
Journal of Machine Learning Research 8 (2007) 1799-1833 Submitted 09/06; Revised 5/07; Published 8/07

“Ideal Parent” Structure Learning for
Continuous Variable Bayesian Networks

Gal Elidan GALEL@CS.STANFORD.EDU

Department of Computer Science
Stanford University
Stanford, CA 94305, USA

Iftach Nachman INACHMAN@CGR.HARVARD.EDU

FAS Center for Systems Biology
Harvard University
Cambridge, MA 02138, USA

Nir Friedman NIR@CS.HUJI.AC.IL

School of Computer Science and Engineering
Hebrew University
Jerusalem 91904, Israel

Editor: David Maxwell Chickering

Abstract
Bayesian networks in general, and continuous variable networks in particular, have become increas-
ingly popular in recent years, largely due to advances in methods that facilitate automatic learning
from data. Yet, despite these advances, the key task of learning the structure of such models re-
mains a computationally intensive procedure, which limits most applications to parameter learning.
This problem is even more acute when learning networks in the presence of missing values or hid-
den variables, a scenario that is part of many real-life problems. In this work we present a general
method for speeding structure search for continuous variable networks with common parametric
distributions. We efficiently evaluate the approximate merit of candidate structure modifications
and apply time consuming (exact) computations only to the most promising ones, thereby achiev-
ing significant improvement in the running time of the search algorithm. Our method also naturally
and efficiently facilitates the addition of useful new hidden variables into the network structure, a
task that is typically considered both conceptually difficult and computationally prohibitive. We
demonstrate our method on synthetic and real-life data sets, both for learning structure on fully and
partially observable data, and for introducing new hidden variables during structure search.
Keywords: Bayesian networks, structure learning, continuous variables, hidden variables

1. Introduction

Probabilistic graphical models have gained wide-spread popularity in recent years with the advance
of techniques for learning these models directly from data. The ability to learn allows us to over-
come lack of expert knowledge about domains and adapt models to a changing environment, and can
also lead to scientific discoveries. Indeed, Bayesian networks in general, and continuous variable

A preliminary version of this paper appeared in the Proceedings of the Twentieth Conference on Uncertainty in
Artificial, 2004 (UAI ’04).

c©2007 Gal Elidan, Iftach Nachman and Nir Friedman.

ELIDAN, NACHMAN AND FRIEDMAN

networks in particular, are now being used in a wide range of applications, including fault detection
(e.g., U. Lerner and Koller, 2000), modeling of biological systems (e.g., Friedman et al., 2000) and
medical diagnosis (e.g., Shwe et al., 1991).

A key task in learning these models from data is adapting the structure of the network based on
observations. This NP-complete problem (Chickering, 1996a) is typically treated as a combinatorial
optimization problem that is addressed by heuristic search procedures, such as greedy hill climbing.
This procedure examines local modifications to single edges at each step, evaluates them using
some score, and proceeds to apply the one that leads to the largest improvement in score, until a
local maximum is reached. Even with this simple approach structure learning is computationally
challenging for all but small networks due to the large number of possible modifications that can be
evaluated, and the cost of evaluating each one. To make things worse, the problem is even harder in
the (realistic) presence of missing values, as non-linear optimization is required to evaluate different
structure modification candidates during the search. Learning is particularly problematic when we
also want to allow for hidden variables and want to effectively add them during the learning process.
Thus, in practice, most applications are still limited to parameter estimation.

Of particular interest to us is learning continuous variable networks, which are crucial for a wide
range of real-life applications. One case that received scrutiny in the literature is learning linear
Gaussian networks (Geiger and Heckerman, 1994; Lauritzen and Wermuth, 1989). In this case,
we can use sufficient statistics to summarize the data, and a closed form equation to evaluate the
score of candidate structure modifications. In general, however, we are also interested in non-linear
interactions. These do not have sufficient statistics, and require applying parameter optimization
to evaluate the score of candidate structures. These difficulties severely limit the applicability of
standard heuristic structure search procedures to rich non-linear models.

In this work, we present a general method for speeding structure search for continuous variable
networks. In contrast to innovative structure learning methods that modify the space explored by the
search algorithm (e.g., Chickering, 1996b; Moore and Wong, 2003; Teyssier and Koller, 2005), our
method leverages on the parametric structure of the conditional distributions in order to efficiently
approximate the benefit of an individual structure candidate. As such, our method can be used to
speed up many existing structure learning algorithms and heuristics.

The basic idea is straightforward and is inspired from the notion of residues in regression (Mc-
Cullagh and Nelder, 1989). For each variable, we construct an ideal parent profile of a new hypo-
thetical parent that would lead to the best possible prediction of that variable. Intuitively, a candidate
parent of a variable is useful if it is similar to the ideal parent. Using basic principles, we derive a
similarity measure for efficiently comparing a candidate parent to the ideal profile. We show that this
measure approximates the improvement in score that would result from the addition of that parent
to the network structure. This provides us with a fast method for scanning many potential parents
and focuses more careful evaluation (exact scoring) on a smaller number of promising candidates.

The ideal parent profiles we construct during search also provide new leverage on the problem
of introducing new hidden variables during structure learning. Basically, if the ideal parent profiles
of several variables are sufficiently similar, and are not similar to one of their current parents, we
can consider adding a new hidden variable that serves as a parent of all these variables. The ideal
profile allows us to estimate the impact this new variable will have on the score, and suggest the
values it takes in each instance. The method therefore provides a guided approach for introduc-
ing new variables during search and allows for contrasting them with alternative search steps in a
computationally efficient manner.

1800

THE “IDEAL PARENT” ALGORITHM

We apply our method using linear Gaussian and non-linear Sigmoid Gaussian conditional prob-
ability distributions to several tasks: learning structure with complete data; learning structure with
missing data; and learning structure while allowing for the automatic introduction of new hidden
variables. We evaluate all tasks on both realistic synthetic experiments and real-life problems in the
field of computational biology.

The rest of the paper is structured as follows: In Section 2 we provide a brief summary of con-
tinuous variable networks. In Section 3 we present the “Ideal Parent” concept as it applies to the
simple case of linear Gaussian models. In Section 4 we discuss how our method is used within a
structure learning algorithm. In Section 5 we show how our method can be leveraged in order to
introduce new useful hidden variables during learning, and in Section 6 we discuss the computa-
tional modifications needed to address both the presence of missing values and hidden variables. In
Section 7 we show how our entire framework can be generalized to the challenging case of more
general non-linear distributions. In Section 8 we present a further extension to conditional proba-
bility distributions that use non-additive noise models. In Section 9 we present our experimental
results for both synthetic and real-life data. We conclude with a discussion of related works and
future directions in Section 10.

2. Continuous Variable Networks

Consider a finite set X = {X1, . . . ,Xn} of random variables. A Bayesian network (BN) is an an-
notated directed acyclic graph G that represents a joint probability distribution over X . The nodes
of the graph correspond to the random variables and are annotated with a conditional probability
density (CPD) of the random variable given its parents Ui in the graph G. The joint distribution is
the product over families (variable and its parents)

P(X1, . . . ,Xn) =
n

∏
i=1

P(Xi|Ui).

The graph G represents independence properties that are assumed to hold in the underlying distri-
bution: Each Xi is independent of its non-descendants given its parents Ui.

Unlike the case of discrete variables, when the variable X and some or all of its parents are
real valued, there is no representation that can capture all conditional densities. A common choice
is the use of linear Gaussian conditional densities (Geiger and Heckerman, 1994; Lauritzen and
Wermuth, 1989), where each variable is a linear function of its parents with Gaussian noise. When
all the variables in a network have linear Gaussian conditional densities, the joint density over X
is a multivariate Gaussian (Lauritzen and Wermuth, 1989). In many real world domains, such as
in neural or gene regulation network models, the dependencies are known to be non-linear (for
example, a saturation effect is expected). In these cases, we can still use Gaussian conditional
densities, but now the mean of the density is expressed as a non-linear function of the parents (for
example, a sigmoid).

Given a training data set D = {x[1], . . . ,x[M]}, where the mth instance x[m] assigns values to the
variables in X , the problem of learning a Bayesian network is to find a structure and parameters that
maximize the likelihood of D given the graph, typically along with some regularization constraints.
Given a data set D and a network structure G, we define

`(D : G,θ) = logP(D : G,θ) = ∑
m

logP(x[m] : G,θ)

1801

ELIDAN, NACHMAN AND FRIEDMAN

Algorithm 1: Greedy Hill-Climbing Structure Search for Bayesian Networks

Input : D // training set
G0 // initial structure

Output : A final structure G

Gbest ← G0

repeat
G← Gbest

foreach Operator Add,Delete,Reverse,Replace edge in G do
if Operator does not create a directed cycle then

G ′← ApplyOperator(G)
if Score(G ′ : D) > Score(Gbest : D) then

Gbest ← G ′

end
end

end foreach
until Gbest == G
return Gbest

to be the log-likelihood function, where θ are the model parameters. In estimating the maximum
likelihood parameters of the network, we aim to find the parameters θ̂ that maximize this likelihood
function. When the data is complete (all variables are observed in each instance), the log-likelihood
can be rewritten as a sum of local likelihood functions,

`(D : G,θ) = ∑`i(D : Ui,θi)

where `i(D : Ui,θi) is a function of the choice of Ui and the parameters θi of the corresponding CPD:
it is the log-likelihood of regressing Xi on Ui in the data set with the particular choice of CPD. Due
to this decomposition, we can find the maximum likelihood parameters of each CPD independently
by maximizing the local log-likelihood function. For some CPDs, such as linear Gaussian ones,
there is a closed form expression for the maximum likelihood parameters. In other cases, finding
these parameters is a continuous optimization problem that is typically addressed by gradient based
methods.

Learning the structure of a network is a significantly harder task. The common approach is to
introduce a scoring function that balances the likelihood of the model and its complexity and then
attempt to maximize this score using a heuristic search procedure that considers local changes (e.g.,
adding and removing edges). A commonly used score is the Bayesian Information Criterion (BIC)
score (Schwarz, 1978)

BIC(D,G) = max
θ

`(D : G,θ)− logM
2

Dim[G] (1)

where M is the number of instances in D , and Dim[G] is the number of parameters in G. The BIC
score is actually an approximation to the more principled full Bayesian score, that integrates over all
possible parameterizations of the CPDs. While a closed form for the Bayesian score, with a suitable
prior, is known for Gaussian networks (Geiger and Heckerman, 1994), numerical computation of

1802

THE “IDEAL PARENT” ALGORITHM

this score is extremely demanding for the non-linear case. Thus, we adopt the common approach
and focus on the BIC approximation from here on.

A common search procedure for optimizing the score is the greedy hill-climbing procedure
outlined in Algorithm 1. This procedure can be augmented with mechanisms for escaping local
maxima, such as random walk perturbations upon reaching a local maxima (also known as random
restarts), and using a TABU list (Glover and Laguna, 1993).

