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Abstract
Factor analysis and discriminant analysis are often used as complementary approaches to identify
linear components in two dimensional data arrays. For three dimensional arrays, which may orga-
nize data in dimensions such as space, time, and trials, the opportunity arises to combine these two
approaches. A new method, Bilinear Discriminant Component Analysis (BDCA), is derived and
demonstrated in the context of functional brain imaging data for which it seems ideally suited. The
work suggests to identify a subspace projection which optimally separates classes while ensuring
that each dimension in this space captures an independent contribution to the discrimination.
Keywords: bilinear, decomposition, component, classification, regularization

1. Introduction

The work presented in this paper is motivated by the analysis of functional brain imaging signals
recorded with functional magnetic resonance imaging (fMRI) or electric or magnetic encephalogra-
phy (EEG/MEG). These imaging modalities record brain activity across time at multiple locations,
providing spatio-temporal data. The design of a brain imaging experiment often includes multi-
ple repetitions or trials. Trials may differ in the type of stimulus presented, the task given to the
subject, or the subject’s response. Hence, brain imaging data is often given as a three-dimensional
array including space, time, and trials. In addition, for each trial we have labels at our disposal that
characterize the trial.

A number of linear analysis methods have been proposed for both EEG/MEG and fMRI in
order to decompose this data into meaningful linear ’components’. These methods include principal
component analysis (Squires et al., 1977; Bullmore et al., 1996), independent component analysis
(Makeig et al., 1996; Calhoun et al., 2001), and linear discriminant analysis (Mørch et al., 1997;
Parra et al., 2005), denoted respectively as PCA, ICA, and LDA. Linear decomposition of a data
matrix X ∈ IRD×T using PCA or ICA involves estimation of the factors of the model

(X)i j ≈
K

∑
k=1

(ak)i(sk) j

where ak ∈ IRD, sk ∈ IRT , and K denotes the number of components in the model. Uniqueness of
such decomposition is guaranteed by declaring additional conditions on the factors {ak} and {sk},
that is, assuming orthogonality in the case of PCA or assuming independence in the case of ICA.
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When applying PCA or ICA to brain imaging data, trials are often combined with time samples to
form a single dimension, thereby ignoring the tensor structure of the data (see, e.g., Delorme and
Makeig, 2004).

A related model which aims to exploit the additional structure in the data provided by the third
dimension is parallel factor analysis (PARAFAC) (Harshman, 1970). In PARAFAC the three-way
data array X ∈ IRD×T×N is decomposed under the model

(Xn)i j ≈
K

∑
k=1

(ak)i(bk) j(ck)n (1)

where ak ∈ IRD, bk ∈ IRT , ck ∈ IRN , and · ≈ · denotes least-squares approximation. This model has
been suggested as a tool to analyze for instance EEG (Harshman, 1970; Möcks, 1988; Miwakeichi
et al., 2004; Martinez-Montes et al., 2004; Mørup et al., 2006) and fMRI (Andersen and Rayens,
2004; Beckmann and Smith, 2005). The PARAFAC decomposition often turns out to be unique
even without having to declare any additional assumptions such as orthogonality or independence
among the factors of the model (Kruskal, 1977).1 Each component in the PARAFAC model, say
component k consisting of {ak,bk,ck}, offers a simple interpretation—for example, when having
data on the form of spatio-temporal matrices recorded in repeated trials: ak will describe the spatial
distribution of the temporal source signal bk with relative strengths in the different trials given by
the elements of ck. In this example index i labels the space coordinate, index j refers to the time
coordinate, and index n enumerates the trials.

