
Journal of Machine Learning Research 8 (2007) 2233-2264 Submitted 9/06; Revised 9/07; Published 10/07

Online Learning of Multiple Tasks with a Shared Loss

Ofer Dekel OFERD@CS.HUJI.AC.IL

School of Computer Science and Engineering
The Hebrew University
Jerusalem, 91904, Israel

Philip M. Long PLONG@GOOGLE.COM

Yoram Singer SINGER@GOOGLE.COM

Google Inc.
1600 Amphitheater Parkway
Mountain View, CA 94043, USA

Editor: Peter Bartlett

Abstract
We study the problem of learning multiple tasks in parallel within the online learning framework.
On each online round, the algorithm receives an instance for each of the parallel tasks and responds
by predicting the label of each instance. We consider the case where the predictions made on each
round all contribute toward a common goal. The relationship between the various tasks is defined
by a global loss function, which evaluates the overall quality of the multiple predictions made on
each round. Specifically, each individual prediction is associated with its own loss value, and then
these multiple loss values are combined into a single number using the global loss function. We
focus on the case where the global loss function belongs to the family of absolute norms, and
present several online learning algorithms for the induced problem. We prove worst-case relative
loss bounds for all of our algorithms, and demonstrate the effectiveness of our approach on a large-
scale multiclass-multilabel text categorization problem.
Keywords: online learning, multitask learning, multiclass multilabel classiifcation, perceptron

1. Introduction

Multitask learning is the problem of learning several related problems in parallel. In this paper, we
discuss the multitask learning problem in the online learning context, and focus on the possibility
that the learning tasks contribute toward a common goal. Our hope is that we can benefit from
learning the tasks jointly, as opposed to learning each task independently.

For concreteness, we focus on the task of binary classification, and note that our algorithms
and analysis can be adapted to regression and multiclass problems using ideas in Crammer et al.
(2006). In the online multitask classification setting, we are faced with k separate online binary
classification problems, which are presented to us in parallel. The online learning process takes
place in a sequence of rounds. At the beginning of round t, the algorithm observes a set of k
instances, one for each of the binary classification problems. The algorithm predicts the binary label
of each of the k instances, and then receives the k correct labels. At this point, each of the algorithm’s
predictions is associated with a non-negative loss, and we use `t = (`t,1, . . . , `t,k) to denote the k-
coordinate vector whose elements are the individual loss values associated with the respective tasks.
Let L : R

k → R+ be a predetermined global loss function, which is used to combine the individual

c©2007 Ofer Dekel, Philip M. Long and Yoram Singer.

DEKEL, LONG AND SINGER

loss values into a single number, and define the global loss attained on round t to be L(`t). At
the end of this online round, the algorithm may use the k new labeled examples it has obtained to
improve its prediction mechanism for the rounds to come. The goal of the learning algorithm is to
suffer the smallest possible cumulative loss over the course of T rounds, ∑T

t=1 L(`t).
The choice of the global loss function captures the overall consequences of the individual pre-

diction errors, and therefore how the algorithm should prioritize correcting errors. For example, if
L(`t) is defined to be ∑k

j=1 `t, j then the online algorithm is penalized equally for errors on each
of the tasks; this results in effectively treating the tasks independently. On the other hand, if
L(`t) = max j `t, j then the algorithm is only interested in the worst mistake made on each round.
We do not assume that the data sets of the various tasks are similar or otherwise related. Moreover,
the examples presented to the algorithm for each of the tasks may come from completely different
domains and may possess different characteristics. The multiple tasks are tied together by the way
we define the objective of our algorithm.

In this paper, we focus on the case where the global loss function is an absolute norm. A norm
‖ ·‖ is a function such that ‖v‖> 0 for all v 6= 0, ‖0‖= 0, ‖λv‖= |λ|‖v‖ for all v and all λ ∈ R, and
which satisfies the triangle inequality. A norm is said to be absolute if ‖v‖ = ‖|v|‖ for all v, where
|v| is obtained by replacing each component of v with its absolute value. The most well-known
family of absolute norms is the family of p-norms (also called Lp norms), defined for all p ≥ 1 by

‖v‖p =
(n

∑
j=1

|v j|p
)

1/p .

A special member of this family is the L∞ norm, which is defined to be the limit of the above when
p tends to infinity, and can be shown to equal max j |v j|. A less known family of absolute norms is
the family of r-max norms. For any integer r between 1 and k, the r-max norm of v ∈ R

k is the sum
of the absolute values of the r absolutely largest components of v. Formally, the r-max norm is

‖v‖r-max =
r

∑
j=1

|vπ(j)| where |vπ(1)| ≥ |vπ(2)| ≥ . . . ≥ |vπ(k)| . (1)

Note that both the L1 norm and L∞ norm are special cases of the r-max norm, as well as being
p-norms. Actually, the r-max norm can be viewed as a smooth interpolation between the L1 norm
and the L∞ norm, using Peetre’s K-method of norm interpolation (see Appendix A for details).

Since the global loss functions we consider in this paper are norms, the global loss equals zero
only if `t is itself the zero vector. Furthermore, decreasing any individual loss can only decrease
the global loss function. Therefore, the simplest solution to our multitask problem is to learn each
task individually, and minimize the global loss function implicitly. The natural question which is at
the heart of this paper is whether we can do better than this. Our answer to this question is based
on the following fundamental view of online learning. On every round, the online learning algo-
rithm balances a trade-off between retaining the information it has acquired on previous rounds and
modifying its hypothesis based on the new examples obtained on that round. Instead of balancing
this trade-off individually for each of the learning tasks, we can balance it jointly, for all of the
tasks. By doing so, we allow ourselves to make a big modification to one of the k hypotheses at the
expense of the others. This additional flexibility enables us to directly minimize the specific global
loss function we have chosen to use.

To motivate and demonstrate the practicality of our approach, we begin with a handful of con-
crete examples.

2234

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

Multiclass Classification using the L∞ Norm Assume that we are faced with a multiclass classi-
fication problem, where the size of the label set is k. One way of solving this problem is by learning
k binary classifiers, where each classifier is trained to distinguish between one of the classes and
the rest of the classes. This approach is often called the one-vs-rest method. If all of the binary
classifiers make correct predictions, then one of these predictions should be positive and the rest
should be negative. If this is the case, we can correctly predict the corresponding multiclass label.
However, if one or more of the binary classifiers makes an incorrect prediction, we can no longer
guarantee the correctness of our multiclass prediction. In this sense, a single binary mistake on
round t is as bad as many binary mistakes on round t. Therefore, we should only care about the
worst binary prediction on round t, and we can do so by choosing the global loss to be ‖`t‖∞.

Another example where the L∞ norm comes in handy is the case where we are faced with a
multiclass problem where the number of labels is huge. Specifically, we would like the running
time and the space complexity of our algorithm to scale logarithmically with the number of labels.
Assume that the number of different labels is 2k, enumerate these labels from 0 to 2k − 1, and
consider the k-bit binary representation of each label. We can solve the multiclass problem by
training k binary classifiers, one for each bit in the binary representation of the label index. If all k
classifiers make correct predictions, then we have obtained the binary representation of the correct
multiclass label. As before, a single binary mistake is devastating to the multiclass classifier, and
the L∞ norm is the most appropriate means of combining the k individual losses into a global loss.

Vector-Valued Regression using the L2 Norm Let us deviate momentarily from the binary clas-
sification setting, and assume that we are faced with multiple regression problems. Specifically,
assume that our task is to predict the three-dimensional position of an object. Each of the three co-
ordinates is predicted using an individual regressor, and the regression loss for each task is simply
the absolute difference between the true and the predicted value on the respective axis. In this case,
the most appropriate choice of the global loss function is the L2 norm, which reduces the vector of
individual losses to the Euclidean distance between the true and predicted 3-D targets. (Note that
we take the actual Euclidean distance and not the squared Euclidean distance often minimized in
regression settings).

Error Correcting Output Codes and the r-max Norm Error Correcting Output Codes (ECOC)
is a technique for reducing a multiclass classification problem to multiple binary classification prob-
lems (Dietterich and Bakiri, 1995). The power of this technique lies in the fact that a correct mul-
ticlass prediction can be made even when a few of the binary predictions are wrong. The reduction
is represented by a code matrix M ∈ {−1,+1}s×k, where s is the number of multiclass labels and
k is the number of binary problems used to encode the original multiclass problem. Each row in M
represents one of the s multiclass labels, and each column induces one of the k binary classification
problems. Given a multiclass training set {(xi,yi)}m

i=1, with labels yi ∈ {1, . . . ,s}, the binary prob-
lem induced by column j is to distinguish between the positive examples {(xi,yi : Myi, j = +1} and
negative examples {(xi,yi : Myi, j = −1}. When a new instance is observed, applying the k binary
classifiers to it gives a vector of binary predictions, ŷ = (ŷ1, . . . , ŷk) ∈ {−1,+1}k. We then predict
the multiclass label of this instance to be the index of the row in M which is closest to ŷ in Hamming
distance.

Define the code distance of M, denoted by d(M), to be the minimal Hamming distance between
any two rows in M. It is straightforward to show that a correct multiclass prediction can be guaran-
teed as long as the number of binary mistakes made on this instance is less than d(M)/2. In other

2235

DEKEL, LONG AND SINGER

words, making d(M)/2 binary mistakes is as bad as making more binary mistakes. Let r = d(M)/2.
If the binary classifiers are trained in the online multitask setting, we should only be interested in
whether the r’th largest loss is less than 1, which would imply that a correct multiclass prediction
can be guaranteed. Regretfully, taking the r’th largest element of a vector (in absolute value) does
not constitute a norm and thus does not fit in our setting. However, the r-max norm, defined in
Equation (1), can serve as a good proxy.

In this paper, we present three families of online multitask algorithms. Each family includes
algorithms for every absolute norm. All of the algorithms presented in this paper follow the gen-
eral skeleton outlined in Figure 1. Specifically, all of our algorithms use linear threshold functions
as hypotheses and an additive update rule. The first two families are multitask extensions of the
Perceptron algorithm (Rosenblatt, 1958; Novikoff, 1962), while the third family is closely related
to the Passive-Aggressive classification algorithm (Crammer et al., 2006). Incidentally, all of the
algorithms presented in this paper can be easily transformed into kernel methods. For each algo-
rithm, we prove a relative loss bound, namely, we show that the cumulative global loss attained by
the algorithm is comparable to the cumulative loss attained by any fixed set of k linear hypotheses,
even defined in hindsight.

Much previous work on theoretical and applied multitask learning has focused on how to take
advantage of similarities between the various tasks (Caruana, 1997; Heskes, 1998; Evgeniou et al.,
2005; Baxter, 2000; Ben-David and Schuller, 2003; Tsochantaridis et al., 2004); in contrast, we
do not assume that the tasks are in any way related. Instead, we consider how to take account of
shared consequences of errors. Kivinen and Warmuth (2001) generalized the notion of matching
loss (Helmbold et al., 1999) to multi-dimensional outputs. Their construction enables analysis of
algorithms that perform multi-dimensional regression by composing linear functions with a variety
of transfer functions. It is not obvious how to directly use their work to address the problems that
fall into our setting. An analysis of the L∞ norm of prediction errors is implicit in some past work of
Crammer and Singer (2001, 2003). The algorithms presented in Crammer and Singer (2001, 2003)
were devised for multiclass categorization with multiple predictors (one per class) and a single
instance. The present paper extends the multiclass prediction setting to a broader framework, and
tightens the analysis. In contrast to the multiclass prediction setting, the prediction tasks in our
setting are tied solely through a globally shared loss. When k, the number of multiple tasks, is set
to 1, two of the algorithms presented in this paper as well as the multiclass algorithms in Crammer
and Singer (2001, 2003) reduce to the PA-I algorithm, presented in Crammer et al. (2006). Last, we
would like to mention in passing that a few learning algorithms for ranking problems decompose the
ranking problem into a preference learning task over pairs of instances (see for instance Herbrich
et al., 2000; Chapelle and Harchaoui, 2005). The ranking losses employed by such algorithms are
typically defined as the sum over pair-based losses. Our setting generalizes such approaches for
ranking learning by employing a shared loss which is defined through a norm over the individual
pair-based losses.

