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Abstract
We consider the problems of attribute-efficient PAC learning of two well-studied concept classes:
parity functions and DNF expressions over {0,1}n. We show that attribute-efficient learning of
parities with respect to the uniform distribution is equivalent to decoding high-rate random linear
codes from low number of errors, a long-standing open problem in coding theory. This is the first
evidence that attribute-efficient learning of a natural PAC learnable concept class can be computa-
tionally hard.

An algorithm is said to use membership queries (MQs) non-adaptively if the points at which
the algorithm asks MQs do not depend on the target concept. Using a simple non-adaptive parity
learning algorithm and a modification of Levin’s algorithm for locating a weakly-correlated parity
due to Bshouty et al. (1999), we give the first non-adaptive and attribute-efficient algorithm for
learning DNF with respect to the uniform distribution. Our algorithm runs in time Õ(ns4/ε) and
uses Õ(s4 · log2 n/ε) non-adaptive MQs, where s is the number of terms in the shortest DNF repre-
sentation of the target concept. The algorithm improves on the best previous algorithm for learning
DNF (of Bshouty et al., 1999) and can also be easily modified to tolerate random persistent classi-
fication noise in MQs.
Keywords: attribute-efficient, non-adaptive, membership query, DNF, parity function, random
linear code

1. Introduction

The problems of PAC learning parity functions and DNF expressions are among the most funda-
mental and well-studied problems in machine learning theory. Along with running time efficiency,
an important consideration in the design of learning algorithms is their attribute-efficiency. A class
C of Boolean functions is said to be attribute-efficiently learnable if there is an efficient algorithm
which can learn any function f ∈ C using a number of examples which is polynomial in the “size”
(description length) of the function f to be learned, rather than in n, the number of attributes in
the domain over which learning takes place. Attribute-efficiency arises naturally from a ubiqui-
tous practical scenario in which the total number of potentially influential attributes is much larger
than the number of relevant attributes (i.e., the attributes on which the concept actually depends),
whereas examples are either scarce or expensive to get.
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Learning of DNF expressions and attribute-efficient learning of parities from random examples
with respect to the uniform distribution are both long-standing challenges in learning theory. The
lack of substantial progress on these questions has resulted in attempts to solve them in stronger
learning models. The most well-studied such model is one in which a membership query oracle is
given to the learner in addition to the example oracle. The learning algorithm may query this oracle
for a value of the target function at any point of its choice. Jackson (1997) gave the first algorithm
that learns DNF from membership queries (MQs) under the uniform distribution and later Bshouty,
Jackson, and Tamon (1999) gave a more efficient and attribute-efficient algorithm for learning DNF
in the same setting. The first algorithm for attribute-efficient learning of parities using MQs is due
to Blum et al. (1995), and their result was later refined by Uehara et al. (1997).

A restricted model of membership queries, which addresses some of the disadvantages of the
MQ model, is the model in which MQs are asked non-adaptively. An algorithm is said to use MQs
non-adaptively if the queries of the algorithm do not depend on the target concept (in our context we
will often call it non-adaptive for brevity). In other words, the learning algorithm can be split into
two stages. In the first stage, given the learning parameters, the algorithm generates a set S of queries
for the membership oracle. In the second stage, given the answers to the queries in S, the algorithm
produces a hypothesis (without further access to the oracle). An immediate advantage of this model
(over the usual MQ model) is the fact that the queries to the membership oracle can be parallelized.
This, for example, is crucial in DNA sequencing and other biological applications where tests are
very time-consuming but can be parallelized (Farach et al., 1997; Damaschke, 1998, and references
therein). Another advantage of a non-adaptive learner is that the same set of points can be used to
learn numerous concepts. This is conjectured to happen in the human brain where a single example
can be used to learn several different concepts and hence systems that aim to reproduce the learning
abilities of the human brain need to possess this property (Valiant, 1994, 2000, 2006).

As it is detailed later, attribute-efficiency is easy to achieve using a simple technique that re-
lies on adaptive MQs but there is no known general method to convert a learning algorithm to an
attribute-efficient one using MQs non-adaptively. It is important to note that in the two practical
applications mentioned above, attribute-efficiency is also a major concern. It is therefore natural to
ask: which classes can be PAC learned attribute-efficiently by non-adaptive MQs? We refer to this
model of learning as ae.naMQ learning. This question was first explicitly addressed by Damaschke
(1998) who proved that any function of r variables is ae.naMQ learnable when it is represented by
the truth table of the function (requiring r logn + 2r bits). Later Hofmeister (1999) gave the first
ae.naMQ algorithm for learning parities and Guijarro et al. (1999a) gave an algorithm for learning
functions of at most logn variables in the decision tree representation. But the question remains
open for numerous other representations used in learning theory.

1.1 Previous Results

Blum et al. (1995) were the first to ask whether parities are learnable attribute-efficiently (in the
related on-line mistake-bound model). They also presented the first algorithm to learn parity func-
tions attribute-efficiently using MQs. Their algorithm is based on the following approach: first all
the relevant attributes are identified and then a simple (not attribute-efficient) algorithm restricted to
the relevant variables is used to learn the concept. Since then other algorithms were proposed for
attribute-efficient identification of relevant variables (Bshouty and Hellerstein, 1998; Guijarro et al.,
1999b). All the algorithms are based on a binary search for a relevant variable given a positive
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and a negative example. Binary search and the fact that queries in the second stage depend on the
variables identified in the first stage only allows for the construction of adaptive algorithms via this
approach. Uehara et al. (1997) gave several algorithms for attribute-efficient learning of parities that
again used adaptiveness in an essential way.

Hofmeister gave the first ae.naMQ algorithm for learning parities based on BCH error-correcting
codes. When learning the class of parities on at most k variables his algorithm has running time of
O(kn) and uses O(k logn) non-adaptive MQs. While the complexity of this algorithm is asymptot-
ically optimal it is based on the relatively complex Berlekamp-Massey algorithm for creating and
decoding BCH codes (Massey, 1969).

Little previous work has been published on attribute-efficient learning of parities from random
examples only. Indeed, the first non-trivial result in this direction has only recently been given by
Klivans and Servedio (2004). They prove that parity functions on at most k variables are learnable
in polynomial time using O(n1− 1

k logn) examples.

1.1.1 LEARNING DNF

Efficient learning of unrestricted DNF formulae under the uniform distribution begins with a famous
result by Jackson (1997). The algorithm, while polynomial-time, is somewhat impractical due to
the Õ(ns10/ε12) bound on running time (where s is the number of terms in the target DNF). By
substantially improving the key components of Jackson’s algorithm, the works of Freund (1992),
Bshouty et al. (1999), and Klivans and Servedio (2003) resulted in an algorithm that learns DNF in
time Õ(ns6/ε2) and uses Õ(ns4/ε2) MQs.1 This algorithm is non-adaptive, but is also not attribute-
efficient. Using the algorithm for identification of relevant variables by Bshouty and Hellerstein
mentioned above, Bshouty et al. (1999) gave an attribute-efficient version of their algorithm running
in time Õ(rs6/ε2 +n/ε) and using Õ(rs4 logn/ε2) adaptive MQs, where r is the number of relevant
variables.

Bshouty et al. (2003) give an algorithm for learning DNF expressions from examples generated
by a random walk on the Boolean hypercube. This model is more passive than non-adaptive MQs
but their algorithm is not attribute-efficient as it is an adaptation of the non-attribute-efficient algo-
rithm of Bshouty and Feldman (2002). In fact, it is information-theoretically impossible to learn
anything non-trivial attribute-efficiently in this model.

1.2 Our Results

We give a simple and fast randomized algorithm for ae.naMQ learning of parities (Theorem 9) and
provide a transformation that converts a non-adaptive parity learning algorithm into an algorithm for
finding significant Fourier coefficients of a function while preserving attribute-efficiency and non-
adaptiveness (Theorem 13). Using these components we give the first ae.naMQ algorithm for learn-
ing DNF expressions with respect to the uniform distribution (Theorem 24). It runs in time Õ(ns4/ε)
and uses Õ(s4 log2 n/ε) MQs. The algorithm improves on the Õ(ns6/ε2)-time and Õ(ns4/ε2)-query
algorithm of Bshouty et al. (1999). In Theorem 28 we also show a simple and general modification
that allows the above algorithm to efficiently handle random persistent classification noise in MQs
(see Section 2.1 for the formal definition of the noise model). Earlier algorithms for learning DNFs
that handled persistent classification noise were based on Jackson’s DNF learning algorithm and
therefore are substantially less efficient (Jackson et al., 1997; Bshouty and Feldman, 2002).

1. Bshouty et al. claimed sample complexity Õ(ns2/ε2) but this was in error as explained in Remark 19.
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Alongside our ae.naMQ algorithm for learning of parities we establish the equivalence between
attribute-efficient learning of parities from random uniform examples and decoding high-rate ran-
dom linear codes from a low number of errors, a long-standing open problem in coding theory
widely believed to be intractable (Theorems 6 and 8). Thus we may consider this equivalence
as evidence of the hardness of attribute-efficient learning of parities from random examples only.
Previously hardness of attribute-efficient learning results were only known for specially designed
concept classes (Decatur et al., 1999; Servedio, 2000).

The connection between attribute-efficient learning of parities by membership queries and lin-
ear codes was earlier observed by Hofmeister (1999). His result allows to derive attribute-efficient
parity learning algorithms from efficiently decodable linear codes with appropriate parameters. Our
result can be seen as an adaptation of this connection to random and uniform examples. The restric-
tion to the uniform distribution allows us to prove the connection in the other direction, giving the
above-mentioned negative result for attribute-efficient learning of parities from random examples
only.

1.3 Organization

In the next section we describe the models and tools that will be used in this work. In Section 3, we
give the required background on binary linear codes and prove the equivalence between attribute-
efficient learning of parities from random uniform examples and decoding high-rate random linear
codes from a low number of errors. In Section 4, we show a simple algorithm for ae.naMQ learning
of parities. Section 5 gives a way to convert a non-adaptive parity learning algorithm into an algo-
rithm for finding significant Fourier coefficients of a function while preserving attribute-efficiency
and non-adaptiveness, yielding an ae.naMQ algorithm for weakly learning DNF expressions. Then
in Section 6 we describe our ae.naMQ algorithm for learning DNF expressions and in Section 7 we
show how this algorithm can be modified to handle random persistent classification noise.

