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Abstract

We formulate a local form of the bipartite ranking problem where the goal is to focus on the best
instances. We propose a methodology based on the construction of real-valued scoring functions.
We study empirical risk minimization of dedicated statistics which involve empirical quantiles of
the scores. We first state the problem of finding the best instances which can be cast as a clas-
sification problem with mass constraint. Next, we develop special performance measures for the
local ranking problem which extend the Area Under an ROC Curve (AUC) criterion and describe
the optimal elements of these new criteria. We also highlight the fact that the goal of ranking the
best instances cannot be achieved in a stage-wise manner where first, the best instances would be
tentatively identified and then a standard AUC criterion could be applied. Eventually, we state
preliminary statistical results for the local ranking problem.

Keywords: ranking, ROC curve and AUC, empirical risk minimization, fast rates

1. Introduction

The first takes all the glory, the second takes nothing. In applications where ranking is at stake,
people often focus on the best instances. When scanning the results from a query on a search en-
gine, we rarely go beyond the one or two first pages on the screen. In the different context of credit
risk screening, credit establishments elaborate scoring rules as reliability indicators and their main
concern is to identify risky prospects especially among the top scores. In medical diagnosis, test
scores indicate the odds for a patient to be healthy given a series of measurements (age, blood pres-
sure, ...). There again a particular attention is given to the “best” instances not to miss a possible
diseased patient among the highest scores. These various situations can be formulated in the setup
of bipartite ranking where one observes i.i.d. copies of a random pair (X,Y) with X being an ob-
servation vector describing the instance (web page, debtor, patient) and Y a binary label assigning
to one population or the other (relevant vs. non relevant, good vs. bad, healthy vs. diseased). In
this problem, the goal is to rank the instances instead of simply classifying them. There is a grow-
ing literature on the ranking problem in the field of Machine Learning but most of it considers the
Area under the ROC Curve (also known as the AUC) criterion as a measure of performance of the
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ranking rule (Cortes and Mohri, 2004; Freund et al., 2003; Rudin et al., 2005; Agarwal et al., 2005).
In a previous work, we have mentioned that the bipartite ranking problem under the AUC crite-
rion could be interpreted as a classification problem with pairs of observations (Clémencgon et al.,
2005). But the limit of this approach is that it weights uniformly the pairs of items which are badly
ranked. Therefore it does not permit to distinguish between ranking rules making the same number
of mistakes but in very different parts of the ROC curve. The AUC is indeed a global criterion
which does not allow to concentrate on the best” instances. Special performance measures, such
as the Discounted Cumulative Gain (DCG) criterion, have been introduced by practitioners in order
to weight instances according to their rank (Jarvelin and Kekaldinen, 2000) but providing theory
for such criteria and developing empirical risk minimization strategies still is a very open issue.
Recent works by Rudin (2006), Cossock and Zhang (2006), and L.i et al. (2007) reveal that there are
several possibilities when designing ranking algorithms with focus on the top-rated instances. In
the present paper, we focus on statistical aspects rather than algorithmic. We extend the results of
our previous work in Clémencon et al. (2005) and set theoretical grounds for the problem of local
ranking. The methodology we propose is based on the selection of a real-valued scoring function for
which we formulate appropriate performance measures generalizing the AUC criterion. We point
out that ranking the best instances is an involved task as it is a two-fold problem: (i) find the best
instances and (ii) provide a good ranking on these instances. The fact that these two goals cannot
be considered independently will be highlighted in the paper. Despite this observation, we will first
formulate the issue of finding the best instances which is to be understood as a toy problem for our
purpose. This problem corresponds to a binary classification problem with a mass constraint (where
the proportion u, of +1 labels predicted by the classifiers is fixed) and it might present an interest
per se. The main complication here has to do with the necessity of performing quantile estimation
which affects the performance of statistical procedures. Our proof technique was inspired by the
former work of Koul (2002) in the context of R-estimation where similar statistics, known as linear
signed rank statistics, arise. By exploiting the structure of such statistics, we are able to establish
noise conditions in a similar way as in Clémencon et al. (To appear) where we had to deal with per-
formance criteria based on U -statistics. Under such conditions, we prove that rates of convergence
up to n—2/3 can be guaranteed for the empirical risk minimizer in the classification problem with
mass constraint. Another contribution of the paper lies in our study of the optimality issue for the
local ranking problem. We discuss how focusing on best instances affects the ROC curve and the
AUC criterion. We propose a family of possible performance measures for the problem of ranking
the best instances. In particular, we show that widespread ideas in the biostatistics literature about
the partial AUC (see Dodd and Pepe, 2003) turn out to be questionable with respect to optimality
considerations. We also point out that the empirical risks for local ranking are closely related to
generalized Wilcoxon statistics.

The rest of the paper is organized as follows. We first state the problem of finding the best
instances and study the performance of empirical risk minimization in this setup (Section 2). We
also explore the conditions on the distribution in order to recover fast rates of convergence. In
Section 3 we formulate performance measures for local ranking and provide extensions of the AUC
criterion. Eventually (Section 4), we state some preliminary statistical results on empirical risk
minimization of these new criteria.
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2. Finding the Best Instances

In the present section, we have a limited goal which is only to determine the best instances without
bothering with their order in the list. By considering this subproblem, we will identify the main
technical issues involved in the sequel. It also permits to introduce the main notations of the paper.

Just as in standard binary classification, we consider the pair of random variables (X,Y ) where X
is an observation vector in a measurable space X and Y is abinary label in{—1,+41}. The distribution
of (X,Y) can be described by the pair (p,n) where p is the marginal distribution of X and n is the
a posteriori distribution defined by n(x) =P{Y =1 | X =x}, ¥x € X. We define the rate of best
instances as the proportion of best instances to be considered and denote it by u, € (0,1). We
denote by Q(n,1—u,) the (1 —u,)-quantile of the random variable n(X). Then the set of best
instances at rate u, is given by:

Cy, =xeXxIn(x)>Q(n,1—uo)}.
We mention two trivial properties of the set C; which will be important in the sequel:
* MASS CONSTRAINT: we have i(C;, ) =P{X €C;_ } =u,,

* INVARIANCE PROPERTY: as a functional of n, the set Cj} is invariant to strictly increasing
transforms of n.

The problem of finding a proportion u, of the best instances boils down to the estimation of
the unknown set C;; on the basis of empirical data. Before turning to the statistical analysis of the
problem, we first relate it to binary classification.

2.1 A Classification Problem with a Mass Constraint

A classifier is a measurable function g : X — {—1,41} and its performance is measured by the
classification error L(g) = P{Y #g(X)}. Letu, € (o,1) be fixed. Denote by g, = 2lg; —1 the
classifier predicting +1 on the set of best instances C;; and -1 on its complement. The next proposi-
tion shows that gy, is an optimal element for the problem of minimization of L(g) over the family
of classifiers g satisfying the mass constraint P{g(X) = 1} = u,.

Proposition 1 For any classifier g : X — {—1,41} such that g(x) = 2Ic(x) — 1 for some subset C
of X and u(C) =P{g(X) =1} = u,, we have

L, =L(g;,) <L(g).
Furthermore, we have
Ly, =1—Q(MN,1—Uo) + (1—Uo)(2Q(N, 1 —Uo) — 1) = E(In(X) —=Q(Nn,1—U,)),

and
L(9) —L(gg,) =2E (IN(X)—Q(n,1—uy)lTc; ac(X))

where A denotes the symmetric difference operation between two subsets of X.
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PROOF. For simplicity, we temporarily change the notation and set ¢ = Q(n, 1 —u,). Then, for any
classifier g satisfying the constraint P{g(X) = 1} = u,, we have

L(g) =E ((n(X) =) igx)=—11 + ([A—N X)) igx)—+11) + (1 = Uo)q+ (1 —q)U, -

The statements of the proposition immediately follow. |

There are several progresses in the field of classification theory where the aim is to introduce
constraints in the classification procedure or to adapt it to other problems. We relate our formulation
to other approaches in the following remarks.