This paper is organized as follows. In Section 2 we present our problem more formally and
prove a key lemma which facilitates the analysis of our algorithms. In Section 3 we present our
first family of algorithms, which works in the finite-horizon online setting. In Section 4 we extend
the first family of algorithms to the infinite-horizon online setting. Then, in Section 5 we present
our third family of algorithms, and show that it shares the analyses of both previous families. The
third family of algorithms requires solving a small optimization problem on each online round, and
is therefore called the implicit update family of algorithms. In Section 6 and Section 7 we describe

2236

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

input: norm ‖ · ‖
initialize: w1,1 = . . . = w1,k = (0, . . . ,0)

for t = 1,2, . . .

• receive xt,1, . . . ,xt,k

• predict sign(wt, j ·xt, j) [1 ≤ j ≤ k]

• receive yt,1, . . . ,yt,k

• calculate `t, j =
[
1− yt, jwt, j ·xt, j

]

+
[1 ≤ j ≤ k]

• suffer loss `t = ‖(`t,1, . . . , `t,n)‖
• update wt+1, j = wt, j + τt, jyt, jxt, j [1 ≤ j ≤ k]

Figure 1: A general skeleton for an online multitask classification algorithm. A concrete algorithm
is obtained by specifying the values of τt, j.

efficient algorithms for solving the implicit update in the case where the global loss is defined by
the L2 norm or the r-max norm. Experimental results are provided in Section 8 and we conclude the
paper in Section 9 with a short discussion.

2. Online Multitask Learning with Additive Updates

We begin by presenting the online multitask classification setting more formally. We are presented
with k online binary classification problems in parallel. The instances of each task are drawn from
separate instance domains, and for concreteness we assume that the instances of task j are all vectors
in R

n j . As stated in the previous section, online learning is performed in a sequence of rounds.
On round t, the algorithm observes k instances, (xt,1, . . . ,xt,k) ∈ R

n1 × . . .×R
nk . The algorithm

maintains k separate classifiers in its internal memory, one for each of the multiple tasks, which are
updated from round to round. Each of these classifiers is a margin-based linear predictor, defined
by a weight vector. We denote the weight vector used on round t to define the j’th predictor by wt, j

and note that wt, j ∈R
n j . The algorithm uses its classifiers to make k binary predictions, ŷt,1, . . . , ŷt,k,

where ŷt, j = sign(wt, j · xt, j). After making these predictions, the correct labels of the respective
tasks, yt,1, . . . ,yt,k, are revealed and each one of the predictions is evaluated. In this paper we focus
on the hinge-loss function as the means of penalizing incorrect predictions. Formally, the loss
associated with the j’th task is defined to be

`t, j =
[
1− yt, jwt, j ·xt, j

]

+
,

where [a]+ = max{0,a}. As previously stated, the global loss is then defined to be ‖`t‖, where
‖ · ‖ is a predefined absolute norm. Finally, the algorithm applies an update to each of the online
hypotheses, and defines the vectors wt+1,1, . . . ,wt+1,k. All of the algorithms presented in this paper
use an additive update rule, and define wt+1, j to be wt, j + τt, jyt, jxt, j, where τt, j is a scalar. The
algorithms only differ from one another in the specific way in which τt, j is set. For convenience, we

2237

DEKEL, LONG AND SINGER

denote τt = (τt,1, . . . ,τt,k). The general skeleton followed by all of our online algorithms is given in
Figure 1.

A concept of key importance in this paper is the notion of dual norms (Horn and Johnson, 1985).
Any norm ‖ · ‖ defined on R

n, has a dual norm, also defined on R
n, denoted by ‖ · ‖∗ and given by

‖u‖∗ = max
v∈Rn

u ·v
‖v‖ = max

v∈Rn :‖v‖=1
u ·v . (2)

The dual of a p-norm is itself a p-norm, and specifically, the dual of ‖ ·‖p is ‖ ·‖q, where 1
q + 1

p = 1.
The dual of ‖ · ‖∞ is ‖ · ‖1 and vice versa. In Appendix A we prove that the dual of ‖v‖r-max is

‖u‖∗r-max = max

{

‖u‖∞,
‖u‖1

r

}

. (3)

An important property of dual norms, which is an immediate consequence of Equation (2), is that
for any u,v ∈ R

n it holds that
u ·v ≤ ‖u‖∗ ‖v‖ . (4)

If ‖ · ‖ is a p-norm then the above is known as Hölder’s inequality, and specifically, if p = 2 it is
called the Cauchy-Schwartz inequality. Two additional properties which we rely on are that the dual
of the dual norm is the original norm (see for instance Horn and Johnson, 1985), and that the dual
of an absolute norm is also an absolute norm. As previously mentioned, to obtain concrete online
algorithms, all that remains is to define the update weights τt, j for each task on each round. The
different ways of setting τt, j discussed in this paper all share the following properties:

• boundedness: ∀ 1 ≤ t ≤ T ‖τt‖∗ ≤C for some predefined parameter C

• non-negativity: ∀ 1 ≤ t ≤ T, 1 ≤ j ≤ k τt, j ≥ 0

• conservativeness: ∀ 1 ≤ t ≤ T, 1 ≤ j ≤ k (`t, j = 0) ⇒ (τt, j = 0)

Even before specifying the exact value of τt, j, we can state and prove a powerful lemma which is
the crux of our analysis. This lemma will motivate and justify our specific choices of τt, j throughout
this paper.

Lemma 1 Let {(xt, j,yt, j)}1≤ j≤k
1≤t≤T be a sequence of T k-tuples of examples, where each xt, j ∈ R

n j ,
and each yt, j ∈ {−1,+1}. Let w?

1, . . . ,w
?
k be arbitrary vectors where w?

j ∈ R
n j , and define the hinge

loss attained by w?
j on example (xt, j,yt, j) to be `?

t, j =
[
1− yt, jw?

j · xt, j
]

+
. Let ‖ · ‖ be an arbitrary

norm and let ‖ · ‖∗ denote its dual. Assume we apply an algorithm of the form outlined in Figure 1
to this sequence of examples, where the update weights satisfy the boundedness, non-negativity and
conservativeness requirements. Then, for any C > 0 it holds that

T

∑
t=1

k

∑
j=1

(

2τt, j`t, j − τ2
t, j‖xt, j‖2

2

)

≤
k

∑
j=1

‖w?
j‖2

2 + 2C
T

∑
t=1

‖`?
t‖ .

Under the assumptions of this lemma, our algorithm competes with a set of fixed linear classifiers,
w?

1, . . . ,w
?
k , which may even be defined in hindsight, after observing all of the inputs and their labels.

The right-hand side of the bound is the sum of two terms, a complexity term ∑k
j=1 ‖w?

j‖2
2 and a term

2238

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

which is proportional to the cumulative loss of our competitor, ∑T
t=1 ‖`?

t‖. The left hand side of the
bound is the term

T

∑
t=1

k

∑
j=1

(

2τt, j`t, j − τ2
t, j‖xt, j‖2

2

)

. (5)

This term plays a key role in the derivation of all three families of algorithms presented in the sequel.
Each choice of the update weights τt, j enables us to prove a different lower bound on Equation (5).
Comparing this lower bound with the upper bound in Lemma 1 gives us a loss bound for the respec-
tive algorithm. The proof of Lemma 1 is given below.

Proof Define ∆t, j = ‖wt, j−w?
j‖2

2−‖wt+1, j−w?
j‖2

2. We prove the lemma by bounding ∑T
t=1 ∑k

j=1 ∆t, j

from above and from below. Beginning with the upper bound, we note that for each 1 ≤ j ≤ k,
∑T

t=1 ∆t, j is a telescopic sum which collapses to

T

∑
t=1

∆t, j = ‖w1, j −w?‖2
2 −‖wT+1, j −w?‖2

2 .

Using the facts that w1, j = (0, . . . ,0) and ‖wT+1, j −w?‖2
2 ≥ 0 for all 1 ≤ j ≤ k, we conclude that

T

∑
t=1

k

∑
j=1

∆t, j ≤
k

∑
j=1

‖w?
j‖2

2 . (6)

Turning to the lower bound, we note that we can consider only non-zero summands which actually
contribute to the sum, namely ∆t, j 6= 0. Plugging the definition of wt+1, j into ∆t, j, we get

∆t, j = ‖wt, j −w?
j‖2

2 −‖wt, j + τt, jyt, jxt, j −w?
j‖2

2

= τt, j
(
−2yt, jwt, j ·xt, j − τt, j‖xt, j‖2

2 +2yt, jw?
j ·xt, j

)

= τt, j
(
2(1− yt, jwt, j ·xt, j)− τt, j‖xt, j‖2

2 −2(1− yt, jw?
j ·xt, j)

)
. (7)

Since our update is conservative, ∆t, j 6= 0 implies that `t, j = 1− yt, jwt, j ·xt, j. By definition, it also
holds that `?

t, j ≥ 1− yt, jw?
j · xt, j. Plugging these two facts into Equation (7) and using the fact that

τt, j is non-negative gives

∆t, j ≥ τt, j
(
2`t, j − τt, j‖xt, j‖2

2 −2`?
t, j

)
.

Summing the above over 1 ≤ j ≤ k gives

k

∑
j=1

∆t, j ≥
k

∑
j=1

(
2τt, j`t, j − τ2

t, j‖xt, j‖2
2

)
−2

k

∑
j=1

τt, j`
?
t, j . (8)

Using Equation (4) we know that ∑k
j=1 τt, j`

?
t, j ≤ ‖τt‖∗‖`?

t‖. From our assumption that ‖τt‖∗ ≤C, we

have that ∑k
j=1 τt, j`

?
t, j ≤C‖`?

t‖. Plugging this inequality into Equation (8) gives

k

∑
j=1

∆t, j ≥
k

∑
j=1

(
2τt, j`t, j − τ2

t, j‖xt, j‖2
2

)
−2C‖`?

t‖ .

We conclude the proof by summing the above over 1 ≤ t ≤ T and comparing the result to the upper
bound in Equation (6).

2239

DEKEL, LONG AND SINGER

3. The Finite-Horizon Multitask Perceptron

In this section, we present our first family of online multitask classification algorithms, and prove a
relative loss bound for the members of this family. This family includes algorithms for any global
loss function defined through an absolute norm. These algorithms are finite-horizon online algo-
rithms, meaning that the number of online rounds, T , is known in advance and is given as a param-
eter to the algorithm. An analogous family of infinite-horizon algorithms is the topic of the next
section.

