Journal of Machine Learning Research 8 (2007) 2017-2045 Submitted 4/05; Revised 2/07; Published 9/07

Very Fast Online Learning of Highly Non Linear Problems

Aggelos Chariatis CHARIATISAD@DIAS.COM.GR
Alamanas 2
15125 Athens, Greece

Editor: Léon Bottou

Abstract

The experimental investigation on the efficient learning of highly non-linear problems by online
training, using ordinary feed forward neural networks and stochastic gradient descent on the errors
computed by back-propagation, gives evidence that the most crucial factors for efficient training are
the hidden units’ differentiation, the attenuation of the hidden units’ interference and the selective
attention on the parts of the problems where the approximation error remains high. In this report,
we present global and local selective attention techniques and a new hybrid activation function
that enables the hidden units to acquire individual receptive fields which may be global or local
depending on the problem’s local complexities. The presented techniques enable very efficient
training on complex classification problems with embedded subproblems.

Keywords: neural networks, online training, selective attention, activation functions, receptive
fields

1. Framework

Online supervised learning is in many cases the only practical way of learning. This includes sit-
uations where the problem size is very big, or situations where we have a non-recurring stream of
input vectors that are unavailable before training begins. We examine online supervised learning
using a particular class of adaptive models, the very popular feed forward neural networks, trained
with stochastic gradient descent on the errors computed by back-propagation.

In order to easily visualize the online training dynamics of highly complex non linear problems,
we are experimenting on 2:n:1 networks where the input is a point in a two dimensional image and
the output is the value of the pixel at the corresponding input position. This framework allows the
creation of very complex non-linear problems, just by hand-drawing the problem on a bitmap and
presenting it to the network. Most problems’ images in this report are 256 x 256 pixels in size,
producing in total 65536 different samples each one.

Classification and regression problems can be modeled as black & white and gray scale images
respectively. In this report we only examine training on classification problems. However, since
mixed problems are possible, we are only interested on techniques that can be applied to both
classification and regression.

The target of this investigation is online training where the input is not known in advance, so
the input samples are treated as random and non-recurring vectors from the input space and are
discarded after being used. We select and train on random samples until the average classification
or RMS error is acceptable. Since both the number of training exemplars and the complexity of the
underlying function are assumed unknown, we require from our training mechanism to have “initial
state invariance” as a fundamental property. Thus we deliberately exclude from our arsenal any

(©2007 Aggelos Chariatis.

CHARIATIS

training techniques that require a schedule to be decided ahead of training. Ideally we would like
from the training mechanism to be totally invariant to the initial training parameters and network
state.

This report is organized as follows: Sections 2 and 3 describe techniques for global and local
selective attention. Section 4 is devoted to acceleration of training. In Section 5 we present exper-
imental results and in Section 6 we discuss the presented techniques and give some directions for
future research. Finally, Appendix A contains a description of the notations that have been used.
In Figure 1 you can see some examples of problems that can be learned very efficiently using the
techniques that are presented in the following sections.

o &
© 92

@ (b) (© (d)

Figure 1: Examples of complex non-linear problems that can be learned efficiently.

2. Global Selective Attention - Dynamic Training Set Evolution

Consider the two problems depicted in Figure 2. Clearly, both problems are of approximately equal
complexity, since they encapsulate the same image in a different scale and position within the input
space. We would like to have a mechanism that will make the network capable of learning both

problems at about the same speed.

@ (b)

Figure 2: Approximately equal complexity problems.

Intuitively, the samples on the boundaries, which are the samples on positions with the highest
contrast, are those that determine the complexity of each problem. During training, these samples
have the property that they produce the highest errors. We thus need a method that will focus
attention on samples with high error relatively to the rest. Previous work on such global selective
attention has been published by many authors (Munro, 1987; Yu and Simmons, 1990; Bakker, 1992,
1993; Schapire, 1999; Zhong and Ghosh, 2000).

2018

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

Of particular interest are the various boosting algorithms, such as AdaBoost (Schapire, 1999),
which work by placing more emphasis on training samples that the system is currently getting
wrong. Unfortunately, the most successful of these algorithms require a predefined set of samples
on which training will be performed, something that is excluded from our scenario. Nevertheless,
in a less constrained scenario, boosting can be applied on top of our techniques as a meta-learning
algorithm, using our techniques as the base-learning algorithm.

A simple method that can provide such an adaptive selective attention mechanism, by keeping
an exponential trace of the average error in the training set, is described in Algorithm 1.

g0
Repeat
Pick a random sample
Evaluate the error e for the sample
Ife>05e
e—ea+e(l—a)
Train
End
Until a stopping criterion is satisfied

In this report’s context, error evaluation and train are defined as:

Error Evaluation: Computation of the output values by forward propagating the activations from the input
to the output layer for a single sample, plus computation of the output errors. The sample’s error e is set to
the quadratic mean (RMS) of the output units’ errors.

Train: Back-propagation of the output errors to the hidden layer and immediate weights’ adjustment.

Algorithm 1: The dynamic training set evolution algorithm.

The algorithm evaluates the errors of all samples, but trains only for samples with error greater
than half the average error of the current training set. Training is initially performed for all samples,
but gradually, it is concentrated on the samples at the problem’s boundaries. When the error for
these samples is reduced, other previously excluded samples enter the training set. Thus, samples
enter and leave the training set automatically, with a tendency to train on samples with high error.

The magnitude of the constant a that determines the time scale of the exponential trace is prob-
lem specific, but in all experiments in this report it was kept fixed to 10~*. The fraction of 0.5 was
determined experimentally to give a good balance between sample selectivity and training set size.
If it is close to 0 then we train for almost all samples. If it is close to 1 then we are at risk of making
the training set starve from samples. Of course, one can choose to vary it dynamically in order to
have a fixed percentage of samples in the training set, or, to not allow the training percentage to fall
below a pre-specified limit.

Figure 3 shows the training set evolution for the two-spirals problem (in Figure 1a) in various
training stages. The network topology was 2:64:1. You can see the training set forming gradually
and tracing the problem boundaries where the error is the highest.

One could argue that such a process may be very sensitive to outliers. Experiments have shown
that this does not happen. The algorithm does not try to recognize the outliers, but at least, adjusts
naturally by not allowing the training set size to shrink. So, at the presence of heavy noise, the
algorithm becomes ineffective, but does not introduce any additional harm. Figure 4 shows the two-

2019

CHARIATIS

90000-296659-18%

60000-142789-22%

10000-11840-93% 20000-25755-76% 40000-66656-41%
Figure 3: Training set evolution for the two-spirals problem. Under each image you can see the

stage of training in trains, error-evaluations and the percentage of samples for which training is
performed at the corresponding stage.

spirals problem distorted by dynamic noise and the corresponding training set after 90000 trains
with 64 hidden units. You can see that the algorithm tolerates noise by not allowing the training set
size to shrink. It is also interesting that at noise levels as high as 30% the algorithm can still exclude
large areas of the input space from training.

10%-42% 20%-62% 30%-75% 50%-93% 70%-99%

Figure 4: Top row shows the model with a visualization of the applied dynamic noise. Bottom row
shows the corresponding training sets after 90000 trains. Under each pair of images you can see the
percentage of noise distortion applied to the original input and the percentage of samples for which
training is performed.

3. Local Selective Attention - Receptive Fields

Having established a global method to focus attention on the important parts of a problem, we now
come to address the main issue, which is the network training. Let first discuss the roles of the
hidden and output layers in a feed forward neural network with a single hidden layer and without
shortcut input-to-output connections.

2020

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

The hidden layer is responsible for transforming a non linear input-to-output mapping, into a
non linear input-to-hidden layer mapping, that can be mapped linearly to the output.

