
Journal of Machine Learning Research 8 (2007) 1835-1865 Submitted 10/06; Revised 4/07; Published 8/07

Behavioral Shaping for Geometric Concepts

Manu Chhabra MCHHABRA@CS.ROCHESTER.EDU

Department of Computer Science
University of Rochester
Rochester, NY 14627, USA

Robert A. Jacobs ROBBIE@BCS.ROCHESTER.EDU

Department of Brain and Cognitive Sciences
University of Rochester
Rochester, NY 14627, USA
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Abstract
In a search problem, an agent uses the membership oracle of a target concept to find a positive ex-
ample of the concept. In a shaped search problem the agent is aided by a sequence of increasingly
restrictive concepts leading to the target concept (analogous to behavioral shaping). The concepts
are given by membership oracles, and the agent has to find a positive example of the target concept
while minimizing the total number of oracle queries. We show that for the concept class of intervals
on the real line an agent using a bounded number of queries per oracle exists. In contrast, for the
concept class of unions of two intervals on the real line no agent with a bounded number of queries
per oracle exists. We then investigate the (amortized) number of queries per oracle needed for the
shaped search problem over other concept classes. We explore the following methods to obtain
efficient agents. For axis-parallel rectangles we use a bootstrapping technique to obtain gradually
better approximations of the target concept. We show that given rectangles R ⊆ A ⊆ R

d one can
obtain a rectangle A′ ⊇ R with vol(A′)/vol(R) ≤ 2, using only O(d · vol(A)/vol(R)) random sam-
ples from A. For ellipsoids of bounded eccentricity in R

d we analyze a deterministic ray-shooting
process which uses a sequence of rays to get close to the centroid. Finally, we use algorithms
for generating random points in convex bodies (Dyer et al., 1991; Kannan et al., 1997) to give a
randomized agent for the concept class of convex bodies. In the final section, we explore connec-
tions between our bootstrapping method and active learning. Specifically, we use the bootstrapping
technique for axis-parallel rectangles to active learn axis-parallel rectangles under the uniform dis-
tribution in O(d ln(1/ε)) labeled samples.
Keywords: computational learning theory, behavioral shaping, active learning

1. Introduction

Computational models of learning are often inspired by human cognitive phenomena. For example,
the PAC model of Valiant (1984) is a model of our ability to learn concepts from positive and
negative examples generated at random by the world. Human learning, however, demonstrates a
richer variety of learning phenomena such as that of behavioral shaping. Behavioral shaping is a
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training procedure commonly used to teach complex behaviors. Using this procedure, a complex
task is taught to a learner in an incremental manner. The learner is initially rewarded for performing
an easy task that coarsely resembles the target task that the teacher wants the learner to perform.
Over time, the learner is rewarded for performing more difficult tasks that monotonically provide
better approximations to the target task. At the end of the training sequence, the learner is rewarded
only for performing the target task. Shaping was first proposed by B. F. Skinner in the 1930s
(Skinner, 1938). In addition to training humans and other organisms, behavioral shaping has also
been used in artificial intelligence applications such as those that arise in robotics or reinforcement
learning (Dorigo and Colombetti, 1994; Mataric, 1994; Randløv and Alstrøm, 1998; Konidaris and
Barto, 2006; Ng et al., 1999).

The goal of this paper is to mathematically formalize the notion of shaping, and to show that
shaping makes certain tasks easier to learn. We specifically study shaping in the context of search
problems (for a learning theoretic analysis of a similar search problem, see, e.g., Fine and Mansour,
2006). In a search problem, the task is to find one positive example of a concept given a membership
oracle of the concept using as few queries to the oracle as possible. If a shaping sequence, which is
a sequence of nested concepts, is available, it might be possible to solve the search problem with a
smaller number of oracle queries. When concepts are standard geometrical concepts like rectangles,
balls, ellipsoids, and convex bodies in high dimensions, we show efficient algorithms to solve the
search problem using a shaping sequence.

“Reward shaping” of Ng et al. (1999) and quasi-convex optimization are related to our work.
Ng et al. (1999) gave conditions under which “reward shaping” works in a reinforcement learning
setting. In their framework, shaping is a transformation of the reward function and the goal is to
formalize conditions under which this transformation preserves value of the underlying policies.
Our framework is different from Ng et al. (1999) in at least two ways. First, we have a sequence of
reward functions as compared to their one step reward transform. Second, our reward functions are
binary whereas they allow general, real valued rewards.

A weaker version of the shaped search problem in which the concepts are convex and all the
oracles are available to the agent simultaneously can be viewed as an instance of a quasi-convex
optimization problem. Also, we cannot apply the algorithms from this area since they usually
rely on an oracle (so called separation oracle) stronger than the membership oracle that we use.
What makes our setting different is that the oracles are available in a fixed order, and we only have
membership oracles. Our framework is motivated by behavioral shaping (Skinner, 1938), as well as
practical robotics (Dorigo and Colombetti, 1994).

Our work is similar in spirit to the idea of using a helpful teacher (Goldman and Kearns, 1991;
Goldman et al., 1993; Goldman and Mathias, 1993; Hegedűs, 1994). For example, Goldman and
Kearns (1991) considered a model where a helpful teacher chose examples to allow a learner to
uniquely identify any concept in a given concept class. Our model differs from Goldman and Kearns
(1991) in the following aspects. First, the teacher in Goldman and Kearns (1991) is “active” (it is
directly providing the learner with “good” examples), whereas in our model the burden of choosing
good queries is on the learner. Second, the learner in Goldman and Kearns (1991) is faced with a
more general task of identifying the concept, whereas our learner is solving a search problem.

The rest of the paper is organized as follows. In Section 2 we define the shaped search problem
and summarize the results of the paper. In Section 3 we illustrate the shaped search problem with
algorithms for the concept classes of intervals and axis-parallel rectangles. In Section 4 we use
a bootstrapping algorithm to give an improved algorithm for axis-parallel rectangles. Section 5

1836



BEHAVIORAL SHAPING FOR GEOMETRIC CONCEPTS

explains and analyzes the center-point algorithm which is used in Section 6 to solve the shaped
search problem for bounded eccentricity ellipsoids. Section 7 uses the techniques on sampling
random points from a convex body to solve the problem for general convex bodies. In Section 8
we define the problem of one-sided active learning, and show that the bootstrapping algorithm
given in Section 4 can be used to active-learn the concept class of axis-parallel rectangles with
O(d ln(1/ε)) labeled samples. Finally, Section 9 wraps up the paper with a discussion and possible
future directions.

2. A Formal Model of Behavioral Shaping

A search problem is defined by a pair of sets (S,T ) such that T ⊆ S (S is the starting set and T is
the target set). A search agent “knows” S and has to find a point y ∈ T . The set T will be given by a
membership oracle. The goal of the agent is to minimize the number of queries to the oracle.

Of course without any conditions on (S,T ) the agent could be searching for a needle in a
haystack and require an unbounded number of queries. To make the problem reasonable we will as-
sume that S and T come from some concept class C (e. g., S,T could be intervals in R), and that the
volume vol(T ) is not too small compared to the volume vol(S) (i. e., T is not a needle in a haystack
S).

Before formally defining a search problem we need the following standard notions from learning
theory (see, e.g., Anthony and Biggs, 1992; Kearns and Vazirani, 1994). Let (X ,B) be a measurable
space and let vol be a measure on (X ,B). Let C ⊆ B . The set C is called a concept class and its
members are called concepts. We will assume that C comes with a representation scheme (see
Kearns and Vazirani, 1994, Chapter 2). Examples of concept classes that we study include intervals
in R, axis-parallel rectangles in R

d , ellipsoids in R
d , and convex bodies in R

d . We will restrict our
attention to the Lebesgue measure on R

d .

Definition 2.1 Let C be a concept class. A search problem is defined by a pair of concepts (S,T )
such that T ⊆ S and S,T ∈ C . The agent has a representation of S and has to find a point in T using
a membership oracle for T .

Note that for any concept class there is a natural “oblivious” randomized algorithm for the
search problem: query independent uniform random points from S until you find a point in T . The
expected number of queries of the algorithm is vol(S)/vol(T ). For sufficiently complicated concept
classes (e. g., finite unions of intervals) the use of randomness might be inevitable—a deterministic
algorithm with bounded number of queries need not exist (the question of deterministic search is
related to the concept of hitting sets, see, e.g., Linial et al., 1993).

For concept classes we will consider one can find Ω(n) disjoint concepts, each of volume
Ω(1/n). The following observation implies that the trivial algorithm is the best possible (up to
a constant factor).

Observation 2.1 Suppose that there exist disjoint concepts T1, . . . ,Tn ⊆ S. Let i be uniformly ran-
dom from [n]. The expected (over the choice of i) number of queries made by any (randomized)
agent on (S,Ti) is Ω(n).

In a shaped search problem the agent’s search task will be aided by a shaping sequence, which
is a sequence of nested sets between the S and T . The sets in the shaping sequence will be gradually

1837



CHHABRA, JACOBS, AND ŠTEFANKOVIČ

shrinking concepts from the underlying concept class C . The rate of shrinking will be controlled by
a parameter, denoted γ.

Definition 2.2 Let γ ∈ (0,1). Let C be a concept class and let (S,T ) be a search problem over C .
A sequence of concepts S0 ⊇ S1 ⊇ ·· · ⊇ Sk is called a γ-shaping sequence if S0 = S, Sk = T , and
vol(St+1)≥ γvol(St) for all t ∈ {0, . . . ,k−1}.