As previously noted, the Finite-Horizon Multitask Perceptron follows the general skeleton out-
lined in Figure 1. Given an absolute norm ‖ · ‖ and its dual ‖ · ‖∗, the multitask Perceptron sets τt, j

in Figure 1 to
τt = argmax

τ:‖τ‖∗≤C
τ· `t , (9)

where C > 0 is a constant which is specified later in this section. There may exist multiple solutions
to the maximization problem above and at least one of these solutions induces a conservative update.
In other words, we may assume that the solution to Equation (9) is such that τt, j = 0 at every
coordinate j where `t, j = 0. To see that such a solution exists, take an arbitrary optimal solution τ
and let τ̂ be defined by

τ̂ j =

{
τ j if `t, j 6= 0
0 if `t, j = 0.

Clearly, τ· `t = τ̂· `t , whereas ‖τ̂‖∗ ≤ ‖τ‖∗ ≤ C. If the optimization problem in Equation (9) has
multiple solutions that induce conservative updates, assume that one is chosen arbitrarily.

An equivalent way of defining the solution to Equation (9) is by satisfying the equality τt · `t =
C‖`t‖. To see this equivalence, note that the dual of ‖ · ‖∗ is defined by Equation (2) to be

‖`‖∗∗ = max
τ:‖τ‖∗≤1

τ· ` .

However, since ‖ · ‖∗∗ is equivalent to ‖ · ‖ (see for instance Theorem 5.5.14 in Horn and Johnson,
1985), we get

‖`‖ = max
τ:‖τ‖∗≤1

τ· ` .

Using the linearity of ‖ · ‖∗, we conclude that ‖τ/C‖∗ = ‖τ‖∗/C for any C > 0, and therefore the
above becomes

C‖`‖ = max
τ:‖τ‖∗≤C

τ· ` .

We conclude that
τt · `t = C‖`t‖ (10)

holds if and only if τt is a maximizer of Equation (9).
When the global loss function is a p-norm, the following definition of τt solves Equation (9):

τt, j =
C` p−1

t, j

‖`t‖p−1
p

. (11)

When the global loss function is an r-max norm and π is a permutation such that `t,π(1) ≥ . . .≥ `t,π(k),
the following definition of τt is a solution to Equation (9):

τt, j =

{
C if `t, j > 0 and j ∈ {π(1), . . . ,π(r)}
0 otherwise.

(12)

2240

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

1 1
6
√

2
√

2

L1 norm L2 norm L3 norm L∞ norm

Figure 2: The remoteness of a norm is the longest Euclidean length of any vector contained in the
norm’s unit ball. The longest vector in each of the two-dimensional unit balls above is
depicted with an arrow.

Note that when r = k, the r-max norm reduces to the L1 norm and the above becomes the well-known
update rule of the Perceptron algorithm (Rosenblatt, 1958; Novikoff, 1962). The correctness of the
definitions in Equation (11) and Equation (12) can be easily verified by observing that ‖τt‖∗ ≤ C
and that τt · `t = C‖`t‖ in both cases.

Before proving a loss bound for the multitask Perceptron, we must introduce another important
quantity. This quantity is the remoteness of a norm ‖ · ‖ defined on R

k, and is defined to be

ρ(‖ · ‖,k) = max
u∈Rk

‖u‖2

‖u‖ = max
u∈Rk:‖u‖≤1

‖u‖2 . (13)

Geometrically, the remoteness of ‖ ·‖ is simply the Euclidean length of the longest vector (again, in
the Euclidean sense) which is contained in the unit ball of ‖ · ‖. This definition is visually depicted
in Figure 2. As we show below, the remoteness of the dual norm, ρ(‖ · ‖∗,k), plays an important
role in determining the difficulty of using ‖ · ‖ as the global loss function.

For concreteness, we now calculate the remoteness of the duals of p-norms and of r-max norms.

Lemma 2 The remoteness of a p-norm ‖ · ‖q equals

ρ(‖ · ‖q,k) =

{

1 if 1 ≤ q ≤ 2

k(1
2− 1

q) if 2 < q
.

Before proving the lemma, we note that if ‖ · ‖p is a p-norm and ‖ · ‖q is its dual, then we can
combine Lemma 2 with the equality q = p

p−1 to obtain

ρ(‖ · ‖q,k) =

{

1 if 2 ≤ p

k(1
p− 1

2) if 1 ≤ p < 2
.

This equivalent form is better suited to our needs. The proof of Lemma 2 is given below.

Proof If 2 ≤ p then 1 ≤ q ≤ 2, and the monotonicity of the p-norms implies that ‖v‖q ≥ ‖v‖2 for
all v ∈ R

k. Therefore ‖v‖2/‖v‖q ≤ 1 for all v ∈ R
k and thus ρ(‖ · ‖q,k) ≤ 1. On the other hand,

2241

DEKEL, LONG AND SINGER

setting v = (1,0, . . . ,0), we get ‖v‖q = ‖v‖2 and therefore ρ(‖ · ‖q,k) ≥ 1. Overall, we have shown
that ρ(‖ · ‖q,k) = 1.

Turning to the case where 1 ≤ p < 2, we note that q > 2. Let v be an arbitrary vector in R
k,

and define u = (v2
1, . . . ,v

2
k) and w = (1, . . . ,1). Noting that ‖ ·‖ q

2
and ‖ ·‖ q

q−2
are dual norms, we use

Hölder’s inequality to obtain
u ·w ≤ ‖u‖ q

2
‖w‖ q

q−2
.

The left-hand side above equals ‖v‖2
2, while the right-hand side above equals ‖v‖2

q k1− 2
q . There-

fore, ‖v‖2
2/‖v‖2

q ≤ k1− 2
q and taking square-roots on both sides yields ‖v‖2/‖v‖q ≤ k

1
2− 1

q . Since

this inequality holds for all v ∈ R
k, we have shown that ρ(‖ · ‖q,k) ≤ k

1
2− 1

q . On the other hand,

setting v = (1, . . . ,1), we get ‖v‖2 = k
1
2− 1

q ‖v‖q. This proves that ρ(‖ · ‖q,k) ≥ k
1
2− 1

q , and therefore

ρ(‖ · ‖q,k) = k
1
2− 1

q .

Lemma 3 Let ‖ · ‖r-max be a r-max norm and let ‖ · ‖∗r-max be its dual. The remoteness of ‖ · ‖∗r-max
equals

√
r.

Proof Using Equation (13), the remoteness of ‖ ·‖∗r-max is defined to be the maximum value of ‖u‖2

subject to ‖u‖∗r-max ≤ 1. Recalling the definition of ‖ · ‖∗r-max from Equation (3), we can replace
this constraint with two constraints ‖u‖1 ≤ r and ‖u‖∞ ≤ 1. Moreover, since both the L1 norm and
the L∞ norm are absolute norms, we can also assume that u resides in the non-negative orthant.
Therefore, we have that 0 ≤ u j ≤ 1 for all 1 ≤ j ≤ k. From this we conclude that u2

j ≤ u j for all
1 ≤ j ≤ k, and thus ‖u‖2

2 ≤ ‖u‖1 ≤ r. Hence, ‖u‖2 ≤
√

r and ρ(‖ · ‖∗r-max,k) ≤
√

r. On the other
hand, the vector

u =
(

r
︷ ︸︸ ︷

1, . . . ,1,

k−r
︷ ︸︸ ︷

0, . . . ,0
)

is contained in the unit ball of ‖ ·‖∗r-max, and its Euclidean length is
√

r. Therefore, we also have that
ρ(‖ · ‖∗r-max,k) ≥

√
r, and overall we get ρ(‖ · ‖∗r-max,k) =

√
r.

We are now ready to prove a loss bound for the Finite-Horizon Multitask Perceptron.

Theorem 4 Let {(xt, j,yt, j)}1≤ j≤k
1≤t≤T be a sequence of T k-tuples of examples, where each xt, j ∈ R

n j ,
‖xt, j‖2 ≤ R and each yt, j ∈ {−1,+1}. Let C be a positive constant and let ‖·‖ be an absolute norm.
Let w?

1, . . . ,w
?
k be arbitrary vectors where w?

j ∈ R
n j , and define the hinge loss incurred by w?

j on
example (xt, j,yt, j) to be `?

t, j =
[
1− yt, jw?

j · xt, j
]

+
. If we present this sequence to the finite-horizon

multitask Perceptron with the norm ‖ · ‖ and the aggressiveness parameter C, then,

T

∑
t=1

‖`t‖ ≤ 1
2C

k

∑
j=1

‖w?
j‖2

2 +
T

∑
t=1

‖`?
t‖ +

T R2C ρ2(‖ · ‖∗,k)
2

.

Proof The starting point of our analysis is Lemma 1. The choice of τt, j in Equation (9) is clearly
bounded by ‖τt‖∗ ≤C and conservative. It is also non-negative, due to the fact that ‖ · ‖∗ is an abso-
lute norm and that `t, j ≥ 0. Therefore, the definition of τt, j in Equation (9) meets the requirements

2242

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

of the lemma, and we have

T

∑
t=1

k

∑
j=1

(

2τt, j`t, j − τ2
t, j‖xt, j‖2

2

)

≤
k

∑
j=1

‖w?
j‖2

2 + 2C
T

∑
t=1

‖`?
t‖ .

Using Equation (10), we rewrite the left-hand side of the above as

2C
T

∑
t=1

‖`t‖−
T

∑
t=1

k

∑
j=1

τ2
t, j‖xt, j‖2

2 . (14)

Using our assumption that ‖xt, j‖2
2 ≤ R2, we know that ∑k

j=1 τ2
t, j‖xt, j‖2

2 ≤ (R‖τt‖2)
2. Using the

definition of remoteness, we can upper bound this term by (R‖τt‖∗ρ(‖ · ‖∗,k))2. Finally, using our
upper bound on ‖τt‖∗ we can further bound this term by R2C2ρ2(‖ ·‖∗,k). Plugging this bound back
into Equation (14) gives

2C
T

∑
t=1

‖`t‖ − T R2C2ρ2(‖ · ‖∗,k) .

Overall, we have shown that

2C
T

∑
t=1

‖`t‖ − T R2C2ρ2(‖ · ‖∗,k) ≤
k

∑
j=1

‖w?
j‖2

2 + 2C
T

∑
t=1

‖`?
t‖ .

Dividing both sides of the above by 2C and rearranging terms gives the desired bound.

In its current form, the bound in Theorem 4 may seem insignificant, since its right-most term grows
linearly with the length of the input sequence, T . This term can be easily controlled by setting C to
a value on the order of 1/

√
T .

Corollary 5 Under the assumptions of Theorem 4, if C = 1/(
√

T R2), then

T

∑
t=1

‖`t‖ ≤
T

∑
t=1

‖`?
t‖ +

√
T

2

(

R2
k

∑
j=1

‖w?
j‖2

2 + ρ2(‖ · ‖∗,k)
)

.

This corollary bounds the global loss cumulated by our algorithm with the global loss obtained by
any fixed set of hypotheses, plus a term which grows sub-linearly in T . The significance of this term
depends on the magnitude of the constant

1
2

(

R2
k

∑
j=1

‖w?
j‖2

2 + ρ2(‖ · ‖∗,k)
)

.

Our algorithm uses C in its update procedure, and the value of C depends on
√

T . Therefore, the
algorithm is a finite horizon algorithm.