The output layer is responsible for learning a linear hidden-to-output mapping (which is an easy
job), but most importantly, it must provide to the hidden layer error gradient information that will
be used for the error credit assignment problem. In this respect, it becomes apparent that all hidden
units should receive the most possibly accurate error information. That is why, we must train all
hidden to output connections and back propagate the error through all these connections.

This is not the case for the hidden layer. Consider, for a classification problem, how the hidden
units with sigmoidal activations partition the input space into sub areas. By adjusting the input-to-
hidden weights and biases, each hidden unit develops a hyperplane that bi-partitions the input space
in the most useful sense.

We would like to limit the number of hyperplanes in order to reduce the system’s available
degrees of freedom and obtain better generalization capabilities. At the same time, we would like
to thoroughly use them in order to optimize the input output approximation. This can be done
by arranging the hyperplanes to touch the problem’s boundaries at regular intervals dictated by
the boundary curvature, as it is shown in Figure 5a. Figure 5b, shows a suboptimal placement of
the hyperplanes which causes a waste of resources. Each hidden unit must be differentiated from
the others and ideally not interfere with the subproblems that the other units are trying to solve.
Suppose that two hidden units are governed by the same, or nearly the same, parameters. How can
we differentiate them? There are many possibilities.

\ N

@ (b)

Figure 5: Optimal vs. suboptimal hyperplanes.

One could be, to just throw one unit away and make the output weight of the other equal to
the sum of the two original output weights. That would leave the function unchanged. However,
identifying these similar units during training is not easy computationally. In addition, we would
have to figure out a method that would compute the best initial placement for the hyperplane of the
new unit that would substitute the one that was thrown away.

Another possibility would be to add noise in the weight updates, gradually reduced with a sim-
ulated annealing schedule which should be decided before training begins. Unfortunately, the loss
of initial state invariance would complicate training for unknown complex non linear problems.

To our thinking, it is much better to embed constraints into the system, so that it will not be pos-
sible for two hidden units to develop the same hyperplane. Two computationally efficient techniques
to embed such constraints are described in sections 3.1 and 3.2.

Many other authors have also examined methods for local selective attention. For the related
discussions see Huang and Huang (1990), Ahmad and Omohundro (1990), Baluja and Pomerleau
(1995), Flake (1998), Duch et al. (1998), and Phillips and Noelle (2004).

2021

CHARIATIS

3.1 Fixed Cascaded Inhibitory Connections

A problem with the hidden units of conventional feed forward networks is that they are all fed with
the same inputs and back propagated errors and that they operate without knowing each other’s ex-
istence. So, nothing prevents them from behaving identically. This lack of communication between
hidden units has been addressed by researchers through hidden unit lateral connections. Agyepong
and Kothari (1997) use unidirectional lateral interconnections between adjacent hidden layer units,
claiming that these connections facilitate the controlled assignment of role and specialization of the
hidden units. Kothari and Ensley (1998) use Gaussian lateral connections which enable the hidden
decision boundaries to be global in nature but also be able to represent local structure. Numerous
neural network algorithms employ bidirectional lateral inhibitory connections in order to generate
competition between the hidden units. In an interesting variation described by Spratling and John-
son (2004), competition is provided by each hidden unit blocking its preferred inputs from activating
other units.

We use a single hidden layer where the hidden units are considered sequenced. Each hidden unit
is connected to all succeeding hidden units with a fixed connection with weight set to minus one.
The hidden units get differentiated, because they receive different inputs, they produce different
activations and they get back different error information. Another benefit is that they can generate
higher order feature detectors, that is, the resulting hidden hyperplanes are no longer strictly linear,
but they may also be curved. Considering the fixed value, -1 is used just to avoid a multiplication.
Values from -0.5 to -2 give good results as well.

As it is shown in Section 5.1.1, the fixed cascaded inhibitory connections are very effective at
reducing a problem’s asymptotic residual error. This should be attributed to both of their abilities,
to generate higher order feature detectors and to hasten the hidden units’ symmetry breaking.

These connections can be implemented very efficiently with just one subtraction per hidden
unit for both hidden activation and hidden error computation. In addition, the disturbance to the
parallelism of the backpropagation algorithm is minimal. Most operations on the hidden units can
still be done in parallel and only the final computations must be performed sequentially. We in-
clude the algorithms for the hidden activation and error computations as examples of sequential
implementations. These changes can be very easily incorporated into conventional neural network
code.

Hidden Activations | Hidden Error Signals
00 00
Forj<—1...n Forj<n...1
nj <—5+Y‘VV]' €j <—5+F"U’j
hj — f(nj) gj —&;f'(nj)
5<—5—hj 6<—6—gj
End End

Algorithm 2: Hidden unit activation and error computation with Fixed Cascaded -1 Connections.

2022

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

3.2 Selective Training of the Hidden Units

The hidden units’ differentiation can be farther magnified if each unit is not trained on all samples,
but only on the samples for which it receives a high error.

We train all output units, but only the hidden units for which the error signal is higher than the
RMS of the error signals of all hidden units. Typically about 10% of the hidden units are trained on
each sample during early training and the percentage falls up to 2% when the network is close to
the solution.

This is intuitively justified by the observation that at the beginning of training the hidden units
are largely undifferentiated and receive high error signals from the whole input space. At the final
stage of training, the hidden hyperplanes’ linear soft decision boundaries are combined by the output
layer to define arbitrarily shaped decision boundaries. For W input dimensions, from 1 up to { units
can define an open sub-region and p+ 1 units are enough to define a closed convex region. With
such high level constructs, each sample may be discriminated from the rest with very few hidden
units. These, are the units that receive the highest error signal for the sample.

Experiments on various problems have shown that training on a fraction of the hidden units is
always better (in respect to number of trains to convergence), than training all or just one hidden
unit. It seems that training only one hidden unit on each sample is not sufficient for some problems
(Thornton, 1992). Measurements for one of these experiments are reported in Section 5.1.1.

In addition to the convergence acceleration, the combined effect of training a fraction of the
hidden units on a fraction of the samples, gives big savings in CPU usage per sample as well. This
sparseness of training in respect to evaluation provides further opportunities for speedup as it is
discussed in Section 4.

3.3 Centering On The Input Space

It is a well known recommendation (Schraudolph, 1998a,b; LeCun et al., 1998) that the input values
should be normalized to have zero mean and unit standard deviation over each input dimension. This
is achieved by subtracting from each input value the mean and dividing by the standard deviation.

For some problems, like the one in Figure 2b, the center of the input space is not equal to
the center of the problem. When the input is not known in advance, the later must be computed
adaptively. Moreover, since the hidden units are trained on different input samples, we should
compute for each hidden unit its own mean and standard deviation over each input dimension.

For the connection between hidden unit j and input unit i we can adaptively compute the ap-
proximate mean mj; and standard deviation s;; over the inputs that train the hidden unit, using either
exponential traces:

mﬁ@)“‘BXV+(1"B)mﬁa_g,
Qi) — B Xi2+ (1-B) Ajit—1)
i) (A — Miig) 2

)

or perturbated calculations:
Mjip) < Mjie_) +B (X —Miji_y)),
Viig) < Viig-1) TP ((Xi = Mjigy) (% = Mjig_y)) *Vji(t—l))’

2023

CHARIATIS

Sjiy < Vii() -
where [is a constant that determines the time scale of exponential averaging, vector X holds the input
values, matrix Q holds the means of the squared input values and matrix V holds the variances.

The means and standard deviations of a hidden unit’s input connections are updated only when
the hidden unit is trained. The result of this treatment is that each hidden unit is centered on a
different part of the input space. This center is indirectly affected by the error that the inputs produce
on the hidden unit.