A limitation of the unsupervised methods PARAFAC, ICA and PCA, is that the available labels
are not used when identifying components in the data. Typically, the variability in the data due
to noise and task irrelevant activity is quite large when compared to the signal that relates specif-
ically to the experimental question under consideration. In fMRI data, for instance, the activity
that is extracted from the raw data is often only a small fraction of the total background BOLD
signal. A similar situation arises in EEG where often hundreds of trials have to be averaged to gain
a significant difference between two experimental conditions. Linear discrimination methods have
been suggested in both EEG and fMRI to compensate for this problem (Mørch et al., 1997; Parra
et al., 2005). In essence, these methods project the data onto a linear subspace that best character-
izes the relevant activity. This stands in contrast to an unsupervised analysis that decomposes the
data into orientations that capture the largest variability in the data. Hence, unsupervised methods
that are purely variance based (PCA and PARAFAC) may fail to recover components with very
small signal-to-noise ratios (SNR), typically less than −20dB for EEG. Unsupervised ICA can in
principle recover components with low SNR (see, e.g., Beckmann and Smith, 2005), if the ICA
decomposition is followed by component inspection in order to identify task specific components.
However, dimensionality reduction (typically PCA) may remove task specific components with low
SNR which will then no longer be recovered with subsequent ICA. In this paper we propose an al-
gorithm that includes the labels at the earliest stage in order to identify possible subspaces wherein
the SNR of task specific activity is maximized.

We propose to find a subspace projection in which the dimensions sum up to an optimal classifi-
cation of the trials, while each dimension contributes to this discriminant sum independently across
trials. The subspace will be restricted to a bilinear subspace to express the assumption that each
contributing dimensions should have a fixed spatial profile and an associated temporal profile. The

1. Here ‘unique’ means: unique except for trivial scaling and permutation ambiguities.
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underlying task relevant activity can be expected to involve a number of interacting sources, and
we therefore allow the bilinear subspace to be of rank-K where K > 1. All this can be compactly
represented in a factorization of the form

(X(W )
n )i j =

K

∑
k=1

(ak)i(bk) j(ck)n (2)

where X(W )
n denotes projected data in discriminant directions {ak} and {bk}, with statistically in-

dependent (ck)n across n.
As a first step, a manifold of possible {ak,bk} is identified using Bilinear Discriminant Analysis

(BLDA), extending the work of Dyrholm and Parra (2006). Any choice within this manifold gives
the same (optimal) classification. To select a specific {ak,bk} we require that the resulting {ck} are
independent across n. The resulting model can potentially identify relevant components in low SNR
by using the information available in the labels.

The model satisfies a factorization as in PARAFAC, but the parameter estimation satisfies dif-
ferent optimality criteria, namely discriminability and independence. Hence, we are proposing a
factorized model where the components are independently discriminant.

ICA in tensor models has been suggested before by, for example, Beckmann and Smith (2005);
unsupervised dimensionality reduction in tensorial data is reviewed by De Lathauwer and Van-
dewalle (2004); supervised learning in the context of ICA has been investigated by, for example,
Sakaguchi et al. (2002); however, our method uniquely enables supervised dimensionality reduction
and learning of ICA in a tensor model.

2. Bilinear Discriminant Analysis

The aim of Linear Discriminant Analysis (LDA) is to find a set of weights w and a threshold ε such
that the discriminant function

t(xn) = wTxn − ε (3)

maximizes a discrimination criterion, for example, in a two class problem, the data vector xn is
assigned to one class if t(xn) > 0 and to the other class if t(xn) < 0. Methods for determin-
ing the weights w, and the threshold ε, include Least-Squares Regression, Logistic Regression,
Fisher’s Linear Discriminant and the Single-Layer Perceptron (see, e.g., Bishop, 1996; McCulloch
and Searle, 2001). The simplicity of the LDA model (as opposed to more complex non-linear mod-
els) makes it a good candidate for classification in situations where training data is very limited (see,
e.g., Mørch et al., 1997), which is typically the case, for instance, in Brain Computer Interfacing
(BCI). Furthermore, LDA allows identification of class dependent features/components in the data
(Parra et al., 2005; Ye, 2005).

