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Abstract

Learning vector quantization (LVQ) schemes constitute intuitive, powerful classification heuris-
tics with numerous successful applications but, so far, limited theoretical background. We study
LVQ rigorously within a simplifying model situation: two competing prototypes are trained from
a sequence of examples drawn from a mixture of Gaussians. Concepts from statistical physics
and the theory of on-line learning allow for an exact description of the training dynamics in high-
dimensional feature space. The analysis yields typical learning curves, convergence properties, and
achievable generalization abilities. This is also possible for heuristic training schemes which do not
relate to a cost function. We compare the performance of several algorithms, including Kohonen’s
LVQ1 and LVQ+/-, a limiting case of LVQ2.1. The former shows close to optimal performance,
while LVQ+/- displays divergent behavior. We investigate how early stopping can overcome this
difficulty. Furthermore, we study a crisp version of robust soft LVQ, which was recently derived
from a statistical formulation. Surprisingly, it exhibits relatively poor generalization. Performance
improves if a window for the selection of data is introduced; the resulting algorithm corresponds to
cost function based LVQ2. The dependence of these results on the model parameters, for example,
prior class probabilities, is investigated systematically, simulations confirm our analytical findings.

Keywords: prototype based classification, learning vector quantization, Winner-Takes-All algo-
rithms, on-line learning, competitive learning

1. Introduction

The term learning vector quantization (LVQ) has been coined for a family of algorithms which is
widely used in the classification of potentially high-dimensional data. Successful applications of
LVQ include such diverse problems like medical image or data analysis, fault detection in technical
systems, or the classification of satellite spectral data (Bojer et al., 2003; Kuncheva, 2004; Schleif
et al., 2006; Villmann et al., 2003). An up to date overview and extensive bibliography is available
at a repository which is maintained by the Neural Networks Research Centre, Helsinki (2002).

The popularity of the approach is due to several attractive features: LVQ procedures are easy to
implement and intuitively clear. This makes them particularly interesting for researchers and practi-
tioners outside the machine learning community who are searching for robust classification schemes
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without the black-box character of many neural methods. The classification of LVQ is based on a
distance measure, usually the Euclidean distance, which quantifies the similarity of given data with
so-called prototype or codebook vectors representing the classes. The prototypes are determined
in a training process from labeled example data and can be interpreted in a straightforward way
as they capture essential features of the data in the very same space. This is in contrast with, say,
adaptive weights in feedforward neural networks or support vector machines which do not allow
for immediate interpretation as easily since they are embedded in a different space or at atypical
borderline positions of the data instead of typical regions. Other very attractive features of LVQ are
the natural way in which it can be applied to multi-class problems and the fact that the complexity
of LVQ networks can be controlled during training according to the specific needs.

In general, several prototypes can be employed to represent one of the classes. In simple hard
or crisp schemes, a data or feature vector is assigned to the closest of all prototypes and the cor-
responding class. Extensions of this deterministic scheme to probabilistic soft assignments and
classification are straightforward but will not be considered here. Plausible training prescriptions
exist which mostly employ the concept of competitive learning and adaptation by means of Hebbian
terms. Prototypes are updated according to their distance from given example data. Thereby, given
a training pattern, the closest prototype vector or a set of closest vectors, the so-called winners are
identified. These vectors are then moved towards (away from) the data if their class label coincides
with (differs from) that of the example, respectively.

Both, training algorithms and the resulting classification schemes are fairly easy to implement
and fast. In practice, the computational effort of LVQ training usually scales linearly with the train-
ing set size, and that of classification depends only on the (fixed) number of prototypes and the input
dimensionality. Furthermore, training is incremental, such that the adaptation of a classifier to novel
data which becomes available after a first training phase is straightforward. Despite this simplicity,
LVQ is very powerful since every separating hypercurve can, in principle, be approximated by LVQ
networks with sufficiently many prototypes. Furthermore, recent variations of LVQ allow for the
incorporation of problem specific metrics or kernels which can be adapted during training such that
very few prototypes can model quite complex behavior (Hammer et al., 2005b,c).

However, the theoretical understanding of the convergence properties, stability, and achievable
generalization ability of many LVQ algorithms appears fairly limited. Many LVQ procedures, in-
cluding Kohonen’s original formulation (LVQ1) are based on heuristic arguments. A large variety
of modifications of the basic scheme have been suggested which aim at larger flexibility, faster con-
vergence or better approximation of Bayesian decision boundaries, such as LVQ2.1, LVQ3, OLVQ,
RSLVQ, or GLVQ (Kohonen, 1997, 1990; Pregenzer et al., 1996; Sato and Yamada, 1995). Clearly,
the ultimate goal of training is good generalization, that is, the correct classification of novel data
with high probability after training. However, the above mentioned algorithms differ considerably in
their learning dynamics, stability, and generalization performance, while the theoretical background
of this behavior is hardly understood.

Recently, a few attempts to put LVQ type algorithms on solid mathematical grounds have been
made. Remarkably, LVQ-type classifiers fall into the class of large-margin algorithms which allow
for dimensionality independent generalization bounds, as pointed out first by Crammer et al. (2003).
Here, the term margin refers to the so-called hypothesis margin of an LVQ classifier: the distance
the classification boundary, that is, the respective prototypes, can be moved without changing the
classification of the given data points. Similar bounds can also be derived for recent variants of
LVQ which substitute the standard Euclidean metric by an alternative adaptive choice involving
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relevance factors (Hammer et al., 2005a; Hammer and Villmann, 2002). Thus, LVQ type networks
seem promising candidates for the classification of high-dimensional data sets.

However, standard LVQ training does not directly aim at an optimization of the margin or even
an optimization of the classification error, usually. Rather, the learning algorithm is often purely
heuristically motivated and does not directly follow any learning objective or explicit cost function.
Apart from the fact that the quality of generalization in these methods is therefore not clear, often
dynamical problems such as divergence of the algorithms can be observed. An important example is
LVQ2.1 and similar strategies which can display divergent behavior unless a proper (also heuristic)
window rule is included in the update scheme. Few approaches try to cope with this problem
by explicitly grounding the update scheme on a cost function (see, for example, Bottou, 1991).
A prominent example has been proposed by Sato and Yamada (1995) together with a discussion
of the stability (Sato and Yamada, 1998), however, without considering the borders of receptive
fields. A generalization which allows the incorporation of more general metrics, accompanied by
an investigation of the borders, has been presented by Hammer and Villmann (2002) and Hammer
et al. (2005c). Recently, two models which provide a cost function by means of soft assignments
have been proposed by Seo et al. (2003) and Seo and Obermayer (2003). While the first method
does not possess a crisp limit, the second one does. However, only the cost function discussed by
Sato and Yamada (1995) and Hammer and Villmann (2002) is directly connected to the hypothesis
margin, as pointed out by Hammer et al. (2005a). For all these cost functions, the connection to
the classification error is not obvious. Thus, there is a clear need for a rigorous analysis of LVQ
type learning schemes which allows for a systematic judgement of their dynamical properties and
generalization ability.

In this work we discuss and employ a theoretical framework which makes possible the system-
atic investigation and comparison of LVQ training procedures. The analysis is performed for model
situations in which training uses a sequence of uncorrelated, randomized example data. In the the-
ory of such on-line learning processes, concepts known from statistical physics have been applied
with great success in the context of supervised and unsupervised learning. This includes perceptron
training, gradient based training of layered feedforward neural networks, and unsupervised cluster-
ing or principal component analysis (see Watkin et al., 1993; Biehl and Caticha, 2003; Saad, 1999;
Engel and van den Broeck, 2001, for additional references). Here, we transfer these methods to
LVQ type learning, and we are capable of presenting quite unexpected insights into the dynamical
behavior of several important learning schemes.

The essential ingredients of the approach are (1) the consideration of very large systems in the
so-called thermodynamic limit and (2) the performing of averages over the randomness or disor-
der contained in the data. A small number of characteristic quantities is sufficient to describe the
essential properties of very large systems. Under simplifying assumptions, the evolution of these
macroscopic order parameters is given by a system of deterministic coupled ordinary differential
equations (ODE) which describe the dynamics of on-line learning exactly in the thermodynamic
limit.

The formalism enables us to calculate, for instance, typical learning curves exactly within the
framework of model situations. We compare the generalization behavior of several LVQ algorithms.
Their asymptotic behavior in the limit of infinitely many examples is of particular relevance in this
context. We evaluate the achievable generalization error as a function of the prior frequencies of
classes and other model parameters. Thus, for the considered model situation, we can rigorously
compare the performance of LVQ-type learning schemes and identify the best training method.
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The paper is organized as follows: In the next section we introduce the model data and the
structure of the LVQ classifier. We also describe the considered training algorithms which include
Kohonen’s LVQ1 and a limit version of LVQ2.1 or LVQ-LR. We will use the term LVQ+/- for this
prescription and we consider it with and without an idealized early stopping procedure. Further-
more we study a crisp version of RSLVQ (Seo and Obermayer, 2003), which will be referred to as
learning from mistakes (LFM). Finally, we consider LFM-W, a variant of the latter which selects
data from a window close to the decision boundary and relates to the cost function based LVQ2 al-
gorithm (Kohonen et al., 1988; Bottou, 1991). In Section 3 we outline the mathematical treatment.
The formalism and its application to the above mentioned algorithms are detailed in Appendix A.
Relevant features of the learning curves, including the achievable generalization ability are dis-
cussed and compared for the different training prescriptions in Section 4. Finally, we summarize
our findings in Section 5 and conclude with a discussion of prospective projects and extensions of
our studies.

Some aspects of this work have been communicated previously, in much lesser detail, at the
Workshop on the Self-Organizing Map in Paris, 2005 (Ghosh et al., 2005).

2. The Model

In this paper we investigate the dynamics of different LVQ algorithms in the framework of a simpli-
fying model situation: High-dimensional data from a mixture of two overlapping Gaussian clusters
are presented to a system of two prototype vectors each of which represents one of the classes.
Whereas the model appears very much simplified in comparison with real world multi-class, multi-
prototype problems, it provides a setting in which it is well possible to study unexpected, essential,
and non-trivial features of the learning scenarios.

2.1 Prototype Vectors

We will investigate situations with only two prototype or codebook vectors wS ∈ R
N . Here, the

subscript S = ±1 indicates which class of data the vector is supposed to represent. For the sake
of brevity we will frequently use the shorthand subscripts + or − for +1 and −1, respectively.
The classification as parameterized by the prototypes is based on Euclidean distances: Any given
input ξ ∈ R

N will be assigned to the class of the closest prototype. In our model situation, the
classification result is S whenever | w+S −ξ |<| w−S −ξ |.

Note that, in principle, the simple LVQ classifier with only two prototypes could be replaced by
a linearly separable classification S = sign[wperc ·ξ − θperc] with perceptron weight vector wperc =
(w+−w−) and threshold θperc =

(
w2

+−w2
−
)
/2. Here, however, we are interested in the more com-

plex learning dynamics of independent codebook vectors as provided by LVQ algorithms. We will
demonstrate that our simple example scenario already displays highly non-trivial features and pro-
vides valuable insights in the more general training of several prototypes.

2.2 The Data

Throughout the following we consider random inputs which are generated according to a bimodal
distribution. We assume that vectors ξ ∈ R

N are drawn independently according to the density

P(ξ) = ∑
σ=±1

pσ P(ξ | σ) with P(ξ | σ) =
1

(2πvσ)N/2
exp

[
− 1

2vσ
(ξ−λBσ)2

]
. (1)
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Figure 1: Data as generated according to the density (1) in N = 200 dimensions with prior weights
p− = 0.6, p+ = 0.4 and variances v− = 0.64,v+ = 1.44. Open (filled) circles represent
160(240) vectors ξ from clusters centered about orthonormal vectors λB+ (λB−) with
λ = 1, respectively. The left panel shows the projections h± = w± · ξ of the data on a
randomly chosen pair of orthogonal unit vectors w±. The right panel corresponds to the
projections b± = B± ·ξ, diamonds mark the position of the cluster centers.