2. Preliminaries

For vectors x,y ∈ {0,1}n we denote by x⊕ y the vector obtained by bitwise XOR of x and y; by
[k] the set {1,2, . . . ,k}; by ei a vector with 1 in i-th position and zeros in the rest; by xi the i-th
element of vector x. Dot product x · y of vectors x,y ∈ {0,1}n denotes ∑i xiyi (mod 2) or simply
vector product xyT over GF(2) (with vectors being row vectors by default). By wt(x) we denote the
Hamming weight of x and we define dist(x,y) = wt(x⊕ y).

To analyze the accuracy and confidence of estimates produced by random sampling we will use
the following standard inequalities.

Lemma 1 (Chernoff) Let X1, . . . ,Xm be a sequence of m independent Bernoulli trials, each with
probability of success E[Xi] = p and let S = ∑m

i=1 Xi. Then for 0≤ γ≤ 1,

Pr[S > (1+ γ)pm]≤ e−mpγ2/3

and

Pr[S < (1− γ)pm]≤ e−mpγ2/2 .
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Lemma 2 (Bienaymé-Chebyshev) Let X1, . . . ,Xm be pairwise independent random variables all
with mean µ and variance σ2. Then for any λ≥ 0,

Pr

[∣∣∣∣∣
1
m

m

∑
i=1

Xi−µ

∣∣∣∣∣≥ λ

]
≤

σ2

mλ2 .

For a function t(· · ·) we say a function q(· · ·) (of the same parameters as t) is Õ(t(· · ·)) when
there exist constants α and β such that q(· · ·)≤ αt(· · ·) logβ (t(· · ·)).

2.1 PAC Learning

We study learning of Boolean functions on the Boolean hypercube {0,1}n. Our Boolean functions
take values +1 (true) and −1 (false). Our main interest are the classes of parity functions and DNF
expressions. A parity function χa(x) for a vector a ∈ {0,1}n is defined as χa(x) = (−1)a·x. We refer
to the vector associated with a parity function as its index and the Hamming weight of the vector as
the length of the parity function. We denote the concept class of parity functions {χa | a ∈ {0,1}n}
by PAR and the class of all the parities of length at most k by PAR(k). We represent a parity function
by listing all the variables on which it depends. This representation for a parity of length k requires
θ(k logn) bits.

For the standard DNF representation and any Boolean function f we denote by DNF-size( f )
the number of terms in a DNF representation of f with the minimal number of terms. In context of
learning DNF this parameter is always denoted s. The uniform distribution over {0,1}n is denoted
U.

Our learning model is Valiant’s well-known PAC model (Valiant, 1984) for learning Boolean
functions over {0,1}n. In this model, for a concept c and distribution D over X , an example oracle
EXD(c) is an oracle that upon request returns an example 〈x,c(x)〉 where x is chosen randomly
with respect to D , independently of any previous examples. For ε ≥ 0 we say that function g
ε-approximates a function f with respect to distribution D if PrD [ f (x) = g(x)] ≥ 1− ε. For a
concept class C , we say that an algorithm A efficiently learns C , if for every ε > 0, n, c ∈ C , and
distribution D over {0,1}n, A(n,ε, s) (where s is the size of c in the representation associated with
C ) outputs, with probability at least 1/2, and in time polynomial in n,1/ε, and s a hypothesis h
that ε-approximates c. When a learning algorithm is guaranteed to learn only with respect to a
specific distribution we specify the distribution explicitly. We say that an algorithm weakly learns
C if it produces a hypothesis h that ( 1

2 −
1

p(n,s))-approximates (or weakly approximates) c for some
polynomial p.

Note that in this definition of learning we do not use the confidence parameter δ that requires a
learning algorithm to succeed with probability at least 1−δ. Instead we assume that it equals 1/2.
In order to obtain an algorithm with success probability 1−δ one can always use a standard confi-
dence boosting procedure (cf. the textbook by Kearns and Vazirani, 1994). The boosting procedure
consists of repeating the original algorithm k = log(1/δ)+1 times with slightly increased accuracy
(e.g., ε/2), each time on new examples and independent coin flips. The hypotheses obtained from
these runs are then tested on an independent sample of size O(ε−1 log(1/δ)) and the best one is
chosen.

A membership query oracle MEM(c) is the oracle that, given any point x ∈ {0,1}n, returns the
value c(x). When learning with respect to U, EXU(c) can be trivially simulated using MEM(c) and
therefore EXU(c) is not used at all.
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An algorithm A is said to be attribute-efficient if the number of examples (both random and
received from the MQ oracle) it uses is polynomial in the size of the representation of the concept
and 1/ε. We say that a variable xi is relevant for a function f if there exists y ∈ {0,1}n such that
f (y) 6= f (y⊕ ei). The number of relevant variables of the target concept is denoted by parameter r.
Attribute-efficiency does not allow the number of examples to depend polynomially on n. Instead
the number of examples used can depend polynomially on r and logn since for most representations
(including the ones considered in this work) the size of the representation of f is lower bounded by
both logn and r.

2.1.1 NOISE MODELS

We consider two standard models of noise in learning. The first one is the well-studied random
classification noise model introduced by Angluin and Laird (1988). In this model for any η ≤
1/2 called the noise rate the regular example oracle EXD(c) is replaced with the faulty oracle
EXη

D(c). On each call, EXη
D(c), draws x according to D , and returns 〈x,c(x)〉 with probability η

and 〈x,¬c(x)〉 with probability 1−η. When η approaches 1/2 the result of the corrupted query
approaches the result of the random coin flip, and therefore the running time of algorithms in this
model is allowed to polynomially depend on 1

1−2η .

This model of noise is not suitable for corrupting labels returned by MEM(c) since a learn-
ing algorithm can, with high probability, find the correct label at point x by asking the label of x
polynomial (in 1

1−2η ) number of times and then returning the label that appeared in the majority of
answers. An appropriate modification of the noise model is the introduction of random persistent
classification noise by Goldman, Kearns, and Schapire (1993). In this model, as before, the answer
to a query at each point x is flipped with probability 1−η. However, if the membership oracle was
already queried about the value of f at some specific point x or x was already generated as a random
example, the returned label has the same value as in the first occurrence (i.e., in such a case the
noise persists and is not purely random). If the learner does not ask for the label of a point more
than once then this noise can be treated as the usual independent random classification noise.

2.1.2 FOURIER TRANSFORM

The Fourier transform is a technique for learning with respect to the uniform distribution (pri-
marily) based on the fact that the set of all parity functions {χa(x)}a∈{0,1}n forms an orthonor-
mal basis of the linear space of real-valued function over {0,1}n. This fact implies that any real-
valued function f over {0,1}n can be uniquely represented as a linear combination of parities,
that is f (x) = ∑a∈{0,1}n f̂ (a)χa(x). The coefficient f̂ (a) is called Fourier coefficient of f on a and
equals EU [ f (x)χa(x)]; a is called the index and wt(a) the degree of f̂ (a). Given the values of f
on all the points of the hypercube {0,1}n one can compute the values of all the Fourier coefficients
{ f̂ (a)}a∈{0,1}n using the Fast Fourier Transform (FFT) algorithm in time O(n2n) (Cooley and Tukey,
1965). The same algorithm FFT also converts the set of all Fourier coefficients { f̂ (a)}a∈{0,1}n into
the values of the function f on all the points of the hypercube. This transformation is called inverse
Fourier transform. For further details on the technique we refer the reader to the survey by Mansour
(1994).

1436



ATTRIBUTE-EFFICIENT LEARNING BY NON-ADAPTIVE MEMBERSHIP QUERIES

2.1.3 RANDOMIZED FUNCTIONS

Besides deterministic functions on {0,1}n we will also deal with functions whose value on a point x
is a real-valued random variable Ψ(x) independent of Ψ(y) for any y 6= x and of any previous evalua-
tions of Ψ(x). To extend learning and Fourier definitions to this case we include the probability over
the random variable Ψ in estimations of probability, expectation and variance. For example, we say
that a randomized function Ψ ε-approximates f with respect to D if PrD,Ψ[ f (x) = Ψ(x)] ≥ 1− ε.
Similarly, Ψ̂(a) = EU,Ψ[Ψ(x)χa(x)].

2.2 Learning by Non-adaptive Membership Queries

We say that an algorithm A uses MQs non-adaptively if it can be split into two stages. The first
stage, given all the parameters of learning, (n, ε and a bound on the size of the target concept) and
access to points randomly sampled with respect to the target distribution, generates a set of points
S⊆ {0,1}n. The second stage, given the labels of the random points and the answers from MEM(c)
on points in S, that is, the set {(x,c(x)) | x ∈ S}, computes a hypothesis (or, in general, performs
some computation). Neither of the stages has any other access to MEM(c).

We note that in the general definition of PAC learning we did not assume that size of the target
concept (or a bound on it) is given to the learning algorithm. When learning with adaptive queries a
good bound can be found via the “guess-and-double” technique, but for non-adaptive algorithms we
will assume that this bound is always given. To emphasize this we specify the parameters that have
to be given to a non-adaptive algorithm in the name of the algorithm. Clearly the same “guess-and-
double” technique can be used to produce a sequence of independent and non-adaptive executions
of the learning algorithm.

The immediate consequence of non-adaptiveness is that in order to parallelize a non-adaptive
learning algorithm only the usual computation has to be parallelized since all the MQs can be made
in parallel. Non-adaptiveness is also useful when learning ` concepts from the same concept class in
parallel. The fact that queries are independent of the target concept implies that same set of points
can be used for learning different concepts. To achieve probability of success 1/2 in learning of
all ` concepts we will have to learn with each concept with probability of success 1−1/(2`). This
implies that the number of points needed for learning might grow by a factor of log` whereas in the
general case ` times more examples might be required.

Results of Goldreich et al. (1986) imply that if one-way functions exist then the concept class
of all polynomial circuits is not learnable even with respect to U and with access to a MQ oracle
(Kearns and Valiant, 1994). By modifying the values of each circuit to encode the circuit itself in a
polynomial number of fixed points one can make this class learnable by non-adaptive MQs but not
learnable from random and uniform examples only (the modification is very unlikely to be detected
by random examples yet MQs to the fixed points will reveal the circuit). Similarly, by placing
the encoding of the circuit in some location that is encoded in a fixed location, one can create a
function class learnable by adaptive membership queries but not learnable by the non-adaptive ones
(if one-way functions exist). Further details of these simple separations are left to the reader.

3. Learning of Parities and Binary Linear Codes

In this section we show that attribute-efficient learning of parities with respect to the uniform dis-
tribution from random examples only is likely to be hard by proving that it is equivalent to an open
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problem in coding theory. Unlike in the rest of the paper in this section and the following section
parity functions will be functions to {0,1}. To emphasize this we use χ̇ instead of χ.

