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Abstract

We show that, given data from a mixture of k well-separated spherical Gaussians in R
d , a simple

two-round variant of EM will, with high probability, learn the parameters of the Gaussians to near-
optimal precision, if the dimension is high (d � lnk). We relate this to previous theoretical and
empirical work on the EM algorithm.
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1. Introduction

At present the expectation-maximization algorithm (Dempster, Laird, and Rubin, 1977; Wu, 1983)
is the method of choice for learning mixtures of Gaussians. A series of theoretical and experimental
studies over the past three decades have contributed to the collective intuition about this algorithm.
We will reinterpret some of these results in the context of a new performance guarantee.

In brief, EM is a hillclimbing algorithm which starts with some initial estimate of the Gaussian
mixture and then repeatedly changes this estimate so as to improve its likelihood, until it finally
converges to a local optimum of the search space. It is well known to practitioners that the quality
of the output can be influenced significantly by the manner in which EM is initialized. Another
source of variation is that in practice it is quite common to add or remove Gaussians during the
search process, according to various intuitively-motivated criteria.

Given the enormous importance of Gaussian mixture models in applied statistics and machine
learning, it is reasonable to wonder how good the EM algorithm is. Among other things, a rigorous
analysis of its performance might shed light on some of the unresolved issues in its implementation—
for instance, initialization. It is in this spirit that we approach our analysis of EM.

A common form of theoretical study is worst-case analysis, which in this case would attempt
to bound how far EM can deviate from the optimal log-likelihood, or perhaps the optimal set of
mixture parameters. Such an analysis turns out to be trivial, because—as is well known—EM’s
output can be arbitrarily far from optimal for either of the two criteria above (we will see such an
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example in Section 2.3). Thus, this line of reasoning does not appear to yield any interesting insights
into the algorithm’s behavior.

In this paper, we perform what might be called a best-case analysis. We assume that the data
are the best EM could possibly hope for: i.i.d. samples from a mixture of spherical Gaussians in R

d

which are well separated from one another. At first glance, it seems that we are once again in danger
of getting a trivial result, namely that EM will succeed without a hiccup. But this is not the case. In
fact, we will see that even in this extremely optimistic setting, many common ways of initializing,
and subsequently running, EM will make it fail dramatically. On the other hand, if EM is run in a
particular manner which we specify, then within just two rounds, it will identify the correct mixture
parameters with near-perfect accuracy.

If the data is expected to have k clusters, it is common for practitioners to start EM with more
than k centers, and to later prune some of these extra centers. We present a simple example to
demonstrate exactly why this is necessary, and obtain an expression for the number of initial cen-
ters which should be used: at least 1

wmin
lnk, where wmin is a lower bound on the smallest mixing

weight. The typical method of pruning is to remove Gaussian-estimates with very low mixing
weight (known as starved clusters). Our theoretical analysis shows that this is not enough, that
there is another type of Gaussian-estimate, easy to detect, which also needs to be pruned. Specif-
ically, it is possible (and frequently occurs in simulations) that two of EM’s Gaussian-estimates
share the same cluster, each with relatively high mixing weight. We present a very simple, provably
correct method of detecting this situation and correcting it.

It is widely recognized that a crucial issue in the performance of EM is the choice of initial
parameters. For the means, we use the popular technique of selecting them randomly from the data
set. This is shown to be adequate for the performance guarantee we derive. Our analysis also makes
it clear that it is vitally important to pick good initial estimates of the covariances, a subject which
has received somewhat less attention. We use an initializer whose origin we are unable to trace but
which is mentioned in Bishop’s text (1995).

Our analysis is focused on the case when the data are high-dimensional (d � lnk), and it brings
out some interesting qualitative differences from the low-dimensional case. In particular, it is com-
mon to think of EM as assigning “soft” cluster memberships in which each data point is not defini-
tively assigned to a single cluster but, rather, is split between clusters according to its relative prox-
imities to them. Moreover, this is sometimes quoted as a source of EM’s effectiveness—that these
soft memberships allow cluster boundaries to shift in a smooth and stable manner. In the optimistic
high-dimensional scenario we analyze, the behavior is quite different, in that cluster memberships
are effectively always “hard”. This is because the distances are so large that for any two clusters,
there is only a small part of the space in which there is any ambiguity of assignment, and it is
unlikely that data points would lie in these zones. Moreover, the phenomenon of smooth transi-
tions between clusterings is nonexistent. Instead, EM quickly snaps into one of several trajectories
(loosely defined), and thereafter heads to a nearby local optimum. Initialization is of supreme
importance—once EM has snapped into the wrong trajectory, all is lost.

1.1 Relation to Previous Work on EM

A standard criticism of EM is that it converges slowly. Simulations performed by Redner and
Walker (1984), and others, demonstrate this decisively for one-dimensional mixtures of two Gaus-
sians. It is also known that given data from a mixture of Gaussians, when EM gets close to the
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true solution, it exhibits first-order convergence (Titterington, Smith, and Makov, 1985). Roughly
speaking, the idea is this: given m data points from a mixture with parameters (means, covariances,
and mixing weights) θ∗, where m is very large, the likelihood has a local maximum at some set of
parameters θm close to θ∗. Let θ〈t〉 denote EM’s parameter-estimates at time t. It can be shown (cf.
Taylor expansion) that when θ〈t〉 is near θm,

‖θ〈t+1〉−θm‖ ≤ λ · ‖θ〈t〉−θm‖,

where λ ∈ [0,1) and ‖ · ‖ is some norm.1 If the Gaussians are closely packed then λ is close to one;
if they are very far from one another then λ is close to zero.

Xu and Jordan (1995) present theoretical results which mitigate some of the pessimism of first-
order convergence, particularly in the case of well-separated mixtures, and they note that moreover
near-optimal log-likelihood is typically reached in just a few iterations. We also argue in favor of
EM, but in a different way. We ask, how close does θ〈t〉 have to be to θm for slow convergence to
hold? Let D(θ1,θ2) denote the maximum Euclidean distance between the respective means of θ1

and θ2. For one-dimensional data, it can be seen quite easily from canonical experiments (Redner
and Walker, 1984) that convergence is slow even if D(θ〈t〉,θ∗) is large. However, our results suggest
that this no longer holds in higher dimension. For reasonably well-separated spherical Gaussians
in R

d (where separation is defined precisely in the next section), convergence is very fast until
D(θ〈t〉,θ∗) ≈ e−Ω(d). In fact, we can make EM attain this accuracy in just two rounds. The error
e−Ω(d) is so miniscule for large d that subsequent improvements are not especially important.

At a high level, previous analyses of EM have typically adopted an optimization-based view-
point: they have studied EM by studying the objective function (log-likelihood) that it is ostensibly
optimizing. A typical tool in this kind of analysis is to perform a Taylor expansion of the log-
likelihood in the vicinity of a local optimum, assuming the data are i.i.d. draws from a mixture of
Gaussians, and to thereby get insight into the speed at which EM is likely to move when it gets close
to this optimum. A major drawback of this approach is that it only addresses what happens close to
convergence. It cannot, for instance, give intuition about how to initialize EM, or about whether a
local optimum of high quality is attained.

In contrast, we perform a probabilistic analysis. We also assume that the data are i.i.d. draws
from a mixture of Gaussians, but we focus upon the actual algorithm and ignore the likelihood
function altogether. We ask, what will the algorithm do in step one, with high probability over the
choice of data? In step two? And so on. This enables us to address issues of initialization and global
optimality.

