease the
gains; when progress stalls it is time to start annealing them. A suitable measure of progress is ‖λt‖,
the length of the vector of eigenvalues associated with our current estimate of the eigenvectors, as
calculated via (20) above. This quantity is maximized by the true eigenvectors; in the KHA it tends
to increase rapidly early on, then approach the maximum asymptotically.

Our KHA/et algorithm fixes the gain decay schedule of KHA/et* at τ = l, but multiplies the
gains by ‖λt‖:

[ηt]i =
‖λt‖
[λt]i

l
t + l

η0. (22)

The rapid early growth of ‖λt‖ thus serves to counteract the gain decay until the leading eigenspace
has been identified. Asymptotically ‖λt‖ approaches its (constant) maximum, and so the gain decay
will ultimately dominate (22). This achieves an effect comparable to an “adaptive search then con-
verge” (ASTC) gain schedule (Darken and Moody, 1992) while eliminating the τ tuning parameter.
Since (19) and (22) can both be expressed as

[ηt]i =
η̂t

[λt]i
, (23)

for particular choices of η̂t , we can compare the gain vectors used by KHA/et* and KHA/et by
monitoring how they evolve the scalar η̂t ; this is shown in Figure 1 for all experiments reported
in Section 5. We see that although both algorithms ultimately anneal η̂t in a similar fashion, their
behavior early on is quite different: KHA/et keeps a lower initial gain roughly constant for a pro-
longed search phase, whereas KHA/et* (for the optimal choice of τ) starts decaying η̂t far earlier,
albeit from a higher starting value. In Section 5 we shall see how this affects the performance of the
two algorithms.

4. KHA with Stochastic Meta-Descent

While KHA/et* and KHA/et make reasonable assumptions about how the gains of a KHA update
should be scaled, further improvements are possible by adapting gains in response to the observed

1898

FAST ITERATIVE KERNEL PCA

USPS dot-product KPCA: USPS RBF KPCA: multipatch image KPCA:

image super-resolution: USPS spectral clustering: motion capture KPCA:

Figure 1: Comparison of gain η̂t (23) between KHA/et* and KHA/et in all applications reported in
Section 5, at individually optimal values of η0 and (for KHA/et*) τ.

history of parameter updates so as to optimize convergence. We briefly review gradient-based gain
adaptation methods, then derive and implement Schraudolph’s (1999; 2002) stochastic meta-descent
(SMD) algorithm for both KHA/et* and KHA/et, focusing on the scalar form of SMD that can be
used in an RKHS.

4.1 Scalar Stochastic Meta-Descent

Let V be a vector space, θ ∈V a parameter vector, and J : V → R the objective function which we
would like to optimize. We assume that J is twice differentiable almost everywhere. Denote by
Jt : V → R the stochastic approximation of the objective function at time t. Our goal is to find θ

such that Et [Jt(θ)] is minimized. We adapt θ via the stochastic gradient descent

θt+1 = θt − eρt gt , where gt = ∂θt Jt(θt), (24)

using ∂θt as a shorthand for ∂
∂θ

∣

∣

∣

θ=θt

. Stochastic gradient descent is sensitive to the value of the

log-gain ρt ∈ R: If it is too small, (24) will take many iterations to converge; if it is too large, (24)
may diverge.

One solution is to adapt ρt by a simultaneous meta-level gradient descent. Thus we could seek to
minimize the value of the objective at the next iteration by adjusting ρt in proportion to the gradient

1899

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

∂ρt Jt+1(θt+1). Using the chain rule and (24) we find

ρt+1 = ρt −µ∂ρt Jt+1(θt+1)

= ρt −µ [∂θt+1Jt+1(θt+1)]
>∂ρt θt+1 (25)

= ρt +µeρt g>
t+1 gt ,

where the meta-gain µ≥ 0 is a scalar tuning parameter. Intuitively, the gain adaptation (25) is driven
by the angle between successive gradient measurements: If it is less than 90◦, then g>

t+1 gt > 0, and
ρt will be increased. Conversely, if the angle is more than 90◦ (oscillating gradient), then ρt will be
decreased because g>

t+1 gt < 0. Thus (25) serves to decorrelate successive gradients, which leads to
improved convergence of (24).

One shortcoming of (25) is that the decorrelation occurs only across a single time step, mak-
ing the gain adaptation overly sensitive to spurious short-term correlations in the data. Stochastic
meta-descent (SMD; Schraudolph, 1999, 2002) addresses this issue by employing an exponentially
decaying trace of gradients across time:

ρt+1 = ρt −µ
t

∑
i=0

ξi∂ρt−iJt+1(θt+1)

= ρt −µ [∂θt+1Jt+1(θt+1)]
>

t

∑
i=0

ξi∂ρt−iθt+1 (26)

=: ρt −µg>
t+1 vt+1,

where the vector vt+1 ∈V characterizes the dependence of θt+1 on its gain history over a time scale
governed by the decay factor 0 ≤ ξ ≤ 1, a scalar tuning parameter.

To compute vt+1 efficiently, we expand θt+1 in terms of its recursive definition (24):

vt+1 :=
t

∑
i=0

ξi∂ρt−iθt+1

=
t

∑
i=0

ξi∂ρt−iθt −
t

∑
i=0

ξi∂ρt−i [e
ρt gt] (27)

≈ ξvt − eρt (gt +∂θt gt

t

∑
i=0

ξi∂ρt−iθt).