The conditional densities P(ξ | σ=±1) correspond to isotropic Gaussian clusters with variances vσ
centered at λBσ. The cluster weights or prior probabilities pσ satisfy the condition p+ + p− = 1.
We assume the center vectors Bσ to be orthonormal, that is, B2

+ = B2
− = 1 and B+ ·B− = 0 in the

following. While the distance of the cluster centers is controlled by the model parameter λ = O(1),
the orthogonality condition fixes their position with respect to the origin. The target classification
is taken to coincide with the cluster label σ = ±1. Note that, due to the overlap of the clusters, the
task is obviously not linearly separable.

Statistical physics has been used earlier to analyse the generalization behavior of perceptron
type learning prescriptions in similar models. We refer to the work of Barkai et al. (1993) and
Meir (1995) for examples. The former considers learning from data in the limit of large separations
λ � v+,v−. The latter compares the off-line minimization of the training error with a maximum-
likelihood estimation of the cluster centers. The learning of a linearly separable rule which is defined
for clustered input data has been studied in the work of Marangi et al. (1995) and Riegler et al.
(1996). Here we are interested in the dynamics and generalization ability of LVQ-type learning
rules for non-separable data.

In the following we denote conditional averages over P(ξ | σ) by 〈· · ·〉σ whereas 〈· · ·〉 =

∑σ=±1 pσ 〈· · ·〉σ represents mean values with respect to the full density (1). According to Eq. (1),
the components ξ j are statistically independent quantities with variance vσ. For an input from clus-
ter σ we have, for instance,

〈
ξ j
〉

σ = λ(Bσ) j and hence

〈ξ2〉σ =
N

∑
j=1

〈
ξ2

j

〉
σ =

N

∑
j=1

(
vσ +

〈
ξ j
〉2

σ

)
= vσ N +λ2

⇒ 〈ξ2〉 = (p+v+ + p−v−) N +λ2. (2)
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In the mathematical treatment we will exploit formally the thermodynamic limit N → ∞, corre-
sponding to very high-dimensional data and prototypes. Among other simplifying consequences
this allows, for instance, to neglect the term λ2 on the right hand side of Eq. (2).

The clusters overlap significantly and, moreover, their separation is along a single direction
(B+ −B−) in the N-dimensional input space. Figure 1 displays sample data in N = 200 dimen-
sions, generated according to a density of the form (1). While the clusters are clearly visible in the
plane spanned by B+ and B−, projections into a randomly chosen two-dimensional subspace do not
display the separation at all.

2.3 On-line Algorithms

We consider so-called on-line learning schemes in which a sequence of single example data {ξ µ,σµ}
is presented to the system. At each learning step, the update of prototype vectors is based only on
the current example. Consequently, an explicit storage of data in the learning system is avoided and
the computational effort per step is low compared to costly off-line or batch prescriptions.

In many practical situations examples are drawn from a given training set with possible multiple
presentations of the same data. Here, however, we will assume that at each time step µ = 1,2, . . . a
new, uncorrelated vector ξµ is generated independently according to the density (1). We will treat
incremental updates of the generic form

wµ
S = wµ−1

S +∆wµ
S with ∆wµ

S =
η
N

fS
[
dµ

+,dµ
−,σµ, . . .

] (
ξµ −wµ−1

S

)
(3)

where the vector wµ
S denotes the prototype after presentation of µ examples and the constant learning

rate η is rescaled with the input dimension N.
Prototypes are always moved towards or away from the current input ξµ. The modulation func-

tion fS[. . .] in Eq. (3) defines the actual training algorithm and controls the sign and magnitude of
the update of vectors wS. In general, fS will depend on the prototype label S and the class label
σµ of the example; for convenience we denote the dependence on S as a subscript rather than as an
explicit argument. The modulation function can further depend on the squared Euclidean distances
of ξµ from the current positions of the prototypes:

dµ
S =

(
ξµ −wµ−1

S

)2
.

Additional arguments of fS, for instance the lengths or relative positions of the vectors wµ−1
S , could

be introduced easily.
The use of a different learning rate per class or even per prototype can be advantageous in

practice. This is expected, in particular, if the training data is highly unbalanced with respect to
the class membership of examples. Here, we restrict the analysis to using a unique value of η, for
simplicity. As we will see, the behavior of algorithms is qualitatively the same in large ranges of
prior weights p±.

In this work we study the performance of several on-line training prescriptions which can be
written in the form of Eq. (3):

a) LVQ1
Kohonen’s original formulation of learning vector quantization (Kohonen, 1995, 1997) ex-
tends the concept of unsupervised competitive learning in an intuitive way to a classification
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task. At each learning step, the prototype with minimal distance from the current example is
determined. Only this so-called winner is updated, hence the term winner-takes-all (WTA)
algorithms has been coined for this type of prescription. The winner is moved towards (away
from) the example input ξµ if prototype label and class membership of the data agree (differ),
respectively.
This plausible strategy realizes a compromise between (I) the representation of data by proto-
types with the same class label and (II) the identification of decision boundaries which clearly
separate the different classes.
LVQ1 for two prototypes is defined by Eq. (3) with the modulation function

fS[d
µ
+,dµ

−,σµ] = Θ
(
dµ
−S −dµ

+S

)
Sσµ with Θ(x) =

{
1 if x > 0
0 else.

(4)

Here, the Heaviside function singles out the winning prototype and the factor Sσµ = ±1
determines the sign of the update. Eq. (4) expands to f+ = Θ(dµ

−−dµ
+)σµ for the prototype

representing class S = +1 (or ‘+‘, for short). Correspondingly, it reads f− =−Θ(dµ
+−dµ

−)σµ

for prototype label S = −1.

Note that LVQ1 cannot be interpreted as a stochastic gradient descent procedure in a straight-
forward way. This is in contrast to unsupervised vector quantization (VQ), which disregards
labels completely and would reduce to the choice fS[. . .] = Θ

(
dµ
−S −dµ

+S

)
in our model situ-

ation (Biehl et al., 1997, 2005; Ghosh et al., 2005).

b) LVQ+/-
A popular modification of basic LVQ was also suggested by Kohonen (1997, 1990) and was
termed LVQ2.1. Originally it is based on heuristics and aims at a more efficient separation
of prototypes which represent different classes. Given a single example, the update concerns
two prototypes: (I) the closest among all codebook vectors which belong to the same class
as the data, and (II) the closest vector among the prototypes that represent a different class.
The so-called correct winner (I) is moved towards the data whereas the wrong winner (II) is
moved even farther away.

An important ingredient of LVQ2.1 is that the update is only performed if the example ξµ

falls into the vicinity of the current decision boundary. Variants have been suggested, such
as LVQ-LR (Seo and Obermayer, 2003), which differ in the way this selective window is
defined.

In order to obtain a first insight into this type of algorithm, we consider the unrestricted
version or, in other words, the limit of infinite window size. We will refer to this basic
prescription as LVQ+/-, in the following.

In our model with two prototypes only, the identification of the respective winners is redun-
dant and the prescription reduces to updating both vectors from each example. The modula-
tion function in Eq. (3) merely determines the sign of ∆wS according to the class label:

fS[σµ] = Sσµ = ±1. (5)

Algorithms like LVQ2.1 or LVQ-LR were suggested in order to improve the achieved gener-
alization ability in comparison with basic LVQ1. It is well known, however, that a suitable
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window size has to be chosen in order to avoid divergence and stability problems. We will
demonstrate for unrestricted LVQ+/- that these difficulties occur already in our simplifying
model scenario. Various strategies have been suggested in the literature to cope with this prob-
lem while keeping the basic form of the algorithm. Here, we will focus on a so-called early
stopping strategy, which aims at ending the learning process as soon as the generalization
ability begins to deteriorate due to the instability.

c) LFM
Recently, Seo and Obermayer suggested a cost function for LVQ which is based on likelihood
ratios (Seo and Obermayer, 2003). They derive the corresponding robust soft learning vector
quantization (RSLVQ) scheme which is supposed to overcome the above mentioned stability
problems of LVQ+/-. It has been demonstrated that RSLVQ has the potential to yield very
good generalization behavior in practical situations (Seo and Obermayer, 2003).
The crisp version of RSLVQ is particularly transparent: In the limiting case of deterministic
assignments an update analogous to LVQ+/- is performed only if the current configuration of
prototypes misclassifies the new example. If, on the contrary, the correct winner is indeed
the closest of all prototypes, the configuration is left unchanged. In analogy to perceptron
training (e.g., Watkin et al., 1993; Engel and van den Broeck, 2001), we use the term learning
from mistakes (LFM) for this prescription.
In our model scenario LFM is implemented by the choice

fS[d
µ
+,dµ

−,σµ] = Θ
(
dµ

σµ −dµ
−σµ

)
Sσµ. (6)

Here, the Heaviside function restricts the update to examples which are misclassified upon
presentation.

d) LFM-W
The LFM scheme (6) can also be obtained as a limiting case of Kohonen’s LVQ2 algorithm,
which includes a window rule for the selection of data (Kohonen et al., 1988). As shown
by Bottou (1991), this prescription can be interpreted as a stochastic gradient descent with
respect to a proper cost function.

As in LFM, an update of the correct winner wσµ and the wrong winner w−σµ is only performed
if the current classification is wrong, that is, dµ

−σµ < dµ
σµ for an example from class σµ. Here,

however, the additional constraint

(ξµ −wσµ)
2 −
(
ξµ −w−σµ

)2
< c

(
ξµ −w−σµ

)2
(7)

has to be satisfied, where c is a small positive number (Kohonen et al., 1988; Bottou, 1991).
Hence, the vector ξµ is only accepted for update if it is not too far away from the correct
winner. In other words, ξµ has to be misclassified and fall into a window in the vicinity of the
current decision boundary.

For the type of high-dimensional data we consider here, the window size c has to satisfy a
particular scaling to be meaningful. While the term (ξµ)

2
= O(N) cancels on the left hand side

(l.h.s.) of Eq. (7), it dominates the r.h.s. in the limit N → ∞ and the condition is non-trivial
only if c = O(1/N). Hence, we introduce a rescaled parameter δ = c (ξµ)

2
= O(1) and obtain

0 < (dµ
σµ −dµ

−σµ) < δ as the conditions for non-zero updates. The first one corresponds to the
misclassification of ξµ, the second implements the window selection in the limit N → ∞.
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We refer to this algorithm as LFM with window (LFM-W) in the following. It is represented
by the modulation function

fS[d
µ
+,dµ

−,σµ] =
[
Θ
(
dµ

σµ −dµ
−σµ

)
−Θ

(
dµ

σµ −dµ
−σµ −δ

)]
Sσµ. (8)

Unrestricted LFM (6) is, of course, recovered in the limit of infinite window size δ → ∞.

2.4 Relevance of the Model

Before we proceed with the mathematical analysis, we would like to put our model into perspective
and discuss its relevance.

Obviously, the learning scenario under consideration is very much simplifying and clear cut. It
represents perhaps the simplest non-trivial situation in which LVQ like learning should be applica-
ble. The presence of only one, spherically symmetric Gaussian cluster of data per class is certainly
far away from practical situations encountered in typical applications. The use of only two prototype
vectors is perfectly appropriate in such a scenario, and the problem of model selection is completely
avoided.

Nevertheless, our model represents an important aspect of more realistic multi-class multi-
prototype situations: the competition of the two prototypes which currently define the decision
boundary or a portion thereof. Note that many practical algorithms reduce to the modification of
only one or two prototype vectors in every single update step. Note furthermore that the model also
allows to investigate unsupervised vector quantization (VQ), which is equivalent to the competition
of two prototypes within the same class in our framework (see, for example, Biehl et al., 1997 and
Ghosh et al., 2004).

As we will demonstrate in the following, highly non-trivial properties of the considered training
algorithms will become apparent in the course of our analysis. While additional phenomena and
complications must be expected in more complex training scenarios, the effects observed here will
certainly persist and play an important role under more general circumstances.