In this paper we address situations where data is available as a set of matrices {Xn} instead of
as a set of vectors {xn}. For example, in brain imaging modalities (e.g., fMRI or EEG) the columns
of Xn can represent space while its rows represent time. LDA is directly applicable in the form
(3) by letting the data vector xn be a stacking of the elements of the data matrix Xn, but, the data
matrix structure could potentially be exploited to obtain a more parsimonious representation of the
weight vector w. We consider situations where the data is not only given as a set of matrices, but
also, the generators of class-dependent variance in the data have low-rank contributions to each data
matrix Xn. In EEG for instance, an electrical current source which is spatially static in the brain will
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give a rank-one contribution to the spatiotemporal Xn (see also Makeig et al., 1996; Dyrholm and
Parra, 2006). In this paper we incorporate a low-rank assumption in LDA by generalizing (3) to the
following form

t(Xn) = Trace(UTXnV)− ε (4)

where U and V are parameter matrices which share the same number of columns. Let R denote the
number of columns in both U and V, then (4) is equivalent to (3) but with a rank-R constraint on w,
that is,

wTxn = ∑
i, j

(W)i j(Xn)i j where W = UVT. (5)

Since Xn is D×T -dimensional, the number of parameters in the rank-R model (4) is [R×(D+T )+
1] while the number of parameters in the unconstrained LDA model (3) is [D× T + 1]. Thus, if
R is kept moderately small compared to min{D,T}, improved generalization performance can be
expected in limited data, particularly in data where the low-rank generator assumption is fundamen-
tally valid. In this model the parameter R quantifies the number of generators (or current sources
for EEG).

Bilinear parameter space factorization has been suggested before in context of Fisher LDA
(Visani et al., 2005). In this paper we generalize maximum likelihood Logistic Regression to the
case of a bilinear factorization of w. The algorithm can be found in Appendix A. The proposed
algorithm has the advantage that it allows us to regularize the estimation and incorporate prior
assumptions about smoothness as described in Section 2.1. In Section 4.1 we test the performance of
this classifier in a benchmark data set from the BCI Competition 2003, and in Section 4.2 we extract
components from the EEG of six human subjects in a rapid serial visual presentation paradigm.

2.1 Smoothness Regularization using Gaussian Processes

For a factorized weight representation regularization can be applied in the column space of Xn and
in the row space separately. For instance, if knowledge is available about the smoothness in the
column space of Xn (e.g., spatial smoothness) or in its row space (e.g., temporal smoothness), such
knowledge can be incorporated by declaring a prior p.d.f. on the columns of U or V respectively
(Dyrholm and Parra, 2006). Spatial and temporal smoothness is typically a valid assumption in
EEG and fMRI, see, for example, Penny et al. (2005).

One way to incorporate prior assumptions in the estimation is through the posterior distribution
of the weights. Here, we propose to estimate U and V through maximization of the posterior. Let
uk denote the kth column of U, and let vk denote the kth column of V. We declare Gaussian Process
priors for uk and vk, that is, assume uk ∼ N (0,Ku) and vk ∼ N (0,Kv), where the covariance
matrices Ku and Kv define the degree and form of smoothness of uk and vk respectively. This is
done through choice of covariance function: Let r be a spatial or temporal measure in context of Xn.
For instance r is a measure of spatial distance between data acquisition sensors, or a measure of time
difference between two samples in the data. Then a covariance function k(r) expresses the degree
of correlation between any two points with that given distance. For example, a class of covariance
functions that has been suggested for modelling smoothness in physical processes, the Matérn class,
is given by

kMatérn(r) =
21−ν

Γ(ν)

(√
2νr
l

)ν

B

(√
2νr
l

)

(6)
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where l is a length-scale parameter, and ν is a shape parameter. The parameter l can roughly be
thought of as the distance within which points are significantly correlated (Rasmussen and Williams,
2006). The parameter ν defines the degree of ripple. The covariance matrix K is then built by
evaluating the covariance function

(K)i j = σ2 kMatérn(ri j)

where ri j is exemplified by the distance between sensor-i and sensor- j, or time difference between
sample-i and sample- j, and σ2 defines the overall parameter scale. Note that there is a scaling
ambiguity between u and v, and the variance parameter σ2 can thus be kept equal for u and v.
B(·) is a modified Bessel function (Rasmussen and Williams, 2006). The equations for regularized
(maximum posterior) estimation of U and V are deferred to Appendix A.1.