Here we have used ∂ρt θt = 0, and approximated

t

∑
i=1

ξi∂ρt−iρt ≈ 0, (28)

which amounts to stating that the log-gain adaptation must be in equilibrium on the time scale
determined by ξ. Noting that ∂θt gt is the Hessian Ht of Jt(θt), we arrive at the simple iterative
update

vt+1 = ξvt − eρt (gt +ξHtvt). (29)

Since the initial parameters θ0 do not depend on any gains, v0 = 0. Note that for ξ = 0 (29) and
(26) reduce to the single-step gain adaptation (25).

1900

FAST ITERATIVE KERNEL PCA

Computation of the Hessian-vector product Htvt would be expensive if done naively. For-
tunately, efficient methods exist to calculate this quantity directly without computing the Hessian
(Pearlmutter, 1994; Griewank, 2000; Schraudolph, 2002). In essence, these methods work by prop-
agating v as a differential (i.e., directional derivative) through the gradient computation:

dθt := vt ⇒ Htvt := dgt . (30)

In other words, if we set the differential dθt of the parameter vector to vt , then the resulting differ-
ential of the gradient gt (a function of θt) is the Hessian-vector product Htvt . We will see this at
work for the case of the KHA in (36) below.

4.2 SMD for KHA

The KHA update (18) can be viewed as r coupled updates in RKHS, one for each row of At , each
associated with a scalar gain. To apply SMD here we introduce an additional log-gain vector ρt ∈R

r

At+1 = At + ediag(ρt) diag(ηt)Γt . (31)

(The exponential of a diagonal matrix is obtained simply by exponentiating the individual diagonal
entries.) We are thus applying SMD to KHA/et, that is, to a gradient descent preconditioned by the
reciprocal estimated eigenvalues. SMD will happily work with such a preconditioner, and benefit
from it.

In an RKHS, SMD adapts a scalar log-gain whose update is driven by the inner product between
the gradient and a differential of the system parameters, all in the RKHS (Vishwanathan et al., 2006).
In the case of KHA, ΓtΦ

′ can be interpreted as the gradient in the RKHS of the merit function (2)
maximized by KHA. Therefore SMD’s adaptation of ρt in (31) is driven by the diagonal entries
of 〈ΓtΦ

′,BtΦ
′〉H , where Bt := dAt denotes the r× l matrix of expansion coefficients for SMD’s

differential parameters, analogous to the v vector in Section 4.1:

ρt = ρt−1 +µ diag(
〈

ΓtΦ
′,BtΦ

′〉
H)

= ρt−1 +µ diag(ΓtΦ
′
Φ

′>B>
t) (32)

= ρt−1 +µ diag(ΓtK
′B>

t).

Naive computation of ΓtK
′ in (32) would cost O(rl2) time, which is prohibitively expensive for

large l. We can, however, reduce this cost to O(rl) by noting that (16) implies that

ΓtK
′ = yte

>
p(t)K

′− lt(yty
>
t)AtK

′

= ytk
′>
p(t)− lt(yty

>
t)AtK

′, (33)

where the r× l matrix AtK
′ can be stored and updated incrementally via (31):

At+1K
′ = AtK

′ + ediag(ρt) diag(ηt)ΓtK
′. (34)

The initial computation of A1K
′ still costs O(rl2) in general but is affordable as it is performed

only once. Alternatively, the time complexity of this step can easily be reduced to O(rl) by making
A1 suitably sparse.

1901

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

Finally, we apply SMD’s standard update (29) of the differential parameters:

Bt+1 = ξBt + ediag(ρt) diag(ηt)(Γt +ξdΓt). (35)

The differential dΓt of the gradient, analogous to dgt in (30), can be computed by applying the rules
of calculus:

dΓt = d[yte
>
p(t) − lt(yty

>
t)At]

= (dAt)k
′
p(t)e

>
p(t) − lt(yty

>
t)(dAt) − [dlt(yty

>
t)]At (36)

= Btk
′
p(t)e

>
p(t)− lt(yty

>
t)Bt − lt(Btk

′
p(t)y

>
t +ytk

′>
p(t)B

>
t)At ,

using the fact that since k′ and e are both independent of A we have d(k′
p(t)e

>
p(t)) = 0. Inserting

(16) and (36) into (35) finally yields the update rule

Bt+1 = ξBt + ediag(ρt) diag(ηt)[(At+ξBt)k
′
p(t)e

>
p(t) (37)

− lt(yty
>
t)(At+ξBt) − ξ lt(Btk

′
p(t)y

>
t +ytk

′>
p(t)B

>
t)At].

In summary, our application of SMD to the KHA comprises Equations (32), (37), and (31), in that
order. Our approach allows us to incorporate a priori knowledge about suitable gains in ηt , which
SMD will then improve upon by using empirical information gathered along the update trajectory
to adaptively tune ρt .

Algorithm 1 shows KHA-SMD, the algorithm obtained by applying SMD to KHA/et in this
fashion. To obtain KHA-SMD*, the analogous algorithm applying SMD to KHA/et*, simply
change step 2(b) to use (19) instead of (22). To recover KHA/et resp. KHA/et* from Algorithm 1,
omit the steps marked with a single vertical bar. The double-barred steps do not have to be per-
formed on every iteration; omitting them entirely, along with the single-barred steps, recovers the
original KHA algorithm.