3. The “Ideal parent” Concept

Our goal is to speed up a generic structure search algorithm for a Bayesian network with continuous
variables. The complexity of any such algorithm is rooted in the need to score each candidate
structure change, which in turn may require non-linear parameter optimization. Thus, we want to
somehow efficiently approximate the benefit of each candidate and score only the most promising of
these candidates. The manner in which this helps us to discover new hidden variables will become
evident in Section 5.

3.1 Basic Framework

Consider adding Z as a new parent of X whose current parents in the network are U. Given a training
data D of M instances, to evaluate the change in score, when using the BIC score of Eq. (1), we
need to compute the change in the log-likelihood

∆X |U(Z) = max
θX |U,Z

`X(D : U∪{Z},θX |U,Z)− `X(D : U, θ̂X |U) (2)

where θ̂X |U are the maximum likelihood parameters of X given U and θX |U,Z are the parameters for
the family where Z is an additional parent of X . The change in the BIC score is this difference
combined with the change in the model complexity penalty terms. Thus, to evaluate this difference,
we need to compute the maximum likelihood parameters of X given the new choice of parents. Our
goal is to speed up this computation.

The basic idea of our method is straightforward. For a given variable, we want to construct a
hypothetical ideal parent Y that would best predict the variable. We will then compare each existing
candidate parent Z to this imaginary one using a similarity measure C(~y,~z) (which we describe
below). Finally, we will fully score only the most promising candidates: those that are most similar
to the ideal parent. Figure 1 illustrates this process. In order for this approach to be beneficial,
we want the similarity score to approximate the actual change in likelihood defined in Eq. (2).
Furthermore, we want to be able to compute the similarity measure in a fraction of the time it takes
to fully score a candidate parent.

3.1.1 CONDITIONAL PROBABILITY DISTRIBUTION

To make our discussion concrete, we focus on networks where we represent X as a function of its
parents U = {U1, . . . ,Uk} with a conditional probability distribution (CPD) that has the following
general form:

X = g(α1u1, . . . ,αkuk : θ)+ ε (3)

1803

ELIDAN, NACHMAN AND FRIEDMAN

U

X

U

X

U

X

Z2

Y

Z1

Z2

(a)

(b)

(c)

(d)

Figure 1: The “Ideal Parent” Concept: Illustration of the “Ideal Parent” approach for a variable
with a single parent U and a linear Gaussian conditional distribution. The top panel of
(a) shows the profile (assignment in all instances) of the parent. The panel below shows
the profile of the child node along with the profile predicted for the child based on its
parent (dotted red). (b) shows the profile of the ideal hypothetical parent that would lead
to zero error in prediction of the child variable if added to the current model. In the linear
Gaussian case, this profile is simply the residual of the two curves shown in (a). (c) shows
the profiles of two candidate parents, compared to the profile of the ideal parent (dotted
black). (d) shows the child profile along with its prediction based on the original parent
and the new chosen parent from the candidate in (c) that was most similar to the ideal
profile of (b). Note that the prediction is not perfect as the profile of the parent chosen
does not, in general, match the profile of the ideal parent exactly.

1804

THE “IDEAL PARENT” ALGORITHM

where g is a link function that integrates the contributions of the parents with additional parameters
θ, αi that are scale parameters applied to each of the parents, and ε that is a noise random variable
with zero mean. In the following discussion, we assume that ε is Gaussian with variance σ2.

When the function g is the sum of its arguments, this CPD is the standard linear Gaussian CPD.
However, we can also consider non-linear choices of g. For example,

g(α1u1, . . . ,αkuk : θ)≡ θ1
1

1+ e−∑i αiui
+θ0 (4)

is a sigmoid function where the response of X to its parents’ values is saturated when the sum is far
from zero.

3.1.2 LIKELIHOOD FUNCTION

Given the above form of CPDs, we can now write a concrete form of the log-likelihood function

`X(D : U,θ) = −1
2

M

∑
m=1

[
log(2π)+ log(σ2)+

1
σ2 (x[m]−g(u[m]))2

]

= −1
2

[
M log(2π)+M log(σ2)+

1
σ2 ∑

m
(x[m]−g(u[m]))2

]
(5)

where, for simplicity, we absorbed each scaling factor α j into each value of u j[m]. Similarly, when
the new parent Z is added with coefficient αz, the new likelihood is

`X(D : U∪{Z},αz,θ,) =−1
2

[
M log(2π)+M log(σ2

z)+
1

σ2
z
∑
m

(x[m]−g(u[m],αzz[m]))2
]

where σ2
z is used to denote the variance parameter after Z is added. Consequently, the difference in

likelihood of Eq. (2) takes the form of

∆X |U(Z) = −M
2

[
logσ2

z − logσ2]

−1
2

[
1

σ2
z
∑
m

(x[m]−g(u[m],αzz[m]))2− 1
σ2 ∑

m
(x[m]−g(u[m]))2

]
. (6)

3.1.3 THE “IDEAL PARENT”

We now define the ideal parent for X

Definition 3.1: Given a data set D , and a CPD for X given its parents U, with a link function g and
parameters θ and α, the ideal parent Y of X is such that for each instance m,

x[m] = g(α1u1[m], . . . ,αkuk[m],y[m] : θ).

Under mild conditions, the ideal parent profile (i.e., value of Y in each instance) can be computed
for almost any uni-modal parametric conditional distribution. The only requirement from g is that it
should be invertible w.r.t. each one of the parents. Note that in this definition, we implicitly assume

1805

ELIDAN, NACHMAN AND FRIEDMAN

that x[m] lies in the image of g. If this is not the case, we can substitute x[m] with xg[m], the point in
g’s image closest to x[m]. This guarantees that the prediction’s mode for the current set of parents
and parameters is as close as possible to X .

The resulting profile for the hypothetical ideal parent Y is the optimal set of values for the
(k + 1)th parent, in the sense that it would maximize the likelihood of the child variable X . This is
true since by definition, X is equal to the mode of the function of its parents defined by g. Intuitively,
if we can efficiently find a candidate parent Z that is similar to the hypothetically optimal parent, we
can improve the model by adding an edge from this parent to X . We are now ready to instantiate the
similarity measure C(~y,~z). Below, we demonstrate how this is done for the case of a linear Gaussian
CPD. We extend the framework for non-linear CPDs in Section 7.

3.2 Linear Gaussian

Let X be a variable in the network with a set of parents U, and a linear Gaussian conditional
distribution. In this case, g in Eq. (3) takes the form

g(α1u1, . . . ,αkuk : θ)≡∑
i

αiui +θ0.

To choose promising candidate parents for X , we start by computing the ideal parent Y for X given
its current set of parents. This is done by inverting the linear link function g with respect to this
additional parent Y (note that we can assume, without loss of generality, that the scale parameter of
this additional parent is 1). This results in

y[m] = x[m]−∑
j

α ju j[m]−θ0.

We can summarize this in vector notation, by using~x = 〈x[1], . . . ,x[M]〉, and so we get

~y =~x−U~α−θ0

where U is the matrix of parent values on all instances, and ~α is the vector of scale parameters.
Having computed the ideal parent profile, we now want to efficiently evaluate its similarity to

the profile of candidate parents. Intuitively, we want the similarity measure to reflect the likelihood
gain by adding Z as a parent of X . Ideally, we want to evaluate ∆X |U(Z) for each candidate parent
Z. However, instead of re-estimating all the parameters of the CPD after adding Z as a parent, we
approximate this difference by only fitting the scaling factor associated with the new parent and
freezing all other parameters of the CPD (the scaling parameters of the current parents U and the
variance parameter σ2).

Theorem 3.2 Suppose that X has parents U with a set ~α of scaling factors. Let Y be the ideal
parent as described above, and Z be some candidate parent. Then the change in the log-likelihood
of X in the data, when adding Z as a parent of X, while freezing all scaling and variance parameters
except the scaling factor of Z, is

C1(~y,~z) ≡ max
αZ

`X(D : U∪{Z}, θ̂X |U∪{αZ})− `X(D : U, θ̂X |U)

=
1

2σ2

(~y ·~z)2

~z ·~z . (7)

1806

THE “IDEAL PARENT” ALGORITHM

Proof: In the linear Gaussian case y[m] = x[m]− g(u[m]) by definition and g(u[m],αzz[m]) =
g(u[m])+αzz[m] so that Eq. (6) can be written as

∆X |U(Z) = −M
2

[
logσ2

z − logσ2]− 1
2

[
1

σ2
z
∑
m

(y[m]−αzz[m])2− 1
σ2 ∑

m
y[m]2

]

= −M
2

[
logσ2

z − logσ2]− 1
2

[
1

σ2
z

(
~y ·~y−2αz~z ·~y+α2

z~z ·~z
)
− 1

σ2~y ·~y
]
. (8)

Since σz = σ this reduces to

∆X |U(Z : αz) ≡ `X(D : U∪{Z}, θ̂X |U∪{αZ})− `X(D : U, θ̂X |U)

= − 1
2σ2

(
−2αz~z ·~y+α2

z~z ·~z
)
. (9)

To optimize our only free parameter αz, we use

∂∆X |U(Z : αz)

∂αz
=− 1

2σ2 (−2~z ·~y+2αz~z ·~z) = 0 ⇒ αz =
~z ·~y
~z ·~z .

Plugging this into Eq. (9), we get

C1(~y,~z) ≡ max
αz

∆X |U(Z : αz)

= − 1
2σ2

(
−2

~z ·~y
~z ·~z~z ·~y+

(
~z ·~y
~z ·~z

)2

~z ·~z
)

=
1

2σ2

(~z ·~y)2

~z ·~z .

The form of the similarity measure can be even further simplified

Proposition 3.3 Let C1(~y,~z) be as defined above and let σ be the maximum likelihood parameter
before Z is added as a new parent of X. Then

C1(~y,~z) =
M
2

(~y ·~z)2

(~z ·~z)(~y ·~y) =
M
2

cos2 φ~y,~z

where φ~y,~z is the angle between the ideal parent profile vector ~y and the candidate parent profile
vector~z.

Proof: To recover the maximum likelihood value of σ we differentiate the log-likelihood function
as written in Eq. (5)

∂`X(D : U,θ)

∂σ2 = − M
2σ2 +

1
σ4 ∑

m
(x[m]−g(u[m]))2 = 0

⇒ σ2 =
1
M ∑

m
(x[m]−g(u[m]))2 =

1
M

~y ·~y

where the last equality follows from the definition of~y. The result follows immediately by plugging

this into Theorem 3.2 and from the fact that cos2 φ~y,~z ≡ (~y·~z)2

(~z·~z)(~y·~y)

1807

ELIDAN, NACHMAN AND FRIEDMAN

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

S
im

ila
rit

y

∆ Score
0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

140

160

180

200

S
im

ila
rit

y

∆ Score

(a) (b)

Figure 2: Demonstration of the (a) C1 and (b) C2 bounds for linear Gaussian CPDs. The x-axis is
the true change in score as a result of an edge modification. The y-axis is the lower bound
of this score. Points shown correspond to several thousand edge modifications in a run of
the ideal parent method on real-life Yeast gene expressions data.