The magnitude of the constant (3 is problem specific, but in all experiments in this report it was
kept fixed to 10~3. This constant must be selected large enough, so that the centers will rapidly
move to their optimum locations, and small enough, so that the hidden units will see a relatively
static view of the input space and the gradient descent algorithm will not be confused. As the hidden
units jitter around their centers, we effectively train them on slightly shifted views of the input space,
something that can assist generalization. We get something analogous to training with jitter (Reed
et al., 1995), at no extra cost.

In Figure 6, the squares show where each hidden unit is centered. You can see that most are
centered on the problem boundaries at regular intervals. The crosses show the standard deviations.
On some directions the standard deviations are very small, which results in very high normalized
input values, causing the hidden units to act as threshold units at those directions. The sloped lines
show the hyperplane distance from center and the slope. These are computed for display purposes,
from their theoretical formulas for a conventional network, without considering the effect of the
cascaded connections.

For some units the hyperplanes shown are not exactly on the boundaries. This is because of the
fixed cascaded connections that cause the hidden units to be not exactly linear discriminants. In the
last picture you can see the decision surface of a hidden unit which is a bit curved and coincides
with the class boundary although its calculated hyperplane is not on the boundary.

An observant reader may also notice that the hyperplane distances from the centers are very
small, which implies that the corresponding biases are small as well. On the contrary, if all hid-
den units were centered on the center of the image, we would have the following problem. The
hyperplanes of some hidden units must be positioned on the outer parts of the image. For this to
happen, these units should develop large biases in respect to the weights. This would make their
activations to have small variances. These small variances might need to be compensated by large
output weights and biases, which would saturate the output units and in addition ill-condition the
problems.

One may wonder if the hidden biases are still necessary. Since the centers are individually set,
it may seem at first that they are not. However, the centers are not trained through error backprop-
agation, and the hyperplanes do not necessarily pass over them. The biases role is to drive the
hyperplanes to the correct location and thus pull the centers in the corresponding direction.

The individual centering of the hidden units based on the samples’ positions is feasible, because
we train only on samples with high errors and only the hidden units with high errors. By ignoring
the small errors, we effectively position the center of each hidden unit near the center of mass of the
high errors that it receives. However, this centering technique can still be used even if one chooses
to train on all samples and all hidden units. Then, the statistics interval should be differentiated for
each hidden unit and be recomputed for each sample relatively to the normalized absolute error that
each hidden unit receives. A way to do it is to set the effective statistics interval for hidden unit j

2024

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

e
T

Figure 6: Hidden unit centers, standard deviations, hyperplanes, global and local training sets and
a hidden unit’s output. The images were captured at the final stage of training, of the problem in
Figure 1a with 64 hidden units.

and sample s to:

where [3 is the global statistics interval, ej s is the hidden unit’s backpropagated error for the sample
and (|e;|) is the mean of the absolute backpropagated errors that the hidden unit receives, measured
via an exponential trace. The denominator acts as a normalizer, which makes the hidden unit’s
mobility to be independent of the average magnitude of the errors.

Centering on other factors has been extensively investigated by Schraudolph (1998a,b). These
techniques can provide further convergence acceleration, but we chose not to use them because of
the additional computational overhead that they require.

3.4 A Hybrid Activation Function

As it is shown in Section 5, the aforementioned techniques enable successful training on some
difficult problems like those in Figures 1a and 1b. However, if the problem contains subproblems,
or put in another way, if the problem generates more than one cluster of high error density, the
centering mechanism does not manage to drive the hidden unit centers to the most suitable locations.
The centers are attracted by the larger subproblem or get stuck in areas between the subproblems,
as shown in Figure 7.

2025

CHARIATIS

Figure 7: Model, training set, and inadequate centering

We need a mechanism that can force a hidden unit to get out of balanced but suboptimal posi-
tions. It would be nice if this mechanism could also allow the centers to migrate to various points
in the input space as the need arises. It has been found that both of these requirements are fulfilled
by a new hybrid activation function.

Sigmoid activations have the property that they produce hyperplanes that separate the input
space globally. Our intention is to use a sigmoid like hidden activation function, because it can
provide global separability, and at the same time, reduce the activation value towards zero on inputs
which are not important to a hidden unit.

The Gaussian function is commonly used within radial basis function (RBF) neural networks
(Broomhead and Lowe, 1988). When this function is applied to the distance of a sample to the
unit’s center, it produces a local response which is stronger near the center. We can then enclose the
sigmoidal activation within a Gaussian envelope, by multiplying the activation with a value between
0 and 1, which is provided by applying the Gaussian function to the distance that is measured in the
normalized input space.

When the number of input dimensions is large, the distance metric that must be used is not an
obvious choice. Table 1 contains the distance metrics that we have considered. The most suitable
distance metric seems to depend on the distribution of the samples that train the hidden units.

H H H H
AL L)

Euclidean Euclidean Scaled Manhattan Manhattan Scaled Chebyshev

Table 1: Various distance metrics that have been considered for the hybrid activation function.

In particular, if the samples follow a uniform distribution over a hypercube, then the Euclidean
distance has the disturbing property that the average distance grows larger as the number of input
dimensions increases and consequently the corresponding average Gaussian response decreases to-
wards zero. As suggested by Hegland and Pestov (1999), we can make the average distance to
center independent of the input dimensions, by measuring it in the normalized input space and then
dividing it by the square root of the input’s dimensionality. The same problem occurs for the Man-
hattan distance which has been claimed to be a better metric in high dimensions (Aggarwal et al.,
2001). We can normalize this distance by dividing it by the input’s dimensionality. A problem that

2026

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

appears for both of the above rescaled distance metrics, is that for the samples that are near the axes
the distances will be very much attenuated and the corresponding Gaussian responses will be close
to one, something that will make the Gaussian envelopes ineffective.

A more suitable metric for this type of distributions is the Chebyshev metric whose average
magnitude is independent of the dimensions. However, for reasons analogous to those mentioned
above, this metric is not the most suitable if the distribution of the samples is spherical. In that case,
the Euclidean distance does not need any rescaling and is the most natural distance measure. We
can obtain spherical distributions by adaptively whitening them. As Plumbley (1993) and Laheld
and Cardoso (1994) independently proposed, the whitening matrix Z can be adaptively computed
as:

Zu =2 - N7z -1z,

where A is the learning rate parameter, Z; = Z; X; is the whitened vector and X; is the input vector.
However, we would need too many additional parameters to do it individually for each subset of
samples on which each hidden unit is trained.

For the above reasons (and because of lack of a justified alternative), in the implementation of
these technigues we typically use the Euclidean metric when the number of input dimensions is up to
three and the Chebyshev metric in all other cases. We have also replaced the usual tanh (sigmoidal)
and Gaussian (bell-like) functions, by similar functions which do not involve exponentials (Elliott,
1993).

For each hidden unit j we first compute the net-input n; to the hidden unit (that is, the weighted
distance of the sample to the hyperplane), as the inner product of normalized inputs and weights
plus the bias:

Zji =)
n,- = Ij -VVJ'.

We then compute the sample’s distance dj to the center of the unit which is measured in the normal-
ized input space:

dj = |zl
Finally, we compute the activation hj as:
. nj
j
1
by = bellldj)=——,
hj = aj bj.

Since dj is not a function of W;, we treat bj as a constant for the calculation of the activation
derivative with respect to nj, which becomes:
ohj _

an; bj (1—\aj\)2.

2027

CHARIATIS

The hybrid activation function, which by definition may only be used for hidden units connected
to the input layer, enables these units to acquire selective attention capabilities on the input space.
Each hidden unit may have a global or local receptive field on each input dimension. The size
of this dimensional receptive field depends on the standard deviation which is computed for the
corresponding dimension.