We list the worst-case time complexity of every step in terms of the number l and dimensionality
n of observations, and the number r of kernel principal components to extract. For r � n (as is
typical), the most expensive step in the iteration loop will be the computation of a row of the kernel
matrix in 2(c), required by all algorithms.

We initialize ρ0 to all ones, B1 to all zeroes, and A1 to an isotropic normal density with suitably
small variance. The resulting time complexity of O(rl2) of step 1(c) can easily be reduced to O(rl)
by initializing A1 sparsely in step 1(b). This leaves the centering of the kernel in step 1(a), required
by all algorithms, as the most expensive initialization step.

5. Experiments

We present two sets of experiments. In the first, we benchmark against the KHA with a conventional
gain decay schedule (9), which we denote KHA/t, in a number of different settings: Performing ker-
nel PCA and spectral clustering on the well-known USPS data set (LeCun et al., 1989), replicating
image denoising and face image super-resolution experiments of Kim et al. (2005), and denoising
human motion capture data. For Kim et al.’s (2005) experiments we also compare to their original
KHA with the constant gain ηt = η0 they employed. A common feature of all these data sets is
that the kernel matrix can be stored in main memory, and the optimal reconstruction can thus be

1902

FAST ITERATIVE KERNEL PCA

Algorithm 1 KHA-SMD Eq.no. time complexity

1. Initialize:

(a) calculate MK, MKM O(l2)

(b) A1 ∼ N(0,(rl)−1I) O(rl)

(c) calculate A1K
′ O(rl2)

(d) ρ0 := [1 . . .1]>, B1 := 0 O(rl)

2. Repeat for t = 1,2, . . .

(a) calculate λt (20) O(rl)

(b) calculate ηt (22) O(r)

(c) calculate k′
p(t) O(nl)

(d) calculate yt (14) O(rl)

(e) calculate Γt (16) O(rl)

(f) calculate ΓtK
′ (33) O(rl)

(g) update ρt−1 → ρt (32) O(rl)

(h) update Bt → Bt+1 (37) O(rl)

(i) update AtK
′ → At+1K

′ (34) O(rl)

(j) update At → At+1 (31) O(rl)

1903

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

Experiment Section σ τ1 τ2 η 1
0 η 2

0 η 3
0 µ4 µ5 ξ

USPS (dot-prod. kernel) 5.1.1 – 2l 4l .002 5 10−3 10−5 10−4 0.99
USPS (RBF kernel) 5.1.1 8 l 3l 1 5 0.2 0.05 0.1 0.99

Lena image denoising 5.1.2 1 l 4l 2 5 0.1 1 2 0.99
face super-resolution 5.1.3 1 l 4l 0.2 5 0.02 0.2 5 0.99

USPS spectral clustering 5.1.4 8 l l 200 10 50 20 103 0.99
motion capture KPCA 5.1.5

√
1.5 l 3l 2 5 0.1 0.1 1 0.99

1for KHA/t 2for KHA/et*, KHA/SMD* 3for KHA/et, KHA/SMD 4for KHA/SMD* 5for KHA/SMD

Table 1: Parameter settings for our experiments. Footnotes indicate parameters which were indi-
vidually tuned for each experiment and the given algorithm(s).

computed with a conventional eigensolver. In our second set of experiments we demonstrate scala-
bility by performing kernel PCA on 60000 digits from the MNIST data set (LeCun, 1998). Here the
kernel matrix cannot be stored in main memory of a standard PC, and hence one is forced to resort
to iterative methods.

5.1 Experiments on Small Data Sets

In these experiments the KHA and our enhanced variants are used to find the first r eigenvectors of
the centered kernel matrix K ′. To assess the quality of the solution, we reconstruct the kernel matrix
using the eigenvectors found by the iterative algorithms, and measure the reconstruction error

E(A) := ‖K ′− (AK ′)>AK ′‖F . (38)

Since the kernel matrix can be stored in memory, the optimal reconstruction error from r eigenvec-
tors, Emin := minA E(A), is computed with a conventional eigensolver. This allows us to report
reconstruction errors as excess errors relative to the optimal reconstruction, that is, E(A)/E min−1.

To compare algorithms we plot the excess reconstruction error on a logarithmic scale after each
pass through the entire data set. This is a fair comparison since the overhead for KHA/et*, KHA/et,
and their SMD versions is negligible compared to the time required by the KHA base algorithm: The
most expensive operations—the initial centering of the kernel matrix, and the repeated calculation
of a row of it—are shared by all these algorithms.

Each non-SMD algorithm had η0 and (where applicable) τ manually tuned, by iterated hill-
climbing over η0 ∈{a·10b : a∈{1,2,5}, b∈{−3,−2,−1,0,1,2}} and τ∈{l,2l,3l,4l,5l,7l,10l,15l,
20l,30l,40l,50l}, for the lowest final reconstruction error in each experiment. The SMD versions
used the same values of η0 and τ as their corresponding non-SMD variant; for them we hand-tuned µ
(over the same set of values as η0), and set ξ = 0.99 a priori throughout. Thus KHA/t and KHA/et*
each had two parameters tuned specifically for them, the other algorithms one. Table 1 lists the
parameter settings for each experiment, with the individually tuned parameters indicated.