Remark 2 (CONNECTION TO HYPOTHESIS TESTING). The implicit asymmetry in the problem due
to the emphasis on the best instances is reminiscent of the statistical theory of hypothesis testing.
We can formulate a test of simple hypothesis by taking the null assumption to be H, : Y =—1
and the alternative assumption being H, : Y = +1. We want to decide which hypothesis is true
given the observation X. Each classifier g provides a test statistic g(X). The performance of
the test is then described by its type I error a(g) = P{g(X)=1|Y = —1} and its power B(g) =
P{g(X)=1|Y =+1}. We point out that if the classifier g satisfies a mass constraint, then we can
relate the classification error with the type I error of the test defined by g through the relation:

L(g9) =2(1—pla(g) +p—u,

where p =P{Y = 1}, and similarly, we have: L(g) =2p(1—B(g)) — p—U,. Therefore, the optimal
classifier minimizes the type I error (maximizes the power) among all classifiers with the same mass
constraint. In some applications, it is more relevant to fix a constraint on the probability of a false
alarm (type | error) and maximize the power. This question is explored in a recent paper by Scott
(2005) (see also Scott and Nowak, 2005).

Remark 3 (CONNECTION WITH REGRESSION LEVEL SET ESTIMATION) We mention that the es-
timation of the level sets of the regression function has been studied in the statistics literature (Cav-
alier, 1997) (see also Tsybakov, 1997 and Willett and Nowak, 2006) as well as in the learning
literature, for instance in the context of anomaly detection (Steinwart et al., 2005; Scott and Daven-
port, 2006, to appear; Vert and Vert, 2006). In our framework of classification with mass constraint,
the threshold defining the level set involves the quantile of the random variable n(X).

Remark 4 (CONNECTION WITH THE MINIMUM VOLUME SET APPROACH) Although the point of
view adopted in this paper is very different, the problem described above may be formulated in the
framework of minimum volume sets learning as considered in Scott and Nowak (2006). As a matter
of fact, the set C;j may be viewed as the solution of the constrained optimization problem:

mcinIP’{X cClY =—1}
over the class of measurable sets C, subject to
PXeC}>u,.

The main difference in our case comes from the fact that the constraint on the volume set has to be
estimated using the data while in Scott and Nowak (2006) it is computed from a known reference
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measure. \We believe that learning methods for minimum volume set estimation may hopefully be
extended to our setting. A natural way to do it would consist in replacing conditional distribution
of X given Y = —1 by its empirical counterpart. This is beyond the scope of the present paper but
will be the subject of future investigation.

2.2 Empirical Risk Minimization

We now investigate the estimation of the set C;, of best instances at rate u, based on training data.
Suppose that we are given n i.i.d. copies (X,,Y,),---,(Xn,Yn) of the pair (X,Y). Since we have the
ranking problem in mind, our methodology will consist in building the candidate sets from a class
S of real-valued scoring functions s : X — R. Indeed, we consider sets of the form

Cs=Csy, =Xxe X [s(x) >Q(s,1—U,)},

where s is an element of § and Q(s,1—u,) is the (1 — u,)-quantile of the random variable s(X).
Note that such sets satisfy the same properties of C;; with respect to mass constraint and invariance
to strictly increasing transforms of s.

From now on, we will take the simplified notation:

L(s) = L(s,uy) = L(Cs) =P{Y - (s(X) —Q(s,1—U,)) <o} .

A scoring function minimizing the quantity
1 n
Ln(s) = niZH{Yi +(s(Xi) —Q[s,1—u,)) < o} .

is expected to approximately minimize the true error L(s), but the quantile depends on the unknown
distribution of X. In practice, one has to replace Q(s, 1 —u,) by its empirical counterpart Q(s, 1 —u,)
which corresponds to the empirical quantile. We will thus consider, instead of L(s), the empirical
error:

Ca(s) = > TYi-(s(X) = Q(s,1 ~un)) < o).

Note that L,(s) is a complicated statistic since the empirical quantile involves all the instances
X1,...,%n. We also mention that Cn(s) is a biased estimate of the classification error L(s) of the
classifier gs(x) = 2I{s(x) > Q(s,1— U, )} — 1.

We introduce some more notations. Set, for allt € R:

* R(t) =P{s(X) <t
* Gs(t) =P{s(X) <t|Y =+1}
« Hs(t) =P{s(X) <t]Y =—1}.

The functions Fs (respectively Gg, Hs) denote the cumulative distribution function (cdf) of s(X)
(respectively, given Y = 1, given Y = —1). We recall that the definition of the quantiles of (the
distribution of) a random variable involves the notion of generalized inverse F —* of a function F:

F'(z)=inflteR|F(t) >1z).
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Thus, we have, forall v € (0,1):
Qls,v) = Fs_l(v) and  Q(s,v) =F;'(v)

where F; is the empirical cdf of s(X) =150 Is(X) <t} teR.

Without loss of generality, we WI|| assume that all scorlng functions in S take their values in
(0,\) for some A > 0. We now turn to study the performance of minimizers of L (s) over a class S
of scoring functions defined by

$§, =argminLn(s).
ses

Our first main result is an excess risk bound for the empirical risk minimizer §,, over a class §
of uniformly bounded scoring functions. In the following theorem, we consider that the level sets
of scoring functions from the class .§ form a Vapnik-Chervonenkis (VC) class of sets.

Theorem 5 We assume that

(i) the class S is symmetric (that is, if s € S then A —s € §) and is a VC major class of functions
with VC dimension V.

(ii) the family X ={ Gs,Hs : s € S } of cdfs satisfies the following property: any K € K has left
and right derivatives, denoted by K’ and K’ and there exist strictly positive constants b, B
such that V(K,t) € K x (0,A),

b<|Ki{()<B and b<|K/(1)]<B.

For any & > o, we have, with probability larger than 1 —

L($n) — |nfL <cl\/7 \/

for some positive constants c,, C..

The following remarks provide some insights on conditions (i) and (ii) of the theorem.

Remark 6 (ON THE COMPLEXITY ASSUMPTION) On the terminology of major sets and major
classes, we refer to Dudley (1999). In the proof, we need to control empirical processes indexed by
sets of the form {x : s(x) >t} or {x : s(x) <t}. Condition (i) guarantees that these sets form a VC
class of sets.

Remark 7 (ON THE CHOICE OF THE CLASS § OF SCORING FUNCTIONS) In order to grasp the
meaning of condition (ii) of the theorem, we consider the one-dimensional case with real-valued
scoring functions. Assume that the distribution of the random variable X; has a bounded density f
with respect to Lebesgue measure. Assume also that scoring functions s are differentiable except,
possibly, at a finite number of points, and derivatives are denoted by s’. Denote by fs the density of
s(X). Lett € (o,A) and denote by x,, ..., X, the real roots of the equation s(x) =t. We can express
the density of s(X) thanks to the change-of-variable formula (see, for instance, Papoulis, 1965):
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Scoring functions

s(x)

X

Figure 1: Typical example of a scoring function.

This shows that the scoring functions should not present neither flat nor steep parts. We can take
for instance, the class S to be the class of linear-by-parts functions with a finite number of local
extrema and with uniformly bounded left and right derivatives: Vs € §, Vx,m <s’ (x) <M and m <
s’ (x) < M for some strictly positive constants m, and M (see Figure 1). Note that any subinterval
of [o,A] has to be in the range of scoring functions s (if not, some elements of & will present a
plateau). In fact, the proof requires such a behavior only in the vicinity of the points corresponding
to the quantiles Q(s,1 —u,) forall s € §.