3.1 Background on Linear Codes

We say that a code C is an [m,n] code if C is a binary linear code of block length m and message
length n. Any such code can be described by its n×m generator matrix G as follows: C = {xG | x ∈
{0,1}n}. Equivalently, a code can be described by its parity-check matrix H of size m× (m− n)
by C = {y | yH = 0m−n}. It is well-known that G ·H = 0n×(m−n) and decoding given a corrupted
message y is equivalent to decoding given the syndrome of the corrupted message. The syndrome
equals to yH and the decoding consists of finding a vector e of Hamming weight at most w such
that y⊕ e = xG, where w = b(d−1)/2c and d is the distance of the code (cf. the book by van Lint,
1998). For a linear code C the distance equals to the Hamming weight of a non-zero vector with the
smallest Hamming weight.

By saying that C is a random [m,n] code we mean that C is defined by choosing randomly,
uniformly, and independently n vectors in {0,1}m that form the basis of C. Alternatively, we can
say that the generator matrix G of C was chosen randomly with each entry equal to 1 with probability
1/2 independently of others. We denote this distribution by Un×m. Some authors restrict the random
choice of G’s to matrices of full rank n. As we will see, this definitions would only make our proofs
simpler.

Binary linear codes generated randomly meet the Gilbert-Varshamov bound with high proba-
bility, that is, they achieve the best known rate (or n/m) versus distance trade-off (cf. the lecture
notes by Sudan, 2002). However decoding a random linear code or even determining its distance
is a notorious open problem in coding theory. For example the McEliece cryptosystem is based,
among other assumptions, on the hardness of this problem (McEliece, 1978). Besides that, while
the average-case hardness of this problem is unknown, a number of worst-case problems related to
decoding linear codes are NP-hard (Barg, 1997; Vardy, 1997; Sudan, 2002).

A potentially simpler version of this problem in which the errors are assumed to be random
and independent with some rate η (and not adversarial as in the usual definition) is equivalent to
learning of parities with random classification noise of rate η, a long-standing open problem in
learning theory. In fact, Feldman et al. (2006) have proved that when learning parities from random
and uniform examples, random classification noise of rate η is as hard as adversarial noise of rate η
(up to a polynomial blowup in the running time). The only known non-trivial algorithm for learning
parities with noise is a slightly subexponential algorithm by Blum et al. (2000). In our discussion η
is very low (e.g., logn

n ), yet even for this case no efficient noise-tolerant algorithms are known.
Correcting a random linear [m,n] from up to w errors is defined as follows.

Definition 3 Input: An n×m binary generator matrix G randomly chosen according to Un×m and
y ∈ {0,1}m.
Output: x ∈ {0,1}n such that dist(xG,y)≤ w if there exists one.

A successful algorithm for this problem is an algorithm that would allow to correct up to w errors
in a “good” fraction of randomly created linear codes. That is, with non-negligible probability over
the choice of G, and for every y, the algorithm should produce the desired output. Note that the
algorithm can only be successful when the code generated by G has distance at least 2w+1.
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For simplicity, we will usually assume a constant probability of success but all the results can
be translated to algorithms having the success probability lower-bounded by a polynomial (in m)
fraction.

3.2 The Reduction

The equivalence of attribute-efficient learning of parities with respect to the uniform distribution
and decoding of random linear codes relies on two simple lemmas. The first one, due to Hofmeister
(1999), is that the syndrome decoding of a linear code implies attribute-efficient learning of parities.
We include it with a proof for completeness.

Lemma 4 (Hofmeister) Let H be a parity-check matrix of some [m,n] w-error correcting code C.
Let A be an algorithm that for any y∈ {0,1}m such that y = c⊕e where c∈C and wt(e)≤w, given
the syndrome yH, finds e. Then A learns PAR(w) over {0,1}m given the values of an unknown
parity on the columns of H.

Proof The condition y = c⊕ e for c ∈ C implies that yH = eH. Therefore the syndrome yH is
equal to the vector eH = χ̇e(H1), χ̇e(H2), . . . , χ̇e(Hm−n) where Hi is the i-th column of H. Therefore
finding an error vector e of weight at most w using the syndrome yH is the same as finding a parity
of length at most w given the values of the unknown parity on the columns of H.

This observation has lead Hofmeister to a simple ae.naMQ algorithm for learning parities that uses
the columns of the parity check matrix of BCH code as MQs. We note that the converse of this
lemma is only true if the learning algorithm is proper, that is, produces a parity function in PAR(w)
as a hypothesis.

To obtain the claimed equivalence for the uniform distribution we first need to prove that gener-
ating a linear code by choosing a random and uniform parity check matrix (that is, from Un×m−n) is
equivalent to (or indistinguishable from) generating a linear code by choosing a random and uniform
generator matrix (that is, from Un×m).

Let p(i, j) denote the probability that i vectors chosen randomly and uniformly from {0,1} j are
linearly independent. Each i≥ 1 linearly independent vectors span subspace of size 2i and therefore
there are 2 j − 2i vectors that are linearly independent of them. This implies that, p(i + 1, j) =
p(i, j)(1− 2− j+i). All vectors except for 0 j form a linearly independent set of size 1. Therefore
p(1, j) = (1−2− j). Hence

p(i, j) = (1−2− j) · (1−2− j+1) · · ·(1−2− j+i−1) .

Note that
p(i, j)≥ 1−2− j−2− j+1−·· ·−2− j+i−1 > 1−2− j+i (1)

and for i = j, p( j, j) = 1
2 p( j, j−1) > 1

2(1− 1
2) = 1

4 . This means that for any i≤ j, p(i, j) > 1/4.
Let Vn×m denote the distribution on matrices of size n×m resulting from the following process.

Choose randomly and uniformly a m× (m− n) matrix H of rank m− n and then choose randomly
and uniformly a matrix G of size n×m of rank n such that GH = 0n×(m−n). To generate G’s like
this we find a basis b1, . . . ,bn for the subspace of {0,1}m that is “orthogonal” to H in the standard
(and efficient) way. Let G0 denote the matrix whose rows are the vectors b1, . . . ,bn. It is easy to see
that any matrix G of rank n such that GH = 0n×(m−n), can be represented uniquely as F ·G0 where
F is a matrix of size n× n and full rank (∗). Therefore we can generate G’s as above by choosing
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randomly and uniformly a matrix F of rank n. If we choose a random matrix F according Un×n,
with probability at least p(n,n) > 1/4, it will have the full rank. We can repeatedly sample from
Un×n to get a full-rank F with any desired probability. This implies that we can generate a matrix
according to Vn×m with probability 1− δ in time O(m3 log(1/δ)) (or less if a non-trivial matrix
multiplication algorithm is used).

All we need to prove now is that Vn×m is “close” to Un×m. More specifically, the statistical
distance between two distributions D1 and D2 over X is defined to be ∆(D1,D2) = 1

2 ∑x∈X |D1(x)−
D2(x)|. It is well known and easy to see that for any event E ⊆ X , |PrD1 [x ∈ E]−PrD2 [x ∈ E]| ≤
∆(D1,D2).

Lemma 5 The distribution Vn×m is uniform over matrices of size n×m and rank n. In particular,
∆(Vn×m,Un×m)≤ 2−m+n.

Proof Let G be any matrix of size n×m with linearly independent rows. Its probability under Un×m

is Un×m(G) = 2−mn. When sampling with respect to Vn×m, G can be obtained only if all the columns
of H are “orthogonal” to rows of G, that is belong to a linear subspace of {0,1}m of dimension m−n.
The total number of H’s like these of rank m− n is 2(m−n)2

p(m− n,m− n) (as follows from (∗))
and the total number of matrices size m× (m− n) of rank m− n is 2m(m−n)p(m− n,m). Therefore
the probability of getting each H like this is 2−n(m−n) p(m−n,m−n)

p(m−n,m) . Given H the total number of

matrices of size n×m and rank n that are “orthogonal” to H is p(n,n)2n2
(as follows from (∗))

and therefore G will be generated with probability 2−n2
/p(n,n). Hence the total probability of G

under Vn×m is Vn×m(G) = 2−mn p(m−n,m−n)
p(m−n,m)p(n,n) . For every i < j, p( j− i, j)p(i, i) = p( j, j). Therefore

Vn×m(G) = 2−mn/p(n,m). This implies that Vn×m is uniform over matrices of size n×m and rank
n. The statistical distance between Vn×m and Un×m equals to

1
2 ∑

G∈{0,1}n×m

|Vn×m(G)−Un×m(G)| =

1
2

[
∑

rank(G)<n

2−mn + ∑
rank(G)=n

2−mn
(

1
p(n,m)

−1

)]
= 1− p(n,m).

According to Equation (1), 1− p(n,m) < 1− (1−2−m+n) = 2−m+n.

We can now prove that decoding of random linear codes implies attribute-efficient learning of pari-
ties from random examples only.

Theorem 6 Assume that there exists an algorithm RandDec that corrects a random linear [m,n]
code from up to w errors with probability at least 1/2 + γ for any constant γ. Then PAR(w) over
{0,1}m is efficiently learnable from m−n random examples.

Proof Let χ̇e ∈ PAR(w) be the unknown parity function and z1,z2, . . . ,zm−n be random and uniform
examples given by the example oracle. Let H be the m× (m−n) matrix whose column i is equal to
zi for each i ≤ m− n. If H does not have rank m− n we return χ0m . Otherwise let G be a random
matrix such that GH = 0n×(m−n) generated as in the description of Vn×m for δ = γ/2. The values
of χ̇e on zi’s give us the vector eH. Let y be any solution to the linear equation yH = eH. Clearly
(y⊕e)H = 0m−n and therefore y⊕e equals to xG for some x ∈ {0,1}n. This means that RandDec (if
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successful) will output x on input G and y. By the definition of x, e = xG⊕ y, giving us the desired
parity function.

To analyze the success probability of the algorithm we observe that the procedure above gener-
ates G according to Vn×m with probability at least p(m−n,m)(1−γ/2)≥ 1−2−n−γ/2. According
to Lemma 5, the statistical distance between the G generated as above and Un×m is at most 2−m+n.
RandDec is successful with probability 1/2+ γ and therefore our algorithm will succeed with prob-
ability at least 1/2+ γ− (γ/2+2−n +2−m+n)≥ 1/2.

The transformation above produces an attribute-efficient algorithm only if m−n is polynomial in w
and logm. According to the Gilbert-Varshamov bound, a random linear code will, with high prob-
ability, have distance d = Ω( m−n

logm). Therefore if the number of errors that RandDec can correct is
at least w = dα errors for some constant α > 0 then the sample complexity of learning a parity of
length at most w over m variables would equal O(w1/α logm). Therefore such an algorithm could
be used to obtain an attribute-efficient algorithm for learning parities.