1.2 Results

Performance guarantees for clustering will inevitably involve some notion of the separation between
different clusters. There are at least two natural ways of defining this. Take for simplicity the case
of two d-dimensional Gaussians N(µ1, Id) and N(µ2, Id). If each coordinate (attribute) provides a
little bit of discriminative information between the two clusters, then on each coordinate µ1 and µ2

differ by at least some small amount, say δ. The L2 distance between µ1 and µ2 is then at least
δ
√

d. As further attributes are added, the distance between the centers grows, and the two clusters
become more clearly distinguishable from one another. This is the usual rationale for using high-
dimensional data: the higher the dimension, the easier (in an information-theoretic sense) clustering

1. This might not seem so bad, but contrast it with second-order convergence, in which ‖θ〈t+1〉−θm‖≤ λ ·‖θ〈t〉−θm‖2.
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should be. The only problem then, is whether there are algorithms which can efficiently exploit
the tradeoff between this high information content and the curse of dimensionality. This viewpoint
suggests that the Euclidean distance between the centers of d-dimensional clusters can reasonably
be measured in units of

√
d, and that it is most important to develop algorithms which work well

under the assumption that this distance is some constant times
√

d. On the other hand, it should
be pointed out that if ‖µ1 − µ2‖ = δ

√
d for some constant δ > 0, then for large d the overlap in

probability mass between the two Gaussians is miniscule, exponentially small in d. Therefore, it
should not only be interesting but also possible to develop algorithms which work well when the L2

distance between centers of clusters is some constant, regardless of the dimension (as opposed to a
constant times

√
d).

Where does EM fall in this spectrum of separation? It lies somewhere in between: we show that
it works well when the distance between d-dimensional clusters is bigger than d1/4.

Our central performance guarantee requires that the clusters actually look spherical-Gaussian,
more specifically that the data points are drawn i.i.d. from some (unknown) mixture of spherical
Gaussians, which could potentially have different variances. We show that if the clusters are rea-
sonably well-separated (in the sense we just defined), and if the dimension d � lnk then only two
rounds of EM are required to learn the mixture to within near-optimal precision, with high prob-
ability 1− k−Ω(1). Our measure of accuracy is the function D(·, ·) introduced above. The precise
statement of the theorem can be found in the next section, and applies not only to EM but also to
other similar schemes, including for instance some of the variants of EM and k-means introduced
by Kearns, Mansour, and Ng (1997).

Several recent papers have suggested alternative algorithms for learning the parameters of a
mixture of well-separated Gaussians (or other distributions with similar concentration properties),
given data drawn i.i.d. from that distribution. The first in this series, by Dasgupta (1999), requires
the Gaussians to be “sphere-like” and separated by a distance of Ω(

√
d). Arora and Kannan (2004)

handle more general Gaussians, and reduce the separation requirement to Ω(d1/4) in the spherical
case (as in this paper). Vempala and Wang (2004) use spectral projection to bring the separation
constraint for spherical Gaussians down to just Ω((k logd)1/4), where k is the number of clusters.
Vempala, Kannan, and Salmasian (2005) and Achlioptas and McSherry (2005) give extensions of
these latter results to ellipsoidal clusters. The last three results are especially relevant to the current
paper because the amount of intercluster separation we require can likely be substantially reduced
if spectral projection is used as a preprocessing step.

In the final section of the paper, we discuss a crucial issue: what features of our main assumption
(that the clusters are high-dimensional Gaussians) make our guarantees for EM possible? This
assumption is also the basis of the other theoretical results mentioned above, but can real data sets
reasonably be expected to satisfy it? If not, in what way can it usefully be relaxed?

2. Statement of Results

To motivate our model, we start by examining some properties of high-dimensional Gaussians.

206



PROBABILISTIC ANALYSIS OF EM

2.1 High-dimensional Gaussians

A spherical Gaussian N(µ,σ2Id) assigns to point x ∈ R
d the density

p(x) =
1

(2π)d/2σd
exp

(

−‖x−µ‖2

2σ2

)

,

‖ · ‖ being Euclidean distance. If X = (X1, . . . ,Xd) is randomly chosen from N(0,σ2Id) then its
coordinates are i.i.d. N(0,σ2) random variables. Each coordinate has expected squared value σ2

so E‖X‖2 = E(X2
1 + · · ·+ X2

d ) = σ2d. It then follows by a large deviation bound that ‖X‖2 will be
tightly concentrated around σ2d:

P(|‖X‖2 −σ2d| > εσ2d) ≤ e−dε2/8.

This bound and others like it will be proved in Section 3. It means that almost the entire probability
mass of N(0,σ2Id) lies in a thin shell at a radius of about σ

√
d from the origin. The density of the

Gaussian is highest at the origin; however, the surface area at distance r from the origin, 0 ≤ r ≤
σ
√

d, increases faster than the density at distance r decreases (Bishop, 1995, exercise 1.4).
It is natural therefore to think of a Gaussian N(µ,σ2Id) as having radius σ

√
d. We say two

Gaussians N(µ1,σ2
1Id),N(µ2,σ2

2Id) in R
d are c-separated if

‖µ1 −µ2‖ ≥ cmax{σ1,σ2}
√

d,

that is, if they are c radii apart. A mixture of Gaussians is c-separated if the Gaussians in it are pair-
wise c-separated. In general we will let ci j denote the separation between the ith and jth Gaussians,
and c = mini6= j ci j. We can reasonably expect that the difficulty of learning a mixture of Gaussians
increases as c decreases.

A 2-separated mixture of Gaussians contains clusters with almost no overlap. For large d, this is
true even of a 1

100 -separated mixture, because for instance, the two balls B(0,
√

d) and B( 1
100

√
d,
√

d)
in R

d share only a tiny fraction of their volume. One useful way of thinking about a pair of c-
separated Gaussians is to imagine that on each coordinate their means differ by c. If c is small, then
the projection of the mixture onto any one coordinate will look unimodal. This might also be true of
a projection onto a few coordinates. But for large d, when all coordinates are considered together,
the distribution will cease to be unimodal. This is precisely the reason for using high-dimensional
data.

What values of c can be expected of real-world data sets? This will vary from case to case. As
an example, we analyzed a canonical data set consisting of handwritten digits collected by USPS.
Each digit is represented as a vector in [−1,1]256. We fit a mixture of ten (non-spherical) Gaussians
to this data set, by doing each digit separately, and found that it was 0.63-separated.

2.2 The EM algorithm

A mixture of k spherical Gaussians in R
d is specified by a set of mixing weights wi (which sum to

one and represent the proportions in which the various Gaussians are present) and by the individual
Gaussian means µi ∈ R

d and variances σ2
i .

Given a data set S ∈ R
d , the EM algorithm works by first choosing starting values w〈0〉

i ,µ〈0〉i ,σ〈0〉
i

for the parameters, and then updating them iteratively according to the following two steps (at time
t).
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E step Let τi ∼ N(µ〈t〉i ,σ〈t〉2
i Id) denote the density of the ith Gaussian-estimate. For each data point

x ∈ S, and each 1 ≤ i ≤ k, compute

p〈t+1〉
i (x) =

w〈t〉
i τi(x)

∑ j w〈t〉
j τ j(x)

,

the conditional probability that x comes from the ith Gaussian with respect to the current
estimated parameters.

M step Now update the various parameters in an intuitive way. Let m be the size of S.

w〈t+1〉
i =

1
m ∑

x∈S

p〈t+1〉
i (x),

µ〈t+1〉
i =

1

mw〈t+1〉
i

∑
x∈S

x p〈t+1〉
i (x),

σ〈t+1〉2
i =

1

mw〈t+1〉
i d

∑
x∈S

‖x−µ〈t+1〉
i ‖2 p〈t+1〉

i (x).

2.3 The Main Issues

We now give a high-level description of some fundamental issues that arise in our analysis of EM,
and that dictate our key design decisions.

2.3.1 TIGHT CONCENTRATION OF INTERPOINT DISTANCES

In a high-dimensional space R
d , the distances between data points—whether sampled from the same

Gaussian or from different Gaussians—are tightly concentrated around their expected values. In
particular, if the Gaussians happen to have the same variance σ2Id , and if the distances between their
centers are � σd1/4, then the chance that two points from different Gaussians are closer together
than two points from the same Gaussian, is tiny, e−Ω(poly(d)). Therefore, an examination of interpoint
distances is enough to almost perfectly cluster the data. A variety of different algorithms will work
well under these circumstances, and EM is no exception.