Dividing both sides of the inequality in Corollary 5 by T , we see that the average global loss
suffered by the multitask Perceptron is upper bounded by the average global loss of the best fixed
hypothesis ensemble plus a term that diminishes with T . Using game-theoretic terminology, we can
now say that the multitask Perceptron exhibits no-regret with respect to any global loss function
defined by an absolute norm. The same cannot be said for the naive alternative of learning each

2243

DEKEL, LONG AND SINGER

task independently using a separate single-task Perceptron. We show this by presenting a simple
counter-example. Specifically, we construct a concrete k-task problem with a specific global loss,
an arbitrarily long input sequence {(xt, j,yt, j)}1≤ j≤k

1≤t≤T , and fixed weight vectors u1, . . . ,uk to use for
comparison. We then prove that

k +1
2

T

∑
t=1

‖`?
t‖∞ ≤

T

∑
t=1

‖ ˆ̀t‖∞ , (15)

where ˆ̀t is the vector of individual losses of the k independent single-task Perceptrons, and, as
before, `?

t is the vector of individual losses of u1, . . . ,uk respectively. This example demonstrates
that a claim along the lines of Corollary 5 cannot be proven for the set of independent single-task
Perceptrons.

First, we would like to emphasize that we are considering a version of the single-task Perceptron
that updates its hypothesis whenever it suffers a positive hinge-loss, and not only when it makes a
prediction mistake. Moreover, when an update is performed, the algorithm defines wt+1 = wt +
Cytxt , where C is a predefined constant. This version of the Perceptron is sometimes called the
aggressive Perceptron. If we were to use the simplest version of the Perceptron, which updates
its hypothesis only when a prediction mistake occurs, then finding a counter-example that achieves
Equation (15) would be trivial, without even using the distinction between single-task and multitask
Perceptron learning.

Also, we can assume without loss of generality that 1/C = o(T), since otherwise, even in the
case k = 1, simply repeating the same example over and over provides a counterexample.

Moving on to the counter-example itself, assume that our global loss is defined by the L∞ norm.
Let k be at least 2, assume that the instances of all k problems are two dimensional vectors, and
set u1 = . . . = uk = (1,1). Each of the single-task Perceptrons initializes its hypothesis to (0,0).
Assume that all of the labels in the input sequence are positive labels. For t = 0, we set x1,1 = . . . =
x1,k = (1,0). Each one of the independent Perceptrons suffers a positive individual loss and updates
its weight vector to (C,0). We continue presenting the same example for d1/Ce − 1 additional
rounds, which is precisely when all k weight vectors of the Perceptrons become equal to (α,0), with
α ≥ 1. For instance, if C = O(1/

√
T) then the vector (1,0) is presented O(

√
T) times. Meanwhile,

the fixed weight vectors u1, . . . ,uk suffer no loss at all.
Define t0 = d1/Ce, and note that the index of the next online round is t0 + 1. For each t in

t0 +1, . . . , t0 + k, we set xt,t−t0 to (0,1) and xt, j to (1,0) for all j 6= t − t0. On round t, the (t − t0)’th
Perceptron, whose weight vector is (α,0), suffers an individual loss of 1 and updates its weight
vector to (α,C). The remaining k−1 Perceptrons suffer no individual loss and do not modify their
weight vectors. Consequently, ‖ ˆ̀t‖∞ = 1 on each of these rounds. Once again, the fixed vectors
u1, . . . ,uk suffer no loss at all. On round t = t0 +k+1, we set xt,1 = . . . = xt,k = (0,−1). As a result,
each of the Perceptrons suffers a hinge loss of 1 +C and updates its weight vector back to (α,0).
Since C is positive, we get ‖ ˆ̀t‖∞ ≥ 1. Meanwhile, ‖`?

t‖∞ = 2. We now have that

t0+k+1

∑
t=t0+1

‖ ˆ̀t‖∞ ≥ k +1 and
t0+k+1

∑
t=t0+1

‖`?
t‖∞ = 2 .

Furthermore, the weight vectors of the k single-task Perceptrons have returned to their values at the
end of round t0. Therefore, by repeating the input sequence from round t0 + 1 to round t0 + k + 1
over and over again, we obtain Equation (15).

2244

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

This concludes the presentation of the counter-example thus showing that a set of independent
single-task Perceptrons does not attain no-regret with respect to the L∞ norm global loss. Similar
constructions can be given for other global loss functions. The exception is the L1 norm, which
naturally reduces the multitask Perceptron to k independent single-task Perceptrons.

4. An Extension to the Infinite Horizon Setting

In the previous section, we devised an algorithm which relied on prior knowledge of T , the input
sequence length. In this section, we adapt the update procedure from the previous section to the
infinite horizon setting, where T is not known in advance. Moreover, the bound we prove in this
section holds simultaneously for every prefix of the input sequence. This generalization comes at
a price; we can only prove an upper bound on ∑t min{`t , `

2
t }, a quantity similar to the cumulative

global loss, but not the global loss per se.
To motivate our infinite-horizon algorithm, we take a closer look at the analysis of the finite-

horizon algorithm. In the proof of Theorem 4, we lower-bounded the term ∑k
j=1 2τt, j`t, j −τ2

t, j‖xt, j‖2
2

by 2C‖`t‖−R2C2ρ2(‖ · ‖∗,k). The first term in this lower bound is proportional to the global loss
suffered on round t, and the second term is a constant. When ‖`t‖ is smaller than this constant, our
lower bound becomes negative. This suggests that the update step-size applied by the finite-horizon
Perceptron may have been too large, and that the update step may have overshot its target. As a
result, the new hypothesis may be inferior to the previous one. Nevertheless, over the course of T
rounds, our positive progress is guaranteed to overshadow our negative progress, and thus we are
able to prove Theorem 4. However, if we are interested in a bound which holds for every prefix of the
input sequence, we must ensure that every individual update makes positive progress. Concretely,
we derive an update for which ∑k

j=1 2τt, j`t, j − τ2
t, j‖xt, j‖2

2 is guaranteed to be non-negative. The
vector τt remains in the same direction as before, but by setting its length more carefully, we enforce
an update step-size which is never excessively large.

We use ρ to abbreviate ρ(‖ · ‖∗,k) throughout this section. We replace the definition of τt in
Equation (9) with the following definition,

τt = argmax
τ:‖τ‖∗≤min

{

C, ‖`t ‖
R2ρ2

}
τ· `t , (16)

where C > 0 is a user defined parameter and R > 0 is an upper bound on ‖xt, j‖2 for all 1 ≤ t ≤ T
and all 1 ≤ j ≤ k. As in the previous section, we assume that τt, j = 0 whenever `t, j = 0. As in
Equation (10), the solution to Equation (16) can be equivalently defined by the equation

τt · `t = min

{

C,
‖`t‖
R2ρ2

}

‖`t‖ . (17)

When the global loss function is a p-norm, the following definition of τt solves Equation (16):

τt, j =







`
p−1
t, j

R2ρ2‖`t‖p−2
p

if ‖`t‖p ≤ R2Cρ2

C`
p−1
t, j

‖`t‖p−1
p

if ‖`t‖p > R2Cρ2.

2245

DEKEL, LONG AND SINGER

When the global loss function is an r-max norm and π is a permutation such that `t,π(1) ≥ . . .≥ `t,π(k),
then the following definition of τt is a solution to Equation (16):

τt, j =







‖`t‖r-max

rR2 if `t, j > 0 and ‖`t‖r-max ≤ R2Cρ2 and j ∈ {π(1), . . . ,π(r)}

C if `t, j > 0 and ‖`t‖r-max > R2Cρ2 and j ∈ {π(1), . . . ,π(r)}

0 otherwise.

The correctness of both definitions of τt, j given above can be verified by observing that ‖τt‖∗ ≤
min{C, ‖`t‖

R2ρ2 } and that τt · `t = min{C, ‖`t‖
R2ρ2 }‖`t‖ in both cases. We now turn to proving an infinite-

horizon cumulative loss bound for our algorithm.

Theorem 6 Let {(xt, j,yt, j)}1≤ j≤k
t=1,2,... be a sequence of k-tuples of examples, where each xt, j ∈ R

n j ,
‖xt, j‖2 ≤ R and each yt, j ∈ {−1,+1}. Let C be a positive constant, let ‖ · ‖ be an absolute norm,
and let ρ be an abbreviation for ρ(‖ · ‖∗,k). Let w?

1, . . . ,w
?
k be arbitrary vectors where w?

j ∈ R
n j ,

and define the hinge loss attained by w?
j on example (xt, j,yt, j) to be `?

t, j =
[
1− yt, jw?

j ·xt, j
]

+
. If we

present this sequence to the explicit multitask algorithm with the norm ‖ · ‖ and the aggressiveness
parameter C, then for every T

1/(R2ρ2) ∑
t≤T :‖`t‖≤R2Cρ2

‖`t‖2 + C ∑
t≤T :‖`t‖>R2Cρ2

‖`t‖ ≤ 2C
T

∑
t=1

‖`?
t‖ +

k

∑
j=1

‖w?
j‖2

2 .

Proof The starting point of our analysis is again Lemma 1. The choice of τt, j in Equation (16) is
clearly bounded by ‖τt‖∗ ≤ C and conservative. It is also non-negative, due to the fact that ‖ · ‖∗ is
absolute and that `t, j ≥ 0. Therefore, τt, j meets the requirements of Lemma 1, and we have

T

∑
t=1

k

∑
j=1

(

2τt, j`t, j − τ2
t, j‖xt, j‖2

2

)

≤
k

∑
j=1

‖w?
j‖2

2 + 2C
T

∑
t=1

‖`?
t‖ . (18)

We now prove our theorem by lower-bounding the left hand side of Equation (18) above. We analyze
two different cases. First, if ‖`t‖ ≤ R2Cρ2 then min{C,‖`t‖/(R2ρ2)}= ‖`t‖/(R2ρ2). Together with
Equation (17), this gives

2
k

∑
j=1

τt, j`t, j = 2‖τt‖∗ ‖`t‖ = 2
‖`t‖2

R2ρ2 . (19)

On the other hand, ∑k
j=1 τ2

t, j‖xt, j‖2
2 can be bounded by ‖τt‖2

2R2. Using the definition of remoteness,
we bound this term by (‖τt‖∗)2R2ρ2. Using the fact that, ‖τt‖∗ ≤ ‖`t‖/(R2ρ2), we bound this term
by ‖`t‖2/(R2ρ2). Overall, we have shown that

k

∑
j=1

τ2
t, j‖xt, j‖2

2 ≤ ‖`t‖2

R2ρ2 .

Subtracting both sides of the above inequality from the respective sides of Equation (19) gives

‖`t‖2

R2ρ2 ≤
k

∑
j=1

(
2τt, j`t, j − τ2

t, j‖xt, j‖2
2

)
. (20)

2246

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

Moving on to the second case, if ‖`t‖> R2Cρ2 then min{C,‖`t‖/(R2ρ2)}=C. Using Equation (17),
we have that

2
k

∑
j=1

τt, j`t, j = 2‖τt‖∗ ‖`t‖ = 2C‖`t‖ . (21)

As before, we can upper bound ∑k
j=1 τ2

t, j‖xt, j‖2
2 by (‖τt‖∗)2R2ρ2. Using the fact that, ‖τt‖∗ ≤C we

can bound this term by C2R2ρ2. Finally, using our assumption that ‖`t‖ > R2Cρ2, we conclude that

k

∑
j=1

τ2
t, j‖xt, j‖2

2 < C‖`t‖ .

Subtracting both sides of the above inequality from the respective sides of Equation (21) gives

C‖`t‖ ≤
k

∑
j=1

(
2τt, j`t, j − τ2

t, j‖xt, j‖2
2

)
. (22)

Comparing the upper bound in Equation (18) with the lower bounds in Equation (20) and Equa-
tion (22) proves the theorem.