A search agent in a shaped search problem only has access to the membership oracles of
S1, . . . ,Sk. However, if the agent makes a query to St , it can no longer make a query to S j with
j < t. In other words, the oracles St are presented to the agent in k iterations, with the agent making
(zero or more) queries to the oracle St at iteration t. The agent successfully solves the shaped search
problem if at the end of the process it outputs x ∈ T . We assume that the agent knows the value of γ
and does not know the value of k. However, before the last iteration the agent is informed that it is
accessing the last oracle.

We will evaluate the performance of the agent by the amortized number of membership queries
per oracle (i. e., the total number of queries divided by k). We will also consider randomized agents,
which are zero-error probability (Las Vegas) algorithms (i. e., they are always successful). For a
randomized agent the performance is measured by the expected number of membership queries per
oracle, where the expectation is taken over the coin flips of the agent. This is formalized in the
following definition.

Definition 2.3 Let C be a concept class. Let A be a search agent. We say that the agent A solves
a γ-shaped search problem using q queries per oracle, if for every S,T ∈ C , every k, and every
γ-shaping sequence S0, . . . ,Sk ∈ C the total number of queries made by the agent is bounded by kq.
If the agent is randomized we require the expected total number of queries to be bounded by kq.

Note that for γ > γ′ any γ-shaping sequence is a γ′-shaping sequence. Thus as γ→ 1 the shaped
search problem becomes easier. We will study how γ affects the complexity of the shaped search
problem.

2.1 Our Results

In order to introduce the shaped search problem, we start with a positive and a negative result for
two simple concept classes (the proofs are in Section 3). First, we show that O(1/γ) queries per
oracle suffice to solve the γ-shaped search problem for the concept class of closed intervals in R.

Proposition 2.4 Let C be the concept class of closed intervals in R. There exists a deterministic
agent which for any γ uses O(1/γ) queries per oracle to solve γ-shaped search problem.

Next, we contrast the Proposition 2.4 by showing that for the class of “unions of two closed
intervals in R” there exists no agent that solves the γ-shaped search problem using bounded number
of queries per oracle.

Proposition 2.5 Let C be the concept class of unions of two closed intervals in R. Let γ ∈ (0,1).
For every (randomized) agent A and every number q there exists a search problem (S,T ), k, and a
γ-shaping sequence S1, . . . ,Sk such that A makes more than q queries per oracle (in expectation).
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We understand the concept class of intervals completely as Proposition 2.4 can be strengthened
as follows.

Proposition 2.6 Let C be the concept class of closed intervals in R. Let f (γ) = 1/γ for γ ≤ 1/2,
and f (γ) = ln(1/γ) for γ > 1/2. There exists a deterministic agent which for any γ ∈ (0,1) uses
O( f (γ)) queries per oracle to solve γ-shaped search problem. On the other hand, for any γ ∈ (0,1),
any (randomized) agent makes at least Ω( f (γ)) queries per oracle.

The shaped search problem for axis-parallel rectangles in R
d turns out to be more complicated.

Here we do not understand the dependence of the complexity of the γ-shaped search problem on γ.
We present three algorithms; each algorithm works better than the other two for a certain range of
γ.

We say that a randomized agent is oblivious if for every oracle St the queries to St which lie in
St are independent and uniformly random in St .

Theorem 2.7 Let C be the concept class of axis-parallel rectangles in R
d .

1. For any γ there exists a randomized agent using O( 1
γ +(d + ln 1

γ ) lnd) queries per oracle.

2. For any γ there exists an (oblivious) randomized agent using O(d/γ) queries per oracle.

3. For any constant γ > 1/2 there exists a deterministic agent using O(lnd) queries per oracle.

The following table compares the number of queries used by the algorithms for various values
of γ.

Alg. 1. Alg. 2. Alg. 3.
γ = 3/4 O(d lnd) O(d) O(lnd)

γ = 1/4 O(d lnd) O(d) N/A
γ = 1/ lnd O(d lnd) O(d lnd) N/A
γ = 1/d O(d lnd) O(d2) N/A

Note that the deterministic algorithm for part 3. uses less queries than the randomized algorithm
for part 2., but it only works in a very restricted range of γ. It relies on the following fact: the centroid
of an axis-parallel rectangle of volume 1 is contained in every axis-parallel sub-rectangle of volume
≥ 1/2. It would be interesting to know whether the logarithmic dependence on d could be extended
for constants γ≤ 1/2, or, perhaps, a lower bound could be shown.

Question 1 Are Ω(d) queries per oracle needed for γ < 1/2?

The simple agent for the part 1) of Theorem 2.7 is described in Section 3.
In Section 4 we introduce the concept of “bootstrap-learning algorithm”. A bootstrap-learning

algorithm, given an approximation A1 of an unknown concept C ∈ C and a membership oracle for
C, outputs a better approximation A2 of C. We show an efficient bootstrap-learning algorithm for
the concept class of axis-parallel rectangles and use it to prove part 2) of Theorem 2.7.

Part 3) of Theorem 2.7 is proved in Section 5. We show how an approximate center of an axis-
parallel rectangle can be maintained using only O(lnd) (amortized) queries per oracle. If γ is not
too small, the center of St will remain inside St+1 and can be “recalibrated”.

The results of Section 5 suggest that maintaining an approximate centroid of the St is a useful
approach for solving the shaped search problem. For a centrally symmetric convex body K the
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following process can be used to get close to a centroid of K: pick a line ` through the current
point, move the current point to the center of `∩K and repeat. If ` is uniformly random the process
converges to the centroid of K. It would be interesting to know what parameters influence the
convergence rate of this process.

Question 2 How many iterations of the random ray-shooting are needed to get ε-close to the cen-
troid of a (isotropic), centrally symmetric convex body K?

We will consider the following deterministic version of the ray-shooting approach: shoot the rays
in the axis directions e1, . . . ,ed , in a round-robin fashion.

Question 3 How many iterations of the deterministic round-robin ray-shooting are needed to get
ε-close to the centroid of a (isotropic), centrally symmetric convex body K?

In Section 6 we study a variant of the deterministic ray-shooting which moves to a weighted average
of the current point and the center of K ∩ `. We analyze the process for the class of ellipsoids of
bounded eccentricity. As a consequence we obtain:

Theorem 2.8 Let C be the concept class of ellipsoids with eccentricity bounded by L. Let γ > 1/2.
The γ-shaped search problem can be solved by a deterministic agent using O(L2 ·d3/2 lnd) queries
per ray-shooting oracle (a ray-shooting oracle returns the points of intersection of K with a line
through a point x ∈ K)

The requirement γ > 1/2 in Theorem 2.8 can be relaxed. Similarly, as in the axis-parallel rect-
angle case, we need a condition on the volume of a sub-ellipsoid of an ellipsoid E which guarantees
that the sub-ellipsoid contains the centroid of E. We do not determine this condition (which is a
function of L and d).

To prove Theorem 2.8 we need the following interesting technical result.

Lemma 2.9 Let v1, . . . ,vd ∈R
d be orthogonal vectors. Let α ∈ (0,2) and L≥ 1. Let D be an d×d

diagonal matrix with diagonal entries from the interval [1/L,1]. Let

M(α) =
n

∏
i=1

(

I−α · DvivT
i D

vT
i D2vi

)

.

Then

‖M(1/
√

d)‖2
2 ≤ 1− 1

5L2
√

d
.

Using random walks and approximating ellipsoids (Bertsimas and Vempala, 2004; Kannan et al.,
1997; Grötschel et al., 1988; Lovász, 1986) we can show that convexity makes the shaped search
problem solvable. We obtain the following result (a sketch of the proof is in Section 7):

Theorem 2.10 Let C be the concept class of compact convex bodies in R
d . For any γ ∈ (0,1)

there exists a randomized agent for the γ-shaped search problem using O(poly(d,1/γ)) queries per
oracle.
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3. Basic Results for Intervals and Axis-parallel Rectangles

Now we show that for intervals O(1/γ) queries per oracle are sufficient to solve the γ-shaped search
problem. For each St we will compute an interval [at ,bt ] containing St such that the length of [at ,bt ]
is at most three times longer than the length of St . By querying St+1 on a uniform set of O(1/γ)
points in [at ,bt ] we will obtain [at+1,bt+1].

Proof of Proposition 2.4:
The agent will compute an interval approximating St for t = 0, . . . ,k. More precisely it will compute
at and bt such that St ⊆ [at ,bt ] and vol(St) ≥ (bt − at)/3. Initially we have S = S0 =: [a0,b0] and
vol(S0) = (b0−a0)≥ (b0−a0)/3.

Suppose that St ⊆ [at ,bt ] and vol(St) ≥ (bt − at)/3. Using an affine transformation we can,
w.l.o.g., assume at = 0 and bt = 1. Thus vol(St)≥ 1/3 and vol(St+1)≥ γ/3.

Let Q0 = {0,1}, Q1 = {0,1/2,1}, . . . , Qi = { j/2i | j = 0, . . . ,2i}. The agent will query St+1 on
all points in Qi, i = 0,1, . . . , until it finds the smallest j such that |Q j ∩St+1| ≥ 2. Choose at+1 and
bt+1 such that

Q j ∩St+1 = {at+1 +2− j, . . . ,bt+1−2− j}.

For this at+1,bt+1 we have St+1 ⊆ [at+1,bt+1] and vol(St+1)≥ (bt+1−at+1)/3.
Note that if 2−i ≤ γ/6 then |Ai∩St+1| ≥ 2. By the minimality of j we have 2 j ≤ 12/γ and hence

the total number of queries per oracle is O(1/γ). �

Proof of Proposition 2.6:
First we show the upper bound of O(ln(1/γ)) for γ > 1/2. Let ` = d− ln2

lnγ e. Note that γ` ≥ 1/4. Now
we use the agent from Proposition 2.4 on oracles S0,S`,S2`, . . . , and we do not query the rest of the
oracles at all. The number of queries per oracle is O(1/`) = O(ln(1/γ)).