1904

FAST ITERATIVE KERNEL PCA

Figure 2: Excess relative reconstruction error of KHA variants for kernel PCA (16 eigenvectors)
on the USPS data, using a dot-product (left) resp. RBF (right) kernel. (On the left, the
curves for KHA/et* and KHA-SMD* virtually coincide.)

Figure 3: First ten eigenvectors (from left to right) found by KHA/et* for the dot-product (top row)
resp. RBF kernel (bottom row).

5.1.1 USPS DIGIT KPCA

Our first benchmark is to perform iterative kernel PCA on a subset of the well-known USPS data
set (LeCun et al., 1989)—namely, the first 100 samples of each digit—with two different kernel
functions: the dot-product kernel2

k(x,x′) = x>x′ (39)

and the RBF kernel

k(x,x′) = exp

(

(x−x′)>(x−x′)
2σ2

)

(40)

with σ = 8, the value used by Mika et al. (1999). We extract the first 16 eigenvectors of the kernel
matrix and plot the excess relative error in Figure 2. Although KHA/et and KHA/et* differ in their
transient behavior—the former performing better for the first 6 passes through the data, the latter
thereafter—their error after 200 passes is quite similar; both clearly outperform KHA/t. SMD is able

2. Kernel PCA with a dot-product kernel is equivalent to ordinary PCA in the input space.

1905

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

Figure 4: Comparison of excess relative reconstruction error of KHA variants estimating eigenval-
ues and updating gains every iteration (’i’) vs. once every pass (’p’) through the USPS
data, for RBF kernel PCA extracting 16 eigenvectors.

Figure 5: Lena image—original (left), noisy (center), and denoised by KHA-SMD (right).

to significantly improve the performance of KHA/et but not KHA/et*, and so KHA-SMD achieves
the best results on this task. These results hold for either choice of kernel. We show the first 10
eigenvectors obtained by KHA/et* for each kernel in Figure 3.

In Figure 4 we compare the performance of our algorithms, which estimate the eigenvalues
and update the gains only once after every pass through the data (’p’), against variants (’i’) which
do this after every iteration. Tuning parameters were re-optimized for the new variants, though
most optimal settings remained the same.3 Updating the estimated eigenvalues after every iteration,
though computationally expensive, is beneficial initially but does not seem to affect the quality of
the solution much in the long run; the minor differences that can be observed are attributable to
differences in parameter settings.

1906

FAST ITERATIVE KERNEL PCA

Figure 6: Excess relative reconstruction error of KHA variants in our replication of experiments
due to Kim et al. (2005). Left: multipatch image kernel PCA on a noisy Lena image;
Right: super-resolution of face images.

Figure 7: Reconstructed Lena image after (left to right) 1, 2, and 3 passes through the data set, for
KHA with constant gain ηt = 0.05 (top row) vs. KHA-SMD (bottom row).

5.1.2 MULTIPATCH IMAGE DENOISING

For our second benchmark we replicate the image denoising problem of Kim et al. (2005), the idea
being that noise can be removed from images by reconstructing image patches from their r leading

3. The exceptions were minor: τ = 4 (instead of τ = 3) for KHA/et* and KHA-SMD*, µ = 0.1 (instead of µ = 0.05) for
KHA-SMD*, and µ = 0.05 (instead of µ = 0.1) for KHA-SMD.

1907

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

eigenvectors. We divide the well-known Lena image (Munson, 1996) into four sub-images, from
which 11×11 pixel windows are sampled on a grid with two-pixel spacing to produce 3844 vectors
of 121 pixel intensity values each. Following Kim et al. (2005) we use an RBF kernel with σ = 1
to find the 20 best eigenvectors for each sub-image. Results averaged over the four sub-images are
plotted in Figure 6 (left), including the KHA with constant gain of ηt = 0.05 employed by Kim et al.
(2005) for comparison. The original, noisy, and denoised Lena images are shown in Figure 5.

KHA/t, while better than the conventional KHA with constant gain, is clearly not as effective as
our methods. Of these, KHA/et is outperformed by KHA/et* but benefits more from the addition
of SMD, so that the performance of KHA-SMD is almost comparable to KHA-SMD*. KHA-SMD
and KHA-SMD* achieved an excess reconstruction error that is over three orders of magnitude
better than the conventional KHA after 50 passes through the data.

Replicating Kim et al.’s (2005) 800 passes through the data with the constant-gain KHA we
obtain an excess relative reconstruction error of 5.64%, 500 times that of KHA-SMD after 50 passes.
The signal-to-noise ratio (SNR) of the reconstruction after 800 passes with constant gain is 13.46,4

comparable to the SNR of 13.49 achieved by KHA/et* in 50 passes.

To illustrate the large difference in early performance between conventional KHA and KHA-
SMD, we show the images reconstructed from either method after 1, 2, and 3 passes through the
data set in Figure 7. KHA-SMD delivers good-quality reconstructions very quickly, while those of
the conventional KHA are rather blurred.

We now investigate how the different components of KHA-SMD* affect its performance. The
overall gain used by KHA-SMD* comprises three factors: the scheduled gain decay over time (9),
the reciprocal of the current estimated eigenvalues, and the gain adapted by SMD. Let us denote
these three factors as t, e, and s, respectively, and explore which of their combinations make sense.
We clearly need either t or s to give us some form of gain decay, which e does not provide. This
means that in addition to the KHA/t (using only t), KHA/et* (t and e), and KHA-SMD* (t, e, and
s) algorithms, there are three more feasible variants: a) s alone, b) t and s, and c) e and s.