Thus, there is an intuitive geometric interpretation to the measure C1(~y,~z): we prefer a profile~z that
is similar to the ideal parent profile~y, regardless of its norm. It can easily be shown that~z = c~y (for
any constant c) maximizes this similarity measure. We retain the less intuitive form of C1(~y,~z) in
Theorem 3.2 for compatibility with later developments.

Note that, by definition, C1(~y,~z) is a lower bound on ∆X |U(Z), the improvement on the log-
likelihood by adding Z as a parent of X : When we add the parent we optimize all the parameters,
and so we expect to attain a likelihood as high, or higher than, the one we attain by freezing some
of the parameters. This is illustrated in Figure 2(a) that plots the true likelihood improvement vs.
C1 for several thousand edge modifications taken from an experiment using real life Yeast gene
expression data (see Section 9).

We can get a better lower bound by optimizing additional parameters. In particular, after adding
a new parent, the errors in predictions change, and so we can readjust the variance term. As it turns
out, we can perform this readjustment in closed form.

Theorem 3.4 Suppose that X has parents U with a set ~α of scaling factors. Let Y be the ideal
parent as described above, and Z be some candidate parent. Then the change in the log-likelihood
of X in the data, when adding Z as a parent of X, while freezing all other parameters except the
scaling factor of Z and the variance of X, is

C2(~y,~z) ≡ max
αZ ,σZ

`X(D : U∪{Z}, θ̂X |U∪{αZ,σZ})− `X(D : U, θ̂X |U)

= −M
2

log sin2 φ~y,~z

where φ~y,~z is the angle between~y and~z.

1808

THE “IDEAL PARENT” ALGORITHM

Proof: To optimize σz we again consider Eq. (8) and set

∂∆X |U(Z)

∂σz
=−M

σz
+

1
σ3

z

[
~y ·~y−2αz~z ·~y+α2

z~z ·~z
]
= 0.

Solving for σz and plugging the maximum likelihood parameter αz from the development of C1(~y,~z)
(which does not depend on σz), we get

σ2
z =

1
M

[
~y ·~y−2αz~z ·~y+α2

z~z ·~z
]
=

1
M

[
~y ·~y− (~z ·~y)2

~z ·~z

]
.

As in the case of Proposition 3.3 where σ = 1
M~y ·~y, the variance term σ2

z “absorbs” the sum of
squared errors when optimized. Thus, the second term in Eq. (8) becomes zero and we can write

C2(~y,~z) = −M
2

[
log(σ2

z)− log(σ2)
]

=
M
2

log

(
~y ·~y

~y ·~y− (~z·~y)2

~z·~z

)
=

M
2

log


 1

1− (~z·~y)2

(~z·~z)(~y·~y)


=

M
2

log

(
1

1− cos2 φ~y,~z

)

= −M
2

logsin2 φ~y,~z.

It is important to note that both C1 and C2 are monotonic functions of (~y·~z)2

~z·~z , and so they consistently
rank candidate parents of the same variable. However, when we compare changes that involve
different ideal parents, such as adding a parent to X1 compared to adding a parent to X2, the ranking
by these two measures might differ. Due to the choice of parameters we freeze in each of these
measures, we have

C1(~y,~z)≤C2(~y,~z)≤ ∆X |U(Z)

and so C2 can provide better guidance to some search algorithms. Indeed, Figure 2(b) clearly shows
that C2 is a tighter bound than C1, particularly for promising candidates.

4. Ideal Parents in Search

The technical developments of the previous section show that we can approximate the score of
candidate parents for X by comparing them to the ideal parent Y using the similarity measure. Is
this approximate evaluation useful?

When performing a local heuristic search such as the one illustrated in Algorithm 1, at each
iteration we have a current candidate structure and we consider some operations on that structure.
These operations might include edge addition, edge replacement, edge reversal and edge deletion.
We can readily use the ideal profiles and similarity measures developed to speed up two of these:
edge addition and edge replacement. In a network with N nodes, there are in the order of O(N 2)
possible edge additions, O(E ·N) edge replacement where E is the number of edges in the model,
and only O(E) edge deletions and reversals. Thus our method can be used to speed up the bulk of
edge modifications considered by a typical search algorithm.

When considering adding an edge Z → X , we use the ideal parent profile for X and compute
its similarity to Z. We repeat this for every candidate parent for X . We then compute the full score

1809

ELIDAN, NACHMAN AND FRIEDMAN

only for the K most similar candidates, and insert them (and the associated change in score) into a
queue of potential operations. In a similar way, we can use the ideal parent profile for considering
edge replacement for X . Suppose that Ui ∈ U is a parent of X . We can define the ideal profile for
replacing U while freezing all other parameters of the CPD of X .

Definition 4.1: Given a data set D , and a CPD for X given its parents U, with a link function g,
parameters θ and α, the replace ideal parent Y of X and Ui ∈ U is such that for each instance m,

x[m] = g(α1u1[m], . . . ,αi−1ui−1,αi+1ui+1, . . . ,αkuk[m],y[m] : θ).

The rest of the developments of the previous section remain the same. For each current parent of X
we compute a separate ideal profile that corresponds to the replacement of that parent with a new
one. We then use the same policy as above for examining the replacement of each one of the parents.
In particular, we freeze the scale parameters computed with U as the parent set of X , take out the
parameter corresponding to Ui, and use the C1 or the C2 measures to rank candidate replacements
for Ui.

For both operations, we can trade off between the accuracy of our evaluations and the speed of
the search, by changing K, the number of candidate changes per family for which we compute a full
score. Using K = 1, we only score the best candidate according to the ideal parent method ranking,
thus achieving the largest speedup, However, since our ranking only approximates the true score
difference, this strategy might miss good candidates. Using higher values of K brings us closer
to the standard search algorithm both in terms of candidate selection quality but also in terms of
computation time.

In the experiments in Section 9, we integrated the changes described above into a greedy hill
climbing heuristic search procedure. This procedure also examines candidate structure changes
that remove an edge and reverse an edge, which we evaluate in the standard way. The greedy
hill climbing procedure applies the best available move at each iteration (among those that were
chosen for full evaluation) as in Algorithm 1. Importantly, the ideal parent method is independent
of the specifics of the search procedure and simply pre-selects promising candidates for the search
algorithm to consider. Algorithm 2 outlines a generalization of the basic greedy structure search
algorithm of Algorithm 1 to include a candidate ranking/selection algorithm such as our “Ideal
Parent” method.

5. Adding New Hidden Variables

Somewhat unexpectedly, the “Ideal Parent” method also offers a natural solution to the difficult
challenge of detecting new hidden variables. Specifically, the ideal parent profiles provide a straight-
forward way to find when and where to add hidden variables to the domain in continuous variable
networks. The intuition is fairly simple: if the ideal parents of several variables are similar to each
other, then we know that a similar input is predictive of all of them. Moreover, if we do not find
a variable in the network that is close to these ideal parents, then we can consider adding a new
hidden variable that will serve as their combined input, and, in addition, have an informed initial
estimate of its profile. Figure 3 illustrates this idea.

To introduce a new hidden variable, we would like to require that it be beneficial for several
children at once. The difference in log-likelihood due to adding a new parent with profile~z is the

1810

THE “IDEAL PARENT” ALGORITHM

Algorithm 2: Greedy Hill-Climbing Structure Search with Candidate Ranking/Selection

Input : D // training set
G0 // initial structure
CE // candidate evaluation method such as our “Ideal Parent”
K // number of candidates to evaluate

Output : A final structure G

Gbest ← G0

repeat
G ← Gbest

L ← ø // initialize list of modifications to evaluate
// for each family, choose the top ’add’ and ’replace’ candidates for evaluation
foreach Xi node in G do

Q ← ø // initialize family specific queue
foreach Add,Replace parent of Xi in G do

score← CE.Score(Operator)
Q← (Operator,score)

end foreach
foreach top K Operators in Q do

L← (Operator)

end foreach
end foreach
// add all delete and reverse operations
foreach Delete,Reverse edge in G do

L← (Operator)

end foreach
// process all candidate operations chosen for evaluation
foreach Operator in L do

if Operator does not create a directed cycle then
G ′← ApplyOperator(G)
if Score(G ′ : D) > Score(Gbest : D) then

Gbest ← G ′

end
end

end foreach
until Gbest == G
return Gbest

sum of differences between the log-likelihoods of families it is involved in:

∆X1,...,XL(Z) =
L

∑
i

∆Xi|Ui(Z)

where we assume, without loss of generality, that the members of the cluster (children set of the
candidate hidden variable) are X1, . . . ,XL. To score the network with Z as a new hidden variable, we

1811

ELIDAN, NACHMAN AND FRIEDMAN

Y1

H

X1 X2 X3 X4

H

X1 X2 X3 X4
Y4

Y3

Y2

Figure 3: Illustration of how the ideal parent profiles can be used to suggest new hidden variables.
Shown on the left are the ideal parent profiles Y1 . . .Y4 of the variables X1 . . .X4, respec-
tively. These correspond to the residual information of these variables that is not ex-
plained by the current model. As can be seen, the first, second and fourth variables have
similar ideal profiles. These profiles are averaged, resulting in a candidate hidden par-
ent profile of these three variables (top right). Assuming that there is no variable in the
network with a similar profile, our method will propose adding this hidden variable to
the network as shown on the bottom right. Note that the average ideal profile of these
variables provides an informed starting point for the EM algorithm.

also need to deal with the difference in the complexity penalty term, and the likelihood of Z as a
root variable. These terms, however, can be readily evaluated. The difficulty is in finding the profile
~z that maximizes ∆X1,...,XL(Z). Using the C1 ideal parent approximation, we can lower bound this
improvement by

L

∑
i

C1(~yi,~z)≡
L

∑
i

1

2σ2
i

(~z ·~yi)
2

~z ·~z ≤ ∆X1,...,XL(Z) (10)

and so we want to find ~z∗ that maximizes this bound. We will then use this optimized bound as our
approximate cluster score. That is we want to find

~z∗ = argmax
~z

∑
i

1

2σ2
i

(~z ·~yi)
2

~z ·~z ≡ argmax
~z

~zT Y Y T~z
~zT~z

(11)

where Y is the matrix whose columns are yi/σi. Note that the vector ~z∗ must lie in the column span
of Y since any component orthogonal to this span increases the denominator of the right hand term
but leaves the numerator unchanged, and therefore does not obtain a maximum. We can therefore
express the solution as:

~z∗ = ∑
i

vi
yi

σi
= Y~v (12)

1812

THE “IDEAL PARENT” ALGORITHM

where~v is a vector of coefficients. Furthermore, the objective in Eq. (11) is known as the Rayleigh
quotient of the matrix Y Y T and the vector ~z. The optimum of this quotient is achieved when ~z
equals the eigenvector of Y Y T corresponding to its largest eigenvalue (Wilkinson, 1965). Thus, to
solve for ~z∗ we want to solve the following eigenvector problem

(Y Y T)~z∗ = λ~z∗. (13)

Note that the dimension of Y Y T is M (the number of instances), so that, in practice, this problem
cannot be solved directly. However, by plugging Eq. (12) into Eq. (13), multiplying on the right by
Y , and defining A≡ Y T Y , we get a reduced generalized eigenvector problem 1

AA~v = λA~v.