Next we show the lower bound of Ω(1/γ) for γ < 1/2. We take a shaping sequence of length
k = 1. Note that there exist b1/γc disjoint intervals of length γ in [0,1] and hence, by Observation 2.1,
the agent needs to make Ω(b1/γc) queries (per oracle).

Finally, the lower bound of Ω(ln(1/γ)) will follow by an information-theoretic argument. As-
sume that the agent is deterministic. Fix an integer k. There exist Ω(1/γk) disjoint intervals of
length γk. For each of these intervals there exists a shaping sequence of length k ending with that
interval. We will randomly pick one of these shaping sequences and present it to the agent. The
agent, using Q queries, identifies which interval (out of the Ω(1/γk) intervals) we chose. This im-
plies E[Q] = Ω(k ln(1/γ)), and hence the number of queries per oracle is Ω(ln(1/γ)). The lower
bound for a randomized agent follows by Yao’s min-max lemma (see, e.g., Motwani and Raghavan,
1995, Chapter 2). �

For unions of two intervals the agent can be forced to make many queries per oracle. If one of
the intervals is large and one is small then the small interval can abruptly shrink. We will use this
to “hide” the target T . Then we will shrink the large interval until it disappears. Now the agent is
forced to find the hidden target T , which requires a large number of queries.

Proof of Proposition 2.5:
Let γ ∈ (0,1). Let n be the smallest positive integer such that (1 + γn)γ ≤ 1. Let ` be a positive
integer such that γ` < 1/2. Let T be a random interval of length γn+` in [0,γn]. Let S = [−1,1]. The
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γ-shaping sequence will be the following:

St =

{ [−1,0]∪ [0,γt ] for t = 0, . . . ,n,
[−γt−n−1,0]∪T for t = n+1, . . . ,3n+ `+1,
T for t = 3n+ `+2.

Note that St is always a union of two intervals. In the first n + 1 iterations, the right hand-side
interval is shrinking. When the right-hand side interval is sufficiently small we can replace it by the
“hidden” interval T . After that we shrink the left-hand side until we make it disappear.

For the sake of the lower bound argument, we will help the agent by telling it the general shape
of the shaping sequence, but we will keep the location of T secret. Now, w.l.o.g, we can assume
that the agent only queries points in [0,γn] on the oracle for T (because for all the other queries the
agent can figure the answer himself). By Observation 2.1 the agent needs Ω(1/γ`) queries to find a
point in T . Hence the number of queries per oracle is

Ω
(

1/γ`

3n+ `+2

)

.

Letting `→ ∞ we obtain that the number of queries per oracle is unbounded. �

Now we describe an agent for axis-parallel rectangles. Let At be a tight rectangle containing
St (i. e., a rectangle such that vol(At) ≤ C · vol(St) for some constant C). We will sample random
points in At until we get a point y inside St+1. Then we will shoot rays from y in the axis-parallel
directions to find the approximate boundary of St+1. From this we will obtain a tight rectangle At+1

containing St+1.

Proof of the part 1) of Theorem 2.7:
We will compute axis-parallel rectangles A0, . . . ,Ak such that St ⊆ At and vol(At) ≤ evol(St) (for
t = 0, . . . ,k). Clearly we can take A0 = S0.

Suppose that we have At such that St ⊆ At , and vol(At) ≤ evol(St). Using an affine trans-
formation we can, w.l.o.g, assume At = [0,1]d . Since the St form a γ-shaping sequence we have
vol(St+1) ≥ γ/e. We will sample random points from At , until we get a point x inside St+1. In
expectation we will need to query at most e/γ points to find x.

Now that we have x we will try to approximate St+1 in each dimension separately. We will find
the smallest j ≥ 0 such that x + 2− je1 ∈ St+1, or x− 2− je1 ∈ St+1. Only O(− lnw1(St+1)) queries
are needed for this step (where w1(St+1) is the width of St+1 in the 1-st dimension).

Then using binary search on [0,21− j] we will find y such that x + ye1 ∈ St+1 and x + (y +
2− j−1/d)e1 6∈ St+1. This step uses only O(lnd) queries. Similarly we will find z ∈ [0,21− j] such
that x− ze1 ∈ St+1 and x− (z+2− j−1/d)e1 6∈ St+1. Note that

I1 := [x− (z+2− j−1/d),x+(y+2− j−1/d)],

contains the projection of St+1 into the 1-st dimension, and the the length of I1 is at most (1 +
1/d)w1(S).

Analogously we compute the Ii for i = 1, . . . ,d. The total number of queries is

O(d lnd)+O

(

−
d

∑
i=1

lnw1(St+1)

)

= O

(

d lnd + ln
1
γ

)

.

Let At+1 = I1×·· ·× Id . We have St+1 ⊆ At+1, and vol(At+1)≤ (1+1/d)d ≤ e. �
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4. (α,β)-bootstrap Learning Algorithms

In this section we prove the part 2) of Theorem 2.7. We cast the proof in a general setting that we
call “bootstrap-learning algorithms”.

Definition 4.1 Let C , CA be concept classes. Let α > β≥ 1. An (α,β)-bootstrap learning algorithm
for C using CA takes as an input a representation of a concept A1 ∈ CA and an oracle for a concept
R ∈ C . The concepts A1 and R are guaranteed to satisfy R ⊆ A1 and vol(A1) ≤ α · vol(R). The
algorithm outputs a representation of a concept A2 ∈ CA such that R⊆ A2 and vol(A2)≤ β ·vol(R).
The efficiency of the algorithm is measured by the worst-case (expected) number T of oracle queries
to R (i. e., we take the worst A1 and R from C ).

If an efficient (α,β)-bootstrap learning algorithm exists for a concept class C then it can be used
for the shaped search problem as follows.

Lemma 4.2 Let C , CA be concept classes. Let α > β ≥ 1. Assume that there exists an (α,β)-
bootstrap learning algorithm for C using CA using T queries. Suppose that for every C ∈ C there
exists A ∈ CA such that C ⊆ A and vol(A) ≤ β · vol(C). Then there exists an agent which for any
γ≥ β/α solves the γ-shaped search problem (over C ) using T queries per oracle.

Proof :
We will compute A0, . . . ,Ak ∈ CA such that St ⊆ At and vol(At) ≤ β · vol(St). By the assumption
of the lemma the first A0 exists. (The starting concept S in a shaped search problem is known in
advance and hence the agent can pre-compute A0.)

Suppose that we have At . Then St+1 ⊆ At , and vol(At) ≤ (β/γ)vol(St+1) ≤ αvol(St+1). Hence
using the (α,β) boot-strap algorithm we can find At+1, using only T queries. �

If one uses Lemma 4.2 to obtain an agent for the shaped search problem for C , one should
choose CA which allows for an efficient (α,β)-bootstrap algorithm. Later in this section we will
show that for axis-parallel rectangles one can take CA = C , and obtain an efficient (α,β)-bootstrap
algorithm. Are there concept classes for which it is advantageous to choose CA 6= C? More generally
one can ask:

Question 4 For given concept class C , and α > β ≥ 1, which concept classes CA allow for an
efficient (α,β)-bootstrap learning algorithm?

We will study the following algorithm for the (α,β)-bootstrap learning problem.
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input : a representation of A1 ∈ CA and an oracle for R ∈ C
assume : R⊆ A1 and vol(A1)≤ α ·vol(R).
output : a representation of A2 ∈ CA, such that

R⊆ A2 and vol(A2)≤ β ·vol(R).

S+← /0, S−← /01

repeat2

pick a random point p ∈ A13

if p ∈ R then S+← S+∪{p} else S−← S−∪{p} fi4

PossibleR←{C ∈ C |S+ ⊆C ⊆ A1 \S−}5

v← the minimal volume of a concept in PossibleR6

A2← a concept of minimal volume in CA containing all C ∈ PossibleR7

until vol(A2)≤ β · v8

output a representation of A29

Algorithm 1: Inner-Outer algorithm for (α,β)-bootstrap learning

Note that the set PossibleR contains R and hence R ⊆ A2, and v ≤ vol(R). Thus when the
algorithm terminates we have vol(A2)≤ β · v≤ β ·vol(R). Thus we have the following observation.

Proposition 4.3 The Inner-Outer algorithm is an (α,β)-bootstrap learning algorithm.

Now we analyze the Inner-Outer algorithm for the concept class of axis-parallel rectangles with
CA = C . We will need the following technical results (the proofs are in the appendix).

Lemma 4.4 Let X1, . . . ,Xn be i.i.d. uniformly random in the interval [0,1]. Then

E

[

− ln

(

max
i

Xi−min
i

Xi

)]

=
2n−1

n(n−1)
≤ 2

n−1
≤ 4

n
.

Lemma 4.5 Let K be from the binomial distribution B(n, p). Let X1, . . . ,XK be i.i.d. uniformly
random in the interval [0,1]. Then

E[min{1,X1, . . . ,XK}] =
1− (1− p)n+1

(n+1)p
≤ 1

np
.

Lemma 4.6 Let C be the set of axis-parallel rectangles in R
d . Let CA = C . The expected number

of oracle calls made by the Inner-Outer algorithm is bounded by 8+320dα/ lnβ.