Some of the training algorithms we consider are simplifying limit cases of prescriptions sug-
gested in the literature. For example, the above defined LFM algorithm can be interpreted as the
crisp limit of RSLVQ (Seo and Obermayer, 2003). Obviously, results for the former will not ap-
ply immediately to the latter. Nevertheless, we aim at a principled understanding of how certain
ingredients of an algorithm influence its learning dynamics and generalization behavior. The ulti-
mate goal is of course to exploit this understanding in the optimization of existing schemes and the
development of novel, efficient ones.

3. Mathematical Analysis

We apply the successful theory of on-line learning (see, for example, Biehl and Caticha, 2003; Engel
and van den Broeck, 2001; Saad, 1999, for reviews) to describe the dynamics of LVQ algorithms.
The mathematical treatment of our model is based on the assumption of high-dimensional data and
prototypes ξ,w± ∈ R

N . The thermodynamic limit N → ∞ allows to apply concepts from statistical
physics in the following key steps which will be detailed below:

1. The original system including many degrees of freedom is characterized in terms of only a
few quantities, so-called macroscopic order parameters. For these, recursion relations can be
derived from the learning algorithm.
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2. Applying the central limit theorem enables us to perform an average over the random se-
quence of example data by means of Gaussian integrations.

3. Self-averaging properties of the order parameters allow to restrict the description to their
mean values. Fluctuations of the stochastic dynamics can be neglected in the limit N → ∞.

4. A continuous time limit leads to the description of the dynamics in terms of coupled, deter-
ministic ordinary differential equations (ODE) for the above mentioned order parameters.

5. The (numerical) integration of the ODE for given modulation function and initial conditions
yields the evolution of order parameters in the course of learning. From the latter one can
directly obtain the learning curve, that is, the generalization ability of the LVQ classifier as a
function of the number of example data.

3.1 Characteristic Quantities and Recursions

The selection of meaningful macroscopic quantities reflects, of course, the particular structure of
the model. After presentation of µ examples, the system is characterized by the high-dimensional
vectors wµ

+,wµ
− and their positions relative to the center vectors B+,B−. As we will demonstrate in

the following, a suitable set of order parameters is

Rµ
Sσ = wµ

S ·Bσ and Qµ
ST = wµ

S ·w
µ
T with σ,S,T ∈ {−1,+1}.

The self-overlaps Qµ
++,Qµ

−− and the symmetric cross-overlap Qµ
+− = Qµ

−+ relate to the lengths and
relative angle between the prototype vectors, whereas the four quantities Rµ

Sσ specify their projec-
tions into the subspace spanned by {B+,B−}.

From the generic algorithm (3) we can directly derive recursion relations which specify the
change of order parameters upon presentation of example ξµ from cluster σµ:

Rµ
Sσ −Rµ−1

Sσ
1/N

= η fS

(
Bσ ·ξµ −Rµ−1

Sσ

)
,

Qµ
ST −Qµ−1

ST

1/N
= η fS

(
wµ−1

T ·ξµ −Qµ−1
ST

)
+ η fT

(
wµ−1

S ·ξµ −Qµ−1
ST

)

+η2 fS fT (ξµ)2/N. (9)

Here we use the shorthand fS for the modulation function of prototype S, omitting the arguments.

3.2 Average over Random Examples

For a large class of modulation functions, including the ones considered here, the current input ξµ

appears on the right hand side of Eq. (9) only through its length and the projections

hµ
S = wµ−1

S ·ξµ and bµ
σ = Bσ ·ξµ. (10)

Note that also the Heaviside terms as they appear in the modulation functions, Eqs. (4,6,8), do not
depend on ξµ explicitly, for example:

Θ
(
dµ
−−dµ

+

)
= Θ

(
+2(hµ

+−hµ
−)−Qµ−1

++ +Qµ−1
−−
)

.
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When performing the average over the current example ξµ we first exploit Eq. (2) which yields

lim
N→∞

1
N

〈
(ξµ)2〉 = (v+p+ + v−p−)

for all input vectors in the thermodynamic limit.
We assume that the new example input ξµ is uncorrelated with all previous data and, thus, also

with the current vectors wµ−1
S . Therefore, the central limit theorem implies that the projections,

Eq. (10), become correlated Gaussian quantities for large N. Note that this observation does not
rely on the fact that the specific density (1) is a mixture of Gaussians itself. It holds whenever the
components of ξµ are statistically independent and have the same class conditional first and second
moments as in (1).

The joint Gaussian density P(hµ
+,hµ

−,bµ
+,bµ

−) is fully specified by first and second moments. As
shown in the appendix, for an input from cluster σ these read

〈
hµ

S

〉
σ = λRµ−1

Sσ ,
〈
bµ

τ
〉

σ = λδSτ,
〈
hµ

Shµ
T

〉
σ −
〈
hµ

S

〉
σ

〈
hµ

T

〉
σ = vσ Qµ−1

ST ,

〈
hµ

Sbµ
τ
〉

σ −
〈
hµ

S

〉
σ

〈
bµ

τ
〉

σ = vσ Rµ−1
Sτ ,

〈
bµ

ρbµ
τ
〉

σ −
〈
bµ

ρ
〉

σ

〈
bµ

τ
〉

σ = vσ δρτ (11)

where S,T,σ,ρ,τ ∈ {+1,−1} and δ... is the Kronecker-Delta. Hence, the density of hµ
± and bµ

± is
given in terms of the model parameters λ, p±,v± and the above defined set of order parameters in
the previous time step.

This important result enables us to perform an average of the recursion relations, Eq. (9), over
the latest example data in terms of Gaussian integrations. Moreover, the result can be expressed in
closed form in {Rµ−1

Sσ ,Qµ−1
ST }. In the appendix we detail the calculation and give specific results for

the algorithms considered here.

3.3 Self-averaging Property

The thermodynamic limit has an additional simplifying consequence: Fluctuations of the quantities
{Rµ

Sσ,Qµ
ST} decrease with increasing N and in fact vanish for N → ∞. Hence, a description in

terms of their mean values is sufficient. In the statistical physics of disordered systems the term
self-averaging is used for this property.

For a detailed mathematical discussion of self-averaging in on-line learning we refer to the work
of Reents and Urbanczik (1998). Here, we have confirmed this property empirically in Monte Carlo
simulations of the learning process by comparing results for various values of N, see Figure 2 (right
panel) and the discussion in Section 3.6.

Neglecting fluctuations allows us to interpret the averaged recursion relations directly as recur-
sions for the means of {Rµ

Sσ,Qµ
ST} which coincide with their actual values in very large systems.

3.4 Continuous Learning Time

An essentially technical simplification is due to the fact that, for N → ∞, we can interpret the
differences on the left hand sides of Eq. (9) as derivatives with respect to the continuous learning
time

α = µ/N.
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Clearly, one would expect that the number of examples required for successful training should grow
linearly with the number of adjustable parameters in the system. Hence, the rescaling of µ with the
dimension of the feature and prototype space appears natural.

The resulting set of coupled ODE obtained from Eq. (9) is of the form

dRSτ

dα
= η (〈bτ fS〉 − RSτ 〈 fS〉) ,

dQST

dα
= η (〈hS fT +hT fS〉 − QST 〈 fS + fT 〉)

+η2 ∑
σ=±1

vσ pσ 〈 fS fT 〉σ . (12)

The required averages and specific equations for the particular modulation functions considered
here are given in the Appendix, Sections A.3 and A.4. Note that the ODE for QST contain terms
proportional to η and η2 while dRSτ/dα is linear in the learning rate.

3.5 The Learning Curve

After working out the system of ODE for a specific modulation function, it can be integrated, at least
numerically. For given initial conditions {RSσ(0),QST (0)}, learning rate η, and model parameters
{p±,v±,λ} one obtains the typical evolution {RSσ(α),QST (α)}. This is the basis for analysing the
performance and convergence properties of various algorithms in the following.

Most frequently, we will consider prototypes that are initialized as independent random vec-
tors of squared length Q̂ with no prior knowledge about the cluster positions. In terms of order
parameters this implies in our model

Q++(0) = Q−−(0) = Q̂, Q+−(0) = 0 and RSσ(0) = 0 for all S,σ = ±1. (13)

Obviously, the precise initial positions of prototypes with respect to the cluster geometry can play
a crucial role for the learning dynamics. In the next section we will demonstrate that the outcome
of, for instance, LFM and LVQ+/- with early stopping can depend strongly on the initial positions
of prototypes. On the contrary, asymptotic properties of, for example, LVQ1 training will prove
independent of initialization in the limit of infinitely long training sequences within our model
situation.

After training, the success of learning can be quantified in terms of the generalization error,
that is, the probability for misclassifying novel, random data which did not appear in the training
sequence. Here we can consider the two contributions for misclassifying data from cluster σ = 1 or
σ = −1 separately:

ε = p+ ε+ + p− ε− with εσ = 〈Θ(d+σ −d−σ)〉σ . (14)

Exploiting the central limit theorem in the same fashion as above, one can work out the generaliza-
tion error as an explicit function of the order parameters. As detailed in the appendix, Section A.6,
one obtains for the above contributions ε±:

εσ = Φ
(

Qσσ −Q−σ−σ −2λ(Rσσ −R−σσ)

2
√

vσ
√

Q++−2Q+− +Q−−

)
where Φ(z) =

Z z

−∞
dx

e−x2/2
√

2π
. (15)
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Figure 2: LVQ1 with λ = 2, v+ = 4,v− = 9, p+ = 0.8, and learning rate η = 1.0.
Left panel: Characteristic overlaps vs. α = µ/N. Solid lines display the result of inte-
grating the system of ODE for initial conditions as in Eq. (13) with Q̂ = 10−4. Symbols
represent Monte Carlo simulations for N = 100, on average over 100 independent runs.
Standard error bars would be smaller than the symbol size. Curves and symbols corre-
spond to: Q−− (∗), Q++ (♦), R−− (×), R++ (5), R+− (©), R−+ (�), and Q+− (4).
Right panel: Example for the self-averaging behavior of order parameters as observed
in Monte Carlo simulations for N = 8,16,32,64,128, and 256. Dots mark the observed
average value of R++(α = 10) vs. 1/N, bars represent the corresponding variance. Here,
the latter vanishes approximately like 1/N, while the mean values display no systematic
dependence on N for large enough systems. The horizontal line marks the theoretical
prediction for N → ∞.

By inserting {RSσ(α),QST (α)} we obtain the learning curve εg(α), that is, the typical generalization
error after on-line training with αN random examples. Here, we once more exploit the fact that the
order parameters and, thus, also εg are self-averaging, non-fluctuating quantities in the thermody-
namic limit N → ∞.

A classification scheme based on two prototypes is restricted to linear decision boundaries.
We will therefore compare the performance of LVQ algorithms with the best linear decision (bld)
boundary for given parameters p±,v±, and λ. For symmetry reasons it is given by a plane orthogonal
to (B+ −B−). It is straightforward to obtain the corresponding generalization error εbld

g from Eqs.
(14,15) by appropriate parameterization of the plane and minimization of εg (Ghosh et al., 2004).

Note that the Bayes optimal classification of data from density (1) is, in general, given by a
non-linear decision boundary which contains the vectors ξ with p+ P(ξ|+1) = p− P(ξ|−1) (Duda
et al., 2000). Only for v+ = v− it becomes a plane and LVQ with two prototypes could potentially
implement Bayes optimal generalization.
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3.6 Restrictions of the Analysis

While we have already discussed the relevance of our simplifying model scenario in Subsection 2.4,
we want to summarize here some restrictions of the mathematical analysis.

Perhaps, the consideration of the thermodynamic limit N → ∞ of infinite-dimensional feature
vectors appears to be the most severe limitation in the mathematical treatment. Together with the
assumption of statistically independent features ξµ

j , it facilitates the above explained steps of the
analysis, the evaluation of averages over random data being the most important one.

