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Abstract

Co-clustering, or simultaneous clustering of rows and columns of a two-dimensional data matrix,
is rapidly becoming a powerful data analysis technique. Co-clustering has enjoyed wide success in
varied application domains such as text clustering, gene-microarray analysis, natural language pro-
cessing and image, speech and video analysis. In this paper, we introduce a partitional co-clustering
formulation that is driven by the search for a good matrix approximation—every co-clustering is
associated with an approximation of the original data matrix and the quality of co-clustering is
determined by the approximation error. We allow the approximation error to be measured using
a large class of loss functions called Bregman divergences that include squared Euclidean dis-
tance and KL-divergence as special cases. In addition, we permit multiple structurally different
co-clustering schemes that preserve various linear statistics of the original data matrix. To accom-
plish the above tasks, we introduce a new minimum Bregman information (MBI) principle that
simultaneously generalizes the maximum entropy and standard least squares principles, and leads
to a matrix approximation that is optimal among all generalized additive models in a certain natural
parameter space. Analysis based on this principle yields an elegant meta algorithm, special cases
of which include most previously known alternate minimization based clustering algorithms such
as kmeans and co-clustering algorithms such as information theoretic (Dhillon et al., 2003b) and
minimum sum-squared residue co-clustering (Cho et al., 2004). To demonstrate the generality and
flexibility of our co-clustering framework, we provide examples and empirical evidence on a vari-
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ety of problem domains and also describe novel co-clustering applications such as missing value
prediction and compression of categorical data matrices.

Keywords: co-clustering, matrix approximation, Bregman divergences, Bregman information,
maximum entropy

1. Introduction

Data naturally arises in the form of matrices in a multitude of machine learning and data mining
applications. Often, the data matrices that arise in real-world applications contain a large number of
rows and columns, and may be very sparse. Understanding the natural structure of such matrices is
a fundamental problem.

Clustering is an unsupervised learning technique that has been often used to discover the “latent
structure” of data matrices that describe a set of objects (rows) by their feature values (columns).
Typically, a clustering algorithm strives to group “similar” objects (or rows). A large number of
clustering algorithms such as kmeans, agglomerative clustering, and their variants have been thor-
oughly studied (Jain and Dubes, 1988; Ghosh, 2003). Often, clustering is preceded by a dimension-
ality reduction phase, such as feature selection where only a subset of the columns is retained. As
an alternative to feature selection, one can cluster the columns, and then represent each resulting
group of features by a single derived feature (Dhillon et al., 2003a).

A recent paper (Dhillon and Modha, 2001) dealing with the spherical kmeans algorithm for
clustering large, sparse document-term matrices arising in text mining graphically demonstrates (see
Figures 13, 31, and 32 in the paper by Dhillon and Modha, 2001) that document clustering naturally
brings together similar words. Intuitively, documents are similar because they use similar words. A
natural question is whether it is possible to mathematically capture this relationship between rows
and columns. Furthermore, is it possible to exploit this relationship to a practical advantage? This
paper shows that both these questions can be answered in the affirmative in the context of clustering.

Co-clustering, also called bi-clustering (Hartigan, 1972; Cheng and Church, 2000), is the prob-
lem of simultaneously clustering rows and columns of a data matrix. Unlike clustering which seeks
similar rows or columns, co-clustering seeks “blocks” (or “co-clusters™) of rows and columns that
are inter-related. Co-clustering has recently received a lot of attention in several practical applica-
tions such as simultaneous clustering of documents and words in text mining (Dhillon et al., 2003b;
Gao et al., 2005; Takamura and Matsumoto, 2003), genes and experimental conditions in bioin-
formatics (Cheng and Church, 2000; Cho et al., 2004; Kluger et al., 2003), tokens and contexts in
natural language processing (Freitag, 2004; Rohwer and Freitag, 2004; Li and Abe, 1998), users
and movies in recommender systems (George and Merugu, 2005), etc.

Co-clustering is desirable over traditional “single-sided” clustering from a number of perspec-
tives:

1. Simultaneous grouping of row and column clusters is more informative and digestible. Co-
clustering provides compressed representations that are easily interpretable while preserving
most of the information contained in the original data, which makes it valuable to a large class
of statistical data analysis applications.

2. A row (or column) clustering can be thought of as dimensionality reduction along the rows
(or columns). Simultaneous clustering along rows and columns reduces dimensionality along
both axes, thus leading to a statistical problem with dramatically smaller number of param-
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eters and hence, a much more compact representation for subsequent analysis. Since co-
clustering incorporates row clustering information into column clustering and vice versa, one
can think of it as a “statistical regularization” technique that can yield better quality clusters
even if one is primarily interested in a single-sided clustering. The statistical regularization
effect of co-clustering is extremely important when dealing with large, sparse data matrices,
for example, those arising in text mining. A similar intuition can be drawn from subspace
clustering methods (Parsons et al., 2004), which only use a part of the full potential of the
co-clustering methodology.

3. As the size of data matrices increases, so does the need for scalable clustering algorithms.
Single-sided, geometric clustering algorithms such as kmeans and its variants have computa-
tion time proportional to mnk per iteration, where m is the number of rows, n is the number
of columns and k is the number of row clusters. Co-clustering algorithms based on a similar
iterative process, on the other hand, involve optimizing over a smaller number of parameters,
and can relax this dependence to O(mkl + nkl) where m,n and k are defined as before and | is
the number of column clusters. Since the number of row and column clusters is usually much
smaller than the original number of rows and columns, co-clustering can lead to substantial
reduction in the running time (see, for example, Dhillon et al. 2003b and Rohwer and Freitag
2004).

In summary, co-clustering is an exciting paradigm for unsupervised data analysis in that it is
more informative, has less parameters, is scalable, and is able to effectively intertwine row and
column information.

In this paper, we concentrate on partitional co-clustering (also called checkerboard bi-clustering
by Kluger et al., 2003) where all the rows and columns are partitioned into disjoint row and column
clusters respectively. We provide a general framework for addressing this problem that considerably
expands the scope and applicability of the co-clustering methodology. To appreciate this general-
ization, it is helpful to view partitional co-clustering as a lossy data compression problem where,
given a specified number of rows and column clusters, one attempts to retain as much information
as possible about the original data matrix in terms of statistics based on the co-clustering (Dhillon
etal., 2003b). The main idea is that a reconstruction based on co-clustering should result in the same
set of user-specified statistics as the original matrix. There are two key components in formulating
a co-clustering problem: (i) choosing a set of critical co-clustering-based statistics of the original
data matrix that need to be preserved, and (ii) selecting an appropriate measure to quantify the infor-
mation loss or the discrepancy between the original data matrix and the compressed representation
provided by the co-clustering. For example, in the work of Cheng and Church (2000), the row
and column averages of each co-cluster are preserved and the discrepancy between the original and
the compressed representation is measured in terms of the sum of element-wise squared deviation.
In contrast, information-theoretic co-clustering (ITCC) (Dhillon et al., 2003b), which is applicable
to data matrices representing joint probability distributions, preserves a different set of summary
statistics, that is, the row and column averages and the co-cluster averages. Further, the quality of
the compressed representation is measured in terms of the sum of element-wise I-divergence. In the
next subsection, we take a closer look at ITCC to provide a concrete motivating example.

1921



BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

1.1 ITCC: A Motivating Example

Let X and Y be discrete random variables that take values in the sets {xy}, [u]7, and {yy}, [v]],
respectively, where [u]T" denotes an index u running over {1,---,m}. Information-theoretic co-
clustering provides a principled approach for simultaneously clustering the rows and columns of
the joint probability distribution p(X,Y). In practice, the entries of this matrix may not be known
and are, instead, estimated from a contingency table or co-occurrence matrix. Let the row clusters
be denoted by {%g}, [g]% and the column clusters by {yn}, [h]}. Let X and Y denote the clustered
random variables induced by X and Y that range over the set of row and column clusters respectively.
A natural goal is to choose a co-clustering that preserves the maximum amount of “information”
in the original data. In particular, since the data corresponds to the joint probability distribution of
random variables X and Y, it is natural to preserve the mutual information between X and Y, or,
in other words, minimize the loss in mutual information due to the compression that results from
co-clustering. Thus, a suitable formulation is to solve the problem:

min (1Y) = 1(X;Y)) L)
XY

where I (X;Y) is the mutual information between X and Y (Cover and Thomas, 1991). Dhillon et al.
(2003b) showed that

1(X:Y) = 1(X,¥) = KL(p(X,Y)lla(X,Y)) . )
where ¢(X,Y) is a distribution of the form
a(X,Y) = p(X,Y)p(X|X)p(¥[Y) , ©)

and KL(+||-) denotes the Kullback-Leibler(KL) divergence, also known as relative entropy. Thus, the
search for the optimal co-clustering may be conducted by searching for the nearest approximation
q(X,Y) that has the above form. Since p(X), p(Y) and p(X,Y) are determined by m—1, n—1
and kl — 1 parameters respectively, with k + 1 dependencies due to p(X) and p(Y), for a given co-
clustering the distribution q(X,Y ) depends only on (kI +m+n—k —1 —3) independent parameters,
which is much smaller than the mn — 1 parameters that determine a general joint distribution. Hence,
q(X,Y) is a “low-complexity” or low-parameter matrix approximation of p(X,Y).

The above viewpoint was developed by Dhillon et al. (2003b). We now present an alternate
viewpoint that will enable us to generalize our approach to arbitrary data matrices and general
distortion measures. The following lemma highlights a key maximum entropy property that makes
q(X.,Y) a “low-complexity” or low-parameter approximation.

Lemma 1 Given a fixed co-clustering, consider the set of joint distributions p’ that preserve the
row, column and co-cluster marginals of the input distribution p:

Zp/(xvy) = p()’(\ay) = Z Zp(xvy)7 V)’(\v),ﬂ (4)
XEXYEY xexyey
P'x)=px), P'y)=ply), Wy (5)

Among all such distributions p’, the distribution g given in (3) has the maximum entropy, that is,
H((X,Y)) > H(p'(X,Y)).

A proof of the above lemma is presented in Appendix A. What is the significance of the above
lemma? In the absence of any constraints, the uniform distribution, po(X,Y) = {%}, has the max-
imum entropy. If only row and column marginals are to be preserved, that is, (5) holds, then the
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product distribution p(X)p(Y) has maximum entropy (see Cover and Thomas, 1991, Problem 5,
Chapter 11). The above lemma states that among all distributions that preserve row, column, and co-
cluster marginals, that is, (4) and (5) hold, the maximum entropy distribution has the form in (3). The
maximum entropy characterization ensures that q(X,Y ) has a number of desirable properties. For
instance, given the row, column and co-cluster marginals, it is the unique distribution that satisfies
certain consistency criteria (Csiszar, 1991; Shore and Johnson, 1980). In Section 4, we also demon-
strate that it is the optimal approximation to the original distribution p in terms of KL-divergence
among all multiplicative combinations of the preserved marginals. It is important to note that the
maximum entropy characterization also implies that q is a low-complexity matrix approximation.!
In contrast, note that the input p(X,Y ) obviously satisfies the constraints in (4) and (5), but in gen-
eral, is determined by (mn — 1) parameters and has lower entropy than g. Every co-clustering yields
a unique maximum entropy distribution. Thus, by (2) and Lemma 1, the co-clustering problem (1) is
equivalent to the problem of finding the nearest (in KL-divergence) maximum entropy distribution
that preserves the row, column and co-cluster marginals of the original distribution. The maximum
entropy property in Lemma 1 may be re-stated as KL(q||po) < KL(p’||po), where py is the uniform
distribution. Thus, the maximum entropy principle is identical to the minimum relative entropy
principle where the relative entropy is measured with respect to po.

The above formulation is applicable when the data matrix corresponds to an empirical joint
distribution. However, there are important situations when the data matrix cannot be interpreted in
this matter, for example the matrix may contain negative entries and/or a distortion measure other
than KL-divergence, such as the squared Euclidean distance might be more appropriate.

1.2 Key Contributions
The contributions of this paper can be summarized as follows:

e We introduce a partitional co-clustering formulation driven by a matrix approximation view-
point where the quality of co-clustering is characterized by the accuracy of an induced co-
clustering-based matrix approximation, measured in terms of a suitable distortion measure.
This formulation serves the dual purpose of (i) obtaining row and column clusterings that
optimize a well-defined global objective function, and (ii) providing a new class of desirable
matrix approximations.

e Our formulation is applicable to all Bregman divergences (Azoury and Warmuth, 2001; Baner-
jee et al., 2005b; Bregman, 1967; Censor and Zenios, 1998), which constitute a large class of
distortion measures including the most commonly used ones such as squared Euclidean dis-
tance, KL-divergence, Itakura-Saito distance, etc. The generalization to Bregman divergences
is useful due to a bijection between regular exponential families and a sub-class of Bregman
divergences called regular Bregman divergences (Banerjee et al., 2005b). This bijection re-
sult enables us to choose the appropriate Bregman divergence based on the underlying data
generation process or noise model. This, in turn, allows us to perform co-clustering on a wide
variety of data matrices.

e Our formulation allows multiple co-clustering schemes wherein the reconstruction of the orig-
inal matrix is based on different sets of linear summary statistics that one may be interested

1. The complexity here refers to the number of parameters required to construct a good approximation to the given
matrix. It does not refer to the expected communication complexity, as is usual in the context of Shannon entropy.
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in preserving. In particular, we focus on summary statistics that correspond to conditional
expectations over partitions that result from the rows, columns and co-clusterings. We es-
tablish that there are exactly six non-trivial co-clustering schemes. Each of these schemes
corresponds to a unique co-clustering basis, that is, combination of conditional expectations
over various partitions. Using a formal abstraction, we explicitly enumerate and analyze the
co-clustering problem for all the six bases. Existing partitional co-clustering algorithms (Cho
et al., 2004; Dhillon et al., 2003b) can then be seen as special cases of the abstraction, em-
ploying one of the six co-clustering bases. Three of the six bases we discuss have not been
used in the literature till date.

Previous work on co-clustering assume that all the elements of the data matrix are equally
important, that is, have uniform measure. In contrast, we associate a probability measure
with the elements of the specified matrix and pose the co-clustering problem in terms of the
random variable that takes values among the matrix elements following this measure. Our
formulation based on random variables provides a natural mechanism for handling values
with differing levels of uncertainty and in particular, missing values, while retaining both the
analytical and algorithmic simplicity of the corresponding uniform-measure formulation.

En route to formulating the Bregman co-clustering problem, we introduce the minimum Breg-
man information (MBI) principle that generalizes the well-known maximum entropy and stan-
dard least-squares principles to all Bregman loss functions. The co-clustering process is
guided by the search for the matrix approximation that has the minimum Bregman informa-
tion while preserving the specified co-clustering statistics.

We provide an interpretation of the Bregman co-clustering problem in terms of minimizing
the loss in Bregman information due to co-clustering, which enables us to generalize the
viewpoint presented in information-theoretic co-clustering (Dhillon et al., 2003b).

We develop an efficient meta co-clustering algorithm based on alternate minimization that is
guaranteed to achieve (local) optimality for all Bregman divergences. Many previously known
parametric clustering and co-clustering algorithms such as minimum sum-squared residue co-
clustering (Cho et al., 2004) and information-theoretic co-clustering (Dhillon et al., 2003b)
follow as special cases of our methodology.

Lastly, we describe some novel applications of co-clustering such as predicting missing values
and compression of categorical data matrices, and also provide empirical results comparing
different co-clustering schemes for various application domains.

In summary, our results provide a sound theoretical framework for the analysis and design of

efficient co-clustering algorithms for data approximation and compression, and considerably expand
applicability of the co-clustering methodology.

1.3 Outline of the Paper and Notation

The rest of paper is organized as follows: We begin by reviewing preliminary definitions and de-
scribe the Bregman co-clustering problem at a conceptual level in Section 2. To present our co-
clustering framework, we proceed as follows. First, we describe and analyze block-average co-
clustering in Section 3, which is an important special case of our general formulation, in order
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to provide intuition about the main results. Then, in Section 4, we enumerate various possible
co-clustering bases corresponding to the summary statistics chosen to be preserved, and present
a general formulation that is applicable to all these bases. In Section 5, we analyze the general
Bregman co-clustering problem and propose a meta-algorithm that is applicable to all Bregman di-
vergences and all co-clustering bases. In Appendix E, we describe how the Bregman co-clustering
algorithm can be instantiated for various choices of Bregman divergence and co-clustering basis by
providing the exact update steps. Readers interested in a purely computational recipe can jump to
Apendix E. Empirical evidence on the benefits of co-clustering and preliminary experiments on
novel co-clustering applications are presented in Section 6. We discuss related work in Section 7
and conclude in Section 8.

A brief word about the notation: Sets such as {xi,---,Xn} are enumerated as {x;}{'.; and an
index i running over the set {1,--- ,n} is denoted by [i]]. Random variables are denoted using upper
case letters, for example, Z. Matrices are denoted using upper case bold letters, for example, Z,
whereas the corresponding lower case letters z,,, denote the matrix elements. Transpose of a matrix
Z is denoted by ZT. The effective domain of a function f is denoted by dom(f) and the inverse of a
function f, when well defined, is denoted by f(~1). The relative interior and boundary of a set $ are
denoted by ri(5) and bd(S5) respectively. Tables 15, 16 and 17 list the notation used in the paper.

2. Preliminaries
In this section, we discuss some important properties of Bregman divergences and also describe the
basic setup of our co-clustering framework.

2.1 Bregman Divergences and Bregman Information

We start by defining Bregman divergences (Bregman, 1967; Censor and Zenios, 1998), which form
a large class of well-behaved loss functions with a number of desirable properties.

Definition 1 Let @be a real-valued convex function of Legendre type? (Rockafellar, 1970; Banerjee
et al., 2005b) defined on the convex set § = dom(@) (C RY). The Bregman divergence de: S x
ri(S) — Ry is defined as

do(21,22) = Q(21) — Q(22) — (21 — 22, 0Q(22)),
where [ is the gradient of @.

Example 1.A (1-Divergence) Given z € Ry, let ¢(z) = zlogz—z . For z1,25 € Ry, dg(z1,22) =
z1l09(z1/22) — (21— 27) .

Example 2.A (Squared Euclidean Distance) Givenz € R, let®(z) =z2. Forzi,z, € R, dg(21,22) =
(21 — 22)2 .

Example 3.A (Itakura-Saito Distance) Givenze R, let@(z) = —logz. Forzy,z, € R, dg(z1,22) =
4 —log (Z—1> -1.
V<) Z2

2. A proper, closed convex function @ is said to be of Legendre type if (i) int(dom(@)) is non-empty, (ii) @ is strictly
convex and differentiable on int(dom(¢)), and (iii) Vz, € bd(dom(¢)), ZIirTZ1b [|D@(z)|| — o0, where z € dom(¢).
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Given a Bregman divergence and a random variable, the uncertainty in the random variable
can be captured in terms of a useful concept called Bregman information (Banerjee et al., 2005b)
defined below.