We compare the performance of these “anonymous” variants to that of KHA/t, KHA/et*, and
KHA-SMD* on the Lena image denoising problem. Parameters were tuned for each variant in-
dividually, yielding η0 = 0.5 and µ = 2 for variant s, η0 = 1 and µ = 2 for variant es, and τ = l,
η0 = 2, and µ = 1 for variant ts. Figure 8 (left) shows the excess relative error as a function of
the number of passes through the data. On its own, SMD (s) outperforms the scheduled gain de-
cay (t), but combining the two (ts) is better still. Introducing the reciprocal eigenvalues (e) further
improves performance in every context. In short, all three factors convey a significant benefit, both
individually and in combination. The “anonymous” variants represent intermediate forms between
the (poorly performing) KHA/t and KHA-SMD*, which combines all three factors to attain the best
results.

Next we examine the sensitivity of the KHA with SMD to the value of the meta-gain µ by
increasing µ ∈ {a · 10b : a ∈ {1,2,5},b ∈ {−1,0,1}} until the algorithm diverges. Figure 8 (right)
plots the excess relative error of the s variant (SMD alone, black) and KHA-SMD* (light red) on the
Lena image denoising problem for the last three values of µ prior to divergence. In both cases the
largest non-divergent meta-gain (µ = 2 for s, µ = 1 for KHA-SMD*) yields the fastest convergence.
The differences are comparatively small though, illustrating that SMD is not overly sensitive to the

4. Kim et al. (2005) reported an SNR of 14.09; the discrepancy is due to different reconstruction methods.

1908

FAST ITERATIVE KERNEL PCA

Figure 8: Excess relative reconstruction error for multipatch image PCA on a noisy Lena image.
Left: comparison of original KHA variants (black) with those using other combinations
(light red) of gain decay (t), reciprocal eigenvalues (e), and SMD (s). Right: effect of
varying µ on the convergence of variant s (black) and KHA-SMD* (light red).

value of µ. This holds in particular for KHA-SMD*, where SMD is assisted by the other two factors,
t and e.

5.1.3 FACE IMAGE SUPER-RESOLUTION

We also replicate a face image super-resolution experiment of Kim et al. (2005). Here the eigenvec-
tors learned from a training set of high-resolution images are used to predict high-resolution detail
from low-resolution test images. The training set consists of 5000 face images of 10 different people
from the Yale face database B (Georghiades et al., 2001), down-sampled to 60×60 pixels. Testing
is done on 10 different images from the same database; the test images are first down-sampled to
20× 20 pixels, then scaled back up to 60× 60 by mapping each pixel to a 3× 3 block of identical
pixel values. These are then projected into a 16-dimensional eigenspace learned from the training
set to predict the test images at the 60×60 pixel resolution.

Figure 6 (right) plots the excess relative reconstruction error of the different algorithms on this
task. KHA/t again produces better results than the KHA with constant gain but is ineffective com-
pared to our methods. KHA/et* again does better than KHA/et but benefits less from the addition
of SMD making SMD-KHA once more the best-performing method. After 50 passes through the
data, all our methods achieve an excess reconstruction error about three orders of magnitude better
than the conventional KHA, though KHA-SMD is substantially faster than the others at reaching
this level of performance. Figure 9 illustrates that the reconstructed face images after one pass
through the training data generally show better high-resolution detail for KHA-SMD than for the
conventional KHA with constant gain.

5.1.4 SPECTRAL CLUSTERING OF USPS DIGITS

Our next experiment uses the spectral clustering algorithm of Ng et al. (2002):

1909

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

Figure 9: Rows from top to bottom: Original face images (60× 60 pixels); sub-sampled images
(20× 20 pixels); super-resolution images produced by KHA after one pass through the
data set; likewise for KHA-SMD.

1910

FAST ITERATIVE KERNEL PCA

1. Define the normalized transition matrix P := D− 1
2 KD− 1

2 , where K ∈ R
l×l is the kernel

matrix of the data, and D is a diagonal matrix with [D]ii = ∑ j[K]i j.

2. Let A ∈ R
r×l be the matrix whose rows correspond to the first r eigenvectors of P .

3. Normalize the columns of A to unit length, and map each input pattern to its corresponding
column in A.

4. Cluster the columns of A into r clusters (using, for instance, k-means clustering), and assign
each pattern to the cluster its corresponding column vector belongs to.

We can obviously employ the KHA in Step 2 above. We evaluate our results in terms of the variation
of information (VI) metric (Meila, 2005): For a clustering algorithm c, let |c| denote the number of
clusters, and c(·) its cluster assignment function, that is, c(xi) = j iff c assigns pattern xi to cluster
j. Let Pc ∈ R

|c| denote the probability vector whose jth component denotes the fraction of points
assigned to cluster j, and Hc the entropy associated with Pc:

Hc = −
|c|

∑
i=1

[Pc]i ln[Pc]i. (41)

Given two clustering algorithms c and c′ we define the confusion matrix P c′
c ∈ R

|c|×|c′| by

[Pc′
c]km =

1
l
|{i|(c(xi) = k)∧ (c′(xi) = m)}|, (42)

where l is the number of patterns. The mutual information Ic′
c associated with Pc′

c is

Ic′
c =

|c|

∑
i=1

|c′|

∑
j=1

[Pc′
c]i j ln

[Pc′
c]i j

[Pc]i[Pc′] j
. (43)

The VI metric is now defined as

VI = Hc +Hc′ −2Ic′
c . (44)

Our experimental task consists of applying spectral clustering to all 7291 patterns of the USPS
data (LeCun et al., 1989), using 10 kernel principal components. We used a Gaussian kernel with
σ = 8 and k-means with k = 10 (the number of labels) for clustering the columns of A. The
clusterings obtained by our algorithms are compared to the clustering induced by the class labels. On
the USPS data, a VI of 4.54 corresponds to random grouping, while clustering in perfect accordance
with the class labels would give a VI of zero.