PROOF. Setv, =1—U,. By astandard argument (see, for instance, Devroye et al., 1996), we have:

L($h) —infL(s) < 2sup|Cn(s) —L(s)|
seS$

ses
< 25up |Ca(s) — Ln(s)| +2sup|Ln(s) — L(s)| -
seS scS

Note that the second term in the bound is an empirical process whose behavior is well-known.
In our case, assumption (i) implies that the class of sets {x : s(x) > Q(s,V,)} indexed by scoring
functions s has a VC dimension smaller than V. Hence, we have by a concentration argument
combined with a VC bound for the expectation of the supremum (see, for instance, Lugosi), for any
0 > o, with probability larger than 1 — 9,

\Y In(1/d
Suan(S)—L(S)§C[+C’ (;/)
ses n n
for universal constants c,c’.

The novel part of the analysis lies in the control of the first term and we now show how to handle
it. Following the work of Koul (2002), we set the following notations:

M(s,v) =P{Y - (s(X) —Q(s,v)) <o},
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- ;;H{Yi -(s(Xi) —Q(s,v)) <o} —M(s,V) .

and note that U (s, V) is centered. In particular, we have:
Ln(s) =Un(s,Vo) +M(s,V,) .
As Q(s,v) = F;*(v), we have Q(s, Fso Fy ™ (v)) = Fs* (v) = Q(s,v) and then
Ln(s) = Un(s, Fso Fg (Vo)) +M(s, Fso R (Vo)) -

Note that M (s, Fso 5™ (Vo)) =P{Y - (s(X) —Q(s,V)) < 0| Dn} where Dy denotes the sample (X, Y, ), -

We then have the following decomposition, forany s € S and v, € (0,1):
|Cn(s) —Ln(s)| < |Un(s,Fso Fs ™ (Vo)) —Un(s,Vo) | 4 [M(s,Fso Fs ™ (Vo)) — M(s,V,) |

Recall the notation p =P{Y = 1}. Since M(s,v) = (1 —p)(1 —HsoFg *(v)) + pGso K5 *(v) and
Fs = pGs+ (1 — p)Hs, the mapping v — M(s, V) is Lipschitz by assumption (ii). Thus, there exists a
constant K < oo, depending only on p, b and B, such that:

IM(s,Fso Fg ™ (Vo)) — M(5,Vo) | < K|FsoFg ™ (Vo) — Vo -
Moreover, we have, for any s € §:

“:SOIf (Vo) Vo‘<“:so|f (Vo) — ’f 'f Vo’"i'“fsole (Vo) — Vo‘

< sup |Rs(t)— S(t)|+f.
te(o,\) n

Here again, we can use assumption (i) and a classical VC bound from Lugosi in order to control
the empirical process, with probability larger than 1 —

o)
sup  |Fs(t) <c\/ \/ 1/
(st)ESX (0A)
for some constants c,c’.

It remains to control the term involving the process Up:

|Un(s, Fso Fg ™ (Vo)) —Un(s,Vo)| < sup [Un(s,v) —Un(s,V,)| < 2 sup [Un(s,v)|.

ve(o,1) ve(o,1)

Using that the class of sets of the form {x : s(x) > Q(s,v)} for v € (o, 1) is included in the class
of sets of the form {x : s(x) >t} where t € (0,A), we then have

sup |Un(s,v)| < sup ZH{Y. (s(Xi) —t) <o} —P{Y - (s(X)—t) <o},

ve(o,1) te(o,\)

which leads again to an empirical process indexed by a VC class of sets and can be bounded as
before. |
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2.3 Fast Rates of Convergence

We now propose to examine conditions leading to fast rates of convergence (faster than n—/2). It
has been noticed (see Mammen and Tsybakov, 1999; Tsybakov, 2004; Massart and Nédélec, 2006)
that it is possible to derive such rates of convergence in the classification setup under additional
assumptions on the distribution. We propose here to adapt these assumptions for the problem of
classification with mass constraint.

Our concern here is to formulate the type of conditions which render the problem easier from
a statistical perspective. For this reason and to avoid technical issues, we will consider a quite
restrictive setup where it is assumed that:

» the class § of scoring functions is a finite class with N elements,

» an optimal scoring rule s* is contained in .

We have found that the following additional conditions on the distribution and the class § allow
to derive fast rates of convergence for the excess risk in our problem.

(iii) There exist constants a € (0,1) and D > o such that, for all t > o,

P{n(X)—Q(n,1—u,)| <t} < Dt=e .

(iv) the family X ={ Gg,Hs : s € S } of cdfs satisfies the following property: for any s € S, Gs
and Hs are twice differentiable at Q(s,1 —u,) =Fs ' (1 —U,).

Note that condition (iii) simply extends the standard low noise assumption introduced by Tsy-
bakov (2004) (see also Boucheron et al., 2005, for an account on this) where the level 1/2 is replaced
by the (1 —u,)-quantile of n(X). Condition (iv) is a technical requirement needed in order to derive
an approximation of the statistics involved in empirical risk minimization.

Remark 8 (CONSEQUENCE OF CONDITION (111)) We recall here the various equivalent formula-
tions of condition (iii) as they are described in Section 5.2 from the survey paper by Boucheron et al.
(2005). A slight variation in our setup is due to the presence of the quantile Q(n,1 —u,) but we
can easily adapt the corresponding conditions. Hence, we have, under condition (iii), the variance
control, forany s € S:

Var(IYY # 2T, (X) — 1}~ 1Y # 2y (X) —1}) <c (L(s)~ L)% |

or, equivalently,

E(HQAqO(X)) <c (L(s)—Ly).
Recall that L(s) = ﬁzi”:l I{Y; - (s(Xi) —Q(s,1—U,)) < o}. We point out that L,(s) is not an empiri-
cal criterion since the quantile Q(s, 1 —u,) depends on the distribution. However, we can introduce
the minimizer of this functional:

Sp=argminLn(s),
scS

for which we can use the same argument as in the classification setup. We then have, by a standard
argument based on Bernstein’s inequality (which will be provided for completeness in the proof of
Theorem 10 below), with probability 1 — 9,

n

L(sn)—Ly, <c <I09(N/6)> o .
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for some positive constant c. We will show below how to obtain a similar rate when the true quantile
Q(s,1—U,) is replaced by the empirical quantile Q(s, 1 — u,) in the criterion to be minimized.

We point out that conditions (ii) and (iii) are not completely independent. We offer the following
proposition which will be useful in the sequel.

Proposition 9 If (Gp,Hy) belongs to the class X fulfilling condition (ii), then F, is Lipschitz and
condition (iii) is satisfied with o = 1/2.

PROOF.  We recall that Fy = pGy, + (1 — p)H, and assume for simplicity that G, and H, are
differentiable. By condition (ii), we then have |F,| = p|G|+ (1 — p)/H;| < pB+ (1 —p)B = B.
Set = Q(n,1—U,). Then, by the mean value theorem, there exists a constant ¢ such that, for all
t >o:

P{n(X)—al <t} =Fy(t+q) —Fy(—t+q) <B{t+q—(—t+q)) ==2Bt.

We have proved that condition (iii) is fulfilled with D =2B and a = 1/2. |

The novel part of the analysis below lies in the control of the bias induced by plugging the
empirical quantile O(s,1—u,) in the risk functional. The next theorem shows that faster rates of
convergence up to the order of n—2/3 can be obtained under the previous assumptions.