We find that our results describe very well the (mean) behavior of systems with a fairly small
number of input dimensions, yielding excellent agreement for N = 100 already. Fig. 2 (right panel)
shows a comparison of different system sizes and illustration of the above mentioned self-averaging
property. In other learning problems, the behavior of low-dimensional systems may differ signifi-
cantly from results obtained in the limit N → ∞, as fluctuations which were neglected here become
more important. As an example, we mention the symmetry breaking specialization of prototypes
in unsupervised VQ (Biehl et al., 1997). Here, however, the self-averaging behavior of order pa-
rameters is reflected by the fact that their variances vanish rapidly with N, approximately like 1/N,
see Figure 2 (right panel). At the same time, no systematic dependence of the means on the system
size is observed. Hence, our treatment yields an excellent approximation for systems of fairly small
dimension N, already: Deviations of observed and predicted values of characteristic overlaps are
expected to be on the order 1/

√
N. For analytic results concerning such finite size corrections in

on-line training see, for instance, Saad (1999) and references therein.

Performing averages over the randomness in the data yields typical properties of the system
in the considered model situations. This method is different in spirit and thus complements other
successful approaches in computational learning theory, where one aims at rigorous bounds on the
generalization error without making explicit assumptions about the learning scenario (for examples
in the context of LVQ, see Crammer et al., 2003; Hammer et al., 2005a). Such bounds are not
necessarily tight and can be quite far from the actual behavior observed in practical situations. On
the contrary, results obtained in the flavor of statistical physics analysis lack the mathematical rigor
of strict bounds and may be sensitive to details of the model assumptions, for example, the statistical
properties of the data. As an attractive feature, the approach provides information about the system
which goes beyond its generalization ability, such as the learning dynamics and the location of
prototypes.

For more detailed discussions of strengths and limitations of our approach we refer to the re-
views of, for example, Biehl and Caticha (2003), Watkin et al. (1993), and Engel and van den Broeck
(2001).

3.7 Relation to Statistical Physics

The relation to statistical physics is not crucial for what follows and may be considered a merely
technical point. Nevertheless, for the interested reader, we would like to make a few remarks in this
context.

The analogy is more important in the theory of batch or off-line learning. There, the cost func-
tion of training is interpreted as an energy and the analysis proceeds along the lines of equilibrium
statistical mechanics. For an introduction to these concepts we refer to, for example, Biehl and
Caticha (2003), Watkin et al. (1993), and Engel and van den Broeck (2001). Several ideas from
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this type of analysis do carry over to the investigation of on-line learning which addresses the non-
equilibrium dynamics of learning.

In many physical systems it is impossible, and indeed useless, to keep track of all microscopic
degrees of freedom. As an example, consider the positions and velocities of, say, N particles in a
gas. Similarly, a magnetic material will contain a number N of atoms each of which contributes
one elementary magnetic moment. As N gets very large, say, on the order 1023 in condensed matter
physics, microscopic details become less important and such systems are successfully described by
a fairly small number of macroscopic quantities or order parameters. In the above examples, it may
be sufficient to know volume and pressure of the gas or the total magnetization emerging from the
collaborative behavior of atoms. Mathematically speaking, so-called phase space integrals over all
degrees of freedom can be performed by means of a saddle point approximation for N →∞, reducing
the description to a low-dimensional one. Similarly, the high-dimensional phase space trajectories
of dynamical systems can be represented by the temporal evolution of a few macroscopic order
parameters. The same idea applies here as we describe the learning dynamics of 2N prototype
components in terms of a few characteristic overlaps and disregard their microscopic details.

An important branch of statistical physics deals with so-called disordered systems, where the
interacting degrees of freedom are embedded in a random environment. In the above example this
could mean that magnetic atoms are randomly placed within an otherwise non-magnetic material,
for instance. The correct analytic treatment of such systems requires sophisticated analytical tools
such as the famous replica trick , see Watkin et al. (1993) and Engel and van den Broeck (2001) and
references therein.

These tools have been developed in the context of disordered magnetic materials, indeed, and
have been put forward within the statistical physics of learning. In learning theory, the disorder
emerges from the random generation of training data. In off-line learning, the cost-function or
energy is defined for one specific set of data only and the generic, typical behavior is determined by
performing the disorder average over all possible training sets. This requires the above mentioned
replica method or approximation techniques which involve subtle mathematical difficulties, see
Watkin et al. (1993) and Engel and van den Broeck (2001).

The situation is slightly more favorable in the framework which we resort to here: In on-line
learning at each time step of the process, a novel random example is presented. As a consequence
the disorder average can be performed step by step in the more elementary fashion outlined above
(Biehl and Caticha, 2003; Engel and van den Broeck, 2001).

4. Results

In the following we present our results obtained along the lines of the treatment outlined in Sec.
3. We will compare the typical learning curves of LVQ+/-, an idealized early stopping procedure,
LFM, and LFM-W with those of LVQ1. The latter, original formulation of basic LVQ serves as a
reference each modification has to compete with.

We will put emphasis on the asymptotic behavior in the limit α → ∞, that is, the generaliza-
tion error achieved from an arbitrarily large number of examples and its dependence on the model
parameters. This asymptotic behavior is of particular relevance for comparing different training
algorithms. It can be studied by analysing the stable fixed point configuration of the system of
ODE. Note that properties thereof will not depend on initialization or the position of cluster cen-
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Figure 3: LVQ1 for λ = 1.2,v+ = v− = 1, and p+ = 0.8, initialization as in Figure 2.
Left panel: Learning curves εg(α) for three different learning rates η = 0.2,1.0,2.0 (from
bottom to top at α = 200). Large η are favorable initially, whereas smaller η yield better
asymptotic generalization for α → ∞. The inset shows the limiting behavior for η → 0
and α → ∞, that is, εg as a function of α̃ = ηα.
Right panel: Trajectories of prototypes in the limit η→ 0,α→∞. Solid lines correspond
to the projections of prototypes into the plane spanned by λB+ and λB− (marked by open
circles). The dots correspond to the pairs of values {RS+,RS−} observed at α̃ = ηα =
2,4,6,8,10,12,14 in Monte Carlo simulations with η = 0.01 and N = 200, averaged
over 100 runs. Note that, because p+ > p−, w+ approaches its final position much faster
and in fact overshoots. The inset displays a close-up of the region around its stationary
location. The short solid line marks the asymptotic decision boundary as parameterized
by the prototypes, the short dashed line marks the best linear decision boundary. The
latter is very close to λB− for the pronounced dominance of the σ = +1 cluster with
p+ = 0.8.

ters relative to the origin. Asymptotic properties are controlled only by the distance of the centers
|λB+−λB−| =

√
2λ, the model parameters v±, p± and the learning rate η.

4.1 LVQ1

Figure 2 (left panel) displays the evolution of order parameters in the course of learning for an
example choice of the model parameters. Monte Carlo simulations for N = 100 already agree very
well with the (N → ∞) theoretical prediction based on integrating the corresponding ODE, Eq. (34)
. We consider initialization of prototypes close to the origin, that is, relatively far from the region
of high density in our data model. Note that in a WTA algorithm the initial prototypes must not
coincide exactly, hence we choose random w±(0) with, for example, squared length Q++ = Q−− =
Q̂ = 10−4 in Eq. (13).

The self-averaging property, see Section 3.3, is illustrated in Fig. 2 (right panel). In Monte Carlo
simulations one observes that averages of the order parameters over independent runs approach the
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theoretical prediction as N → ∞. At the same time, the corresponding variances vanish like 1/N
with increasing dimension.

The typical learning curve εg(α) is in the center of our interest. Figure 3 (left panel) displays
the behavior of LVQ1 for different learning rates in an example situation. The pronounced non-
monotonic behavior for smaller η clearly indicates that the prescription is suboptimal: For a range
of α, additional information leads to a loss of generalization ability. This effect is particularly
pronounced for highly unbalanced data with, say, p+ � p−. The results suggest a schedule which
employs large values of η initially and then decreases the learning rate with increasing α. This
aspect will be investigated in greater detail in a forthcoming project, here we consider only training
with constant η.

For LVQ1 we find that the stationary, asymptotic generalization error εstat
g = εg(α → ∞) de-

creases with η → 0 like
εstat

g (η) = εlvq1
g + O(η) for small η.

Here, εlvq1
g denotes the best value achievable with LVQ1 for a given set of model parameters. This is

analogous to the behavior of stochastic gradient descent procedures like VQ, where the associated
cost function is minimized in the simultaneous limits of small learning rates η → 0 and α → ∞, such
that α̃ = ηα → ∞. In absence of a cost function we can still consider this limit. Terms proportional
to η2 can be neglected in the ODE, and the evolution in rescaled learning time α̃ becomes η-
independent. The inset of Fig. 3 (left panel) shows the limiting learning curve εg(α̃). It displays a
strong non-monotonic behavior for small α̃.

The right panel of Fig. 3 displays the trajectories of prototypes projected into the plane spanned
by B+ and B−. Note that, as could be expected from symmetry arguments, the (α → ∞)-asymptotic
projections of prototypes into the B±-plane are along the axis connecting the cluster centers. More-
over, in the limit η → 0, their stationary position lies precisely in the plane and fluctuations or-
thogonal to B± vanish. This is signaled by the fact that the order parameters for α̃ → ∞ satisfy
QSS = R2

S+ +R2
S−, and Q+− = R++R−+ +R+−R−− which implies

wS(α̃ → ∞) = RS+ B+ + RS− B− for S = ±1. (16)

Here we can conclude that the actual prototype vectors approach the above unique configuration,
asymptotically. Note that, in general, stationarity of the order parameters does not imply necessarily
that w± converge to points in N-dimensional space. For LVQ1 with η > 0 fluctuations in the space
orthogonal to {B+,B−} persist even for constant {RSσ,QST}.

Figure 3 (right) reveals further information about the learning process. When learning from
unbalanced data, for example, p+ > p− as in the example, the prototype representing the stronger
cluster will be updated more frequently and in fact overshoots, resulting in the non-monotonic
behavior of εg. The use of a different learning rate per class could correct this overshooting behavior
and recover the transient behavior for equal priors, qualitatively.

The asymptotic εlvq1
g as achieved by LVQ1 is typically quite close to the potential optimum εbld

g .
Figure 4 displays the asymptotic generalization error as a function of the prior p+ in two different
settings of the model. In the left panel v+ = v− whereas the right panel shows an example with
different cluster variances. In the completely symmetric situation with equal variances and balanced
priors, p+ = p−, the LVQ1 result coincides with the best linear decision boundary which is through
λ(B+ + B−)/2 for this setting. Whenever the cluster-variances are different, the symmetry about
p+ = 1/2 is lost but |εlvq1

g − εbld
g | = 0 for one particular (v+,v−)-dependent value of p+ ∈]0,1[.
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Figure 4: Achievable generalization error in the model with λ = 1 as a function of p+. In both
panels, the lowest, dotted curve represents εbld

g , that is, the best linear classifier. Solid lines

mark the asymptotic εlvq1
g of LVQ1, the dashed lines corresponds to εstop

g as obtained from
an idealized early stopping scheme for LVQ+/- with prototypes initialized in the origin.
The far from optimal (α → ∞)-asymptotic εl f m

g result for LFM is marked by chain lines.
Left panel: The case of equal variances, v+ = v− = 1, εlvq1

g and εstop
g coincide for p+ =

1/2 where both are optimal.
Right panel: An example for unequal variances, v+ = 0.25,v− = 0.81. The result of
LVQ+/- with idealized early stopping is still optimal for equal priors, while εlvq1

g = εbld
g

in p+ ≈ 0.74 in this setting.

4.2 LVQ+/-

Here we report results concerning the divergent behavior displayed by the LVQ+/- prescription in
its basic form. We furthermore show how an appropriate early stopping procedure could overcome
this difficulty.