Although this problem can now be solved directly, it can be further simplified by noting that A is
only singular if the residue of observations of two or more variables are linearly dependent along
all of the training instances. In practice, for continuous variables, A is indeed non-singular, and we
can multiply both sides A−1 and end up with a simple eigenvalue problem:

A~v = λ~v

which is numerically simpler and easy to solve as the dimension of A is L, the number of variables
in the cluster, which is typically relatively small. Once we find the L dimensional eigenvector ~v∗

with the largest eigenvalue λ∗, we can express with it the desired parent profile ~z∗.
We can get a better bound of ∆X1,...,XL(Z) if we use C2 similarity rather than C1. Unfortunately,

optimizing the profile~z with respect to this similarity measure is a harder problem that we do not
have a closed solution for. Since the goal of the cluster identification is to provide a good starting
point for the following iterations that will eventually adapt the structure, we use the closed form
solution for Eq. (11). Note that once we optimize the profile z using the above derivation, we can
still use the C2 similarity score to provide a better bound on the quality of this profile as a new parent
for X1, . . . ,XL.

Now that we can approximate the benefit of adding a new hidden parent to a cluster of variables,
we still need to consider different clusters to find the most beneficial one. As the number of clusters
is exponential, we adapt a heuristic agglomerative clustering approach (e.g., Duda and Hart, 1973)
to explore different clusters. We start with each variable as an individual cluster and repeatedly
merge the two clusters that lead to the best expected improvement (or the least decrease) in the
BIC score. This procedure potentially involves O(N3) merges, where N is the number of possible
variables. We save much of the computations by pre-computing the matrix Y T Y only once, and then
using the relevant sub-matrix in each merge. In practice, the time spent in this step is insignificant
in the overall search procedure.

6. Learning with Missing Values

In real-life domains, it is often the case that the data is incomplete and some of the observations are
missing. Furthermore, once we add a hidden variable to the network structure, we have to copy with
missing values in subsequent structure search even if the original training data was complete.

1In the Generalized Eigenvector Problem, we want to find eigenpairs (λ,~v) so that B~v = λA~v holds.

1813

ELIDAN, NACHMAN AND FRIEDMAN

To deal with this problem, we use an Expectation Maximization approach (Dempster et al.,
1977) and its application to network structure learning (Friedman, 1997). At each step in the search
we have a current network that provides an estimate of the distribution that generated the data, and
use it to compute a distribution over possible completions of the data. Instead of maximizing the
BIC score, we attempt to maximize the expected BIC score

IEQ[BIC(D,G) |Do] =
Z

Q(Dh |Do)BIC(D,G)dDh

where Do is the observed data, Dh is the unobserved data, and Q is the distribution represented by
the current network. As the BIC score is a sum over local terms, we can use linearity of expectations
to rewrite this objective as a sum of expectations, each over the scope of a single CPD. This implies
that when learning with missing values, we need to use the current network to compute the posterior
distribution over the values of variables in each CPD we consider. Using these posterior distributions
we can estimate the expectation of each local score, and use them in standard structure search. Once
the search algorithm converges, we use the new network for computing expectations and reiterate
until convergence (see Friedman, 1997).

How can we combine the ideal parent method into this structural EM search? Since we do not
necessarily observe X and all of its parents, the definition of the ideal parent cannot be applied
directly. Instead, we define the ideal parent to be the profile that will match the expectations given
Q. That is, we choose y[m] so that

IEQ[x[m] |Do] = IEQ[g(α1u1[m], . . . ,αkuk[m],y[m] : θ) |Do].

In the case of linear CPDs, this implies that

~y = IEQ[~x |Do]− IEQ[U |Do]~α.

Once we define the ideal parent, we can use it to approximate changes in the expected BIC
score (given Q). For the case of a linear Gaussian, we get terms that are similar to C1 and C2 of
Theorem 3.2 and Theorem 3.4, respectively. The only change is that we apply the similarity measure
on the expected value of~z for each candidate parent Z. This is in contrast to exact evaluation of
IEQ
[
∆X |U(Z) |Do

]
, which requires the computation of the expected sufficient statistics of U, X , and

Z. To facilitate efficient computation, we adopt an approximate variational mean-field form (e.g.,
Jordan et al., 1998; Murphy and Weiss, 1999) for the posterior. This approximation is used both
for the ideal parent method and the standard greedy approach used in Section 9. This results in
computations that require only the first and second moments for each instance z[m], and thus can be
easily obtained from Q.

Finally, we note that the structural EM iterations are still guaranteed to converge to a local
maximum. In fact, this does not depend on the fact that C1 and C2 are lower bounds of the true
change to the score, since these measures are only used to pre-select promising candidates which
are scored before actually being considered by the search algorithm. Indeed, the ideal parent method
is a modular structure candidate selection algorithm and can be used as a black-box by any search
algorithm.

7. Non-linear CPDs

We now address the important challenge of non-linear CPDs. In the class of CPDs we are consid-
ering, this non-linearity is mediated by the link function g, which we assume here to be invertible.

1814

THE “IDEAL PARENT” ALGORITHM

Examples of such functions include the sigmoid function shown in Eq. (4) and hyperbolic functions
that are suitable for modeling gene transcription regulation (Nachman et al., 2004), among many
others. When we learn with non-linear CPDs, parameter estimation is harder. To evaluate a poten-
tial parent P for X we have to perform non-linear optimization (e.g., conjugate gradient) of all of
the α coefficients of all parents as well as other parameters of g. In this case, a fast approximation
can boost the computational cost of the search significantly.

As in the case of linear CPDs, we compute the ideal parent profile~y by inverting g. (We assume
that the inversion of g can be performed in time that is proportional to the calculation of g itself as
is the case for the CPDs considered above.) Suppose we are considering the addition of a parent to
X in addition to its current parents U, and that we have computed the value of the ideal parent y[m]
for each sample m by inversion of g. Now consider a particular candidate parent Z whose value at
the mth instance is Z[m]. How will the difference between the ideal value and the value of Z reflect
in the prediction of X for this instance?

As we have seen for the linear case in Section 3, the difference z[m]− y[m] translated through g
to a prediction error. In the non-linear case, the effect of the difference on predicting X depends on
other factors, such as the values of the other parents. To see this, consider again the sigmoid function
g of Eq. (4). If the sum of the arguments to g is close to 0, then g locally behaves like a sum of
its arguments. On the other hand, if the sum is far from 0, the function is in one of the saturated
regions, and big differences in the input almost do not change the prediction. This complicates our
computations and does not allow the development of similarity measures as in Theorem 3.2 and
Theorem 3.4 directly.

We circumvent this problem by approximating g with a linear function around the value of the
ideal parent profile. We use a first-order Taylor expansion of g around the value of~y and write

g(~u,~z)≈ g(~u,~y)+(αz~z−~y) · ∂g(~u,~z)
∂αz~z

∣∣∣∣
αz~z=~y

.

As a result, the “penalty” for a distance between~z and~y depends on the gradient of g at the particular
value of ~y, given the value of the other parents. In instances where the derivative is small, larger
deviations between y[m] and z[m] have little impact on the likelihood of x[m], and in instances where
the derivative is large, the same deviations may lead to worse likelihood.

To understand the effect of this approximation in more detail we consider a simple example with
a sigmoid Gaussian CPD as defined in Eq. (4), where X has no parents in the current network and
Z is a candidate new parent. Figure 4(a) shows the sigmoid function (dotted) and its linear approx-
imation at Y = 0 (solid) for an instance where X = 0.5. The computation of Y = log

(
1

0.5 −1
)

= 0
by inversion of g is illustrated by the dashed lines. (b) is the same for a different sample where
X = 0.85. In (c),(d) we can see the effect of the approximation for these two different samples on
our evaluation of the likelihood function. For a given probability value, the likelihood function is
more sensitive to changes in the value of Z around Y when X = 0.5 when compared to the instance
X = 0.85. This can be seen more clearly in (e) where equi-potential contours are plotted for the sum
of the approximate log-likelihood of these two instances. To recover the setup where our sensitivity
to Z does not depend on the specific instance as in the linear case, we consider a skewed version of
Z ·∂g/∂y rather than Z directly. The result is shown in Figure 4(f). We can generalize the example
above to develop a similarity measure for the general non-linear case:

1815

ELIDAN, NACHMAN AND FRIEDMAN

X = 0.5

g(
z)

Y(0.5)

Exact
Approx

Z

0

1

0.5

-4 -2 0 2 4-4 -2 0 2 4-4 -2 0 2 4-4 -2 0 2 4

X = 0.85

g(
z)

Y(0.85)
-4 -2 0 2 4-4 -2 0 2 4

0

1

Z
(a) (b)

Z

0

2

-4 -2 0 2 4

Li
ke

lih
oo

d

P
(X

=
0.

5|
Z

)

Li
ke

lih
oo

d

P
(X

=
0.

5|
Z

)

Z

0

2

-4 -2 0 2 4
P

(X
=

0.
85

|Z
)

Li
ke

lih
oo

d

P
(X

=
0.

85
|Z

)

Li
ke

lih
oo

d

(c) (d)

-1.85 -0.64 0.58 1.79-1.85 -0.64 0.58 1.79

-0.11

1.1

2.31

3.52

-0.11

1.1

2.31

3.52

Z (X=0.5)

Z
 (

X
=

0.
85

)

-0.86 -0.3 0.27 0.83

0.04

1.15

2.26

3.37

Z x ∂g0.5

Z
 x

 ∂
g 0

.8
5

(e) (f)

Figure 4: A simple example of the effect of the linear approximation for a sigmoid CPD where X
has no parents in the current network and Z is considered as a new candidate parent. Two
samples (a) and (b) show the function g(y1, . . . ,yk : θ)≡ θ1

1
1+e−∑i yi

+θ0 for two instances
where X = 0.5 and X = 0.85, respectively, along with their linear approximation at the
ideal parent value Y of X . (c) and (d) show the corresponding likelihood function and its
approximation. (e) shows the equi-potential contours of the sum of the log-likelihood of
the two instances as a function of the value of Z in each of these instances. (f) is the same
as (e) when the axes are skewed using the gradient of g with respect to the value of Y .

1816

THE “IDEAL PARENT” ALGORITHM

Theorem 7.1 Suppose that X has parents U with a set ~α of scaling factors. Let Y be the ideal
parent as described above, and Z be some candidate parent. Then the change in log-likelihood of X
in the data, when adding Z as a parent of X, while freezing all other parameters, is approximately

C1(~y◦g′(~y),~z◦g′(~y))− 1
2σ2 (k1− k2) (14)

where g′(~y) is the vector whose mth component is ∂g(~αu,y)/∂y |u[m],y[m], and ◦ denotes component-
wise product. Similarly, if we also optimize the variance, then the change in log-likelihood is ap-
proximately

C2(~y◦g′(~y),~z◦g′(~y))− M
2

log
k1

k2
.