As an immediate corollary we obtain:

Proof of the part 2) of Theorem 2.7:
Immediate from Lemma 4.6 and Lemma 4.2. �

Proof of Lemma 4.6:
W.l.o.g. we can assume A1 = [0,1]d . Let R = [a1,b1]× ·· ·× [ad,bd], where 0 ≤ ai ≤ bi ≤ 1, for
i = 1, . . . ,d.

For the purpose of the analysis of the Inner-Outer algorithm we will split the algorithm into two
phases of length n1 and n2, respectively. We will then show that with probability 1/4 the algorithm
stops after these two phases. From this it will follow that the expected number of samples used by
the algorithm is at most 4(n1 +n2).
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I

0, 0 1, 0

1, 10, 1

R

C ′
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ai, 0 bi, 0

cic′

i

Figure 1: Schematic drawing for the proof of Lemma 4.6.

In the first phase n1 i.i.d. random points from A1 are sampled. The expected number of points
that fall inside R is at least n1/α. By Chernoff bound with probability at least 3/4 we get at least
n1/(2α) points inside R. With probability at most 1/4 the algorithm “fails”.

From now on we assume that the algorithm did not “fail”, i. e., at least n1/(2α) points are inside
R. Let I be the smallest rectangle containing these points. We will choose n1 > 4α and hence, by
Lemma 4.4, the expected logarithm of the width of I in the i-th dimension satisfies

E

[

− ln
wi(I)
bi−ai

]

≤ 8α
n1

. (1)

Summing the (1) for i ∈ [d] we obtain (using the linearity of expectation)

E

[

ln
vol(R)

vol(I)

]

≤ 8dα
n1

. (2)

Markov inequality applied to (2) yields that with probability at least 3/4 we have

ln
vol(R)

vol(I)
≤ 32dα

n1
. (3)

If (3) is not satisfied we say that the algorithm “failed”.
From now on we assume that (3) is true, i. e., the algorithm did not fail. Thus

vol(I)≥ vol(R) · exp

(

−32dα
n1

)

. (4)

Let Ii be obtained from I by stretching the i-th dimension to [0,1] (for i ∈ [d]). Note that R cuts Ii

into three parts. Call the parts of Ii that are outside of R, Ci and C′i (see Figure 1). Let ci be the width
of Ci in the i-th dimension, and c′i be the width of C′i in the i-th dimension.
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Now we sample n2 i.i.d. random points from A1. A point falls inside Ci with probability
vol(Ci) = civol(I)/(bi−ai). The expected distance of the point in Ci closest to R, by Lemma 4.5, is
bounded by

ci ·
1

n2 · civol(I)/(bi−ai)
=

bi−ai

n2vol(I)
. (5)

Note that A2 determined by the closest points in the Ci and C′i contains PossibleR. By (5) the
expected width of A2 in the i-th dimension satisfies E[wi(A2)] ≤ (bi− ai)(1 + 2/(n2vol(I))). By
Jensen’s inequality

E

[

ln
wi(A2)

bi−ai

]

≤ ln

(

1+
2

n2vol(I)

)

≤ 2
n2vol(I)

.

By the linearity of expectation

E

[

ln
vol(A2)

vol(R)

]

≤ 2d
n2vol(I)

.

By Markov inequality with probability at least 3/4 we have

ln
vol(A2)

vol(R)
≤ 8d

n2vol(I)
≤ 8dα

n2
, (6)

and hence

vol(R)≥ vol(A2) · exp

(

−8dα
n2

)

. (7)

Again, if (6) is false we say that the algorithm “failed”. Note that the algorithm “failed” (in any of
the three possible ways) with probability at most 3/4. Thus with probability 1/4 we have that (4)
and (7) are true and hence

vol(A2)≤ vol(I) · exp

(

8dα
n2

+
32dα

n1

)

.

For n1 = d64dα/ lnβe and n2 = d16dα/ lnβe the right hand side is bounded by β and hence the
algorithm will terminate.

Note that additional points in S+ and S− do not “hurt” the algorithm (removal of a point cannot
increase v, nor can it decrease vol(A2)). Thus if the algorithm does not terminate, the next run
of length n1 + n2 terminates with probability ≥ 1/4, etc. Hence in expectation at most 4(n1 + n2)
oracle queries suffice. �

5. Center-point Algorithm

In this section we show how an approximate center-point of a rectangle can be maintained using
only O(lnd) queries per oracle. As a corollary we obtain a proof of the part 3) of Theorem 2.7.

Given a vector v ∈ R
d , let Piv be the projection of v to the i-th dimension (i. e., the vector

obtained by zeroing out all the entries of v except the i-th coordinate). Let ∂S denote the boundary
of the S.

Definition 5.1 Let S be an axis-parallel rectangle in R
d . Let ε ∈ (0,1). Let x be a point in S and

let v ∈ R
d , v≥ 0. Let αi,βi ≥ 0 be determined by x+αi(Piv) ∈ ∂S and x−βi(Piv) ∈ ∂S, for i ∈ [d].

We say that v is an ε-approximate distance vector for (S,x) if 1− ε≤ αi ≤ 1 and 1− ε≤ βi ≤ 1 for
i ∈ [d]. We say that x is an ε-approximate center-point of S if there exists an ε-approximate distance
vector v for (S,x).
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Note that if v is an ε-approximate distance vector for (S,x) then we have

d

∏
i=1

(2vi)≥
d

∏
i=1

((αi +βi)vi) = vol(S). (8)

If S′ ⊆ S and the volume of S′ is not much smaller than the volume of S then an approximate
center-point x of S should be contained in S′. The next lemma formalizes this intuition.

Lemma 5.2 Let S′ ⊆ S be axis-parallel rectangles. Assume that vol(S)/vol(S′) ≤ 2− 2ε. Let x ∈
S be an ε-approximate center-point of S. Then x ∈ S′. Moreover, for α′i,β′i ≥ 0 determined by
x+α′i(Piv) ∈ ∂S′ and x−β′i(Piv) ∈ ∂S′ we have α′i +β′i ≥ 1, and α′i ≥ ε/2, and β′i ≥ ε/2.

Now we give an algorithm which “recalibrates” an ε-approximate center-point. Note that the
first two steps of the algorithm rely on the fact that x ∈ S′ (which is guaranteed by Lemma 5.2).

input : x ∈ S, and an ε-approximate distance vector v for (S,x).
assume : S′ ⊆ S and vol(S)≤ (2−2ε)vol(S′)
output : x′ ∈ S′, and an ε-approximate distance vector v′ for (S′,x′).

find δ+ > 0 such that x+(δ+ + ε/8)v 6∈ S′ and x+δ+v ∈ S′1

find δ− > 0 such that x− (δ−+ ε/8)v 6∈ S′ and x−δ−v ∈ S′2

let δ = min{δ+,δ−}, let s = +1 if δ = δ+ and s =−1 otherwise3

if δ < 1− ε then4

find j ∈ [d] such that x+ s(δ+ ε/8)(Pjv) 6∈ S′ and x+ sδ(Pjv) ∈ S′5

find α > 0 such that x+(α+ ε/8)(Pjv) 6∈ S′, and x+α(Pjv) ∈ S′6

find β > 0 such that x− (β+ ε/8)(Pjv) 6∈ S′, and x−β(Pjv) ∈ S′7

update x j← x j + v j(α−β)/28

update v j← (1+ ε/4)((α+β)/2)v j9

go to step 110

return x,v11

Algorithm 2: Center-point algorithm

Proof of Lemma 5.2:
Let v be an ε-approximate distance vector for (S,x). Suppose x 6∈ S′. Then there exists a coordinate
i ∈ [d] such that S′ lies on one side of the hyperplane {z ∈ R

d |zi = xi}. Thus the width of S′

in the i-th dimension satisfies wi(S′) ≤ vi. On the other hand wi(S) ≥ wi(S′) + (1− ε)vi. Hence
wi(S)/wi(S′)≥ 2− ε which implies vol(S)/vol(S′)≥ 2− ε, a contradiction. We proved x ∈ S′.

For any i ∈ [d], using αi,βi ≥ 1− ε, we obtain

2−2ε≥ vol(S)

vol(S′)
≥ αi +βi

α′i +β′i
≥ 2−2ε

α′i +β′i
,

and hence α′i +β′i ≥ 1.
Similarly, for any i ∈ [d], using β′i ≤ βi ≤ 1, α′i ≤ αi, we obtain

2−2ε≥ vol(S)

vol(S′)
≥ αi +βi

α′i +β′i
≥ αi +βi

α′i +βi
≥ αi +1

α′i +1
≥ 2− ε

α′i +1
.

This implies α′i ≥ ε/2. The proof of β′i ≥ ε/2 is the same. �

By the assumptions on the input the αi, and βi for x,v,S are bounded by 1 from above. Hence
the αi and βi for x,v,S′ are bounded by 1 from above. Later we will show that during the execution
of the algorithm the αi and βi for x,v,S′ always remain bounded by 1 from above.
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When |δ| ≥ 1− ε on step 4 then x+(1− ε)v ∈ S′ and x− (1− ε)v ∈ S′, and hence the αi and βi

are bounded by 1− ε from below. Thus the final v is ε-approximate distance vector for (S′,x).
It remains to show that during the algorithm the αi and βi for x,v,S′ always remain bounded by

1 from above. Let x′j = x j + v j(α−β)/2 and v′j = (1 + ε/4)((α + β)/2)v j, i. e., x′j and v′j are the
new values assigned on lines 8 and 9. We have

x′j + v′j = x j + v j

(

α+
ε(α+β)

8

)

≥ x j + v j(α+ ε/8), (9)

and

x′j +(1− ε)v′j = x j + v j

(

α−β
2

+(1+ ε/4)(1− ε)
α+β

2

)

≤ x j +αv j. (10)

From (9) and (10) and our choice of α on line 6 it follows that on line 10 the value of α j for the new
x and v satisfies 1− ε≤ α j ≤ 1. Similar argument establishes 1− ε≤ β j ≤ 1. Note that

v′j
v j

= (1+ ε/4)
α+β

2
≤ (1+ ε/4)(1− ε/2)≤ 1− ε/4. (11)

We will use (11) to bound the amortized number of steps we spend in our application of the center-
point algorithm.