4.2.1 DIVERGENT BEHAVIOR

The structure of the ODE for LVQ+/-, fS = Sσµ, is particularly simple, see Appendix A.5. An-
alytic integration yields Eq. (37) for settings with p+ 6= p−. In this generic case, the evolution
of {RSσ,QST} displays a strong divergent behavior: All quantities associated with the prototype
representing the weaker cluster display an exponential increase with α.

Figure 5 (left panel) shows an example for λ = 1, v+ = v− = 1, learning rate η = 0.5, and unbal-
anced priors p+ = 0.8, p− = 0.2. Here, order parameters which involve w−, that is, R−−,R−+,Q−−,Q+−,
diverge rapidly. On the contrary, quantities which relate only to w+, that is, R++,R+−,Q++, remain
finite and approach well-defined asymptotic values for α → ∞.

This behavior is due to the fact that the wrong winner is always moved away from the current
data in LVQ+/- training. Clearly, this feature renders the learning dynamics unstable as soon as p+ 6=
p−. Even in our simple model problem, repulsion will always dominate for one of the prototypes
and, like w− in our example, it will be moved arbitrarily far away from the cluster centers as α → ∞.
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Figure 5: LVQ+/- with λ = 1,v+ = v− = 1, and p+ = 0.8.
Left panel: Characteristic overlaps vs. α for learning rate η = 0.5. Solid lines correspond
to the analytical solution Eq. (37) of the ODE for initialization w+(0) = w−(0) = 0.
Symbols represent Monte Carlo results for N = 100 on average over 100 runs. Standard
error bars would be smaller than the symbol size. Curves and symbols correspond to
Q−− (∗), Q++ (♦), R−− (×), R++ (5), R+− (©), R−+ (�), and Q+− (4).
Right panel: Learning curves εg(α) for three different rates η = 2.0,1.0, and 0.5 (from
left to right). The generalization error displays a pronounced minimum at intermediate
α and approaches the trivial value εg = min{p+, p−} asymptotically for α → ∞. The
inset shows the asymptotic behavior εg(α̃) in the simultaneous limit η → 0, α → ∞ with
rescaled α̃ = ηα.

The divergent behavior is also apparent in Figure 6, which displays example trajectories of w±
in the limit η → 0, projected into the B±-plane. The projections of prototypes follow straight lines,
approximately. Prototype w+, representing the stronger cluster in this case, approaches a stationary
position at the symmetry axis of the density (1). For w− the less frequent positive updates from the
weaker cluster σ = −1 cannot counterbalance the repulsion.

The resulting classification scheme for α → ∞ is trivial: All data will be assigned to the class of
the stronger cluster. Hence, the asymptotic generalization error of unmodified LVQ+/- is given by
min{p+, p−} in our model, independent of the learning rate η. This can also be seen in the learning
curves displayed in Figure 5 (right panel).

Note that the behavior is qualitatively different for the singular case of balanced priors p+ =
p− = 1/2, see Eq. (38) in the appendix for the corresponding analytic solution of the ODE. First,
the increase of order parameters with α, which is exponential for p+ 6= p−, becomes linear (RSσ)
or quadratic (QST ) in α for equal priors. Second, both prototypes move to infinity, that is, away
from the data, as α → ∞. In a visualization of the learning dynamics in the spirit of Figure 6, the
trajectories become parallel to the symmetry axis as p+ = p−. It is interesting to note that, in spite
of this divergence, the corresponding decision boundary is optimal in the singular case of equal
priors.
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Figure 6: LVQ+/- and early stopping for different initializations in the limit η → 0,α → ∞.
Left panel: Projected trajectories for model parameters λ = 1.2, p+ = 0.8,v+ = v− = 1.
Cluster centers correspond to open circles, the short dotted line marks the best lin-
ear decision boundary. Solid (chain) lines show the trace of prototype w+ (w−), re-
spectively. Filled symbols display the position after early stopping in the minimum
of εg(α̃), short solid lines mark the projection of the respective decision boundaries.
Squares correspond to the positions obtained from w±(0) = 0 (a), full circles mark
the results for initialization (b) with an offset from the origin and the (B+,B−)-plane:
R++ = R−+ = 0,R+− = 0.5,R−− = 0.7,Q+− = 0,Q++ = 1.8,Q−− = 2.9. In both cases,
w+ approaches the same stationary position on the symmetry axis, while w− displays
divergent behavior as α̃ = ηα increases. Note that the decision boundary obtained by
early stopping in case (b) appears to be close to optimal in the projection. However, it
is tilted strongly in the remaining dimensions as indicated by the violation of condition
(16). Consequently, εstop

g is higher for (b) than it is for initialization (a).
Right panel: Generalization error εstop

g of idealized early stopping as a function of p+ for
λ = 1 and equal variances v+ = v− = 1. The dotted line corresponds to the best linear de-
cision boundary. The solid line marks the outcome of LVQ+/- with early stopping when
prototypes are initialized in the origin, case (a) in the left panel, which is also displayed in
Fig. 4. The dashed line represents the far from optimal εstop

g for an example initialization
with an offset from the origin, case (b) in the left panel.

4.2.2 EARLY STOPPING

Several heuristic strategies have been suggested in the literature to cure the divergent behavior while
keeping the essential ingredients of LVQ+/-:

One possible measure that comes to mind immediately is to let the update of the wrong winner
depend explicitly on its distance dµ from the data. The divergence should be much weaker or even
seize, provided the magnitude of the update decreases fast enough with dµ or if it is cut off at a
maximum distance dmax.

Another popular strategy is to update only from data that falls into a window close to the cur-
rent decision boundary, that is, close to the midplane between the prototypes (Kohonen, 1997).
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Figure 7: Learning from mistakes (LFM)
Left panel: Projected prototype trajectories for LFM with η = 1 and all other parameters
as in Fig. 6 (left panel). The initial behavior for small α is similar to that of LVQ+/-.
Asymptotically, both prototypes approach stationary positions (solid dots) which are not
on the symmetry axis of the distribution (dashed line). Note that only the projections
of (w+ −w−) become parallel to λ(B+ −B−) as α → ∞. While the actual w±(α → ∞)
depend on η as discussed in the text, the asymptotic decision boundary (short solid line)
does not.
Right panel: εg(α) for LFM with model parameters λ = 3, p+ = 0.8,v+ = 4,v− = 9 and
learning rates η = 2.0,1.0, 0.5 (from left to right). All learning curves approach the same
η-independent asymptotic value εl f m

g . Note the offset on the εg- axis.

Provided the decision boundary becomes similar to the Bayes optimal one in the course of learning,
examples ξ from this region would satisfy p+P(ξ|+ 1) ≈ p−P(ξ|− 1), then. In effect, the system
would be trained from balanced data, which significantly slows down the divergence, see the above
considerations for LVQ+/- with p+ = p−.

In principle, these strategies can also be studied within our framework by considering appro-
priate modifications of the modulation function, Eq. (5). Preliminary results indicate, however, that
both ideas improve convergence and generalization ability of LVQ+/- only to a very limited extent.
In addition, one or several parameters, for example, the cut-off distance dmax or the window size,
have to be carefully tuned to achieve the desired effect.

Moreover, both variants are generically outperformed by a conceptually simpler early stopping
strategy. The idea is to stop the learning process as soon as the divergent behavior starts to increase
the generalization error. This does not require the fine-tuning of additional parameters. However,
in any practical situation, one would have to monitor εg in a test set of data which is not used for
training.

Generic learning curves of LVQ+/-, see Figure 5, display a pronounced minimum before they
approach the trivial asymptotic value εg = min{p+, p−}. We are interested in the best generalization
error εstop

g that could be achieved, in principle, by an idealized early stopping method. In contrast
to (α → ∞)-asymptotic properties, the dynamics for intermediate α will depend on initialization,
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as discussed below. This concerns also the depth of the minimum, which can occur at rather small
α. For the cluster geometry considered here and initialization as given in Eq. (13), we find that the
lowest values of εg are indeed achieved for Q̂ = 0. In this setting the effect of the first examples is a
very fast alignment of (w+ −w−) with the symmetry axis of the model density (1). Hence, we first
consider prototypes which are initialized precisely in the origin w+(0) = w−(0) = 0 and without
offset from the plane spanned by B+ and B−. We observe furthermore that the respective value of
εg in the minimum decreases with decreasing η. For the comparison with other algorithms we will
therefore resort to the simultaneous limit η → 0,α → ∞ as for LVQ1.

In our model, it is straightforward to obtain precisely the minimum of the limiting εg(α̃) from
the analytic solution, Eq. (37). The result εstop

g is displayed as a function of p+ in Figure 4 for
two different choices of v+ and v−. In the case of equal variances v+ = v− we find that LVQ+/-
with early stopping is relatively close to the best possible εbld

g . However, it is outperformed by the
asymptotic result of LVQ1 for all p+. Note that both algorithms yield the optimal classification
scheme in the singular case p+ = p− = 1/2 and v+ = v−.

For data with v+ 6= v−, we find that εstop
g > εlvq1

g for small and large values of p+, see Figure 4
(right panel) for an example. In the case of balanced priors, the learning curve of LVQ+/- does not
display a minimum but approaches the optimal value εbld

g quite rapidly. For cluster weights in an
interval around p+ = 1/2, the result of the early stopping procedure is superior to that of LVQ1.

It is important to note that our analysis refers to an idealized early stopping procedure based on
perfect knowledge of the current εg. On the contrary, the basic LVQ1 gives close to optimal per-
formance independent of initial conditions, without adjustment of parameters and without explicit
estimation of the generalization error.

Our results show that LVQ+/- with favorable initialization outperforms other algorithms with
respect to behavior for small α, that is, with respect to learning from small training sets. Note, for
instance, that the minima in the learning curve εg(α) as displayed in Fig. 5 can occur at very small α,
already. While LVQ1, for example, achieves better α → ∞ asymptotic generalization, a comparison
of the learning curves shows that it is often inferior for small and intermediate values of α. A
systematic comparison is difficult, however, since the effect will depend strongly on the considered
initialization. Nevertheless, the use of LVQ+/- type updates in the early stages of training or for
limited availability of example data appears promising.

The crucial influence of the initialization is illustrated in Fig. 6. As an example, we consider
the initialization of prototypes with an offset from the origin and, more importantly, from the plane
spanned by the cluster centers. Again, learning curves display a minimum in the generalization er-
ror. However, the obtained best value of εstop

g is far from optimal, as displayed in Fig. 6 (right panel).
Asymptotic properties of the considered algorithms are independent of initial settings and, hence,
represent generic behavior in the frame of our model situation. On the contrary, the above discussed
results for early stopping are highly sensitive with respect to initialization and demonstrate, at best,
the potential usefulness of the strategy.

4.3 Learning from Mistakes

In the following, results are presented for the LFM training algorithm with and without a selective
window.
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Figure 8: Learning from mistakes with window (LFM-W)
Left panel: Learning from equal variance clusters with v+ = v=−1, λ = 1, and learning
rate η = 1. Achieved (α → ∞) asymptotic generalization error εl f m−w

g as a function of p+

for different rescaled window sizes; from top to bottom: δ → ∞ (solid line, LFM), δ = 6,
δ = 5, and δ = 0.25 (dotted lines). The lowest, dashed line marks the best possible εbld

g .

Right panel: Asymptotic generalization error εl f m−w
g as a function of the window size δ

for prior weight p+ = 0.6 and learning rate η = 1. The dashed line corresponds to data
with v+ = v− = 1 and λ = 1, the solid line refers to v+ = v− = 5 and λ = 2. Already
in symmetric settings, the location of the optimal window size depends strongly on the
properties of the data. Note the offset on the εg-axis.

4.3.1 LFM

The basic idea of the LFM procedure, cf. Section 2.3 (c), is reminiscent of many prescriptions for
perceptron training (e.g., Watkin et al., 1993; Engel and van den Broeck, 2001; Biehl and Caticha,
2003). An LVQ+/- type of update is performed only if the current configuration would misclassify
the example. Numerical integration of the corresponding ODE, Eq. (36), shows that LFM does not
display the divergent behavior of LVQ+/-.