In both cases,
k1 = (~y◦g′(~y)) · (~y◦g′(~y)) ; k2 = (~x−g(~u)) · (~x−g(~u))

do not depend on~z.

Thus, we can use exactly the same measures as before, except that we “distort” the geometry with
the weight vector g′(y) that determines the importance of different instances. To approximate the
likelihood difference, we also add the correction term which is a function of k1 and k2. This cor-
rection is not necessary when comparing two candidates for the same family, but is required for
comparing candidates from different families, or when adding hidden variable. Note that unlike the
linear case, and as a result of the linear approximation of g, our theorem now involves an approxi-
mation of the difference in likelihood.
Proof: Using the general form of the Taylor linear approximation for a non-linear link function g,
Eq. (6) can be written as

∆X |U(Z)

≈ −M
2

log
σ2

z

σ2 −
1
2

[
1

σ2
z

[
~x−g(~u,~y)− (αz~z−~y)◦g′

]2− 1
σ2 [~x−g(~u)]2

]

= −M
2

log
σ2

z

σ2 −
1

2σ2
z

[
α2

z (~z◦g′)2−2αz(~z◦g′) · (~y◦g′)+(~y◦g′)2]+ 1
2σ2 [~x−g(~u)]2

= −M
2

log
σ2

z

σ2 −
1

2σ2
z

[
α2

z~z? ·~z?−2αz~z? ·~y? +~y? ·~y?

]
+

1
2σ2 [~x−g(u)]2 (15)

where we use the fact that~x−g(~u,~y) = 0 by construction of~y, and we denote for clarity~y? ≡~y◦g′

and~z? ≡~z◦g′. To optimize αz we use

∂∆X |U(Z)

∂αz
≈− 1

2σ
[2αz~z? ·~z?−2~z? ·~y?] ⇒ αz =

~z? ·~y?

~z? ·~z?
.

Plugging this into Eq. (15) we get

∆X |U(Z) ≈ 1
2σ2

(~z? ·~y?)
2

~z? ·~z?
− 1

2σ2~y? ·~y? +
1

2σ2 [~x−g(~u)]2

= C1(~y?,~z?)−
1

2σ2 (k1− k2)

1817

ELIDAN, NACHMAN AND FRIEDMAN

which proves Eq. (14). When we also optimize that variance, as noted before, the variance terms
absorbs the sum of squared errors, so that

σz =
1
M

[
~y? ·~y?−

(~z? ·~y?)
2

~z? ·~z?

]
.

Plugging this into Eq. (15) results in

∆X |U(Z) ≈ −M
2

log
σ2

σ2
z

=
M
2

log
[~x−g(u)]2

~y? ·~y?− (~z?·~y?)2

~z?·~z?

=
M
2

log
[~x−g(u)]2

~y? ·~y?

[
1− (~z?·~y?)2

~z?·~z?~y?·~y?

]

=
M
2

log
1

1− (~z?·~y?)2

~z?·~z?~y?·~y?

+
M
2

log [~x−g(u)]2−M
2

log(~y? ·~y?)

= C2(~y?,~z?)−
M
2

log
k1

k2
.

As in the linear case, the above theorem allows us to efficiently evaluate promising candidates for the
add edge step in the structure search. The replace edge step can also be approximated with minor
modifications. As before, the significant gain in speed is that we only perform a few parameter
optimizations (that are expected to be costly as the number of parents grows), rather than O(N)
such optimizations for each variable.

Adding a new hidden variable with non-linear CPDs introduces further complications. We want
to use, similar to the case of a linear model, the structure score of Eq. (10) with the distorted C1

measure. Optimizing this measure has no closed form solution in this case and we need to resort
to an iterative procedure or an alternative approximation. We use an approximation where the
correction terms of Eq. (14) are omitted so that a form that is similar to the linear Gaussian case is
used, with the “distorted” geometry of ~y. Having made this approximation, the rest of the details
are the same as in the linear Gaussian case.

8. Other Noise Models

So far, we only considered conditional probability distributions of the form of Eq. (3) where the
uncertainty is modeled using an additive Gaussian noise term. In some cases, such as when mod-
eling biological processes related to regulation, using a multiplicative noise model may be more
appropriate, as most noise sources in these domains are of multiplicative nature (Nachman et al.,
2004). We can model such a noise process using CPDs of the form

X = g(α1u1, . . . ,αkuk : θ)(1+ ε) (16)

where, as in Eq. (3), ε is a noise random variable with zero mean. Another popular choice for
modeling multiplicative noise is the log-normal form:

log(X) = log(g(α1u1, . . . ,αkuk : θ))+ ε

1818

THE “IDEAL PARENT” ALGORITHM

where the log of the random variable is distributed normally. In this section we present a formulation
that generalizes the concepts introduced so far to these more general scenarios. We present explicit
derivations for the multiplicative noise CPD of Eq. (16) in Section 8.3.

8.1 General Framework

To cope with CPDs that use a multiplicative noise model, we first formalize the general form of a
CPD we consider. We then generalize the concept of the ideal parent to accommodate this general
form of distributions and state the approximation to the likelihood we make based on this new
definition. We will then show that our generalized ideal parent definition leads, as before, to a
natural similarity measure that includes our previous results as a special case.

Concretely, we consider conditional density distributions of the following general form

P(X | U) = q(X : g(α1u1[m], . . . ,αkuk[m] : θ),φ)

where g is the link function with parameters θ as before, and q is the “noise” distribution with
parameters φ (e.g., variance parameters). In the additive case of Eq. (3) we have q = N (X ;g,σ2).
In the multiplicative case of Eq. (16) we have q = N (X ;g,(gσ)2).

We now revisit our idea of the ideal parent. Recall that our definition of the ideal parent profile
~y was motivated by the goal of maximizing the likelihood of the child variable profile~x. However,
unlike the case of additive noise, in general and in the case of the multiplicative noise model, g is
not necessarily the mode of q. To accommodate this, we generalize our definition of an ideal parent:

Definition 8.1: Let D be a data set and let P(X | U) = q(X : g(U : θ),φ) be a CPD for X given its
parents U with parameters θ, α and φ, where both q and g are twice differentiable and g is invertible
with respect to each one of the parents U. The ideal parent Y of X is such that for each instance m,

∂q(x[m];g,φ)

∂g

∣∣∣∣
g=g(α1u1[m],...,αkuk[m],y[m]:θ)

= 0. (17)

That is, ~y is the vector that makes g(u,~y) maximize the likelihood of the child variable at each

instance. Since ∂q
∂z = ∂q

∂g
∂g
∂z

∣∣∣
z=y

= 0, this definition also means that the ideal parent maximizes the

likelihood w.r.t. the values of a new parent. The above definition is quite general and allows for
a wide range of link functions and uni-modal noise models. We note that in the case where the
distribution is a simple Gaussian with any choice of g, this definition coincides with Definition 3.1.
As an example of a conditional form that does not fall into our framework, g = sin(∑i αiui) is not
only not invertible but also allows for infinitely many “ideal” parents. As we show below, this
more complex definition is useful as it will allow us to efficiently evaluate candidate parents for the
general CPDs we consider in this section.

The above new definition of the ideal parent motivates us to use a different approximation than
the one used in the case of non-linear CPDs with additive noise. Specifically, instead of simply
approximating g, we now approximate the likelihood directly around ~y, using a second order ap-
proximation:

logP(~x | u,αzz)≈ logP(~x | u,~y)+(αz~z−~y) · ∇αz~z logP(~x | u,~z)
∣∣
αz~z=~y +

1
2
(αz~z−~y)T H(αz~z−~y)

(18)
where H is the Hessian matrix of logP(~x | u,~z) at the point αz~z =~y.

1819

ELIDAN, NACHMAN AND FRIEDMAN

8.2 Evaluating the benefit of a Candidate Parent

With the generalized definition of an ideal parent of Eq. (17) and the approximation chosen for the
likelihood function in Eq. (18) we can approximately evaluate the benefit of a candidate parent:

Theorem 8.2 Suppose that X has parents U with a set ~α of scaling factors. Let Y be the ideal
parent as defined in Eq. (17), and Z be some candidate parent. Then the change in log-likelihood
of X in the data, when adding Z as a parent of X, while freezing all other parameters except the
scaling factor of Z, is approximately

C1(~y,~z) ≈ logP(~x | u,~y)−max
αZ

1
2

K(αz~z−~y,αz~z−~y)− logP(~x | u)

= logP(~x | u,~y)− 1
2

K(~y,~y)+
1
2

(K(~y,~z))2

K(~z,~z)
− logP(~x | u) (19)

where K(., .) is an inner product of two vectors defined as:

K(~a,~b) = ∑
m

a[m]b[m]
−1
qm

∂2qm

∂gm
2

(
g′m
)2

and

gm = g(u[m],y[m] : θ)

qm = q(x[m] : gm,φ)

g′m =
∂g(u,y : θ)

∂y
|u[m],y[m] .

Before proving this result, we first consider its elements and how they relate to our previous results
of Theorem 3.2 and Theorem 7.1. The inner product K captures the deformation for the general
case: The factor (g′m)2 weighs each vector by the gradient of g, as explained in Section 7. The

new factor −1
qm

∂2qm
∂gm

2 measures the sensitivity of qm to changes in gm for each instance. This factor
is always positive as a maximum point of qm is involved. Note that in the Gaussian noise models
we considered in the previous sections, this term is constant: 1

σ2 . In non-Gaussian models, this
sensitivity can vary between instances.

It is easy to see that the generalized definition of C1 coincides with our previous results. As
in the linear Gaussian case, the (approximate) difference in likelihood C1(~y,~z) is expressed as a
function of some distance between the new parent αz~z and the ideal parent~y. This distance is then
deformed by a sample dependent weight similarly to the non-linear case discussed in Section 7. In
the case of a linear Gaussian CPD, we have g′m = 1, and so K(~a,~b) = 1

σ2~a ·~b. All terms which do
not depend on~z cancel out in this case, resulting in our original definition for C1 in Eq. (7). For the
non-linear Gaussian with additive noise, we have K(~a,~b) = 1

σ2 (~a ◦ g′(y)) · (~b◦ g′(y)), and the form
of Eq. (14) is recovered.

Importantly, we note that our new formulation is applicable to a wide range of link functions
and uni-modal noise models (with the minimal restrictions detailed above). The difference between
different choices simply manifest as difference in the form of the derivatives that appear in the kernel
function K, and in the additional logP terms in Eq. (19). Finally, we note that we cannot derive a
similarly general expression for C2, since it requires optimizing both σ and αz, and the solution to
this problem depends on the form of the distribution q.