This activation makes balanced positions between subproblems to be unstable. As soon as
the center is changed by a small amount, it will be attracted by the nearest subproblem. This is
because the unit’s activation and the corresponding error will be increased for samples towards the
nearest subproblem and decreased at the other direction. Hidden units can still be centered between
subproblems but only if their movement at either direction causes a large error for samples at the
opposite direction, that is, if they are absolutely necessary at their current position.

Additionally, if a unit is centered near a subproblem that produces low errors and the unit is
not necessary in that area, then it may migrate to other areas that still have high errors. This unit
center migration has been observed in all experiments on complex problems. This may be due to
the non-linear response of the bell function, and its long tails which keep the activation above zero
for all input samples.

Figure 8: Model, evaluation, training set, hidden unit centers and two hidden unit outputs showing
the effect of the hybrid activation function. The images were captured at the final stage of training,
of the problem in Figure 1d with 700 hidden units.

In Figure 8 you can see a complex problem with 9 clusters of high errors. The hidden units place
their centers on all clusters and are able to solve the problem. In the last two images, you can see the

2028

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

effect of the hybrid activation function which attenuates the activation at points far from the center
in respect to the standard deviation on each dimension. One unit develops a near circular local
receptive field and one other develops an elongated ellipsoidal receptive field. The later provides
almost global separation in the vertical direction and becomes a useful discriminant for two of the
subproblems.

One may find similarities between this hybrid activation function and the Square-MLP architec-
ture described by Flake (1998). The later, partially implements higher order neurons by duplicating
the number of input units and setting the new input values equal to the squares of the original in-
puts. This architecture enables the hidden units to form local features of various shapes, but not
the locally constrained sigmoid formed by our proposal. In contrast, the hybrid activation function
does not need any additional parameters beyond those that are already used for centering and it has
the additional benefit, which is realized by the local receptive fields in conjunction with the small
biases and the symmetric sigmoid, that the hidden activations will have a mean close to zero. As
discussed by Schraudolph (1998a,b) and LeCun et al. (1998), this is very beneficial for the output
layer training.

However, there is still room for improvement. As it was also observed by Flake (1998), the
orientations of the receptive field ellipses are always at the direction of one of the input axes. This
limitation is expected to hinder performance when training hidden units which have sloped hyper-
planes. Figure 9 shows a complex problem at the middle of training. Units with sloped hyperplanes
are trained on samples whose input values are highly correlated. This can slowdown learning by
itself, but in addition, the standard deviations cannot get sufficiently small and as a result the recep-
tive field cannot be sufficiently shrunk at the direction perpendicular to the hyperplane. As a result
the hidden unit’s activation unnecessarily interferes with the activations of nearby units.

Although it may be possible to address the correlation problem with a more sophisticated train-
ing method that uses second order gradient information, like Stochastic Meta Descent (Schraudolph,
1999, 2002), the orientations of the receptive fields will still be limited. In Section 6.2 we discuss
possible directions for further research that may circumvent this limitation.

Figure 9: Evaluation and global and local training sets during middle training for the problem in
Figure 1b. It can be seen that a hidden unit with a sloped hyperplane is trained on samples with
highly correlated input values. Samples that are separated by horizontal or vertical hyperplanes are
easier to be learned.

2029

CHARIATIS

4. Further Speedups

In this section we first describe an implementation technique that reduces the computational require-
ments of the error evaluation phase and then we give references to methods that have been proposed
by other authors for the acceleration of the training phase.

4.1 Evaluation Speedup

Two of the discussed techniques, training only for samples with high errors, and then, training
only the hidden units with high error, make the error-evaluation phase to be the most processing
demanding phase for the solution of a given problem. In addition, some other techniques, like board
game learning through temporal difference methods, require many evaluations to be performed
before each train. We can speedup evaluation by the following observation:

For many problems, only part of the input is changed on successive samples. For example, for
a backgammon program with 200 input units (with raw board data and not any additional features
encoded), very few inputs will change on successive positions. Even on two dimensional problems
such as images, we can arrange to train on samples selected by random changes on the X and Y
dimensions alternatively. This process of only resampling one coordinate at a time is also known
as “Gibbs sampling” and it nicely generalises to more than two coordinates (Geman and Geman,
1984).

Thus, we can keep in memory all intermediate results from the evaluation, and recalculate only
for the inputs that have changed. This implementation technique requires more storage, especially
for high dimensional inputs. Fortunately, storage is not an issue on modern hardware.

4.2 Training Speedup

Many authors have proposed methods for speeding-up online training by using second order gradi-
ent information in order to dynamically vary either the learning rate or the momentum (see LeCun
etal., 1993; Leen and Orr, 1993; Murata et al., 1996; Harmon and Baird, 1996; Orr and Leen, 1996;
Almeida et al., 1997; Amari, 1998; Schraudolph, 1998c, 1999, 2002; Graepel and Schraudolph,
2002).

As it is shown in the next section, our techniques enable standard stochastic gradient descent
with momentum to efficiently solve all the highly non-linear problems that have been investigated.
However, the additional speed up that an accelerating algorithm can give is a nice thing to have.
Moreover, these accelerating algorithms automatically reduce the learning rate when we are close
to a solution (by sensing the oscillations in the error gradient) something that we should do through
annealing if we wanted the best possible solution.

We use the Incremental Delta-Delta (IDD) accelerating algorithm (Harmon and Baird, 1996), an
incremental nonlinear extension to Jacobs’ (1988) Delta-Delta algorithm, because of its simplicity
and relatively small processing requirements. IDD computes an individual learning rate A for each
weight w as:

A(t) = et ®),

Aw(t+1)
A(t)

where 8 is the meta-learning rate which we typically set to 0.1.

E(t+1)=¢§(t)+6 Aw(t),

2030

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

5. Experimental Results

In order to measure the effectiveness of the described techniques on various classes of problems,
we performed several experiments. Each experiment was replicated 10 times with different random
initial weights using matched random seeds and the means and standard deviations of the results
were plotted in the corresponding figures.

For the experiments we used a single hidden layer, the cross entropy error function, the logistic
or softmax activation function for the output units and the Elliott or hybrid activation function for
the hidden units. Output to hidden layer weights and biases were initialized to zero. Hidden to input
layer weights were initialized to random numbers from a normal distribution and then rescaled so
that the incoming weights to each hidden unit had norm unity. Hidden unit biases were initialized
to a uniform random number between zero and one.

The curves in the figures are labelled with a combination of the following letters which indicate
the techniques that were applied:

B — Adjust weights using stochastic gradient descent with momentum 0.9 and fixed learning rate
0.1/+/c where c is the number of incoming connections to the unit.

A — Adjust weights using IDD with meta-learning rate 0.1 and initial learning rate
1/+/c where c is as above.

L — Use fixed cascaded inhibitory connections as described in Section 3.1.
S — Skip weights adjustment for samples with low error as described in Section 2.
U — Skip weights adjustment for hidden units with low error as described in Section 3.2.

C - Use individual means and stdevs for each hidden to input connection as described in Section
3.3.

H - Use the hybrid activation function as described in Section 3.4.

For the ‘B’ training method we deliberately avoided an annealing schedule for the learning rate,
since this would destroy the initial state invariance of our techniques. Instead, we used a fixed small
learning rate which we compensated with a large momentum. For the ‘A’ method, we used a small
meta-learning rate, to avoid instabilities due to the high non-linearities of the examined problems.
It is important to note that for both training methods the learning parameters were fixed to the above
values and not optimized to each individual problem.

For the *C’ technique, the centers of the hidden units where initially set to the center of the input
space and the standard deviations were set to one third of the distance between the extreme values
of each dimension. When the technique was not used, a global preprocessing was applied which
normalized the input samples to have zero mean and unit standard deviation.