What if the Gaussians have different variances σi? Once again, interpoint distances are close
to their expected values, but now a new complication is introduced. If a small-variance cluster B is
close to the center of a larger-variance cluster A, then it is quite possible for points x ∈ A to be closer
to all of B than to any other point in A:

A
B

x

We expressly rule out this case by requiring the separation between any two clusters i and j to satisfy

‖µi −µ j‖2 ≥ |σ2
i −σ2

j |d.
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2.3.2 INITIALIZATION

Suppose the true number of Gaussians, k, is known. Let S denote the entire data set, with Si being
the points drawn from the ith true Gaussian N(µi,σ2Id). A common way to initialize EM is to pick

l data points at random from S, and to use these as initial center-estimates µ〈0〉
i . How large should l

be? It turns out that if these l points include at least one point from each Si, then EM can be made to
perform well. This suggests l = Ω(k lnk). Conversely, if the initial centers miss some Si, then EM
might perform poorly.

Here is a concrete example (Figure 1). Let d denote some high dimension, and place the k true
Gaussians N(µ1, Id), . . . ,N(µk, Id) side by side in a line, leaving a distance of at least 3

√
d between

consecutive Gaussians. Assign them equal mixing weights. As before let Si be the data points from
the ith Gaussian, and choose EM’s initial center-estimates from the data. Suppose the initial centers
contain nothing from S1, one point from S2, and at least one point from S3. The probability of this
event is at least some constant. Then no matter how long EM is run, it will assign just one Gaussian-
estimate to the first two true Gaussians. In the first round of EM, the point from S2 (call it µ〈0〉1 ) will
move between µ1 and µ2. It will stay there, right between the two true centers. None of the other
center-estimates µ〈t〉i will ever come closer to µ2; their distance from it is so large that their influence

is overwhelmed by that of µ〈t〉1 . This argument can be formalized easily using the large deviation
bounds that we will introduce in the next section.

s

µ1
s

µ2
s µ3

s µ〈1〉2

s

µ〈1〉1

s µ〈1〉3

s

µ〈0〉2

s

µ〈0〉3
s

µ〈0〉1

Figure 1: For this mixture, the positions of the center-estimates do not move much after the first
step of EM.

How about the initial choice of variance? In the case when the Gaussians have the same spher-
ical covariance, this is not all that important, except that a huge overestimate might cause slower
convergence. In the case when the Gaussians have different variances, however, the initial estimates
are crucially important, and so we will use a fairly precise estimator, a variant of which is mentioned
in Bishop’s text (1995).

2.3.3 AFTER THE FIRST ROUND OF EM

After one round of EM, the center-estimates are pruned to leave exactly one per true Gaussian. This
is accomplished in a simple manner. First, remove any center-estimates with very low mixing weight
(this is often called “cluster starvation”). Any remaining center-estimate (originally chosen, say,
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Figure 2: The large circles are true clusters, while the dots (solid or hollow) are EM’s center-
estimates. Left: after initialization, we have at least one center-estimate per true cluster.
Right: After the first round of EM, each center-estimate has either been “starved” (shown
as hollow) or has moved closer to the corresponding true center.

from Si) has relatively high mixing weight, and we can show that as a result of the first EM iteration,
it will have moved close to µi (Figure 2). A trivial clustering heuristic, due to Gonzalez (1985), is
then good enough to select one center-estimate near each µi.

With exactly one center-estimate per (true) Gaussian, a second iteration of EM will accurately
retrieve the means, variances, and mixing weights. In fact the clustering of the data (the fractional
labels assigned by EM) will be almost perfect, that is to say, each fractional label will be close to
zero or one, and will in almost all cases correctly identify the generating Gaussian. Therefore further
iterations will not help much: these additional iterations will move the center-estimates around by
at most e−Ω(d).

2.4 A Two-round Variant of EM

Here is a summary of the modified algorithm, given m data points in R
d which have been generated

by a mixture of k Gaussians. The value of l will be specified later; for the time being it can be
thought of as O(k lnk).

Initialization Pick l data points at random as starting estimates µ〈0〉
i for the Gaussian centers. As-

sign them identical mixing weights w〈0〉
i = 1

l . For initial estimates of the variances use

σ〈0〉2
i =

1
2d

min
j 6=i

‖µ〈0〉i −µ〈0〉j ‖2.

EM Run one round of EM. This yields modified estimates w〈1〉
i ,µ〈1〉i ,σ〈1〉

i .

Pruning Remove all center-estimates whose mixing weights are below wT = 1
4l . Then, prune the

remaining center-estimates down to just k by using the following adaptation of an algorithm
of Gonzalez (1985):
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• Compute distances between center-estimates:

d(µ〈1〉i ,µ〈1〉j ) =
‖µ〈1〉i −µ〈1〉j ‖
σ〈1〉

i +σ〈1〉
j

.

• Choose one of these centers arbitrarily.

• Pick the remaining k− 1 iteratively as follows: pick the center farthest from the ones
picked so far. (The distance from a point x to a set S is miny∈S d(x,y).)

Call the resulting center-estimates µ̃〈1〉i (where 1 ≤ i ≤ k), and let σ̃〈1〉2
i be the corresponding

variances. Set the mixing weights to w̃〈1〉
i = 1

k .

EM Run one more step of EM, starting at the {w̃〈1〉
i , µ̃〈1〉i , σ̃〈1〉

i } parameters and yielding the final

estimates w〈2〉
i ,µ〈2〉i ,σ〈2〉

i .

2.5 The Main Result

Now that the notation and algorithm have been introduced, we can state the main theorem.

Theorem 1 Say m data points are generated from a mixture of k Gaussians in R
d ,

w1N(µ1,σ2
1Id)+ · · ·+wkN(µk,σ2

kId),

where the intercenter distances satisfy the inequality ‖µi −µ j‖2 ≥ |σ2
i −σ2

j |d.

Define ci j to be the separation between the ith and jth Gaussians—that is, ‖µi−µ j‖= ci j max(σi,σ j)
√

d
— and c = mini6= j ci j to be the overall separation. Let Si denote the points from the ith Gaussian,
and let wmin = mini wi. For any δ > 0 and ε > 0, if

1. parameter l = Ω( 1
wmin

ln 1
δwmin

),

2. dimension d = Ω(max(1,c−4) ln max(1,c−4)
δwmin

),

3. number of samples m = Ω(l max(1,c−2)),

4. separation c2d = Ω(ln 1
εwmin

),

then with probability at least 1− δ, the variant of EM described above will produce final center-
estimates which (appropriately permuted) satisfy

‖µ〈2〉i −µi‖ ≤ ‖mean(Si)−µi‖+ εσi

√
d.

This theorem will be proved over the remainder of the paper, but a few words about it are in
order at this stage. First of all, the constants which have been left out of the theorem statement
are given in Section 4. Second, the best that can be hoped is that µ〈2〉

i = mean(Si); therefore, the
final error bound on the center-estimates becomes very close to optimal as c2d increases. Third,
similarly strong bounds can be given for the final mixing weights and variances; see Theorem 17.
Finally, notice that the bounds require c � d−1/4; in other words, the distance between the centers
of Gaussians i and j must be � max(σi,σ j)d1/4.
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d dimension
k true number of clusters
wi,µi,σ2

i true mixture parameters
σi j shorthand for max(σi,σ j)
wmin lower bound on the mixing weights: wi ≥ wmin

l number of clusters with which EM is started; l > k

w〈t〉
i ,µ〈t〉i ,σ〈t〉2

i EM’s parameter-estimates at time t

p〈t〉i (x) EM’s soft-assignment (to point x, from cluster i) at time t
wT threshold used to prune “starved clusters”: wT = 1/4l
ci j separation between Gaussians i and j; ‖µi −µ j‖ = ci jσi j

√
d

c overall separation, c = mini6= j ci j

S data points
Si data points sampled from the ith Gaussian
m number of data points
εo concentration of interpoint distances and dot products
Ci center-estimates from Si which survived the first round:

Ci = {µ〈1〉i′ : µ〈0〉i′ ∈ Si,w
〈1〉
i′ ≥ wT}

d(µ〈1〉i ,µ〈1〉j ) weighted distance between centers, used by pruning procedure

Figure 3: Notation.