We have noted previously that using a parity learning algorithm to obtain a syndrome decoding
algorithm requires the parity learning algorithm to be proper. When a distribution over examples
is not restricted it is unknown whether proper learning of parities is harder than non-proper. For-
tunately, when learning with respect to the uniform distribution any learning algorithm for parities
can be converted to a proper and exact one (that is, with a hypothesis equal to the target function).
We include a proof of this folklore fact for completeness.

Fact 7 Let A be an algorithm that learns PAR(k) in time t(n,k,ε) and with sample complexity
s(n,k,ε). Then there exists a probabilistic algorithm A ′ that learns PAR(k) properly and exactly in
time t(n,k,1/5)+ Õ(nk) and using s(n,k,1/5) samples.

Proof We assume for simplicity that if A is probabilistic then it succeeds with probability at least
3/4. Let h be the output of A when running on an unknown parity χ̇e ∈ PAR(k) with ε = 1/5.
Given h that is correct on 4/5 of all the points we can use it simulate membership queries to χ̇e(x)
as follows. Let y ∈ {0,1}n be any point and let x be a randomly and uniformly chosen point. Then
h(x) = χ̇e(x) with probability at least 4/5 and h(x⊕ y) = χ̇e(x⊕ y) with probability at least 4/5.
Therefore with probability at least 3/5, h(x)⊕h(x⊕y) = χ̇e(x)⊕ χ̇e(x⊕y) = χ̇e(y). We can increase
the confidence in the label to 1− δ by repeating this procedure for O(log(1/δ)) independent x’s.
Given these membership queries we can use a proper and exact MQ algorithm for learning PAR(k).
A number of such algorithms are known running in time Õ(nk) and using O(k logn) MQs (including
AEParityStat(k) given in Theorem 9). In order to get correct answers to all the membership
queries with probability at least 3/4 we need each of the MQs to be correct with probability 1− δ
for δ = Ω( 1

k logn). This means that making O(k logn) MQs will take O(nk logn log(k logn)) = Õ(nk)
steps. Altogether we get algorithm A ′ that succeeds with probability at least 1/2 and has the claimed
complexity bounds.

We can now assume that algorithms for learning parity with respect to the uniform distribution are
proper and exact (and in particular do not require parameter ε) and use this to obtain the other
direction of the equivalence.

Theorem 8 Assume that there exists an algorithm AELearnParU(k) that efficiently learns PAR(k)
over {0,1}m using at most q(m,k) random examples. Then there exists an algorithm RandDec that
corrects a random linear [m,m−q(m,k)] code from up to k errors with probability at least 1/2− γ
for any constant γ > 0.
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Proof Let G and y be the input of RandDec, n = m−q(m,k), x be the vector for which y = xG⊕ e
where wt(e) ≤ k. If G is not of rank n we just return the vector 0n. Otherwise let H be a random
matrix such that GH = 0n×(m−n) generated as rank m−n we return χ0m . Otherwise let G be a random
matrix such that GH = 0n×(m−n) generated as in the description of Vn×m for δ = γ/2 (with the roles
of G and H reversed).

The syndrome yH is equal to eH and gives the values of χ̇e on q(m,k) columns of H. We feed
these columns as random examples to AELearnParU(k) and obtain χ̇e from it (if AELearnParU(k)
is successful). Given e we obtain x by solving the system of linear equations xG = y⊕e. To analyze
the success probability of the algorithm we observe that the procedure above generates H according
to Vm×(m−n) with probability at least p(n,m)(1−γ/2)≥ 1−2−q(m,k)−γ/2. According to Lemma 5,
the statistical distance between H’s generated as above and Um×(m−n) is at most 2−m+(m−n) = 2−n.
Therefore AELearnParU(k) will succeed with probability at least 1/2− 2−n. This implies that
RandDec will return the correct x with probability at least 1/2− (2−m+q(m,k) + 2−q(m,k) + γ/2) ≥
1/2− γ.

4. A Fast Randomized Algorithm for ae.naMQ Learning of Parities

We next present a simple randomized algorithm for ae.naMQ learning of parities. The only previ-
ously known ae.naMQ algorithm for learning parities is due to Hofmeister (1999) and is a determin-
istic algorithm based on constructing and decoding of BCH binary linear codes (see also Section
3.2). The algorithm we present is substantially simpler and has essentially the same asymptotic
complexity as Hofmeister’s.

The basic idea of our algorithm is to use a distribution over {0,1}n for which each attribute is
correlated with the parity function if and only if it is present in the parity.

Theorem 9 For each k ≤ n there exists an algorithm AEParityStat(k) that ae.naMQ learns the
class PAR(k) in time O(nk logn) and asks O(k logn) MQs.

Proof Let χ̇c be the target concept (such that wt(c)≤ k). We define D 1
t

to be the product distribution

such that for each i, Pr[xi = 1] = 1
t . Let us draw a point x randomly according to distribution D 1

4k
.

Then for each i≤ n

PrD 1
4k

[xi = 1 and χ̇c(x) = 1] = PrD 1
4k

[χ̇c(x) = 1 | xi = 1] PrD 1
4k

[xi = 1]

=
1
4k

PrD 1
4k

[χ̇c(x) = 1 | xi = 1] .

Our second observation is that for any set of indices B ⊆ [n] and the corresponding parity function
χ̇b,

PrD 1
4k

[χ̇b(x) = 1]≤ 1−PrD 1
4k

[∀i ∈ B, xi = 0] = 1− (1−
1
4k

)|B| ≤
|B|
4k

.

First examine the case that ci 6= 1 and therefore does not influence χ̇c. Then by the second observa-
tion,

PrD 1
4k

[χ̇c(x) = 1 | xi = 1] = PrD 1
4k

[χ̇c(x) = 1]≤
k
4k
≤ 1/4 .
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Now assume that ci = 1 and let c′ = c⊕ ei. Then χ̇c′(x) is independent of xi and χ̇c(x) = 1 if and
only if χ̇c′(x) = 0. Therefore

PrD 1
4k

[χ̇c(x) = 1 | xi = 1] = PrD 1
4k

[χ̇c′(x) = 0 | xi = 1]

= 1−PrD 1
4k

[χ̇c′(x) = 1]≥ 1−
k−1

4k
> 3/4 .

Hence estimation of PrD 1
4k

[xi = 1 and χ̇c(x) = 1] within the half of the expectation can be used to

find out whether ci = 1. Lemma 1 for γ = 1/2 implies that by taking O(k logn) independent sam-
ples with respect to D 1

4k
we will get that each estimate is correct with probability at least 1−1/(2n)

and therefore we will discover c with probability at least 1− n/(2n) = 1/2. The running time of
AEParityStat(k) is clearly O(nk logn).

5. Finding Fourier Coefficients and Weak DNF Learning

The original Jackson’s algorithm for learning DNF expressions with respect to the uniform distri-
bution is based on a procedure that weakly learns DNF with respect to the uniform distribution
(Jackson, 1997). The procedure for weak learning is essentially an algorithm that, given a Boolean
function f finds a significant Fourier coefficient of f , if one exist. Jackson’s algorithm is based on a
technique by Goldreich and Levin (1989) for finding a significant Fourier coefficient (also called the
KM algorithm (Kushilevitz and Mansour, 1991)). Bshouty, Jackson, and Tamon (1999) used a later
algorithm by Levin (1993) to give a significantly faster weak learning algorithm. In this section we
will briefly describe Levin’s algorithm with improvements by Bshouty et al.. Building on their ideas
we then present an attribute-efficient and non-adaptive version of the improved Levin’s algorithm.
This algorithm will give us an ae.naMQ algorithm for weak learning of DNF expressions that will
serve as the basis of our ae.naMQ algorithm for DNF learning.

A Fourier coefficient φ̂(a) of a real-valued function φ over {0,1}n is said to be θ-heavy if
|φ̂(a)| ≥ θ. For a Boolean f , E[ f χa] ≥ θ if and only if Pr[ f = χa] ≥ 1/2 + θ/2. This means that
| f̂ (a)| ≥ θ is equivalent to either χa or −χa being a (1/2−θ/2)-approximator of f . Therefore find-
ing a significant Fourier coefficient of f is sometimes called weak parity learning (Jackson, 1997).
It can also be interpreted as a learning algorithm for parities in the agnostic learning framework of
Haussler (1992) and Kearns et al. (1994) Feldman et al. (see the work of 2006, for details).

Definition 10 (Weak Parity Learning) Let f be a Boolean function with at least one θ-heavy
Fourier coefficient. Given θ > 0 and access to MEM( f ), the weak parity learning problem con-
sists of finding a vector z such that f̂ (z) is θ/2-heavy.

We will only consider algorithms for weak parity learning that are efficient, that is, produce
the result in time polynomial in n, and θ−1. In addition we are interested in weak parity learning
algorithms that are attribute-efficient.

Definition 11 (Attribute-Efficient Weak Parity Algorithm) Attribute-efficient weak parity algo-
rithm is an algorithm that given k, θ, and MEM( f ) for f that has a θ-heavy Fourier coefficient of
degree at most k efficiently solves weak parity learning problem and asks polynomial in k, logn, and
θ−1 number of MQs.
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We follow the presentation of Levin’s weak parity algorithm given by Bshouty et al. and refer
the reader to their paper for detailed proofs of all the statements and smaller remarks (we use the
same definitions and notation to simplify the reference). Levin’s algorithm is based on estimating
a Fourier coefficient f̂ (a) by sampling f on randomly-chosen pairwise independent points. More
specifically, the following pairwise independent distribution is generated. For a fixed m, a random
m-by-n 0-1 matrix R is chosen and the set Y = {pR | p ∈ {0,1}m \ {0m}} is formed. For different
vectors p1 and p2 in {0,1}m \ {0m}, p1R and p2R are pairwise independent. The variance σ2 of
a Boolean function is upper-bounded by 1 and thus Bienaymé-Chebyshev’s inequality (Lemma 2)
implies that

PrR

[
|
∑x∈Y f (x)χa(x)

2m−1
− f̂ (a)| ≥ γ

]
≤

1
(2m−1)γ2 (2)

Therefore using a sample for m = log(16ρ−1θ−2 +1), ∑x∈Y f (x)χa(x) will, with probability at least
1−ρ, approximate f̂ (a) within θ/4.

On the other hand, ∑x∈Y f (x)χa(x) is a summation over all (but one2) elements of a linear
subspace of {0,1}n and therefore can be seen as a Fourier coefficient of f restricted to subspace Y .
That is, if we define fR(p) = f (pR) then, by definition of Fourier transform, for every z ∈ {0,1}m

f̂R(z) = 2−m ∑
p∈{0,1}m

fR(p)χz(p) .