In contrast to LVQ1 and LVQ+/-, the typical learning curves of LFM display a monotonic de-
crease of εg(α), see the right panel of Figure 7 for examples with three different learning rates. An
important feature is that the (α → ∞)-asymptotic generalization error of LFM learning does not
depend on η.

Figure 7 (left panel) shows example trajectories of the prototypes in the B±-plane. The behav-
ior for small α is similar to that of LVQ+/-: Prototypes move away from the origin in opposite
directions, initially. However, the attraction to (or repulsion from) the cluster centers becomes less
important in the course of learning. Emphasis is on correct classification of the data, the aspect of
cluster representation in the sense of VQ is essentially absent.

Eventually, the projections of the prototypes assume positions along a line which is parallel to
the symmetry axis λ(B+ −B−). However, the violation of condition (16) indicates that w+ and
w− themselves do not lie in the two-dimensional subspace spanned by the cluster centers. Here,
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the stationarity of order parameters and generalization error does not imply convergence of the
prototype vectors themselves. Even in the limit α → ∞, they will fluctuate within the subspace of
R

N ×R
N that is compatible with the asymptotic values of {RSσ,QST}.

Clearly, the precise trajectory and the final outcome of LFM depends on the initialization of
prototypes. It will determine, for instance, the relative position of w+ and w− parallel to the con-
nection of cluster centers. The actual asymptotic configuration of order parameters and prototypes
depends furthermore on the learning rate η. However, all these configurations share the same gen-
eralization error. The learning rate merely controls the magnitude of the fluctuations orthogonal to
{B+,B−} and the asymptotic distance of prototypes from the decision boundary. This corresponds
to the observation that the following combinations of order parameters become proportional to η in
the limit α → ∞:

r+ = R++−R−+, r− = R−−−R+−, q = Q++−Q−−, δ =
√

Q++−2Q+− +Q−− (17)

which results in an η-independent asymptotic generalization error, Eqs. (14,15). This finding also

implies that the angle between (w+−w−) and (B+−B−) which is given by arccos
[
(r+ + r−)/(

√
2δ)
]

becomes independent of the learning rate for α → ∞.
The quantity δ in (17) measures the distance |w+ −w−| and vanishes for η → 0. Hence, the

prototypes will coincide and the consideration of this limit together with α → ∞ is not useful in the
case of LFM.

The mathematical analysis of the stationary state reveals another interesting feature: One can
show that fixed point configurations of the system of ODE for LFM, Eq. (36), satisfy the necessary
condition

p+ ε+ = p− ε−.

That is, the two contributions to the total εg, Eqs. (14,15), become equal for α → ∞. As a con-
sequence, LFM updates will be based on balanced data, asymptotically, as they are restricted to
misclassified examples.

While learning from mistakes appears to be a very plausible concept and cures the divergence of
LVQ+/-, the resulting asymptotic generalization ability εl f m

g turns out rather poor. The chain lines in
Figure 4 mark εl f m

g for two different model scenarios. Not only is LFM outperformed by the basic
LVQ1 and LVQ+/- with early stopping, for small and large values of p+ its generalization error can
even exceed the trivial value min{p+, p−}.

It is important to note that the above results apply only to the crisp (LFM) version of RSLVQ
(Seo and Obermayer, 2003). It is very well possible that truly soft schemes display a much better
generalization behavior in our model situation. In fact, it has been demonstrated that RSLVQ
performs significantly better than the crisp LFM and other LVQ algorithms in practical situations
(Seo and Obermayer, 2003).

4.3.2 LFM-W

Our analysis shows that the introduction of a window for the selection of data, as defined in Sec. 2.3
(d), bears the potential to improve the generalization behavior of LFM drastically. The mathematical
treatment is to a large extent analogous to that of the unrestricted LFM procedure, see Appendix A
for details.
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Qualitatively, the typical learning curves RSτ(α),QST (α) of LFM-W and the corresponding pro-
jected trajectories also resemble those of unrestricted LFM. Note, however, that the stationary gen-
eralization error εl f m−w

g of LFM-W does depend on the learning rate η, in contrast to the results
displayed in Figure 7 (right panel) for LFM without window.

A detailed discussion of LFM-W will be presented elsewhere. Here, we focus on the role of
the window parameter δ. Figure 8 (right panel) displays the dependence of the (α → ∞) asymptotic
εl f m−w

g for constant learning rate η = 1.0 and example settings of the model parameters. For very
large δ, the suboptimal results of unrestricted LFM are recovered and also for δ→ 0 the performance
deteriorates. Evidently, an optimal choice of δ exists which yields the best generalization behavior,
given all other parameters. Note that the precise position of the optimum and the robustness with
respect to variation of δ depend strongly on the properties of the data.

We restrict ourselves to demonstrating that the performance can improve drastically in com-
parison with unrestricted LFM. Figure 8 (left panel), shows the stationary generalization error as a
function of the prior weight p+ for several (fixed) window sizes in an example setting. Note that
εl f m−w

g for properly chosen values of δ is significantly lower than that for unrestricted LFM, that is,
δ → ∞.

The evaluation of the truly optimal generalization error in the frame of our model is beyond
the scope of this publication. In a specific learning problem, that is, for a particular choice of λ,v±
and p± in our model, the training algorithm is to be optimized with respect to the two-dimensional
parameter space of η and δ. Such an optimization would be difficult to achieve in practical situations
and require sophisticated validation techniques.

5. Summary and Conclusion

We have rigorously investigated several basic LVQ algorithms: the original LVQ1, LVQ+/- with and
without early stopping, learning from mistakes (LFM), and LFM-W which includes an additional
window rule. The analysis is performed by means of the theory of on-line learning in a simple
though relevant model setting.

It can be seen that LVQ+/- usually displays a divergent behavior whereas LVQ1 and LFM pro-
cedures converge towards fixed positions of the order parameters. These findings correspond to
observations in practical situations.

The respective convergence speed depends on the learning rate in all cases. The same holds for
the quality of the resulting classifier for LVQ1, LVQ+/- with early stopping, and LFM-W. For LFM
without a selective window, on the contrary, the generalization ability of the stationary setting is
independent of the choice of the learning rate. It should be mentioned that the trajectories of the
prototypes need not be the shortest towards the final position and, often, initial overshooting as in
LVQ1 can be observed if the classes are not balanced.

Even more interesting than their dynamical behavior is the generalization ability achieved by
the algorithms. LVQ1 turns out to yield surprisingly good results, not very far from the optimum
achievable error for this class of problems.

The outcome of LVQ+/- with early stopping can be close to or even slightly better than the
α → ∞ asymptotic performance of LVQ1. However, it depends strongly on initialization and the
detailed properties of the data. LVQ+/- like strategies appear particularly promising for the initial
phase of training or when only a very limited training set is available.
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The robustness of LFM as a crisp version of RSLVQ is clearly demonstrated by the fact that its
asymptotic behavior is not affected by the magnitude of the learning rate. However, quite unexpect-
edly, it shows rather poor generalization ability, which is even inferior to a trivial classification for
highly unbalanced data. We demonstrate that a proper selection of examples close to the current de-
cision boundary as in LFM-W can improve the generalization performance drastically. Presumably,
similar improvement could be achieved by employing RSLVQ with a soft assignment as suggested
by Seo and Obermayer (2003). In practical situations, both schemes would require the careful tun-
ing of a parameter, that is, the softness or window size, in order to achieve good generalization. We
will address the detailed analysis and optimization of LFM-W and RSLVQ in forthcoming studies.

A few of our results, for instance the instability of LVQ+/-, may appear plausible from elemen-
tary reasoning. Others are clearly far from obvious and demonstrate the usefulness of our systematic
approach. We show, in particular, the good generalization ability of the original LVQ1 learning rule.
It does not follow the gradient of a well-defined cost function but outperforms several alternative al-
gorithms. The relatively poor performance of the highly intuitive LFM training constitutes another
non-trivial insight obtained from our analysis.

Our model is currently restricted to two unimodal classes and two prototypes, a case in which
the mathematical analysis is feasible but which is far away from typical settings in practice. Nev-
ertheless, this investigation yields relevant insights into practical situations. One can expect that
an algorithm which does not yield a good generalization ability in this idealized scenario is also
inappropriate for more complex, practical applications. In this sense, the investigation provides a
meaningful testing ground for the success of learning algorithms.

Frequently, at most two prototypes are updated at a given time step also in larger LVQ networks.
Hence, such systems can be interpreted as a superposition of pairs of prototypes within classes and
at class borders. Within classes, a simple vector quantization takes place, a scenario which has been
investigated using the same framework (Biehl et al., 1997; Ghosh et al., 2004). At cluster borders,
the situation investigated in this article is relevant. However, the role of further, complicating effects
in the dynamics of the superposition of these simple subsystems has to be studied in forthcoming
projects. Also, the explicit extension of the theoretical framework to multi-class, multi-prototype
problems is feasible under simplifying assumptions. It is currently in the focus of our efforts.

Based on the formalism presented in this article, a variety of further research becomes possible.
Naturally, the consideration of alternative LVQ schemes is necessary. Learning rules which also
change the metric during training such as the one proposed by Hammer and Villmann (2002) seem
particularly interesting. However, it is not obvious how highly nonlinear adaptation schemes or
algorithms which single out specific data components can be treated within our theoretical frame-
work.

The ultimate goal of this work is the design of robust and reliable LVQ algorithms which provide
optimal generalization ability. One step into this direction would be the on-line optimization of
algorithm parameters, for example, the learning rate, based on the observed behavior in the course
of training. Note that this can be done systematically by means of an optimization of the learning
curve with respect to the learning rate in our setting. Even more promising, one can formally
optimize the actual update functions fS of the learning rule with respect to the generalization ability
gained per example. This should be possible along the lines of variational optimization as it has
been applied in the training of perceptrons or multilayered neural networks (e.g., Saad, 1999; Engel
and van den Broeck, 2001; Biehl and Caticha, 2003). An alternative could be the construction
of on-line prescriptions within a Bayesian framework, as it has been employed in the context of
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perceptron training (for further references consult: Saad, 1999). Even if practical implementations
turn out to be difficult, these investigations would help to identify the most important features of
successful algorithms. Hence, this line of research should strengthen the mathematical foundation
of LVQ training.

Appendix A. The Theoretical Framework

Here we outline key steps of the calculations referred to in the text. Important aspects of the formal-
ism were first used in the context of unsupervised vector quantization (Biehl et al., 1997). Some of
the calculations presented here were recently detailed in a Technical Report (Ghosh et al., 2004).

Throughout this appendix indices l,m,k,s,σ ∈ {±1} (or ± for short) represent the class labels
and cluster memberships. We also use the shorthand

Θs = Θ(d−s −d+s)

for the Heaviside function in LVQ1. We furthermore employ the notations

Θ̂o
σ = Θ(dσ −d−σ) and Θ̂δ

σ = Θ(dσ −d−σ −δ) (18)

for the complementary Heaviside function in LFM and the modified update of LFM-W, respectively.

A.1 Statistics of the Projections

To a large extent, our analysis is based on the observation that the projections h± = w± · ξ and
b± = B± ·ξ are correlated Gaussian random quantities for a vector ξ drawn from one of the clusters
contributing to the density (1). Where convenient, we will combine the projections into a four-
dimensional vector denoted as x = (h+,h−,b+,b−)T .

We will assume implicitly that ξ is statistically independent from the considered weight vectors
w±. This is obviously the case in our on-line prescription where the novel example ξµ is uncorrelated
with all previous data and hence with wµ−1

± . For the sake of readability we omit indices µ in the
following.

The first and second conditional moments given in Eq. (11) are obtained from the following
elementary considerations.