Corollary 7 Under the assumptions of Theorem 6, if C is set to be 1/(R2ρ2) then for every T ′ ≤ T
it holds that,

T ′

∑
t=1

min
{
‖`t‖2,‖`t‖

}
≤ 2

T ′

∑
t=1

‖`?
t‖ + R2ρ2

k

∑
j=1

‖w?
j‖2

2 .

As noted at the beginning of this section, we do not obtain a cumulative loss bound per se, but rather
at a bound on ∑t min{`t , `

2
t }. However, this bound holds simultaneously for every prefix of the input

sequence, and the algorithm does not rely on knowledge of the input sequence length.

5. The Implicit Online Multitask Update

We now discuss a third family of online multitask algorithms, which leads to the strongest loss
bounds of the three families of algorithms presented in this paper. In contrast to the closed form
updates of the previous algorithms, the algorithms in this family require solving an optimization
problem on every round, and are therefore called implicit update algorithms. Although the imple-
mentation of specific members of this family may be more involved than the implementation of the
multitask Perceptron, we recommend using this family of algorithms in practice. On every round,
the set of hypotheses is updated according to the update rule:

{wt+1,1, . . . ,wt+1,k} = argmin
w1,...,wk

1
2

k

∑
j=1

‖w j −wt, j‖2
2 +C‖ξ‖ (23)

s.t. ∀ j w j ·xt, j ≥ 1−ξ j and ξ j ≥ 0.

This optimization problem captures the fundamental tradeoff inherent to online learning. On one
hand, the term ∑k

j=1 ‖w j −wt, j‖2
2 in the objective function above keeps the new set of hypotheses

close to the current set of hypotheses, so as to retain the information learned on previous rounds. On

2247

DEKEL, LONG AND SINGER

input: aggressiveness parameter C > 0, norm ‖ · ‖
initialize w1,1 = . . . = w1,k = (0, . . . ,0)

for t = 1,2, . . .

• receive xt,1, . . . ,xt,k

• predict sign(wt, j ·xt, j) [1 ≤ j ≤ k]

• receive yt,1, . . . ,yt,k

• suffer loss `t, j =
[
1− yt, jwt, j ·xt, j

]

+
[1 ≤ j ≤ k]

• update:

{wt+1,1, . . . ,wt+1,k} = argmin
w1,...,wk

1
2 ∑k

j=1 ‖w j −wt, j‖2
2 +C‖ξ‖

s.t. ∀ j w j ·xt, j ≥ 1−ξ j and ξ j ≥ 0

Figure 3: The implicit update algorithm

the other hand, the term ‖ξ‖ in the objective function, together with the constraints on ξ j, forces the
algorithm to make progress using the new examples obtained on this round. Different choices of the
global loss function lead to different definitions of this progress. The pseudo-code of the implicit
update algorithm is presented in Figure 3.

Our first task is to show that this update procedure follows the skeleton outlined in Figure 1, and
satisfies the requirements of Lemma 1. We do so by finding the dual of the optimization problem
given in Equation (23).

Lemma 8 Let ‖ · ‖ be a norm and let ‖ · ‖∗ be its dual. Then the online update defined in Equa-
tion (23) is equivalent to setting wt+1, j = wt, j + τt, jyt, jxt, j for all 1 ≤ j ≤ k, where

τt = argmax
τ

k

∑
j=1

(
2τ j`t, j − τ2

j‖xt, j‖2
2

)

s.t. ‖τ‖∗ ≤C and ∀ j τ j ≥ 0 .

Moreover, this update is conservative.

Proof The update step in Equation (23) sets the vectors wt+1,1, . . . ,wt+1,k to be the solution to the
following constrained minimization problem:

min
w1,...,wk,ξ≥0

1
2

k

∑
j=1

‖w j −wt, j‖2
2 + C‖ξ‖

s.t. ∀ j yt, jw j ·xt, j ≥ 1−ξ j .

We begin by using the notion of strong duality to restate this optimization problem in an equivalent
form. The objective function above is convex and the constraints are both linear and feasible, there-
fore Slater’s condition (Boyd and Vandenberghe, 2004) holds, and the above problem is equivalent

2248

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

to
max
τ≥0

min
w1,...,wk,ξ≥0

L(τ,w1, . . . ,wk,ξ) ,

where L(τ,w1, . . . ,wk,ξ) is defined as follows:

1
2

k

∑
j=1

‖w j −wt, j‖2
2 +C‖ξ‖+

k

∑
j=1

τ j (1− yt, jw j ·xt, j −ξ j) .

We can rewrite L as the sum of two terms, the first a function of τ and w1, . . . ,wk (denoted L1) and
the second a function of τ and ξ1, . . . ,ξk (denoted L2),

1
2

k

∑
j=1

‖w j −wt, j‖2
2 +

k

∑
j=1

τ j(1− yt, jw j ·xt, j)

︸ ︷︷ ︸

L1(τ,w1,...,wk)

+ C‖ξ‖−
k

∑
j=1

τ jξ j

︸ ︷︷ ︸

L2(τ,ξ)

.

Using the notation defined above, our optimization problem becomes,

max
τ≥0

(

min
w1,...,wk

L1(τ,w1, . . . ,wk) + min
ξ≥0

L2(τ,ξ)

)

.

For any choice of τ, L1 is a convex function and we can find w1, . . . ,wk which minimize it by setting
all of its partial derivatives with respect to the elements of w1, . . . ,wk to zero. Namely,

∀ j, l 0 =
∂L1

∂w j,l
= w j,l −wt, j,l − τ jyt, jxt, j,l .

from the above we conclude that w j = wt, j + τ jyt, jxt, j for all 1 ≤ j ≤ k.
The next step is to show that the update is conservative. If `t, j = 0 then setting w j = wt, j satisfies

the constraint yt, jw j ·xt, j ≥ 1−ξ j with any choice of ξ j ≥ 0. Since choosing w j = wt, j minimizes
‖wt −wt, j‖2

2 and does not restrict our choice of any other variable, then it is optimal. The relation
between w j and τ j now implies that τ j = 0 whenever `t, j = 0).

Plugging our expression for w j into L1, we have that

min
w1,...,wk

L1(τ,w1, . . . ,wk) =
k

∑
j=1

τ j(1− yt, jwt, j ·xt, j) − 1
2

k

∑
j=1

τ2
j‖xt, j‖ .

Since the update is conservative, it holds that τ j(1−yt, jwt, j ·xt, j) = τ j`t, j. Overall, we have reduced
our optimization problem to

τt = argmax
τ≥0

(
k

∑
j=1

(

τ j`t, j −
1
2

τ2
j‖xt, j‖

)

+ min
ξ≥0

L2(τ,ξ)

)

.

We finally turn our attention to L2 and abbreviate B(τ) = minξ≥0 L2(τ,ξ). We now claim that B is a
barrier function for the constraint ‖τ‖∗ ≤C, namely

B(τ) =

{
0 if ‖τ‖∗ ≤C
−∞ if ‖τ‖∗ > C

.

2249

DEKEL, LONG AND SINGER

To see why this is true, recall that ‖τ‖∗ is defined to be

‖τ‖∗ = max
ε∈Rk

∑k
j=1 τ jε j

‖ε‖ .

First, let us consider the case where ‖τ‖∗ > C. In this case there exists a vector ε̄ for which

k

∑
j=1

τ jε̄ j −C‖ε̄‖ > 0 .

Denote the left hand side of the above by δ. We can assume w.l.o.g. that all the components of ε̄ are
non-negative since τ≥ 0. For any c ≥ 0, we now have that

B(τ) = min
ξ≥0

L2(τ,ξ) ≤ L2(τ,cε̄) = − cδ .

Therefore, by taking c to infinity we get that B(τ) = −∞.
Turning to the case ‖τ‖∗ ≤ C, we have that ∑k

j=1 τ jξ j ≤ C‖ξ‖ for any choice of ξ, or in other
words, minξ≥0 L2(τ,ξ) ≥ 0. However, this lower bound is attainable by setting ξ = 0. We conclude
that if ‖τ‖∗ ≤C then B(τ) = 0. The original optimization problem has reduced to the form

τt = argmax
τ≥0

(
k

∑
j=1

(

τ j`t, j −
1
2

τ2
j‖xt, j‖

)

+ B(τ)

)

.

Clearly, the above is maximized in the domain where B(τ) = 0. Therefore, we replace the function
B with the constraint ‖τ‖∗ ≤C, and get

τt = argmax
τ≥0 : ‖τ‖∗≤C

k

∑
j=1

(

τ j`t, j −
1
2

τ2
j‖xt, j‖

)

.

Lemma 5 proves that the implicit update essentially finds the value of τt that maximizes the left-
hand side of the bound in Lemma 1. This choice of τt produces the tightest loss bounds that can be
derived from Lemma 1. In this sense, the implicit update algorithm takes full advantage of our proof
technique. An immediate consequence of this observation is that the loss bounds of the multitask
Perceptron also hold for the implicit algorithm. More precisely, the bound in Theorem 4 (and
Corollary 5) holds not only for the multitask Perceptron, but also for the implicit update algorithm.
Equivalently, it can be shown that the bound in Theorem 6 (and Corollary 7) also holds for the
implicit update algorithm. We prove this formally below.

Theorem 9 The bound in Theorem 4 also holds for the implicit update algorithm.

Proof Let τ′t, j denote the weights defined by the multitask Perceptron in Equation (9) and let τt, j

denote the weights assigned by the implicit update algorithm. In the proof of Theorem 4, we showed
that,

2C‖`t‖−R2C2ρ2 ≤
k

∑
j=1

(
2τ′t, j`t, j − τ′t, j

2‖xt, j‖2
2

)
.

2250

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

According to Lemma 8, the weights τt, j maximize,

k

∑
j=1

(
2τt, j`t, j − τ2

t, j‖xt, j‖2
2

)
,

subject to the constraints ‖τt‖∗ ≤C and τt, j ≥ 0. Since the weights τ′t, j also satisfy these constraints,
it holds that,

k

∑
j=1

(
2τ′t, j`t, j − τ′2t, j‖xt, j‖2

2

)
≤

k

∑
j=1

(
2τt, j`t, j − τ2

t, j‖xt, j‖2
2

)
.

Therefore, we conclude that

2C‖`t‖−R2C2ρ2 ≤
k

∑
j=1

(
2τt, j`t, j − τ2

t, j‖xt, j‖2
2

)
. (24)

Since τt, j is bounded, non-negative, and conservative (due to Lemma 8), the right-hand side of the
above inequality is upper-bounded by Lemma 1. Comparing the bound in Equation (24) with the
bound in Lemma 1 proves the theorem.

In the remainder of this paper, we present efficient algorithms which solve the optimization problem
in Equation (23) for different choices of the global loss function.

6. Solving the Implicit Update for the L2 Norm

Consider the implicit update with the L2 norm, namely we are trying to solve

τt = argmax
τ≥0 : ‖τ‖2≤C

k

∑
j=1

(

τ j`t, j −
1
2

τ2
j‖xt, j‖

)

.

The Lagrangian of this optimization problem is

L =
k

∑
j=1

(
2τt, j`t, j − τ2

t, j‖xt, j‖2
2

)
−θ

(
k

∑
j=1

τ2
t, j −C2

)

,

where θ is a non-negative Lagrange multiplier. The derivative of L with respect to each τt, j is,
2`t, j −2τt, j‖xt, j‖2

2 −2θτt, j . Setting this derivative to zero, we get

τt, j =
`t, j

‖xt, j‖2
2 +θ

.