Definition 2 For any Bregman divergence dy : S x int(S) — R and any random variable Z ~
w(z), z € Z C S, the Bregman information of Z is defined as the expected Bregman divergence to
the expectation, that is,

lo(Z) = E[dg(Z,E[2])]

Intuitively, this quantity is a measure of the “spread” or the “information” in the random variable.

Example 1.B (I-Divergence) Given a random variable Z ~w(z), z € Z C R, the Bregman infor-
mation corresponding to I-divergence is given by

l(Z) = E[Zlog (2/E[Z]) ~ Z + E[Z]] = E[Zlog (Z/E[Z])] .

When w is the uniform measure and the support of Z (say Z) consists of joint probability values
of two other random variables X and Y, that is, Z = {p(Xu,Yv), [ul],[V]}}, then E[Z] = nfn, that is,
probability value corresponding to the uniform distribution po(X,Y). The Bregman information in

this case is given by

P(Xu,Yv) > 1 1
Xu,Yv)log | ————% | = —KL = ——H(p) + constant,
o5 2. 3, POyotog (I ) - k(o) = ()

where H(-) is the Shannon entropy.

Example 2.B (Squared Euclidean Distance) Given Z ~w(z), z € Z C R, the Bregman informa-
tion corresponding to squared Euclidean distance is given by

lo(Z) =E[Z—E[Z]]?,
which is the variance of Z. When w is uniform and the support of Z, that is, Z consists of elements

inamatrix Z € R™", that is, 2= {z, [U]]", [V]]}, then E[Z] = 25T, 50, 2y = Z. The Bregman
information in this case is given by

1
z Z Zoy— z Z 2,— %HZHE—kconStant,

U— v=1 U— v=1

that is, a linear function of the squared Frobenius norm of Z.

We note a useful property of Bregman information that will be extensively used in subsequent
sections. The property, formally stated below, shows that the Bregman information exactly equals
the difference between the two sides of Jensen’s inequality (Cover and Thomas, 1991).

Lemma 2 (Banerjee et al., 2005b) For any Bregman divergence dg : § x ri(§) — R, and ran-
dom variable Z ~ w(z), z € Z C S, the Bregman information ly(Z) = E[dy(Z,E[Z])] = E[®(Z)] —

®(E[Z]).

Clearly, Bregman information is always non-negative. For a detailed list of other properties and
examples of Bregman divergences and Bregman information, the reader is referred to Banerjee
et al. (2005b) and Appendix B.
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2.2 Data Matrix

We focus on the problem of co-clustering a specified m x n data matrix Z. Let each entry of Z = [z,]
take values in the convex set® § = dom(g), for example, S = R for @(z) = z2 and § = R, for
¢(z) = zlogz —z. Hence, Z € $™". Observe that we are now admitting a much larger class of
matrices than those used in the co-clustering formulations of Cho et al. (2004) and Dhillon et al.
(2003D).

Given the data matrix Z, we consider a random variable Z, that takes values in Z following a
probability measure as described below. Let U be a random variable that takes values in {1,---,m},
the set of row indices, and let V be a random variable that takes values in {1,--- ,n}, the set of
column indices. Let (U,V) be distributed according to a probability measure w = {wyy : [u]7, [V]1},
which is either pre-specified or set to be the uniform distribution.* Let Z be a (U,V )-measurable
random variable that takes values in Z following w, that is, p(Z(u,v) = zy) = wyy. Clearly, for a
given matrix Z, the random variable Z is a deterministic function of the random variable (U,V).
Throughout the paper, we assume the matrix Z and the measure w to be fixed so that taking con-
ditional expectations of the random variable Z is well defined. In pure numeric terms, such condi-
tional expectations are simply weighted row/column/block averages of the matrix Z according to the
weights w. The stochastic formalization enables a succinct way to analyze such weighted averages.

Example 1.C (I-Divergence) Let (X,Y) ~ p(X,Y) be jointly distributed random variables with X
and Y taking values in {xy},[u]?" and {yy},[v]] respectively. Then, p(X,Y) can be written in the
form of the matrix Z = [z,], [u]", [v]], where z,, = p(Xu,Yv) IS a deterministic function of u and v.
This example with a uniform measure w corresponds to the setting described in Section 2, Example
1.B (originally in the work of Dhillon et al., 2003b).

Example 2.C (Squared Euclidean Distance) Let Z € R™" denote a data matrix whose elements
may assume positive, negative, or zero values and let w be a uniform measure. This example
corresponds to the co-clustering setting described by Cheng and Church (2000) and Cho et al.
(2004).

2.3 Bregman Co-clustering

We define a k x | partitional co-clustering as a pair of functions:

p:{l,---,m}n—>{1,-~,k},
y:{lj...7n},_>{17...’|}_

LetU andV be random variables that take values in {1,--- ,k} and {1,--- 1} such that U = p(U) and
V =y(V). Let Z= [Zw] € S™" be an approximation for the data matrix Z such that Z depends only
upon a given co-clustering (p,y) and certain summary statistics derived from the co-clustering. Let
Zbea (U,V)-measurable random variable that takes values in this approximate matrix Z following

3. S need not necessarily be a subset of R. It is convenient to assume this for ease of exposition. In general, the elements
of the matrix Z can take values over any convex domain with a well-defined Bregman divergence. We give examples
of such settings in Section 6.

4. Associating a measure with the elements of a matrix is not common, but this construct allows us to deal with a wider
variety of situations including the modeling of matrices with missing values. Further, several quantities of interest,
such as row/column/block averages, can now be succinctly described in terms of conditional expectations.
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w, that is, p(Z(U,V) = Z,) = Wy. Then the goodness of the underlying co-clustering can be
measured in terms of the expected distortion between Z and Z, that is,

E[de(Z, Z z Wuvd(p 2w, 2w) = dch(Z,Z), (6)

where @y, : S™" — R is a separable convex function induced on the matrices such that the Breg-
man divergence between any pair of matrices is the weighted sum of the element-wise Bregman
divergences corresponding to the convex function ¢. From the matrix approximation viewpoint, the
above quantity is simply the weighted element-wise distortion between the given matrix Z and the
approximation Z. The co-clustering problem is then to find (p,y) such that (6) is minimized. To
carry out this plan, we need to make precise the connection between (p,y) and Z.

Example 1.D (I-Divergence) The Bregman co-clustering objective function (6) in this case is given
by E[dg(Z,Z)] =E[Zlog(Z/Z) —Z+Z].

Example 2.D (Squared Eucljdean Distange) The Bregman co-clustering objective function (6) in
this case is given by E[dy(Z,2)] =E[(Z — Z2)?].

The goodness of a co-clustering (p,y) is determined by how well Z (or the matrix Z) approx-
imates Z (or the matrix Z). The crucial thing to note is that the construction of the approximation
Z is based on the co-clustering (p,y) and certain summary statistics of the original random vari-
able Z that one wants to preserve in the approximation. The summary statistics may be properties
of the co-clusters themselves, such as co-cluster marginals as in (4), and/or some other important
statistics of the data, such as row and column marginals as in (5). Note that Z is not accessible
while constructing Z, since otherwise one could just set Z = Z and get perfect reconstruction. The
special case when Z is constructed only using the co-clustering (p,y) and the co-cluster marginals
is important and easy to understand. Moreover, it is a straightforward generalization of one-sided
clustering schemes such as kmeans. Hence, we first investigate this special case in detail in the next
section. The general case, where additional summary information such as row/column marginals of
the original matrix are available, will be analyzed in Sections 4 and 5.

3. Block Average Co-clustering: A Special Case

In this section, we discuss the important special case of Bregman co-clustering where the summary
statistics are derived by aggregating along the co-clusters, that is, the summary statistics preserved
are just the co-cluster means. Hence, in this case, for a given co-clustering (p,Yy), Z has to be re-
constructed based only on the co-cluster means, or equivalently, the conditional expectation random
variable E[Z]O,\?] where expectation is taken with respect to the measure w.®> The quality of the
co-clustering (p,Y) is determined by the approximation error between Z and Z.

3.1 Minimum Bregman Information (MBI) Principle

In order to analyze the block co-clustering problem, we first focus on characterizing the approx-
imation random variable Z given a fixed co-clustering (p,y) and the resulting co-cluster means

5. Unless otherwise mentioned, the expectations in the rest of the paper are with respect to the probability measure w.
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{E[Z|G,9]}. While there can be many different ways to get an approximation Z from the available
information, we consider a principled characterization based on the Bregman information of the
reconstruction Z. In particular, we propose and use the minimum Bregman information principle
that can be shown to be a direct generalization of the maximum entropy as well as the least squares
principles.

In order to get the “best” approximation, we consider a special class of approximating random
variables Z’ based on the given co-clustering and the available information E[Z|U,V]. Let Sa be
defined as

Sa=1{Z/|E[Z'|0.9) = E[Z/0,9], V[a]%, [0} } - (7)

It is reasonable to search for the best approximation in Sa since any random variable Z’ in this
class has the same co-cluster statistics as the original random variable Z. In other words, the cor-
responding reconstructed matrices preserve the co-cluster statistics of the original matrix, which is
desirable. Then, with respect to the set Sa, we ask: What is the “best” random variable to select from
this set? We propose a new minimum Bregman information principle that recommends selecting a
random variable that has the minimum Bregman information subject to the linear constraints (7):

A~

Za = Za(p,y) = argmin ly(Z'). (8)
Z'eSa

The basic philosophy behind the minimum Bregman information principle is that the “best”
approximation given certain information is one that does not make any extra assumptions over the
available information. Mathematically, the notion of no extra assumptions or maximal uncertainty
translates to minimum Bregman information while the available information is provided by the linear
constraints that preserve the specified statistics.

As the following examples show, the widely used maximum entropy principle (Jaynes, 1957;
Cover and Thomas, 1991) and standard least squares principles (Csiszar, 1991) can be obtained as
special cases of the MBI principle.

Example 1.E From Example 1.B, we observe that the Bregman information of a random variable
Z following a uniform distribution over the joint probability values of two other random variables X
andY is given by —%H (p(X,Y)) upto an additive constant, that is, it is negatively related to entropy
of the joint distribution of X and Y. Hence, minimizing the Bregman information is equivalent to
maximizing the entropy demonstrating that the maximum entropy principle is a special case of the
MBI principle corresponding to I-divergence.

Example 2.E From Example 2.B, we observe that the Bregman information of a random variable Z
following a uniform distribution over the elements of a matrix Z is given by % |1Z||2 upto an additive
constant. Hence, minimizing the Bregman information in this case is equivalent to minimizing the
Frobenius norm of the matrix (L, norm for a vector), which in turn implies that the standard least
squares principle is a special case of the MBI principle corresponding to squared error.

Now, we focus on getting a closed form solution of the minimum Bregman information prob-
lem. In the absence of any constraints, the minimum Bregman information solution corresponds
to a constant random variable. For the current situation, where we are constrained to preserve the
co-cluster means {E[Z|d,V]}, the following theorem shows that the best approximation Z simply
equals E[Z|U,V].
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Theorem 1 The solution to (8) is unique and is given by
Za=E[Z|UV].

Proof Let Z’ be any random variable in Sa and let Za denote E [Z|U,V]. By definition,

—_
&

WZ) 2 Elez)]-«EZ]) »
— E[0(Z)] By [0(E[Z'|0,V])] + Eg g [@E[Z'[0,V])] - o(E[Z'])
© E@z)] — Eg g [®EZ0,9])] +Eg g [0(Za)] - OEg g [Z2a])
9 Eyg [Ew o0 —0EZI0,9])]| +1g2n)
g) lo(Zn),

where (a) and (c) follow from Lemma 2; (b) follows from the fact that E[2/|U,V] = E[Z|U,V] = Za
and E;; ¢[E[Z|U.V]] = Ey y [Za] = E[Z] = E[Z']; and (d) follows from conditional Jensen’s inequal-
ity. In particular, since @is convex, we have E; ¢[®(Z')] > ®(E[Z'|U,V]).

Hence, Za has lower Bregman information than any random variable in Sa. Further, Za € Sp,
that is, E[Za|U,V] = Za = E[Z|U,V]. Along with the strict convexity of ¢, this ensures that Za =
E[Z|U,V] is the unique solution to (8). .

For an alternative constructive proof of Theorem 1, please see Appendix C.

Besides being the MBI solution, Za has an additional important property that makes it the “best”
reconstruction. Although we focused on the set Sa that contains all Z’ that preserve the known co-
cluster statistics, an alternative could have been to investigate the set Sg that contains all determin-
istic functions of the available information E[Z|U,V], that i,

Se={Z"|2" = f(E[zZU.V])}, ©)

where f is an arbitrary (U,V )-measurable function. In Sg, the optimal approximation Zg is the one
that is closest to the true Z:

Zg = argmin E[dy(Z,2")] . (10)

2"cSp

In order to show a relationship between Z and Zg, we start with the following lemma (Lemma 3),
which establishes the fact that the MBI solution Za allows a Pythagorean decomposition of the
expected divergence between any Z’ € S and any Z” € 5.8 Recall that Sa consists of all random
varialgle§ that have the same co-cluster statistics as Z and Sg consists of all measurable functions of
E[Z|U,V].

Lemma3 Forany Z' € Saasin (7), any Z” € Sg as in (9), and Za as in (8),
Eldg(Z',2")] = E[dg(Z'. Za)] + E dg(Za, Z")].

6. The analysis using Pythagorean decomposition of Bregman divergences can be viewed as a special case of Bregman
duality analysis of Della Pietra et al. (2001). The advantage of our special case analysis is that it has rich semantics
relevant to the co-clustering setting, and the proofs are simpler than the general case proofs in Della Pietra et al.
(2001). See Section 4.4 for more details.
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A proof of the lemma is presented in Appendix C. Now, since Za = E[Z|U,V], and is hence a
function of E[Z|U,V], we have Z5 € Sg. As a result, from Lemma 3, we get the following projection
theorem, which states that the MBI solution Z4 is the “forward” Bregman projection of any element
of Sa onto the set Sg as well as the “backward” Bregman projection of any element of Sg onto the
set Sa.

Theorem 2 (Projection Theorem) For any Z' € Sa as in (7), any Z” € Sg as in (9), and Za as
in (8), we have,

(@) Za = argmin E[dy(Z’,2")],
Z'eSa

(b) Za = argmin E[dy(Z’,2")].
Z7ess

A proof of the theorem is presented in Appendix C. Since the original Z € Sa, we observe that

Za is the best approximation (by a backward Bregman projection) to Z in Sg, implying Zg = Za as
formally stated below.

Corollary 1 For Za and Zg given by (8) and (10) respectively, we have

7=7n=1z. (11)

The equivalence result is a precise mathematical quantification of the optimal approximation prop-
erty of the MBI solution for the special case where only E [Z|U,V] is available during reconstruction.
It shows that the best approximation in terms of expected Bregman divergence given the co-cluster
statistics is indeed the MBI solution that preserves those statistics.

3.2 Co-clustering Problem Formulation

Now that we have associated an approximation Z with a given co-clustering (p,Yy), we return to
the original Bregman co-clustering problem in (6). The goal is to obtain a co-clustering (p,Y)
such that the expected Bregman divergence between Z and the approximation Z is minimized. So
far, we know that the best reconstruction Z is the MBI solution and is expressed in closed form
by Theorem 1. The following lemma presents an alternative characterization of the co-clustering
objective function (6). It shows that the expected Bregman divergence to the approximation Z is
exactly equal to the loss in Bregman information due to co-clustering.

Lemma 4 For any random variable Z and Z as in (11),

E[de(Z,2)] = 1¢(Z) — lg(2) .
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Proof By definition,

A~

E[de(Z,2)] = E[0Z)-9Z)—(Z-Z,002))]
2 Elo2)] - Elp2)] - Egy[(E[Z|U,V]-E[Z|U.V],0¢(2))]
2 Ele@)-El@)
9 Elp2)) - ®E[Z) ~E[0(2)] + HE[Z))
D 10(2) - 19(2),
where (a) follows from the fact that Z and hence, Og(Z) is constant for fixed (U,V), (b) follows
since Z € Sp, (c) follows since E[Z] = E[Z] and (d) follows from Lemma 2. .

Using Lemma 4, the original Bregman clustering problem in (6) can be posed as one of finding
the optimal co-clustering (p*,y*) defined as follows:

(p*,¥") = argmin E[dy(Z,Z)] = argmin [l4(Z) —1¢(Z)] = argmax ly(Z) , (12)
Py Py (Py)
since ly(Z) is a constant. Further, using the fact that Z is the solution to the MBI problem, we have
(p*,¥") = argmax min ly(Z') . (13)
(py) ZESn

Hence, the best co-clustering (p*,y*) is the one that results in the matrix reconstruction correspond-
ing to the minimum approximation error, or equivalently, the one that solves the max-min problem
in (13).

3.3 Block Average Co-clustering Algorithm

In this section, we present an algorithm for block average co-clustering based on a useful decom-
position of the objective function (12), which gives a better insight on how to update either the row
clustering p or the column clustering y.

3.3.1 A UsSeruL DECOMPOSITION

From Theorem 1, it follows that for a given co-clustering (p,y), the approximation Z that achieves
the minimum Bregman information is given by Z,, = E[Z|0, V], where 0 = p(u),V = y(v). We denote
the co-cluster means corresponding to (p,Y) as Hag, that is, pag = E[Z]G,V]. Hence, the optimal
approximation Z corresponding to (p,Yy) is given by

w= Haw = Up(u)y(v)-
With this closed form for Z, we have

Eldo(Z,2)] = Y wundg(Zuw: Horuyyw)

= 22 2 2 Wude(zwHgn) - (14)
g=1h=1up(u)=gv:y(v)=h

Note that (14) decomposes the objective function in terms of the row cluster assignment p(u) of
each row u and column cluster assignment y(v) of each column v.
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3.3.2 UPDATING Row AND COLUMN CLUSTERS

Since the decomposition (14) is additive over all the rows (or columns), we can update the current
cluster assignment of each row (or column) in order to decrease the objective function. For any
particular row u, the contribution to the overall objective function is determined by its current as-
signment p(u). Assuming p(u) = g, we can express the objective function (14) as the sum of row
contributions of the form

|
Ju(@) = Z z Wuvqu(Zuw Hgh) - (15)
h=1vy(v)=h

Note that the co-cluster means pgn remain unchanged during the update of the row (or column)
clustering.

The choice of row cluster assignment g exactly determines what set of | co-cluster means g,
occur in (15). Hence, the best possible choice for the new row cluster assignment p"¥(u) is to pick
the value of g that has the minimum cost, that is,

p"®"(u) = argmin J,(g) = argmin z Z Wuvdo(Zuvs Mgh) - (16)
g9 g h=1v:y(v)=h

Since the terms corresponding to each row are additive in (14), the row assignment update in (16)
can be applied simultaneously to all rows to get the new row assignments p"*"(u), [u]}. The new row
assignments effectively change the current approximation matrix Z to a new matrix Zplyo, which is
just a row-permuted version of Z that achieves a lower cost, that is,

E[do(Z, Zpwy,)] < E[dg(Z,2)] .