5.1 Two Input Dimensions

In this section we give experimental results for the class of problems that we have mainly examined,
that is, problems in two input and one output dimensions, for which we have dense and noiseless
training samples from the whole input space. In the figures, we measure the average classification
error in respect to the stage of training. The classification error was averaged via an exponential
trace with time scale 104,

2031

CHARIATIS

5.1.1 COMPARISON OF TECHNIQUE COMBINATIONS

For these experiments we used the two-spirals problem shown in Figures 1a, 3, 4 and 6. We chose
this problem as a non trivial representative of the class of problems that during early training gener-
ate a single cluster of high error density. The goal of this experiment is to measure the effectiveness
of various technique combinations and then to measure how well the best technique combination
scales with the size of the hidden layer.

Figures 10 and 11 show the average classification error in respect to the number of evaluated
samples and processing cycles respectively for 13 technique combinations. For these experiments
we used 64 hidden units. The standard deviations were not plotted in order to keep the figures
uncluttered. Figure 10 has also been split to Figures 12 and 13 in order to show the related error
bars.

Comparing the curves B vs. BL and BS vs. BLS on Figures 10 and 11, we can see that the
fixed cascaded inhibitory connections reduce the asymptotic residual error by more than half. This
also applies, but to a lesser degree, when we skip weight updates for hidden units with low errors
(B vs. BU, BS vs. BSU). When used in combination, we can see a speed-up of convergence but the
asymptotic error is only marginally further improved (BLU and BLSU).

In Figure 11, it can be seen that skipping samples with low errors can speed-up convergence and
reduce the asymptotic error as well (BLU vs. BLSU). This is a very intriguing result, in the sense
that it implies that the system can learn faster and better by throwing away information.

Both Figures 10 and 11 show the BLUCH curve to diverge. Considering the success of the
BLSUCH curve, we can imply that skipping samples is necessary for the hybrid activation. How-
ever, the real problem, which was found out by viewing the dynamics of training, is that the center-
ing mechanism does not work correctly when we train on all samples. A possible remedy may be to
modify the statistics interval which is used for centering, as it is described at the end of Section 3.3.

BLSUC vs. BLSU shows that centering further reduces the remaining asymptotic error to half
and converges much faster as well.

Comparing curve BLSUCH vs. BLSUC, we see that the hybrid activation function does better,
but only marginally. This was expected since this problem has a single region of interest, so the
ability of H to focus on multiple regions simultaneously is not exercised. This is the reason for the
additional experiments in Section 5.1.2.

BLSUCH and ALSUCH were the most successful technique combinations, with the later being
a little faster. Nevertheless, it is very impressive that standard stochastic gradient descent with
momentum can approach the best asymptotic error in less than a second, when using a modern 3.2
GHz processor.

Figure 14 shows the average classification error in respect to the number of evaluated samples,
for the ALSUCH technique combination and various hidden layer sizes. It can be seen that the
asymptotic error is almost inversely proportional to the humber of hidden units. This is a good
indication that our techniques use the available resources efficiently. It is also interesting, that the
convergence rates to the corresponding asymptotic errors are quite fast and about the same for all
hidden layer sizes.

5.1.2 HYBRID VS. CONVENTIONAL ACTIVATION

For these experiments we used the two dimensional problem depicted in Figures 1c and 7. We
chose this problem as a representative of the class of problems that during early training generate

2032

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

BS
--BU —+— B

0,351 §

0,30 ~

0,25 ~

0,20 -

0,15 -

0,10 -

0,05 ~ 0—0—0—0—0—0—0—0—0—0—0—0—0

0,00
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Figure 10: Average classification error vs. number of evaluated samples for various technique
combinations, while training the problem in Figure 1a with 64 hidden units. The standard deviations
have been omitted for clarity.

"""" B BS
0.35 | ---+---BU —— B
' cox---BL —*—BLS
---e---BLU ——BLY
0.30 1 ---o---BLUC —o—BL3UC
’ ---m---BLUCH —=— BLSUCH
""" —o— ALSUCH
0,25 N
x“x ""-r. ________________
*, ros,
aN Foohe g
S Y-
0,20 3 e,
. BN Sy
.‘l N RS +- 4
‘. x S
‘e x *y
0,15 - ‘e X~ ey LRE
s R 3 * % -
e S e .
. o . o R e .
0,10 1 2 ’ -.'I::..:‘:OOOV-Ooo.::"’:"f’ N e
5 5 8 ©0- 0" 0~ 0- 0- O- . oo
"EmgEggg : 0 0- 5. &
b im-g-0-m-m
DoE—g—o
R 2 S R e e e S e S P W G
0,00 T T : : : : : : : :
0 1 2 3 4 5 6 7 8 9 10

Figure 11: Average classification error vs. Intel IA32 CPU cycles in billions, for various technique
combinations, while training the problem in Figure 1a with 64 hidden units. The horizontal scale
also corresponds to seconds when run on a 1 GHz processor. The standard deviations have been
omitted for clarity.

2033

CHARIATIS

—BS —— BV
——BLS ——BLU
0,35 1 —o—BLIUC —=— BLIUCH
—o— ALSUCH
0,30 1
0,25 |
0,20 1
0,15 -
0,10 —
cseres
tobsss
0,05 1
0,00 : : : : : : : : : ‘
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Figure 12: Part of Figure 10 showing error bars for technique combinations which employ S.

i B ---+---BU
055§y % Oy
LORXEL
" E ~§;
AT
0251 i%i££££££%%11111
i 5 1 3 I s) B e
0,20 - E E%i\ II‘IE'I‘IE- .E IIIII-I-I-IIII{[E[IEIIII

015 1 E{% | T, ll Ty 11 HEEE{{{EEE{E
%ii%wﬂ%i%%‘ ittt

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

0,05 1

0,00

Figure 13: Part of Figure 10 showing error bars for technique combinations which do not employ S.

2034

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

—o—32

0,20 - ; — 48
—0— 64
—— 96
—0—128
— 256

0,15 A

0,10 A

0,05 ~

0,00 ; ; ; T T T T T :)

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Figure 14: Average classification error vs. number of evaluated samples for various hidden layer
sizes, while training the problem in Figure 1a with the ALSUCH technique combination.

0,04 -

0,03 ~

0,02 -

0,01 -

0,00 T T T
0 300000 600000 900000 1200000 1500000 1800000 2100000 2400000 2700000 3000000

Figure 15: Average classification error vs. number of evaluated samples for the ALSUCH and
ALSUC technique combinations, while training the problem in Figure 1c with 100 hidden units.
The dashed lines show the minimum and maximum observed values.

2035

CHARIATIS

small clusters of high error density of various sizes. For this kind of problems we typically obtain
very small residuals for the classification error, although the problem may not have been learned.
This is because we measure the error on the whole input space and for these problems most of the
input space is trivial to be learned. The problem’s complexities are confined in very small areas.
The dynamic training set evolution algorithm is able to locate these areas, but we need much more
sample presentations, since most of the samples are not used for training.

The goal of this experiment is to measure the effectiveness of the hybrid activation function at
coping with the varying sizes of the subproblems. For these experiments we used 100 hidden units.

Figure 15 shows that the ALSUCH technique, which employs the hybrid activation function,
reduced the asymptotic error to half in respect to the ALSUC technique. As all of the visual in-
spections revealed, one of which is reproduced in Figure 16, the difference in the residual errors of
the two curves is due to the insufficient approximation of the smaller subproblem by the ALSUC
technique.

©) ©) \3)

Model ALSUCH ALSUC

Figure 16: ALSUCH vs. ALSUC approximations for a problem with two sub-problems.