The optimum of the unconstrained problem is attained by choosing τt, j =
`t, j

‖xt, j‖2
2

for each j. If,

for this choice of τt , the constraint ∑k
j=1 τ2

t, j ≤ C2 does not hold, then θ must be greater than zero.
The KKT complementarity condition implies that in this case the constraint is binding, namely
∑k

j=1 τ2
t, j = C2. In order to find θ, we must now solve the following equation:

k

∑
j=1

(
`t, j

‖xt, j‖2
2 +θ

)2

= C2 . (25)

2251

DEKEL, LONG AND SINGER

The left hand side of the above is monotonically decreasing in θ. We also know that θ > 0. More-
over, setting

θ =

√
k‖`t‖∞

C

in the left-hand side of Equation (25) yields a value which is at least C2, and therefore we conclude

that θ ≤
√

k‖`t‖∞
C . These properties enable us to easily find θ using binary search.

In the special case where the norms of all the instances are equal, namely ‖xt,1‖2
2 = . . . =

‖xt,k‖2
2 = R2, Equation (25) gives θ = ‖`t‖2

C −R2, and therefore τt, j = C`t, j/‖`t‖2. The general
expression for τt, j in this case becomes

τt, j =







`t, j

R2 if ‖`t‖2 ≤ R2C

C`t, j

‖`t‖2
otherwise

.

Note that the above coincides with the definition of τt given by the Infinite Horizon Multitask Per-
ceptron for the L2 norm, as defined in Section 4.

7. Solving the Implicit Update for r-max Norms

We now present an efficient procedure for calculating the update in Equation (23), in the case where
the norm being used is the r-max norm. Lemma 8, together with (3), tells us that the update can be
calculated by solving the following constrained optimization problem:

τt = argmax
τ

k

∑
j=1

(
2τ j`t, j − τ2

j‖xt, j‖2
2

)
(26)

s.t.
k

∑
j=1

τ j ≤Cr , ∀ j τ j ≤C , ∀ j τ j ≥ 0 .

After dividing the objective function by 2, the Lagrangian of this optimization problem is

k

∑
j=1

(

τ j`t, j −
1
2

τ2
j‖xt, j‖2

2

)

+θ
(

Cr−
k

∑
j=1

τ j

)

+
k

∑
j=1

λ j(C− τ j)+
k

∑
j=1

β jτ j ,

where θ, the β j’s and the λ j’s are non-negative Lagrange multipliers. The derivative of L with
respect to each τ j is, `t, j − τ j‖xt, j‖2

2 −θ−λ j + β j. All of these partial derivatives must equal zero
at the optimum, and therefore

∀ 1 ≤ j ≤ k τ j =
`t, j −θ−λ j +β j

‖xt, j‖2
2

. (27)

The KKT complementarity condition states that the following equalities hold at the optimum:

∀ 1 ≤ j ≤ k λ j(C− τ j) = 0 and β jτ j = 0 . (28)

We consider three different cases:

2252

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

1. Assume that `t, j −θ < 0. Since both τ j and λ j must be non-negative, then from the definition
of τ j in Equation (27) we learn that β j must be at least θ− `t, j. In other words, β j is positive.
Referring to the right-hand side of Equation (28), we conclude that τ j = 0.

2. Assume that 0 ≤ `t, j −θ ≤C‖xt, j‖2
2. Summing the two equalities in Equation (28) and plug-

ging in the definition of τ j from Equation (27) results in,

λ j

(

C− `t, j −θ
‖xt, j‖2

2

)

+β j

(
`t, j −θ
‖xt, j‖2

2

)

+
(β j −λ j)

2

‖xt, j‖2
2

= 0 . (29)

Using our assumption that `t, j −θ ≥ 0, along with the requirement that β j ≥ 0, gives us that
β(`t, j − θ)/‖xt, j‖2

2 ≥ 0. Equivalently, using our assumption that `t, j − θ ≤ C‖xt, j‖2
2 along

with the requirement that λ j ≥ 0 results in λ
(
C− (`t, j + θ)/‖xt, j‖2

2

)
≥ 0. Plugging the last

two inequalities back into Equation (29) gives, (β j −λ j)
2/‖xt, j‖2

2 ≤ 0. The only way that this
inequality can hold is if (β j −λ j) = 0. Thus, the definition of τ j in Equation (27) reduces to

τ j =
`t, j−θ
‖xt, j‖2

2
.

3. Finally, assume that `t, j − θ > C‖xt, j‖2
2. Since τ j ≤ ‖τ‖∞ ≤ C and β j ≥ 0, then from Equa-

tion (27) we conclude that λ j is at least `t, j − θ−C‖xt, j‖2
2. In other words, λ j is positive.

Referring to the left-hand side of Equation (28), we conclude that (C− τ j) = 0, and τ j = C.

Overall, we have shown that there exists some θ ≥ 0 such that the optimal update weights take the
form

τt, j =







0 if `t, j −θ < 0
`t, j−θ
‖xt, j‖2

2
if 0 ≤ `t, j −θ ≤C‖xt, j‖2

2

C if C‖xt, j‖2
2 < `t, j −θ

. (30)

That is, if the individual loss of task j is smaller than θ then no update is applied to the respective
classifier. If the loss is moderate then the size of the update step is proportional to the loss attained,
and inverse proportional to the squared norm of the respective instance. In any case, the size of the
update step cannot exceed the fixed upper limit C.

We are thus left with the problem of finding the value of θ in Equation (30) which yields the
update weights that maximize Equation (26). We denote this value by θ?. First note that if we
lift the constraint ∑k

j=1 τt, j ≤ rC then the maximum of Equation (26) is obtained by setting τt, j =

min{`t, j/‖xt, j‖2
2, C} for all j, which is equivalent to setting θ = 0 in Equation (30). Therefore, if

k

∑
j=1

min

{
`t, j

‖xt, j‖2
2

, C

}

≤ rC ,

the solution to Equation (26) is τt, j = min{`t, j/‖xt, j‖2
2, C} for all j. Thus, we can focus our attention

on the case where
k

∑
j=1

min

{
`t, j

‖xt, j‖2
2

, C

}

> rC .

In this case, θ? must be non-zero in order for the constraint ∑k
j=1 τ j ≤ rC to hold. Once again using

the KKT complementarity condition, it follows that ∑k
j=1 τt, j = rC. Now, for every value of θ, define

the following two sets of indices:

Ψ(θ) = {1 ≤ j ≤ k : 0 < `t, j −θ} ,

2253

DEKEL, LONG AND SINGER

and
Φ(θ) = {1 ≤ j ≤ k : C‖xt, j‖2

2 < `t, j −θ} .

Let Ψ and Φ denote the sets Ψ(θ?) and Φ(θ?) respectively. The semantics of Ψ and Φ are readily
available from Equation (30): the set Ψ includes all indices j for which τ j > 0 in the optimal
solution, while Φ includes all indices j for which τ j is clipped at C in the optimal solution. If we
know the value of θ?, we can easily obtain the sets Ψ and Φ from their definitions above. However,
the converse is also true: if we are able to find the sets Ψ and Φ directly then we can use them to
calculate the exact value of θ?. Assuming we know Ψ and Φ, and using the fact that ∑k

j=1 τ j = rC,
we get

∑
j∈Ψ\Φ

`t, j −θ?

‖xt, j‖2
2

+ ∑
j∈Φ

C = rC .

Solving the above for θ? gives

θ? =
∑ j∈Ψ\Φ

`t, j

‖xt, j‖2
2
− rC +∑ j∈ΦC

∑ j∈Ψ\Φ
1

‖xt, j‖2
2

. (31)

We have thus reduced the optimization problem in Equation (26) to the problem of finding the sets
Ψ and Φ. Once we find Ψ and Φ, we can easily calculate θ? using Equation (31) and then obtain τt

using Equation (30). Luckily, Ψ and Φ are subsets of {1, . . . ,k} and can only be defined in a finite
number of ways. A straightforward and excessively inefficient solution is to enumerate over all
possible subsets of {1, . . . ,k} as candidates for Ψ and Φ, for each pair of candidate sets to compute
the corresponding values of θ and τ using Equation (31) and Equation (30) respectively and then
check if the obtained solution is consistent with our constraints (θ ≥ 0, ∑ j τ j = rC and 0 ≤ τ j ≤C).
Of the candidates that turn out to be consistent, we choose the one which maximizes the objective
function in Equation (26). This approach is clearly infeasible even for reasonably small values of k.
We therefore describe a more efficient procedure for finding Ψ and Φ, whose computational cost is
only O(k log(k)).

Let us examine two losses `t,r and `t,s such that `t,r ≤ `t,s and there is no index j for which
`t,r < `t, j < `t,s. Then, all the sets Ψ(θ) for θ ∈ [`t,r, `t,s) are identical, and equal { j : `t, j ≥ `t,r}.
Therefore, there are at most k different choices for Ψ(θ), which can be easily computed by sorting
the losses. An analogous argument holds for the set Φ with respect to the values `t, j −C‖xt, j‖2

2.
Furthermore, to enumerate all admissible sets Ψ(θ) and Φ(θ) we need not examine their product
space. Instead, let q denote the vector obtained by sorting the union of the sets {`t, j}k

j=1, {`t, j −
C‖xt, j‖2

2}k
j=1, and {0} in ascending order. Extending the above rationale, the sets Ψ(θ) and Φ(θ)

are fixed for every θ ∈ [qi,qi+1). We can examine every possible pair of candidates Ψ(θ),Φ(θ) by
traversing the sorted vector q of critical values.

Concretely, define Ψ(q1) = {1, . . . ,k} and Φ(q1) = {1, . . . ,k}, and keep them sorted in memory.
Use these sets to define θ and τas described above, and check if the solution satisfies our constraints.
If so, return this value of τ as the update step for the r-max loss. Otherwise, move on to the next
value in q and evaluate the next pair of candidates. This procedure for choosing θ and τ implies
that if more than one solution satisfies the constraints, we will choose the one encountered first,
namely the one for which θ is the smallest. Indeed it can be verified that the smaller θ, the greater
the value of the objective function in Equation (26). Given the sets Ψ(qi) and Φ(qi), we can obtain
the sets Ψ(qi+1) and Φ(qi+1), and recalculate θ, by simply removing from Ψ(qi) every j for which

2254

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

`t, j < qi+1 and removing from Φ(qi) every j for which `t, j −C‖xt, j‖2
2 < qi+1 . This operation can

be done efficiently since the sets Ψ(qi) and Φ(qi) are sorted in memory.

8. Experiments with Text Classification

In this section, we demonstrate the effectiveness of the implicit multitask algorithm on large-scale
text categorization problems. Throughout this paper, we have argued that when faced with multiple
tasks in parallel, we can often do better than to learn each task individually. The goal of the first
two experiments is to demonstrate that this is indeed the case. The third experiment demonstrates
that the superiority of the implicit update algorithm, presented in Section 5, over the multitask
Perceptron, presented in Sections 3 and 4.

We used the Reuters Corpus Vol. 1, which is a collection of over 800K news articles collected
from the Reuters newswire over a period of 12 months, in 1996-1997. An average article contains
approximately 240 words, and the entire corpus contains over half a million distinct tokens (not
including numbers and dates). Each article is associated with one or more of 104 possible low-level
categories.1 On average, each article is associated with 1.5 low-level categories. The categorization
problem induced by this corpus is referred to as a multiclass-multilabel (MCML) problem, since
there are multiple possible classes (the 104 categories) and each article may assigned multiple la-
bels. Examples of categories that appear in the corpus are: WEATHER, MONEY MARKETS, and
UNEMPLOYMENT. The articles in the corpus are given in their original chronological order, and
our goal is to predict the label, or labels, associated with each newly presented article. Our first
experiment addresses this problem.