Theorem 10 We assume that the class S of scoring functions is a finite class with N elements,
and that it contains an optimal scoring rule s*. Moreover, we assume that conditions (i)-(iv) are
satisfied. We recall that $,, = argming_ LCn(s). Then, for any & > o, we have, with probability 1 — &:

|09(N/5))§

L@m—Lagc( "

for some constant c.

Remark 11 (ON THE RATE n—2/3) This result highlights the fact that rates faster than the one ob-
tained in Theorem 5 can be obtained in this setup with additional regularity assumptions. However,
it is noteworthy that the standard low noise assumption (iii) is already contained, by Proposition
9, in assumption (ii) which is required in proving the typical n—*/2 rate. The consequence of this
observation is that there is no hope of getting rates up to n—* unless assumption (ii) is weakened.

Remark 12 (ON THE ASSUMPTION s* € §) This assumption is not important and can be removed.
For a neat argument, check the proof of Theorem 5 from Clémencon et al. (To appear) which uses a
result by Massart (2006).

The proof of the previous theorem is based on two arguments: the structure of linear signed rank
statistics and the variance control assumption. The situation is similar to the one we encountered
in Clémencon et al. (To appear) where we were dealing with U-statistics and we had to invoke
Hoeffding’s decomposition in order to grasp the behavior of the underlying U-processes. Here we
require a similar argument to describe the structure of the empirical risk functional C,(s) under
study. This statistic can be interpreted as a linear signed rank statistic and the key decomposition
has been used in the context of nonparametric hypotheses testing and R-estimation. We mainly
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refer to Hajek and Sidak (1967), Dupac and Hajek (1969), Koul (1970), and Koul and R.G. Staudte
(1972) for an account on rank statistics.

We now prepare for the proof by stating the main ideas in the next propositions, but first we
need to introduce some notations. Set:

wWelo,1], K(s,v) =E(YI{s(X) <Q(s,v)}) = pGs(Q(s,V)) — (1 — p)Hs(Q(s,V))

Rn(s,Vv) = %Zvﬂ{s(xi) <Q(s,v)} .

Then we can write:

L(s) =1—p+K(s,1—U,),
n_
En(s) - ? + Izl’l(sa 1— UO) ’
wheren_ =3 I{Y; =—1}.
We note that the statistic L (s) is related to linear signed rank statistics.

Definition 13 (Linear signed rank statistic) Consider Z,,...,Z, an i.i.d. sample with distribution
F and a real-valued score generating function ®. Denote by R" = rank(|Z;|) the rank of |Z;| in the
sample |Z,],...,|Zn|. Then the statistic

n +

> o) stz

is a linear signed rank statistic.
Proposition 14 For fixed s and v, the statistic K(s, V) is a linear signed rank statistic.

PROOF. Take Z; =Y;s(X;). The random variables Z; have their absolute value distributed according
to Fs and have the same sign as ;. It is easy to see that the statistic Kn(s,V) is a linear signed rank
statistic with score generating function ®(x) = Ix<y;. |

A decomposition of Hoeffding’s type for such statistics can be formulated. Set first:
1 n
Zo(s,v) = -3 (Yi—K'(s,v)) Ts(X) < Q(s,v)}—K(s,v) +VK'(s,v) ,

i=1

where K'(s,v) denotes the derivative of the function v — K(s,v). Note that Z,(s,v) is a centered
random variable with variance:

02(s,v) =V—K(s,v)2 + V(1 —V)K"?(s,v) —2(1 —V)K'(s,V)K(s,V) .
The next result is due to Koul (1970) and we provide an alternate proof in the Appendix.

2681



CLEMENCON AND VAYATIS

Proposition 15 Assume that condition (iv) holds. We have, for alls € S and v € [o, 1]:
Kn(s,v) = K(s,V) +Zn(S,V) + An(s) -

with
An(s)=0p(n"') as N— 0.

This asymptotic expansion highlights the structure of the statistic L(s) for fixed s:
n_
Cals) = —= +K(s,1—U) +Zn(,1—Ug) +An(s) .

Once centered, the leading term Z,(s, 1 —u,) is an empirical average of i.i.d. random variables (of a
stochastic order of n=/2) and the remainder term A, (s) is of a stochastic order of n—*. The nature of
the decomposition of C(s) is certainly unexpected because the leading term contains an additional
derivative term given by K’(s,1 —u,) (v—I{s(Xj) < Q(s,1—U,)}). The revelation of this fact is one
of the major contributions in the work of Koul (2002).

Now, in order to establish consistency and rates-of-convergence-type results, we need to fo-
cus only on the leading term which carries most of the statistical information, while the remainder
needs to be controlled uniformly over the candidate class S. As a consequence, the variance con-
trol assumption will only concern the variance of the kernel hg involved in the empirical average
Zn(S,1—U,) and defined as follows:

hs(Xi,Yi) = (Yi —K'(s,V)) I{s(X;) < Q(s,v)} —K(s,v) +VK'(s,V) ,

We then have

n

Zn(5.V) = Znls",V) = = 3 (hs(X;,Yi) —hs (X3.Y9) -

=
Proposition 16 Fix v € [o,1]. Assume that condition (iii) holds. Then, we have, for all s € S:
Var (hs(Xi, Yi) — hs (Xi,Yi)) < c(L(s) —L(s))",
for some constant c.
PROOF. We first write that:
hs(Xi,Yi) —hs (Xi,Yi) =1+ 1+ 11 +1V +V

where
I =Y (I{s(Xi) <Q(s,v)}—I{s*(X) < Q(s*,v)}),

= (K'(s*,v) =K'(s,v]) H{s*(Xi) < Q(s*,v]},
= K'(s,v) (I{s*(Xi) < Q(s*,v)}—I{s(X{) <Q(s,v)}),
IV = K(s*,Vv)—K(s,v),

V. = v(K'(s,v) =K'(s*V)).
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By Cauchy-Schwarz inequality, we only need to show that the expected value of the square of
these quantities is smaller than (L(s) —L*) up to some multiplicative constant.
Note that, by definition of K, we have:

I = (L'(s*,v)—L'(s,v)) H{s*(Xi) < Q(s*,v)},
IV = L(s*)—L(s),

V. = v(L'(s,v)—L'(s*,v))

where L’(s,v) denotes the derivative of the function v — L(s,v). It is clear that, for any s, we
have L(s,v) = L(s*,v) implies that L’(s,v) = L’(s*,v) otherwise s* would not be an optimal scoring
function at some level v’ in the vicinity of v. Therefore, since S is finite, there exists a constant ¢
such that

(L'(s,v) —L'(s",v))* < c(L(s)—L")"

and then E(112) and E(V2) are bounded accordingly.
Moreover, we have:

E(1*) < E(leacy (X))

<c(L(s)—L(s*)

for some positive constant ¢, by assumption (iii).
Eventually, by assumption (ii), we have that K’(s,v) is uniformly bounded and thus, the term
E(1112) can be handled similarly. u

Proof of Theorem 10. Set v, = 1 —u,. First notice that $,, = argming_ Kn(s,1 —U,). We then have

L($n) —L(s") = K($n, Vo) —K(s", Vo)
S Kn(S*aVo) - Kn(é\navo) - (K(S*,VO) - K(g\nvvo))

< Zn(S",Vo) —Zn($h, Vo)) +25Up|An(s)|
EX)
where we used the decomposition of the linear signed rank statistic from Proposition 15 to obtain
the last inequality.

By Proposition 15, we know that the second term on the right hand side is of stochastic order n™*
since the class S is of finite cardinality. It remains to control the leading term Z,(s*,V,) — Zn($h, Vo).
At this point, we will use the same argument as in Section 5.2 from Boucheron et al. (2005).