3. Subspace Factorization with Labeled Mode Independence

Applying the Bilinear Discriminant Analysis algorithm of the appendix to classify matrices Xn will
deliver estimates Û and V̂. Note, however, that these estimates will be subject to an arbitrary linear
column space transformation, since

Trace(ÛTXnV̂) = Trace(G−1GÛTXnV̂)

= Trace((ÛGT)TXn(V̂G−1))

= Trace(ŨTXnṼ)

(7)

where G ∈ IRR×R is arbitrary with full rank, and we have implicitly defined Ũ ≡ ÛGT and Ṽ ≡
V̂G−1. Due to this ambiguity, the columns of Û will be arbitrarily mixed, and the columns of V̂ will
be mixed correspondingly (transposed inverse mix). We propose to enhance the task relevant activity
by projecting the data using {Ũ, Ṽ} (similar to the argument of the Trace operator in Equation 7),
hence we need a meaningful way to estimate G. As we will show, the projection can be defined
along with a criterion for estimating G such that the entities Ũ and Ṽ become rather meaningful.

First, we define the projection that uses Ũ and Ṽ, that is, assuming G is given. Define W̃r as the
outer product of the rth columns of Ũ and Ṽ. Least-squares projection of a data matrix Xn onto the
matrix space W = span{W̃r} is given by

X̃(W )
n = vec-1 [(Ṽ |⊗| Ũ)(Ṽ |⊗| Ũ)+ vec(Xn)

]

(8)

where |⊗| denotes the columnwise Kronecker product which is also known as the Khatri-Rao product
(Bro, 1998), (·)+ denotes Moore-Penrose (least-squares pseudo) inverse, and vec(·) produces a
vector by stacking the columns of its matrix argument (and vec-1 does the opposite). That is, each
data trial is projected to the best (in terms of squared residuals) rank-R representation available
through the basis {W̃r} (the basis is of size R and each W̃r is rank-one).

Next, we define a criterion for estimating G. We design the solution so that the dimensions of
the projection act as independently as possible across trials. Our reasoning behind this choice is
that different cortical processes might respond to the same stimuli, and are hence not temporally
independent, but the trial-to-trial variability between the different cortical networks might satisfy
the independence criterion better. That is, by making the component activations as independent
as possible across trials, we hope to be able to segregate activity arising from different cortical
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networks into separate sets of components. The projection (8) can be rewritten in terms of a precise
definition of ‘component activations’ {ŝn},

X̃(W )
n = vec-1 [Ãs̃n

]

where Ã ≡ (V̂G−1 |⊗| ÛGT) and s̃n ≡ Ã+ vec(Xn)

where the R×N elements of {s̃n} are assumed i.i.d. Hence, determining G is essentially an ICA
problem where the ‘mixing’ matrix A is parameterized in terms of the elements of G (given Û
and V̂). The algorithm for gradient based maximum likelihood estimation of G is deferred to Ap-
pendix B. With an estimate of G, and hence unambiguous estimates of Ũ ≡ ÛGT and Ṽ ≡ V̂G−1,
the projection (8) can be written

(X̃(W )
n )i j =

R

∑
r=1

(Ũ)ir(Ṽ) jr(s̃n)r (9)

The structure of (9) is identical to that of PARAFAC (1), with R = K, ak being the kth column of Ũ,
bk being the kth column of Ṽ, and (ck)n being (s̃n)k, hence we have derived (2) which we will refer
to as a Bilinear Discriminant Component Analysis (BDCA) model.

4. Experiments

We conducted two experiments on real EEG data. The first experiment benchmarks the classification
performance of our BLDA method with smoothness regularization against state-of-the art methods
in a published data set. In the second experiment we extract meaningful components, using BDCA,
and illustrate the usefulness of the method in terms of interpretability.

4.1 Experiment I: Classification Benchmark with ‘The BCI Competition 2003’

The EEG data set in this experiment was made available though ‘The BCI Competition 2003’
(Blankertz et al., 2002, 2004, Data Set IV). The 28 channel EEG was recorded from a single subject
performing a ‘self-paced key typing’, that is, pressing with the index and little fingers corresponding
keys in a self-chosen order and timing. Typing was done at an average speed of 1 key per second.
Trial matrices were extracted by epoching the data starting 630ms before each key-press. A total of
416 epochs were recorded, each of length 500ms. For the competition, the first 316 epochs were to
be used for classifier training, while the remaining 100 epochs were to be used as a test set. Data
were recorded at 1000 Hz with a pass-band between 0.05 and 200 Hz, then downsampled to 100Hz
sampling rate.