Proof of the part 3) of Theorem 2.7:
W.l.o.g., assume S = S0 = [0,1]d . Let x(0) = v(0) = (1/2, . . . ,1/2). Note that v(0) is an ε-approximate
distance vector for (S0,x(0)). We will use the center-point algorithm to compute x(t),v(t) such that
v(t) is an ε-approximate distance vector for (St ,x(t)).

Before we start analyzing the algorithm let us emphasize that we defined “queries per oracle” to
be an “amortized” quantity (as opposed to a “worst-case” quantity). Thus it is fine if the algorithm
makes Θ(d) queries going from St to St+1, as long as the average number of queries per oracle is
O(lnd).

Now we analyze the number of queries per oracle. Let

Φt =
∏d

i=1(2v(t)
i )

vol(St)
.

Note that Φ0 = 1, and, by (8), Φt ≥ 1 for every t = 0, . . . ,k.
From (11) it follows that every time the step on line 10 is executed, the value of Φt decreases

by a factor of (1− ε/4). The denominators can contribute a factor at most (1/γ)k to Φk ≥ 1. Thus
the step 10 is executed at most lnγk/ ln(1−ε/4) times. Therefore the steps 1-9 are executed at most
k(1 + lnγ/ ln(1− ε/4)) times. The steps 1,2,6,7 use a binary search on [0,1] with precision ε/8
and hence use O(ln1/ε) queries.

Now we will argue that step 5 can be implemented using O(lnd) queries using binary search.
Let v = v1 + v2, where the last bd/2c coordinates of v1 are zero, and the first dd/2e coordinates of
v2 are zero. We know that x+ sδv1 ∈ S′ and x+ sδv2 ∈ S′ (we used the fact that S′ is an axis-parallel
rectangle). We also know that x+ s(δ+ε/8)v1 6∈ S′ or x+ s(δ+ε/8)v2 6∈ S′. If x+ s(δ+ε/8)v1 6∈ S′

then we proceed with binary search on v1, otherwise we proceed with binary search on v2.
Thus the total number of queries is

O

((

ln
1
ε

+ lnd

)

k

(

1+
lnγ

ln(1− ε/4)

))

= O(k lnd),
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since γ < 1/2 is a constant, and we can take ε = (1/2− γ)/4. �

6. Bounded-Eccentricity Ellipsoids

For a bounded-eccentricity ellipsoid K the following process converges to the centroid of K: pick
a line ` through the current point, move the current point to the center of `∩K and repeat. We
analyze the process in the case when the lines ` are chosen in axis-parallel directions in a round-
robin fashion.

We say that an ellipsoid E has eccentricity bounded by L if the ratio of its axis is bounded by
L. Let A be a positive definite matrix with eigenvalues from [1/L2,1]. Let E be the ellipsoid given
by xTAx = 1 (note that E has eccentricity at most L). If the current point is x and the chosen line is
` = {x+βy |β ∈ R} then the midpoint of E ∩ ` is

x′ =

(

I− yyTA
yTAy

)

x.

The process described above moves from x to x′. A more cautious process would move somewhere
between x and x′. The point y = (1−α)x+αx′ is given by

y =

(

I−α
yyTA
yTAy

)

x.

Thus one d-step round of the cautious process takes point x to the point S(α)x, where

S(α) =
d

∏
i=1

(

I−α
eieT

i A
Aii

)

= A−1/2

(

d

∏
i=1

(

I−α
A1/2eieT

i A1/2

eT
i Aei

))

A1/2.

We will consider the following quantity as a measure of “distance” from the centroid: ‖A1/2x‖2
2.

After the move we have

‖A1/2S(α)x‖2
2 =

∥

∥

∥

∥

∥

(

d

∏
i=1

(

I−α
A1/2eieT

i A1/2

eT
i Aei

))

(A1/2x)

∥

∥

∥

∥

∥

2

2

. (12)

Let A1/2 = V TDV , where V is orthogonal. Note that the entries of D are between 1/L and 1. Let
vi = Vei. Now we can apply Lemma 2.9 on (12), and obtain that for α = 1/

√
d we have

‖A1/2S(α)x‖2
2

‖A1/2x‖2
2

≤ 1− 1

5L2
√

d
. (13)

Now we use (13) to prove Theorem 2.8.
Proof of Theorem 2.8:
The agent will compute a sequence of points x0, . . . ,xk such that xt ∈ St .

Suppose that we have xt ∈ St . The ray-shooting process is invariant under translations and
uniform stretching and hence, w.l.o.g., we can assume that the centroid of St is at 0, and St =
{y |yTAy≤ 1}, where the eigenvalues of A are from [1/L2,1]. Let α = 1/

√
d. From (13) it follows

that if we apply the ray shooting process 5L2
√

d · c times we obtain a point z such that ‖A1/2z‖2
2 ≤

e−c. We choose c so that e−c/2 ≤ (γ−1/2)/2.
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Now we apply affine transformation such that St becomes a unit ball and z becomes a point at
distance at most e−c/2 from the center of St . Since

vol(St+1)≥ γvol(St)≥
(

1
2

+2e−c/2
)

vol(St),

it follows that z is inside St+1, and we can take xt+1 = z. �

Remark 1 Somewhat surprisingly the cautious process with α = 1/
√

d can get closer to the cen-
troid than the original process (i. e., the one with α = 1), see Observation A.3.

7. General Convex Bodies

In this section we show that the shaped search problem can be solved for general convex bodies. The
algorithm is a simple combination of known sophisticated algorithms (e. g., ball-walk algorithm, and
shallow-cut ellipsoid algorithm).

We start with an informal description of the algorithm. The agent will keep two pieces of
information:

1. a collection of independent nearly-uniform random points in St , and

2. a weak Löwner-John pair (E,E ′) of ellipsoids, E ⊆ St ⊆ E ′.

The random points in St will be so abundant that with high probability many of them will fall inside
St+1. In the unlikely event that only few (or none) of the points fall inside St+1 we will use E ′ to
generate further random points in St+1 (this will be very costly but unlikely).

Then we will use the random points in St+1 to find an affine transformation which brings St+1

into a near-isotropic position. As a consequence we will obtain a centering of St+1 and we can use
the shallow-cut ellipsoid algorithm (with just a membership oracle) to find a weak Löwner-John pair
of ellipsoids for St+1. Finally, we will use the ball-walk algorithm (see, e.g., Kannan et al., 1997) to
generate independent nearly-uniform random points inside St+1.

We will need the following definitions and results. As usual, B(c,r) denotes the ball with center
c and radius r.

Algorithms which deal with convex bodies given by membership oracles often require the body
to be sandwiched between balls, in the following precise sense.

Definition 7.1 A (r1,r2)-centered convex set is a convex set K ⊆ R
d together with a point c ∈ K

such that B(c,r1)⊆ K ⊆ B(c,r2).

Not every convex body can be efficiently centered (e. g., if it is thin in some direction). However
when we allow affine transformations of balls (i. e., ellipsoids), every convex body can be efficiently
sandwiched. We will use the following relaxed notion of sandwiching.

Definition 7.2 A pair of ellipsoids (E,E ′) is called a weak Löwner-John pair for a convex body K,
if E ⊆ K ⊆ E ′, the centers of E and E ′ coincide, and E is obtained from E ′ by shrinking by a factor
of 1/((d +1)

√
d).

The following property is useful for understanding when an efficient centering is possible.
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Definition 7.3 A convex set K is in near-isotropic position if the eigenvalues of the covariance
matrix of the uniform distribution over K are from [1/2,3/2].

Our algorithm will need random samples from the uniform distribution over a convex body K.
Unfortunately, uniform distribution can be difficult to achieve. The total variation distance will be
used to measure the distance from uniformity.

Definition 7.4 The total variation distance between distributions π and µ is

dTV(π,µ) = sup
A⊆Ω

(π(A)−µ(A)).

We will say that a distribution µ is δ-nearly-uniform in K if the total variation between µ and the
uniform distribution on K is bounded by δ.

Some subroutines used in our algorithm require a centered convex body on their input. To be
able to use these subroutines we need to find an affine transformation which makes a centering
possible. Sufficiently many random points immediately will give such a transformation. The the-
orem below is a restatement of Corollary 11 in Bertsimas and Vempala (2004), which is based on
Bourgain (1999), Rudelson (1999) and Kannan et al. (1997).

Theorem 7.5 Using s = O((d lnd) ln2(1/δ)) independent samples from a δ-nearly-uniform distri-
bution in K, one can find an affine transformation A such that A(K) is in nearly-isotropic position,
with probability at least 1− sδ.

Once we have the convex body in a nearly isotropic position we immediately obtain a centering.
The following result is Corollary 5.2 (with ϑ = 1/4) in Kannan et al. (1997).

Theorem 7.6 Assume that K is in nearly isotropic position. Then

B(0,1/2)⊆ K ⊆ B(0,2(d +1)).

Once the convex body K is centered we can use shallow-cut ellipsoid algorithm to sandwich
K between ellipsoids. The following is Theorem 2.4.1 in Lovász (1986) (combined with Theorem
2.2.14 in Lovász, 1986).