Denote by C = supg, [hs(X,y)| and by 0°(s) = Var(hs(Xi,Yi) — hs*(Xi,Yi)). By Bernstein’s in-
equality for averages of upper bounded and centered random variables (see Devroye et al., 1996)
and the union bound, we have, with probability 1 — o, for all s € S:

202(s)log(N/8) 2Clog(N/d)
n + 3N

Zn(S",Vo) —Zn(s,V,) < \/
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- \/20(L(S)—L*)°‘ log(N /3) N 2Clog(N /)
n 3N

thanks to the variance control obtained in Proposition 16. Since this inequality holds for any s, it
holds in particular for s = §,,. Therefore, we have obtained the following result, with probability
1—0:

2c(L($h) —L*)¥ log(N/8) = 2c’log(N/d)
n + 3N

L($h) —L(s") < \/

for some constants ¢, ¢’. At the cost of increasing the multiplicative constant factor, we can get rid
of the second term and solve the inequality in the quantity L($,,) —L(s*) to get

mMN/&)Q%

n

u%m—uf)gc(

for some constant c. To end the proof, we plug the value of a = 1/2 following from Proposition 9.

3. Performance Measuresfor Local Ranking

Our main interest here is to develop a setup describing the problem of not only finding but also
ranking the best instances. In the sequel, we build on the results from Section 2 and also on our
previous work on the (global) ranking problem (Clémencon et al., To appear) in order to capture
some of the features of the local ranking problem. The present section is devoted to the construction
of performance measures reflecting the quality of ranking rules on a restricted set of instances.

3.1 ROC Curves and Optimality in the Local Ranking Problem

We consider the same statistical model as before with (X,Y) being a pair of random variables over
X x{—1,41} and we examine ranking rules resulting from real-valued scoring functionss : X —
(0,A). The reference tool for assessing the performance of a scoring function s in separating the
two populations (positive vs. negative labels) is the Receiver Operating Characteristic known as the
ROC curve (van Trees, 1968; Egan, 1975). If we take the notations Gg(z) =P{s(X) >z | Y =1}
(true positive rate) and Hs(z) =P{s(X) >z | Y = —1} (false positive rate), we can define the ROC
curve, for any scoring function s, as the plot of the function:

z— (Hs(2),Gs(2))
for thresholds z € (o,A), or equivalently as the plot of the function:
t— GgoHg ' (1—1)

fort € (o0,1). The optimal scoring function is the one whose ROC curve dominates all the others for
all z€ (o,A) (ort € (0,1)) and such a function actually exists. Indeed, by recalling the hypothesis
testing framework in the classification model (see Remark 2) and using Neyman-Pearson’s Lemma,
it is easy to check that the ROC curve of the function n(x) =P{Y =1 | X = x} dominates the ROC
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curve of any other scoring function. We point out that the ROC curve of a scoring function s is
invariant to strictly increasing transformations of s.

In our approach, for a given scoring function s, we focus on thresholds z corresponding to the
cut-off separating a proportion u € (o, 1) of top scored instances according to s from the rest. Recall
from Section 2 that the best instances according to s are the elements of the set Cs, = {x € X | s(x) >
Q(s,1—u)} where Q(s,1—u) is the (1 — u)-quantile of s(X). We set the following notations:

a(s,u) =P{s(X) > Q(s,1—u) |Y =—1}=HsoFs*(1—u),
B(s,u) =P{s(X) > Q(s,1—u) |Y =+1}=GsoFs *(1—u).

We propose to re-parameterize the ROC curve with the proportion u € (o0, 1) and then describe
it as the plot of the function:
u— (afs,u),B(s,u)),

for each scoring function s. When focusing on the best instances at rate u,, we only consider the
part of the ROC curve for values u € (o, U,).

However attractive is the ROC curve as a graphical tool, it is not a practical one for developing
learning procedures achieving straightforward optimization. The most natural approach is to con-
sider risk functionals built after the ROC curve such as the Area Under an ROC Curve (known as
the AUC or AROC, see Hanley and McNeil, 1982). Our goals in this section are:

1. to extend the AUC criterion in order to focus on restricted parts of the ROC curve,
2. to describe the optimal elements with respect to this extended criterion.

We point out the fact that extending the AUC is not trivial. In order to focus on the best instances,
a natural idea is to truncate the AUC (as in the approach by Dodd and Pepe (2003)).

Definition 17 (Partial AUC) We define the partial AUC for a scoring function s and a rate u, of
best instances as:
0 (s,Uo )
PARTAUC(S,UO):J B(s,a)da .
[0}

We conjecture that such a criterion is not appropriate for local ranking. If it was, then we should
have: Vs, PARTAUC(s,u,) < PARTAUC(n,u,), since the function n would provide the optimal
ranking. However, there is strong evidence that this is not true as shown by a simple geometric
argument which we describe below.

In order to represent the partial AUC of a scoring function s, we need to locate the cut-off point
given the constraint on the rate u, of best instances. We notice that a(s,u) and (s, u) are related by
a linear relation, for fixed u and p, when s varies:

u=pp(s,u) + (1 —p)a(s,u)

where p =P{Y = 1}. We denote the line plot of this relation by D(u, p) and call it the control line
when u = u,. Hence, the part of the ROC curve of a scoring function s corresponding to the best
instances at rate u, is the part going from the origin (o0,0) to the intersection with the control line
D(u,, p). The partial AUC is then the area under this part of the ROC curve (it corresponds to the
shaded area in the left display of Figure 2).
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ROC curve and partial AUC ROC curve and partial AUC
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Figure 2: ROC curves, control line D(u,, p) and partial AUC at rate u, of best instances.

The optimality of n with respect to the partial AUC can then be questioned. Indeed, the closer to
n the scoring function s is, the higher the ROC curve is, but at the same time the integration domain
shrinks (right display of Figure 2) so that the overall impact on the integral is not clear. Let us now
put things formally in the following lemma.

Lemma 18 For any scoring function s, we have for all u € (o0,1),

Moreover, we have equality only for those s such that Csy,, =Cjj .
PROOF. We show the first inequality. By definition, we have:

B(s,u) =1—Gs(Q(s,1—u)) .
Observe that, for any scoring function s,

p(1—Gs(Q(s,1—u)) =P{Y =1,5(X) > Q(s,1—u)}
=ENn(X)IH{X €Csu}) -

We thus have

P(Gs(Q(s,1—u)—Gp(Q(n,1—u)) = E(N(X)(I{X € Cj} —I{X € Csu}))
=EN(X)KX ¢ Ci}HI{X € Cy}—I{X € Csu}))
+E(N(X)EX € CiHI{X € Cj} —KX € Csu}))

>—E(QMN,1—uIX ¢ Ci} {X € Csu})
+E(QM,1—uHX € Cj}{1 —{X € Csu}))
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=Q(n,1—u)(r—u—14u)=o0.
The second inequality simply follows from the identity below:

1—U=pGs(Q(s,1—u)) + (1 —p)Hs(Q(s,1—u)) .
[

The previous lemma will be important when describing the optimal rules for local ranking cri-
teria. But, at this point, we still do not know any nice criterion for the problem of ranking the
best instances. Before considering different heuristics for extending the AUC criterion in the next
subsections, we will proceed backwards and define our target, that is to say, the optimal scoring
functions for our problem.

Definition 19 (Class $* of optimal scoring functions) The optimal scoring functions for ranking
the best instances at the rate u, are defined as the members of the equivalence class (functions
defined up to the composition with a nondecreasing transformation) of scoring functions s* such
that:

n(x) ifxeC
= inf if x ¢ Ci
< Zérééon(z) ifx¢Cj .

Such scoring functions fulfill the two properties of locating the best instances (indeed Cs: ,, =
Cy,) and ranking them as well as the regression function.