4.1.1 TRAINING AND RESULTS

We tuned the smoothness prior parameters using cross validation on the training set using only a
single component, that is, R=1. We used the Matérn class of covariance functions for incorporating
smoothness regularization in the model c.f. Section 2.1. Temporal smoothness was implemented
by letting ri j equal the normalized temporal latency |i− j| between samples i and j. The relative
3D electrode coordinates were looked up from a standard table provided by Delorme and Makeig
(2004), and spatial smoothness was implemented by letting ri j equal the Euclidean distance between
electrodes i and j in a normalized space where the human head was assumed spherical with radius
0.5. The parameters of the Gaussian Process priors were picked to maximize the area under the ROC
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Std.dev. σ Matérn scale l Matérn shape ν Cross valid.
Experiment space time space time space time AUC

BCI Competition 2003 0.5 0.5 0.1 15 100 2.5 0.91
RSVP 0.1 0.1 0.1 10 100 2.5 0.95

Table 1: The parameter values for the Matérn covariance function (6) are summarized in this table.
The values were found by optimizing AUC using five-fold cross validation. Note that the
scale parameter l is defined spatially on a head with unitless radius of 0.5, and defined
temporally in terms of samples (l = 15 corresponds to 150ms for the BCI Competition
data, while l = 10 corresponds to 78ms for the RSVP data).

curve (‘AUC’, see Fawcett, 2003) using five-fold cross validation. The resulting set of parameter
values are summarized in the first row of Table 1, and the resulting number of components was
R = 1.

Benchmark performance was measured on the test set which had not been used during either
training or cross validation. The number of misclassified trials in the test set was 21 which places
our method on a new third place given the result of the competition which can be found online at
http://ida.first.fraunhofer.de/projects/bci/competition_ii/results/index.html
(Blankertz et al., 2004). These benchmark results indicate that classification of single-trial EEG is
indeed a hard problem. Hence, our method works as a classifier producing a state-of-the art result in
this hard data set. We estimated the SNR of this discriminating signal to SNR ≈ 10log10(P‖/P⊥) =
−43dB, where P‖ is the power of the projected signal, and P⊥ is the power in the orthogonal space.
The achieved classification performance supports the validity of the bilinear weight space factoriza-
tion in EEG.

4.2 Experiment II: Bilinear Discriminant Component Analysis of Real EEG

We applied the BDCA method in real EEG data which was recorded while the human subjects
were stimulated with a sequence of images presented at a rate of ten images per second. Each
subject attended to a computer monitor where most of the images where ‘distractors’, that is, of no
particular interest. Rare but anticipated ‘target’ images were to be detected by the subject. This
paradigm is also known as Rapid Serial Visual Presentation (RSVP) (Thorpe et al., 1996; Gerson
et al., 2005). In this experiment the subject was instructed to omit any overt response to the targets
but simply note its occurrence. The images used here were identical to those of Gerson et al.
(2005). Sixty-four EEG channels were recorded at 2048Hz, re-referenced to average reference
(one channel removed to obtain full row-rank data), filtered (for anti-aliasing) and downsampled to
128Hz sampling rate, and filtered again with a pass-band between 0.5Hz and 50Hz. All filtering
was applied forwards and backwards in time to avoid introducing group delay. Trial matrices of
dimension (D,T ) = (64,64) were extracted by epoching (500ms per epoch) the data in alignment
with image stimulus. The number of recorded target/distractor trials was roughly 60/3000 for
training and 40/2000 for testing, but varied slightly between subjects.
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Number of Classifier performance (AUC)
Subject components R Train Cross-Valid. Test

1 1 / 2 0.99 / 1.00 0.95 / 0.97 N.A.
2 1 / 2 0.95 / 0.97 0.92 / 0.93 0.84 / 0.87
3 1 / 2 0.91 / 0.95 0.84 / 0.83 0.85 / 0.92
4 1 / 2 0.96 / 0.99 0.91 / 0.93 0.83 / 0.85
5 1 / 2 0.92 / 0.95 0.88 / 0.87 0.92 / 0.92
6 1 / 2 0.80 / 0.90 0.65 / 0.74 0.67 / 0.85

mean 1 / 2 0.92 / 0.96 0.86 / 0.88 0.82 / 0.88

Table 2: Summary of classification performance of classifiers for all subjects. Classifiers with
two components generally perform better than single-component classifiers in both cross-
validation and test.