1820

THE “IDEAL PARENT” ALGORITHM

For completeness, we now prove the result of Theorem 8.2.
Proof: The first term in the second order approximation of Eq. (18) vanishes since, by our definition,
∂q
∂z |αz~z=~y = 0, which implies also ∂ log(q)

∂z |αz~z=~y = 0. Using the chain rule, we derive the expression
for the Hessian:

Hm,n =
∂2 logP(~x | u,~z)
∂αzz[m]∂αzz[n]

∣∣∣∣
αz~z=~y

= δmn
1

q2
m

(
−
(

∂qm

∂gm

∂gm

∂y[m]

)2

+qm

{
∂2qm

∂gm
2

(
∂gm

∂y[m]

)2

+
∂qm

∂gm

∂2gm

∂y[m]2

})
.

The Hessian matrix is always diagonal, since each term in the log-likelihood involves y[m] that
corresponds to a single sample m. After eliminating terms involving ∂q

∂g , the diagonal elements of
the Hessian simplify to:

Hm,m =
1

qm

∂2qm

∂gm
2

(
g′m
)2

where g′m ≡ ∂gm
∂y[m] . With this simplification of the Hessian, the approximation of the log-likelihood

can be written as

logP(~x | u,αz~z)≈ logP(~x | u,~y)+
1
2 ∑

m

(αzz[m]− y[m])2

qm

∂2qm

∂gm
2

(
g′m
)2

. (20)

The difference in the log-likelihood with and without a new parent z can now be immediately re-
trieved and equals to the second term of the right hand side of Eq. (20). Denoting this difference by
C1(~y,~z) and replacing αz with its maximum likelihood estimator K(~y,~z)

K(~z,~z) , we get the desired result.

8.3 Multiplicative Noise CPD

We now complete the detailed derivation of the general framework we presented in the previous
section for the case of the multiplicative noise conditional density of Eq. (16). Written explicitly,
the CPD has the following form:

q(x : g,σ2) =
1√

2Πσ|g|
exp

(
− 1

2σ2

(
x
g
−1

)2
)

.

To avoid singularity, we will restrict the values of g to be positive. The partial derivatives of qm are:

∂qm

∂gm
=

[
− 1

gm
+

1
σ2

(
x

gm
−1

)
x

g2
m

]
qm

∂2qm

∂gm
2 =

[
− 1

gm
+

1
σ2

(
x

gm
−1

)
x

g2
m

]2

qm +

[
1

g2
m

+
1

σ2

(
x

gm
−1

)−2x
g3

m
− 1

σ2

x2

g4
m

]
qm.

By the definition of~y the first derivative is zero so that

− 1
gm

+
1

σ2

(
x

gm
−1

)
x

g2
m

= 0 (21)

1821

ELIDAN, NACHMAN AND FRIEDMAN

which is equivalent to requiring that the following holds:

g(α1u1[m], . . . ,αkuk[m],~y[m] : θ) = x[m]
−1+

√
1+4σ2

2σ2 . (22)

Note that the negative solution is discarded due to the constraint g > 0. Also note that the link
function in this case is in fact, as can be expected, a scaled version of x[m]. We can now extract y[m]
as before by simply inverting gm.

The terms of the second derivative can now also be simplified:

∂2q
∂g2 =

[
1
g2 −

1
σ2

(
x
g
−1

)
2x
g3 −

1
σ2

x2

g4

]
q

= − 1
g2

[
1+

1
σ2

x2

g2

]
q

= − 1
g2 kσq

where the second and third equalities result from substituting Eq. (21) and Eq. (22), respectively,
and kσ is a positive constant function of σ. We can now express K in a dot product compact form

K(~a,~b) = kσ

(
~a◦ g′(y)

g(y)

)
·
(
~b◦ g′(y)

g(y)

)

where g′(y)
g(y) is the vector whose mth component is g′m

gm
. Note that this instance specific weight is

similar to the one we used for the non-linear additive Gaussian case of Theorem 7.1. In this more
general setting, each instance m is additionally scaled by gm. This has an intuitive explanation in
the case of the multiplicative conditional density: the noise level is expected to go up with g and so
all samples are rescaled to the same noise level.

For completeness, we write the additional logP terms in the expression of Eq. (19) for C1 in the
case of the multiplicative conditional density:

logP(~x | u,~y)− logP(~x | u) = −∑ log(σ′g(u[m],y[m]))+∑ log(σg(u[m]))−
1

2σ′2 ∑(
x[m]

g(u[m],y[m])
−1)2 +

1
2σ2 ∑(

x[m]

g(u[m])
−1)2

= −M log
−1+

√
1+4σ′2

2σ′
−∑ logx[m]+∑ logσg(u[m])−

M
2σ′2

(
2σ′2

−1+
√

1+4σ′2
−1

)2

+
1

2σ2 ∑(
x[m]

g(u[m])
−1)2

where σ′ denotes the new variance parameter.

9. Experiments

We now examine the impact of the ideal parent method in two settings. In the first setting, we use
this method for pruning the number of potential moves that are evaluated by greedy hill climbing
structure search. We use this learning procedure to learn the structure over the observed or partially

1822

THE “IDEAL PARENT” ALGORITHM

observed variables. In the second setting, we use the ideal parent method as a way of introduc-
ing new hidden variables, and also as a guide to reduce the number of evaluations when learning
structure that involves hidden variables and observed ones, using a Structural EM search procedure.

9.1 Structure learning with Known Variables

In the first setting, we applied standard greedy hill climbing search (Greedy) and greedy hill climb-
ing supplemented by the ideal parent method as discussed in Section 4 (Ideal). In using the ideal
parent method, we used the C2 similarity measure described in Section 3 to rank candidate edge
additions and replacements, and then applied full scoring only to the top K ranking candidates per
variable.

We first want to evaluate the impact of the approximation we make on the quality of the model
learned. To do so, we start with a synthetic experiment where we know the true underlying network
structure. In this setting we can evaluate the magnitude of the performance cost that is the result of
the approximation we use. (We examine the speedup gain of our method on more interesting real-life
examples below.) To make the synthetic experiment realistic, for the generating distribution we used
a network learned from real data (see below) with 44 variables. From this network we can generate
data sets of different sizes and apply our method with different values of K. Figure 5 compares
the ideal parent method and the standard greedy procedure for linear Gaussian CPDs (left column)
and sigmoid CPDs (right column). Using K = 5 is, as we expect, closer to the performance of the
standard greedy method both in terms of training set [(a),(e)] and test set [(b),(f)] performance than
K = 2. For linear Gaussian CPDs test performance is essentially the same for both methods. Using
sigmoid CPDs we can see a slight advantage for the standard greedy method. When considering the
percent of true edges recovered [(c),(g)], as before, the standard method shows some advantage over
the ideal method with K = 5. However, by looking at the total number of edges learned [(d),(h)],
we can see that the standard greedy method achieves this by using close to 50% more edges than
the original structure for sigmoid CPDs. Thus, a relatively small advantage in performance comes
at a high complexity price (and as we demonstrate below, at a significant speed cost).

We now examine the effect of the method on learning from real-life data sets. We base our data
sets on a study that measures the expression of the baker’s yeast genes in 173 experiments (Gasch
et al., 2000). In this study, researchers measured the expression of 6152 yeast genes in its response
to changes in the environmental conditions, resulting in a matrix of 173× 6152 measurements. In
the following, for practical reasons, we use two sets of genes. The first set consists of 639 genes
that participate in general metabolic processes (Met), and the second is a subset of the first with
354 genes which are specific to amino acid metabolism (AA). We choose these sets since part of
the response of the yeast to changes in its environment is in altering the activity levels of different
parts of its metabolism. For some of the experiments below, we focused on subsets of genes for
which there are no missing values, consisting of 89 and 44 genes, respectively. On these data sets
we can consider two tasks. In the first, we treat genes as variables and experiments as instances. The
learned networks indicate possible regulatory or functional connections between genes (Friedman
et al., 2000). A complementary task is to treat the 173 experiments as variables (Cond). In this case
the network encodes relationships between different conditions.

In Table 1 we summarize differences between the Greedy search and the Ideal search with K set
to 2 and 5, for the linear Gaussian CPDs as well as sigmoid CPDs. Since the C2 similarity is only a
lower bound of the BIC score difference, we expect the candidate ranking of the two to be different.

1823

ELIDAN, NACHMAN AND FRIEDMAN

100 1000

−1.2

−1.1

−1

T
ra

in
Greedy
Ideal K=2
Ideal K=5

100 1000

−0.6

−0.4

−0.2

0

T
ra

in

(a) (e)

100 1000
−1.8

−1.6

−1.4

−1.2

−1

−0.8

T
es

t

100 1000
−1

−0.8

−0.6

−0.4

−0.2

0

T
es

t

(b) (f)

100 1000
0

0.2

0.4

0.6

0.8

R
ec

al
l

100 1000
0

0.2

0.4

0.6

0.8

R
ec

al
l

(c) (g)

100 1000
0

0.5

1

1.5

T
o

ta
l

100 1000
0

0.5

1

1.5

T
o

ta
l

(d) (h)

Figure 5: Evaluation of Ideal search on synthetic data generated from a real-life like network with
44 variables. We compare Ideal search with K = 2 (dashed) and K = 5 (solid), against
the standard Greedy procedure (dotted). The figures show, as a function of the number
of instances (x-axis), for linear Gaussian CPDs: (a) average training log-likelihood per
instance per variable; (b) same for test; (c) fraction of true edges obtained in learned
structure; (d) total number of edges learned as fraction of true number of edges; (e)-(h)
same for sigmoid CPDs.

1824

THE “IDEAL PARENT” ALGORITHM

Greedy Ideal K = 2 vs Greedy Ideal K = 5 vs Greedy
Data set vars inst train test ∆train ∆test edge move ev sp ∆train ∆test edge move ev sp

Linear Gaussian with complete data
AA 44 173 -0.90 -1.07 -0.024 0.006 87.1 96.5 3.6 2 -0.008 0.007 94.9 96.5 9.3 2
AA Cond 173 44 -0.59 -1.56 -0.038 0.082 92.2 92.6 1.2 2 -0.009 0.029 96.9 98.2 2.9 2
Met 89 173 -0.79 -1.00 -0.033 -0.024 88.7 91.5 1.6 3 -0.013 -0.016 94.5 96.9 4.4 2
Met Cond 173 89 -0.59 -1.06 -0.035 -0.015 91.3 98.0 1.0 2 -0.007 -0.023 98.9 98.5 2.4 2

Linear Gaussian with missing values
AA 354 173 -0.13 -0.50 -0.101 -0.034 81.3 95.2 0.4 5 -0.048 -0.022 90.7 96.0 0.9 5
AA Cond 173 354 -0.20 -0.38 -0.066 -0.037 74.7 87.5 0.4 14 -0.033 -0.021 86.3 101.1 1.6 11

Sigmoid with complete data
AA 44 173 0.03 -0.12 -0.132 -0.065 49.7 59.4 2.0 38 -0.103 -0.046 60.4 77.6 6.1 18
AA Cond 173 44 -0.12 -0.81 -0.218 0.122 62.3 76.7 1.0 36 -0.150 0.103 73.7 79.4 2.3 21
Met 89 173 0.12 -0.08 -0.192 -0.084 47.9 58.3 0.9 65 -0.158 -0.059 56.6 69.8 2.6 29
Met Cond 173 89 0.22 -0.17 -0.207 -0.030 60.5 69.5 0.8 53 -0.156 -0.042 69.8 77.7 2.2 29

Table 1: Performance comparison of the Ideal parent search with K = 2, K = 5 and Greedy on real
data sets. vars - number of variables in the data set; inst - the number of instances in the
data set; train - average training set log-likelihood per instance per variable; test - same for
test set; ∆train - average difference in training set log-likelihood per instance per variable;
∆test - same for test set; edges - percent of edges learned by Ideal with respect to those
learned by Greedy; moves - percent of structure modifications taken during the search; ev
- percent of moves evaluated; sp - speedup of Ideal over greedy method. All numbers are
averages over 5 fold cross validation sets.