Under the light of Lemma 18, we will see that a wide collection of criteria with the set §* as the
set of optimal elements could naturally be considered, depending on how one wants to weight the
two types of error 1 — 3(s,u) (type Il error in the hypothesis testing framework) and a(s,u) (type |
error) according to the rate u € [0, U,]. However, not all the criteria obtained in this manner can be
interpreted as generalizations of the AUC criterion for u, = 1.

3.2 Generalization of the AUC Criterion

In Clémencon et al. (To appear), we have considered the ranking error of a scoring function s as
defined by:
R(s) = P{(Y —Y')(s(X) —s(X")) < o},

where (X’,Y’) is an i.i.d. copy of the random pair (X,Y).

Interestingly, it can be proved that minimizing the ranking error R(s) is equivalent to maximizing
the well-known AUC criterion. This is trivial once we write down the probabilistic interpretation
of the AUC:

AUC(S) =P {5(X) > s(X) Y =1,Y =1} =1 = =y

We now propose a local version of the ranking error on a measurable set C C X:

R(s) .

R(s,C) =P {(s(X)—s(X")(Y =Y') <o, (X,X") eC?} .
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On sets of the form C =Cs, = {x € X | s(x) > Q(s, 1 —u)} with mass equal to u, the local ranking
error will be denoted by R(s,u) = R(s,Csy).
We will also consider the local analogue of the AUC criterion:

LOCAUC(s,u) =P {s(X) >s(X'), s(X) > Q(s,1—u) | Y =1,Y'=—1} .

This criterion obviously boils down to the standard criterion for u = 1. However, in the case
where u < 1, we will see that there is no equivalence between maximizing the LOCAUC criterion
and minimizing the local ranking error s — R(s,u). Indeed, the local ranking error is not a relevant
performance measure for finding the best instances. Minimizing it would solve the problem of
finding the instances that are the easiest to rank.

The following theorem states that optimal scoring functions s* in the set $* maximize the Lo-
CAUC criterion and that the latter may be decomposed as a sum of a ’power’ term and (the opposite
of) a local ranking error term.

Theorem 20 Letu, € (0,1). We have, for any scoring function s:
Vs* € §*, LOCAUC(s,u,) < LOCAUC(s*,u,) .
Moreover, the following relation holds:

VS, LOCAUC(S7UU) = B(Sa uO) - R(S,UO) )

2p(1—p)
where R(s,u,) =R(s,Csy, ).

PROOF. We first introduce the notation for the Lebesgue-Stieltjes integral. Whenever ¢ is a cdf on
R and Y is integrable, the integral [ W(z)d(z) denotes the Lebesgue-Stieltjes integral (integration
with respect to the measure v defined by via,b) = ¢(b) — ¢ (a) for any real numbers a < b). If ¢
has a density with respect to the Lebesgue measure, then the integral can be written as a Lebesgue
integral: [W(z)d(z) = [P(z)$'(z)dz. We shall use this convention repeatedly in the sequel. In
particular, if Z is a random variable with cdf given by F, then we can write: E(Z) = [z dFz(z).
Now set v, = 1 —U,. Observe first that, by conditioning on X, we have:

LOCAUC(s,U,) =E (I{s(X) > s(X')} {s(X) > Q(s,vo)} |[Y =1,Y ' =—1)
=E (I{s(X) > Q(s,vo)} E( I{s(X) >s(X)} Y =—1,X) |Y =1)

=E (Hs(s(X)) I{s(X) = Q(s,vo)} [Y =1)

400
Q(sVo)

The last equality is obtained by using the fact that, conditionally on Y = 1, the random variable s(X)
has cdf Gs. We now use that pGs = Fs— (1 — p)Hs and we obtain:

—+00 —+o0
pLOCAUC(s, u,) —j Ho(2) dF(2) — (1 — p)j He(z) dH(2).
Q(s\v,) Q(s\vo)
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Recall now that a(s,v) = Hso Fs* (1 —v) and make the change of variable 1 —v = Fs(z)
+o00o Vo
J Hs(z)dFs(z)J (1—a(s,v)) dv.
Q(S-,Vo) [0}
The second term is computed by making the change of variable a = Hg(z) which leads to:
+oo 1
J Hs(z) dHs(2) :J ada.
Q(vao) 1—a (S,uo)
We have obtained:
v() 1 —_ p

pLocAUC(s,u,) :J (1—af(s,v)) dv—

0]

(1—(1—0a(s,v))*) .
2

From Lemma 18, we have that, for any u € (o, 1), the functional s — a(s,u)) is minimized for s =n.
Hence, the first part of Theorem 20 is established.
Besides, integrating by parts, we get:

+o0 +oo
|~ Fulz) dGule) = Mu@IGSIGE, - | Gslz) dHlz).
Q(s\vo) ' Q(s\vo)

The same change of variables as before leads to:

400 a(su)
J Gs(2) dHs(2) —J (1—B(s.a)) da.
Q(vao) 6]

We then have another expression of the LOCAUC(s,u,):

a( u())
LocAUC(s,uo):J ) B(s,a)da+B(s,uy) (1 —a(s,Uy)) .

(0]

We develop further by expressing the product of a and  in terms of probability. Using the
independence of (X,Y) and (X’,Y '), we obtain:

1

p(1—p)

a(s,Uo)B(s,Uo) = P{s(X)As(X') >Q(s,V,), Y =1, Y =—1}

=P{s(X) >s(X"), s(X)As(X) >Q(s,vo) | Y =1,Y" =—1}

1

p(1—p)

+ P{s(X) <s(X), (X,X') €CZ,,Y =1,Y' =—1}

a(su,) 1
= s,a) da+ ———R(s,U,) .
J'() B( ) 2p(1*p) ( )

Combining this with the previous formula leads to the second statement of the theorem. |
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Remark 21 (TRUNCATING THE AUC) In the theorem, we obviously recover the relation between
the standard AUC criterion and the (global) ranking error when u, = 1. Besides, by checking the
proof, one may relate the generalized AUC criterion to the partial AUC. As a matter of fact, we
have:

V¥s, LOCAUC(s,u,) =PARTAUC(S,U,) +B(s,Uy) —a(s,uy)B(s,Uy) -

The values a(s, u,) and B(s, u,) are the coordinates of the intersecting point between the ROC curve
of the scoring function s and the control line D(u,, p). The theorem reveals that evaluating the local
performance of a scoring statistic s(X) by the truncated AUC as proposed in Dodd and Pepe (2003)
is highly arguable since the maximizer of the functional s — PARTAUC(s, u,) is usually not in §*.

3.3 Generalized Wilcoxon Statistic

We now propose a different extension of the plain AUC criterion. Consider (X,,Y,), ..., (Xn,Yn), N
i.i.d. copies of the random pair (X,Y ). The intuition relies on a well-known relationship between
Mann-Whitney and Wilcoxon statistics. Indeed, a natural empirical estimate of the AUC is the rate
of concording pairs:

—

AUC(s) =

> IYi=—1Yj=1,5(X) <s(Xj)},

1<, j<n

withny=n—n_=Y "1 I{Y=+1}.
It will be useful to have in mind the definition of a linear rank statistic.