3. Concentration Properties of Gaussian Samples

Our analysis hinges crucially upon concentration effects: specifically, that interpoint distances and
means of subsets of points are likely to be close to their expected values.

The most basic such property is that the squared length of a point drawn from a high-dimensional
Gaussian is tightly concentrated. The proof of this well-known fact is repeated here for easy refer-
ence.

Lemma 2 Pick X from the distribution N(0, Id).

(a) (Very large deviations) For any λ ≥ 1, we have P(‖X‖2 ≥ λd) ≤ (eλ−1−lnλ)−d/2.

(b) (Modest deviations) For any ε ∈ (0,1), we have P(|‖X‖2 −d| ≥ εd) ≤ 2e−dε2/8.

Proof. ‖X‖2 has a χ2 distribution with expectation d, variance 2d, and moment-generating function
φ(t) = Eet‖X‖2

= (1−2t)−d/2.
(a) By Markov’s inequality, for t ∈ [0, 1

2 ],

P
(

‖X‖2 ≥ λd
)

≤ φ(t)

etλd
;

the first assertion of the lemma follows by choosing t = 1
2(1− 1

λ).
(b) Fix any ε ∈ (0,1). Applying Markov’s inequality tells us that for any t ∈ [0, 1

2 ],

P(‖X‖2 ≥ (1+ ε)d) = P(et‖X‖2 ≥ et(1+ε)d) ≤ φ(t)

et(1+ε)d
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and for any t ≥ 0,

P(‖X‖2 ≤ (1− ε)d) = P(e−t‖X‖2 ≥ e−t(1−ε)d) ≤ φ(−t)et(1−ε)d.

Using t = ε
2(1+ε) in the first case and t = ε

2(1−ε) in the second yields bounds e−dε2/4(1+ε) and e−dε2/4,
respectively.

Lemma 2 immediately implies that the distance between two points from the mixture is sharply
concentrated around its conditional expected value. Here are the details.

Lemma 3 If X and Y are chosen independently from N(µi,σ2
i Id) and N(µ j,σ2

jId) respectively, then
for any ε ∈ (0,1), the probability that ‖X −Y‖2 does not lie in the range

‖µi −µ j‖2 +(σ2
i +σ2

j)d(1± ε)±2‖µi −µ j‖
√

σ2
i +σ2

j · εd1/2

is at most 2e−ε2d/8 + e−ε2d/2.

Proof. The sum of independent normals is itself normal. Specifically,

X −Y
d
= N(µi −µ j,(σ2

i +σ2
j)Id)

d
= (µi −µ j)+

√

σ2
i +σ2

j W,

where W is a random variable with distribution N(0, Id). Therefore

‖X −Y‖2 d
= ‖µi −µ j‖2 +(σ2

i +σ2
j)‖W‖2 +2

√

σ2
i +σ2

j (µi −µ j) ·W.

Lemma 2(b) gives a bound on ‖W‖2; for the last term we use

(µi −µ j) ·W d
= ‖µi −µ j‖ Z

where Z is standard normal and thus satisfies P(|Z| > εd1/2) ≤ e−ε2d/2 (Durrett, p.7).

Thus, for i.i.d. data from a high-dimensional mixture of spherical Gaussians, we have a very
good idea of how interpoint distances will be distributed. Similarly, we can bound the number of
points drawn from each Gaussian, and also the sizes of certain angles (dot products) formed by data
points and cluster centers. The following lemma will be used repeatedly in the analysis.

Lemma 4 (Bounds on interpoint distances and angles, and cluster sizes) Draw m data points
from a c-separated mixture of k spherical Gaussians with smallest mixing weight at least wmin.
Let σi j = max{σi,σ j} and write the separation between Gaussians as ‖µi − µ j‖ = ci jσi j

√
d. Let

Si denote the points from the ith Gaussian. Pick any εo ∈ (0,1). Then, with probability at least
1− (m2 +m)e−ε2

od/8 − ( 1
2m2 + km+ km2)e−ε2

od/2 − ke−mwmin/8,

(a) for any x,y ∈ S j,
‖x− y‖2 = 2σ2

jd(1± εo);

(b) for x ∈ Si,y ∈ S j, i 6= j,

‖x− y‖2 = (σ2
i +σ2

j + c2
i jσ

2
i j)d(1±2εo).
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(c) for any data point y ∈ S j,
‖y−µ j‖2 = σ2

jd(1± εo)

while for i 6= j,
‖y−µi‖2 = (σ2

j + c2
i jσ

2
i j)d(1±2εo);

(d) For any 1 ≤ i, j,g ≤ k and any x ∈ Si,y ∈ Sg,

|(x−µi) · (y−µ j)| ≤ σiεod ·
√

(σ2
g + c2

jgσ2
jg)(1+2εo).

(e) each |Si| ≥ 1
2 mwi.

Proof. Part (a) follows immediately from the previous lemma. For (b), we start with

‖x− y‖2 = (c2
i jσ

2
i j +σ2

i +σ2
j)d ± (σ2

i +σ2
j +2ci jσi j

√

σ2
i +σ2

j)εod

from the previous lemma and then simplify using 2ci jσi j

√

σ2
i +σ2

j ≤ c2
i jσ2

i j +σ2
i +σ2

j . For the third

claim, notice that y−µ j
d
= N(0,σ2

jId), so we can bound ‖y−µ j‖2 using Lemma 2. For the second
half of (c),

‖y−µi‖2 = ‖µi −µ j‖2 +‖y−µ j‖2 −2(µi −µ j) · (y−µ j).

As was done in the proof of Lemma 3, we can show that (µi−µ j) ·(y−µ j) has the same distribution
as ‖µi − µ j‖ times a N(0,σ2

j) random variable. Putting the pieces together, ‖y− µi‖2 = (c2
i jσ2

i j +

σ2
j)d ± (σ2

j +2ci jσi jσ j)εod, finishing up with the inequality 2ci jσi jσ j ≤ c2
i jσ2

i j +σ2
j .

For part (d), imagine that first y is chosen, then x. Since x− µi
d
= N(0,σ2

i Id), the component
of x− µi in the direction of y− µ j (after y is fixed) has distribution N(0,σ2

i ), and thus has absolute
value ≤ σiεod1/2 with probability at least 1− e−ε2

od/2. Whereupon

|(x−µi) · (y−µ j)| ≤ ‖y−µ j‖σiεod1/2 ≤
√

(σ2
g + c2

jgσ2
jg)d(1+2εo) ·σiεod1/2.

Finally, (e) follows from the Chernoff bound; see, for instance, the appendix of Kearns and
Vazirani (1991):

P(|Si| ≤ 1
2 mwi) ≤ e−mwi/8.

Next, we turn to concentration properties of means of subsets of points. We’ll start by showing
that there is no large subset of Si whose average is far from µi.

Lemma 5 (Averages of subsets) Pick a set of n points randomly from N(0, Id). Choose any integer
1 ≤ t ≤ n. Then with probability at least 1− e−d/2, no subset of t or more of the points has mean of
norm greater than ε

√
d, where

ε =

√

6max

(

1
t
,

1
d

ln
ne
t

)

.
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Proof. First observe that it suffices to prove the statement for subsets of size exactly t.
Fix any set of t indices. The mean of the corresponding points, call it µ, is distributed according

to N(0, 1
t Id)

d
= t−1/2N(0, Id). In particular, E‖µ‖2 = d/t. Lemma 2 tells us that for any λ > 1,

P(‖µ‖2 > λ ·d/t) ≤ exp(−d(λ−1− lnλ)/2).