First Moments
Exploiting the above mentioned statistical independence we can show immediately that

〈hl〉k = 〈wl ·ξ〉k = wl · 〈ξ〉k = wl · (λBk) = λRlk. (19)

Similarly we get for bl:

〈bl〉k = 〈Bl ·ξ〉k = Bl · 〈ξ〉k = Bl · (λBk) = λδlk, (20)

where δlk is the Kronecker delta and we exploit that B+ and B− are orthonormal. Now the condi-
tional means µ

k
= 〈x〉k can be written as

µ
k=+1

= λ (R++,R−+,1,0)T and µ
k=−1

= λ (R+−,R−−,0,1)T . (21)
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Second Moments
In order to compute the conditional variance or covariance 〈hlhm〉k −〈hl〉k〈hm〉k we first consider
the average

〈hl hm〉k = 〈(wl ·ξ)(wm ·ξ)〉k =

〈(
N

∑
i=1

(wl)i(ξ)i

)(
N

∑
j=1

(wm) j(ξ) j

)〉

k

=

〈
N

∑
i=1

(wl)i(wm)i(ξ)i(ξ)i +
N

∑
i=1

N

∑
j=1, j 6=i

(wl)i(wm) j(ξ)i(ξ) j

〉

k

=
N

∑
i=1

(wl)i(wm)i〈(ξ)i(ξ)i〉k +
N

∑
i=1

N

∑
j=1, j 6=i

(wl)i(wm) j〈(ξ)i(ξ) j〉k

=
N

∑
i=1

(wl)i(wm)i[vk +λ2(Bk)i(Bk)i] +
N

∑
i=1

N

∑
j=1, j 6=i

(wl)i(wm) jλ2(Bk)i(Bk) j

= vk

N

∑
i=1

(wl)i(wm)i +λ2
N

∑
i=1

(wl)i(wm)i(Bk)i(Bk)i

+λ2
N

∑
i=1

N

∑
j=1, j 6=i

(wl)i(wm) j(Bk)i(Bk) j

= vkwl ·wm +λ2(wl ·Bk)(wm ·Bk) = vk Qlm +λ2 Rlk Rmk .

Here we have used that components of ξ from cluster k have variance vk and are independent. This
implies for all i, j ∈ {1, . . . ,N}:

〈(ξ)i (ξ)i〉k −〈(ξ)i〉k 〈(ξ)i〉k = vk ⇒ 〈(ξ)i (ξ)i〉k = vk + 〈(ξ)i〉k 〈(ξ)i〉k ,

and
〈
(ξ)i (ξ) j

〉
k = 〈(ξ)i〉k

〈
(ξ) j

〉
k for i 6= j.

Finally, we obtain the conditional second moment

〈hl hm〉k −〈hl〉k〈hm〉k = vk Qlm +λ2RlkRmk −λ2RlkRmk = vk Qlm .

In an analogous way we get

〈blbm〉k −〈bl〉k〈bm〉k = vk δlm and 〈hlbm〉k −〈hl〉k〈bm〉k = vk Rlm .

The above results are summarized in Eq. (11). The conditional covariance matrix of x can be
expressed explicitly in terms of the order parameters as follows:

Ck = vk




Q++ Q+− R++ R+−
Q+− Q−− R−+ R−−
R++ R−+ 1 0
R+− R−− 0 1


 .

The conditional density of x for data from class k is a Gaussian N(µ
k
,Ck) where µ

k
is the conditional

mean vector, Eq. (21), and Ck is given above.
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A.2 Form of the Differential Equations

Here, the differential equations for {Rsσ,Qst} are given for LVQ1, LVQ+/-, LFM, and LFM-W,
before Gaussian averages are performed.

A.2.1 LVQ1

In the case of the LVQ1 algorithm the generic form of the coupled system of ODE (Eq. (12)) yields
the following system:

dRlm

dα
= η

(
l
(
〈σbmΘl〉−〈σΘl〉Rlm

))
,

dQlm

dα
= η

(
l
(
〈σhmΘl〉−〈σΘl〉Qlm

)
+ m

(
〈σhlΘm〉−〈σΘm〉Qlm

)

+ η δlm ∑
σ=±1

vσ pσ〈Θl〉σ

)
. (22)

A.2.2 LVQ+/-

In the case of LVQ+/- Eq. (12) results in the following system of coupled ODE:

dRlm

dα
= η l

(
〈σbm〉−〈σ〉Rlm

)
,

dQlm

dα
= η

(
l〈σhm〉− l〈σ〉Qlm +m〈σhl〉 −m〈σ〉Qlm +η l m ∑

σ=±1

pσvσ

)
. (23)

A.2.3 LFM

With the modulation function for LFM, Eq. (12), and using Θ̂o
σ from Eq. (18) we obtain

dRlm

dα
= η l

(
〈σbmΘ̂o

σ〉−〈σΘ̂o
σ〉Rlm

)
, (24)

dQlm

dα
= η

(
l〈σhmΘ̂o

σ〉− (l +m)〈σΘ̂o
σ〉Qlm +m〈σhlΘ̂o

σ〉 + l mη ∑
σ=±1

pσvσ〈Θ̂o
σ〉σ

)
.

A.2.4 LFM-W

For the modulation function of the LFM-W algorithm in Eq. (12) we obtain

dRlm

dα
= η l

(
〈σbm(Θ̂o

σ − Θ̂δ
σ)〉−〈σ(Θ̂o

σ − Θ̂δ
σ)〉Rlm

)
, (25)

dQlm

dα
= η

(
l〈σhm(Θ̂o

σ − Θ̂δ
σ)〉− (l +m)〈σ(Θ̂o

σ − Θ̂δ
σ)〉Qlm +m〈σhl(Θ̂o

σ − Θ̂δ
σ)〉
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+ l mη ∑
σ=±1

pσvσ〈(Θ̂o
σ − Θ̂δ

σ)〉σ

)
,

where Θ̂o
σ and Θ̂δ

σ are defined in Eq. (18). Note that for δ → ∞ we recover Eqs. (24) for LFM as
limδ→∞ Θ̂δ = 0.

A.3 Gaussian Averages

In order to obtain the actual ODE for a given modulation function, averages over the joint density
P(h+,h−,b+,b−) are performed for LVQ1, LVQ+/-, and LFM.

A.3.1 LVQ+/-

The elementary averages in Eq. (23) are directly obtained from Eqs. (19,20) and read:

〈σbm〉 = ∑
σ=±1

σpσλδm,σ, 〈σhm〉 = ∑
σ=±1

σpσλRm,σ, 〈σ〉 = ∑
σ=±1

σpσ. (26)

A.3.2 LVQ1

In the systems of ODE presented in Eq. (22) we encounter Heaviside functions of the following
generic form:

Θs = Θ(αs.x−βs)

which gives Θs = Θ(d−s −d+s) = Θ(αs.x−βs) with

αs = (+2s,−2s,0,0)T and βs = (Q+s+s −Q−s−s) , (27)

Performing the averages in Eqs. (22) involves conditional means of the form

〈(x)nΘs〉k and 〈Θs〉k

where (x)n is the nth component of x = (h+1,h−1,b+1,b−1). We first address the term

〈(x)nΘs〉k =
(2π)−2

(det(Ck))
1
2

Z

R4

(x)nΘ(αs · x−βs) exp

(
−1

2

(
x−µ

k

)T
C−1

k

(
x−µ

k

))
dx

=
(2π)−2

(det(Ck))
1
2

Z

R4

(
x
′
+µ

k

)
n

Θ
(

αs · x
′
+αs ·µk

−βs

)
exp

(
−1

2
x
′TC−1

k x
′
)

dx
′

with the substitution x
′
= x−µ

k
.

Let x
′
=Ck

1
2 y, where Ck

1
2 is defined in the following way: Ck =Ck

1
2 Ck

1
2 . Since Ck is a covariance

matrix, it is positive semidefinite and Ck
1
2 exists. Hence we have dx

′
= det(C

1
2
k )dy = (det(Ck))

1
2 dy
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and
〈(x)n Θs〉k =

=
1

(2π)2

Z

R4

(C
1
2
k y)nΘ

(
αs ·C

1
2
k y+αs ·µk

−βs

)
exp

(
−1

2
y2
)

dy+(µ
k
)n〈Θs〉k

=
1

(2π)2

Z

R4

4

∑
j=1

(
(C

1
2
k )n j(y) j

)
Θ
(

αs ·C
1
2
k y+αs ·µk

−βs

)
exp

(
−1

2
y2
)

dy + (µ
k
)n〈Θs〉k

= I +(µ
k
)n〈Θs〉k (introducing the abbreviation I). (28)

Now consider the integrals contributing to I:

I j =
Z

R

(C
1
2
k )n j(y) jΘ

(
αs ·C

1
2
k y+αs ·µk

−βs

)
exp

(
−1

2
(y)2

j

)
d(y) j.

We can perform an integration by parts,
R

udv = uv− R

vdu, with

u = Θ
(

αs ·C
1
2
k y+αs ·µk

−βs

)
, v = (C

1
2
k )n j exp

(
−1

2
(y)2

j

)

du =
∂

∂(y) j
Θ
(

αs ·C
1
2
k y+αs ·µk

−βs

)
d(y) j

dv = (−)(C
1
2
k )n j(y) j exp

(
−1

2
(y)2

j

)
d(y) j, and obtain

I j = −
[

Θ
(

αs ·C
1
2
k y+αs ·µk

−βs

)
(C

1
2
k )n j exp

(
−1

2
(y)2

j

)]∞

−∞︸ ︷︷ ︸
0

+

[
Z

R

(C
1
2
k )n j

∂
∂(y) j

(
Θ
(

αs ·C
1
2
k y+αs ·µk

−βs

))
exp

(
−1

2
(y)2

j

)
d(y) j

]

=
Z

R

(C
1
2
k )n j

∂
∂(y) j

(
Θ
(

αs ·C
1
2
k y+αs ·µk

−βs

))
exp

(
−1

2
(y)2

j

)
d(y) j .

In total we get

I =
1

(2π)2

4

∑
j=1

(C
1
2
k )n j

Z

R4

∂
∂(y) j

(
Θ
(

αs ·C
1
2
k y+αs ·µk

−βs

))
exp

(
−1

2
y2
)

dy

=
1

(2π)2

4

∑
j=1

(
(C

1
2
k )n j

4

∑
i=1

(αs)i(C
1
2
k )i, j

)
Z

R4

δ
(

αsĊ
1
2
k y+αs ·µk

−βs

)
exp

(
−1

2
y2
)

dy.

=
1

(2π)2 (Ckαs)n

Z

R4

(
δ
(

αs ·C
1
2
k y+αs ·µk

−βs

))
exp

(
−1

2
y2
)

dy.
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In the last step we have used

∂
∂(y) j

Θ
(

αs ·C
1
2
k y+αs ·µk

−βs

)
=

4

∑
i=1

(αs)i(C
1
2
k )i, jδ(αs ·C

1
2
k y+αs ·µk

−βs)

with the Dirac delta-function δ(.).
Now, note that exp

[
− 1

2 y2
]

dy is a measure which is invariant under rotation of the coordinate

axes. We rotate the system in such a way that one of the axes, say ỹ, is aligned with the vector C
1
2
k αs.

The remaining three coordinates can be integrated over and we get

I =
1√
2π

(Ckαs)n

Z

R

δ
(
‖C

1
2
k αs‖ỹ+αs ·µk

−βs

)
exp

[
−1

2
ỹ2
]

dỹ .

We define
α̃sk = ‖C

1
2
k αs‖ =

√
αs ·Ckαs and β̃sk = αs ·µk

−βs (29)

and obtain

I =
1√
2π

(Ckαs)n

Z

R

δ
(

α̃skỹ+ β̃sk

)
exp

[
−1

2
ỹ2
]

dỹ

=
(Ckαs)n√

2πα̃sk

Z

R

δ
(

z+ β̃sk

)
exp

[
−1

2

( z
α̃sk

)2
]

dz (with z = αskỹ)

=
(Ckαs)n√

2πα̃sk
exp

[
−1

2

( β̃sk

α̃sk

)2
]

. (30)

Now we compute the remaining average in (28) in an analogous way and get

〈Θs〉k =
1√
2π

Z

R

Θ
(

α̃skỹ+ β̃sk

)
exp

[
−1

2
ỹ2
]

dỹ

=
1√
2π

β̃sk
α̃sk

Z

−∞

exp

[
−1

2
ỹ2
]

dỹ = Φ

(
β̃sk

α̃sk

)
with Φ(z) =

z
Z

−∞

dx
e−

x2
2

√
2π

. (31)

Finally we obtain the required average using (30) and (31) as follows:

〈(x)nΘs〉k =
(Ckαs)n√

2πα̃sk
exp

[
−1

2

( β̃sk

α̃sk

)2
]

+(µ
k
)nΦ

(
β̃sk

α̃sk

)
. (32)

The quantities α̃sk and β̃sk are defined through Eq. (29) and (27) for LVQ1.