+

Definition 22 (linear rank statistic) Consider Z,,...,Z, an i.i.d. sample with distribution F and
a real-valued score generating function ®. Denote by Rj = rank(Z;) the rank of Z; in the sample

Z,,...,Zn. Then the statistic
n
R.
Z P < ! >
i=1 n+1

We refer to Hajek and Sidak (1967) and van de Vaart (1998) for basic results related to linear
rank statistics. In particular, we recall that, for fixed s, the Wilcoxon statistic Tn(s) is a linear
rank statistic for the sample s(X,),...,s(Xn), with random weights ¢; = I{Y; = 1}, score generating
function ®(v) =

is a linear rank statistic.

rank(s(X;))
Y =
Z { | } n+1 9
where rank(s(X;j)) denotes the rank ofs(X ) in the sample {s(X;),1 < j <nj. The following relation

is well-known:

- 20e(s) + MY g
n+1 2

Moreover, the statistic Ty(s)/n4 is an asymptotically normal estimate of

W(s) =E(Fs(s(X))[Y =1) .
Note the theoretical counterpart of the previous relation may be written as

W(s) = (1—p)AUC(s) +p/2.
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Now, in order to take into account a proportion u, of the highest ranks only, we introduce the
following quantity:

Definition 23 (W-ranking performance measure) Consider the criterion related to the score gen-
erating function @y (v) =v I{v > 1 —u,}:

W (s,Uo) = E (Dy, (Fs(s(X))) [Y =1).
It will be called the W -ranking performance measure at rate u,.

Note that the empirical counterpart of W (s, u,) is given by Ty (s,u,)/n, with

rank(s(Xi)) )

Tn(s, U) :ZH{Yi =1} %( -

Using the results from the previous subsection, we can easily check that the following theorem
holds.

Theorem 24 We have, for all s:
Vst € S*, W(s,u,) <W(s* u,) .
Furthermore, we have:
Wi(s,uo) = SB(s,uo)(z— B(s,Uo)) + (1 —p)LOCAUC(s, U,) -
PROOF. We start by the definition of W:

W (s,Uo) = E (Fs(s(X))I{Fs(s(X)) > 1—Uo} [ Y =1)

+oo
Q(Sﬂfu())

We recall that: Fs = pGs+ (1 — p)Hs which leads to:

+o00 +o00

Go(2) dGs(z) + (1 p) JQ( Hilz)dGs(2).
S,1—Uy

The second term corresponds exactly to the LOCAUC. The first term is easily computed by a change
of variable b = G¢(2):

W (s,uy) = pJ
Q(S»lfuo)

+00 1
Q(s,1—Uy) 1—B(sUo)

Elementary computations lead to the formula in the theorem. Moreover the applicationt — t(2—t)
being nondecreasing fort € (o, 1), we have, from Lemma 18:

Vs*€.5", Bls,Uo)(2—B(s,Us)) < B(S",Uo)(2—B(s", o)) .

We also use the optimality of s* for LOCAUC established in Theorem 20 to conclude the proof. l
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Remark 25 (EVIDENCE AGAINST 'TWO-STEP’ STRATEGIES) It is noteworthy that not all com-
binations of B(s,u,) (or a(s,u,)) and R(s,u,) lead to a criterion with $* being the set of optimal
scoring functions. We have provided two non-trivial examples for which this is the case (Theorems
20 and 24). But, in general, this remark should prevent from considering "naive’ two-step strategies
for solving the local ranking problem. By ’naive’ two-step strategies, we refer here to stagewise
strategies which would, first, compute an estimate € of the set containing the best instances, and
then, solve the ranking problem over € as described in Clémencon et al. (To appear). However, this
idea combined with a certain amount of iterativeness might be the key to the design of efficient algo-
rithms. In any case, we stress here the importance of making use of a global criterion, synthesizing
our double goal: finding and ranking the best instances.

Remark 26 (OTHER RANKING PERFORMANCE MEASURES) The ideas expressed above suggest
that several ranking criteria can be proposed. For instance, one can consider maximization of other
linear rank statistics with particular score generating functions @ and there are many possible
choices which would emphasize the importance of the highest ranks. One of these choices is ®(v) =
vP which corresponds to the p-norm push proposed by Rudin (2006) although the definition of
the ranks in her work is slightly different. The Discounted Cumulative Gain criterion, studied in
particular by Cossock and Zhang (2006) and Li et al. (2007), is of different nature and cannot be
represented in a similar way. Other extensions can be proposed in the spirit of the tail strength
measure from Taylor and Tibshirani (2006). The theoretical study of such criteria is still at an early
stage, especially for the last proposal. We also point out that with such extensions, probabilistic
interpretations and explicit connection to the AUC criterion seem to be lost.

4. Empirical Risk Minimization of the Local AUC Criterion

In the previous section, we have seen that there are various performance measures which can be
considered for the problem of ranking the best instances. In order to perform the statistical analysis,
we will favor the representations of LOcCAUC and W which involve the classification error L(s,u,)
and the local ranking error R(s,u,). By combining Theorems 20 and 24, we can easily get:

2p(1 —p)LOCAUC(s,Us) = (1 = p)(P+Uo) — (1 — P)L(S,Uo) —R(s, o)

and
p-+Uq
2

2pW (s,u,) =C(p,U,) + < _1> L(s,u,) — iL2(SauO) —R(s,u,)

where C(p,U,) is a constant depending only on p and u,.
We exploit the first expression and choose to study the minimization of the following criterion
for ranking the best instances:

M(s) = M(s,U,) =R(s,Uy) + (1 —p)L(s,U,) .

It is obvious that the elements of §* are the optimal elements of the functional M( - ,u,) and we
will now consider scoring functions obtained through empirical risk minimization of this criterion.

More precisely, given n i.i.d. copies (X,,Y,),...,(Xn,Yn) of (X,Y), we introduce the empirical
counterpart:

M(5) = Kln(s, Uy) = Ra(5) + " La(s),
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withn_ =31 I{Yj=—1}and

n(nl_l) %H{(S(Xi)—s(xj))(Yi —Yj) <o, s(Xi)As(Xj) > Q(s,1—U,)} .

Rn(s) =

Note that Ry(s) is expected to be close to the U-statistic of degree two

Rn(s) =

1

—1) %ks((xi,Yi),(vaYj)L

n(n
with symmetric kernel

ks((x,¥), (x",y")) =H{(s(x) =s(x"))(y—y") <0, s(x) As(x") > Q(s,1—U,)} .

The statistic Rn(s) corresponds to an unbiased estimate of the local ranking error R(s,u,). The
next result provides a standard error bound for the excess risk of the empirical risk minimizer over
a class § of scoring functions:

§, =argminMy(s) .
seS$
Proposition 27 Assume that conditions (i)-(ii) of Theorem 2 are fulfilled. Then, there exist con-
stants ¢, and ¢, such that, for any & > o, we have:

M($h) — infM(s) < cl\/v+02\/m
scS n n

with probability larger than 1 —d.

PROOF. (SKETCH) The proof combines the argument used in the proof of Theorem 5 with the
techniques used in establishing Proposition 2 in Clémencon et al. (2005).

M($n) —infM(s) < 2 (surJ Rn(s) —Rn(s)| +sup|R(s) - Rn(5)>
SES sc$

seS

+2(1—p) (sur) |Cn(s) —Ln(s)| +sup|L(s) — Ln(s)l> taf o p] :
) ) n

The middle term may be bounded by applying the result stated in Theorem 5, while the last
one can be handled by using Bernstein’s exponential inequality for an average of Bernoulli random
variables. By combining Lemma 1 in Clémencon et al. (2005) with the Chernoff method, we can
deal with the U-process term supg. s [R(s) —Rn(s)|. Finally, the term supg¢ \R\n(s) — Rn(s)\ can also
be controlled by repeating the argument in the proof of Theorem 5. The only difference here is that
we have to consider the U-process term

2
nn—u)

sup

Up D {Kst (X3, Y1), (X}, Y))) —ElKse ((X,Y), (X",Y )1}
S,

i#]

with

Kst((X,Y), (x",y") =T{(s(x) =s(x"))(y—y") > 0, s(x) As(x) > t}.
For deriving first-order results with such a process, we refer to the same type of argument as used
in Clémencon et al. (2005). |
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Remark 28 (ABOUT THE POSSIBILITY OF DERIVING FAST RATES) By checking the proof sketch,
it turns out that sharper bounds may be achieved for the U-process term. Indeed, it is a simple
variation of our previous work in Clémencon et al. (2005) where we have used Hoeffding’s de-
composition in order to grasp the deep structure of the underlying statistic. Here we will need, in
addition, condition (iii) to hold for all u € (o,u,]. Indeed, if we localize our low-noise assumption
from Clémencon et al. (2005), it takes the following form: there exist constants a € (0,1) and B > o
such that, for all t > o, we have

¥xeCy,  P{Nn(X)—n(x)| <t} <Btva .