The decrease in the objective function value is due to the optimal greedy update in the row cluster
assignments. A similar approach can be applied to update the column cluster assignments in order
to obtain an even better approximation Zplyl. Note that the current approximation can possibly be
further improved by another round of row clustering updates to get an approximation szyl, where
the subscript in p (or y) denotes the number of times the row (column) cluster assignment has been
updated. The same process can be repeated multiple times. For simplicity, we denote the final
assignments by (p"®,y"®) and the approximation obtained from such reassignments as Z.

Once all row and column assignments have been updated, the new approximation matrix Z need
not be the minimum Bregman information solution for the new co-clustering (p"®¥,y"*"). Hence,
one needs to recompute the new minimum Bregman solution Z"® corresponding to (p"®,y™").
The following lemma, proved in Appendix C, establishes that the updated Z" is guaranteed to
either decrease the objective, or keep it unchanged. In fact, Z"® is the best approximation possible
based on the co-clustering (p"®, y"&).

Lemma5 Let Z™" be the minimum Bregman information solution corresponding to (p"®,y"®").

Then,
E[de(Z,2"")] <E[dg(Z,2)] .
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Algorithm 1 Bregman Block Average Co-clustering (BBAC) Algorithm

Input: Matrix Z C $™", probability measure w, Bregman divergence dg : $ x ri($) — R, num. of row
clusters I, num. of column clusters k.
Output: Block Co-clustering (p*,y*) that (locally) optimizes the objective function in (12).
Method:
{Initializep, vy }
Start with an arbitrary co-clustering (p,Y)
repeat
{Step A: Update Co-cluster Means}
forg=1tokdo

forh=1tol do
lgh = wp(u)=g 2viy(v)=h WuvZuv

Zu:p(u):g Zv:y(v):h Wuv
end for

end for
{Step B: Update Row Clusters (p)}
foru=1tomdo
p(u) = argmin 3}, Y viy(v)=h Wivdo(Zuy, Kgh)
ge{1,...k}
end for

{Step C: Update Column Clusters (y) }
forv=1tondo

y(v) = argmin 25:1 Zu:p(u):gWuvdcp(ZUVa Hgh)
he{l,...1}

end for
until convergence

return (p,y)

3.3.3 THE ALGORITHM

The above analysis leads to a simple iterative algorithm for Bregman block average co-clustering
(BBACin Algorithm 1). The algorithm starts with an arbitrary choice of co-clustering (p,y). At every
iteration, either the row clustering p or the column clustering y is updated in order to decrease the
objective function value in (12). In practice, one could run multiple iterations of such updates. After
the assignments have been updated for all rows and columns, the co-clustering means are updated,
which further decreases the objective. The process is repeated till convergence. Since the objective
decreases at every iteration, and the objective is lower bounded, the algorithm is guaranteed to
converge to a (local) minimum of the objective.

3.4 Block Average Co-clustering as Matrix Factorization

Since the MBI solution is always the co-cluster means, and the BBAC algorithm essentially alternates
between updating the row and column assignments, and updating the co-cluster means, the BBAC
algorithm is a direct generalization of the Bregman clustering algorithm (Banerjee et al., 2005b). As
we show below, the BBAC algorithm can also be viewed as solving a matrix factorization problem.

Let Z be the m x n matrix corresponding to the random variable Z and W € RT*" denote the
matrix corresponding to a probability measure over the matrix elements. Let R € {0,1}™K and
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C € {0,1}™! denote the row and column cluster membership matrices, that is,

oo — {1 g=p(u). o {1 h=y(v),

0 otherwise, 0 otherwise.

Further, let M be a k x | matrix corresponding to the co-cluster means, that is, expectations or
weighted averages of the matrix values over the co-clusters. Since the minimum Bregman informa-
tion solution for the block co-clustering case are the co-cluster averages, the reconstructed matrix Z
can be expressed as the product RMCT. Therefore, the co-clustering problem is essentially reduces
to finding row assignment matrix R, column assignment matrix C such that the approximation error
da,, (Z,Z) is minimized where Z = RMCT. The BBAC algorithm returns matrices R,M and C that
achieves a local minimum of the above objective function. When | = n, the BBAC algorithm reduces
to the Bregman clustering algorithm (Banerjee et al., 2005b) applied to rows of Z. In particular,
when the Bregman divergence is the squared Euclidean distance, we obtain the classical kmeans
algorithm.

3.5 General Formulation and Analysis: Warm Up

So far, we have studied in detail the important special case of block average co-clustering. In the
next section, we will formulate and analyze a more general class of co-clustering problems.

The differences between the various formulations will stem from the different summary statistics
used in the approximation Z. For the block co-clustering case, Z depended only on the co-cluster
means {E[Z|0(,V]}. In Section 4, we shall consider the exhaustive list of summary statistics based
on which Z can be reconstructed, and go on to propose a general case meta-algorithm with provable
properties in Section 5. The BBACalgorithm can then be seen as a special case of this meta-algorithm
obtained for a particular choice of summary statistics.

Before going into the formulation and analysis of the general case, we want to highlight the
results that are specific to block average co-clustering as well as the results that continue to hold in
the general case for any choice of summary statistics. We start with the results that hold only for
block average co-clustering and do not carry over to the general case.

1. For block average co-clustering, the MBI solution is the same for all Bregman divergences
(Theorem 1). However, in the general case, the solution generally depends on the choice
of the Bregman divergence. In fact, block average co-clustering is the only case when the
solution is independent of this choice.

2. In the general case, it is not possible to get a closed form MBI solution. In general, a convex
optimization problem has to be solved to find the solution; see Section 5.5 for some iterative
approaches for computing the MBI solution. We also provide exact solutions for the important
special cases where closed form solutions do exist.

3. For block co-clustering, the reconstruction from the minimum Bregman information solution
is also the best approximation of the original Z among all functions of the co-cluster means
(Corollary 1). This result holds only when the reconstruction is based on one set of summary
statistics, which was the co-cluster means in the block co-clustering case. More formally, the
result holds when the random variable is approximated based on a single sub-c-algebra (see
Section 4.1). In general, multiple sets of summary statistics may need to be preserved and the
reconstruction will be based on multiple sub-c-algebras.
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4. The matrix approximation obtained in the general case need not be expressible as a matrix
factorization in terms of the cluster membership matrices R and C. In fact, block average
co-clustering is the only formulation where such an interpretation is possible for all Bregman
divergences.

Finally, we focus on the results that continue to hold in the general case for arbitrary choices of
summary statistics:

1. Although there need not be a closed form solution to the minimum Bregman information
problem and the solution may depend on the choice of the Bregman divergence, some impor-
tant properties of the solution remain unchanged in the general case. In particular, the form
of the solution in terms of the Lagrange multipliers (see the constructive proof of Theorem 1
in Appendix C) remains unchanged.

2. The Pythagorean decomposition (Lemma 3) and the projection theorem (Theorem 2) associ-
ated with the sets Sa and Sg continues to hold for the general case, with Sg defined as the set of
all generalized additive models of the various summary statistics in a transformed space (see
Section 4.4). For the block average co-clustering case, since we only preserve the co-cluster
means, the set Sg turns out to be set of all functions of the co-cluster means. Further, the
MBI solution can be shown to be the best approximation to the original Z among this special
class of functions of the summary statistics Sg generalizing the equivalence in Corollary 1.
The general result that we discuss in Section 4.4 provides an axiomatic justification of the
minimum Bregman information principle (Csiszéar, 1991).

3. The loss in Bregman information result (Lemma 4) continues to hold.

4. Similar to Algorithm 1, we obtain an iterative algorithm for the general case where we alter-
nately optimize over the row cluster assignments, column cluster assignments and the MBI
solution. As in the block-average case, the co-clustering objective function allows an additive
decomposition over the rows and columns and the resulting meta-algorithm (Algorithm 2)
guarantees monotonic decrease of the objective function at every iteration.

4. Bregman Co-clustering: Formulation and Analysis

In this section, we formulate a general version of the Bregman co-clustering problem by abstracting
out the commonalities between various possible co-clustering schemes that arise due to constraints
that preserve different choices of summary statistics. To achieve this, we first define the notion of
a co-clustering basis in terms of the conditional expectation-based statistics that one might want to
preserve, and then enumerate all the possible co-clustering bases that may be of interest.

4.1 Co-clustering Bases

Let us fix a co-clustering (p,y). Given the co-clustering, there are essentially four random variables
of interest: U, V, U, and V. To these, we add two random variables Ug and Vp corresponding to
the constant random variables over the rows and columns respectively, for easy enumeration. Let
"1 denote the set {U@,V@,O,V,U,V}. Our goal is to approximate the random variable Z using
(possibly multiple) conditional expectations of Z where the conditioning is done on one or more of
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the random variables in I';. Observe that choosing one or more random variables to condition on
is equivalent to choosing a sub-o-algebra’ G of Z. We focus on approximating Z using conditional
expectations E[Z|G] since the conditional expectation E[Z|G] is the optimal approximation of the
true Z with respect to any Bregman divergence among all G-measurable functions (Banerjee et al.,
2005a).

Since duplication of information in the preserved conditional expectations does not lead to a
different approximation, we only focus on combinations of random variables from I"; that will
lead to a unique set of summary statistics. First, we observe that some of the random variables
in I"; are measurable with respect to some others. In other words, some random variables are just
“high resolution” versions of some others so that conditioning on certain sets of members of "1 is
equivalent to conditioning on the subset with respect to which the rest are measurable. For example,
E[Z|U,U,Vp,V] = E[Z|U,V], since U is U-measurable, and Vp is V-measurable. In fact, due to the
natural ordering of the random variables {Up,U,U} and {Vp,V,V} in terms of measurability, only
the row and column random variables of the highest granularity matter. Hence, there are only 9
unique sub-o-algebras of Z based on which conditional expectations may be taken. We denote this
set by I'5:

M= {{U07V0}> {U@,\?}, {UQ),V}, {0 7V0}a {07\7}7 {O,V}, {U,V@}, {va}a {U,V}}.

I", determines the set of all summary statistics that one maybe interested in preserving. A particular
choice of an element of I, such as {U,V}, leads to an approximation scheme where the recon-
struction matrix preserves the corresponding summary statistics. For the choice of {0 ,\7}, we get
the block average co-clustering discussed in Section 3 where the matrix approximation preserves all
co-cluster means.

Now, we focus on a much more general scenario where one may want to preserve possibly
more than one summary statistic. In fact, one could consider all possible subsets of I"',. Of these,
some combinations of summary statistics are effectively equivalent, for example, {{U Vol, {U@,\7 1,
{U,V}} and {{U,V}}, whereas some others are trivial and even independent of the co-clustering,
for example, {{Up,Vo}} and {{Uo,V },{U,Vo}}. In this paper, we focus only on unique and non-
trivial combinations of elements of I, that we call co-clustering bases and define them as follows:

Definition 3 & A co-clustering basis C is a set of elements of I',, that is, an element of the power
set 2"2, which satisfies the following two conditions:

(@) There exist G1, G2 € C (with Gy possibly the same as G>) such that Ue Gi and Ve Go.
(b) There do not exist G1, Go € C, G1 # G2 such that G is a sub-c-algebra of Gi.

In the above definition, condition (a) ensures that the approximation depends on the co-clustering
while condition (b) ensures that for any pair G1, Gz, the conditional expectation E[Z|G»] cannot be
obtained from E[Z|G1]. The latter ensures that the approximation obtained using the basis C is not
identical to that obtained using C\ G.

7. A o-algebra is a collection of sets that includes the empty-set and is closed w.r.t. complements, countable unions and
intersections. Further, Gj is a sub-o-algebra of a o-algebra G (or a G-measurable random variable) if Gy is itself a
o-algebraand G; C G.

8. Note that each element of I, corresponds to a unique sub-o-algebra of Z, and hence, we use identical notation for
the elements of the co-clustering bases and the corresponding sub-g-algebras.
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The following theorem shows that there are only six possible co-clustering bases, each of which
leads to a distinct matrix approximation scheme.

Theorem 3 Given the random variable Z, there are only six distinct co-clustering bases that ap-
proximate Z using conditional expectations of Z given combinations of the row and column random
variables {U,V,U,V }. The six bases correspond to the sets

6‘1:{{0},{\7}}, 62:{{07\7}}7

CST{\{UAv\?}?{U}}a C4:{{01\7}7{\V}}7
G={{UV}HL{U}{v}}, G={{uV} {UV}}

,,,,,,,,,,,,,,,,,,,,

E[ZIU] -
R ’Reordered z N —
(I o
E[ZI\;] Reordered Z
(a) Basis (1 (b) Basis (»
E[ZIUV]
{ Reordered Z
i (EEEEEN
EfzZIUl Reordered Z T mzm
(c) Basis (3 (d) Basis (4
NN " Reordered Z
‘ E[Z|U.V] E[Z|U.V]
EZU] { Reordered Z Ll
T mzw E[ZIU.V]
(e) Basis (5 (f) Basis (g

Figure 1: Schematic diagram of the six co-clustering bases. In each case, the summary statistics
used for reconstruction (e.g., E[Z|U] and E[Z|V]) are expectations taken over the corre-
sponding dotted regions (e.g., over all the columns and all the rows in the row cluster
determined by U in case of E[Z|U)).
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Figure 1 contains a graphical representation of the various co-clustering bases. For example,
in Figure 1(a), the expectations along the row clusters (E[Z|U]) and the column clusters (E[Z|V])
are the statistics used for reconstructing the original Z. From the table, we can see that the various
conditional expectations correspond to matrices of different sizes. We make use of this observation
later in Appendix E to obtain a computational recipe for the Bregman co-clustering problem. The
sets (1, (>, Gs and (g are symmetric in the row and column random variables whereas 3 and (4
are not. Further, if we have access to {E[Z|G] : G € G}, for some 1 <i <6, then we can compute
{E[Z|G]: G € Cj} forall 1 < j <i, i #4,]# 3. In this sense, we say that the constraint set
is more complex than Cj for all j <i<6,i# 4, j# 3 as illustrated in Figure 2. From a practical
perspective, a more complex set of constraints allows us to retain more information about Z, but
obviously requires an increased number of parameters.

Our abstraction allows us to handle all the above schemes in a systematic way. Now, consider
a co-clustering basis C € {G}E_; as the pertinent one. Given the choice of a particular basis, we
need to decide on the “best” reconstruction Z for a given co-clustering (p,Y). Then the general co-
clustering problem will effectively reduce to one of finding an optimal co-clustering (p*,y*) whose
reconstruction has the lowest approximation error with respect to the original Z.

o
el Tede
\/

Figure 2: Relative complexity of the 6 co-clustering bases.

4.2 Minimum Bregman Information (MBI) Approximation

As in Section 3.1, for a given co-clustering (p,y) and a given co-clustering basis C, we use the
MBI principle to obtain the “best” approximation Z. Recall that for block average co-clustering,
the search for the MBI solution was restricted to all Z’ that preserved the co-cluster means. For a
general co-clustering basis C, the search space has to be appropriately generalized (or restricted)
such that Z’ preserves all the summary statistics relevant to C. Let Sa denote a class of random
variables such that every Z’ in the class satisfies the following linear constraints, that is,

Sa={Z'|E[2|G] =E[Z'|G], VG € C}. (17)

The reader may wish to compare the above definition (17) to the more specific definition (7) that
is applicable in the case of block co-clustering. It can be readily seen that (7) follows by assuming
that the co-clustering basis ¢ = {{U,V }}.

We now select the random variable Za € Sa that has the minimum Bregman information as the
“best” approximation, that is,

Za = argmin ly(Z'). (18)
Z'eSa
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Coclustering Lagrange multipliers Approximation Za
basis C
E[Z|U * E[Z|V E[Z|U|xE[Z|V
o Ny = woloa (201), A, = wglog (S B0 ]
G ) E[z|0 V]
% o o E[Z|U V] * E[Z|U] E[Z|U V]xE[Z|U]
G Agy =W glog (Tgz ) . Ay = —wylog (EZy ) EZIU]
. — EiZ|0V] . ElZV] E[Z|U V]xE[ZV]
G Now = WUN'OQ( ElZ )’AV__WV '°9<E[Z\V1> E[Z]
. EZIUV] E[Z]JUV]xE[Z[UJXE[ZV]
G Ny =Wy ylog ( ElZ] ) E[Z|0]<EZN]
. EZU]) ax _ Zv]
Ay = —wylog (g7 ). A = [Zluv;og( Ee) N
* — ~ VX s
G Ngy = Wawlog ( EZEZ0 V) 1/?) EZI0V]
. ) ZU)
Aoy = %919 (ezegtonm)

Table 1: MBI solution and optimal Lagrange multipliers for I-Divergence.

The following theorem characterizes the solution to the MBI problem (18).

Theorem 4 For any random variable Z and a specified co-clustering basis C = { G, }7_,, the solu-
tion Za to (18) is given by

Og(Za) = (19)
where wg, is the measure corresponding to G, and {/\Z‘r }2_, are the optimal Lagrange multipliers
corresponding to the set of linear constraints:

ElZ'|G] =E[Z|Gi], [r]5.

In the above theorem, note that every instantiation of the random variables { G, }7_, determines
a single linear constraint and corresponds to uniquely determined scalar values for the optimal
Lagrange multipliers {/\* °_q, thatis, /\*gr is a deterministic function of G,. Similarly, for each
instantiation of Gy, wg, equals the total measure associated with that particular instantiation, for
example, wg g = Wyy. Further, the fact that @ is a strictly convex function ensures that

up(u)=0a,v:y(v)=v
O is a one-to-one function so that (19) uniquely determines the approximation Za. A proof of the
above theorem is given in Appendix D.