As most of the difference comes from freezing some of the parameters, a possible outcome is that
the Ideal search is less prone to over-fitting. Indeed, as we see, though the training set log-likelihood
in most cases is lower for Ideal search, the test set performance is only marginally different than
that of the standard greedy method, and often surpasses it.

Of particular interest is the tradeoff between accuracy and speed when using the ideal parent
method. In Figure 6 we examine this tradeoff in four of the data sets described above using linear
Gaussian and sigmoid CPDs. For both types of CPDs, the performance of the ideal parent method
approaches that of Greedy as K is increased. As we can expect, in both types of CPDs the ideal par-
ent method is faster even for K = 5. However, the effect on total run time is much more pronounced
when learning networks with non-linear CPDs. In this case, most of the computation is spent in
optimizing the parameters for scoring candidates. Indeed, careful examination of the number of
structural moves taken and the number of moves evaluated in Table 1, shows that the dramatic
speedup is mostly a result of the reduction in the number of candidates evaluated. Importantly,
this speedup in non-linear networks makes previously “intractable” real-life learning problems (like
gene regulation network inference) more accessible.

9.2 Learning Hidden Variables

In the second experimental setting, we examine the ability of our algorithm to learn structures that
involve hidden variables and introduce new ones during the search. In this setting, we focus on
two layered networks where the first layer consists of hidden variables, all of which are assumed to
be roots, and the second layer consists of observed variables. Each of the observed variables is a
leaf and can depend on one or more hidden variables. Learning such networks involves introducing

1825

ELIDAN, NACHMAN AND FRIEDMAN

0.1

0.2

1 2 3 4 5
K

te
st

 ∆∆ ∆∆
-l

o
g

-l
ik

el
ih

o
o

d Amino
Metabolism
Conditions (AA)
Conditions (Met)

0

1 2 3 4 5
K

0.1

0.2

1 2 3 4 5
K

te
st

 ∆∆ ∆∆
-l

o
g

-l
ik

el
ih

o
o

d Amino
Metabolism
Conditions (AA)
Conditions (Met)

0

1 2 3 4 5
K

0.1

0.2

1 2 3 4 5
K

1 2 3 4 5
K

te
st

 ∆∆ ∆∆
-l

o
g

-l
ik

el
ih

o
o

d Amino
Metabolism
Conditions (AA)
Conditions (Met)

Amino
Metabolism
Conditions (AA)
Conditions (Met)

Amino
Metabolism
Conditions (AA)
Conditions (Met)

0

1 2 3 4 5
K

1 2 3 4 5
K

greedy

0

1

2

3

4

sp
ee

d
u

p

1 2 3 4 5
K

0

1

2

3

4

sp
ee

d
u

p

1 2 3 4 5
K

0

1

2

3

4

sp
ee

d
u

p

1 2 3 4 5
K

1 2 3 4 5
K

greedy

(a) Gaussian performance (b) Gaussian speedup

-0.1

0

0.1

te
st

 ∆∆ ∆∆
-l

o
g

-l
ik

el
ih

o
o

d

0 5 10 15 20
K

-0.1

0

0.1

-0.1

0

0.1

te
st

 ∆∆ ∆∆
-l

o
g

-l
ik

el
ih

o
o

d

0 5 10 15 20
K

0 5 10 15 20
K

greedy

20

60

100

sp
ee

d
u

p

0 5 10 15 20
K

20

60

100

sp
ee

d
u

p

0 5 10 15 20
K

20

60

100

20

60

100

sp
ee

d
u

p

0 5 10 15 20
K

0 5 10 15 20
K

(c) sigmoid performance (d) sigmoid speedup

Figure 6: Evaluation of Ideal search on real-life data using 5-fold cross validation. (a) average
difference in log-likelihood per instance on test data when learning with linear Gaussian
CPDs relative to the Greedy baseline (y-axis) vs. the number of ideal candidates for each
family K (x-axis). (b) Relative speedup over Greedy (y-axis) against K (x-axis). (c),(d)
same for sigmoid CPDs.

1826

THE “IDEAL PARENT” ALGORITHM

(a)

10 100
-60

-40

-20

tr
ai

n
lo

g-
lik

el
ih

oo
d

Instances

Greedy
Ideal K=2
Ideal K=5
Gold

Greedy
Ideal K=2
Ideal K=5
Gold

10 100

-100

-60

-20

te
st

 lo
g-

lik
el

ih
oo

d

Instances

Greedy
Ideal K=2
Ideal K=5
Gold

10 100

-100

-60

-20

te
st

 lo
g-

lik
el

ih
oo

d

Instances

Greedy
Ideal K=2
Ideal K=5
Gold

Greedy
Ideal K=2
Ideal K=5
Gold

(b) (c)

Figure 7: Evaluation of performance in two-layer network experiments. (a) Gold structure with 141
which was curated by a biological expert and used to generate synthetic data; (b) average
log-likelihood per instance on training data (y-axis) for Greedy , Ideal search with K = 2
and Ideal search with K = 5, when learning with linear Gaussian CPDs against the number
of training samples (x-axis); (c) Same for test set.

different hidden variables, and determining for each observed variable which hidden variables it
depends on.

As in the case of standard structure learning, we first want to evaluate the impact of our approx-
imation on learning. To test this, we used a network topology that is curated (Nachman et al., 2004)
from biological literature for the regulation of cell-cycle genes in yeast. This network involves 7
hidden variables and 141 observed variables. We learned the parameters for the network from a cell
cycle gene expression data set (Spellman et al., 1998). From the learned network we then sampled
data sets of varying sizes, and tried to recreate the regulation structure using either greedy search or
ideal parent search. In both search procedures we introduce hidden variables in a gradual manner.
We start with a network where a single hidden variable is connected as the only parent to all ob-
served variables. After parameter optimization, we introduce another hidden variable - either as a
parent of all observed variables (in greedy search), or to members of the highest scoring cluster (in
ideal parent search, as explained in Section 5). We then let the structure search modify edges (sub-
ject to the two-layer constraints) until no beneficial moves are found, at which point we introduce

1827

ELIDAN, NACHMAN AND FRIEDMAN

max
parents5 2 5 2 5

0

0.1

0.2

0.3

∆
te

st
 lo

g-
lo

ss
 /

in
st

an
ce

 /
va

ria
bl

e

2

Greedy

Full Ideal K=2
Greedy + Ideal new vars
Full Ideal K=2
Greedy + Ideal new vars
Full Ideal K=2
Greedy + Ideal new vars

AA Sigmoid AA Gaussian AA Cond Gaussian

Figure 8: Structure learning of bipartite networks where the parents are new hidden variables and
the children are the observed variables. The different data sets of the baker’s Yeast in-
clude: AA with 44 variables for both Gaussian and sigmoid Gaussian CPDs; AA Cond
with 173 variables and Gaussian CPDs. For each data set a structure with up to 2 or 5
parents was considered. Shown is the test log-likelihood per instance per variable relative
to the baseline of the standard greedy structure learning algorithm.

another hidden variable, and so on. The search terminates when it is no longer beneficial to add a
new variable.

Figure 7 shows the performance of the ideal parent search and the standard greedy procedure
as a function of the number of instances, for linear Gaussian CPDs. As can be seen, although
there are some differences in training set likelihood, the performance on test data is essentially the
same. Thus, as in the case of the yeast experiments considered above, there was no degradation of
performance due to the approximation made by our method.

We then considered the application of the algorithms to real-life data sets. Figure 8 shows the
test set results for several of the data sets of the baker’s yeast (Gasch et al., 2000) described above,
for both Gaussian and sigmoid Gaussian CPDs. The full ideal parent method (red ’x’) with K = 2
and the ideal method for adding new hidden variables is consistently better than the baseline greedy
procedure. To demonstrate that the improvement is in large part due to the guided method for adding
hidden variables we also ran the baseline greedy procedure for structure changes augmented with
the ideal method for adding new hidden variables (blue ’+’). As can be seen, the performance of
this method is typically slightly better than the full ideal method, since it does not approximate the
structural adaptation stage. In this setup, the only difference from the greedy baseline is the way

1828

THE “IDEAL PARENT” ALGORITHM

that new hidden variables are introduced. Thus, these results support our hypothesis that the ideal
method is able to introduce effective new hidden variables, that are preferable to a hidden variables
that are naively introduced into the network structure.

The superiority of the sigmoid Gaussian over the Gaussian model for the AA data set (in the
order of 1 bit per instance per variable) motivates us to pursue learning of models with non-linear
CPDs. We could not compare the different methods for the larger data sets as the greedy method
was several orders of magnitudes slower than our ideal parent method and did not complete runs
given several days of CPU time (in the linear Gaussian case the ideal parent method was roughly 5
times faster than the standard greedy approach). We believe that the ability of the ideal method to
avoid over-fitting will only increase its strength in these more challenging cases.

We also considered the application of our algorithm to the real-life cell-cycle gene expression
data described in the previous section with linear Gaussian CPDs. Although this data set contains
only 17 samples, it is of high interest from a biological perspective to try and infer from it as much as
possible on the structure of regulation. We performed leave-one-out cross validation and compared
the ideal parent method with K = 2 and K = 5 to the standard greedy method. To help avoid over-
fitting, we limited the number of hidden parents for each observed variable to 2. In terms of training
log-likelihood per instance per variable, the greedy method is better than the ideal method by 0.4
and 0.42 bits per instance, for K = 5 and K = 2, respectively. However, its test log-likelihood
performance is significantly worse as a result of high over-fitting of two particular instances, and
is worse by 0.72 bits per instance than the ideal method with K = 5 and by 0.88 bits per instance
than the ideal method with K = 2. As we have demonstrated in the synthetic example above, the
ability of the ideal method to avoid over-fitting via a guided search, does not come at the price of
diminished performance when data is more plentiful. When the observed variables were allowed to
have up to 5 parents, all methods demonstrated over-fitting, which for Greedy was far more severe.