The Reuters corpus also defines 5 high-level meta-categories: CORPORATE/INDUSTRIAL, ECO-
NOMICS, GOVERNMENT/SOCIAL, MARKETS, and OTHER. About 20% of the articles in the corpus
are associated with more than one of the five meta-categories. After discarding this 20%, we are left
with over 600K documents, each with a single high-level label. This induces a 5-class single-label
classification problem. Our second experiment addresses this multiclass single-label problem.

We began by applying some mild preprocessing to the articles in the corpus, which included
removal of punctuation, numbers, dates, and stop-words, and a global conversion of the entire corpus
to lower-case. Then, each article was mapped to a real vector using a logarithmic bag-of-words
representation. Namely, the length of each vector equals the number of distinct tokens in the corpus,
and each coordinate represents one of these tokens. If a token appears s times in a given article, then
the respective coordinate in the vector is set to log2(1+ s).

8.1 Multiclass Multilabel Categorization

We trained a separate binary classifier for each of the 104 low-level classes, using the implicit
update algorithm presented in Section 5. Given an unseen article, each classifier predicts whether
its respective category applies to that article or not. We ran our algorithm using both the L1 norm
and the L∞ norm as the global loss function. In both cases, the user-defined parameter C was set to
10−3.

The performance of the entire classifier ensemble on each article was evaluated in two ways.
First, we examined whether the 104-classifier ensemble predicted the entire set of categories per-

1. The original corpus specifies 126 labels which are organized in a hierarchical tree-structure. Of these labels, 104
are low-level categories, which correspond to leaves in the tree. The remaining labels are meta-categories which
correspond to inner nodes in the tree.

2255

DEKEL, LONG AND SINGER

0 2 4 6 8
x 10

5

0.4

0.5

0.6

0.7

0.8

0.9

1

online rounds

∞
−

er
ro

r
ra

te

 ∞−norm
 1−norm

0 2 4 6 8
x 10

5

0.005

0.01

0.015

0.02

online rounds

1−
er

ro
r

ra
te

 ∞−norm
 1−norm

Figure 4: The ∞-error (left) and 1-error (right) error-rates attained by the implicit multitask algo-
rithm using the L∞ norm (solid) and the L1 norm (dashed) global loss functions. Note
that the two plots are on a very different scale: the two lines on the left-hand plot differ
by approximately 3%, whereas the lines on the right-hand plot differ by approximately
0.05%.

fectly. An affirmative answer to this test implies that all 104 classifiers made correct predic-
tions simultaneously. Formally, let et be the vector in {0,1}104 such that et, j = 1 if and only if
yt, jwt, j · xt, j ≤ 0. In other words, et indicates which of the 104 binary classifiers made prediction
mistakes on round t. Now define the ∞-error suffered on round t as ‖et‖∞. Second, we assessed
the fraction of categories for which incorrect binary predictions were made. Formally, define the
1-error suffered on round t as ‖et‖1/104. Both measures of error are reasonable, and one should
be preferred over the other based on the specific requirements of the underlying application. Since
each coordinate of `t upper-bounds the respective coordinate in et , it holds that ‖et‖∞ ≤ ‖`t‖∞ and
that ‖et‖1 ≤ ‖`t‖1. Therefore, the L∞ norm update seems to be a more appropriate choice for min-
imizing the ∞-error, while the L1 norm update is the more appropriate choice for minimizing the
1-error. Our experiments confirm this intuitive argument.

The results of our experiments are summarized in Figure 4. The left-hand plot in the figure
shows the ∞-error-rate of the L∞ norm and L1 norm multitask updates, as the number of examples
grows from zero to 800K. The figure clearly shows that the L∞ norm algorithm does a better job
throughout the entire online learning process. The advantage of the L∞ norm algorithm diminishes
as more examples are observed.

The right-hand plot in Figure 4 compares the 1-error-rate of the two updates. In this case, the L∞
norm update initially takes the lead, but is quickly surpassed by the L1 norm update. The fact that
the L1 norm update ultimately gains the advantage coincides with our initial intuition. The reason
why the L∞ norm update outperforms the L1 norm update at first can also be easily explained. The
L1 norm update is quite aggressive, as it modifies every binary classifier that suffers a positive
individual loss on every round. Moreover, the L1 norm update enforces the constraint ‖τt‖∞ ≤ C.
On the other hand, the L∞ norm update is more cautious, since it enforces the stricter constraint
‖τt‖1 ≤C. The aggression of the L1 norm update causes its initial behavior to be somewhat erratic.

2256

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

0 5 10 15
0.11

0.115

0.12

0.125

0.13
m

ul
tic

la
ss

 e
rr

or
 r

at
e

r

10K examples

0 5 10 15

0.07

0.072

0.074

0.076

0.078

r

100K examples

0 5 10 15

0.05

0.051

0.052

r

600K examples

Figure 5: The multiclass error rate of the online ECOC-based classifier, using a 15 column code
matrix, with various r-max norms, after observing 10K, 100K, and 600K examples.

At first, many of the L1 norm updates actually move the classifier ensemble away from its target.
Inevitably, it takes the L1 norm classifier slightly longer to find its path.

8.2 Multiclass Meta-Categorization with ECOC and r-max Norms

Following one of the motivating examples given in the introduction, we used the ECOC method
(Dietterich and Bakiri, 1995) to reduce the 5 high-level meta-categories classification task from the
Reuters corpus to multiple binary classification tasks. We used the 5× 15 Hadamard code matrix,
defined as follows:

M =









+ + + + + + + + + + + + + + +
+ + + + + + + − − − − − − − −
+ + + − − − − + + + + − − − −
+ − − + + − − + + − − + + − −
− + − + − + − + − + − + − + −









.

This code matrix is derived by taking all 24 possible 5-coordinate columns with + in the first po-
sition, except for the all-plus column. This is the largest 5-row code matrix that does not induce
redundant or trivial binary classification problems. The distance between any two rows of the ma-
trix is 8, therefore this code is guaranteed to correct 4 binary prediction mistakes. We can determine
if more than 4 binary mistakes are made on round t by comparing the fifth largest element of `t

with 1. As mentioned in the introduction, taking the fifth largest loss does not constitute a norm,
and cannot be used as a global loss within our setting. However, a norm with a similar flavor is
the r-max norm, with r = 5. Our experiments show that it is actually advantageous to be slightly
over-cautious, by setting r to 3 or 4.

The results of our experiments are summarized in Figure 5. We trained 15 binary classifiers,
one per each column of M, using the implicit update algorithm presented in Section 5. We used
the r-max norm as the algorithm’s global loss function, with r set to every integer value between
1 and 15. For each example, all 15 binary classifiers made predictions, and M was used to decode
a multiclass prediction, as described in Dietterich and Bakiri (1995). A multiclass error occurs if
the predicted label differs from the true label. In Figure 5 we depict the average number of errors
that occurred after observing 10K, 100K, and 600K examples, for each value of r. We can see that

2257

DEKEL, LONG AND SINGER

0 2 4 6 8
x 10

5

0.4

0.5

0.6

0.7

0.8

online rounds

∞
−

er
ro

r
ra

te

 ∞−norm perceptron
 ∞−norm implicit

0 2 4 6 8
x 10

5

0.005

0.01

0.015

0.02

0.025

online rounds

1−
er

ro
r

ra
te

 ∞−norm perceptron
 ∞−norm implicit

Figure 6: The ∞-error (left) and 1-error (right) attained by the multitask Perceptron (dashed) and
the implicit update algorithm (solid) when using the L∞ norm as a global loss function.

using either the L1 norm (r = 15) or the L∞ norm (r = 1) is suboptimal, and the best performance
is consistently reached by setting r to be slightly smaller than half the code distance. Although
the theoretically motivated choice of r = 5 is not the best, it still yields better results than the two
extreme choices, r = 1 and r = 15.

When we replaced the Hadamard code matrix with the One-vs-Rest code matrix, defined by
2I − 1 (where I is the 5× 5 identity matrix and 1 is the 5× 5 all-ones matrix) then the multiclass
error after observing 600K examples increases from 5% to around 8%. This justifies using the
ECOC method in the first place.

We conclude this experiment by noting that although setting r = 1 produces the largest number
of multiclass prediction mistakes, it still delivers the best performance if we evaluate the 15 classifier
ensemble using the ∞-error defined above.

8.3 The Implicit Update vs. the Multitask Perceptron

From a loss minimization standpoint, Theorem 9 proves that the implicit update, presented in Sec-
tion 5, is at least as good as the multitask Perceptron variants, presented in Secs. 3 and 4. The
following experiment demonstrates that the implicit update is also superior in practice.

We repeated the multitask multi-label experiment described in Section 8.1, using the multitask
Perceptron in place of the implicit update algorithm. The infinite horizon extension discussed in
Section 4 does not have a significant effect on empirical performance, so we consider only the finite
horizon version of the multitask Perceptron, described in Section 3.

When the global loss function is defined using the L1 norm, both the implicit update and the
multitask Perceptron update decouple to independent updates for each individual task. In this case,
both algorithms are very similar, their empirical performance is almost identical, and the comparison
between them is not very interesting. Therefore, we focus on a global loss defined by the L∞ norm.

A comparison between the performance of the implicit update and the multitask Perceptron
update, both using the L∞-norm loss, is given in Figure 6. The plot on the left-hand side of the
figure compares the two algorithms’ ∞-error-rate, and the plot on the right-hand side of the figure

2258

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

compares their 1-error-rate. The implicit algorithm holds a clear lead over the multitask Perceptron
with respect to both error measures, throughout the learning process. These results give empirical
validation to the formal comparison of the two algorithms.

9. Discussion

When faced with several online tasks in parallel, it is not always best to distribute the learning effort
evenly. In many cases, it may be beneficial to allocate more effort to tasks when they are seen to
play “key” roles. In this paper, we presented an online algorithmic framework that does precisely
that. The priority given to each task is governed by its relative performance and by the choice of a
global loss function.

We presented three families of algorithms, each of which includes an algorithm for every global
loss defined by an absolute norm. The first two families are illustrative and theoretically appeal-
ing. The third family of algorithms uses the most sophisticated update of the three, and is the one
recommended for practical use. We demonstrated the superior performance of the third family of
algorithms empirically.

We showed that, in the worst case, the finite horizon multitask Perceptron of Section 3 and
the implicit update algorithm of Section 5 both perform asymptotically as well as the best fixed
hypothesis ensemble. In other words, these algorithms are no-regret algorithms with respect to any
global loss function defined by an absolute norm. The same cannot be said for the naive alternative,
where we use multiple independent single-task learning algorithms to solve the multitask problem.
We also demonstrated the benefit of the multitask approach over the naive alternative on two large-
scale text categorization problems.