For easy reference, in Tables 1-2, we present the optimal Lagrange multipliers® and the MBI
solutions for I-divergence and squared Euclidean distance for each of the six co-clustering bases.
Note that the approximation Za is itself a (U,V) measurable random variable and the elements of
the corresponding matrix approximation Z can be obtained by instantiating Z for specific choices
of U and V. From Table 1, we observe that in case of I-divergence and original Z taking values over
the probabilities of a joint distribution p(X,Y), the approximation Za for the co-clustering basis

Gs is given by E[Z|Lé’[\zll]5][§§|]5][z‘v] which reduces to q(X,Y) = p(X;(F’Q)(:)E’x ") (same as (3) ) since

the marginal over the various row, column and co-cluster partitions are directly proportional to the

9ER) - 3 L&

9. The Lagrange dual L(A) of Bregman information is concave in A for all bases, but strictly concave only for (.
Hence, the multipliers shown in Tables 1 and 2 are only one of the possible maximizers of L(A) (for all the cases
except ().
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Coclustering Lagrange multipliers Approximation Za
basis C

G N; = —2wg (E[ZU] - E[Z]), E[Z|U]+E[ZN]-E[Z]
N, = —2wg (E[ZNV] -E[Z))

G Ny = 2wy g (EZUV]-E[Z]) E[Z|U.V]

G N5y = —2wyg y (E[Z|U, V] -E[Z]), E[Z[UV]+E[Z[U]—E[Z|U]
Ny = —2wy (E[Z|U] —E[Z]U])

G Ny = —2wyg g (E[Z|U,V] ~E[Z]), E[Z|U,V]+E[ZV]-E[ZN]
N = —2wy (E[Z|V] -E[Z|V])

G Ny = —2Wgy (E[Z|U.V] ~E[Z]) E[Z[U V]+E[ZIUJ+E[ZV]
Ny = —2wy (E[Z|U] —E[Z|U]) —E[Z|U] -E[Z|V]
N = —2wy (E[Z)V]—E[Z|V])

Gs Ny = =205y (EZ|0,V] - Ed _EEZPVY | Ez|u,V]+E[Z|0,V]—E[Z|0,V]

Ny = =2y 9 (EZIU.V] - =l - saips

Table 2: MBI solution and optimal Lagrange multipliers for Squared Euclidean distance.

corresponding conditional expectations of Z. Further, the fact that q(X,Y ) is the minimum Bregman
information solution for KL-divergence under certain constraints is equivalent to Lemma 1, which
shows that it is the maximum entropy distribution under those constraints.

4.3 Co-clustering Problem Formulation

The expected Bregman divergence between the given random variable Z and the minimum Bregman
information solution Z provides us with an elegant way to quantify the goodness of a co-clustering.
This expected Bregman divergence is also exactly equal to the loss in Bregman information due
to co-clustering as the following lemma shows. This equivalence provides another nice interpreta-
tion for the Bregman co-clustering formulation while generalizing the viewpoint presented in the
information-theoretic co-clustering formulation (1) (originally Lemma 2.1 of Dhillon et al., 2003b).

Lemma 6 For any random variable Z,
E[dg(Z,2)] = 19(Z) —lg(2),
where Z = 7 defined in (18).
We are now ready to define the generalized co-clustering problem.

Definition 4 Given k, I, a Bregman divergence dy, a random variable Z following a non-negative
measure w over the data matrix Z € $™", and a co-clustering basis C, we wish to find a co-
clustering (p*,y*) that minimizes:

(p*,y") = argmin E[dy(Z,2)] = argmin (19(Z) — 19(Z)) = argmax lo(Z) , (20)
(Pyy) Py (2]

where Z = argmin lp(Z") as defined in (18).
Z'eSn
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The general problem is NP-hard by a reduction from the kmeans problem. Hence, it is difficult to
obtain a globally optimal solution efficiently. However, in Section 5, we prove that it is possible to
come up with an iterative update scheme that (a) monotonically decreases the objective function,
and (b) converges to a local minimum of the problem.

Example 1.F (I-Divergence) Continuing from Example 1.C, the Bregman co-clustering objective
function is given by E[Zlog(Z/Z) —Z + Z] = E[Zlog(Z/Z)] since E[Z] = E[Z] where Z is the
minimum Bregman information solution from Table 1. Note that for the co-clustering basis (s and
Z based on a joint distribution p(X,Y), this reduces to KL(p||q) where q is the joint distribution
corresponding to the minimum Bregman solution indicating that (1) follows as a special case of
(20).

Example 2.F (Squared Euclidean Distance) Continuing from Example 2.C, the Bregman
co-clustering objective function is E[(Z — Z)?] where Z is the minimum Bregman information so-
lution from Table 2. Note that for the co-clustering basis Cs, this reduces to E[(Z — E[Z|U,V] —
E[Z|U,V]+E[Z|U,V])?], which is equivalent to the squared residue objective function used in Cho
et al. (2004) and Cheng and Church (2000).

4.4 Optimality of the MBI Solution

We now present an analysis of the optimality of the MBI solution as the “best” reconstruction of the
original matrix given the row and column clustering and the summary statistics corresponding to any
of the co-clustering bases. In Section 3, we showed that the minimum Bregman information solution
is the best reconstruction among all measurable functions of the preserved summary statistics, that
is, conditional expectations with respect to the co-clusters (Theorem 2). In this section, we present
a generalization of that result, applicable to all the co-clustering bases discussed above.

Ideally, we would like to demonstrate that the MBI solution minimizes the approximation er-
ror with respect to the original matrix among all reconstructions that correspond to measurable
functions of the available summary statistics. However, this property is not true for a general
co-clustering basis since the optimal reconstruction depends on the structure of the original ma-
trix, which is not available during the reconstruction process. For example, if the original ma-
trix admits a perfect additive decomposition with respect to some coclustering basis, for example,
Z = E[Z|U] +E[Z|V] — E[Z] for basis (1, then the “best” reconstruction among all measurable
functions of the conditional expectation statistics is given by this additive decomposition itself ir-
respective of the choice of the Bregman divergence. From Table 1, one can readily see that this
solution is different from the MBI solution for I-divergence and basis C; and in fact, it is different
from the MBI solution for all Bregman divergences other than squared Euclidean distance. There-
fore, instead of seeking the optimal reconstruction from the class of all measurable functions of
the available summary statistics, we focus on a special class of approximations that correspond to
additive models over the summary statistics.

Let Sg denote the set of all matrices Z” whose inverse image under Cg can be written as an
additive model over the summary statistics, that is,

S = {ZH 7" = (D(P)fl (i@h(ﬂﬁ@])) } ) (21)
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where {g,}7_, are arbitrary functions measurable with respect to {G}?_;. Note that unlike Sa,
the set Sg explicitly depends on the choice of the convex function ¢. The reader may wish to
compare (9) for block average co-clustering with (21). Since Sg is defined in terms of arbitrary
measurable functions, when there is only one conditional expectation to be preserved as in the case
of block average co-clustering, Sg turns out to be the set of all possible measurable functions of that
conditional expectation.

Interestingly, Sg can be alternatively understood from the perspective of Lagrange duality for
Bregman divergences. Following Della Pietra et al. (2001), consider the Bregman projection prob-
lem of minimizing dg(p, o) over p € RY such that p lies in a linear subspace determined by Ttand
a set of features F = { f;,[j]{}, that is, (p, fj) = (Tt f;),[j]{. The dual of the problem turns out to
be one of minimizing dy(TT,q) over g, where g belongs to the dual space determined by o, feature
set F, and Lagrange multipliers A. Della Pietra et al. (2001) give a complete characterization of the
dual space as a Legendre-Bregman projection family Q(qo, F) of approximations g. By generaliz-
ing their analysis, one can show that Sg is the Legendre-Bregman projection family corresponding
to the set of linear constraints determined by Sa. Therefore, the Bregman duality and projection
results of Della Pietra et al. (2001) also apply to our setting. Related analyses have appeared in the
literature in the context of incremental learning of generalized entropy functionals (Lafferty, 1999),
convergence analysis of boosting algorithms (Collins et al., 2000), and game theoretic interpreta-
tion of Bayesian decision theory (Griinwald and Dawid, 2004). However, we present our analysis
using co-clustering semantics for ease of exposition. Further, our analysis leads to simpler proofs
compared to the general setting of Della Pietra et al. (2001).

Example 1.G (I-Divergence) When @(z) = zlogz — z, the Legendre transformation or the gradient
mapping turns out to be log-transformation, that is, C@(z) = logz so that addition in the natural
parameter space corresponds to multiplication in the original expectation parameter space and gen-
eralized additive models in the natural parameter space lead to generalized multiplicative models.
The set Sg in this case can, therefore, be characterized as the set of all reconstructions correspond-
ing to generalized multiplicative models, or in other words, products of arbitrary functions of the
conditional expectations, that is,

S = {Z” 7" = ﬁgr(E[ZIGrD} ;

where {g,(-)}7_, are arbitrary functions measurable with respect to { G };_;.

Example 2.G (Squared Euclidean Distance) When @(z) = z?, the Legendre transformation or the
gradient mapping is the identity transformation, that is, J@(z) = z so that natural parameter space is
identical to the original space. Therefore, Sg is just the set of all reconstructions corresponding to
generalized additive models, or in other words, additive combinations of arbitrary functions of the
conditional expectations, that is,

S = {Z” Z"= igr(E[ZIGr])} )

where {g,(-)}7_, are arbitrary functions measurable with respect to { G; }7_;.
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Among this class of reconstructions Sg, let Zg be the best approximation to Z in terms of Breg-
man divergence, that is,
Zg = argmin E[dy(Z,2")] . (22)
Z"eS
As Corollary 2 below shows, the best reconstruction Zg among all elements of Sg is exactly identical
to Za, that is, the MBI solution among all elements of Sa, which preserve the relevant conditional
expectations. In order to arrive at this result, we make use of a projection theorem (Theorem 5)
that characterizes the backward and forward Bregman projections of elements of Sg onto the set Sa
and vice versa. This projection theorem, in turn, readily follows from the observation (Lemma 7)
that the expected Bregman divergence between any Z’ € $a and any Z” € Sg follows a Pythagorean
decomposition involving the MBI solution Za, that is, it can be expressed as the sum of expected
Bregman divergences between the pairs (Z/,Z5), and (Za,Z").

Lemma 7 ForanyZ’ € Saasin (17) and any Z” € Sz as in (21) and Za as in (18)

Eld(z',2")] = E[dg(Z,Za)] +E[dg(Za, Z2")]-

A proof of the above lemma is given in Appendix D.X° Using Lemma 7, we can now obtain the
following projection theorem, which states that the MBI solution is the forward Bregman projection
of any element of S onto the set Sg and the backward Bregman projection of any element of Sg
onto the set Sa.

Theorem 5 (Projection Theorem) For any Z’ € Sa as in (17) and any Z” € Sg as in (21) and Za
as in (18), the following two statements hold true:

(8) Za=argmin E[dy(Z',2")], ¥Z" € Sg,
Z'esp

(b) Za=argmin E[dy(Z',2")], VZ' € Sa.
Z"esSp

Since the original Z is also an element of Sa, we observe that Z is the forward Bregman projec-
tion of Z onto Sg, which leads to the equivalence between Za and Zg, which is the best reconstruction
in Sg.

Corollary 2 For Za and Zg given by (18) and (22), we have

ZAZZBEZ.

Proof Follows from the definition of Zg and the projection theorem (Theorem 5). [

Corollary 2 gives a concrete justification for the use of the minimum Bregman information
solution as the best matrix reconstruction for a given co-clustering since it is the optimum approx-
imation among a large class of possible reconstructions obtained from the summary statistics. It is

10. The result can be derived by an application of Della Pietra et al. (2001, Proposition 3.2). We give a different proof,
appropriate for the co-clustering setting.
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straightforward to see that the corresponding result for block average co-clustering (Corollary 1) is
a special case of this result. This equivalence result is also closely related to Csiszar’s axiomatic
justification (Csiszar, 1991) of the least squares and maximum entropy principles for linear inverse
problems based on sum consistency and product consistency respectively. More specifically, the sum
and product consistency conditions along with certain regularity, locality and fixed point assump-
tions!? restrict the best reconstruction Z to generalized additive and multiplicative combinations of
the observed linear functionals (i.e., conditional expectations in our case) respectively. Hence, the
best approximation Z € Sg where Sg is defined as in Examples 1.G and 2.G. On the other hand, the
constraint of preserving the observed linear functionals (i.e., conditional expectations) ensures that
7 € Spas well. Since SaNSg = {Z}, it follows that Z is the MBI solution itself. In particular, the
best reconstruction satisfying sum consistency is the least squares solution while the one satisfying
product consistency is the maximum entropy solution.

Example 1.H (I-divergence) From Example 1.E, we observe that when ¢(z) = zlogz — z, the MBI
solution Za is identical to the maximum entropy solution that preserves the conditional expecta-
tions. Further from Example 1.G, we note that the set Sg consists of generalized multiplicative
combinations of the conditional expectations. Hence, from the projection theorem, it follows that
the maximum entropy solution is the only generalized multiplicative solution that preserves the rel-
evant conditional expectations. It is also the best reconstruction of Z (or any other Z’ € Sa) among
all multiplicative combinations of arbitrary functions of the conditional expectations.

Example 2.H (Squared Euclidean Distance) From Example 2.E, we observe that when ¢(z) = z2,
the MBI solution Za is identical to the standard least squares solution that preserves the conditional
expectations. Further from Example 2.G, we note that the set Sg consists of generalized additive
combinations of the conditional expectations. Hence, from the projection theorem, it follows that
the least squares solution is the only generalized additive solution that preserves the relevant condi-
tional expectations. It is also the best reconstruction of Z (or any other Z’ € Sa) among all additive
combinations of arbitrary functions of the conditional expectations.

5. A Meta Algorithm

In this section, we shall develop an alternating minimization scheme for the general Bregman co-
clustering problem (20). Our scheme shall serve as a meta algorithm from which a number of
special cases (both previously known and unknown) can be derived.

Throughout this section, let us suppose that the underlying measure w, the Bregman divergence
de, the data matrix Z, number of row clusters k, number of column clusters I, and the co-clustering
basis C are specified and fixed.

5.1 Intuition and Plan of Attack

We first outline the essence of our meta algorithm.

Step 1: Start with an arbitrary row and column clustering, say, (p°,y°). Sett = 0.

Step 2: Repeat either of the following steps till convergence:

11. Please refer to Csiszar (1991) for details.
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Step 2A: With respect to co-clustering (p!, V'), compute the matrix approximation Zt by solv-
ing the MBI problem (18).

Step 2B: Hold the column clustering y* fixed, and find a better row co-clustering, say, pt*.
Set ! =\ Sett =t+1.

Step 2C: Hold the row clustering pt** fixed, and find a better column co-clustering, say,
V1 Set pttl =pt. Sett =t +1.

We shall prove that this meta algorithm converges in a finite number of steps to a local minima.*?
As is clear from the outline above, a key step in our algorithm will involve finding a solution of the
MBI problem (18). Further, since the number of possible row (or column) clusterings is exponential
in the number of rows (or columns), it is also essential to have an efficient means for determining
the best row (or column) clustering for a fixed choice of the column (or row) clustering and the MBI
solution. Fortunately for the co-clustering problem, the expected distortion measure that quantifies
the quality of a row (or column) clustering admits a separability property that allows independent
optimal updates of the cluster assignments of every row (or column). We discuss this property in
more detail below.

5.2 A Separability Property

We begin by considering the quality of a candidate row (or column) clustering p in Step 2B (or step
2C) for a fixed choice of column (or row) clustering and MBI solution parameters. Since our ob-
jective is to obtain an accurate reconstruction of the original matrix, a natural choice is to consider
the expected Bregman distortion between the original Z and a reconstruction Z based on the row (or
column) clustering p while keeping everything else fixed. To characterize this reconstruction, we
employ the functional form for the MBI solution Z given in Theorem 4. In general, the formula in
Theorem 4 provides a unique reconstruction Z for any set of Lagrange multipliers A (not necessarily
optimal) and (p,y), since Og(-) is a monotonic, hence invertible, function (Azoury and Warmuth,
2001; Banerjee et al., 2005b). To underscore the dependence of Z on the Lagrange multipliers, we
shall use the notation Z = Z(p,y,A\) = (Do)~ (O@E[Z]) — Sr—1/\g /Wg,). The quality of a candi-
date row (or column) clustering can now be quantified in terms of the accuracy of the corresponding
Z where the other two arguments, that is, the column (or row) clustering and Lagrange multipliers
are fixed. In particular, Z = (p,y,\*) is the approximation corresponding to the optimal Lagrange
multipliers A*.

Given a set of (not necessarily optimal) Lagrange multipliers A, we now consider updating the
current co-cluster assignments (p,y) in order to improve the current approximation Z = Z(p,y, ).
Although Z looks complex, the fact that O is a one-one invertible function ensures that each ele-
ment Z,y in the matrix Z corresponding to Z depends only on (u,p(u),v,y(v)) for a given A. Hence,
for any given A, there exists a function & such that the point-wise distortion d(zuy,Zu) can be ex-
pressed as &(u,p(u),v,y(v)), that is, it depends only on the corresponding row/column and cluster
assignments. Since the expected distortion E[dy(Z,Z)] is weighted sum of the point wise distortions,
it satisfies a nice separability property that allows the current row (or column) assignments to be effi-
ciently updated. In particular, for any given A, the expected distortion E [dy(Z,Z)] can be expressed

12. In fact, any ordering of Steps 2B and 2C gives the same guarantees. Alternatively, one can run Steps 2A and 2C for
some iterations followed by Steps 2A and 2B. We will establish that each step can only improve the quality of the
current approximation. Hence, any ordering is sufficient to reach a local minimum.
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as the sum of contributions from the rows (or columns) where each row (or column ) contribution
only depends on the row and its current cluster assignment. Note that this separability property
is similar to that of the kmeans objective function, which can be also be expressed as the sum of
terms corresponding to each point and its cluster assignment. As in the case of kmeans, the sepa-
rability property allows independent updates of the cluster assignments of every row (or column).
Further, for a fixed A and v, since the total approximation error is the sum over the approximation
errors due to each row (or column) and its cluster assignment, greedy cluster assignments of the
individual rows result in a globally optimal row clustering p for the given A and y. An equivalent
statement is true for column assignments for a given A and p. The following lemma formally states
this separability property. The proof simply follows from definitions, and is hence omitted.

Lemma 8 For a fixed co-clustering (p,y) and a fixed set of (not necessarily optimal) Lagrange
multipliers A, and Z = {(p,y,/\), we can write:

E[do(Z,Z)] = Eu[Evju[§(U, p(U),V,Y(V))]] = Ev[Eup [§(U,p(U). V. v(V)]] .

where &(U,p(U),V,y(V)) = dy(Z,2).

5.3 Updating Row and Column Clusters

We will now present the details of our plan in Section 5.1. First, we will demonstrate how to update
row clustering (or column clustering) with respect to a fixed column clustering (or row cluster-
ing) and a fixed set of Lagrange multipliers. Then, we will find the optimal Lagrange multipliers
corresponding to the minimum Bregman solution of the updated co-clustering.

Suppose we are in Step 2A outlined in Section 5.1. Updating the row clustering keeping the
column clustering and the Lagrange multipliers fixed leads to a new value for the Bregman co-
clustering objective function. Now making use of the separability property in Lemma 8, we can
efficiently optimize the contribution of each row assignment to the overall objective function to
obtain the following row cluster update step.

Lemma9 Let pt*1 be defined as

P (u) = arg[n;kin Eviul€(u, 9, V.Y (V))], [U]T,
[eR[¢]y

and let Zt = Z(p'*1,y, A*Y). Then,
E[d(Z,2']) < E[dg(Z,2")].
where Zt = Z(p!, , A™).