5.2 Higher Input and Output Dimensions

In order to evaluate our techniques on a problem with higher input and output dimensions, we
selected a standard benchmark, the Letter recognition database from the UCI Machine Learning
Repository (Newman et al., 1998).

This database consists of 20000 samples that use 16 integer attributes to classify the 26 letters of
the English alphabet. This problem is characterized by a medium input dimensionality and a large
output dimensionality. The later, makes it a very challenging problem for any classifier.

This problem differs from those on which we have experimented so far, in that we do not have
the whole input space at our disposal for training. We must train on a limited number of samples
and then test the system’s generalization abilities on a separate test set. Although we have not taken
any special measures to assist generalization, the experimental results indicate that our techniques
have the inherent ability to generalize well, when given noiseless exemplars.

An observation that applies to this problem is that the IDD accelerated training method could not
do better than standard stochastic gradient descent with momentum. Thus, we report results using

2036

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

the BLSUCH technique combination which is computationally more efficient than the ALSUCH
technique.

For this experiment, which involves more than two output classes, we used the softmax activa-
tion function at the output layer.

Table 2 contains previously published results showing the classification accuracy of various
classifiers. The most successful of them were the AdaBoosted versions of the C4.5 decision-tree
algorithm and of a feed forward neural network with two hidden layers. Both classifier ensembles
required quite a lot of machines in order to achieve that high accuracy.

Classifier Test Error % | Reference

Naive Bayesian classifier 25,3 Ting and Zheng (1999)
AdaBoost on Naive Bayesian classifier 24,1 Ting and Zheng (1999)
Holland-style adaptive classifier 17,3 Frey and Slate (1991)

C4.5 13,8 Freund and Schapire (1996)
AdaBoost on C4.5 (100 machines) 3,3 Freund and Schapire (1996)
AdaBoost on C4.5 (1000 machines) 3,1 Schapire et al. (1997)
CART 12,4 Breiman (1996)

AdaBoost on CART (50 machines) 3,4 Breiman (1996)
16-70-50-26 MLP (500 online epochs) 6,2 Schwenk and Bengio (1998)
AdaBoost on 16-70-50-26 MLP (20 machines) 2,0 Schwenk and Bengio (1998)
AdaBoost on 16-70-50-26 MLP (100 machines) 15 Schwenk and Bengio (2000)
Nearest Neighbor 4,3 Fogarty (1992)

Table 2: A compilation of previously reported best error rates on the test set for the UCI Letters
Recognition Database.

Figure 17 shows the average error reduction in respect to the number of online epochs, for
the BLSUCH technique combination and various hidden layer sizes. As suggested in the database’s
documentation, we used the first 16000 samples for training and for measuring the training accuracy
and the rest 4000 samples to measure the predictive accuracy. The solid and dashed curves show
the test and training set errors respectively. Similarly to ensemble methods, we can observe two
interesting phenomena which both seem to contradict the Occam’s razor principle.

The first observation is that the test error stabilizes or continues to slightly decrease even after
the training error has been zeroed. What is really happening is that the RMS error for the training
set (which is related to the confidence of classification) continues to decrease even after the clas-
sification error has been zeroed, something that is also beneficiary for the test set’s classification
error.

The second observation is that increasing the network’s capacity does not lead to over fitting.
Although the training set error can be zeroed with just 125 hidden units, increasing the number of
hidden units reduces the residual test error as well. We attribute this phenomenon to the conjecture
that the hidden units’ differentiation results in a smoother approximation (as suggested by Figure 5
and the related discussion).

Comparing our results with those in Table 2, we can also observe the following: The 16-125-26
MLP (5401 weights) reached a 4.6% misclassification error on average, which is 26% better than the
6.2% of the 16-70-50-26 MLP (6066 weights), despite the fact that it had fewer weights, a simpler

2037

CHARIATIS

ha TEST ERROR % ---0---125 TRAIN —o— 125 TEST
B UNITSMIN AVG at end
---e---250 TRAIN —+— 250 TEST

0107 125 40 46

E- 250 28 32
500 23 26
1000 21 24

o

---500 TRAIN —o—500 TEST
---1000 TRAIN —=— 1000 TEST

0,05 5
........
.......................

0,00 -
0 10 20 30 40 50 60 70 80 90 100

Figure 17: Average error reduction vs. number of online epochs for various hidden layer sizes, while
training on the UCI Letters Recognition Database with the BLSUCH technique combination. The
solid and dashed curves show the test and training set errors respectively. The standard deviations
for the training set errors have been omitted for clarity. The embedded table contains the minimum
observed errors across all trials and epochs, and the average errors across all trials at epoch 100.

architecture with one hidden layer only and it was trained for a far less number of online epochs. It
is indicative that the asymptotic residual classification error on the test set was reached in about 30
online epochs.

The 16-1000-26 MLP (43026 weights) reached a 2.4% misclassification error on average, which
is the third best published result following the AdaBoosted 16-70-50-26 MLPs with 20 and 100
machines (121320 and 606600 weights respectively). The lowest observed classification error was
2.1% and was reached in one of the 10 runs at the 80th epoch. It must be stressed that the above
results were obtained without any optimization of the learning rate, without a learning rate annealing
schedule and within a by far shorter training time.

All MLPs with 250 hidden units and above, gave results which put them at the top of the list of
non-ensemble techniques and they even outperformed Adaboost on C4.5 with 100 machines.

Similarly to Figure 14, we also see that the convergence rates to the corresponding asymptotic
errors on the test set are quite fast and about the same for all hidden layer sizes.
6. Discussion and Future Research

We have presented global and local selective attention techniques that can help neural network train-
ing to concentrate on the difficult parts of complex non-linear problems. A new hybrid activation
function has also been presented that enables the hidden units to acquire individual receptive fields

2038

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

in the input space. These individual receptive fields may be global or local depending on the prob-
lem’s local complexities.

The success of the new activation function is due to the fact that it depends on two distances.
The first is the weighted distance of a sample to the hidden unit’s hyperplane. The second is the
distance to the hidden unit’s center. We need both distances and neither of them is sufficient. The
first helps us discriminate and the second helps us localize.

The dynamic training set evolution algorithm locates the sub-areas of the input space where the
problem resides. The fixed cascaded inhibitory connections and the selective training of a subset
of the hidden units on each sample, force the hidden units to get differentiated and attack different
subproblems. The individual centering of the hidden units at different points in the input space,
adaptively conditions the network to the problem’s local structures and enables each hidden unit
to solve a well-conditioned subproblem. In coordination with the above, the hidden units’ limited
receptive fields allow training to follow a divide and conquer paradigm where each hidden unit only
solves a local subproblem. The solutions to the subproblems are then combined by the output layer
to give a solution to the original problem.

In the reported experiments we initialized the hidden weights and biases so that the hidden hy-
perplanes would cover the whole input space at random positions and orientations. The initial norm
of the weights was also adjusted so that the net-input to each hidden unit would fall in the transition
between the linear and non-linear range of the activation function. These specific initializations
were necessary for standard backpropagation. On the contrary, we have found that the combined
techniques are insensitive to the initial weights and biases, as long as their values are small. We
have repeated the experiments with hidden biases set to zero and hidden weight norms set to 103
and the results where equivalent to those reported in Section 5. However, the choice of the best
initial learning rate is still problem specific.