Theorem 7.7 Let K be a (r1,r2)-centered convex body given by a membership oracle. A weak
Löwner-John pair for K can be found in time polynomial in d and r2/r1.

Finally, we will need to be able to generate random points from convex bodies. We will use the
ball-walk algorithm (see Kannan et al., 1997, Theorem 2.2).

Theorem 7.8 Let K be a (r1,r2)-centered convex body. A random point from a distribution ε-close
to uniform can be found in time polynomial is d, r2/r1, and ln(1/ε).

Now we describe a Las Vegas algorithm for one step of the shaped search problem. The input
of the algorithm is a set W of d8/γ independent δ-nearly-uniform random set of points in St , and a
weak Löwner-John pair (E,E ′) for St . The algorithm has access to a membership oracle of St+1,
where St+1 ⊆ St and vol(St+1)≥ γvol(St). The output is a set of d7/γ independent δ-nearly-uniform
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random set of points in St+1, and a weak Löwner-John pair (F,F ′) for St+1. The algorithm runs in
expected polynomial time.

We will use following objects in the algorithm. Let Z ⊆ R
d be the 2d points in which B(0,1/2)

intersects the axis of R
d , i. e.,

Z = {(1/2,0, . . . ,0),(−1/2,0, . . . ,0), . . . ,(0, . . . ,0,−1/2),(0, . . . ,0,1/2)}.

Let r1 be the radius of the largest ball contained in the convex hull of Z (i. e., r1 = 1/
√

4d).
Finally, let δ = exp(−Θ(d2)).

W ′←W ∩St+11

Find an affine transformation A of Theorem 7.5, using points from W ′. If W ′ does not2

contain enough points, let A be the identity.
Let r2 be the radius of the smallest ball containing A(E ′).3

if Z is not inside A(St+1) or r2 > 4(d +1)
√

d then4

generate independent uniformly random points from E ′ until we obtain d6 random5

samples from St+1, let W ′ be the set of these new points. Go to step 2)

Use Theorem 7.7 to find a weak Löwner-John pair (F,F ′) for St+1, using centering6

B(0,r1)⊆ A(St+1)⊆ B(0,r2).
Use Theorem 7.8 to find d8/γ independent δ-nearly-uniform random points in St+1.7

Algorithm 3: One step in the shaped-search algorithm for general convex bodies.

Theorem 7.9 The algorithm 3 is correct, and its expected running-time is bounded by a polynomial
in d.

Proof :
Once we are on line 6 of the algorithm, we have

B(0,r1)⊆ Z ⊆ A(St+1)⊆ A(E ′)⊆ B(0,r2),

and r2/r1 ≤ 8(d + 1)d. Thus A(St+1) is centered and the shallow-cut ellipsoid algorithm finds a
weak Löwner-John pair (F,F ′) for St+1. Similarly the ball-walk algorithm gives δ-nearly-uniform
samples from St+1. It remains to analyze lines 1-5 of the algorithm.

We enter line 5 only if A(St+1) is not nearly-isotropic. This can happen for two reasons: the
number of points in W ′ is smaller than d6, or the algorithm of Theorem 7.5 fails. Both these events
have probability bounded by exp(−Ω(d2)). The cost per sample on line 5 is vol(E ′)/vol(St+1) =
exp(O(d lnd)). Hence the total contribution of line 5 to the total number of queries is O(1). �

8. Active Learning

One of the earliest works in which the framework allows the learner to choose examples is by
Eisenberg and Rivest (1990). In this work, the learner does not have access to unlabeled samples,
but is allowed to query the membership oracle with any instance of its choice. (see also Angluin,
1988; Bshouty and Eiron, 2003; Jackson, 1997, for a similar setting). They showed a negative result
stating that there are certain concept classes which are ”dense in themselves”, meaning that a small
number of queries (even if chosen by the learner) are not enough to determine the target concept
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well. This result gave rise to a further line of work, the query by committee algorithm of Freund
et al. (1997), in which the learner has access to an oracle of unlabeled samples also. Further, the
learner is allowed to selectively query labels of some of these samples generated from the unlabeled
oracle. Under this setting, it was shown that certain ”dense in themselves” classes, for example
homogeneous perceptrons under the uniform distribution, are efficiently learnable using a small
number of labeled queries. Much modern active learning work uses this framework of having an
unlabeled oracle and a membership oracle that can answer queries from examples generated from
the unlabeled oracle. For example, Dasgupta et al. (2005) showed again (using a simpler method)
that homogeneous perceptrons are learnable using only O∗(d ln(1/ε)) labeled queries. Several other
results are presented in Castro et al. (2006) and Dasgupta (2006). An exception to this framework is
the recent work on active sampling by Fine and Mansour (2006). In their task, the learner has access
to the oracle of a multi-valued function and has to find at least one instance of each example. Their
work is related to our work in at least two ways. First, like us, they do not want to learn the concept,
rather have just one positive example of the concept. Second, they allow the learner to choose its
own examples.

The concept class of rectangles has been popular in the machine learning literature as rectangles
are geometrically simple objects and also yield excellent results experimentally (Dietterich et al.,
1997). Several theoretical results also exist for rectangles. For example, Auer et al. (1998) give
an algorithm to PAC learn rectangles in O(d/ε) queries, which matches the lower bound up to a
multiplicative factor. Goldberg et al. (1994) give algorithms to learn the more complicated class of
union of rectangles.

In this section, we show that rectangles are active learnable by using a variant of the bootstrap
algorithm (Algorithm 1) in O(d ln(1/ε)) labeled queries. We adopt the standard active learning
framework of having an oracle that generates random samples and another oracle that can label
these samples on request. Note that our current bootstrap algorithm does not use this flexibility
and gets labeled samples uniformly at random from inside the outer body A1 (see Algorithm 1).
However, it clearly gives a (weak) upper bound to active learning the concept class of rectangles
in O(d/ε) labeled samples under the uniform distribution. In this section, we give a variant of the
bootstrapping algorithm and show how it can be repeatedly used to active learn rectangles using
both labeled and unlabeled oracles with only O(d ln(1/ε)) labeled queries. Our algorithm for active
learning rectangles is a one-sided active learning algorithm, that is, it outputs a hypothesis which is
a superset of the target concept. We now define one-sided active learning.

Definition 8.1 A concept class C is one-sided active learnable under the uniform distribution over
the instance space X if there is an algorithm, that for any concept c ∈ C and 0 < ε < 1, gets O(1/ε)
samples from the uniform distribution on X and uses the membership oracle of c to label O(ln(1/ε))
of these samples, and outputs a concept h such that c⊆ h, and P(h(x) 6= c(x)) < ε.

Observation 8.1 The concept class of axis-parallel rectangles inside the d-dimensional cube [0,1]d

is not one-sided active learnable.

Consider a rectangle with volume ε. Then we need, in expectation, O(1/ε) labeled samples
just to find one point inside the rectangle. Thus we are making exponentially more queries to the
membership oracle than desired. Note that this is going to be a problem in learning any concept
class which has concepts which have a small measure. For example, Dasgupta (2005) pointed
out that learning non-homogeneous perceptrons when X is a unit sphere requires Ω(1/ε) labeled

1853



CHHABRA, JACOBS, AND ŠTEFANKOVIČ

samples. They overcame this problem by restricting the class to only homogeneous perceptrons
(passing through the center of the sphere).

In the same spirit, we assume that our concept class has rectangles which are larger than some
constant value and show that active learning is possible in this case.

Definition 8.2 The concept class C of big rectangles is a set of axis-parallel rectangles R such that
R⊂ [0,1]d and vol(R) > 1/2.

8.1 The Concept Class of Big Rectangles is One-sided Active Learnable

Throughout this section C denotes the concept class of axis-parallel rectangles. Note that the boot-
strapping algorithm (Algorithm 1) for C takes as input an outer rectangle A1 and two parameters
α and β such that vol(A1) < α · vol(R) and outputs a rectangle A2 such that vol(A2) < β · vol(R).
The algorithm samples O(dα/ lnβ) points from the membership oracle of R. Notice that the algo-
rithm actually constructs the minimal volume rectangle (call it B2) containing all positive samples
and guarantees that vol(A2) < β · vol(B2). We make use of this inner approximation in the active
learning algorithm.

input : A representation A1 ∈ C and B1 ∈ C . An oracle for R ∈ C . A sampler S which samples
uniformly at random points from A1. A number β > 1.

assume : B1 ⊆ R⊆ A1.
output : a representation of B2 ∈ C and A2 ∈ C , such that

B2 ⊆ R⊆ A2 and vol(A2)≤ β ·vol(B2).

S+← /0, S−← /01

repeat2

pick a random point p ∈ A1 using S;3

if p /∈ A1−B1 then goto step 34

if p ∈ R then S+← S+∪{p} else S−← S−∪{p} fi5

PossibleR←{C ∈ C |S+ ⊆C ⊆ A1 \S−}6

B2← the smallest axis-parallel rectangle containing S+7

A2← the axis-parallel rectangle of minimal volume containing all C ∈ PossibleR8

until vol(A2)≤ β ·vol(B2)9

output a representation of A2 and B210

Algorithm 4: Modified Inner-Outer algorithm used for active learning

Lemma 8.3 Let α > β > 1. Let E be the expected number of membership-oracle calls of the modi-
fied Inner-outer algorithm on input B1 ⊆ R⊆ A1 and β.

1. If vol(A1)≤ α ·vol(R) then E = O(dα/ lnβ).

2. If vol(A1)≤ α ·vol(B1) then E = O(d(α−1)/ lnβ).

Proof :
By direct application of Lemma 4.6, the expected number of random points picked in step 3 of the
algorithms is bounded by 8+dα/ lnβ. This proves part 1.