We will choose λ = tε2, where ε is defined in the lemma statement. This guarantees that λ ≥ 6 and
thus 1+ lnλ ≤ 1

2 λ, whereupon

P(‖µ‖2 > ε2d) ≤ e−dλ/4 = e−dtε2/4.

The number of possible choices of t indices is
(n

t

)

≤ (ne/t)t . Summing over these,

P(∃ subset of t points with ‖mean‖2 > ε2d) ≤
(ne

t

)t
e−dtε2/4 ≤ e−dtε2/12 ≤ e−d/2,

by the particular choice of ε.

This will enable us to show that if one of EM’s cluster-estimates overlaps substantially with
a true cluster Si, then the mean of the overlapping points will be close to µi. The only technical
difficulty is that EM has soft assignments for data points, and therefore we need to also deal with
weighted averages.

More generally, we consider the following problem: suppose you are allowed to distribute a
specific amount of weight over the elements of Si, where each element receives a weight between 0
and 1. What is the worst soft assignment of this kind, the one whose weighted average is furthest
from µi? It is not difficult to see that the worst assignment is a hard assignment, whereupon we can
apply the previous lemma.

Lemma 6 (Weighted averages) For any finite set of points S ⊂ R
d , with associated [0,1]-valued

weights {wx : x ∈ S}, there is a subset T ⊂ S such that

1. |T | = b∑x∈S wxc; and

2. ‖mean(T )‖ ≥ ‖weighted-mean(S)‖, that is,

∥

∥

∥

∥

∥

1
|T | ∑

x∈T

x

∥

∥

∥

∥

∥

≥
∥

∥

∥

∥

∑x∈S wxx

∑x∈S wx

∥

∥

∥

∥

.

Proof. Let µS denote the weighted mean of S. Order points x ∈ S by increasing x · µS, and let
T consist of the last b∑x∈S wxc points in this ordering. Then, the component of mean(T ) in the
direction of µS is least as large as that of any weighted mean of the points in which the weights are
in the range [0,1] and sum to ≥ b∑x∈S wxc. Letting µT = mean(T ), in particular µT ·µS ≥ µS ·µS =
‖µS‖2; and thus ‖µT‖2 is at least this large.

Remark In what follows we will assume that all the large deviation bounds of this section—
Lemmas 4, 5, and 6—hold for the particular sample S we have drawn, for some εo ∈ (0,1). For
Lemma 5, we will use t = 1

2 mwT .
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From these various concentration properties, we see that points from the same Gaussian, say the

ith one, are at distance about
√

2σ2
i d from each other while points from different Gaussians i 6= j

are at distance about
√

(σ2
i +σ2

j + c2
i jσ2

i j)d from each other. These estimates are accurate to within

O(σi jd1/4). Therefore, in the case where all Gaussians have the same variance, it is sufficient to
have c2

i jσ2
i jd � σ2

i jd
1/2—more simply, c � d−1/4—for the interpoint distances to reveal enough

information for clustering. In particular, it should be possible to make EM work well. The general
case, in which the Gaussians have different variances, requires more careful treatment but yields the
same conclusion.

4. Conditions

Various parts of the analysis require assumptions on the sample size, dimensionality, and separation.
To simplify the exposition, we summarize these conditions up front.

(C1) ‖µi −µ j‖2 ≥ |σ2
i −σ2

j |d for all i, j .

(C2) εo ≤ 1
96 min(1,c2).

(C3) d ≥ 864max(1,c−2) ln8el.

(C4) m ≥ 6912l max(1,c−2).

The constants are astronomical but are doubtless much larger than they need to be, as no attempt
has been made to optimize them. For (C2), recall that εo is the extent to which squared interpoint
distances are concentrated: by Lemma 4, these are all within a multiplicative factor 1±O(εo) of
their expected values.

We start by establishing properties of the initial choice of centers and variances.

5. Initialization

As we saw earlier, it is crucial that every cluster is represented in the initial center-estimates, and
that the variance-estimates are fairly accurate. We now confirm these conditions.

Lemma 7 (Properties of the initial parameters) If l > k and each wi ≥ wmin and condition (C1)
holds, then with probability at least 1− k(l +1)e−lwmin − ke−lwmin/12,
(a) every Gaussian is represented at least twice in the initial center-estimates;
(b) the ith Gaussian provides at most 3

2 lwi initial center-estimates, for all 1 ≤ i ≤ k; and

(c) if the rth center-estimate is drawn from Si, then σ2
i (1−2εo) ≤ σ〈0〉2

r ≤ σ2
i (1+ εo).

Proof. Assume the center-estimates are simply the first l (randomly chosen) data points. The
chance that these do not touch a particular Si at least twice is (1−wi)

l + lwi(1−wi)
l−1 ≤ (l +

1)(1−wmin)
l ≤ (l + 1)e−lwmin . Similarly, since the number of center-estimates chosen from Si has

expectation lwi, a Chernoff bound tells us that

P(there are more than 3
2 lwi initial centers from Si) ≤ e−lwi/12.
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For the bound on σ〈0〉
r , we have already established that there is at least one other center-estimate

from the same Si. If this is the closest center-estimate to µ〈0〉r , then by Lemma 4(a) the squared
distance between the two is 2σ2

i d(1± εo). On the other hand, the closest center-estimate to µ〈0〉
r

might be from some other cluster S j, in which case, by Lemma 4(b), the squared distance is at least
(σ2

i + σ2
j + c2

i jσ2
i j)d(1− 2εo) ≥ 2σ2

i d(1− 2εo), since by (C1), c2
i jσ2

i j ≥ |σ2
i −σ2

j |. These two cases

give the upper and lower bounds on σ〈0〉2
r .

Remark All the theorems of the following sections are made under the additional hypothesis that
the high-probability events of Lemma 7 hold.

6. The First Round of EM

What happens during the first round of EM? The first thing we clarify is that although in principle
EM allows “soft” assignments in which each data point is fractionally distributed over various clus-
ters, in practice for large d every data point will give almost its entire weight to center-estimates
from one cluster. This is because in high dimension, the distances between clusters are so great that
there is just a very narrow region between two clusters where there is any ambiguity of assignment,
and the probability that points fall within this region is miniscule.

Lemma 8 (Soft assignments) Suppose µ〈0〉i′ ∈ Si and µ〈0〉j′ ∈ S j. If condition (C2) holds, then for any

data point x ∈ Si, the ratio between the probabilities assigned to x by Gaussian-estimates p〈1〉
i′ and

p〈1〉j′ is

p〈1〉i′ (x)

p〈1〉j′ (x)
≥ exp

(

c2
i jσ2

i j

σ2
j

· d
8

)

.

Proof. The following calculations make occasional use of Lemma 4, along with several inequalities
that exploit the bound (C2) on εo.

p〈1〉i′ (x)

p〈1〉j′ (x)
=

σ〈0〉d
j′

σ〈0〉d
i′

exp







‖x−µ〈0〉j′ ‖2

2σ〈0〉2
j′

− ‖x−µ〈0〉i′ ‖2

2σ〈0〉2
i′







≥ exp

{

d
2

ln
σ2

j(1−2εo)

σ2
i (1+ εo)

+
(σ2

i +σ2
j + c2

i jσ2
i j)d · (1−2εo)

2σ2
j(1+ εo)

− 2σ2
i d(1+ εo)

2σ2
i (1−2εo)

}

≥ exp

{

d

(

1
2

ln
σ2

j

σ2
i

(1−3εo)+
σ2

i +σ2
j + c2

i jσ2
i j

2σ2
j

(1−3εo)−1− 7εo

2

)}

≥ exp

{

d

(

ln(1−3εo)+
c2

i jσ2
i j

2σ2
j

(1−3εo)−5εo

)}

≥ exp

(

c2
i jσ2

i j

σ2
j

· d
8

)

.