An additional and important characteristic of these techniques is that training of the hidden
layer does not depend solely on gradient information. Gradient based techniques can only perform
local optimization by locating a local minimum of the error function when the system is already
at the basin of attraction of that minimum. Stochastic training has a potential of escaping from a
shallow basin, but only when the basin is not very wide. Once there, the system cannot escape
towards a different basin with a lower minimum. On the contrary, in our model some of the hidden
layer’s free parameters (the weights) are trained through gradient descent on the error, whereas
some other (the means and standard deviations) are “trained” from the statistical properties of the
back-propagated errors. Each hidden unit places its center near the center of mass of the error that
it receives and limits its visibility only to the area of the input space where it produces a significant
error. This model makes the hidden error landscape to constantly change. We conjecture that during
training, paths connecting the various error basins are continuously emerging and vanishing. As
a result the system can explore much more of the solution space. It is indicative that in all the
reported experiments, all trials converged to a solution with more or less the same residual error
irrespectively of the initial network state.

The combination of the presented techniques enables very fast training on complex classifica-
tion problems with embedded subproblems. By focusing on the problem’s details and efficiently
utilizing the available resources, they make feasible the solution of very difficult problems (like the
one in Figure 1e), provided that the adequate number of hidden units has been used. Although other
machine learning techniques can do the same, to our knowledge this is the first report that this can
be done using ordinary feed forward neural networks and backpropagation, in an online, adaptive

2039

CHARIATIS

and memory-less scenario, where the input exemplars are unknown before training and discarded
after being used.
In the following we discuss some areas that deserve further investigation.

6.1 Generalization and Regression

For the classes of problems that were investigated, we had noiseless exemplars and the whole input
space at our disposal for training, so there was no danger of overfitting. Thus, we did not use any
mechanism to assist generalization. This does not mean of course that the network just stored the
input output mapping, as a lookup table would do. By putting constraints on the positions and
orientations of the hidden unit hyperplanes and by limiting their receptive fields, we reduced the
system’s available degrees of freedom, and the network arranged its resources in a way to achieve
the best possible input-output mapping approximation.

The experiments on the Letter Recognition Database showed remarkable generalization capa-
bilities. However, when we train on noisy samples or when the number of training samples is small
in respect to the size and complexity of the input space, we have the danger of overfitting. It remains
to be examined how the described techniques are affected by methods that avoid overfitting, such
as, training with jitter, error regularization, target smoothing and sigmoid gain attenuation (Reed
et al., 1995). This consideration also applies to regression problems which usually require smoother
approximations. Although early experiments give evidence that the presented techniques can be
applied to regression problems as well, we feel that some smoothing technique must be included in
the training framework.

6.2 Receptive Fields Limited Orientations

As it was noted in Section 3.4, the orientations of the receptive field ellipses are limited to have the
direction of one of the input axes. This hinders training performance by not allowing the receptive
fields to be adequately shrunk at the direction perpendicular to the hyperplane. In addition, hidden
units with sloped hyperplanes are trained on highly correlated input values. These problems are
expected to be exaggerated in high dimensional input spaces.

We would cure both of these problems simultaneously, if we could individually transform the
input for each hidden unit through adaptive whitening, or, if we could present to each hidden unit a
rotated view of the input space, such that, one of the axes to be perpendicular to the hyperplane and
the rest to be parallel to the hyperplane. Unfortunately, both of the above transformations would
require too many additional parameters. An approximation (for 2 dimensional problems) that we
are currently investigating upon is the following:

For each input vector we compute K vectors rotated around the center of the input space with
successive angle increments equal to 11/(2K). Our purpose is to obtain uniform rotations between 0
and 1t/4. Every a few hundred training steps, we reassign to each hidden unit the most appropriate
input representation and adjust the affected parameters (weights, means and stdevs). The results are
promising.

6.3 Dynamic Cascaded Inhibitory Connections

Regarding the fixed cascaded inhibitory connections, it must be examined whether it is better to
make the strength of the connections, dynamic. Minus one is OK when the weights are small. How-

2040

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

ever as the weights get larger, the inhibitory connections get less and less effective to differentiate
the hidden units. We can try to make them relative to each hidden unit’s average absolute net-input
or alternatively to make them trainable. It has been observed that increasing the strength of these
connections enables the hidden units to generate more curved discriminant functions, which is very
beneficiary for some problems.

6.4 Miscellaneous

More experiments need to be done, in order to evaluate the effectiveness of the hybrid activation
function on highly non-linear problems in many dimensions. High dimensional input spaces have
a multitude of disturbing properties in regard to distance and density metrics, which may affect the
hybrid activation in yet unknown ways.

Last, we must devise a training mechanism, that will be invariant to the initial learning rate and
that will vary automatically the number of hidden units as each problem requires.

Acknowledgments

I would like to thank all participants in my threads in usenet comp.ai.neural-nets, for their fruitful
comments on early presentations of the subjects in this report. Special thanks to Aleks Jakulin for
his support and ideas on further research that can make these results even better and to Greg Heath
for bringing to my attention the perturbated forms for the calculation of sliding window statistics.
I also thank the area editor Léon Bottou and the anonymous reviewers for their valuable comments
and for helping me to bring this report in shape for publication.

Appendix A. Notational Conventions

The following list contains the meanings of the symbols that have been used in this report. Symbols
with subscripts are used either as scalars or as vectors and matrices when the subscripts are omitted.
For example, wj; is a single weight, Wj is a weight vector and W is a weight matrix.

o - A constant that determines the time scale of the exponential trace of the average training-set
error within the dynamic training set evolution algorithm.

B - A constant that determines the time scale of the exponential trace of the input means and
standard deviations.

d - Anaccumulator for the efficient implementation of the fixed cascaded inhibitory connections.
n - The number of hidden units.

U — The number of input units.

f — The hidden units’ squashing function.

i — Index enumerating the input units.

j — Index enumerating the hidden units.

k - Index enumerating the output units.

2041

CHARIATIS

aj — The hidden unit’s activation computed from the sample’s weighted distance to the hidden
unit’s hyperplane.

bj — The hidden unit’s activation attenuation computed from the sample’s distance to the hidden
unit’s center.

d; — The sample’s distance to the hidden unit’s center.

ej — The hidden unit’s accumulated back propagated errors.

g; — The hidden unit’s error signal (f’(nj) ej).

hj — The hidden unit’s activation.

mji— The mean of the values received by hidden unit j from input unit i.

nj — The net-input to the hidden unit.

qji — The mean of the squared values received by hidden unit j from input unit i.
r« — The error of output unit k.

sji — The standard deviation of the values received by hidden unit j from input unit i.
ujk — The weight of the connection from hidden unit j to output unit k.

vji — The variance of the values received by hidden unit j from input unit i.

wji — The weight of the connection from hidden unit j to input unit i.

Xi — The value of input unit i.

zji — The normalized input value received by hidden unit j from input unit i. It is currently com-
puted as the z-score of the input value. A better alternative would be to compute the vector Zj
by multiplying the input vector X with a whitening matrix Z;.

References

C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior of distance metrics
in high dimensional spaces. In J. Van den Bussche and V. Vianu, editors, Proceedings of the
8th International Conference on Database Theory (ICDT), volume 1973 of Lecture Notes in
Computer Science, pages 420-434. Springer, 2001.

K. Agyepong and R. Kothari. Controlling hidden layer capacity through lateral connections. Neural
Computation, 9(6):1381-1402, 1997.

S. Ahmad and S. Omohundro. A network for extracting the locations of point clusters using selective
attention. In Proceedings of the 12th Annual Conference of the Cognitive Science Society, MIT,
1990.

L. B. Almeida, T. Langlois, and J. D. Amaral. On-line step size adaptation. Technical Report INESC
RTQ07/97, INESC/IST, Rua Alves Redol 1000 Lisbon, Portugal, 1997.

2042

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251-276,
1998.

P. Bakker. Don’t care margins help backpropagation learn exceptions. In A. Adams and L. Sterling,
editors, Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, pages 139—
144, 1992.

P. Bakker. Exception learning by backpropagation: A new error function. In P. Leong and M. Jabri,
editors, Proceedings of the 4th Australian Conference on Neural Networks, pages 118-121, 1993.