A.3.3 LFM AND LFM-W

In Eqs. (24,25) we have to evaluate conditional means of the form

〈(x)nΘ̂δ
s 〉k, 〈Θ̂δ

s 〉k with the special cases 〈(x)nΘ̂o
s 〉k, 〈Θ̂o

s 〉k.
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Here we use the notation

Θ̂δ
σ = Θ(dσ −d−σ −δ) = Θ(α̂σ.x− β̂δ

σ)

Θ̂o
σ = Θ(dσ −d−σ) = Θ(α̂σ.x− β̂o

σ)

with α̂σ = (−2σ,+2σ,0,0)T , β̂δ
σ = −(Qσσ −Q−σ−σ −δ), and β̂o

σ = −(Qσσ −Q−σ−σ).

The mathematical structure is completely analogous to the case of LVQ1 and we obtain the results

〈Θ̂δ
s 〉k = Φ

(
β̃δ

sk

α̂sk

)
and 〈(x)nΘ̂δ

s 〉k =
(Ckα̂s)n√

2πα̂sk
exp

[
−1

2

( β̃δ
sk

α̂sk

)2
]

+(µ
k
)nΦ

(
β̃δ

sk

α̂sk

)
, (33)

as well as the corresponding special cases with δ = 0. Here, we have introduced

β̃δ
sk = α̂s ·µk

− β̂δ
s , β̃o

sk = α̂s ·µk
− β̂o

s , and α̂sk =
√

α̂s ·Ck α̂s.

A.4 Final Form of the Differential Equations

The full form of the ODE for LVQ1, LVQ+/-, and LFM is obtained after inserting the averages
given in the previous section.

A.4.1 LVQ1

For the LVQ1 algorithm, using (31) and (32), the system or ODE reads:

dRlm

dα
= η

[
l
(

∑
σ=±1

σpσ

[
(Cαl)nbm√

2πα̃lσ
exp
[
− 1

2

( β̃lσ

α̃lσ

)2]

+(µσ)nbmΦ
( β̃lσ

α̃lσ

)]
− ∑

σ=±1

σpσΦ
( β̃lσ

α̃lσ

)
Rlm

)]
,

dQlm

dα
= η

(
l ∑

σ=±1

σpσ

[(Cαl)nhm√
2πα̃lσ

exp
[
− 1

2

( β̃lσ

α̃lσ

)2]
+(µσ)nhmΦ

( β̃lσ

α̃lσ

)]

−l ∑
σ=±1

σpσ

[
Φ
( β̃lσ

α̃lσ

)
Qlm +m ∑

σ=±1

σpσ

[ (Cαl)nhl√
2πα̃mσ

exp
[
− 1

2

( β̃mσ

α̃mσ

)2]

+(µσ)nhl Φ
( β̃mσ

α̃mσ

)]
−m ∑

σ=±1

σpσΦ
( β̃mσ

α̃mσ

)
Qlm

)

+δlm η2 ∑
σ=±1

σvσ pσΦ
( β̃lσ

α̃lσ

)
. (34)

Here, we use the previously defined abbreviations, Eq. (29),

α̃sk =
√

αs ·Ckαs, β̃sk = αs ·µk
−βs

with αs = (+2s,−2s,0,0)T and βs = (Q+s+s −Q−s−s).

Furthermore, nhm =

{
1 if m = 1
2 if m = −1

and nbm =

{
3 if m = 1
4 if m = −1

.
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A.4.2 LVQ+/-

Using the averages computed in (26) we get the final form of the system of ODE for the LVQ+/-
algorithm as follows:

dRlm

dα
= η l

(

∑
σ=±1

σpσλδm,σ − ∑
σ=±1

σpσRlm

)
,

dQlm

dα
= η

(
l ∑

σ=±1

σpσλRm,σ − l ∑
σ=±1

σpσQlm +m ∑
σ=±1

σpσλRl,σ

−m ∑
σ=±1

σpσQlm +η l m ∑
σ=±1

pσvσ

)
. (35)

A.4.3 LFM

The final form of the system of ODE reads with Eq. (33)

dRlm

dα
= η l

(

∑
σ=±1

σpσ

[(Cα̂σ)nbm√
2πα̂σσ

exp
[
− 1

2

( β̃o
σσ

α̂σσ

)2]

+(µσ)nbmΦ
( β̃o

σσ
α̂σσ

)]
− ∑

σ=±1

σpσ

[
Φ
( β̃o

σσ
α̂σσ

)]
Rlm

)
,

dQlm

dα
= η

(
l ∑

σ=±1

σpσ

[(Cα̂σ)nhm√
2πα̂σσ

exp
[
− 1

2

( β̃o
σσ

α̂σσ

)2]
+(µσ)nhmΦ

( β̃o
σσ

α̂σσ

)]

−l ∑
σ=±1

σpσ

[
Φ
( β̃o

σσ
α̂σσ

)]
Qlm +m ∑

σ=±1

σpσ

[(Cα̂σ)nhl√
2πα̂σσ

exp
[
− 1

2

( β̃o
σσ

α̂σσ

)2]

+(µσ)nhl Φ
( β̃o

σσ
α̂σσ

)]
−m ∑

σ=±1

σpσ

[
Φ
( β̃o

σσ
α̂σσ

)]
Qlm + l mη ∑

σ=±1

vσ pσΦ
( β̃o

σσ
α̂σσ

))
.

(36)

Here we have to insert α̂sk =
√

α̂s ·Ckα̂s, β̃o
sk = α̂s ·µk

− β̂o
s

with α̂σ = (−2σ,+2σ,0,0)T and β̂o
σ = −(Q+σ+σ −Q−σ−σ).

Also, nhm =

{
1 if m = 1
2 if m = −1

and nbm =

{
3 if m = 1
4 if m = −1

.

A.4.4 LFM-W

The system of ODE for LFM-W, using Eq. (33), is given by

dRlm

dα
= η l

(

∑
σ=±1

σpσ

[(Cα̂σ)nbm√
2πα̂σσ

exp
[
− 1

2

( β̃o
σσ

α̂σσ

)2]

356



DYNAMICS AND GENERALIZATION ABILITY OF LVQ ALGORITHMS

+(µσ)nbmΦ
( β̃o

σσ
α̂σσ

)]
− ∑

σ=±1

σpσ

[
Φ
( β̃o

σσ
α̂σσ

)]
Rlm

)

−η l

(

∑
σ=±1

σpσ

[(Cα̂σ)nbm√
2πα̂σσ

exp
[
− 1

2

( β̃δ
σσ

α̂σσ

)2]

+(µσ)nbmΦ
( β̃δ

σσ
α̂σσ

)]
− ∑

σ=±1

σpσ

[
Φ
( β̃δ

σσ
α̂σσ

)]
Rlm

)
,

dQlm

dα
= η

(
l ∑

σ=±1

σpσ

[(Cα̂σ)nhm√
2πα̂σσ

exp
[
− 1

2

( β̃o
σσ

α̂σσ

)2]
+(µσ)nhmΦ

( β̃o
σσ

α̂σσ

)]

−l ∑
σ=±1

σpσ

[
Φ
( β̃o

σσ
α̂σσ

)]
Qlm +m ∑

σ=±1

σpσ

[(Cα̂σ)nhl√
2πα̂σσ

exp
[
− 1

2

( β̃o
σσ

α̂σσ

)2]

+(µσ)nhl Φ
( β̃o

σσ
α̂σσ

)]
−m ∑

σ=±1

σpσ

[
Φ
( β̃o

σσ
α̂σσ

)]
Qlm + l mη ∑

σ=±1

vσ pσΦ
( β̃o

σσ
α̃σσ

))

−η

(
l ∑

σ=±1

σpσ

[(Cα̂σ)nhm√
2πα̂σσ

exp
[
− 1

2

( β̃δ
σσ

α̂σσ

)2]
+(µσ)nhmΦ

( β̃δ
σσ

α̂σσ

)]

−l ∑
σ=±1

σpσ

[
Φ
( β̃δ

σσ
α̂σσ

)]
Qlm +m ∑

σ=±1

σpσ

[(Cα̂σ)nhl√
2πα̂σσ

exp
[
− 1

2

( β̃δ
σσ

α̂σσ

)2]

+(µσ)nhl Φ
( β̃δ

σσ
α̂σσ

)]
−m ∑

σ=±1

σpσ

[
Φ
( β̃δ

σσ
α̂σσ

)]
Qlm + l mη ∑

σ=±1

vσ pσΦ
( β̃δ

σσ
α̂σσ

))
.

Here again, we have to insert

α̂sk =
√

α̂s ·Ck αs, β̃δ
sk = α̂s ·µk

− β̂δ
s , β̃o

sk = α̂s ·µk
− β̂o

s

with α̂σ = (−2σ,+2σ,0,0)T , β̂δ
σ = −(Q+σ+σ −Q−σ−σ −δ), and β̂o

σ = −(Q+σ+σ −Q−σ−σ).

As above, nhm =

{
1 if m = 1
2 if m = −1

and nbm =

{
3 if m = 1
4 if m = −1

.

A.5 Analytical Results for LVQ+/-

The system of ODE (35) can be integrated analytically and the solutions are presented below for
initialization of prototypes in the origin, that is, Rlm(0) = Qlm(0) = 0.
For convenience, we use the parameterization

p+ =
1+ p̂

2
, p− =

1− p̂
2

, with the bias p̂ = (2p+−1) ∈ [−1,1].

In the generic case of unequal priors p̂ 6= 0, one obtains

R++(α) = − 1
2 p̂

λ(1+ p̂)(e−αηp̂ −1), R+−(α) =
1

2 p̂
λ(1− p̂)(e−αηp̂ −1),

R−+(α) = − 1
2 p̂

λ(1+ p̂)(e+αηp̂ −1), R−−(α) =
1

2 p̂
λ(1− p̂)(e+αηp̂ −1),
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Q++(α) =
1

4 p̂2 e−2αη p̂
(

2(eαηp̂ −1)2 λ2 (1+ p̂2)+(e2αη p̂ −1)η p̂ (v+(1+ p̂)+ v−(1− p̂))
)
,

Q+−(α) =
1

2 p̂2 e−αηp̂
(
− (eαηp̂ −1)2 λ2 (1+ p̂2)−αeαηp̂ η2 p̂2 (v+(1+ p̂)+ v−(1− p̂))

)
,

Q−−(α) =
1

4 p̂2

(
2(eαηp̂ −1)2 λ2 (1+ p̂2)+(e2αη p̂ −1)η p̂ (v+(1+ p̂)+ v−(1− p̂))

)
.

(37)

The special case of equal prior probabilities is obtained in the limit p̂ → 0:

Rlm(α) = l m
λη
2

α Qlm(α) = l m
1
2

η2(αλ2 + v+ + v−) α . (38)

A.6 The Generalization Error

Using (31) we can directly compute the generalization error as follows:

εg = ∑
k=±1

p−k〈Θk〉−k = ∑
k=±1

p−kΦ
( β̃k−k

α̃k−k

)

which yields Eqs. (14,15) in the text after inserting

α̃sk = ‖C
1
2
k αs‖ =

√
αs ·Ckαs, β̃sk = αs ·µk

−βs .

with αs = (+2s,−2s,0,0)T and βs = (Q+s+s −Q−s−s).
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