A similar argument applies to step 2B where we seek to update the column clustering keeping
the row clustering fixed.

Lemma 10 Let V' be defined as

Yy = arhg[:;lin Eup[E(U,p'(U),v.h)] [VIT,
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and let Z' = Z(pt, "1, A*Y). Then,
E[dy(Z,2")] < E[de(Z,2)].
where Zt = Z(p!, , A™).

We now consider step 2C. So far, we have only considered updating the row (or column) as-
signments keeping the Lagrange multipliers fixed. After such updates, the approximation Z! =
(P, ¥+ A s closer to the original matrix Z than the earlier minimum Bregman information
solution Zt, but the Lagrange multipliers A*! are not optimal, in general. In other words, the approx-
imation Z! is not a minimum Bregman information solution. For the given co-clustering (P v,
let A*'+1 be the optimal Lagrange multipliers for the corresponding minimum Bregman information
problem in (18). The corresponding matrix approximation Zt+1 = Z(pt*1,y#+1, A+1) is a minimum
Bregman information solution. As the following lemma shows, this approximation is better than the
current approximation Zt.

Lemma 11 Let Zt+1 = Z(pt*+1,y*+1 A*t+1) be the minimum Bregman information solution corre-
sponding to (p'*+1, 1) with A1 being the optimal Lagrange multipliers for (18). Then,

E[dg(Z,2""1) < E[dg(Z,2Y)],
where Zt = Z(thrl,VHl,/\*t).

Proof By definition,

Eld(2.2Y)] = E[Q(Z) — @2t — (Z - 21, 0g(2+1))]
2 Elp@) - @2t
= E[dg(Z.2)] ~E[dg(Z", 2] - E[(Z - 2%, D(Z"))]
2 E[dg(z.2%)] — E[dg(2.2Y))
< E[dg(z.2Y].

where (a) follows since Zt*1 belongs to both " and I'g so that taking conditional expectations over
E[Z|G], G € C makes the last term zero and (b) follows since O@(Z') is a summation of terms in-
volving E[Z] and Ag,, [r]$, and E[Z'?| G/] = E[Z| G/], thus making the last term vanish. [

5.4 The Algorithm

The meta algorithm for generalized Bregman co-clustering (see Algorithm 2) is a concrete “im-
plementation” of our plan in Section 5.1. Comparing this algorithm with the solution for block
average co-clustering (Algorithm 1), one can readily see that both the algorithms are based on an
identical alternate minimization strategy and Algorithm 1 is in fact a special case of Algorithm 2
when the MBI solution corresponds to the co-cluster means. We now establish that our algorithm is
guaranteed to achieve local optimality.
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Algorithm 2 Bregman Co-clustering Algorithm

Input: Matrix Z C S™", probability measure w, Bregman divergence dg : S x int(S) — R, num. of row
clusters I, num. of column clusters k, co-clustering basis C.
Output: Co-clustering (p*,y*) that (locally) optimize the objective function in (20).
M ethod:
{Initializep, y }
Start with an arbitrary co-clustering (p,Y)
repeat
{Step A: Update Minimum Bregman I nfor mation Solution (A*)}
N* — argmax L(A) where L(-) is Lagrange dual of the MBI problem (18).
A

{Step B: Update Row Clusters (p)}
foru=1tomdo
p(U) — argmkin EV|U[E(uagaV7y(V>)]
g:[gl
where &(U,p'(U),V,y(V)) =do(Z,Z), Z=1(p',y,\") forany o'
end for
{Step C: Update Column Clusters (y) }
forv=1tondo
y(V) — argrnlin EU \V[E(U y p(U)aV7 h)]
h:[hfy
where &(U,p(U),V,Y (V) =do(Z,Z), Z=1(p,Y,\*) forany y
end for
until convergence

return (p,y)

Theorem 6 The general Bregman co-clustering algorithm (Algorithm 2) converges to a solution
that is locally optimal for the Bregman co-clustering problem (20), that is, the objective function
cannot be improved by changing either the row clustering, the column clustering or the Lagrange
multipliers.

Proof From Lemmas 9, 10, and 11, it follows that updating the row clustering p, the column cluster-
ing y and the Lagrange multipliers A one at a time decreases the objective function of the Bregman
co-clustering problem. Hence, the Bregman co-clustering algorithm (Algorithm 2) which proceeds
by alternately updating p — y — A monotonically decreases the Bregman co-clustering objective
function. Since the number of distinct co-clusterings is finite, the algorithm is guaranteed to con-
verge to a locally optimal solution. [

Note that updating A is the same as obtaining the MBI solution. When the Bregman divergence
is I-divergence or squared deviation, the minimum Bregman information problem has an analytic
closed form solution as shown in Tables 1 and 2. Hence, it is straightforward to obtain the row and
column cluster update steps and implement these Bregman co-clustering algorithms. The resulting
algorithms involve computational effort that is linear per iteration in the size of the data and are
hence scalable. In general, the MBI problem has a unique solution since it involves a strictly convex
objective function and linear constraints. However, the solution need not have a closed form and has
to be obtained numerically using iterative projection algorithms, which in turn involves solving non-

1949



BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

linear systems of equations. In the general case, the Bregman co-clustering algorithm will include
such iterative projection procedures as a sub-routine.

Details on several different instantiations of the meta-algorithm (using matrix notation) for cer-
tain specific choices of Bregman divergences and co-clustering bases are given in Appendix E. In
particular, exact algorithms for (i) basis ¢, and all Bregman divergences, (ii) Euclidean distance and
all co-clustering bases, and (iii) I-divergence and all co-clustering bases have been worked out. The
MBI problem has a closed form solution in all of the above three cases. Further, as a representative
of the general case of arbitrary Bregman divergences and co-clustering bases, we show an instanti-
ation of the meta-algorithm to Itakura-Saito distance, for which the MBI problem does not have a
closed form solution.

5.5 Iterative Algorithms for the Minimum Bregman Information Problem

An important part of the Bregman co-clustering algorithm involves solving the MBI problem. While
there are closed form solutions for some important choices of Bregman divergences and summary
statistics, the general case leads to a convex programming problem and does not have a closed form
solution. In this section, we discuss two simple iterative algorithms to solve the MBI problem. The
first one is Bregman’s algorithm (Bregman, 1967; Censor and Zenios, 1998) and the second is an
iterative scaling method (Della Pietra et al., 2001).

Recall that the MBI solution Z for a co-clustering basis C is given by

Z= argmin E[de(Z',E[Z])] -
Z/|E[Z/|C]=E[Z|C], vCeC

For notational convenience, let z, 2’ and z denote vectorized versions of the original matrix Z, the
tentative solution matrix Z’, and a constant matrix consisting of the expectation E[Z] respectively.
Then z,Z" and z are all vectors of dimension mn. Let A denote the ¢ x mn matrix corresponding to
the linear constraints E[Z'|G] = E[Z|G], VG € C, where c is the total number of constraints, so that
the constraints can be written as Az’ = Az. The vectorized version Z of the MBI solution can now
be written as
mn
Z = argmin Zwld(p(z{,i.). (23)
Z|AZ=Az (=
Since a convex combination of Bregman divergences is again a Bregman divergence, the objective
function in (23) can be readily expressed as the Bregman divergence between the vectors z’ and z
derived from the convex function @u(z') = 3™ w,@(z)), that is,

7 = argmin dg,(Z,2).
Z|AZ=Az

Since @ is the convex function induced on the vectorized matrices by the original convex function
@, we ignore this distinction and use @to denote @, as well when it is clear that the function is being
applied to matrices.

5.5.1 BREGMAN’S ALGORITHM (BREGMAN, 1967)

Bregman’s algorithm requires that the initial guess z;, belong to the set {Z'|z’ € int(dom(¢)), O@(z') =
ATx,x € R°}. The unconstrained global optimum z. belongs to this set since Cg(z.) = 0 which is
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ATx for x = 0 € R, Hence, we use z, as the initial guess, that is,
Zo = Zi. (24)
Subsequent iterative updates are obtained by solving the following set of equations:

Opz"™) = Oez")+ AT, (25)
A7 = Az, (26)

where A; is the it" row of A and A € R. The solution to the above set of equations can be considered
as the Bregman projection of the current tentative solution z"* onto the hyperplane {z'|Aiz’ = Aiz}.
Due to the strict convexity of @, the update equations, under proper regularity conditions (Bregman,
1967), uniquely determine 2" and A. However, the equations are non-linear and one needs to use
appropriate numerical techniques to solve for P

The update equations (25) and (26) are based on only one linear constraint. For convergence
to the optimum, the updates must touch upon all the constraints following a schedule known as
relaxation control (Bregman, 1967; Bauschke and Borowein, 1997). For simplicity, we consider up-
dates based on a cyclic ordering of the constraints, where all constraints are considered one after the
other. The cyclic ordering schedule is sufficient to guarantee convergence to the optimum solution,
although more general schedules are admissible (Bauschke and Borowein, 1997).

5.5.2 ITERATIVE SCALING (DELLA PIETRA ET AL., 2001)

We now discuss an auxiliary function-based iterative scaling method to solve the problem. The
method makes use of the Legendre-Bregman projection Ly(z",ATA), which is the “backward”
Bregman projection of z"* onto the hyperplane determined by {z/|ZTATA = zT ATA}, so that

" = Ly(Z,ATA) = (09 (Oe(Z) +AT))
= OoZ"™) = OeZ)+ATA. (27)

The similarity between the Legendre-Bregman projection as in (27) and the first update equation
(25) is due to the fact that both are Bregman projections of a point onto a hyperplane. However,
Bregman’s algorithm considers one constraint at a time, whereas iterative scaling works with all the
constraints simultaneously.

As before, we set the initial guess z; = z,.. Using the constraint matrix A, we select N; > ¢ ; Ajj
for j =1,...,mn. Then, the iterative update of the tentative solution is given by (27), where A € R
and each component A; satisfies

mn
ZLAU Lo(Z"}, sijNjA) = Az, (28)
J:

where s;; = sign(A;j) and ¢ operates on the matrix elements.

As before, the system of equations (27) and (28) is non-linear and one needs to use proper
numerical methods to obtain the updates. However, there is an important difference between the
iterative scaling updates and the updates of Bregman’s algorithm. Since (28) is in terms of each
component of A, one can obtain A entirely from (28). This A can then be used in (27) to get z*+1. In
other words, analogous to the EM algorithm, iterative scaling allows one to alternate updates to A
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and z’ till convergence. This is not possible in case of Bregman’s algorithm where both the equations
(25) and (26) have to be solved simultaneously. Note that both the algorithms require regularity
conditions to guarantee convergence. The reader is referred to the original papers (Bregman, 1967;
Della Pietra et al., 2001) for details.

6. Experiments

In recent years, co-clustering has been successfully applied to a number of application domains such
as text mining (Dhillon et al., 2003b; Gao et al., 2005; Takamura and Matsumoto, 2003), image and
video analysis (Zhong et al., 2004; Qiu, 2004; Guan et al., 2005; Cai et al., 2005), natural language
processing (Freitag, 2004; Rohwer and Freitag, 2004; Li and Abe, 1998), bio-informatics (Cheng
and Church, 2000; Cho et al., 2004; Kluger et al., 2003) as well as other applications (Carrasco
et al., 2003). In particular, there exist a number of empirical studies that illustrate the usefulness of
particular instances of the Bregman co-clustering framework that we describe in this paper. Hence,
instead of extensively evaluating our methodology on various application domains, we present a
brief summary of existing experimental results. Further, we present a comparative empirical study
of the different co-clustering bases as well as the divergences discussed in this paper. Finally,
we highlight new applications such as missing value prediction and co-clustering of matrices with
categorical elements.

6.1 Existing Applications and Results

In this section, we present a brief overview of some of the existing applications of co-clustering.

6.1.1 TEXT CLUSTERING

Text clustering is one of the first domains where a special case of the Bregman co-clustering al-
gorithm, namely the information-theoretic co-clustering algorithm based on I-divergence and basis
Gs, has been successfully applied. The key task in text clustering is to identify document clusters.
Since most of the information in a document can be captured using a bag-of-words model, a con-
venient vector-space representation is in the form of word-document co-occurrence matrices with
documents corresponding to rows and words corresponding to columns. However, it is often dif-
ficult to obtain good document clusters by directly clustering the matrix rows due to the inherent
sparsity and high dimensionality (i.e., large number of words). Co-clustering, on the other hand, per-
forms an implicit dimensionality reduction by clustering the words and hence, is more effective and
efficient for identifying document clusters. Since word-document co-occurrence matrices can be in-
terpreted as estimates of unnormalized joint distribution, an appropriate choice for the loss function
is the I-divergence cost used by Dhillon et al. (2003b) and Takamura and Matsumoto (2003). Pre-
vious empirical evaluations on some of the popular text data sets (NG20 and CLASSIC3) (Dhillon
et al., 2003b) reveal that this choice of co-clustering algorithm provides performance comparable
to the best text-clustering algorithms while yielding superior results than single-sided information-
theoretic clustering. In particular, there is a significant improvement in the micro-averaged precision
values with respect to single-sided clustering; See Dhillon et al. (2003b) for more details.

1952



BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

6.1.2 NATURAL LANGUAGE PROCESSING

Natural language processing is yet another domain where co-clustering has been widely employed
as a key intermediate technique for obtaining an informative partitioning of both the language to-
kens and contexts, which in turn facilitates improved performance on various tasks such as named-
entity recognition (Freitag, 2004), automatic construction of lexicon (Rohwer and Freitag, 2004)
and prepositional phrase attachment disambiguation (Li and Abe, 1998). In all these applications,
the relevant structural information in an unlabeled text corpus can be effectively captured in terms
of the distributional properties of appropriately defined language tokens with respect to the con-
texts in which they occur, for example, k-neighborhood of tokens on either side, verb preceding
the token, etc. Hence, one could expect improved performance by leveraging the token-context
co-occurrence matrices. However, for most natural language processing applications, the number
of tokens and contexts is extremely large, making it infeasible to directly employ computationally
intensive learning algorithms. Co-clustering alleviates this problem by producing a highly informa-
tive, but reduced cluster-based representation for both tokens and contexts, thus making it possible
to incorporate additional information from unlabeled text. As in the case of text clustering, the nor-
malized token-context co-occurrence matrices can be interpreted as a joint distribution and hence,
most of the co-clustering methods employed in natural processing applications are based on the
KL-divergence loss function, or equivalently, the loss in mutual information using co-clustering
basis (5. Empirical studies (Freitag, 2004; Rohwer and Freitag, 2004; Li and Abe, 1998) demon-
strate that the use of co-clustering as an intermediate step makes it straightforward to leverage the
additional information in unlabeled repositories and leads to substantial performance improvement
for a number of natural language processing applications with negligible manual supervision. In
particular, Freitag (2004) shows that including additional features based on co-clustering resulted
in better entity recognition accuracy (statistically significant for certain entity types) on the MUC 6
named entity data set, while Li and Abe (1998) demonstrate that predictive methods based on the
conditional probabilities derived from co-clustering noun and verb phrases provide better accuracy
than state-of-the-art rule-based methods on the prepositional phrase attachment task.

6.1.3 BIO-INFORMATICS

In recent years, co-clustering methods are being increasingly employed for analyzing biological
data as well, in particular for studying microarray data consisting of gene expression matrices where
rows corresponds to genes and columns correspond to experimental conditions. The fundamental
problem in this setting is to identify groups of similar genes and similar conditions based on their
expression levels. To address this problem, a number of co-clustering configurations (e.g., overlap-
ping, partitional) and loss functions based on additive and multiplicative models have been proposed
(Madeira and Oliveira, 2004). These methods have been shown to be quite effective for identifying
highly correlated genes and conditions. In particular, a special case of the Bregman co-clustering
(Cheng and Church, 2000; Cho et al., 2004) corresponding to squared loss function and basis Cg has
been shown to provide high quality co-clusters on biological data sets involving a variety of human
cancer data sets.

6.1.4 VIDEO/IMAGE/SPEECH CONTENT ANALYSIS

There have also been a number of interesting applications of co-clustering in areas such as video,
image and speech content analysis for performing unsupervised categorization of video segments
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(Zhong et al., 2004), images (Qiu, 2004; Guan et al., 2005) and auditory scenes (Cai et al., 2005).
Each of these settings involves two large sets of entities related to each other through co-occurrence
matrices—(i) auditory scenes and audio effects in case of speech content analysis, (ii) fixed length
video segments and prototype images for video content recognition, and (iii) images and low level
features in case of image recognition. Further, as in the case of text clustering, information-theoretic
co-clustering methods based on preserving mutual information effectively handle the sparsity and
high dimensionality problems to provide high quality categorization of the dual sets of entities.
Empirical results on auditory scene and image categorization show improved classification accuracy
as compared to single-sided clustering methods.

6.2 Choice of Bregman Divergence and Co-clustering Basis

We now empirically study the appropriateness of the choice of the Bregman divergence and the
co-clustering basis for specific tasks. When the choice of the Bregman divergence and the speci-
fied statistics capture the natural structure of the data, it is possible to obtain a more accurate low
parameter representation of the original data. To illustrate this idea, we perform co-clustering on
synthetic data matrices produced using certain generative models as well as on real-life matrices—
(i) word-document matrices encountered in text analysis, and (ii) user-movie rating matrices for
recommender systems.

6.2.1 SYNTHETIC DATA MATRICES

First, to study the dependence on the Bregman divergence, we generated multiple (10) sets of three
classes of artificial 50 x 50 matrices Mgy, M, giv, and Ms, using generative models corresponding
to three different choices of Bregman divergences—squared Euclidean distance, I-divergence, and
Itakura-Saito distance. It can be shown that the appropriate generative models in this case respec-
tively correspond to mixtures of Gaussian, Poisson and exponential distributions centered at the
co-cluster means.'® In the generative model, we used 5 row clusters and 5 column clusters. The
means of each of the co-clusters were chosen to be identical (all positive values) for all the three
classes of matrices. Table 3 shows the results (averaged over 10 sets) of co-clustering these matrices
using the Bregman co-clustering algorithms corresponding to the basis ¢, and the three choices of
Bregman divergence with k =1 = 5. In each case, the co-clustering algorithms were run 10 times
and the reported quality corresponds to the best run in terms of the objective function. Since the
co-clustering objective functions based on the different divergences are not comparable and some-
times not even well-defined,'* we measure the co-clustering quality in terms of the average of the
normalized mutual information (Strehl and Ghosh, 2002) between the clustering and true class la-
bels over both the rows and the columns. The standard-deviations reported in the table correspond
to the deviations over multiple sets of matrices. From the table, it is clear that the co-clustering
quality (i.e., row and column clustering), as indicated by the normalized mutual information with
true labels, is better when the Bregman divergence used in the co-clustering algorithm matches that
of the generative model.

13. The reader is referred to Banerjee et al. (2005b) for a connection between Bregman divergences and exponential
family distributions. The data sets were generated based on extensions of the results obtained by Banerjee et al.
(2005h).