S. Baluja and D. Pomerleau. Using the representation in a neural network’s hidden layer for task-
specific focus of attention. In 1JCAI, pages 133-141, 1995.

L. Breiman. Bias, variance, and arcing classifiers. Technical Report 460, Statistics Department,
University of California, 1996.

D. S. Broomhead and D. Lowe. Multivariate functional interpolation and adaptive networks. Com-
plex Systems, 2(3):321-355, 1988.

W. Duch, K. Grudzinski, and G. H. F. Diercksen. Minimal distance neural methods. In World
Congress of Computational Intelligence, pages 1299-1304, 1998.

D. L. Elliott. A better activation function for artificial neural networks. Technical Report TR 93-8,
The Institute for Systems Research, University of Maryland, College Park, MD, 1993.

G. W. Flake. Square unit augmented, radially extended, multilayer perceptrons. In G. B. Orr and
K. R. Miiller, editors, Neural Networks: Tricks of the Trade, volume 1524 of Lecture Notes in
Computer Science, pages 145-163. Springer, 1998.

T. C. Fogarty. Technical note: First nearest neighbor classification on frey and slate’s letter recog-
nition problem. Machine Learning, 9(4):387-388, 1992.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In ICML, pages 148-
156, 1996.

P. W. Frey and D. J. Slate. Letter recognition using holland-style adaptive classifiers. Machine
Learning, 6:161-182, 1991.

S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of
images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721-741, 1984.

T. Graepel and N. N. Schraudolph. Stable adaptive momentum for rapid online learning in nonlinear
systems. In J. R. Dorronsoro, editor, Proceedings of the International Conference on Artificial
Neural Networks (ICANN), volume 2415 of Lecture Notes in Computer Science, pages 450-455.
Springer, 2002.

M. Harmon and L. Baird. Multi-player residual advantage learning with general function approx-
imation. Technical Report WL-TR-1065, Wright Laboratory, Wright-Patterson Air Force Base,
OH 45433-6543, 1996.

2043

CHARIATIS

M. Hegland and V. Pestov. Additive models in high dimensions. Computing Research Repository
(CoRR), €s/9912020, 1999.

S. C. Huang and Y. F. Huang. Learning algorithms for perceptrons using back propagation with
selective updates. IEEE Control Systems Magazine, pages 56-61, April 1990.

R.A. Jacobs. Increased rates of convergence through learning rate adaptation. Neural Networks, 1:
295-307, 1988.

R. Kothari and D. Ensley. Decision boundary and generalization performance of feed-forward
networks with gaussian lateral connections. In S. K. Rogers, D. B. Fogel, J. C. Bezdek, and
B. Bosacchi, editors, Applications and Science of Computational Intelligence, SPIE Proceedings,
volume 3390, pages 314-321, 1998.

B. Laheld and J. F. Cardoso. Adaptive source separation with uniform performance. In Proc.
EUSIPCO, pages 183-186, September 1994,

Y. LeCun, P. Simard, and B. Pearlmutter. Automatic learning rate maximization by on-line estima-
tion of the hessian’s eigenvectors. In S. Hanson, J. Cowan, and L. Giles, editors, Advances in
Neural Information Processing Systems, volume 5, pages 156-163. Morgan Kaufmann Publish-
ers, San Mateo, CA, 1993.

Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Mueller. Efficient backprop. In G. B. Orr and K.-R.
Miller, editors, Neural Networks: Tricks of the Trade, volume 1524 of Lecture Notes in Computer
Science, pages 9-50. Springer, 1998.

T. K. Leen and G. B. Orr. Optimal stochastic search and adaptive momentum. In J. D. Cowan,
G. Tesauro, and J. Alspector, editors, Proceedings of the 7th NIPS Conference (NIPS), Advances
in Neural Information Processing Systems 6, pages 477-484. Morgan Kaufmann, 1993.

P. W. Munro. A dual back-propagation scheme for scalar reinforcement learning. In Proceedings of
the 9th Annual Conference of the Cognitive Science Society, Seattle, WA, pages 165-176, 1987.

N. Murata, K. Miiller, A. Ziehe, and S. Amari. Adaptive on-line learning in changing environments.
In M. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing
Systems 9 (NIPS), pages 599-605. MIT Press, 1996.

D. J. Newman, S. Hettich, C.L. Blake, and C.J. Merz. UCI repository of machine learning databases,
1998.

G.B. Orrand T. K. Leen. Using curvature information for fast stochastic search. In M. Mozer, M. I.
Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9 (NIPS),
pages 606—612. MIT Press, 1996.

J. L. Phillips and D. C. Noelle. Reinforcement learning of dimensional attention for categorization.
In Proceedings of the 26th Annual Meeting of the Cognitive Science Society, 2004.

M. Plumbley. A hebbian/anti-hebbian network which optimizes information capacity by orthonor-
malizing the principal subspace. In Proc. IEE Conf. on Artificial Neural Networks, Brighton, UK,
pages 86-90, 1993.

2044

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

R. Reed, R.J. Marks, and S. Oh. Similarities of error regularization, sigmoid gain scaling, target
smoothing, and training with jitter. IEEE Transactions on Neural Networks, 6(3):529-538, 1995.

R. E. Schapire. A brief introduction to boosting. In T. Dean, editor, Proceedings of the 16th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 1401-1406. Morgan Kaufmann,
1999.

R. E. Schapire, Y. Freund, P. Barlett, and W. S. Lee. Boosting the margin: A new explanation for
the effectiveness of voting methods. In D. H. Fisher, editor, Proceedings of the 14th International
Conference on Machine Learning (ICML), pages 322—-330. Morgan Kaufmann, 1997.

N. N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural
Computation, 14(7):1723-1738, 2002.

N. N. Schraudolph. Centering neural network gradient factors. In G. B. Orr and K. R. Miiller, edi-
tors, Neural Networks: Tricks of the Trade, volume 1524 of Lecture Notes in Computer Science,
pages 207-226. Springer, 1998a.

N. N. Schraudolph. Accelerated gradient descent by factor-centering decomposition. Technical
Report IDSIA-33-98, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, 1998b.

N. N. Schraudolph. Online local gain adaptation for multi-layer perceptrons. Technical Report
IDSIA-09-98, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Galleria 2, CH-6928
Manno, Switzerland, 1998c.

N. N. Schraudolph. Local gain adaptation in stochastic gradient descent. In ICANN, pages 569-574.
IEE, London, 1999.

H. Schwenk and Y. Bengio. Boosting neural networks. Neural Computation, 12(8):1869-1887,
2000.

H. Schwenk and Y. Bengio. Training methods for adaptive boosting of neural networks for character
recognition. In M. Jordan, M. Kearns, and S. Solla, editors, Advances in Neural Information
Processing Systems 10. MIT Press, Cambridge, MA, 1998.

M. W. Spratling and M. H. Johnson. Neural coding strategies and mechanisms of competition.
Cognitive Systems Research, 5(2):93-117, 2004.

C. Thornton. The howl effect in dynamic-network learning. In Proceedings of the International
Conference on Artificial Neural Networks, pages 211-214, 1992,

K. M. Ting and Z. Zheng. Improving the performance of boosting for naive bayesian classification.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 296-305, 1999.

Y. H. Yu and R. F. Simmons. Descending epsilon in back-propagation: A technique for better gen-
eralization. In Proceedings of the International Joint Conference on Neural Networks (IJCNN),
volume 3, pages 167-172, 1990.

S. Zhong and J. Ghosh. Decision boundary focused neural network classifier. In Intelligent Engi-
neering Systems Through Artificial Neural Networks (ANNIE). ASME Press, 2000.

2045