4.2.1 TRAINING AND RESULTS

We tuned the parameters using cross validation on the training set from a single subject, again using
R = 1 and assuming standard electrode coordinates c.f. Section 4.1.1. The resulting set of parameter
values are summarized in the second row of Table 1. For this subject, the cross validation AUC was
0.95, and corresponded to roughly 0.11 false positive rate and 0.89 true positive rate, indicating that
the algorithm was successful in estimating a discriminating direction which was highly relevant for
the experimental task. This finding underlines the usefulness of the method as a single-trial classifier
for EEG.

Next, we trained classifiers for all subjects keeping the parameters fixed to the values in Table 1.
The training, cross-validated, and test performances are reported in Table 2. In general the two-
component classifiers performed slightly better than the single-component classifiers.

The G matrices (one for each subject) were estimated using the algorithm in Appendix B. Fig-
ure 1 shows a single BDCA component for each subject. Clearly, there are inter-subject variability in
the spatial topographies and in the temporal profiles, however, all temporal profiles exhibit positive
peaks at around 125ms and 300ms after target stimulus, and negative peak at around 200ms. The
peak at 300ms in the temporal profile is in agreement with the conventional P300 which is typically
observed with a rare target stimulus (Gerson et al., 2005; Parra et al., 2005). The early peak (here
around 125ms) had likewise been reported previously for the RSVP paradigm (Thorpe et al., 1996).
The spatial topographies shown in Figure 1 are rather complex. This may simply represent noise,
but it is also possible that BDCA, using additional trials and R > 2, could decompose the complex
rank-one patterns into more than two components with localized, that is, ‘simpler’, topography.

Two of the subjects (4 and 6) showed another interesting component with a broad spatial projec-
tion located slightly below the center on the scalp, see Figure 2. The component time courses were
dominated by a 20Hz rhythm which seemed to modulate in amplitude around 200–300ms. This
feature had not been reported before for this paradigm and underlined the usefulness of the method
as a hypothesis generating tool. To validate the new hypothesis, we measured the single-component
classification performances on the test set for each subject, that is, performed classification based
only on the (subject specific) component shown in Figure 2. The test performances were 0.71 AUC
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Figure 1: For each subject, one of the (spatial) ak vectors is shown topographically on a cartoon
head, and the corresponding (temporal) bk vector is shown right next to it. The sign
ambiguity between component topographies and time courses has been set so that the
P300 peak has a positive projection to the center in the back of the cartoon head. All
temporal profiles exhibit positive peaks at around 100ms and 350ms (P300) after target
stimulus, and negative peak at around 200ms.
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Figure 2: Two of the subjects showed a component with a broad spatial projection located slightly
below center on the scalp. The component time courses shown here have that in common
that they were dominated by a 20Hz rhythm which seemed to modulate in amplitude
around 200–300ms.
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for Subject 4, and 0.87 AUC for subject 6 which indicated that the newly identified components
were indeed associated with target detection.

Finally we would like to point out that the resulting smoothness (e.g., the time courses in Fig-
ure 1) is not only affected by the choice of regularization parameters but also by the data and the
number of trials. If more data is available that supports a deviation from the prior smoothness
assumption the resulting time courses can and will be more punctuated in time.

5. Conclusion and Discussion

Bilinear Discriminant Analysis (BLDA) can give better classification performance in situations
where a bilinear decomposition of the parameter matrix can be assumed as in (5). Such parameter
matrix decompositions might prove reasonable in situations were component analysis according to
model (2) is meaningful. A ‘component’ in this model is considered to be all the activity that can
be associated with a common time course. One such component contributes to a rank-one subspace
in data Xn. If separate spatial distributions have separate time courses the model assumes that these
contribution add up linearly. For instance, when applying this on fMRI data the implicit assumption
would be that the BOLD signal originating from different neuronal populations is additive.