The second-last step uses ln(σ2
j/σ2

i )+ (σ2
i /σ2

j)(1− 3εo) ≥ 1 + ln(1− 3εo), which can be obtained
easily from the more familiar x ≥ 1+ lnx.

In the case where all the Gaussians have the same variance, this lemma says that each data point
is given weight at most e−c2d/8 by any center-estimate from a different cluster. When the Gaus-
sians do not have the same variance, the lemma is even stronger. In particular, if there is a small
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cluster Si right near a large one, S j, we can conclude that center-estimates from the small cluster

assign weight at most e−c2σ2
j d/σ2

i to points from the big cluster. We need this stronger bound in our
subsequent analysis: the two clusters could be at such different scales that a point from the large
cluster, because it has substantial norm, could significantly throw off the center-estimate from the
small cluster.

We are now in a position to assess what happens during the first round of EM. At the end of this
round, let C j denote the center-estimates originally from S j which have high mixing weight, that is,

C j = {µ〈1〉j′ : µ〈0〉j′ ∈ S j,w
〈1〉
j′ ≥ wT}. We will see that such center-estimates move quite a bit closer to

their respective true centers µ j as a result of the first EM update.

Lemma 9 Under conditions (C2), (C3), and (C4), any “non-starved” center-estimate µ〈1〉
i′ ∈Ci has

‖µ〈1〉i′ −µi‖ ≤
1
8

min(1,c)σi

√
d.

Proof. Bound ‖µ〈1〉i′ −µi‖ by the sum of two terms:

‖µ〈1〉i′ −µi‖ =

∥

∥

∥

∥

∥

∑x∈S p〈1〉i′ (x)(x−µi)

∑x∈S p〈1〉i′ (x)

∥

∥

∥

∥

∥

≤ ‖∑x∈Si
p〈1〉i′ (x)(x−µi)‖+‖∑x 6∈Si

p〈1〉i′ (x)(x−µi)‖
∑x∈S p〈1〉i′ (x)

≤ ‖∑x∈Si
p〈1〉i′ (x)(x−µi)‖

∑x∈Si
p〈1〉i′ (x)

+
‖∑ j 6=i ∑x∈S j

p〈1〉i′ (x)(x−µi)‖
∑x∈S p〈1〉i′ (x)

.

The first term can be bounded using Lemma 5, provided p〈1〉
i′ (Si) is substantial. By Lemma 8, for

any x ∈ S j, j 6= i, we have p〈1〉i′ (x) ≤ e−c2
i jσ2

i jd/8σ2
i ≤ e−c2d/8. Thus

∑
x∈Si

p〈1〉i′ (x) ≥ ∑
x∈S

p〈1〉i′ (x)−∑
j 6=i

∑
x∈S j

p〈1〉i′ (x) ≥ mwT −me−c2d/8 ≥ 1
2 mwT +1

using (C3) and (C4). Lemmas 5 and 6, together with (C4), then give

‖∑x∈Si
p〈1〉i′ (x)(x−µi)‖

∑x∈Si
p〈1〉i′ (x)

≤ σi

√
d ·
√

6max

(

2
mwT

,
1
d

ln
2e|Si|
mwT

)

≤ 1
12

min(1,c)σi

√
d.

For the second half of the ‖µ〈1〉i′ −µi‖ expression, we observe that for any x ∈ S j, j 6= i, by Lemma 4

‖x−µi‖ ≤
√

(σ2
j + c2

i jσ2
i j)d(1+2εo). Using the conditions on d and εo, this can be upper-bounded

by ec2
i jσ2

i jd/16σ2
i σi

√
d. Thus p〈1〉i′ (x)‖x−µi‖ ≤ e−c2d/16σi

√
d, and

‖∑ j 6=i ∑x∈S j
p〈1〉i′ (x)(x−µi)‖

∑x∈S p〈1〉i′ (x)
≤ 1

mwT
∑
j 6=i

∑
x∈S j

p〈1〉i′ (x)‖x−µi‖

≤ 1
wT

e−c2d/16σi

√
d ≤ 1

24
min(1,c)σi

√
d,
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completing the proof.

We also need to analyze the variance-estimates. These started off excellent, and so we mostly
need to check that they don’t degrade too much during the first round of EM. The difficulty with the
usual formula for variance is that it involves terms of the form ‖x− µ〈1〉

i ‖2, whereas we only have
tight concentration bounds for terms like ‖x−µi‖2. To cope with this, we first derive an alternative
expression for the variance.

Lemma 10 (Alternative formula for variance) For any i, and any choice of µ ∈ R
d , the formula

for σ〈t〉2
i can be rewritten thus:

σ〈t〉2
i =

∑x p〈t〉i (x)‖x−µ〈t〉i ‖2

d ∑x p〈t〉i (x)
=

∑x p〈t〉i (x)‖x−µ‖2

d ∑x p〈t〉i (x)
− ‖µ−µ〈t〉i ‖2

d
.

Proof. Consider the distribution over S which assigns point x ∈ S a probability mass proportional
to p〈t〉i (x). Taking expectations over X drawn from this distribution, we have EX = µ〈t〉

i , and for any
µ ∈ R

d ,

E‖X −µ‖2 = E‖X‖2 +‖µ‖2 −2µ ·EX = E‖X‖2 +‖µ‖2 −2µ ·µ〈t〉i

and similarly

E‖X −µ〈t〉i ‖2 = E‖X‖2 +‖µ〈t〉i ‖2 −2µ〈t〉i ·EX = E‖X‖2 −‖µ〈t〉i ‖2.

Subtracting,

E‖X −µ‖2 −E‖X −µ〈t〉i ‖2 = ‖µ‖2 −2µ ·µ〈t〉i +‖µ〈t〉i ‖2 = ‖µ−µ〈t〉i ‖2,

which is a paraphrase of the lemma statement.

It is now simpler to bound the variances at the end of first round of EM.

Lemma 11 (Variance estimates in round one) Under conditions (C2), (C3), and (C4), for any
i′ ∈Ci,

σ2
i

(

1− 3
64

min(1,c2)

)

≤ σ〈1〉2
i′ ≤ σ2

i

(

1+
1
32

)

.

Proof. By Lemma 10,

σ〈1〉2
i′ =

∑x∈S p〈1〉i′ (x)‖x−µi‖2

d ∑x∈S p〈1〉i′ (x)
− ‖µi −µ〈1〉i′ ‖2

d
.
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First let us lower-bound this, using Lemmas 4(c), 8, and 9.

σ〈1〉2
i′ ≥ ∑x∈Si

p〈1〉i′ (x)‖x−µi‖2

d ∑x∈S p〈1〉i′ (x)
− ‖µi −µ〈1〉i′ ‖2

d

≥ ∑x∈Si
p〈1〉i′ (x) ·σ2

i d(1− εo)

d ∑x∈S p〈1〉i′ (x)
− min(1,c2)

64
σ2

i

≥ σ2
i (1− εo) ·

p〈1〉i′ (S)−∑ j 6=i p〈1〉i′ (S j)

p〈1〉i′ (S)
− min(1,c2)

64
σ2

i

≥ σ2
i (1− εo) ·

(

1− me−c2d/8

mwT

)

− min(1,c2)

64
σ2

i .