This together with equality χa(pR) = χaRT (p) implies that f̂ (a) is approximated by f̂R(aRT ) (with
probability at least 1−ρ).

All the coefficients f̂R(z) can be computed exactly in time O(m2m) via the FFT algorithm giving
estimations to all the Fourier coefficients of f .

Another key element of the weak parity algorithm is the following equation (Bshouty et al.,
1999).

Lemma 12 For c ∈ {0,1}n let fc(x) = f (x⊕ c). Then f̂c(a) = f̂ (a)χa(c).

Proof
f̂c(a) = 2−n ∑

x∈{0,1}n

f (x⊕ c)χa(x) = 2−n ∑
x∈{0,1}n

f (x)χa(x⊕ c) = f̂ (a)χa(c) .

Assuming that f̂ (a) ≥ θ estimation of f̂ (a) within θ/4 (when successful) has the same sign as
f̂ (a). Similarly we can obtain the sign of f̂c(a). By Lemma 12, the sign of the product f̂ (a) f̂c(a)
is equal to χa(c). This gives a way to make MQs for χa using the values f̂c,R(aRT ) for a random R.
Levin and Bshouty et al. implicitly used this technique with a basic membership query algorithm for
learning parities. The speed-up in Levin’s algorithm is achieved by making each MQ to many χa’s
in parallel. Therefore only a non-adaptive membership query algorithm for learning parities can be
used. In our next theorem we give an interpretation of improved Levin’s algorithm that makes the
use of a non-adaptive membership query algorithm explicit.

2. The value at 0m does not influence the estimation substantially and therefore can be offset by slightly increasing the
size of sample space Y (Bshouty et al., 1999).
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Theorem 13 Let B(k) be an ae.naMQ algorithm for learning parities that runs in time t(n,k) and
uses q(n,k) MQs. There exists an attribute-efficient and non-adaptive algorithm AEBoundedSieve-
B(θ,k) that, with probability at least 1 − δ, solves the weak parity learning problem.
AEBoundedSieve-B(θ,k) runs in time Õ

(
θ−2t(n,k) ·q(n,k) log(1/δ)

)
and asks

Õ
(
θ−2q2(n,k) log(1/δ)

)
MQs.

Proof We assume for simplicity that B(k) succeeds with probability at least 3/4. Besides that
according to Fact 7, we can assume that B(k) is a proper algorithm.

Let S be the set of MQs for an execution of B(k). Choose randomly an m-by-n matrix R for
m = log(16θ−2 ·4 · (q(n,k)+1)+1) and compute the Fourier transforms of fR = f0n,R and fy,R for
each y ∈ S via the FFT algorithm. Then, for each z ∈ {0,1}m, we run B(k) with the answer to MQ
y ∈ S equal to sign( f̂R(z) f̂y,R(z)). If the output of B(k) is a parity function χa of length at most k
then we test that (i) : | f̂R(z)| ≥ 3θ/4 and (ii) : aRT = z. If both conditions are satisfied we add a to
the set of hypotheses H.

By Equation (2), for a such that | f̂ (a)| ≥ θ and wt(a)≤ k, with probability at least 1− 1
4(q(n,k)+1) ,

each of the estimations f̂y,R(aRT ) for y ∈ S∪{0n} will be within θ/4 of f̂y(a). In particular, with
probability at least 3/4, for all y ∈ S∪ {0n}, sign( f̂y(a)) = sign( f̂y,R(aRT )) . If all the signs
are correct then by Lemma 12, sign( f̂R(z) f̂y,R(z)) = χa(y) and as a result B(k) will succeed with
probability at least 3/4. Therefore a will satisfy both conditions (i) and (ii) and will be added as a
possible hypothesis with probability at least 1/2. Note that B(k) is executed on up to 2m possible
hypotheses while using the same set of queries S. This is only possible for a non-adaptive algorithm
B(k).

On the other hand, for any fixed b such that | f̂ (b)|< θ/2, if bRT = z (condition (ii)) then with
probability at least 1− 1

4(q(n,k)+1) ≥ 7/8, f̂R(z) approximates f̂ (b) within θ/4. This implies that

| f̂R(z)|< 3θ/4 and therefore condition (i) will be failed with probability at least 7/8. This implies
that b can be added to the set of hypotheses with probability at most 1/8.

Now we use a simple method of Bshouty et al. (1999) to remove all “bad” (not θ/2-heavy)
hypotheses from the set of hypotheses without removing the “good” ones (θ-heavy). We repeat the
described algorithm ` times for independent choices of R and S generating ` sets of hypotheses (each
of size at most 2m). This procedure generates at most `2m hypotheses. According to Chernoff’s
bound (Lemma 1) each “good” hypothesis appears in at least 1/3 of all the sets with probability at
least 1−2−α` and each fixed “bad” hypothesis appears in at least 1/3 of all the sets with probability
at most 2−α`, for a fixed constant α (since 1/8 < 1/3 < 1/2). Note that we need to fix a “bad”
hypothesis to apply this argument. A hypothesis can be fixed as soon as it has appeared in a set of
hypotheses. We then exclude the first set in which a hypothesis has appeared when counting the
fraction of sets in which the hypothesis has appeared (Chernoff bound is now on `−1 trials but this
is insubstantial). By setting ` = (m+ logm+2log(1/δ)+3)/α we will get that `2m2−α`−1 ≤ δ/2.
Therefore the probability that a “bad” hypothesis will appear in 1/3 of the sets is at most δ/2.
Similarly all “good” hypotheses will appear in 1/3 of the sets with probability at least 1− δ/2.
Thus by picking any a that appears in at least 1/3 of all the sets we will find a θ/2-heavy coefficient
with probability at least 1−δ.

Computing each of the Fourier transforms takes O(m2m) = Õ(θ−2 ·q(n,k)) time. They are per-
formed for each of q(n,k) MQs of B and this is repeated ` = O(m+ log(1/δ)) times giving the total
bound of Õ(θ−2q2(n,k) log(1/δ)). For each of the 2m values of z we run B(k) and tests (i) and (ii).
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This takes O(2m(t(n,k)+ mn)) = Õ(θ−2t(n,k) ·q(n,k)) time and is repeated ` = O(m + log(1/δ))
times. Therefore the total running time is Õ(θ−2 · t(n,k) · q(n,k) log(1/δ)). Similarly we observe
that each of the estimations via FFT uses 2m examples and ` ·(q(n,k)+1) such estimations are done.
This implies that the sample complexity of the algorithm is Õ

(
θ−2q2(n,k) log(1/δ)

)
. It can also be

easily seen that all MQs are non-adaptive.

Another way to see Theorem 13 is as a way to convert an ae.naMQ algorithm for learning of
parities to an ae.naMQ algorithm for agnostic learning of parities.

By plugging AEParityStat(k) algorithm (Theorem 9) into Theorem 13 we obtain our weak
parity learning algorithm.

Corollary 14 There exists an attribute-efficient and non-adaptive weak parity learning algorithm
AEBoundedSieve(θ,k) that succeeds with probability at least 1 − δ, runs in time
Õ

(
nk2θ−2 log(1/δ)

)
, and asks Õ

(
k2 log2 n ·θ−2 log(1/δ)

)
MQs.

Jackson (1997) has proved that for every distribution D , every DNF formula f has a parity
function that weakly approximates f with respect to D . A refined version of this claim by Bshouty
and Feldman (2002) shows that f has a short parity that weakly approximates f if the distribution
is not too far from the uniform. More formally, for a real-valued function φ we define L∞(φ) =
maxx{|φ(x)|} and we view a distribution D as a function over {0,1}n that for a point x gives its
probability weight under D .

Lemma 15 For any Boolean function f of DNF-size s and a distribution D over {0,1}n there exists
a parity function χa such that

|ED [ f χa]| ≥
1

2s+1
and wt(a)≤ log((2s+1)L∞(2nD)) .

By combining this fact with Corollary 14 we get an algorithm for weakly learning DNF.

Theorem 16 There exist an algorithm WeakDNFU(s) that for a Boolean function f of DNF-size s
given n,s, and access to MEM( f ), with probability at least 1/2, finds a ( 1

2 −Ω( 1
s ))-approximator

to f with respect to U. Furthermore, WeakDNFU(s) runs in time Õ
(
ns2

)
and asks Õ

(
s2 log2 n

)

non-adaptive MQs.

Proof Lemma 15 implies that there exists a parity χa on at most log(2s+1) variables such that
|EU [ f χa]| = | f̂ (a)| ≥ 1

2s+1 . This means that f has a 1
2s+1 -heavy Fourier coefficient of degree at

most log(2s+1). Using Corollary 14 for δ = 1/2, we can find a 1
2(2s+1) -heavy Fourier coefficient

f̂ (a′) in time Õ
(
ns2

)
and using Õ

(
s2 log2 n

)
non-adaptive MQs. The parity χa′ or its negation

( 1
2 −

1
4(2s+1))-approximates f .

The algorithm for weakly learning DNFs by Bshouty et al. (1999) requires Õ
(
ns2

)
MQs and

runs in time3 Õ
(
ns2

)
.

3. The running time bound is based on use of a membership query oracle, that given any two vectors x,y ∈ {0,1}n,
passed to it “by reference”, returns f (x⊕ y) in O(1) time.
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6. Learning DNF Expressions

In this section we show an ae.naMQ algorithm for learning DNF expressions. Following Jackson’s
approach we first show how to generalize our weak DNF learning algorithm to other distributions
(Jackson, 1997). We then use Freund’s boosting algorithm to obtain a strong DNF learning algo-
rithm (Freund, 1992). Besides achieving attribute-efficiency and non-adaptiveness we show a way
to speed up the boosting process by exploiting several properties of our WeakDNF algorithm.

6.1 Weak DNF Learning with Respect to Any Distribution

The first step in Jackson’s approach is to generalize a weak parity algorithm to work for any real-
valued function. We follow this approach and give a generalization of our AEBoundedSieve(θ,k)
algorithm (Corollary 14) to any real-valued and also randomized functions.

Lemma 17 There exists an algorithm AEBoundedSieveRV(θ,k,V) that for any real-valued ran-
domized function Ψ with a θ-heavy Fourier coefficient of degree at most k, given k, θ, V ≥
VarU,Ψ(Ψ(x)), and an oracle access to Ψ, finds, with probability at least 1−δ, a θ/2-heavy Fourier
coefficient of Ψ of degree at most k. The algorithm runs in time Õ

(
nk2θ−2V log(1/δ)

)
and asks

Õ
(
k2 log2 n ·θ−2V log(1/δ)

)
non-adaptive MQs.