10. Discussion and Future Work

In this work we set out to learn the structure of Bayesian networks with continuous variables. Our
contribution is twofold: First, we showed how to speed up structure search, particularly for non-
linear conditional probability distributions. This speedup is essential as it makes structure learning
feasible in many interesting real life problems. Second, we presented a principled way of introduc-
ing new hidden variables into the network structure. We used the concept of an ideal parent for both
of these tasks and demonstrated its benefits on both synthetic and real-life biological domains. In
particular, we showed that our method is able to effectively learn networks with hidden variables
that improve generalization performance. In addition, it allowed us to cope with domains where the
greedy method proved too time consuming.

Several works in recent years have tried to address the complexities involved in structure learn-
ing using different approaches. To name a few examples, Chickering (1996b) suggests searching the
smaller space of Bayesian network equivalence classes. Moore and Wong (2003) suggest innovative
global search operators that completely sever and reinsert a variable into the network structure. They
take advantage of the fact that the set of children can be computed efficiently and use a branch and
bound technique for computing the parent set. Koivisto and Sood (2004) were the first to show how
the problem of exact structure learning can be made less than super-exponential by conditioning on
the ordering of variables and the use of dynamic programming. Singh and Moore (2005) propose a
different dynamic programming approach for learning the exact structure of Bayesian networks by

1829

ELIDAN, NACHMAN AND FRIEDMAN

considering an alternative recursive formulation. They compare the complexity of their approach
to that of Koivisto and Sood (2004) under different settings. Silander and Myllym (2006) build on
the same order based idea and propose a somewhat simpler algorithm that recursively builds the
network structure from the “sinks” of the optimal structure toward the roots. Teyssier and Koller
(2005) perform an intelligent order-based search that is not guaranteed to find the optimal structure
but significantly reduces the running time of the search procedure, and finds high scoring structures
in practice.

In contrast to these approaches that focus on the search strategy, our “Ideal Parent” approach
leverages on the parametric structure of the conditional distributions. This allows us to get a fast
approximation of the contribution of a search operator. In here, we applied this approach in conjunc-
tion with a greedy search algorithm. However, it can also be supplemented to many other search
procedures as a way of dramatically reducing the number of candidate moves that are carefully
evaluated.

Two works are of particular interest and relevance to ours. Della Pietra et al. (1997) suggest
an efficient method for incrementally inducing features of Markov random fields. To efficiently ap-
proximate the merit of candidate feature, they evaluate the improvement in likelihood when the only
parameter that can change is the one associated with the new feature. Thus, all other parameters of
the model are held fixed during the evaluation. For binary features, they find a closed-form solution
for the improvement. For more general features, they use non-linear optimization to perform the
evaluation. The idea of freezing some parameters in order to facilitate approximate but efficient
computations is also the basis for our development of the approximate score. The context of contin-
uous Bayesian networks, as well as the details of the likelihood functions involved in computations,
however, are quite different.

Another connection is to the “Sparse Candidate” procedure of Friedman et al. (1999), which
limits the number of candidate parents considered by the search procedure. While sharing the
motivation of our work, their pre-pruning of candidates does not take advantage of the form of the
conditional distribution nor does it try to approximate the benefit of a candidate directly. Instead,
they used statistical signals as a surrogate for the benefit of a candidate parent. Thus, these methods
are in fact orthogonal and it would be intriguing to see if the “Ideal Parent” method can help the
“Sparse Candidate” method during the pruning stage.

The parametric form of CPDs we examined here are specific instances of generalized linear
models (GLMs) (McCullagh and Nelder, 1989). This class of CPDs uses a function g that is applied
to the sum of its arguments, called the link function in the GLM literature. However, we can also
consider more complex functions, as long as they are well defined for any desired number of parents.
For example, in Nachman et al. (2004) models based on chemical reaction models are considered,
where the function g does not have a GLM form. An example of a two variable function of this type
is:

g(y1,y2 : θ) = θ
y1y2

(1+ y1)(1+ y2)
.

We also note that GLM literature deals extensively with different forms of noise. While we mainly
focus here on the case of additive Gaussian noise, and briefly addressed other noise models, the
ideas we propose here can be extended to many of these noise distributions.

Few works touched on the issue of when and how to add a hidden variable in the network
structure (e.g., Elidan et al., 2001; Elidan and Friedman, 2003; Martin and VanLehn, 1995; Zhang,
2004). Only some of these methods are potentially applicable to continuous variable networks, and

1830

THE “IDEAL PARENT” ALGORITHM

none have been adapted to this context. To our knowledge, this is the first method to address this
issue in a general context of continuous variable networks.

Many challenges remain. First, instead of scoring the top K candidate parents of each variable,
we could evaluate only the K most promising candidates over all possible structure modifications.
In doing so we could make use of the superiority of the C2 measure over the C1 measure, and
further improve the speed of our method, possibly by another order of magnitude. Second, the
“Ideal Parent” method can be combined as a plug-in for candidate selection with other innovative
search procedures. Third, we want to adapt our method for additional and more complex conditional
probability distributions (e.g., Nachman et al., 2004), and extend it to multi-modal distributions.
Fourth, we want to improve the approximation for adding new hidden variables in the non-linear
case. Finally, it might be possible to leverage on the connection to Generalized Linear Models for
handling more elaborate noise models.

Acknowledgments

We thank Shai Shwartz and the anonymous reviewers for comments on earlier versions of this
manuscript. This work was supported, in part, by grants from the Israeli Ministry of Science and
US-Israel Bi-national Foundation. I. Nachman and G. Elidan were also supported by the Horowitz
fellowship. N. Friedman was also supported in part by the Bauer Center for Genomics Research,
Harvard University.

References

D. M. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher and H. J. Lenz,
editors, Learning from Data: Artificial Intelligence and Statistics V, pages 121–130. Springer-
Verlag, New York, 1996a.

D. M. Chickering. Learning equivalence classes of Bayesian network structures. In E. Horvitz and
F. Jensen, editors, Proc. Twelfth Conference on Uncertainty in Artificial Intelligence (UAI ’96),
pages 150–157, San Francisco, 1996b. Morgan Kaufmann.

S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 19(4):380–393, 1997.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society, B 39:1–39, 1977.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons, New
York, 1973.

G. Elidan and N. Friedman. The information bottleneck EM algorithm. In C. Meek and U. Kjærulff,
editors, Proc. Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI ’03), pages
200–208, San Francisco, 2003. Morgan Kaufmann.

G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discovering hidden variables: A structure-based
approach. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information
Processing Systems 13, pages 479–485, Cambridge, Mass., 2001. MIT Press.

1831

ELIDAN, NACHMAN AND FRIEDMAN

N. Friedman. Learning belief networks in the presence of missing values and hidden variables. In
D. Fisher, editor, Proc. Fourteenth International Conference on Machine Learning, pages 125–
133. Morgan Kaufmann, San Francisco, 1997.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze expression
data. Computational Biology, 7:601–620, 2000.

N. Friedman, I. Nachman, and D. Pe’er. Learning Bayesian network structure from massive data
sets: The ‘sparse candidate” algorithm. In K. Laskey and H. Prade, editors, Proc. Fifteenth
Conference on Uncertainty in Artificial Intelligence (UAI ’99), page 206–215, San Francisco,
1999.

A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz, D. Botstein,
and P. O. Brown. Genomic expression program in the response of yeast cells to environmental
changes. Molecular Biology of the Cell, 11:4241–4257, 2000.

D. Geiger and D. Heckerman. Learning Gaussian networks. In R. López de Mantarás and D. Poole,
editors, Proc. Tenth Conference on Uncertainty in Artificial Intelligence (UAI ’94), pages 235–
243, San Francisco, 1994. Morgan Kaufmann.

F. Glover and M. Laguna. Tabu search. In C. Reeves, editor, Modern Heuristic Techniques for
Combinatorial Problems, Oxford, England, 1993. Blackwell Scientific Publishing.

M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. An introduction to variational approx-
imations methods for graphical models. In M. I. Jordan, editor, Learning in Graphical Models.
Kluwer, Dordrecht, Netherlands, 1998.

M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian networks. Journal of
Machine Learning Research, 5:549–573, 2004.

S. L. Lauritzen and N. Wermuth. Graphical models for associations between variables, some of
which are qualitative and some quantitative. Annals of Statistics, 17:31–57, 1989.

J. Martin and K. VanLehn. Discrete factor analysis: Learning hidden variables in Bayesian net-
works. Technical report, Department of Computer Science, University of Pittsburgh, 1995.

P. McCullagh and J.A. Nelder. Generalized Linear Models. Chapman & Hall, London, 1989.

A. Moore and W. Wong. Optimal reinsertion: A new search operator for accelerated and more
accurate Bayesian network structure learning. In T. Fawcett and N. Mishra, editors, Proceedings
of the 20th International Conference on Machine Learning (ICML ’03), pages 552–559, Menlo
Park, California, 2003.

K. Murphy and Y. Weiss. Loopy belief propagation for approximate inference: An empirical study.
In K. Laskey and H. Prade, editors, Proc. Fifteenth Conference on Uncertainty in Artificial Intel-
ligence (UAI ’99), page 467–475, San Francisco, 1999. Morgan Kaufmann.

I. Nachman, A. Regev, and N. Friedman. Inferring quantitative models of regulatory networks from
expression data. Bioinformatics, 20(Suppl 1):S1248–1256, 2004.

1832

THE “IDEAL PARENT” ALGORITHM

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

M.A. Shwe, B. Middleton, D.E. Heckerman, M. Henrion, E.J. Horvitz, H.P. Lehmann, and G.F.
Cooper. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge
base. I. The probabilistic model and inference algorithms. Methods of Information in Medicine,
30:241–55, 1991.

T. Silander and P. Myllym. A simple approach for finding the globally optimal Bayesian network
structure. In Dechter and Richardson, editors, Proc. Twenty Second Conference on Uncertainty
in Artificial Intelligence (UAI ’06), San Francisco, 2006. Morgan Kaufmann.

A. Singh and A. Moore. Finding optimal Bayesian networks by dynamic programming. Technical
report, Carnegie Mellon University, 2005.

P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Bot-
stein, and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the yeast
saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9(12):
3273–97, 1998.

M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm for learning
Bayesian networks. In F. Bacchus and T. Jaakkola, editors, Proc. Twenty First Conference on
Uncertainty in Artificial Intelligence (UAI ’05), pages 584–590, San Francisco, 2005. Morgan
Kaufmann.

R. Parr U. Lerner and D. Koller. Bayesian fault detection and diagnosis in dynamic systems. In
Proc. of the Seventeenth National Conference on Artificial Intelligence (AAAI), pages 531–537,
2000.

J. Wilkinson. The Algebric Eigenvalue Problem. Claderon Press, Oxford, 1965.

N.L. Zhang. Hierarchical latent class models for cluster analysis. Journal of Machine Learning
Research, 5:697–723, 2004.

1833