We presented a method for BLDA which allows smoothness regularization for better general-
ization performance in data sets with limited examples. This step was motivated by application to
functional brain imaging were the number of examples is typically very limited compared to the
data space dimensionality. The proposed BLDA method was verified in a benchmark data set, and
the results were highly competitive, putting the new method on a place between the official second
and third places of the competition.

We showed that BLDA can yield a data subspace factorization which makes it a useful tool for
supervised extraction of components as opposed to simply a tool for classifying data matrices. We
identified some essential ambiguities in such supervised subspace component decomposition and
proposed to resolve them by assuming independence across the labeled mode (i.e., across trials in
the EEG examples). The new method (BDCA: Bilinear Discriminant Component Analysis) thus
combines BLDA with ICA and was applied to real EEG data from six human subjects. The results
were in agreement with literature on the given experiment. Furthermore, a hypothesis was generated
due to some components that had not been reported previously.

Model selections (i.e., finding the number of components) was based solely on classification.
Then, given the optimal number of components, ICA was performed as a separate step. Future
work will consider the combined likelihood to select a model that optimizes simultaneously both
discrimination and independence.

Though the algorithm was motivated by functional brain imaging data (with space, time, and
labeled trials as its dimensions) it should be applicable for any data set that records a matrix rather
than a vector for every repetition. Examples include repetitions of spectro-temporal data such as the
acoustic spectrograms of several utterances of words; multiple samples of spectro-spatial data such
as multispectral images of the same areas; or spatio-temporal data such as video clips with multiple
renditions of the same actions. Also, the method readily extends to the case of multiple classes
or regression with continuous dependent variables. With multiple class labels one may consider
multinomial logistic regression. When the dependent variables are continuous rather than discrete
one can use a bilinear model with a unit link function to derive the corresponding bilinear regression.
We are currently pursuing these topics in the context of EEG and fMRI.

1106



BILINEAR DISCRIMINANT COMPONENT ANALYSIS

Acknowledgments

The EEG topographies in this paper were plotted using the Matlab toolbox “EEGLAB” (Delorme
and Makeig, 2004).

Appendix A. Maximum-Likelihood Estimation of U and V

Parameter estimation in a Logistic Regression model is often done though iterative maximum like-
lihood estimation using Newton-Raphson updates (McCulloch and Searle, 2001). In line with tra-
ditional Logistic Regression we assume the labels independent and Bernoulli distributed. The log
likelihood is then given by

l(w0,{ur,vr}) =
N

∑
n=1

yn(w0 +
R

∑
r=1

uT
r Xnvr)− log(1+ ew0+∑R

r=1 uT
r Xnvr) (10)

where yn is the nth label, ur is the rth column vector of U, vr is the rth column vector of V, and w0

is a scalar that enables a possible activation offset in the logistic function. Define

π(Xn) ≡ E[yn] =
1

1+ e−(w0+∑R
r=1 uT

r Xnvr)
.

hen, the gradient of (10) is given by

∂l
∂w0

= ∑
n

yn −π(Xn),

∂l
∂ur

= ∑
n

Xnvr[yn −π(Xn)],

∂l
∂vT

r
= ∑

n
uT

r Xn[yn −π(Xn)],

and the Hessian matrix entries are given by

∂2l
∂w0∂w0

= −∑
n

π(Xn)[1−π(Xn)],

∂2l
∂w0∂ur

= −∑
n

Xnvrπ(Xn)[1−π(Xn)],

∂2l
∂w0∂vT

r
= −∑

n
uT

r Xnπ(Xn)[1−π(Xn)],

∂2l
∂ur∂(uk′) j

= −∑
n

Xnvr(Xnvk′) jπ(Xn)[1−π(Xn)],

∂2l
∂vT

r ∂(vk′) j
= −∑

n
uT

r Xn(uT
k′Xn) jπ(Xn)[1−π(Xn)],
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∂2l

∂ur∂(vT
k′) j

= ∑
n

δk,k′(Xn): j[yn −π(Xn)]−Xnvr(uT
k′Xn) jπ(Xn)[1−π(Xn)],

where δk,k′ = 1 for k = k′ and zero otherwise. We provide no guarantee that the Hessian matrix
will be definite, and in our experiments in this paper we obtain ML estimates using the so-called
‘Damped Newton’ optimization scheme which will take regularized Newton steps using adaptive
regularization of the Hessian matrix (Bishop, 1996; Nielsen, 2005).