For the upper bound, we again use Lemmas 4(c) and 8, along with the conditions on d and εo, to
assert that for points x ∈ S j, j 6= i, we have p〈1〉i′ (x)‖x−µi‖2 ≤ e−c2

i jσ2
i jd/8σ2

i (σ2
j +c2

i jσ2
i j)d ·(1+2εo)≤

e−c2d/16σ2
i d, and thus

σ〈1〉2
i′ ≤

∑x∈Si
p〈1〉i′ (x)‖x−µi‖2 +∑ j 6=i ∑x∈S j

p〈1〉i′ (x)‖x−µi‖2

d ∑x∈S p〈1〉i′ (x)

≤ ∑x∈Si
p〈1〉i′ (x) ·σ2

i d(1+ εo)

d p〈1〉i′ (S)
+

∑ j 6=i ∑x∈S j
e−c2d/16σ2

i d

d p〈1〉i′ (S)

≤ σ2
i (1+ εo)+

me−c2d/16σ2
i

mwT
.

The rest follows by substituting in conditions (C2) and (C3).

Remark Henceforth we will assume that the conclusions of Lemmas 9 and 11 hold.

7. Pruning

We now know each center-estimate in C j is accurate within 1
8 min(1,c)σ j

√
d. A simple clustering

heuristic due to Gonzalez (1985), described in Section 2.4, is used to choose k points from ∪ jC j.

Lemma 12 Under condition (C3), the sets Ci obey the following properties.
(a) Each Ci is non-empty.
(b) There is a real value ∆ > 0 such that if x∈Ci and y,z∈C j (i 6= j) then d(y,z)≤∆ and d(x,y) > ∆.
(c) The pruning procedure identifies exactly one member of each Ci.

Proof. (a) From Lemmas 4 and 7 we know that |Si| ≥ 1
2 mwi, and that at most 3

2 lwi initial center-
estimates are chosen from Si. It was seen in Lemma 9 that each point in Si gives weight at least
1− le−c2d/8 to center-estimates from Si. It follows that at the end of the first round of EM, at least
one of these center-estimates must have mixing weight at least

( 1
2 mwi)(1− le−c2d/8)

m · 3
2 lwi

=
1
3l

· (1− le−c2d/8) ≥ 1
4l

= wT
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and therefore Ci cannot be empty.

(b) Pick µ〈1〉i′ ∈Ci and µ〈1〉j′ ,µ〈1〉j′′ ∈C j for any pair i 6= j. Then, from Lemmas 9 and 11,

d(µ〈1〉j′ ,µ〈1〉j′′ ) =
‖µ〈1〉j′ −µ〈1〉j′′ ‖
σ〈1〉

j′ +σ〈1〉
j′′

<
2 · c

8 σ j
√

d

2 · 61
64 σ j

<
c
6

√
d.

Call this value ∆. Meanwhile,

d(µ〈1〉i′ ,µ〈1〉j′ ) =
‖µ〈1〉i′ −µ〈1〉j′ ‖
σ〈1〉

i′ +σ〈1〉
j′

>
ci jσi j

√
d − c

8 σi
√

d − c
8 σ j

√
d

33
32 σi +

33
32 σ j

≥ ci j · 1
2(σi +σ j)

√
d − c

8(σi +σ j)
√

d
33
32(σi +σ j)

≥ c
3

√
d,

strictly greater than ∆.
(c) There are k true clusters and the pruning procedure picks exactly k center-estimates. It will not
pick two from the same true cluster because these must be at distance ≤ ∆ from each other, whereas
there must be some untouched cluster containing a center-estimate at distance > ∆ from all points
selected thus far.

8. The Second Round of EM

We now have one center-estimate µ〈1〉i per true cluster (for convenience permute their labels to match

the Si), each with mixing weight 1
k and covariance σ〈1〉2

i Id . Furthermore each µ〈1〉i is within distance
1
8 min(1,c)σi

√
d of the corresponding true Gaussian center µi. Such favorable circumstances make

it easy to show that the subsequent round of EM achieves near-perfect clustering.
There is just one tricky issue. As in the first round, in order to bound EM’s soft assignments,

we’d like to assert that the distances ‖x − µ〈1〉
i ‖2 are tightly concentrated around certain values.

What is different this time, however, is the statistical dependency between data points x and center-
estimates µ〈1〉i . To avoid having to manage this dependency, we instead recall that the µ〈1〉

i are just

weighted averages of data points, and as far as possible, we rewrite expressions like ‖x−µ〈1〉
i ‖2 as

weighted sums of expressions involving only data points, such as ‖x− y‖2 or x · y. There is one
particular kind of dot product which will be an especially useful building block, and we start by
analyzing it.

Lemma 13 Pick any 1 ≤ i, j ≤ k. Under conditions (C2) and (C3), for any x ∈ Si,

|(x−µi) · (µ〈1〉j −µ j)| ≤
3
2

εoσ2
i jd.

Proof. We could use the fact that µ〈1〉j is reasonably close to µ j, but this doesn’t give a very

good bound. Instead we notice that (x − µi) · (µ〈1〉j − µ j) is a weighted average of terms of the
form (x− µi) · (y− µ j), as y varies over S. When y ∈ S j, these dot products are small, as seen in
Lemma 4(d). And when y 6∈ S j, the weight of the term is small.
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Specifically, suppose y ∈ Sg for g 6= j. By Lemmas 4(d) and 8,

p〈1〉j (y) |(x−µi) · (y−µ j)| ≤ e−c2
jgσ2

jgd/8σ2
j ·
√

(σ2
g + c2

jgσ2
jg)(1+2εo) ·σiεod.

By the conditions on d, this is at most e−c2d/16σiσ jεod. Hence

|(x−µi) · (µ〈1〉j −µ j)| =

∣

∣

∣

∣

∑y p〈1〉j (y)(x−µi) · (y−µ j)

p〈1〉j (S)

∣

∣

∣

∣

≤
∑y∈S j

p〈1〉j (y)|(x−µi) · (y−µ j)|
p〈1〉j (S j)

+
∑g6= j ∑y∈Sg

p〈1〉j (y)|(x−µi) · (y−µ j)|
p〈1〉j (S)

≤ σiσ jεod
√

1+2εo +
1

mwT
∑
g6= j

∑
y∈Sg

e−c2d/16σiσ jεod

≤ εoσ2
i jd ·

(

1+ εo +
1

wT
e−c2d/16

)

.

Under (C2) and (C3), the term in parentheses is at most 3/2.

We now develop a counterpart of Lemma 8, a bound on how “soft” EM’s assignments can be.

Lemma 14 Under conditions (C1), (C2), and (C3), for any 1 ≤ i 6= j ≤ k, and for any x ∈ Si,

p〈2〉i (x)

p〈2〉j (x)
≥ exp

(

c2
i jσ2

i jd

8σ2
j

)

.

Proof. This is mostly a matter of confirming that ‖x− µ〈1〉
i ‖,‖x− µ〈1〉j ‖,σ〈1〉

i ,σ〈1〉
j are not too far

from ‖x−µi‖,‖x−µ j‖,σi,σ j. Making use of Lemmas 4(c), 9, and 13,

‖x−µ〈1〉i ‖2 = ‖x−µi‖2 +‖µi −µ〈1〉i ‖2 +2(x−µi) · (µi −µ〈1〉i )

≤ σ2
i d(1+ εo)+

min(1,c2)

64
σ2

i d +3εoσ2
i d

≤ σ2
i d

(

1+
1
16

min(1,c2)

)

In much the same vein,

‖x−µ〈1〉j ‖2 = ‖x−µ j‖2 +‖µ j −µ〈1〉j ‖2 +2((x−µi)+(µi −µ j)) · (µ j −µ〈1〉j )

≥ (σ2
i + c2

i jσ
2
i j)d(1−2εo)−3εoσ2

i jd −2ci jσi jd
1/2 · min(1,c)

8
σ jd

1/2

≥ σ2
i d

(

1− 1
48

min(1,c2)

)

+ c2
i jσ

2
i jd

(

1− 29
96

)

.

Using these and the variance bound from Lemma 11, the rest follows in the same manner as
Lemma 8.