In Figure 10 (left) we plot the VI metric as a function of the number of passes through the data.
All our accelerated KHA variants converge towards an optimal clustering in less than 10 passes—in
fact, after around 7 passes their results are statistically indistinguishable from that obtained by using
an exact eigensolver (labeled ‘PCA’ in Figure 10, left). KHA/t, by contrast, needs about 30 passes
through the data to reach a similar level of performance.

The excess relative reconstruction errors—for spectral clustering, of the matrix P —plotted in
Figure 10 (right) confirm that our methods outperform KHA/t. They also show KHA/et* signifi-
cantly outperforming KHA/et, by about an order of magnitude. Again SMD is able to substantially
accelerate both KHA/et and KHA/et*. As usual the improvement is larger for the former, though in
this case not by quite enough to close the performance gap to the latter.

1911

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

Figure 10: Quality of spectral clustering of the USPS data using an RBF kernel, as measured by
variation of information (left) and excess relative reconstruction error (right). Hori-
zontal ‘PCA’ line on the left marks the variation of information achieved by an exact
eigensolver.

Figure 11: Excess relative reconstruction error on human motion capture data.

5.1.5 HUMAN MOTION DENOISING

For our next experiment we employ the KHA to denoise a human walking motion trajectory from
the CMU motion capture database (http://mocap.cs.cmu.edu), converted to Cartesian coordi-
nates via Neil Lawrence’s matlab motion capture toolbox (http://www.dcs.shef.ac.uk/˜neil/
mocap/). The experimental setup is similar to that of Tangkuampien and Suter (2006): First zero-
mean Gaussian noise is added to the frames of the original motion, then KHA using 25 principal
components is used to denoise them. The noise is applied in “delta pose space,” where each body
part is represented by the normalized vector from its start to its end point, with a variance of 2
degrees for each of the two vector angles. The walking motion we consider has 343 frames, each
represented by a 90-dimensional vector specifying the spatial orientation of 30 body parts. The

1912

FAST ITERATIVE KERNEL PCA

Figure 12: Reconstruction of human motion capture data: One frame of the original data (left),
a superposition of this original and the noisy data (center), and a superposition of the
original and reconstructed (i.e., denoised) data (right).

motion is reconstructed in R
3 via the KHA with an RBF kernel (σ =

√
1.5); the resulting excess

relative error is shown for various KHA variants in Figure 11.

As in the previous experiment, KHA/et* clearly outperforms KHA/et which in turn is better
than KHA/t. Again SMD is able to improve KHA/et to a much larger extent than KHA/et*, though
not enough to surpass the latter. KHA/et* reduces the noise variance by 87.5%; it is hard to visually
detect any difference between the denoised frames and the original ones—see Figure 12 for an
example.

5.2 Experiments on MNIST Data Set

The MNIST data set (LeCun, 1998) consists of 60000 handwritten digits, each 28× 28 pixels in
size. While kernel PCA has previously been applied to subsets of this data, to the best of our
knowledge nobody has attempted it on the entire data set—for obvious reasons: the full kernel
matrix has 3.6 ·109 entries, requiring over 7 GB of storage in single-precision floating-point format.
Storing this matrix in main memory is already a challenge, let alone computing its eigenvalues; it
thus makes sense to resort to iterative schemes.

We will perform a single pass through the MNIST data, attempting to find the first 50 eigen-
values of the centered kernel matrix. Since we run through the data just once, we will update the
estimated eigenvalues after each iteration rather than after every pass. Hitherto we have used the

1913

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

excess reconstruction error relative to the optimal reconstruction error to measure the performance
of the KHA. For MNIST this is no longer possible since existing eigensolvers cannot handle such a
large matrix. Instead we simply report the reconstruction error (38), which we can still compute—
albeit with a rather high time complexity, as it requires calculating all entries of the kernel matrix.

Since our algorithms are fairly robust with respect to the value of τ, we simply set τ = 0.05l a
priori, which corresponds to decreasing the gain by a factor of 20 during the first (and only) pass
through the data. In our previous experiments we observed that the best values of η0 and µ were
usually the largest ones for which the run did not diverge. We also found that when divergence
occurs, it tends to do so early and dramatically, making this event simple and inexpensive to detect.
Algorithm 2 exploits this to automatically tune a gain parameter (η0 resp. µ):

Algorithm 2 Auto-tune gain parameter x for KHA (any variant)

1. Compute (Algorithm 1, Step 1) and save initial KHA state;

2. x := 500;

3. While ∀i, j : is finite([At]i j):

Run KHA (Algorithm 1, Step 2) for 100 iterations;

4. x := max
a,b

a ·10b : a ∈ {1,2,5},b ∈ Z,a ·10b < x;

5. restore initial KHA state and Goto Step 3.