Proof By revisiting the proof of Theorem 13, we can see that the only place where we used the
fact that f is Boolean and deterministic is when relying on Equation (2) in which the variance of the
random variable f (x) ∈ {−1,+1} was upper-bounded by 1. In this bound f (x) is already treated as
a random variable on pairwise independent x’s. For any point x, Ψ(x) is independent of any other
evaluations of Ψ and therefore evaluations of Ψ on pairwise independent points are pairwise inde-
pendent. This implies that in order to estimate Ψ̂(a) within θ/4 we only need to account for the fact
that the variance of Ψ(x) is not necessarily bounded by 1. This can be done by using Var(Ψ) ≤ V
times more samples, that is, we set m = log(16V θ−2 ·4 · (q(n,k)+1)+1). It is now straightforward
to verify that the rest of the proof of Theorem 13 is unchanged. The increase in the required sample
size increases the running time and the sample complexity of the algorithm by a factor Õ(V ) giving
us the claimed bounds.

As in Jackson’s work we use the generalized weak parity algorithm to obtain an algorithm that
weakly learns DNF expressions with respect to any distribution. The algorithm is efficient only
when the distribution function is “close” to the uniform and requires access to the value of the
distribution function at any point x.

Theorem 18 There exist an algorithm WeakDNF(s,B) that for a Boolean function f of DNF-size s
and any distribution D , given n,s,B≥ L∞(2nD(x)), access to MEM( f ), and an oracle access to D ,
with probability at least 1−δ, finds a ( 1

2−Ω( 1
s ))-approximator to f with respect to D . Furthermore,

WeakDNF(s,B)

• runs in time Õ(ns2B log(1/δ));

• asks Õ(s2 log2 n ·B log(1/δ)) non-adaptive MQs;

• returns a parity function of length at most O(log(sB)) or its negation.
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Proof Lemma 15 states that there exists a vector a of Hamming weight bounded by
O(log(sL∞(2nD))) such that |ED [ f (x)χa(x)]|= Ω(1/s). But

ED [ f (x)χa(x)] = ∑
x

[ f (x)D(x)χa(x)] = E[ f (x)2nD(x)χa(x)] = ψ̂(a) , (3)

where ψ(x) = f (x)2nD(x). This means that ψ(x) has a Ω(1/s)-heavy Fourier coefficient of degree
bounded by O(log(sL∞(2nD))) = O(log(sB)). We can apply AEBoundedSieveRV on ψ(x) to find
its Ω(1/s)-heavy Fourier coefficient of degree O(log(sB)). All we need to do this is to provide a
bound V on the variance of f (x)2nD(x).

Var( f (x)2nD(x)) = E[( f (x)2nD(x))2]−E2[ f (x)2nD(x)]

≤ L∞(2nD(x))E[2nD(x)]−E2[ f (x)2nD(x)]≤ L∞(2nD(x))E[2nD(x)]

= L∞(2nD(x))≤ B (4)

This bound on variance relies essentially on the fact that D(x) is a distribution function 4 and
therefore E[2nD(x)] = ED [1] = 1. This improves on L2

∞(2nD(x)) bound for an unrestricted function
D(x) that was used in analysis of previous weak DNF learning algorithms (Jackson, 1997; Bshouty
et al., 1999).

We can now run AEBoundedSieveRV(θ,k,V) for θ = Ω(1/s), k = O(log(sB)), V = B, and
a simulated oracle access to ψ = f 2nD to obtain a′ such that |ψ̂(a′)| = Ω(1/s) and wt(a′) =
O(log(sB)). By equation (3), we get that |ED [ f (x)χa′(x)]| = Ω(1/s) and therefore χa′(x) or its
negation ( 1

2 −Ω( 1
s ))-approximates f with respect to D . The claimed complexity bounds can be

obtained by using Lemma 17 for θ,k and V as above.

6.2 Background on Boosting a Weak DNF Learner

Jackson (1997) obtained his DNF learning algorithm by converting a weak DNF learning algorithm
to a strong one via a boosting algorithm. Boosting is a general technique for improving the accuracy
of a learning algorithm. It was introduced by Schapire (1990) who gave the first efficient boosting
algorithm. Let C be a concept class and let WLγ be a weak learning algorithm for C that for any
distribution D , produces a (1/2− γ)-approximating hypothesis. Known boosting algorithms have
the following structure.

• At stage zero WLγ is run on D0 = D to obtain h0.

• At stage i a distribution Di is constructed using D and previous weak hypotheses h0, . . . ,hi−1.
The distribution Di usually favors the points on which the previous weak hypotheses do
poorly. Then random examples from Di are simulated to run WLγ with respect to Di and
obtain hi.

• After repeating this for a number of times an ε-approximating hypothesis h is created using
all the generated weak hypotheses.

4. Actual D(x) given to a weak learner will be equal to cD ′(x) where D ′(x) is a distribution and c is a constant in
[2/3,4/3] (Bshouty et al., 1999). This modifies the bound above by a small constant factor.
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Jackson’s use of Freund’s boosting algorithm slightly deviates from this scheme as it provides
the weak learner with the oracle that returns the density of the distribution function Di at any de-
sired point instead of simulating random examples with respect to Di. The WeakDNF algorithm also
requires oracle access to Di(x) and therefore we will use a boosting algorithm in the same way. The
running time of Jackson’s (and our) algorithm for weak learning of DNF expression depends poly-
nomially on L∞(2nD) and therefore it can only be boosted by a boosting algorithm that produces
distributions that are polynomially-close to the uniform distribution; that is, the distribution function
is bounded by p2−n where p is a polynomial in learning parameters (such boosting algorithms are
called p-smooth). In Jackson’s result Freund’s (1990) boost-by-majority algorithm is used to pro-
duce distribution functions bounded by O(ε−2). More recently, Klivans and Servedio (2003) have
observed that a later boosting algorithm of Freund (1992) produces distribution functions bounded
by Õ(1/ε), thereby improving the dependence of running time and sample complexity on ε. This
improvement together with improved weak DNF learning algorithm of Bshouty et al. (1999) gives
DNF learning algorithm that runs in Õ(ns6/ε2) time and has sample complexity of Õ(ns4/ε2).

Remark 19 Bshouty et al. claimed sample complexity of Õ(ns2/ε2) based on erroneous assump-
tion that sample points for weak DNF learning can be reused across boosting stages. A distribution
function Di in i-th stage depends on hypotheses produced in previous stages. The hypotheses de-
pend on random sample points and therefore in i-th stage the same set of sample points cannot be
considered as chosen randomly and independently of Di (Jackson, 2004). This implies that new and
independent points have to be sampled for each boosting stage and increases the sample complexity
of the algorithm by Bshouty et al. by a factor of O(s2).

As in the work of Klivans and Servedio (2003), we use Freund’s (1992) B-Comb boosting al-
gorithm to boost the accuracy of our weak DNF learning algorithm. We will now briefly describe
the B-Comb boosting algorithm (see also the work of Klivans and Servedio (2003) for a detailed
discussion on application of B-Comb to learning DNF expressions).

6.2.1 FREUND’S B-Comb BOOSTING ALGORITHM

B-Comb boosting algorithm is based on a combination of two other boosting algorithms. The first
one in an earlier F1 algorithm due to Freund (1990) and is used to boost from accuracy 1

2 − γ to
accuracy 1/4. Its output is the function equal to the majority vote of the weak hypotheses that
it received. This algorithm is used as a weak learner by the second boosting algorithm B-Filt.
At stage k B-Filt sets h` to be either the output of a weak learner or a random coin flip (that
is a randomized function equal to either 1 or −1, each with probability 1/2). Accordingly the
distribution function generated at stage i depends on random coin flips and the final hypothesis is a
majority vote over hypotheses from the weak learner and random coin flips. As it is done by Freund
(1992), we analyze the algorithm for a fixed setting of these coin flip hypotheses. Freund’s analysis
shows that with overwhelming probability over the coin flips the randomized hypothesis produced
by the boosting algorithm ε-approximates the target function.

Each of the executions of F1 has O(γ−2) stages and B-Filt has O(log(1/ε)) stages. We denote
the distribution function generated at stage i of F1 during stage ` of B-Filt as D Comb

`,i . In both
boosting algorithms Di(x) = β(i,N(x))D/α, where N(x) is the number of previous hypotheses that
are correct on x, β is a fixed function from a pair of integers to the interval [0,1] computable in
polynomial (in the length of its input) time, and α is the normalization factor equal to ED [β(i,N(x))].
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We can therefore say that

DComb

`,i (x) = β(`,NFilt(x)) ·β(i,NF1(x))D(x)/(α`α`,i) , (5)

where NFilt(x) and NF1(x) count the correct hypotheses so far for B-Filt and F1 respectively. The
normalization factor α` equals ED [β(`,NFilt(x))] and

α`,i = ED [β(`,NFilt(x)) ·β(i,NF1(x))D(x)/α`] .

The analysis by Freund implies that for every ` and i,

L∞(2nDComb

`,i )≤ 1/(α`α`,i) = Õ(1/ε) .

In Figure 6.2.1 we include the pseudocode of B-Comb algorithm simplified and adapted to our set-
ting.

6.3 Optimized Boosting

We now use Freund’s (1992) B-Comb boosting algorithm to boost the accuracy of our weak DNF
learning algorithm. Unlike in the previous work, we will exploit several properties of WeakDNF
to achieve faster execution of each boosting stage. Specifically, we note that evaluation of the
distribution function Di(x) at boosting stage i involves evaluation of i− 1 previous hypotheses on
x and therefore, in a general case, for a sample of size q will require Ω(i ·q) steps, making the last
stages of boosting noticeably slower. Our goal is to show that for our WeakDNF algorithm and the
B-Comb boosting algorithm the evaluation of Di(x) for the whole sample needed by WeakDNF can
be made more efficiently.

The idea of the speed-up is to use Equation (5) together with the facts that weak hypotheses are
parities and MQs of WeakDNF come from a “small” number of low-dimension linear subspaces. Let
g be a function that is equal to a linear combination of short parity functions. We start by showing
a very efficient way to compute the values of g on a linear subspace of {0,1}n. We will assume
that vectors of Hamming weight at most w are represented by the list of indices where the vector is
equal to 1 (as we did for parities). One can easily see that adding such vectors or multiplying them
by any vector takes O(w logn) time.