A.1 Smoothness Regularization with Gaussian Processes

The log posterior is equal to the log likelihood plus evaluation of the log prior, that is,

logp(w0,{ur,vr}|X) = l(w0,{ur,vr})+ logp(w0,{ur,vr})− logp(X)

where X denotes data in all the trials available. Here we consider the maximum of the posterior
(MAP) estimate, that is,

(w0,{ur,vr})MAP = arg max
w0,{ur,vr}

l(w0,{ur,vr})+ logp(w0,{ur,vr})

with independent priors

logp(w0,{ur,vr}) = logp(w0)+∑
r

logp(ur)+∑
r

logp(vr). (11)

For iterative MAP estimation, the terms for the Gaussian prior, to be inserted in (11), are (here
shown for ur)

logp(ur) = −dimur

2
log(2π)− 1

2
log(detK)− 1

2
uT

r K−1ur

where dimur = D (or likewise dimvr = T or dimw0 = 1) (see also Rasmussen and Williams, 2006).
The extra terms, to be added to the ML terms, are; for the gradient

∂ logp(ur)

∂ur
= −K−1ur

and for the Hessian
∂2 logp(ur)

∂ur∂(ur) j
= −K−1e j

where e j is the jth unit vector. These expressions (and similar for w0 and vr) thus augment the terms
in the maximum likelihood algorithm above.

Appendix B. Equations for Maximum-Likelihood Estimation of G

The log likelihood is given by

logp(Xn|V̂G−1, ÛGT) = −N
2

logdet[ATA]+∑
n

logp(ŝn)

see also Dyrholm et al. (2006) and http://www.imm.dtu.dk/˜mad/papers/madrix.pdf. We
choose the component activation prior pdf p(·) = 1/[πcosh(·)], as proposed by Bell and Sejnowski
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(1995), which is appropriate for super-Gaussian independent activations (see also Lee et al., 1999).
This choice however might not fit the scaling of the data very well so we parameterize the activation
pdf and rewrite the likelihood

logp(Xn|V̂G−1, ÛGT,α) = −N
2

logdet[ATA]+∑
n

logp(ẑn/α2)

where ẑk(n) = (ŝk(n)−E[ŝk(n)])/
√

var[ŝk(n)]. Again, we use Damped Newton optimization which
will take regularized Newton steps using adaptive regularization of the Hessian matrix (Bishop,
1996; Nielsen, 2005). We do not actually compute the Hessian but use the outer product approxi-
mation to the Hessian given by averaging gradient products across trials (see also Bishop, 1996).

The gradient of the determinant term of the log likelihood, with respect to G, is given by

∂− N
2 logdet[ATA]

∂(G)i j
= −N Trace

{

(A+)T
(

∂A
∂(G)i j

)T
}

where
∂A

∂(G)i j
= −V(G−1eieT

j G−1) |⊗|UGT +VG−1 |⊗|Ue jeT
i

The gradient of the sum term of the log likelihood, with respect to G, is given by

∂ logp(A+ vec(Xn)/α2)

∂(G)i j
= [ψ(ŝn/α2)]T

∂ŝn

∂(G)i j
/α2

where

ψ(·) =
p′(·)
p(·) = − tanh(·)

and
∂ŝn

∂(G)i j
=

(

∂(ATA)−1

∂(G)i j
AT +(ATA)−1 ∂AT

∂(G)i j

)

vec(Xn)

where
∂(ATA)−1

∂(G)i j
= −(ATA)−1 Trace

{

∂AT

∂(G)i j
A+AT ∂A

∂(G)i j

}

(ATA)−1.
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