Henceforth, assume this condition holds true. The best we can now hope for is that each final
estimate µ〈2〉i is exactly the mean of Si. In fact, it will turn out that the error ‖µ〈2〉i − µi‖ is not too
different from ‖mean(Si)−µi‖.
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Lemma 15 Under conditions (C1)–(C4), for each i,

‖µ〈2〉i −µi‖ ≤ ‖mean(Si)−µi‖+
5

wmin
e−c2d/16σi

√
d.

Proof. As usual, we start by separating points in Si from those outside.

‖µ〈2〉i −µi‖ =

∥

∥

∥

∥

∥

∑x∈S p〈2〉i (x)(x−µi)

∑x∈S p〈2〉i (x)

∥

∥

∥

∥

∥

≤ 1

p〈2〉i (S)

∥

∥

∥

∥

∥

∑
x∈Si

p〈2〉i (x)(x−µi)

∥

∥

∥

∥

∥

+
1

p〈2〉i (S)
∑
j 6=i

∑
x∈S j

p〈2〉i (x)‖x−µi‖.

With Lemma 14 in hand, these two terms are straightforward to bound. For instance, we know that
for any x ∈ Si, p〈2〉i (x) ≥ 1− ke−c2d/8. Hence the first term is at most

1

p〈2〉i (S)

(∥

∥

∥

∥

∥

∑
x∈Si

(1− ke−c2d/8)(x−µi)

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∑
x∈Si

(p〈2〉i (x)− (1− ke−c2d/8))(x−µi)

∥

∥

∥

∥

∥

)

≤

∥

∥

∥∑x∈Si
(1− ke−c2d/8)(x−µi)

∥

∥

∥

|Si| · (1− ke−c2d/8)
+

1

p〈2〉i (S)
∑
x∈Si

ke−c2d/8‖x−µi‖

≤ ‖mean(Si)−µi‖+
|Si| · ke−c2d/8

|Si| · (1− ke−c2d/8)
σi

√

d(1+2εo)

≤ ‖mean(Si)−µi‖+2ke−c2d/8σi

√
d.

while the second term is

1

p〈2〉i (S)
∑
j 6=i

∑
x∈S j

p〈2〉i (x)‖x−µi‖ ≤ 1

p〈2〉i (S)
∑
j 6=i

∑
x∈S j

e−c2
i jσ2

i jd/8σ2
i

√

(σ2
j + c2

i jσ2
i j)(1+2εo)d

≤ 1

p〈2〉i (S)
∑
x 6∈Si

e−c2d/16σi

√
d

≤ m

|Si| · (1− ke−c2d/8)
e−c2d/16σi

√
d ≤ 3

wi
e−c2d/16σi

√
d.

For the very last bound we use |Si| ≥ 1
2 mwi (Lemma 4(e)).

Here’s a summary of everything we have so far.

Theorem 16 Suppose that l > k, that wi ≥ wmin for all i, and that conditions (C1)–(C4) hold.
With probability at least 1− 2m2e−ε2

od/8 − 2m2ke−ε2
od/2 − 2ke−lwmin/12 − k(l + 1)e−lwmin , the center-

estimates returned after two rounds of EM satisfy (for each i):

‖µ〈2〉i −µi‖ ≤ ‖mean(Si)−µi‖+
5

wmin
e−c2d/16σi

√
d.

Choosing c2d ≥ 16ln 5
εwmin

and εo = 1
96 min(1,c2) gives Theorem 1. We can also prove bounds

on the final mixing weights and variance.
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Theorem 17 To the results of Theorem 16 it can be added that if c2d ≥ 16ln 5
εwmin

(for some ε > 0),
then for any i,

|Si|
m

· (1− ε) ≤ w〈2〉
i ≤ |Si|

m
+ ε

and

(1− ε)var(Si)−
‖µ〈2〉i −mean(Si)‖2

d
≤ σ〈2〉2

i ≤ (1+ ε)var(Si)+ εσ2
i +

ε‖µi −mean(Si)‖2

d

(where var(Si) is the empirical variance of cluster Si).

Proof. The bounds on w〈2〉
i come directly from writing

w〈2〉
i =

1
m ∑

x∈S

p〈2〉i (x) =
1
m

(

∑
x∈Si

p〈2〉i (x)+ ∑
x 6∈Si

p〈2〉i (x)

)

and then using our old bounds p〈2〉i (x) ≥ 1− ke−c2d/8 for x ∈ Si and p〈2〉i (x) ≤ e−c2d/8 for x 6∈ Si

(Lemma 14).
For the variance, we again exploit the alternative formulation of Lemma 10, but this time in a

slightly different way. Let µ = mean(Si).

σ〈2〉2
i =

∑x∈S p〈2〉i ‖x−µ‖2

d p〈2〉i (S)
− ‖µ〈2〉i −µ‖2

d
.

Thus:

σ〈2〉2
i ≥ ∑x∈Si

(1− ke−c2d/8)‖x−µ‖2

d(|Si|+me−c2d/8)
− ‖µ〈2〉i −µ‖2

d

=
∑x∈Si

‖x−mean(Si)‖2

d|Si|
· 1− ke−c2d/8

1+me−c2d/8/|Si|
− ‖µ〈2〉i −µ‖2

d
,

the first term of which is recognizable as var(Si). Similarly,

σ〈2〉2
i ≤ 1

d|Si|(1− ke−c2d/8)

{

∑
x∈Si

‖x−µ‖2 + ∑
x 6∈Si

e−c2d/8 ·2(‖x−µi‖2 +‖µi −µ‖2)

}

≤ var(Si)

1− ke−c2d/8
+

2m

|Si|(1− ke−c2d/8)

(

e−c2d/16σ2
i + e−c2d/8 ‖µi −µ‖2

d

)

,

from which the claim follows directly.

9. Concluding Remarks

This paper provides a principled basis for answering some important questions surrounding EM:
how many clusters should be used, how the parameters ought to be initialized, and how pruning
should be carried out. These results may be of interest to practitioners of EM.

But what about the claim that EM can be made to work in just two rounds? This requires what
we call the
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Strong Gaussian assumption. The data are i.i.d. samples from a true mixture of Gaus-
sians.

This assumption is the standard setting for other theoretical results about EM, but is it reasonable to
expect of real data sets? We recommend instead the

Weak Gaussian assumption. The data looks like it comes from a particular mixture
of Gaussians in the following sense: for any sphere in R

d , the fraction of the data that
falls in the sphere is the expected fraction under the mixture distribution, ±ε0, where
ε0 is some term corresponding to sampling error and will typically be proportional to
m−1/2, where m is the number of samples. Some other concept class of polynomial VC
dimension can be used in place of spheres.

The strong assumption immediately implies the weak assumption (with high probability) by a
large deviation bound, since the concept class of spheres in R

d has VC dimension just d +1 (Dudley,
1979; Haussler, 1992). What kinds of conclusions can we draw from the strong assumption but
not the weak one? Here is an example: “if two data points are drawn from N(0, Id) then with
overwhelming probability they are separated by a distance of at least

√
d”. The weak assumption

does not support this; with just two samples, in fact, the sampling error is so high that it does not
allow us to draw any non-trivial conclusions at all.

It is often argued that the Gaussian is the most natural model of a cluster because of the central
limit theorem. However, central limit theorems, more specifically Berry-Esséen theorems (Feller,
1966), yield Gaussians in the sense of the weak assumption, not the strong one. For the same rea-
son, the weak Gaussian assumption arises naturally when we take random projections of mixtures
of product distributions (Diaconis and Freedman, 1984). Ideally therefore, we could provide per-
formance guarantees for EM under just this condition. It might be possible to extend our analysis
appropriately; for an example of what needs to be changed in the algorithm, consider that the weak
assumption allows

√
m data points to be placed arbitrarily in space, and therefore an outlier removal

procedure is probably necessary.
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