It is easy to see that this is equivalent to condition (iii) for all u € (o,u,]: there exist constants
a € (0,1) and B > o such that, for all t > o, we have

a

Vu € (0, U], P{In(X)=Q(n,1—u)| <t} < Bti—a .

However, in the present formulation where p is assumed to be unknown, it looks like this improve-
ment will be spoiled by the *proportion term’ which will still be of the order of a O(n—*/2).

Remark 29 (ABOUT THE EXTENSION TO CONVEX RISK MINIMIZATION) An important topic in
classification theory is convex risk minimization. Understanding the connection between classifi-
cation error and its convex surrogates has permitted to understand the behavior of practical algo-
rithms such as boosting and SVM from a statistical perspective (see Boucheron et al., 2005 for
an account on this aspect and Bartlett et al., 2006 for state-of-the-art results). A natural question
which arises here is whether the consistency results on local ranking can be extended in this spirit.
Note that, if we do not focus on best instances and consider the whole AUC as a performance
criterion, it is straightforward to obtain consistency and universal rates of convergence for convex
risk minimization (as explained in Clémencon et al. (To appear)). In the case of local ranking as we
introduced it, this extension is less straightforward since the decision rule represented here by the
scoring function s appears under the empirical quantile Q(s,v) in the criterion. We refer to Rudin
(2006), Cossock and Zhang (2006) and Li et al. (2007) where convex risk minimization strategies in
the context of ranking are discussed.

5. Conclusion

In the present work, we have presented theoretical work on local ranking. In the first part of the
paper (Section 2), we considered a subproblem that we called the classification with mass constraint
problem. The scope was to establish and study an empirical risk minimization strategy for only
finding, and not ranking, the best instances. In this case, one attempts to minimize the classification
error over classifiers that contain a fixed proportion u of observations. This constraint leads to
empirical risk functionals which involve an empirical quantile indexed by the class of candidate
scoring functions and can be seen as linear signed rank statistics. We then provide a consistency
result and discuss the noise assumptions required to derive fast rates of convergence in this setup.
These assumptions require a limited regularity of the underlying distributions which prevents the
fast rate from dropping below the order of n—2/3. The second part of the paper (Section 3) is
dedicated to the introduction of new performance measures for local ranking related to the ROC
curve and the AUC criterion. We show that the AUC can be extended in several ways (partial AUC
and local AUC) but not all these extensions are tailored for the local ranking problem. In particular
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the naive extension known as the partial AUC is not appropriate and requires a correction term. We
also introduce the optimal scoring functions which should be considered as the target of any local
ranking method. We also discuss other extensions based on Wilcoxon statistics, the W-ranking
performance measure, for which optimal rules can also be recovered. In the last section of the
paper (Section 4), the problem of ranking the best instances is studied from a statistical perspective.
A consistency result is provided for empirical risk minimization of the W-ranking performance
measure.
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Appendix A.

In this section, we provide the proof of Proposition 15.
PROOF. First, forall (s,v) € S x (0,1) set

Va(s,v) = - > ViIIS(X) < Q(s,v)}—K(5.v)

We have the following decomposition:
wWelo,1], Ka(s,v) —K(s,v) =Vn(s,Fso Fs (V) + K(s,Fso Fs (v)) —K(s,V) .
We shall first prove that
Vn(s, Fso Fs (Vo)) = Va(S, Vo) +Op(n ).
We denote by A(s, &) the event { |Fso Fo' (Vo) —V,| < &}. On the event A(s, ), we have:

[Vn(s,Fso Fs ™ (Vo)) = Vn(S,Vo) | < sUp  IVa(s,V) —Va(s,Vo)] .

Vi V—v, <€
We bound the right hand side for fixed €, by making use of an argument from van de Geer (2000).
First, we need to put things into the right format. Set:

n

Va(5.¥) ~Va(S.¥o) = = 3 (ui(5.v) ~ui(s.vo))

i=1

where u;j(s,v) = Y;I{s(X;) < Q(s,v) < o} —E(YI{s(X) <Q(s,v)}) fors e S and v € (0,1). We ob-
serve that
Ui (S, V) — Ui (s, Vo )| < di(V, Vo),

where
di(v, Vo) =I{s(Xi) € [Q(s,VAV,),Q(s,VV Vo )]} + |V —V,! .
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Denote by
dlv,v,) = Z]I{s Q(S,VAV,), Q(5,VV V)1 4 [V—V,| .

a distance over R. Set also:
Re)= sup dlv,v,).

Vi V=V, |<€

and observe that

= %ZH{S(Xi) € [Q(s,Vo—€),Q(s,Vo + &)} + €.

We then have, by applying Lemma 8.5 from van de Geer (2000), for nt2/R>(g) sufficiently large,
cnt?
Psup V(s v)—Vals,v, )l > ’ Xt p <Corp {200
Vv, |<e |f\>‘2(8)

for some positive constants ¢ and C. It remains to integrate out and, for this purpose, we introduce
the event:
VX>o0, A(x) = {3e—x <R(g) < 3e+x}.

E <exp {—%}t)}) <exp {—(32:1)2 } —HP’{m} .

Now, we have, by Bernstein’s inequality:

P{Tx)} :2@{%B(n,25)725> x} < 2exp{31nGX:}

We then have:

where we have used the notation B(n,2¢) for a binomial (n,2¢) random variable. We can take
= O(t/+/€) and assume also x = o(€) to get, for nt> /&> large enough,

p{ sup |vn(s,v)—vn(s,vo)|2t}SCexp{—Cg},

Vi v—y,|<g

for some positive constants ¢ and C. This can be reformulated, by writing that the following bound
holds, with probability larger than 1 — /2,

log(2C/d)

V _V 0 S
sup  [Va(s,v) =Va(s,V,)| < € "

Vi v—y,|<g

We recall that, by the triangle inequality and Dvoretsky-Kiefer-Wolfowitz theorem, if we take € =
log( 2/6

c , we have P{A(s,e)} > 1 —98/2. It follows that, with probability larger than 1 — o, we
have, for some constant K:

‘Vn(s’FSoﬁs_l(Vo))_Vn(S,Vo)‘ <K <Iog(1/6)> )

n
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for any s € S. Now it remains to deal with the second term K(s, Fso Ifgl (Vo)) —K(s,V,). Therefore,
by the differentiability assumption (iv), we have: Vs € §,

sup {K(s,v) —K(s,Vo) — (V=Vo)K'(5,v,)} =0(8%), asé—o.

V—Vv,[<8
Since [Fso F ' (Vo)) — Vo| = Op(n~*/2), we get that
K(s,Fso Fs ™ (Vo)) —K(s,Ve) = K'(s,Vo) (Fso Fs " (Vo) — Vo) +Op(n™") , asn— oo

Moreover, as
Fso Ifs_l(vo) —Vy = 7“350 Fs_l(vo) *Vo) +OIP’(n_1) s

we finally obtain that

K(s,FsoFg (Vo)) — K(8,Vo) = —K'(8,Vo) (Fso Fg (Vo) — Vo) +Op(n ) .
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