Lemma 20 Let {c1,c2, . . . ,ci} be a set of vectors in {0,1}n of Hamming weight at most w; ᾱ ∈ Ri

be a real-valued vector, and R be a m-by-n 0-1 matrix. Then the set of pairs

S = {〈p,∑
j≤i

α jχc j(pR)〉 | p ∈ {0,1}m}

can be computed in time Õ(i ·w logn+2m).

Proof We define g(x) = ∑ j≤i α jχc j(x) and for p ∈ {0,1}m we define gR(p) = g(pR) (as in Sect. 5).
Our goal is to find the values of function gR on all the points of {0,1}m. The function g is given
as a linear combination of parities, or in other words, we are given its Fourier transform. Given the
Fourier transform of g we can derive the Fourier transform of gR from the following equation:

gR(p) = ∑
j≤i

α jχc j(pR) = ∑
j≤i

α jχc jRT (p) = ∑
z∈{0,1}m


( ∑

j≤i; c jRT =z

α j)χz(p)


 .
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B-Comb(ε,δ,D,WLγ)

1. k← c0 log(1/ε)
2. Θ← c1ε/ log(1/ε)
3. h0← F1(1/4,δ/(2k +1),D,WLγ)

4. for `← 1 to k

5. N(x)≡ |{h j | 0≤ j ≤ `−1 and h j(x) = f (x)}|

6. α′`← EstExpRel(β(`,N(x)),D,1/3,δ/(2k +1))

7. if α′` ≥Θ then

8. D ′` ≡ β(`,N(x))/α′`
9. h`← F1(1/4,δ/(2k +1),D ′`,WLγ)

10. else

11. h`← Random(1/2)

12. end for

13. return Majority(h0,h1, . . . ,hk)

F1(ε,δ,D,WLγ)

1. k← c2/γ2

2. Θ← c3ε2

3. h0← WLγ(D,δ/(2k +1))

4. for i← 1 to k

5. N(x)≡ |{h j | 0≤ j ≤ i−1 and h j(x) = f (x)}|

6. α′i← EstExpRel(β(i,N(x)),D,1/3,δ/(2k +1))

7. if α′i ≥Θ then

8. D ′i ≡ β(i,N(x))/α′i
9. hi← WLγ(D ′i ,δ/(2k +1))

10. else

11. k← i−1

12. break for

13. end for

14. return Majority(h0,h1, . . . ,hk)

Figure 1: Pseudocode of B-Comb boosting algorithm. The first part is B-Filt with F1 used as a
weak learner. WLγ is a weak learning algorithm that has accuracy 1

2−γ and takes an oracle
for a distribution D and confidence δ as parameters. EstExpRel(R,D,λ,δ) produces
estimates of the expectation of a random variable R with respect to a distribution D within
relative accuracy λ and confidence δ (that is the estimate v′ ∈ [(1−λ)v,(1 + λ)v], where
v is the true expectation). Various unspecified constants are denoted by c0,c1, . . . The
membership query oracle for the target function f is available to all procedures.
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Hence ĝR(z) = ∑ j≤i; c jRT =z α j. Given the Fourier transform of gR we can use the FFT algorithm to
perform the inverse Fourier transform of gR giving us the desired values of gR(p) on all the points
of {0,1}m. This task can be performed in O(m2m) steps. To compute the Fourier transform of gR

we need to compute c jRT for each j ≤ i and sum the ones that correspond to the same z. Given
that each c j is of Hamming weight w, c jRT can be computed in O(wm logn) steps (note that we do
not read the entire matrix R). Therefore the computation of the Fourier transform and the inversion
using the FFT algorithm will take O(m(iw logn+2m)) = Õ(i ·w logn+2m) steps.

Note that a straightforward computation would take Ω(iw2m logn) steps. We apply Lemma 20 to
speed up the evaluation of DComb

`,i (x) on points at which WeakDNF asks non-adaptive MQs (here again
we will rely on the non-adaptiveness of the weak learning algorithm). The speed-up is based on the
following observations.

1. WeakDNF is based on estimating Fourier coefficients on a “small” number of linear subspaces
of {0,1}n (as in Equation 2).

2. WeakDNF produces a short parity function (or its negation) as the hypothesis.

3. In computation of DComb

`,i (x) the only information that is needed about the previous hypotheses
is NFilt(x) and NF1(x), that is the number of hypotheses so far that are correct on the given
point. The number of correct hypotheses is determined by f (x) and the sum (in particular, a
linear combination) of the values of the hypotheses on x.

Now we prove these observations formally and show a more efficient way to compute D Comb

`,i (x)
given oracle access to NFilt(x), in other words, we show a more efficient way to compute NF1(x).

Lemma 21 Let {b1χc1 ,b2χc2 , . . . ,biχci} be the set of hypotheses returned by WeakDNF(s,B) in i first
stages of F1 boosting algorithm during stage ` of B-Filt, where b j ∈ {−1,+1} is the sign of χc j

(indicating whether or not it is negated). Let W be the set of queries for the (i + 1)-th execution
of WeakDNF(s,B) with confidence parameter δ and B ≥ L∞(2nDComb

`,i ). Then, given MEM( f ) and
an oracle access to NFilt(x), the set of pairs S = {〈x,λDComb

`,i (x)〉 | x ∈ W} for some constant

λ∈ [2/3,4/3], can be computed, with probability at least 1−δ, in time Õ((i+s2B) log2 n log(1/δ)).

Proof We start by proving our first observation. By revisiting the proof of Theorem 13 we can
see that our weak parity algorithm asks queries on Y = {pR | p ∈ {0,1}m} for a randomly chosen
R and then for each query z of a ae.naMQ parity algorithm it asks queries on points of the set
Yz = {z⊕y | y ∈Y}. The set Yz is a subset of the linear subspace of dimension m+1 spanned by the
rows of R and vector y. These queries are then repeated O(m+ log(1/δ)) times to single out “good”
Fourier coefficients. Therefore by substituting the parameters of WeakDNF(s,B) into the proofs of
Lemma 17 and Theorem 13, we can see that W can be decomposed into Õ(log2 (sB) logn log(1/δ))
linear subspaces of dimension m = logT for T = Õ(s2B logn).

Our second observation is given by Theorem 18 and states that for each j ≤ i, χc j is a parity on
at most logsB variables.

Our next observation is that the number of hypotheses from {b1χc1 ,b2χc2 , . . . ,biχci} that agree
with f on x equals to

NF1(x) =
f (x)

(
∑ j≤i b jχc j(x)

)

2
+

i
2

,
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that is, given ∑ j≤i b jχc j(x) and f (x), NF1(x) can be computed in O(1) steps. According to Lemma
20, we can compute ∑ j≤i b jχc j(x) on a linear subspace of dimension m in time Õ(iw logn + 2m).
Together with the first observation this implies that computing NF1(x) for all points in W can be
done in time

Õ(log2 (sB) logn log(1/δ))Õ(i · log(sB) logn+ s2B logn) = Õ((i+ s2B) log2 n log(1/δ)) .

Equation (5) implies that for every point x, given NF1(x), oracle access to NFilt(x) and α`α`,i we
obtain DComb

`,i (x). The normalization factor α`,i is estimated with relative accuracy 1/3 and therefore
instead of the true DComb

`,i (x) we will obtain λDComb

`,i (x) for some constant λ ∈ [2/3,4/3].

Lemma 21 assumes oracle access to NFilt(x). In the next lemma we show that this oracle can be
simulated efficiently.

Lemma 22 Let {h0,h1, . . . ,h`−1} be the set of hypotheses obtained by B-Comb in ` first stages of
boosting. Let W be the set of queries for the (i + 1)-th execution of WeakDNF(s,B) with confidence
parameter δ and B ≥ L∞(2nDComb

`,i ). Then, given MEM( f ), the set of pairs S = {〈x,NFilt(x)〉 | x ∈

W} can be computed, with probability at least 1−δ, in time Õ(`s2B · log2 n log(1/δ)).

Proof For each j ≤ `− 1, h j is an output of F1 or a random coin flip hypothesis. WeakDNF(s,B)
returns ( 1

2−Ω( 1
s ))-approximate hypotheses and therefore each hypothesis generated by F1 is a ma-

jority vote of O(γ−2) = O(s2) short parities (or their negations). A majority vote of these parities
and their negations is simply the sign of their sum, and in particular is determined by a linear com-
bination of parity functions. Hence, as in Lemma 21, h j(x) for all points in W can be computed
Õ((s2 + s2B) log2 n log(1/δ)) time. Therefore for any stage `, h0,h1, . . . ,h`−1 can be computed on
points in W in Õ(`s2B log2 n log(1/δ)) steps giving the required oracle NFilt(x).

Remark 23 In this simulation of B-Comb we ignored the complexity of procedure EstExpRel that is
used to evaluate the normalization factors. The factor α` = E[β(`,NFilt(x))] needs to be estimated
within relative accuracy 1/3 and its value is only used when the estimate α′` ≥ Θ = c1ε/ log(1/ε)
for some constant c1 since otherwise B-Comb uses a random coin flip hypothesis (see line 7 of the
pseudocode). This implies that the estimate is only used when α` ≥ 3Θ/4. The Chernoff bound

(Lemma 1) implies that if α` ≥ 3Θ/4 then using M = O( log(1/ε) log(1/δ)
ε ) random uniform samples

will be sufficient to estimate α` within relative accuracy 1/3 with confidence 1− δ. If α` < 3Θ/4
then with probability 1− δ the obtained estimate α′` will be less than Θ and therefore will not be
used. Evaluating NFilt(x) on each of these points will take O(`ns2) steps and therefore each of
these estimation will run in time Õ(`ns2 log(1/δ)/ε).

At each stage of the F1 boosting algorithm we need to estimate

α`,i = E[β(`,NFilt(x)) ·β(i,NF1(x))/α′`]

to within relative accuracy 1/3 and its value is only used when the estimate α′`,i ≥ c for some
constant c. Therefore it is sufficient to estimate α`,i to within constant additive accuracy. With
probability at least 1− δ this can be achieved by using a sample of O(log(1/δ)) random uniform
points. Estimating both NFilt(x) and NF1(x) on each point takes O(`ns2) steps and therefore each
of these estimations runs in time O(`ns2 log(1/δ)).
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We are now ready to describe the resulting ae.naMQ algorithm for learning DNF expressions.

Theorem 24 There exists an algorithm AENALearnDNF(s) that for any Boolean function f of DNF-
size s, given n,s,ε, and access to MEM( f ), with probability at least 1/2, finds an ε-approximator to
f with respect to U. Furthermore, AENALearnDNF(s) runs in time Õ

(
ns4/ε

)
and asks

Õ
(
s4 log2 n/ε

)
non-adaptive MQs.