Algorithm 2 starts with a parameter value so large (here: 500) as to surely cause divergence
(Step 2). It then runs the KHA (any variant) while testing the coefficient matrix At every 100
iterations for signs of divergence (Step 3). If any element of At becomes infinite or NaN (“not a
number”), the KHA has diverged; in this case the parameter value is lowered (Step 4) and the KHA
restarted (Step 5). In order to make these restarts efficient, we have precomputed and saved in Step
1 the initial state of the KHA—namely a row of MK, an element of MKM , the initial coefficient
matrix A1, and A1K

′. Once the parameter value is low enough to avoid divergence, Algorithm 2
runs the KHA to completion in Step 3.

We use Algorithm 2 to tune η0 for KHA/et and KHA/et*, and µ for KHA-SMD and KHA-
SMD*. For η0 the SMD variants use the same value as their respective non-SMD analogues. In our
experiments, divergence always occurred within the first 600 iterations (1% of the data), or not at all.
It is therefore possible to tune both η0 and µ for the SMD variants as follows: first run Algorithm 2
to tune η0 (with µ = 0) on a small fraction of the data, then run it a second time to tune µ (with the
previously obtained value for η0) on the entire data set.

Our experiments were performed on an AMD Athlon 2.4 GHz CPU with 2 GB main memory
and 512 kB cache, using a Python interface to PETSc (http://www-unix.mcs.anl.gov/petsc/
petsc-as/). For a fair comparison, all our algorithms use the same initial random matrix A1,
whose absolute reconstruction error is 33417. The reconstruction error after one pass through the
data is shown in Table 2; it is evident that all our algorithms significantly improve upon the perfor-
mance of KHA/t, with the SMD variants slightly ahead of their non-SMD analogues.

1914

FAST ITERATIVE KERNEL PCA

algorithm parameter rec. error tuning KHA time total time

KHA/t η0 = 5 508.42 20’ 33h 29’ 57h 17’
KHA/et* η0 = 50 363.09 13’ 41h 41’ 65h 22’
KHA-SMD* µ = 1 362.44 1h 9’ 53h 19’ 77h 57’
KHA/et η0 = 0.5 415.48 47’ 39h 26’ 63h 42’
KHA-SMD µ = 0.05 404.06 3h 59’ 64h 39’ 92h 07’

Table 2: Tuned parameter values (col. 2), reconstruction errors (col. 3), and runtimes for various
KHA variants on the MNIST data set. The total runtime (col. 6) is the sum of the times
required to: center the kernel (11h 13’), tune the parameter (col. 4), run the KHA (col. 5),
and calculate the reconstruction error (12h 16’).

Table 2 also reports the time spent in parameter tuning, the resulting tuned parameter values, the
time needed by each KHA variant for one pass through the data, and the total runtime (comprising
kernel centering, parameter tuning, KHA proper, and computing the reconstruction error). Our
KHA variants incur an overhead of 10–60% over the total runtime of KHA/t; the SMD variants are
the more expensive. In all cases less than 5% of the total runtime was spent on parameter tuning.

6. Discussion and Conclusion

We modified the kernel Hebbian algorithm (KHA) of Kim et al. (2005) by providing a separate gain
for each eigenvector estimate, and presented two methods, KHA/et* and KHA/et, which set those
gains inversely proportional to the current estimate of the eigenvalues. KHA/et has a normalization
term which allowed us to eliminate one of the free parameters of the gain decay scheme. Both
methods were then enhanced by applying stochastic meta-descent (SMD) to perform gain adaptation
in RKHS.

We compared our algorithms to the conventional approach of using KHA with constant gain,
resp. with a scheduled gain decay (KHA/t), in seven different experimental settings. All our methods
clearly outperformed the conventional approach in all our experiments. KHA/et* was superior to
KHA/et, at the cost of having an additional free parameter τ. Its parameters, however, proved
particularly easy to tune, with η0 = 5 and τ = 3l or 4l optimal in all but the spectral clustering and
MNIST experiments. This suggests that KHA/et* has good normalization properties and may well
be preferable to KHA/et.

SMD improved the performance of both KHA/et and KHA/et*, where the improvements for the
former were often larger than for the latter. This is not surprising per se, as it is naturally easier to
improve upon a good algorithm than an excellent one. However, the fact that KHA-SMD frequently
outperformed KHA-SMD* indicates that the interaction between KHA/et and SMD appears to be
more effective.

Principal component analysis (PCA) is an important tool for analysis, preprocessing, and mod-
eling of empirical data in a Euclidean space. Like other kernel methods, kernel PCA (Schölkopf
et al., 1998) generalizes this to arbitrary RKHS, including those defined on structured data. Tradi-
tionally, kernel methods require computation and storage of the entire kernel matrix. As the data sets
available for learning grow larger and larger, this is rapidly becoming infeasible. Recent advances
eliminate this requirement by repeatedly cycling through the data set, computing kernels on demand

1915

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

(e.g., Platt, 1999; Joachims, 1999; Zanni et al., 2006). This is done for kernel PCA by the KHA
(Kim et al., 2005), which as originally introduced suffers from slow convergence. The acceleration
techniques we have introduced here rectify this situation, and hence open the way for kernel PCA
to be applied to large data sets.