14. For example, I-divergence and Itakura-Saito costs are not defined for approximation matrices with negative values.
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NMI for Co-clustering
Matrix || Squared Euclidean Distance | |-divergence | Itakura-Saito distance
M Euc 0.812+0.029 0.685+0.041 0.637+0.044
M div 0.645+0.037 0.689+ 0.035 0.621+0.042
Mis 0.586 +0.082 0.622 +£0.047 0.636+ 0.039

Table 3: Normalized mutual information (NMI) between the true labels and the clusters obtained
using different Bregman divergences, basis (> and k = | = 5. Results indicate better per-
formance when the Bregman divergence matches the generative model.

Matrix C1 & 3 Ca Gs Gs
M1 6.10+0.13 6.02+0.13 5.80+0.15 5.69+0.14 5.40+0.12 4.89+0.10
Mo 22.62+1.81 6.32+0.94 6.154+0.91 6.16 £0.95 5.99+0.89 5.124+0.23
M3 22.39+1.87 | 12.84+1.06 6.76+1.24 8.82+1.15 6.57+1.03 5.04+0.29
Mgy 23.284+1.93 | 12.98+1.11 8.87+1.04 6.19+0.98 6.42+0.96 5.08+0.31
Mg 2453+2.08 | 14.19+1.28 | 10.31+1.22 | 11.96+1.18 6.14+0.99 5.29+0.25
Mg 44.41+2.75 | 33.34+£1.79 | 29.18+2.05 | 31.26+1.99 | 25.744+1.26 | 5.01+0.33

Table 4: Approximation errors on synthetic matrices for different co-clustering bases using squared
Euclidean distance and k = | = 5. The results indicate that the performance saturates when
the complexity of the co-clustering basis matches that of the generative model.

In order to study how the approximation error depends on the choice of co-clustering basis,
we created multiple (10) sets of six 50 x 50 data matrices, M1,M,, ..., and Mg using generative
models based on the Gaussian family, but with increasing levels of complexity corresponding to the
various co-clustering bases. This was done by first obtaining the minimum Bregman information
approximations of an arbitrary 50 x 50 matrix corresponding to the various co-clustering bases and
then adding Gaussian noise to each of the approximations. We perform Bregman co-clustering
on each of these matrices using squared Euclidean distance and k =1 = 5. Table 4 presents the
approximation error obtained for each of these matrices using the various co-clustering bases. From
the table, it is clear that for relatively simple matrices such as M1 and My, reasonably low parameter
bases such as i or (; suffice, whereas for more complex matrices such as Mg, high parameter co-
clustering bases such as (g are necessary. Figures 3 and 4 show images of the original data matrix
M, and Mg, and the reconstructions obtained using the different co-clustering bases. The figures
reinforce the observation we make from the table. In particular, in Figure 3, one can visually infer
that the reconstruction of the matrix M, obtained using (, is reasonably accurate and cannot be
improved much using more complex co-clustering bases whereas, in Figure 4, the reconstruction of
Mg obtained using g is significantly better than that obtained using the other co-clustering bases,
thus clearly demonstrating that the choice of co-clustering basis should match the generative model
in order to obtain an accurate approximation.

6.2.2 WORD-DOCUMENT MATRICES

As mentioned earlier, co-clustering has been successfully applied to text analysis (Dhillon et al.,
2003b). Since several results comparing specific co-clustering schemes to alternative text clustering
approaches have already been studied, we focus on the relative performance of the different co-
clustering bases introduced in this paper. We use the CLASSIC3 data set with 3891 documents
represented in the bag-of-words model with 4666 words. We fix the number of document clusters
to be three, which is the number of document classes in the data set. Figure 5 shows the relative
performance (averaged over 10 runs) of all the six co-clustering schemes for a varying humber
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Basis C1 Basis C2 Basis C3
' M2 l l l
. Basis C4 Basis C5 Basis C6

Figure 3: Co-clustering-based approximation of a simple 50 x 50 matrix M, using various co-
clustering bases, squared distortion and k = 1 = 5. While the matrix is too complex
for (1, all bases from ¢, onwards get an accurate approximation. Note that all matrices
are shown with a consistent permutation (which the co-clustering finds) for easy visual
comparison.

Basis C1 Basis C2 Basis C3

Basis C4 Basis C5

Matrix M 6

Figure 4: Co-clustering-based approximation of a 50 x 50 matrix Mg using various co-clustering
bases, squared distortion and k =1 = 5. Since the given matrix has a fairly complicated
structure, only s gets an accurate approximation. All other schemes have more errors,
with the simple bases (1 and () having high errors. As before, the matrices are consis-
tently permuted for visualization. The co-clustering algorithm also finds this permutation.

of word clusters and for two Bregman divergences—squared Euclidean distance and I-divergence.
Performance is evaluated by the normalized mutual information of the document clusters with the
true labels of the documents (Strehl and Ghosh, 2002). As in many of the other experiments, we note
that co-clustering bases »; and (s are suitable for both divergences. In Figure 6, we compare the
performances of (» and G for both divergences, using the spherical k-means (SPKmeans) algorithm
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Figure 5: Co-clustering results from CLASSIC3—6 bases and 2 divergences. Bases (> — Gs perform
very well in getting back the hidden true labels. Basis (1 performs the worst as it has
access to minimal amount of information. Interestingly, basis G, in spite of having the
maximal information, performs poorly according to NMI. Possibly (s is overfitting, that
is, finding some additional structure in the data that goes beyond what is needed to get
the labels right. There is no significant difference between the two loss functions used.
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Figure 6: Co-clustering on CLASSIC3—Bases » and (s using squared Euclidean distance and I-
divergence compared with SPKmeans. The co-clustering results compare favorably to
SPKmeans.

(Dhillon and Modha, 2001) as a benchmark. We note that the co-clustering algorithms, in particular
the ones based on I-divergence, have very good performance for the entire range of word clusters.
Our results are in agreement with similar results reported in the literature (Dhillon et al., 2003b).

1957



BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

0.08

—6&— Basis C1
—<— Basis C2
Basis C3
0.07 - $— Basis C4
Basis C5
—&— Basis C6

0.06 |

o
o
a1

Average Squared Error
o
o
R

o
o
@

0.02

0.01 1 1 1 1
0 1000 2000 3000 4000 5000 6000

Number of parameters
Figure 7: Approximation error (average squared error) on MovieLens data using squared Euclidean
distance-based co-clustering. As expected, the error decreases with increasing number of
parameters for all bases. For each basis, the number of parameters varies as a function of
the number of row and column clusters that the co-clustering algorithm uses.
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Figure 8: Approximation error (average I-divergence) on MovieLens data using I-divergence-based
co-clustering. The error decreases with increasing number of parameters.
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Bregman divergence k=1=1 | k=I=2 | k=1=12 | k=1=32 | k=1=64 | k=1=75
Squared Euclidean distance 0.7004 0.6816 0.6048 0.5547 0.4451 0.4052
I-divergence 0.7006 0.6824 0.6029 0.5573 0.4492 0.4080

Table 5: Mean absolute error (MAE) for reconstructing MovieLens data (all values) using co-
clustering methods based on squared Euclidean distance and I-divergence and co-
clustering basis (.

6.2.3 USER-MOVIE RATING MATRICES

The other real-life data domain that we studied is that of movie recommender systems. The data
matrices in this case consist of user ratings for various movies. For our experiments, we used the
Movielens data set (GroupLens) consisting of 100,000 ratings in the range 0-5 corresponding to
943 users and 1682 movies. To figure out the appropriate divergence and co-clustering basis for
this data, we performed experiments using both squared Euclidean distance and I-divergence and
various co-clustering bases with varying number of row and column clusters. For each case, the co-
clustering was performed assuming uniform weights on the known ratings and zero weights for the
unknown ones. The known ratings were then reconstructed using the MBI principle. Figures 7 and 8
show how the approximation error varies with the number of parameters for different co-clustering
bases using squared Euclidean distance and I-divergence cost functions respectively. In the case
of squared Euclidean distance-based co-clustering, we observe that C, provides the best accuracy
when an extremely low parameter approximation is required while -5 are more suitable for
moderately low parameter sizes. In the case of I-divergence-based co-clustering, Cs is better than
the other bases over a wide range of parameter sizes. Further as Table 5 shows, both choices of
Bregman divergence, that is, squared Euclidean distance and I-divergence, seem to provide similar
performance in terms of the mean absolute error for Cs.

6.3 Novel Applications of Bregman Co-clustering

We now briefly describe two novel applications of our Bregman co-clustering framework and illus-
trate these with specific real-life examples.

6.3.1 MISSING VALUE PREDICTION

Prediction of missing values is an important task encountered in a number of real-world domains
such as recommender systems, bioinformatics, etc. For our experiments, we consider a collaborative
filtering-based recommender system where the main task is to predict the preference of a given user
for a given item using known preferences of the other users. One of the earliest and most popular
approaches to solve this problem is by computing the Pearson correlation of each user with all other
users based on the known preferences and predict the unknown rating by proportionately combining
all the users’ ratings. Based on the observation that the known ratings correspond to elements in a
matrix and the missing ratings can be predicted using suitable low parameter approximations of the
ratings matrix, a number of other collaborative filtering approaches based on matrix approximation
methods such as SVD (Sarwar et al., 2000), and PLSI (Hofmann, 2004) have been proposed in
recent years.

Following the same general intuition, we propose a mathematically well-motivated solution
based on co-clustering. The main idea is to (i) assume that the ratings matrix has a low parameter
structure involving properties of user and item clusters, (ii) deduce the relevant parameters using the
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SVD NNMF CORR & G
0.7721+0.0164 | 0.7636+0.0186 | 0.8214+0.0201 | 0.8733+0.197 | 0.7608+0.0211

Table 6: Mean absolute error on MovieLens data set for various collaborative filtering approaches.
Number of row and column clusters for co-clustering (based on squared Euclidean distance
and basis (s) and rank of SVD and NNMF is set to 5 and the number of neighbors in the
correlation method was set to 50.

available ratings so that the desired loss function is minimized, and (iii) use a matrix reconstruction
based on this structure for predicting the missing values. More specifically, in our co-clustering
approach, we assume a low parameter structure by using the MBI principle so that the parame-
ter learning can be readily performed using the Bregman co-clustering algorithm with a suitably
weighted loss function (weight is uniform for known ratings, 0 otherwise). The missing values are
then predicted using the reconstructed approximate matrix. Based on the results in Section 7.2.3,
we consider low parameter structures corresponding to the bases ¢, and (5. In case of (&, the
use of the MBI principle implies that the user-item rating depends equals the average rating in the
co-cluster whereas in (s, the user-item rating is a combination of the user-bias, item-bias and the
average rating in the co-cluster.

For our experiments, we used the MovielLens data set (GroupLens) described earlier and the
results reported are averaged over multiple runs of five-fold cross-validation with 80% of ratings as
the training data and 20% of the ratings as the test data in each run.

Table 6 shows the mean absolute error (MAE) obtained using various existing collaborative
filtering approaches (Sarwar et al., 2000; Hofmann, 2004; Resnick et al., 1994) as well as the co-
clustering approach based on squared Euclidean distance. From the table, we note that the co-
clustering method based on (s provides accuracy comparable to that of the SVD and NNMF-based
methods. The co-clustering approach also has significant benefits in terms of computational effort
as the training time is linear in the number of known ratings and the missing value prediction is a
constant time operation unlike in other approaches. The number of parameters in the compressed
representation is also much lower in the case of co-clustering as compared to SVD, NNMF and
correlation methods when the rank or neighborhood size is of the same order as the number of row
and column clusters.

6.3.2 CO-CLUSTERING CATEGORICAL DATA MATRICES

The second data analysis task we consider involves co-clustering data matrices consisting of cate-
gorical values from a finite set. Examples of such data include (i) market-basket data matrices with
users as rows and products as columns and the entries corresponding to preferred brands, and (ii)
genomic data matrices with rows corresponding to patients and columns corresponding to various
positions/loci of gene sequences (also referred to as single nucleotide polymorphisms) and matrix
entries indicating the occupying allele (usually only 4 possible alleles for each location) (Lin and
Altman, 2004). Though the matrix elements take a finite number of values, there is no natural order-
ing, which makes it impossible to directly map them to the set of reals R (except in the case of binary
valued data) in order to perform co-clustering as in the case of co-occurrence matrices. However, it
is straightforward to represent each of these categorical values using discrete distributions over the
set of all possible values. For example, when the matrix elements take values in {A,B,C,D}, then
A can be represented as the distribution [1,0,0,0] while B can be represented as [0,1,0,0] and so
on. With this representation, each element of the data matrix is a member of the r-simplex where
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Num. clusters Co-clustering Code | Summary Statistics Code Matrix Code Total
(Co-clustering Cost)
k=I=1 0 324 4973.3+30.8 5005.7+30.8
k=1=5 232.2 425.8+4.7 2695.4+47.6 3353.4+52.3
k=1=50 564.4 5000 0 5564.4

Table 7: Description length (in bits) for encoding matrix information. Summary statistic code is the
number of bits for encoding the counts of the four possible values in each co-cluster given
the co-clustering whereas the matrix code is description length of the actual matrix given
the summary statistics and the co-clustering. Co-clustering was performed using relative
entropy cost function and basis (.

r denotes the number of possible categorical values. Defining the domain § of the matrix elements
to be the r-simplex, we can now proceed to perform co-clustering on the categorical data matrix
by choosing an appropriate Bregman divergence over § and a suitable co-clustering basis. Since
elements of § correspond to probability distributions, a natural choice of distortion measure is the
relative entropy (or KL-divergence) over the r-simplex. The co-clustering objective function in this

case is given by
m n
J(p,y) = U;V; KL(Zwl|Zw)

where Z = [z,] is the original matrix, Z = [2,,] is the MBI solution based on the co-clustering,
and the elements z,, and Z,,, belong to the r-simplex. This co-clustering objective function is also
exactly equal to the minimum achievable description length (in bits) required for a lossless encoding
of the original matrix Z given the MBI solution Z. Hence, assuming that the cost of describing
the co-clustering and the summary statistics depends only on the pre-specified number of row and
column clusters, the Bregman co-clustering algorithm corresponding to the relative entropy-based
cost function automatically seeks to find an optimal (minimum length) lossless code for the matrix.
A recent paper (Chakrabarti et al., 2004) follows a similar co-clustering based approach using binary
relative entropy and basis (¢, for performing lossless coding of binary valued matrices.

To demonstrate the effectiveness of the co-clustering approach described above, we generated
10 artificial 50 x 50 matrices consisting of four categorical values {A,B,C,D}. For all the matrices,
we assumed generative models corresponding to multinomial distributions over {A,B,C,D} and co-
clustering basis (> with k =1 = 5. The elements in each co-cluster were generated using a single
multinomial distribution with a purity of about 0.8, that is, the most likely categorical value had
a probability of 0.8 with the rest all being equally likely with probability 0.067. Each of these
matrices was then co-clustered using the relative entropy-based cost function on a 4-simplex with
k =1 =5. Table 7 shows a comparison of the description lengths for various choices of k and I using
a three-step encoding protocol where we first encode the co-clustering, then the summary statistics,
that is, counts of {A,B,C,D} in each co-cluster, and finally the original matrix given the summary
statistics and the co-clustering.

For encoding the co-clustering, we employ a naive scheme that involves specifying the row and
column clusters for each row and column respectively. Since there are k row clusters and | column
clusters, the total number of bits required is given by mlog, k + nlog, I, as shown in the second
column of Table 7. Given this co-clustering, we then proceed to encode the summary statistics,
that is, counts of {A,B,C,D}, corresponding to each co-cluster. First, we observe that for each
co-cluster, the four counts have to be non-negative integers that sum up to the total size of the
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particular co-cluster. Since the co-clustering already specifies the total size of all the co-clusters, it is
sufficient to specify any three of the four counts. Further, information about the count of a particular
categorical value reduces the number of possible choices for the rest of the counts. In particular, if
mg and ny denote the number of rows and columns in row cluster G and column cluster V respectively,
then the number of bits for encoding the first count (say that of A) is given by log,(1+ mgang) while
the cost for the second count (say that of B) is given by log,(1+ mgng — Na) where Na is the count
of A. Similarly, the encoding cost for the third count is given by log, (1 + mgng — Na — Ng) where
Ng denotes the count of B. Thus, the total number of bits for encoding the summary statistics in this
case is given by!®

ko1
Z Z (log, (1 + mgng) + log, (1 4+ mgng — Na) + log, (1 + mgng —Na —Npg)) .
U=1v=1

The third column in Table 7 shows the above encoding cost for different choices of k and |. When
k =1 =50, the co-clusters are all singleton sets so that it is sufficient to specify the single categorical
value in each co-cluster. Since there are 4 possible values and mn co-clusters, the encoding cost in
this case equals 2mn = 5000 bits.

The final step is to specify the original matrix given the summary statistics and the co-clustering
and as mentioned earlier, the description length in this case is identical to the co-clustering objective
function, which is shown in the fourth column of Table 7. When k = | = 50, the description length is
zero since the summary statistics fully specify the original matrix. From the table, we observe that
with an optimal choice of row and column clusters, one can obtain an efficient lossless compression
of matrix consisting of finite categorical values. On examining the resulting co-clusters, we find
that most of them are quite homogeneous as well.

7. Related Work

We have discussed several related methods that have appeared in the literature throughout the pa-
per. We have also discussed existing as well as novel applications of co-clustering in Section 6.
In this section, we briefly review further connections and contrast our work to the existing litera-
ture. Our current work is related to several active areas of research, namely co-clustering, matrix
approximation, learning based on Bregman divergences and convex optimization. In particular, our
formulation of a general co-clustering problem was motivated by earlier work on co-clustering and
matrix approximation (Dhillon et al., 2003b).

Co-clustering has been a topic of much interest in the recent years because of its applications
to problems such as microarray analysis (Cheng and Church, 2000; Cho et al., 2004), natural lan-
guage processing (Li and Abe, 1998; Freitag, 2004; Rohwer and Freitag, 2004), recommender sys-
tems (Hofmann, 2004) and text, image and speech analysis (Dhillon et al., 2003b; Takamura and
Matsumoto, 2003; Qiu, 2004; Cai et al., 2005). Currently, there exist many formulations of the
co-clustering problem such as the hierarchical co-clustering model (Hartigan, 1972), the sequen-
tial bi-clustering model (Cheng and Church, 2000) that involves finding the best co-clusters one
at a time, and the spectral co-clustering model (Dhillon, 2001; Kluger et al., 2003) that involves
partitioning a bipartite graph with vertices corresponding to the rows and columns. The reader

15. It is possible to have a more efficient encoding scheme by choosing an ordering of the categorical values {A,B,C,D}
that is likely to lead to the lowest number of bits, but does not make a significant difference in the current experiment
as all the categorical values have nearly equal counts over the entire matrix.
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should refer to Madeira and Oliveira (2004) for an extensive survey on various co-clustering models
proposed in literature and their applications. Recently, there have also been other clustering for-
mulations (Bekkerman et al., 2005; Gao et al., 2005) that are closely connected to co-clustering,
but involve simultaneous clustering of multiple sets of related entities. In our current work, we
focus on the partitional co-clustering formulation, first introduced by Hartigan (1972), where the
objective is to partition the data matrix into k x | non-overlapping co-clusters where the quality of
co-clusters is determined in terms of an appropriate cost function. Recently, quite a few algorithms
(Cho et al., 2004; Dhillon et al., 2003b; Li and Abe, 1998; Li, 2005) have been proposed to address
the above partitional problem for various cost functions based on squared Euclidean distance and
I-divergence. One of the objectives of the current work is to generalize these algorithms to a large
set of loss functions based on Bregman divergences.