Proof As we know from the description of B-Filt, it has O(log(1/ε)) stages and for each `
and i, L∞(2nDComb

`,i ) = Õ(1/ε). Therefore the running time of each execution of WeakDNF(s,B) is
Õ(ns2/ε). In particular, for every boosting stage of F1, it dominates the running time of comput-
ing the distribution function DComb

`,i (Lemmas 21 and 22) and estimations of α` and α`,i (Remark
23). There are total O(s2 log(1/ε)) executions of WeakDNF and therefore the total running time of
AENALearnDNF(s) is Õ

(
ns4/ε

)
and the total number of non-adaptive MQs used is Õ

(
s4 log2 n/ε

)
.

The improvements to the algorithm by Bshouty et al. (1999) are summarized below.

• The use of attribute-efficient weak learning improves the total sample complexity from
Õ

(
ns4/ε2

)
to Õ

(
s4 log2 n/ε2

)
and the same running time is achieved without assumptions

on the MQ oracle (see Theorem 16).

• Faster computation of distribution functions used in boosting improves the total running time
from Õ

(
ns6/ε2

)
to Õ

(
ns4/ε2

)
(see Lemmas 20, 21 and 22).

• Tighter estimation of variance improves the dependence of running time and sample com-
plexity on ε from 1/ε2 to 1/ε (Equation 4).

Remark 25 While the analysis of the speedup was done for Freund’s B-Comb booster the same
idea works for any other booster in which estimation of new weight function is based on a linear
combination of previous hypotheses. In particular, for the other known boosting algorithms that
produce smooth distributions: SmoothBoost by Servedio (2003) and AdaFlat by Gavinsky (2003).

7. Handling Noise

Now we would like to show that our DNF learning algorithm can be modified to tolerate random
persistent classification noise in MQs. To simplify the proof we first show that we can assume that
we are dealing with random and independent classification noise.

Lemma 26 The probability that AENALearnDNF(s) asks an MQ for the same point more than once
is upper bounded by P ·2−n/ logQ where P and Q are polynomial in n,s and 1/ε.

Proof We start by observing that in the algorithm AENALearnDNF(s) all the points that are given to
the MQ oracle are chosen uniformly and the points that are used in different executions of WeakDNF
are independent. As can be seen from the proof of Theorem 13, the generated points are of the form
pR⊕y, where R is a randomly and uniformly chosen matrix, y is chosen randomly according to D 1

4k

(defined in Theorem 9) or equal to 0n, and p ∈ {0,1}m. Points generated for two randomly chosen
R1 and R2 are independent of each other and uniformly distributed. Let y0 = 0n, q be the number of
samples taken from D 1

4k
, and y1,y2, . . . ,yq denote the samples.
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For some randomly chosen R, let x1 = p1R⊕yi and x2 = p2R⊕y j be two different sample points.
For two different sample points either i 6= j or p1 6= p2. If i 6= j then either i 6= 0 or j 6= 0. Without
loss of generality we assume that i 6= 0. Then

Pryi∼D 1
4k

[p1R⊕ yi = p2R⊕ y j] = Pryi∼D 1
4k

[yi = p1R⊕ p2R⊕ y j]≤ (1−
1
4k

)n ≤ e−n/(4k) .

If p1 6= p2 then PrR∼Um×n [(p1⊕ p2)R = yi⊕ y j] = 2−n. This implies that for any two MQs made
by AENALearnDNF(s), probability that they are equal is at most e−n/(4k). As it can be seen from the
analysis of AENALearnDNF(s), k = O(log(s/ε)) and the total number of MQs used is polynomial in
n,s and 1/ε.

If an algorithm does not ask a MQ for the same point again then persistent classification noise
can be treated as random and independent.

7.1 Boosting Weak Parity Learning Algorithm in the Presence of Noise

The main part of the modification is to show an algorithm that can locate heavy Fourier coefficients
of any randomized function can be used to learn DNFs in the presence of noise. Our method can
be applied in more general setting. In particular, it could be used to prove that Jackson’s original
algorithm is resistant to persistent noise in MQs and was recently used to produce a noise tolerant
DNF learning algorithm by Feldman et al. (2006). Previous methods to produce noise-tolerant
DNF learning algorithms gave statistical query analogues of Jackson’s algorithm and then simulated
statistical queries5 in the presence of noise (Jackson et al., 1997; Bshouty and Feldman, 2002). Our
approach is more direct and the resulting algorithm is substantially more efficient than the previous
ones.

The goal of a weak DNF learning algorithm at stage i of boosting is to find a parity correlated
with the function 2nDi(x) f (x) given an oracle access to values of Di(x) and the oracle for f with
noise of rate η < 1/2 instead of MEM( f ). Handling the noisy case is further complicated by the fact
that the computation of Di(x) by the boosting algorithm uses the value f (x) (in particular, B-Comb
and B-Filt need the value of f (x) to compute N(x)) which is not available in the noisy case. To
make this dependence explicit we define Di(x,b) (for b∈ {−1,+1}) to be the value of Di on x when
the boosting algorithm is supplied with the value b in place of f (x) to compute Di(x) (in particular,
Di(x) = Di(x, f (x))). We will now show a general method to compute a Fourier coefficient of a
function that depends on f (x) given a noisy oracle for f .

Lemma 27 Let g(x,b) be any real-valued function over {0,1}n×{−1,+1} and let Φη denote a
randomized function such that for every x, Φη(x) = f (x) with probability 1−η and Φη(x) =− f (x)

with probability η. Then for each a∈ {0,1}n, [ ̂g(x, f (x))](a) = Ψ̂g,η(a), where Ψg,η is a randomized
function defined as

Ψg,η(x) =
1
2

(
1

1−2η
(g(x,1)−g(x,−1)) ·Φη(x)+g(x,1)+g(x,−1)

)
.

5. They used stronger versions of statistical queries than those introduced by Kearns (1998).
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Proof We use the following observation due to Bshouty and Feldman (2002). For any real-valued
function ψ(x,b)

ψ(x, f (x)) = ψ(x,−1)
1− f (x)

2
+ψ(x,1)

1+ f (x)
2

=

1
2
((ψ(x,1)−ψ(x,−1)) f (x)+ψ(x,1)+ψ(x,−1)) .

Then

Ex,Φη(x)[
1
2
(ψ(x,1)−ψ(x,−1)) ·Φη(x)] = (1−2η)Ex[

1
2
(ψ(x,1)−ψ(x,−1)) f (x)] ,

and therefore we can offset the effect of noise in g(x, f (x)) as follows.

̂[g(x, f (x))](a) = E[g(x, f (x))χa(x)]

=
1
2

(Ex[(g(x,1)−g(x,−1))χa(x) f (x)]+Ex[(g(x,1)+g(x,−1))χa(x)])

=
1
2

(
1

1−2η
Ex,Φη(x)[(g(x,1)−g(x,−1))χa(x) ·Φη(x)]+Ex[(g(x,1)+g(x,−1))χa(x)]

)

= Ex,Φη(x)

[
1
2

(
1

1−2η
(g(x,1)−g(x,−1)) ·Φη(x)+g(x,1)+g(x,−1)

)
χa(x)

]
= Ψ̂(a)

An oracle for Φη(x) is exactly the membership query oracle for f (x) with noise of rate η that is
given to us (by Lemma 26 we can ignore the persistency of noise). Therefore Lemma 27 gives a
way to find heavy Fourier coefficients using an oracle for Φη(x) instead of the membership query
oracle for f (x). We apply it to WeakDNF and obtain our noise-tolerant ae.naMQ DNF learning
algorithm.

Theorem 28 There exists an algorithm AENALearnDNF(s,η) that for any Boolean function f of
DNF-size s, given n,s,η,ε, and access to MEM( f ) corrupted by random persistent classification
noise of rate η, with probability at least 1/2, finds an ε-approximator to f with respect to U. Fur-
thermore, AENALearnDNF(s,η) runs in time Õ

(
ns4/(ε(1−2η)2)

)
and asks

Õ
(
s4 log2 n/(ε(1−2η)2)

)
non-adaptive MQs.

Proof Section 6.3 gives a way to efficiently compute DComb

`,i (x) given the label f (x). This com-
putation defines the oracle for DComb

`,i (x,b) where b is the supposed label of f (x). Let g(x,b) =

b · 2nDComb

`,i (x,b) and let Ψg,η(x) be defined as in Lemma 27. Given the oracle for DComb

`,i (x,b) and
oracle access to Φη(x) we use AEBoundedSieveRV(θ,k,V) on Ψg,η(x) in the same way it was used
on ψ(x) by WeakDNF(s,B) (see the proof of Theorem 18). By Lemma 27, Ψg,η(x) has the same
Fourier coefficients as f (x)2nDComb

`,i (x, f (x)). Therefore this modified weak learning algorithm will
produce an equivalent hypothesis. We can deal with the noise while estimating the normalization
factor α`,i in exactly the same way.

Furthermore, the definition of Ψg,η and Equation (4) imply that

L∞(Ψg,η)≤
2

1−2η
L∞(2nDComb

`,i ) and Var(Ψg,η)≤
4

(1−2η)2 L∞(2nDComb

`,i ) .
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By substituting these bounds into Theorem 18 we obtain that the running time and the sample com-
plexity of each execution of the modified weak learner will grow by (1−2η)2. They also imply that
WeakDNF(s,B) will produce parities on log(s2/(ε(1−2η))) variables (this change is absorbed by Õ
notation).

8. Conclusions and Open Problems

In this work we have demonstrated equivalence of attribute-efficient learning of parities from ran-
dom and uniform examples and decoding of random linear binary codes. This result appears to be
the only known evidence of hardness of attribute-efficient learning for a natural concept class. Many
other problems remain open in this area. For example it is unknown whether decision lists or linear
thresholds are learnable attribute-efficiently.

Our results show that some of the most important concepts classes that are learnable attribute
efficiently with respect to the unform distribution using membership queries are also learnable by
significantly weaker non-adaptive MQs. We believe that it is interesting to understand if similar
results can be obtained in the distribution-independent setting. In particular whether monotone
DNF formulae and decision trees can be learned attribute-efficiently using non-adaptive MQs in the
distribution-independent PAC model.

We have also shown an improved algorithm for learning DNF expressions with respect to the
uniform distribution. In addition to being the most efficient known algorithm for learning DNF, it is
attribute-efficient, noise tolerant, and uses membership queries non-adaptively. All known efficient
algorithms for learning DNF are based on Jackson’s (1997) approach to learning DNF expressions.
It would be interesting to find other approaches to learning DNF, possibly avoiding some of the
overheads of the current approach (such as boosting a weak DNF learning algorithm).
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