For part 2., note the modification made in step 4 of algorithm. We only query points which lie
in the region between A1 and B1, thus ignoring at least 1/α fraction of the region A1 (as vol(A1)≤
α · vol(B1)). Hence the expected number of queries to the membership oracle is (1− 1/α)(8 +
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dα/ lnβ), which is O(1 + d(α− 1)/ lnβ) = O(d(α− 1)/ lnβ) (in the last containment we used
d(α−1)/ lnβ≥ d(α−1)/ lnα≥ d = Ω(1)). �

The algorithm above requires a sampler S that samples uniformly random points from A1. This
sampler can be easily obtained from the unlabeled sampler of the instance space X using rejection
sampling. This increases the number of samples needed by a constant factor, as vol(A1)≥ vol(R) >
1/2.

We now repeatedly apply this bootstrapping procedure to do active learning.

input : An oracle O to generate unlabeled samples from the instance space X = [0,1]d . The
membership oracle of an axis-pallalel rectangle R. A parameter ε > 0.

assume : vol(R)≥ 1/2.
output : a representation of an axis-parallel rectangle A, such that

R⊆ A and vol(A) < (1+ ε)vol(R)

(A,B)← output of Algorithm 4 with A1 = X , B1 = /0, and β = 1+ ε2dlog2 1/εe1

for i← dlog2 1/εe to 1 do2

(A,B)← output of Algorithm 4 with A1 = A, B1 = B, β = 1+ ε2i−13

output a representation of A4

Algorithm 5: Algorithm to do one-sided active learning

Theorem 8.4 The expected number membership-queries made by Algorithm 5 is bounded by
O(d ln(1/ε)).

Proof :
By Lemma 8.3, part 1., the number of membership queries at step 1. is bounded by O(d).

By Lemma 8.3, part 2., at each iteration the number membership queries by Algorithm 4 on step
3. is bounded by

O(d(1+2iε−1)/ ln(1+2i−1ε)) = O(d),

where in the last step we used the fact that ln(1 + x) ≥ x− x2/2 for x ≥ 0. The total number of
iterations is dlog2(1/ε)e. Hence the total number of calls to the membership oracle is O(d ln(1/ε)).
�

At the end of learning, vol(A) ≤ (1 + ε) · vol(R). Hence, vol(A)− vol(R) < ε · vol(R) < ε.
Further, R⊂ A. Hence, big rectangles are one-sided active learnable.

Note that a trivial algorithm to learn big rectangles would be to learn each face at a time. This
can be done by doing binary search starting from (1/2, . . .1/2). As there are d faces, this will take
O(d ln d

ε ) labeled samples (since precision ε/d is required along each dimension).

9. Discussion and Future Work

In this paper, we introduced a new framework of learning using oracles of increasingly restrictive
concepts. Our framework has been inspired from the biological phenomenon of behavioral shaping
in which a target behavior is taught to a subject by teaching it successively better approximations
of the behavior, eventually converging to the target behavior. Analogous to behavioral shaping,
in a shaped search problem, the learner is given access to a sequence of membership oracles of
increasingly restrictive concepts and the learner is required to output one sample from the target
concept.
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We gave efficient algorithms to solve the shaped search problem for the concept class of inter-
vals, axis-parallel rectangles, bounded eccentricity ellipsoids, and general convex bodies. While we
have matching lower and upper bounds for the concept class of intervals, for other concept classes
we do not understand the complexity of the shaped search problem (i. e., our lower and upper bounds
do not match). The concept class of axis-parallel rectangles is a natural question to consider next.

Question 5 Let C be the concept class of axis-parallel rectangles in R
d . What is the complexity of

the shaped search problem?

The bootstrapping technique of Section 4 was useful for both the shaped search problem and
active learning for axis-parallel rectangles. Whether efficient bootstrapping algorithms exist for
other concept classes is an interesting problem.

Question 6 For which concept classes is bootstrapping possible?

Another technique that was useful in our setting was a deterministic ray shooting algorithm. By
keeping track of the centroid we were able to solve the shaped search problem for bounded eccen-
tricity ellipsoids. One can imagine that such an approach might work for any centrally symmetric
convex body.

Question 7 Let K be a centrally symmetric convex body given by a membership oracle. Can the
centroid of K be found by an efficient deterministic algorithm?

Our solution of the shaped search problem for general convex bodies samples random points
from convex bodies and hence heavily relies on randomization. Is the use of randomness inevitable?

Question 8 Let C be the concept class of (centrally symmetric) convex bodies in R
d . Does there

exist a deterministic agent for the γ-shaped search problem, using O(poly(d,1/γ)) queries per ora-
cle?

Another interesting direction of future work is to apply this model to active learning. Active
learning, in general, does not provide any advantage for concepts which have a “small volume”. For
example, it was observed in Dasgupta (2005) that when the instance space is a unit ball, the concept
class of non-homogeneous perceptrons is not active learnable (in the sense that any active learning
scheme requires a large number of labeled samples). This is because a perceptron, in general, can
pass through the sphere in such a way that it leaves a very small “cap” of the ball on one side, and
just sampling one example from this cap might require a large number of labeled samples. Our
shaping model can be seen as a way of directing search to such events of low probability. One
way to remedy this problem is to consider a sequence of perceptrons which divide the ball into in-
creasingly asymmetric parts and ultimately lead to the final perceptron. Whether non-homogeneous
perceptrons are learnable under this framework is an interesting direction.

As our model has been inspired from behavioral shaping, we restrict the oracles to be presented
in a temporal fashion. One could consider a framework in which all the oracles are present simul-
taneously and the agent can query any oracle at any time. This simultaneous oracle model can be
viewed as a special case of the “reward shaping” of Ng et al. (1999). Under what conditions are
these models equivalent?
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Appendix A.

In this section we prove Lemmas 4.4 and 4.5 (in Subsection A.1), and Lemma 2.9 (in Subsec-
tion A.2). Finally we comment on the optimality of Lemma 2.9 (in Subsection A.3).

A.1 Technical Results about Maxima and Minima of Random Variables

Proof of Lemma 4.4:
Let Y be the minimum and Z be the maximum of the Xi. For 0≤ y≤ z≤ 1, the density function of
(Y,Z) is

− ∂
∂y

∂
∂z

(z− y)n,

and hence

E[− ln(Z−Y )] =
Z 1

0

Z 1

y
ln(z− y)

∂
∂y

∂
∂z

(z− y)n dzdy =
2n−1

n(n−1)
.

�

Proof of Lemma 4.5:
Conditioning on the value of K we obtain

E[min{1,X1, . . . ,XK}|K = k] =
Z 1

0
(1− x)

∂
∂x

xk dx =
1

k +1
,

and hence

E[min{1,X1, . . . ,XK}] =
n

∑
k=0

(

n
k

)

pk(1− p)n−k 1
k +1

=
1− (1− p)n+1

(n+1)p
.

�

A.2 Bounding the 2-norm of the Ray-shooting Matrix

In this section we prove Lemma 2.9. Our goal is to understand the square of the 2-norm of

M(α) =
n

∏
i=1

(

I−α · DvivT
i D

vT
i D2vi

)

as a function of α (the 2-norm of M(α) measures how much closer to the centroid does a point get
in the ray-shooting algorithm of Theorem 2.8).

We can understand the value of ‖M(α)‖2
2 for α = 0 and α = 1 but this does not give us much

information about ‖M(α)‖2
2 for other values of α. In order to obtain this information, we are going

show ‖M(α)‖2
2 ≤ 1− L2α(2−α)/||G(α)||22, where the entries of G(α) are linear functions of α

(Equations 16 and 17). It will turn out that for G(α) we can understand ‖G(α)‖2
2 for α = 0 and
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α = 1. Now, since dependence of G(α) on α is much simpler than the dependence of M(α) on α,
we will be able to obtain an upper bound on ‖G(α)‖2

2 for values of α ∈ [0,1], which, in turn, will
imply an upper bound on ‖M(α)‖2

2.
Note that scaling the vi does not change M and hence we will, w.l.o.g., assume ‖vi‖2 = 1. Let

γi j = vT
i D2v j. Let G(α) be the upper triangular d×d matrix defined by

Gi j =

{

√γ j j for i = j,
(γi j/
√γ j j) ·α for i < j,

0 otherwise.
(14)

For α ∈ (0,2) we let
Γ(α) = G(α)/

√

α(2−α). (15)

Let V be the d×d matrix with columns v1, . . . ,vd . To prove Lemma 2.9 we will need the following
two auxiliary results.

Lemma A.1 Let Γ = Γ(1/
√

d) be the matrix defined by (15) (with α = 1/
√

d). Then

‖Γ‖2
2 ≤ 5

√
d.

Lemma A.2 For M,D,V,Γ defined above ‖Mx‖2
2 = ‖x‖2

2−‖Γ−1V TDx‖2
2. Moreover

‖M‖2
2 = 1− 1

λmax(ΓTV TD−2V Γ)
, (16)

(where λmax(A) is the largest eigenvalue of A).

We postpone the proof of Lemma’s A.1 and A.2 after the proof of Lemma 2.9.
Proof of Lemma 2.9:
Since D−2 � L2 · I we have

λmax(ΓTV TD−2V Γ)≤ L2 ·λmax(ΓTV TIV Γ) = L2 ·λmax(ΓTΓ) = L2 · ‖Γ‖2
2. (17)

Now applying Lemma A.1 (with α = 1/
√

d) we get

λmax(ΓTV TD−2V Γ)≤ 5L2
√

d.