Partitional co-clustering can also be readily viewed as an efficient low parameter matrix ap-
proximation technigque as each homogeneous co-cluster can be accurately approximated by a small
number of parameters. In fact, the flexibility to approximate a given data matrix in terms of a wide
range of loss functions subject to a large class of constraints makes the co-clustering methods more
widely applicable than traditional matrix approximation methods based on singular value decom-
position. In particular, classical singular value decomposition (SVD) (Papadimitriou et al., 1998)
based approaches to matrix approximation are quite often inappropriate for certain data matrices
such as co-occurrence and contingency tables as singular vectors can have negative entries and the
contributions of the component vectors in the approximation matrix are not localized. Both these
issues make the interpretation of SVD-based approximations difficult, which is necessary for data
mining purposes. To address these and related issues, techniques involving non-negativity con-
straints (Lee and Seung, 2001) using KL-divergence as the approximation loss function (Hofmann
and Puzicha, 1998; Lee and Seung, 2001) have been proposed. However, these approaches apply
to special types of matrices such as doubly stochastic and fully non-negative matrices. A general
formulation that is both interpretable and applicable to various classes of matrices is often necessary
for a number of real-life applications and the proposed Bregman co-clustering formulation attempts
to address this requirement.

Co-clustering involving constraints on conditional expectations gives rise to theoretically ele-
gant models with wide range of practical applicability since key summary statistics can be naturally
preserved. Several co-clustering algorithms (Dhillon et al., 2003b; Cho et al., 2004) that have been
proposed in the recent years can be derived from conditional expectation-based constraints. Condi-
tional expectation constrained co-clustering, along with its demonstrated connection to the widely
used maximum entropy principle (Jaynes, 1957; Cover and Thomas, 1991) and conditional inde-
pendence based models (Hofmann and Puzicha, 1998), provides a strong foundation for a unified
analysis and design of unsupervised learning algorithms.

Recent research (Azoury and Warmuth, 2001; Banerjee et al., 2005b) has shown that several
results involving the KL-divergence and the squared Euclidean distance are in fact based on certain
convexity properties and hence, generalize to all Bregman divergences. This intuition motivated
us to consider co-clustering based on Bregman divergences. Further, the similarities between the
maximum entropy and the least squares principles (Csiszar, 1991) prompted us to explore a more
general minimum Bregman information principle for all Bregman divergences.

It is important to note that most clustering and co-clustering techniques based on the alternate
minimization scheme can be obtained as special cases of the Bregman co-clustering algorithm. For
example, information-theoretic co-clustering (Dhillon et al., 2003b) corresponds to the case where
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the constraint set is ¢ and the Bregman divergence is KL-divergence. Similarly, the minimum
sum-squared residue co-clustering algorithms (Cho et al., 2004) correspond to the cases where the
constraint sets are ¢ and (g respectively while the Bregman divergence is the squared Euclidean
distance. The one-sided Bregman clustering algorithms (Banerjee et al., 2005b) are also a special
case with | =n.

8. Discussion

In this paper, we have presented a general theory of partitional Bregman co-clustering. Our analysis
leads to a unified treatment of several known co-clustering methods that are being successfully used
in the literature. Further, the analysis gives rise to an entire class of new co-clustering algorithms
based on particular choices of the Bregman divergence and the set of summary statistics to be
preserved. We have provided a meta-algorithm for the general case, and have demonstrated how
to instantiate the algorithm for specific choices of divergences and statistics. There are several
potential benefits to our formulation and analysis:

e Since our co-clustering formulation allows loss functions corresponding to all Bregman diver-
gences, the technique now becomes applicable to practically all types of data matrices. The
particular choice of the divergence function can be determined by (i) the data type, for exam-
ple, if the data corresponds to joint probability distributions, relative entropy is an appropriate
choice as the divergence function; (ii) the appropriate noise model, for example, Euclidean
distance is appropriate for Gaussian noise, Itakura-Saito is appropriate for Poisson noise, etc.;
or (iii) domain knowledge/requirements, for example, sparsity of the original matrix can be
preserved using I-divergence.

e Our formulation allows approximation models of various complexities depending on the
statistics that are constrained to be preserved. There are two key advantages to this flexi-
bility. First, preserving summary statistics of the data may be crucial for some applications as
well as important for subsequent analysis. Since the statistics preserving property is intrinsic
to our approach, it is readily applicable to domains where summary statistics are important.
Second, the multiple sets of preserved statistics may enable discovery of different structural
patterns in the data.

e \We have proposed and extensively used the minimum Bregman information (MBI) principle
as a generalization of the maximum entropy principle. Since the approximations obtained
from the MBI principle extend some of the desirable properties of the maximum entropy
models to settings where a Bregman divergence other than the relative entropy is more ap-
propriate, we get a new class of statistical modeling techniques that are applicable to more
general settings. The MBI principle has potential applications beyond the co-clustering ap-
proximations considered in this paper.

e While the central focus of this paper has been to obtain good co-clusterings using matrix
approximation error to evaluate goodness, as a by-product, we have obtained a general class
of fast matrix approximation techniques with several desirable properties. In particular, the
approximation techniques can work with general divergence functions and preserve desirable
statistical properties of the original data. The approximations are based on co-clustering, and
are expected to have different behavior from the spectral methods typically employed for
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matrix approximations. Further, since the methods are iterative and do not involve eigenvalue
computations, they are significantly faster than existing methods and hence, more appropriate
for large data matrices.

In this paper, our analysis of co-clustering has focused on data matrices that represent the re-
lationship between two entities. Many emerging application domains collect data on relationships
between multiple entities, which can be represented as a tensor. Our proposed co-clustering tech-
nigue can be extended to this general setting involving tensors unlike other methods that are specific
to matrices. It will be worthwhile to investigate how the extensions of co-clustering to tensor data
perform compared to existing techniques. In particular, several practical problem domains have
known statistical dependency relationships between the several entities of interest. One of the key
challenges of an extension of co-clustering to such multi-entity relational domains is to come up
with efficient algorithms that take advantage of the statistical relationships and maintain succinct
representations of the entities and their relationships.
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Appendix A. Information Theoretic Co-clustering

Proof of Lemma 1 Let p’ be any distribution that satisfies (4) and (5), and let g be as in (3).
Consider

KL(P'lla) = >35> P/ (xy) log 2 XY)

Y XEXYEY

= —HE)=3 > > > P'(xy)(logp(%,y) +log p(x|%) +log p(y]y))
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Since KL(p’||q) > 0, we have H(q) > H(p’). ]

Appendix B. Some Properties of Bregman Diver gences

We present some useful properties of Bregman divergences and Bregman information that we use
in our analysis in the paper.

Lemma 12 (Bregman 1967; Censor and Zenios 1998) For any Bregman divergence dg :
Sxint(S) — R, and z; € § and 22,73 € ri(5), the following three-point property holds:

do(z1,23) = dg(21,22) +dg(22,23) + (21 — 22, 0@(z2) — O@(23)) -

Theorem 7 (Banerjee et al. 2005a) For any Bregman divergence dg : S x ri(S) — R, random
variable Z ~ w(z), z € Z C S and sub-o algebra G for Z, the conditional expectation E[Z|G] is
the optimal predictor of Z among all G measurable random variables in terms of Bregman diver-
gence, that is,

E(Z|G] = argmin dy(Z,Z') .
zeg

Lemma 13 (Banerjee et al. 2005b) For any Bregman divergence dg : S x ri(S) — R, random
variable Z ~w(z), z € Z C S and any constant ¢ € int(S), the following decomposition holds:

E[dg(Z.0)] = E[dg(Z. E[Z])] + dg(E[Z],C) -

Lemma 14 (Banerjee et al. 2005b) For any Bregman divergence dg : S x ri(S) — R, and random
variable Z ~ w(z), z € Z C S, the optimal constant predictor of Z in terms of Bregman divergence
is its expectation, that is,

E[Z] = argmin E[dy(Z,C)] .
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Appendix C. Block Average Co-clustering
Proof of Theorem 1 Consider the Lagrangian J(Z',A) of the MBI problem:

JZ',N) = I(p(Z’) + ZAOQ(E[Z/’G’V] —E[Z]4,V])
@ Elgz)] - WEZ]) + T MaolE[Z']G,9] — E[Z]6,7])
Q' Elgz)] - WEZ]) + T Awl(EZ')0,9] —E[Z]a, 7)) |

where Agg is the Lagrange multiplier corresponding to the constraint E [Z’A\G,A\ﬂ —E[Z]6,V] = 0 Fur-
ther, (a) follows from Lemma 2 and (b) follows since E[Z'] = E; y[E[Z'|U,V]] = E[Z].
Rewriting the Lagrangian in terms of matrix elements {{zuv} ', }0_, corresponding to Z’, we

obtain
m n

J(Z”A) - z WUV((p(zuv (p(z
=1= Wag p<u)

y(v)=0
where wgg = Zu:p(u):a,v:y( v)=0Wuv and z = ZU 1 Zv—l WUVZuv ZU 1 ZV—1WUVZUV
To obtain the optimal solution Za, We consider the first order necessary conditions, that is, set

the partial derivatives with respect to the matrix elements and the Lagrange multipliers. Taking
partial derivatives with respect to Ag g, we obtain

wuv(Z’uv —Zw) , (29)

1
; Wuv(z Zuv) - O VG,V, (30)
Wav upfg—a

y(v)=v

that is, E[Z|d,9] = E[Z/|G,V] for all [G]% and [7]}.
Now, setting partial derivatives of (29) with respect to z;,, equal to 0, we get

WUVD(p(Z{JV) — W DQ(2) + Ago

where G = p(u) and ¥ = y(v). Since wy, € R, and Z = E[Z] = E[Z’], the optimal solution Z = Z
has the form N
), 0= p(0).0 =y, @)

zN:Dd-”(DwEED—WM
uv

where A}, corresponds to the optimal Lagrange multiplier. Note that the right hand side is constant
for a given (G,V). Substituting (31) into (30) gives us

E(210.9 = 092 (Do(eiz) - ).

Wy

Hence, the only solution satisfying the first order necessary conditions is Z,,, = E[Z]|0, V], Vu,v, that
is, Za = E[Z|U,V]. The existence and uniqueness of Za follow from the strict convexity of @. n
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Proof of Lemma 3 Using the three point property (Lemma 12) and taking expectations, for any
Z' € Spand Z" € Sg, we have

Eldg(z',2")] = E[dg(Z',Za)] +E[dg(Za, Z") + E[(Z' — Za, 0Q(Za))] — E[(Z' — Za, D9(Z"))] -

We now argue that the last two terms in the above expression vanish to give the desired result. From
Theorem 1, we note that Zp = E[Z|U,V] so that

E[(Z' ~Za,00(Zn)] = Eg ¢ [(E[Z'|0,V] ~ E[ZaJU.V],00(Z))] = 0,

since Za is a constant given (U, V) and has the same co-cluster means as Z' € Sa.
To show that the last term E[(Z’' — Za,0¢(Z"))] also vanishes, we note that for any Z” € Sg,
O@(Z") = g(E[Z|U,V]) for some deterministic function g so that

E[(Z'~Za002")] = E[Z'-Zag(EZIOV])] o
= Egul((E[Z'I0V]-E[Zal0 V]),9(EZIUV])] = 0,

since Za and Z’ both belong to Sa and hence, have the same co-cluster means. ]

Proof of Theorem 2 From Lemma 7, we observe that for any Z’ € Sp and Z” € Sg,
E[dg(Z',2")] = Eldg(Z'. Za)] + E[dg(Za.Z") -

Hence, for a given 2" € Sg and any Z’ € Sa, E[dg(Z',2")] > E [dg(Za,Z")], with equality only when
Z' = Za. Since Za € Sa, this implies that

Zn = argmin E[dy(Z',2")], V2" € S .
Z'eSpa

Similarly, for a given Z' € Sa and any Z" € Sa, E[dg(Z',2")] > E[dg(Z',Za)] with equality only
when Z” = Za. Since Za € Sg as well, we obtain the second part of the result, that is,

Zn=argmin E[dy(Z',2")], VZ' € Sp. =
Z"eSp

Proof of Lemma 5 By definition,

E[dg(Z,2""] = E[@(Z)— @2™)— (Z — 2" Og(Z")]
@ Elpz) - gz
— Elo2)-9?)-(Z

: A_Z 09(2))] — E[@Z™) - ¢(Z) — (2~ Z,09(2))]
= E[dg(Z,2)] —E[dg(Z™",

7)|+E[(z - 2" Og(Z))]
Q' E[dy(Z,2)] — E[dg(2™,7)]
< Eldg(z,2)],

where (a) follows since Z™" e Sy and Z" € Sg so that taking conditional expectations over
E[Z|U,V] makes the last term zero and (b) follows since Cg(Z) remains unchanged given (U,V)
corresponding to 2", and E[Z"*V|U,V] = E[Z|U,V], thus making the last term vanish. ]
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Appendix D. Analysis of the General Case

Proof of Theorem 3 In order to identify the various matrix approximation schemes, we determine
the subsets C C I', that satisfy conditions (a) and (b). First, observe that E[Z|Ug,Ve] = E[Z] and
E[Z|U,V] =Z. Since E[Z] = E[Z|Up, V] can be obtained from every other conditional expectation
E[Z|C],C € 'y, and Z = E[Z|U,V] determines every other conditional expectation, condition (b)
implies that the pairs {Up,Vp} and {U,V} cannot occur in combination with any other. As these
pairs do not contain U or V, we only need to consider combinations of the remaining members of
M.

Further, we note that if there are two pairs G1, G2 € C, G1 # Gz such that U € G; and U € G,
then either E[Z|G1] subsumes E[Z|G>] or vice versa depending on the granularity of the column
random variables in G1 and G». A similar observation holds for V. Hence, condition (b) implies
that each non-trivial combination ¢ C I', should contain exactly one pair (possibly the same) that
contains U and V.. Using the above observation, we enumerate the various possible cases as follows:

case 1: {U,Vp} € C. C should also contain a pair containing V, which can only be {Ug,V} since
every other eligible pair € ;> uniquely determines {O ,Vo} so that inclusion of any other pair
leads to a violation of condition (b). Therefore, the only possible combination in this case is
{{U,Vo},{Uo,V }}.

case 2: {0,\7} € C. Since condition (a) is already satisfied, we only need to identify the pairs in
", that can be included in C without violating condition (b), that is, pairs for which the
row random variable is of higher granularity than U and the column random variable is of
lower granularity than V or vice versa, which leads to two possibilities—{U,Vp} and {Up,V }.
Hence, there are four combinations corresponding to the cases where we include neither of
the pairs, exactly one of the pairs and both of them, that is,

{{07\7}}7 {{07\7}7{U}7{V}}7 {{07\7}7{U7V0}}7 and {{07\7}7{U07V}}

case 3: {U,V} € C. ( shouldalso contain a pair containing V, which can only be {U,V } since ev-
ery other eIigibIeApair el i§ subsumed by {U,V }. Therefore, the only possible combination
in this case is {{U,V},{U,V}}.

Ignoring Up and Vp since they are constant random variables and putting together all the different
possible bases, we obtain the desired result. [

Proof of Theorem 4 Consider the Lagrangian J(Z’,A\) of the MBI problem:

SN = WiZ)+ 3 B | 1G]~ El2lG)
N o,
o (216 - EZIG)|

r

S
- El@) -0+ 3 E |

r=
where Ag, is a deterministic function of the random variable G, and equals the appropriate La-
grange multiplier when G; is specified. The Lagrange dual, L(A) = infz J(Z',A\), is concave in A.

By maximizing the Lagrange dual, we get the optimal Lagrange multipliers, that is, A* = {/\*r} =
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argmax, L(A). Substituting A* into the first order necessary conditions corresponding to the mini-
mizer Za, we get

([CP(ZA)] @(E[Za)) +ZlE [

—  0@(Zp) = OQE[Z]) - lezr’ (32)

*

(EZalGr] - [ZIGr])D =0,

where wg, is the measure corresponding to Gy and E [ZA] E[Z]. Rearranging terms proves the first
part of the theorem. The existence and uniqueness of Za follow from the strict convexity of .  m

Proof of Lemma 6 From Theorem 4, we note that

S /\a
= (09" Y | DeE[Z) - 5 = |,

Wgr

where C ={G}7_, and /\* are the optimal Lagrange multipliers corresponding to the constraints
E[Z|G/] = E[Z|G:]. Now, by definition,

Elde(Z,2)] = E[@Z)-0(Z)—(Z~Z,002))]
5 . s N
= El@(2) -9(2)] -E[(Z-Z,(Da(E[Z]) - Wj))]

E[Q(Z)—9(2)] —E[(Z - Z,0¢(E[Z +ZE -7, g,

2 Eloz)-92) +;Eg, £ 12161~ E21Gi) )

2 Elo2)-92)

9 Elo(z) - @E[Z)] - E[o(2) - @(E[Z))

2 Elp2) - 9(E[Z)) - (2—E[Z), D9(E[2)))

—E[e(2) - 9(E[z]) - {Z - E[Z Z], DQ(E([2]))]

= lo(Z) —lo(2),
where (a) and (c) follow since E[Z] = E[Z], (b) follows since E(Z|Gr] =E| Z|Gr], YGr € C, and (d)
follows since E[(Z —E[Z],0@(E[Z]))] = 0 and E[(Z — E[Z],0@(E[Z])] = 0. n

Proof of Lemma 7 Using the three point property (Lemma 12) and taking expectations, for any
Z' € Spand Z” € Sg, we have

Eldg(Z',2")] = E[dg(Z',Za)] +E[dg(Za, Z") + E[(Z' — Za, DQ(Z))] — E[(Z' — Za, D0(Z"))] -
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We now argue that the last two terms in the gxpression vanish to give the desired result. Note that
since Za and Z' € Sa, we have E[Z|G/] = E[ZA|G/] = E[Z'|G/], VG € C. By (32),

s NA*
)]

W Gr

(E[Z' — 2], 0¢(E ZE ZA,

E[(Z' ~Za,00(Zn)] = ENZ'—Za (DQ(E[Z]) -

>]

—

a

= —ZEgr ElZ'|Gi] - [ZA|Gr]

where (a) follows since E[Z] = E[Za] = E[Z’], and (b) follows since both Z’ and Z, satisfy the
constraints, E[Z|G;] = E[ZA| Gi], VG € C.