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments. A short version of
this paper was presented at the 2006 NIPS conference (Schraudolph et al., 2007). National ICT
Australia is funded by the Australian Government’s Department of Communications, Information
Technology and the Arts and the Australian Research Council through Backing Australia’s Ability
and the ICT Center of Excellence program. This work is supported by the IST Program of the
European Community, under the Pascal Network of Excellence, IST-2002-506778. Finally, we
would like to acknowledge Equations (8), (10), (11), (12), (15), (21), (27), (28), (39), (40), (41),
(42), (43), and (44) here, so that they are numbered.

References

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, Cam-
bridge, England, 2004.

Liang-Hwe Chen and Shyang Chang. An adaptive learning algorithm for principal component
analysis. IEEE Transaction on Neural Networks, 6(5):1255–1263, 1995.

Christian Darken and John E. Moody. Towards faster stochastic gradient search. In John E. Moody,
Stephen J. Hanson, and Richard Lippmann, editors, Advances in Neural Information Processing
Systems, volume 4, pages 1009–1016. Morgan Kaufmann Publishers, 1992.

Athinodoros S. Georghiades, Peter N. Belhumeur, and David J. Kriegman. From few to many:
Illumination cone models for face recognition under variable lighting and pose. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 23(6):643–660, 2001. ISSN 0162-8828. doi:
http://doi.ieeecomputersociety.org/10.1109/34.927464.

Andreas Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentia-
tion. Frontiers in Applied Mathematics. SIAM, Philadelphia, 2000.

Thorsten Joachims. Making large-scale SVM learning practical. In Bernhard Schölkopf, Chris J. C.
Burges, and Alex J. Smola, editors, Advances in Kernel Methods — Support Vector Learning,
pages 169–184, Cambridge, MA, 1999. MIT Press.

Juha Karhunen. Optimization criteria and nonlinear PCA neural networks. In IEEE World Congress
on Computational Intelligence, volume 2, pages 1241–1246, 1994.

Juha Karhunen and Jyrki Joutsensalo. Representation and separation of signals using nonlinear
PCA type learning. Neural Networks, 7(1):113–127, 1994.

1916

FAST ITERATIVE KERNEL PCA

Kwang In Kim, Matthias O. Franz, and Bernhard Schölkopf. Iterative kernel principal component
analysis for image modeling. IEEE Trans. Pattern Analysis and Machine Intelligence, 27(9):
1351–1366, 2005.

Yann LeCun. MNIST handwritten digit database, 1998. URL http://www.research.att.com/

˜yann/ocr/mnist/.

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, R. E. Howard, Wayne E.
Hubbard, and Lawrence D. Jackel. Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1:541–551, 1989.

Marina Meila. Comparing clusterings: An axiomatic view. In Proc. 22nd Intl. Conf. Machine
Learning (ICML), pages 577–584, New York, NY, USA, 2005. ACM Press.

Sebastian Mika, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Matthias Scholz, and
Gunnar Rätsch. Kernel PCA and de-noising in feature spaces. In Michael S. Kearns, Sara A.
Solla, and David A. Cohn, editors, Advances in Neural Information Processing Systems, vol-
ume 11, pages 536–542. MIT Press, 1999.

David C. Munson, Jr. A note on Lena. IEEE Trans. Image Processing, 5(1), 1996.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algo-
rithm. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, Advances in
Neural Information Processing Systems, volume 14, 2002.

Erkki Oja and Juha Karhunen. On stochastic approximation of the eigenvectors and eigenvalues of
the expectation of a random matrix. Journal of Mathematical Analysis and Applications, 106(1):
69–84, February 1985.

Barak A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation, 6(1):147–160,
1994.

John Platt. Fast training of support vector machines using sequential minimal optimization. In
Bernhard Schölkopf, Chris J. C. Burges, and Alex J. Smola, editors, Advances in Kernel Meth-
ods — Support Vector Learning, pages 185–208, Cambridge, MA, 1999. MIT Press.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.

Terrence D. Sanger. Optimal unsupervised learning in a single-layer linear feedforward network.
Neural Networks, 2:459–473, 1989.

Bernhard Schölkopf and Alex J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

Bernhard Schölkopf, Alex J. Smola, and Klaus-Robert Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

Nicol N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural Computation, 14(7):1723–1738, 2002.

1917

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

Nicol N. Schraudolph. Local gain adaptation in stochastic gradient descent. In Proc. Intl. Conf.
Artificial Neural Networks, pages 569–574, Edinburgh, Scotland, 1999. IEE, London.

Nicol N. Schraudolph, Simon Günter, and S. V. N. Vishwanathan. Fast iterative kernel PCA. In
Bernhard Schölkopf, John Platt, and Thomas Hofmann, editors, Advances in Neural Information
Processing Systems, volume 19, Cambridge MA, June 2007. MIT Press.

Therdsak Tangkuampien and David Suter. Human motion de-noising via greedy kernel principal
component analysis filtering. In Proc. Intl. Conf. Pattern Recognition, 2006.

S. V. N. Vishwanathan, Nicol N. Schraudolph, and Alex J. Smola. Step size adaptation in reproduc-
ing kernel Hilbert space. Journal of Machine Learning Research, 7:1107–1133, June 2006.

Luca Zanni, Thomas Serafini, and Gaetano Zanghirati. Parallel software for training large scale
support vector machines on multiprocessor systems. Journal of Machine Learning Research, 7:
1467–1492, July 2006.

1918