Now, using Lemma A.2 we obtain the result. �

Proof of Lemma A.2:
Let Γk be the k× k top-left submatrix of Γ. Let Vk be the d× k matrix consisting of the first k
columns of V . Let

Mk =
k

∏
i=1

(

I−α · DvivT
i D

vT
i D2vi

)

.

By induction on k we will show that for any x

‖Mkx‖2
2 = ‖x‖2

2−‖Γ−1
k V T

k Dx‖2
2. (18)
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For k = 1 we have

M1 = I−α
Dv1vT

1 D

vT
1 D2v1

, M1x = x−α
(vT

1 Dx)

vT
1 D2v1

Dv1, ‖M1x‖2
2 = ‖x‖2

2−α(2−α)

(

vT
1 Dx

)2

vT
1 D2v1

.

Moreover V T
1 = vT

1 , Γ−2
1 = α(2−α)/(vT

1 D2v1), and hence

‖Γ−1
1 V T

1 Dx‖2
2 =

α(2−α)

vT
1 D2v1

(vT
1 Dx)2.

We showed that (18) holds for k = 1. Now we assume k > 1.
If vT

k Dx = 0 then
(

I−α · DvkvT
k D

vT
k D2vk

)

x = x,

and hence Mk−1x = Mkx. Moreover the last entry of V T
k Dx is zero and hence ‖Γ−1

k−1V T
k−1Dx‖2 =

‖Γ−1
k V T

k Dx‖2. Thus (18) holds by the induction hypothesis.
Now we assume vT

k Dx 6= 0. W.l.o.g., we can assume vT
k Dx = 1. Let

x′ =

(

I−α · DvkvT
k D

vT
k D2vk

)

x = x−α · Dvk

γkk
. (19)

We have ‖x′‖2
2 = ‖x‖2

2−α(2−α)/γkk.
Let b = V T

k Dx and b′ = V T
k−1Dx′. If we show

‖Γ−1
k b‖2

2 =
α(2−α)

γkk
+‖Γ−1

k−1b′‖2
2 (20)

then

‖Mkx‖2
2 = ‖Mk−1x′‖2

2 = ‖x′‖2
2−‖Γ−1

k−1b′‖2
2 = ‖x‖2

2−
α(2−α)

γkk
−‖Γ−1

k−1b′‖2
2 = ‖x‖2

2−‖Γ−1
k b‖,

and we are done. Thus it remains to show (20).
From (19) we have for i = 1, . . . ,k−1,

b′i = bi−α
γik

γkk
.

Let Z be the (k−1)× k matrix taking b to b′, i. e.,

Z =

{ 1 for i = j,
−α(γik/γkk) for j = k,
0 otherwise.

Let y = Γ−1
k b and y′ = Γ−1

k−1b′. Note that y′ = Γ−1
k−1ZΓky.

If the last coordinate of y is zero then the last coordinate of Γky is zero as well and hence Z acts
as identity on Γky. Thus

(

Γ−1
k−1ZΓk

)

(y1, . . . ,yk−1,0)T = Γ−1
k−1IΓk(y1, . . . ,yk−1,0)T =

Γ−1
k−1IΓk−1(y1, . . . ,yk−1)

T = (y1, . . . ,yk−1)
T.
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Thus the left (k−1)× (k−1) submatrix of Γ−1
k−1ZΓk is the identity matrix.

For any i = 1, . . . ,k−1 we have

eT
i ZΓkek =

(

eT
i −α

γik

γkk
eT

k

)

Γkek =
γik√γkk

√

α/(2−α)−α
γik

γkk

√
γkk/

√

α(2−α) = 0.

Thus the last column of Γ−1
k−1ZΓk is zero. Hence

‖y′‖2
2 = ‖y‖2

2− y2
k . (21)

Since y = Γ−1
k b, bk = 1, and Γk is upper triangular matrix we have that

yk = (Γ−1
k )kk =

1
(Γk)kk

=

√

α(2−α)

γkk
.

Plugging yk into (21) we obtain (20). We completed the induction step and hence (18) is true for all
k = 1, . . . ,n. We proved the first part of the lemma.

To show the second part of the lemma we observe

‖M‖2
2 = max

‖x‖2=1
‖Mx‖2

2 = 1− min
‖x‖2=1

‖Γ−1V TDx‖2
2 = 1−λmin

(

D−1V Γ−T Γ−1V TD
)

.

Let A = Γ−1V TD = (D−1V Γ)−1. We have

λmin(A
TA) = λmin(AAT) =

1
λmax(A−T A−1)

=
1

λmax(ΓTV TD−2V Γ)
.

�

Lemma A.3 Let A be an d×d symmetric matrix such that 0�A� I (i. e., A is positive semi-definite
and all its eigenvalues are ≤ 1). Then

d

∑
i=1

d

∑
j=1

A2
i j

A j j
≤ d. (22)

Proof :
The eigenvalues of A are between 0 and 1 and hence we have A2 � A. Thus

d

∑
i=1

A2
i j = (A2) j j ≤ A j j. (23)

Dividing both sides of (23) by A j j and summing over j ∈ [d] we obtain the result. �

Consider G(1) defined by (14) with α = 1. We can bound ‖G(1)‖2
F (the square of the Frobenius

norm) by (22) where we take A = V TDV = (γi j)
d
i, j=1. Using ‖A‖2 ≤ ‖A‖F we obtain the following

bound.

Corollary A.4 Let G(1) be defined by (14) with α = 1. Then

‖G(1)‖2 ≤
√

d. (24)
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For α = 0 the matrix G is diagonal with all the diagonal entries ≤ 1. Hence we have:

Observation A.1 Let G(0) be defined by (14) with α = 0. Then

‖G(0)‖2 ≤ 1. (25)

Let F(α) = G(α)TG(α). Then

d
dα

F(0) =

{ γi j
√γii/

√γ j j if i < j,
γi j
√γ j j/

√γii if i > j,
0 if i = j.

Note that γii ≤ 1 for i ∈ [n]. Hence, using Lemma A.3 we obtain the following bound.

Observation A.2
∥

∥

∥

∥

d
dα

F(0)

∥

∥

∥

∥

2

2
≤
∥

∥

∥

∥

d
dα

F(0)

∥

∥

∥

∥

2

F
≤ 2n. (26)

Now we can finally prove Lemma A.1.
Proof of Lemma A.1:
Let x be such that ‖x‖2 = 1. Let f (α) = xTG(α)TG(α)x. Note that f is a quadratic function of α.
Let

f (α) = aα2 +bα+ c.

From (24), (25), (26) we get that

a+b+ c = f (1)≤ d,

c = f (0)≤ 1, and

|b|= | f ′(0)| ≤
√

2d.

Hence

f (1/
√

d)≤ (d +
√

2d) ·
(

1√
d

)2

+
√

2d
1√
d

+1≤ 5.

Let α = 1/
√

d, and G = G(α). Since x was arbitrary we get

‖G‖2
2 = max

‖x‖2=1
xTGTGx≤ 5.

Finally,

‖Γ‖2
2 =

‖G‖2
2

α(2−α)
≤ 5
√

d.

�
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A.3 Optimality of Lemma 2.9

Now we show that Lemma 2.9 cannot be improved (up to a constant factor).
Let D be a diagonal matrix with D11 = 1 and Dii = ε for i = 2, . . . ,d. Let

v1 ∝ (
√

1/2,
√

ε, . . . ,
√

ε,
√

1/2),

and let v1, . . . ,vd be orthogonal. Let V have columns v1, . . . ,vd . Then V TD2V = (1− ε2)v1vT
1 + ε2I.

From the definition (15) we immediately obtain

Γ = Γ(α) =
1

√

α(2−α)

(

B+O(ε1/2)
)

,

where

Bi j =

{

√

1/2 if i = j = 1 or i = j = d,

α
√

1/2 if i = 1 and j ≥ 2,
0 otherwise.

A short calculation yields

ΓTV TD−2V Γ =
1

4α(2−α)
· 1

ε2 ·
(

wwT +O(ε)
)

,

where w = (1,−α, . . . ,−α,α−1), and hence

λmax(ΓTV TD−2V ) =
1

4ε2

(

(d−1)α2−2α+2
α(2−α)

+O(ε)
)

The minimum of (d−1)α2−2α+2
α(2−α) occurs at α = (−1+

√
2d−3)/(d−2). For this value of α we have

(d−1)α2−2α+2
α(2−α)

∼
√

d/8

as d→ ∞. Thus we have the following.

Observation A.3 For any α ∈ (0,2),

λmax(ΓTV TD−2V ) '

√

d/8
4ε2 .

For α = 1

λmax(ΓTV TD−2V )≈ d
4ε2 .
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Paul W. Goldberg, Sally A. Goldman, and H. David Mathias. Learning unions of boxes with mem-
bership and equivalence queries. In COLT ’94: Proceedings of the Seventh Annual Conference
on Computational Learning Theory, pages 198–207, New York, NY, USA, 1994. ACM Press.
ISBN 0-89791-655-7.

Sally A. Goldman and Michael J. Kearns. On the complexity of teaching. In COLT ’91: Proceed-
ings of the Fourth Annual Workshop on Computational Learning Theory, pages 303–314, San
Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc. ISBN 1-55860-213-5.

Sally A. Goldman and H. David Mathias. Teaching a smart learner. In COLT ’93: Proceedings of
the Sixth Annual Conference on Computational Learning Theory, pages 67–76, New York, NY,
USA, 1993. ACM Press. ISBN 0-89791-611-5.

Sally A. Goldman, Ronald L. Rivest, and Robert E. Schapire. Learning binary relations and total
orders. SIAM J. Comput., 22(5):1006–1034, 1993. ISSN 0097-5397.
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