Throughout the paper, we assumed that the multiple online tasks are perfectly synchronized,
and that a complete k-tuple of examples is observed on every round. This is indeed the case in each
of the concrete examples described in the introduction and empirically tested in our experiments.
However, in other real-world situations, this may not be the case. Namely, there could occur situ-
ations where not all of the tasks are active on every single round. In other words, there may be a
subset of “dormant tasks” on each round. For example, say that we are operating an online store and
that we have multiple registered customers. Each product in our store is represented by a feature
vector, and we train an individual binary classifier for each of our customers. When costumer j
visits a product-page on our website, the respective classifier is used to predict whether that cus-
tomer intends to purchase the product or not. The prediction is then used to decide whether or not
to lure the customer away from that page. This setting induces a natural online multitask learning
problem. Moreover, only a fraction of the customers is online at any given moment. We consider
the tasks of those customers that are not online to be dormant or inactive tasks. At a first glance,
the inactive tasks setting may seem to be more complicated than the fully synchronized setting dis-
cussed throughout the paper. However, our algorithms and analysis accommodate this extension
quite naturally. We simply need to define `t, j = 0 for every inactive task and apply the multitask
update verbatim. Due to the conservativeness assumption, the hypotheses of the inactive tasks will
be left intact. Additionally, note that all of the norms discussed in this paper have the property that
‖v‖ = ‖v′‖, where v′ is the vector obtained by removing all of the zero entries from v. Therefore,
we can imagine that the length of the vector `t changes from round to round, and that the update on
each round is applied as if the tasks that are sleeping on that round never existed in the first place.
We would also like to note that, although our presentation focuses on multiple binary classifica-

2259

DEKEL, LONG AND SINGER

tion tasks, our algorithms and techniques can be adapted to other online learning problems as well.
Specifically, a multitask implicit update can be derived for regression and uniclass problems using
ideas from Crammer et al. (2006).

The next-step would be to extend our framework from absolute norms to general norms. For
example, the family of Mahalanobis norms, defined by ‖z‖2 = z>Pz (where P is a positive definite
matrix) includes norms that are not absolute but which could have interesting applications in our
setting. More generally, there exist meaningful global loss functions which are not norms at all.

Another interesting research direction would be to return to the roots of statistical multitask
learning, and to try to model generative similarities between the multiple tasks within the online
framework. In our work, we completely disregarded any relatedness between the multiple tasks, and
only considered the shared consequences of errors. In the game-theoretic spirit of online learning,
modeling these similarities would have to be done without making statistical assumptions on the
data source.

Appendix A. The K-Method of Norm Interpolation

In this section, we briefly survey Peetre’s K-method of norm interpolation. This method takes a
pair of norms and smoothly interpolates between them, producing a new family of norms which
can be used in our setting. An example of such an interpolation is the family of r-max norms,
previously mentioned in this paper. The main practical purpose of this section is to prove that the
dual of the r-max norm takes the form given in Equation (3). We do not present the K-method in
all its generality, but rather focus only on topics which are relevant to the online multitask learning
setting. The interested reader is referred to Bennett and Sharpley (1998) for a more detailed account
of interpolation theory.

We begin by presenting Peetre’s K-functional and J-functional, and proving that they induce
dual norms. Let ‖ ·‖p1 : R

k → R+ and ‖ ·‖p2 : R
k → R+ be two p-norms, and let ‖ ·‖q1 and ‖ ·‖q2 be

their respective duals. The K-functional with respect to p1 and p2, and with respect to the constant
α > 0, is defined as

‖v‖K(p1,p2,α) = min
w+z=v

(

‖w‖p1 +α‖z‖p2

)

.

The J-functional with respect to q1, q2, and with respect to the constant β > 0, is defined as

‖u‖J(q1,q2,β) = max
{

‖u‖q1 , β‖u‖q2

}

.

The J-functional is obviously a norm: positivity and linearity follow immediately from the fact that
‖ · ‖q1 and ‖ · ‖q2 posses these properties. The triangle inequality follows from

‖v+u‖J(q1,q2,β) = max
{

‖v+u‖q1 , β‖v+u‖q2

}

≤ max
{

‖v‖q1 +‖u‖q1 , β‖v‖q2 +β‖u‖q2

}

≤ max
{

‖v‖q1 , β‖v‖q2

}

+ max
{

‖u‖q1 , β‖u‖q2

}

= ‖v‖J(q1,q2,β) + ‖u‖J(q1,q2,β) .

Since the J-functional is defined with respect to two absolute norms, it too is an absolute norm.
Instead of explicitly proving that ‖ · ‖K(p1,p2,α) is also a norm, we prove that it is the dual of

‖ ·‖J(q1,q2,β) when α = 1/β. Since the dual of an absolute norm is itself an absolute norm, and since

2260

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

the dual of the dual norm is the original norm (Horn and Johnson, 1985), our proof implies that
‖ · ‖K(p1,p2,α) is indeed a norm, that it is absolute, and that its dual is ‖ · ‖J(q1,q2,1/α).

Theorem 10 Using the notation defined above,

‖ · ‖∗J(q1,q2,β) ≡ ‖ ·‖K(p1,p2,1/β) .

Proof We abbreviate ‖v‖J = ‖v‖J(q1,q2,β) and ‖v‖K = ‖v‖K(p1,p2,1/β) throughout the proof. First,
we show that ‖v‖∗J ≤ ‖v‖K for all v ∈ R

k. Let v,w and z be vectors in R
k such that v = w+z. Then

for any u ∈ R
k, we can use Hölder’s inequality to obtain

u ·v = u ·w + u · z
≤ ‖u‖q1‖w‖p1 + ‖u‖q2‖z‖p2 .

By definition, it holds that

‖u‖q1 ≤ ‖u‖J and ‖u‖q2 ≤
1
β
‖u‖J ,

and so

u ·v ≤
(

‖w‖p1 +
1
β
‖z‖p2

)

‖u‖J .

Since the only restriction on u,v,w and z is that v = w+ z, we can fix v, choose u to be the vector
which maximizes the left-hand side above subject to ‖u‖J ≤ 1, and choose w and z which minimize
the right-hand side above subject to v = w+ z. This results in

max
u∈Rk:‖u‖J≤1

u ·v ≤ min
w+z=v

(

‖w‖p1 +
1
β
‖z‖p2

)

.

The left-hand side above is the formal definition of ‖v‖∗J , the right-hand side is the definition of
‖v‖K , and we have proven that ‖v‖∗J ≤ ‖v‖K .

To prove the opposite direction, fix v and let u be the vector with ‖u‖J ≤ 1 which maximizes
u ·v. We now consider two cases. If ‖u‖q1 ≥ β‖u‖q2 then

‖v‖∗J = max
u:‖u‖q1≤1

u ·v .

Using the duality of ‖ · ‖q1 and ‖ · ‖p1 , the right hand-side above equals ‖v‖p1 . Since we can choose
w = v and z = 0, it certainly holds that

‖v‖p1 ≥ min
w+z=v

(

‖w‖p1 +
1
β
‖z‖p2

)

= ‖v‖K .

On the other hand, if ‖u‖q1 ≤ β‖u‖q2 then

‖v‖∗J =
1
β

max
u:‖u‖p2≤1

u ·v .

2261

DEKEL, LONG AND SINGER

Using the duality of ‖·‖q2 and ‖·‖p2 , the right hand-side above equals 1
β‖v‖p2 . Since we can choose

w = 0 and z = v, it holds that

1
β
‖v‖p2 ≥ min

w+z=v

(

‖w‖p2 +
1
β
‖z‖p2

)

= ‖v‖K .

Overall, we have shown that ‖v‖∗J ≥ ‖v‖K .

The r-max norm discussed in the paper is an instance of the K-functional, and can be defined as

‖v‖r-max = ‖v‖K(1,∞,r) .

To see why this is true, let φ be the absolute value of the r’th absolutely largest coordinate in v. Now
define for each 1 ≤ j ≤ k

w j = sign(v j)max{0, |v j|−φ} and z j = sign(v j)min{|v j|,φ} .

Note that w+ z = v, and that
‖v‖r-max = ‖w‖1 + r‖z‖∞ .

This proves that ‖v‖r-max ≥ ‖v‖K(1,∞,r).
Turning to the opposite inequality, let π(1), . . . ,π(r) be the indices of the r absolutely largest

elements of v, and let w and z be vectors such that w+ z = v. We now have that

‖v‖r-max =
r

∑
j=1

|vπ(j)|

=
r

∑
j=1

|wπ(j) + zπ(j)|

≤
r

∑
j=1

|wπ(j)| +
r

∑
j=1

|zπ(j)|

≤
r

∑
j=1

|wπ(j)| + r max
j=1,...,r

|zπ(j)|

≤
k

∑
j=1

|w j| + r max
j=1,...,k

|z j| = ‖w‖1 + r‖z‖∞ .

The above holds for any w and z which sum to v, and specifically to those which minimize ‖w‖1 +
r‖z‖∞. We conclude that ‖v‖r-max ≤ ‖v‖K(1,∞,r), and therefore ‖v‖r-max = ‖v‖K(1,∞,r).

Finally, we calculate an upper bound on the remoteness of ‖·‖J(q1,q2,β). This enables us to obtain
concrete loss bounds for interpolation norms from the theorems proven in this paper. Recall that

ρ(‖ · ‖J(q1,q2,β),k) = max
u∈Rk

‖u‖2

‖u‖J(q1,q2,β)
.

Using the definition of the J-functional, the above becomes

max
u∈Rk

min

{ ‖u‖2

‖u‖q1

,
‖u‖2

β‖u‖q2

}

.

2262

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

Using the weak minimax theorem, we can upper-bound the above by

min

{

max
u∈Rk

‖u‖2

‖u‖q1

,max
u∈Rk

‖u‖2

β‖u‖q2

}

.

Once again using the definition of remoteness, the above can be rewritten as

min

{

ρ(‖ · ‖q1 ,k),
ρ(‖ · ‖q2 ,k)

β

}

.

Using Lemma 2, we can obtain an explicit upper bound on the remoteness of any interpolation of
p-norms.

References

J. Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research, 12:
149–198, 2000.

S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learning. In Proceedings
of the Sixteenth Annual Conference on Computational Learning Theory, 2003.

C. Bennett and R. Sharpley. Interpolation of Operators. Academic Press, 1998.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

O. Chapelle and Z. Harchaoui. A machine learning approach to conjoint analysis. In Advances in
Neural Information Processing Systems, volume 17, 2005.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines. Journal of Machine Learning Research, 2:265–292, 2001.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems. Journal
of Machine Learning Research, 3:951–991, 2003.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive aggressive
algorithms. Journal of Machine Learning Research, 7:551–585, Mar 2006.

T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output
codes. Journal of Artificial Intelligence Research, 2:263–286, January 1995.

T. Evgeniou, C.Micchelli, and M. Pontil. Learning multiple tasks with kernel methods. Journal of
Machine Learning Research, 6:615–637, 2005.

D. P. Helmbold, J. Kivinen, and M. Warmuth. Relative loss bounds for single neurons. IEEE
Transactions on Neural Networks, 10(6):1291–1304, 1999.

R. Herbrich, T. Graepel, and K. Obermayer. Large marging rank boundaries for ordinal regression.
In A. Smola, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers.
MIT Press, 2000.

2263

DEKEL, LONG AND SINGER

T. Heskes. Solving a huge number of silmilar tasks: A combination of multitask learning and
a hierarchical bayesian approach. In Proceedings of the Fifteenth International Conference on
Machine Learning, pages 233–241, 1998.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

J. Kivinen and M. Warmuth. Relative loss bounds for multidimensional regression problems. Jour-
nal of Machine Learning, 45(3):301–329, July 2001.

A. B. J. Novikoff. On convergence proofs on perceptrons. In Proceedings of the Symposium on the
Mathematical Theory of Automata, volume XII, pages 615–622, 1962.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in
the brain. Psychological Review, 65:386–407, 1958. (Reprinted in Neurocomputing (MIT Press,
1988).).

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for
interdependent and structured output spaces. In Proceedings of the Twenty-First International
Conference on Machine Learning, 2004.

2264