To show that the last term E[(Z’ — Za, O@(Z")] also vanishes, we use the fact that by definition
Oe(Z") = 371 9r (E[Z|Gr]). Hence,

E(Z ~ 20, 00Z")] = E[Z —Za igwE{zmr]m

=

>1<=b)o

r

ZE ~Zn,9r(E[ZIG])]

;Eg}[(E[Z’IGr] ~E[ZAl G, 9 (EZ|Gi]))) = 0,

since E[Z|Gr] = E[Za| G|, YG: € C. That completes the proof. [
Proof of Theorem 5 From Lemma 7, we observe that for any Z’ € Sa and Z” € Sg,

Edg(Z',2")] = E[dg(Z’,Za)] + E[dg(Za,Z")] -

that is, it is additive in functions of the conditional expectations, that is, —Wg' in the natural parameter
r

space, which implies that Za € Sg as well. For a given Z” € Sg and any Z' € S, E[dy(Z',2")] >
E[dy(Za,Z")], with equality only when Z’ = Z, due to strict convexity of ¢. Since Za € Sa, this
implies that

Zn = argmin E[dy(Z',2")], VZ" € S .
Z'eSa

Similarly, foragiven Z' € Sy and any Z” € Sa, E[dg(Z’,Z")] > E[dg(Z', Za)] with equality only when
Z" = Za. By (32), we observe that g(Za) is an additive function of the conditional expectations,
which implies that Za € Sg. Thus, we obtain the second part of the result, that is,

Zp=argmindy(Z',2"), VZ' € Sp. =
2"eSg

Proof of Lemma 9 From Lemma 8, we have
E[d@(zvzt)] = Eu [EV\U [E(vat+1(u)vvayt(v)>]]
= Ey [gﬂ[giﬂ’l Eviul€(U,9,V.¥Y(V))]]

< EulEvulEU,p'(U),V,y(V))]]
= E[dy(Z,ZY)]. m
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Appendix E. A Recipefor mplementation

To instantiate the Bregman co-clustering meta-algorithm, two key ingredients need to be selected:
(a) the Bregman divergence suitable for a given data matrix, and (b) a co-clustering basis. The goal
of this section is to show how to translate the abstract meta algorithm in Section 5 into a concrete
and operational co-clustering recipe that is customized for the selected ingredients. We discuss four
such concrete recipes. The first three cases concern special cases that admit significant structural
and computational simplifications in the meta-algorithm and the last case concerns an example that
requires us to use the full power of the abstract framework.

The Bregman co-clustering algorithm (Algorithm 2) involves three main steps—(i) obtaining
the MBI solution (Section 5.5) or the optimal Lagrange multipliers, (ii) row assignment, and (iii)
column assignment. Of these three steps, the last two involve conceptually straightforward com-
parisons to determine the optimal row and column assignments at each stage whereas the first step
usually involves non-linear optimization and can be computationally expensive. Nonetheless, it
is possible to implement these steps in a computationally economical fashion. For certain special
cases, the MBI problem has a closed form solution, which eliminates the need for the MBI routine
and allows significant simplification of the overall co-clustering algorithm. In particular, there are
three cases for which such closed form exists:

Case A: When the co-clustering basis C is ¢, and dg is any Bregman divergence. Conceptually,
this case was covered in complete detail in Section 3, but we present additional operational
details in this section.

Case B: When dy is squared Euclidean distance and C is any co-clustering basis in the set {Ci}?:1 ,
Case C: When dy is I-divergence and ( is any co-clustering basis in the set {Ci}?:l .

For these special cases, the cost functions that determine the row and column assignments in steps
2B and 2C of the co-clustering algorithm (Algorithm 2) can be directly expressed in terms of the
co-clustering (p,y) and the input matrix Z without any Lagrange multipliers and the computational
effort required to evaluate the cost is linear in the size of Z (i.e., number of non-zeros). For the
general case, the computation time per iteration for the co-clustering algorithm is still linear in the
size of Z, but the total time taken will depend on the number of iterations required to obtain the
MBI solution.

In order to describe the Bregman co-clustering algorithm for the special cases mentioned above,
we use a matrix notation that is more suitable for computation and exposition. From Theorem 1 and
Tables 1 and 2, we observe that the MBI solution for the three special cases mentioned above can be
expressed as a combination of conditional expectations of the random variable Z corresponding to
the input matrix. Since the computation of the MBI solution is an important task in the co-clustering
algorithm, we proceed by first expressing the various conditional expectations in matrix notation.
We use the symbols @ and @ respectively to denote element-wise multiplication (i.e., the Hadamard
product) and element-wise division between two matrices of the same size.

E.1 Matrix Representation of Conditional Expectations

Let Z € S™" denote the data matrix and W € RT*" denote the matrix corresponding to a probability
measure over the matrix elements. Let R € {0,1}™K and C € {0,1}™! denote the row and column

1972



BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

cluster membership matrices, that is,

rug:{l g=p(v). th:{l h=y(v).

0 otherwise, 0 otherwise.

In other words, the entry ryg = 1 iff row u belongs to row cluster g and the entry ¢y, = 1 iff column
v belongs to column cluster h. Further, let E, and E, denote m x 1 and n x 1 vectors consisting of
all ones. It should now be straightforward to see that elements in different partitions (e.g., rows or
row clusters) of the input matrix Z can be aggregated using the appropriate matrix multiplication
operations, from the ones listed below:

(a) Left multiplication by RT—Aggregation of the rows into row clusters
(b) Right multiplication by C—Aggregation of the columns into column clusters
(c) Left multiplication by ET—Aggregation of all the rows into a single group

(d) Right multiplication by E,—Aggregation of all the columns into a single group

To obtain the expected values along the various partitions instead of the sums, we need to per-
form an element-wise multiplication with the measure matrix W before aggregation and later follow
it up with an appropriate element-wise division. It is important to note here that the size of matrix
containing the expected values is equal to the number of corresponding partitions, which is usually
smaller than that of the original Z. Therefore, to create a m x n matrix such that the uvth element
reflects the expectation along the partition containing z,,, we need to replicate the expected values
for all members of the corresponding partitions, which can be achieved using the following matrix
multiplications:

(a) Left multiplication by R—Replication of the given (row) vectors corresponding to each row
cluster along all the constituent rows.

(b) Right multiplication by CT—Replication of the given (column) vectors corresponding to each
column cluster along all the constituent columns.

(c) Left multiplication by E,,—Replication of a given (row) vector along all the rows.
(d) Right multiplication by E] —Replication of a given (column) vector along all the columns

For example, the conditional expectation E[Z|U,V] involves partitioning along (U,V), that is,
both row and column clusters. Since there are k row clusters and | column clusters, there are
kl partitions (or co-clusters) and a conditional expectation value corresponding to each of these
partitions. To obtain these expectation values, we need to aggregate the rows into the row clusters
as well as the columns into column clusters. In particular, the conditional expectation values are
given by ~

E[Z|0,V] = Zgg where Zyy = (RT(W®2Z)C) @ (RTWC) .

Though seemingly complicated, the above expression has a simple interpretation in terms of the ag-
gregation and replication operators described earlier. Operation W ® Z has the effect of attenuating
each element z,, by its corresponding weight wy,. Left multiplication by RT aggregates the matrix
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E[Z|G] Z_g size(Z_g) ng (mxn)
E[Z] (Em(W ®@Z)En) @ (EFWE) 1x1 EmZEq
E(Z|U] (W®Z)E n)@(WEn> mx 1 ZyE}
E[Z|V] (EL(W®Z))o (ELW) 1xn EmZv
ElZU] | (RT(W®Z)En) @ (RTWE,) | kx1 RZ,E!
ElzZV] | (ET(W®Z)C)o (EfWC) 1x1 EmZyCT
E(Z|U,V] (W®2Z)C)o (WC) mx | ZyyCT
E[z|U,V] (RT(W®Z))o(RTW) kxn RZgy
E[ZUV] | (RT(W®Z)C )@(RTWC) kx| RZj¢CT
E[Z|U,V] W®2Z)o mxn Zuy

Table 8: Conditional expectations in matrix notation.

along rows in the same row cluster across each column, and then right multiplication by C aggre-
gates this reduced matrix consisting of row cluster sums along columns in the same column cluster.
Thus, each element of RT (W ® Z)C represents the sum along each co-cluster of the attenuated Z.
Similarly, the matrix RTWC contains the probability mass assigned to the different co-cluster by W
and the element-wise division results in k x | matrix whose GJt" entry is the expected value in Gyt
co-cluster.

To obtain a m x n full matrix ZG v such that 2y = E[Z|p(u),y(v)], we need to replicate the
co-cluster values along the rows and columns corresponding to the row and column clusters respec-
tively. Hence, the reconstructed matrix

Z5g =RZgyCT =R((RT(W@2)C) o (R"WC))CT.

Table 8 shows the matrices correspondlng to the various conditional expectations. Note that the
number of independent parameters in Z (in Table 8) is equal to that in Z in spite of the difference
in the matrix sizes.

E.2 Bregman Co-clustering Algorithm for Special Cases

We will now consider the three special cases mentioned above and illustrate how the various steps
in the Bregman co-clustering algorithm can be instantiated.

E.2.1 CAsE A: BAsis (> AND ANY BREGMAN DIVERGENCE

1. thaining tt]e MBI Solution. From Theorem 1, we note that the MBI solution for case A is
7 =E[z|U,V]. From Table 8, the corresponding MBI matrix Z is given by ZA v= RZA vCT

where 20 v is computed as (RT(W®Z)C)® (RTWC). Since Z is completely determlned by
the smaller k x | matrix Z; y,, we only compute and store the reduced matrix. Using the fact

that R and C are binary matrices, this computation can be performed efficiently using O(mn)
operations.

2. Row Cluster Assignment Step. Given the parameters of the MBI solution and a fixed column
clustering determined by C, we want to find for each row, the row cluster assignment that
leads to the best approximation to the original matrix. In other words, we are searching for a
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row cluster membership matrix R’ that results in the most accurate reconstruction Z. For the
current case, this reconstructed matrix Z takes the same functional form as the MBI solution
and is given by R'Z;5 ;CT where Z;; ; is based on the previous row clustering. From step 2B
of the Bregman co-clustering algorithm (Algorithm 2), the optimal row assignment for each
row u is given by

n
p*(u) = argmin Ey|y[dy(Z,Z)] = argmin wad¢(zuv,iuv), [u]f,

ge{la"'ﬂk} ge{l,‘“'vk} V:
@ R = argminde,(Z,2) = argmin do, (Z,R'Z5¢C),
R R '
® R = argmin do, (Z"E R'Z; ),
R '
|
G o) = argmin Y Wundo(ZF, 7gn), (U]
gE{l,“‘,k} h=1

where Z"Red = (W ® Z)C) @ (WC) and da,, is the induced Bregman divergence that ap-
plies to matrices in <116 In the above, (a) and (c) follow from the definition of the row
cluster membership matrix, and (b) follows from the fact that minimizing the (weighted) av-
erage Bregman divergence from a set {x;}"_, to a fixed point a is equivalent to minimizing the
Bregman divergence between the (weighted) average of the set and a (Banerjee et al., 2005b).
Assuming the matrix Z"Red is computed apriori, the row clustering only requires O(mkI)
operations as opposed to O(mkn) since for each row, we only compare the reduced rows (of
size 1 x 1) in Z"WRed \with the k possible row cluster representatives.

3. Column Cluster Assignment Step. The column cluster assignment step is similar to that of
the previous row cluster assignment step and involves finding a column cluster membership
matrix C' that results in the most accurate reconstruction Z = RZ;; yC'T. From step 2C of
the Bregman co-clustering algorithm (Algorithm 2), the optimal column assignment for each
column v is given by

. m
Y'(v) = argmin Ey[dg(Z,2)] = argmin y wide(zu, Zw), [V]1,
he{l,-- |} he{l,-- I} u=1

= C* = argminde,(Z,Z) = argmin dg, (Z,RZ;5C'T),
c c ’

® ¢ = argmin de, (2R, Z4 4 CT),
c ’
(c) . K colRed 3 n
9 ) = agmin Y wadgZ@™ 7). M,
he{1,- |} g=1

where Z@Rd = (RT(W®Z)) @ (RTW), (a) and (c) follow from the definition of the column
cluster membership matrix, and (b) follows from the same reduction (Banerjee et al., 2005b)

16. Note that dg,, has been overloaded to denote the separable Bregman divergences induced from the original dy and
the measure w that apply to matrices in $™", sk*M and s™!.

1975



BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

employed in the row cluster assignment step. As in the previous case, the column cluster-
ing involves a reduced number of distance computations and comparisons and in particular,
requires O(nkl) operations.

E.2.2 CASE B: SQUARED EUCLIDEAN DISTANCE

1. Obtaining the MBI Solution. For this case, the MBI solution Z has a closed form for all
the six co-clustering bases in terms of the appropriate conditional expectations as shown in
Table 2. Using Table 8, we can exactly compute each of the relevant conditional expectations,
which requires O(mn) operations. Though we do not explicitly compute it, the MBI matrix
Z (shown in Table 9) can be expressed in terms of the row clustering R, column clustering C
and these conditional expectations for any co-clustering basis.

2. Row Cluster Assignment Step. To obtain the row cluster assignment step, we observe that
the reconstructed matrix Z, which has the same form as Z can be split into two additive
terms of which only one depends on the candidate row clustering. In particular, for the row
assignment step, the reconstructed matrix Z based on a candidate row clustering R can be
written as

2 — ZrowConst + R/ZroW\/ar, (33)

where Z'o%Const js an m x n matrix corresponding to the constant part of Z and ZfoWer js
a k x n matrix corresponding to the variable part of Z. Table 10 provides the Z"Const gng
Zrowar for the different co-clustering bases. From step 2B of Algorithm 2 and (33), the row
cluster update step for squared Euclidean distance is given by

n

p*(u) = argmin EV|U[(Z_Z)Z] = argmin W (2w — Zw)?, (U,
gE{l,-",k} ge{l,--~,k} V=
= R* = argmin HZ_ZH\%V = argmin HZ_ZrowConst _R/ZrovWarHSv’
R, R/
= R* = argmin |[Z'W _ R/Z'oWa |2
R/
n
= p*(u) = argmin 'y wy(ziy" — 2™ )?, [u)f,
ge{l,-- k} v=

where Z'W = 7 — 77WConst and || ||, is the weighted squared Euclidean distance. The optimal
row assignments can, therefore, be determined by finding the nearest row (among k possible
ones) in Z'Var for each of the m rows in Z™. The above row assignment step can be
readily instantiated for any specified co-clustering basis by choosing the appropriate matrices
Zrowconst andf 7roWar from Table 10.

For co-clustering bases {Ci}?_,, it is possible to further optimize the above update step us-
ing the same observation as in case A, that is, minimizing the row update cost function
||Z"ow — R’Z™o"Var| 2 s equivalent to minimizing the distortion between reduced versions of
these matrices, that iis, || Z"oWRed — R/Z"oWRed| |2 \yhere Z'oWRed = (W Z™%)C) @ (WC) and
R/Z'OWRed — (W (R'ZMWVa"))C) » (WC). Though the expression for Z'VRed [goks com-
plicated, it can be simplified using the fact that ZVar can always be written as ACT + BE]
for some matrices A and B, which ensures that Z*VRed — A 1 BET, that is, independent of
R’. For all the five co-clustering bases, ZVRed s determined by the relevant conditional
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Co-clustering basis C Z (mxn)
G RZGE! + EmZyCT — EmZE]
G RZ;yCT
G RZ;yCT +ZyE} —RZyE}
Gy RZ yCT +EmZy — EmZyCT
G RZ;yCT +ZyE} —RZyE} +EmZy —EmZ¢CT
Go ZyyC" +RZgy ~RZggC'

Table 9: MBI matrix for squared Euclidean distance.

Co-clustering
basis C Zrowconst (m 5 ) Zrowar (i i) | ZrowRed (i )

G EmZgC' — EmZE] Z5E] Z5E!

G 0 ZgyCT Zgy

G = 0vC" ~ZgER | Zgy —ZgEl
Ca EmZy — EmZVCT ZL]‘\A/CT Zyy

G ZyEj +EmZv —EmZyCT | ZyyCT —Z3E] gy —ZoEl
Go Zyy cT Zgy —Zyg \7CT n/a

Table 10: Row assignment update matrices for squared Euclidean distance.

expectations and can be looked up from Table 10. As a result of this optimization, the row
clustering step involves comparisons between smaller matrices and requires only O(mkl) op-
erations.

3. Column Cluster Assignment Step. The column assignment step employs a similar decom-
position of Z in terms of the column clustering, that is, Z = Ze/Const 4 ZcolVarc/T anq the
optimal assignments are determined by

m
V() = argmin 3wy (258 — 220V)2, ()1,
he{1,-- |} u=1
where Z% = 7 — 7¢0lConst and the matrices 2o and Z%Var can be obtained from Table
11. As in the case of row clustering, it is possible to further optimize the above update
step for co-clustering bases {Ci}>_, by computing Z®@R&d = (RT(W ® z%)) @ (RTW) and
comparing it with ZVRACT = (RT(W  (2°9VaCT))) » (RTW), which can be obtained
from Table 11. Further, as in the previous step, the column clustering step only requires
O(nkl) operations similar to that in case A.

E.2.3 CAsSE C: |-DIVERGENCE

1. Obtaining the MBI Solution. As in the previous case, the MBI solution for case C has a
closed form for all the six co-clustering bases in terms of the appropriate conditional expec-
tations as shown in Table 1. Using Table 8, one can exactly compute each of the relevant
conditional expectations, which completely determine the MBI matrix Z (shown in Table 12)
for a given row clustering R and column clustering C.
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Co-clustering
basis C 7 colConst (m xn) 7 colvar (mx1) 7 colVRed (kx1)

G RZyE] —EmZE] EmZy ExZy

G 0 RZUAA/ 25y

G ZyEl —RZ;E] RZ; Z5y

Ca _ EmZv RZgy —EmZy | Zyy —ExZy
G ZyE; +EmZv —RZyE; | RZg g —EmZy | Zgy —EdZy
Go RZO.V ZU.\7 — RZO‘\A/ n/a

Table 11: Column assignment update matrices for squared Euclidean distance.

2. Row Cluster Assignment Step. To obtain the row assignment steps for I-divergence, we
make use of the fact that the reconstructed matrix Z, can be decomposed as the Hadamard
product of two terms of which only one depends on the candidate row or column clustering.
In particular, the reconstructed matrix Z can be expressed as

2 — (ZrowConst) ® (R/Zrowvar)
where Zrowconst s the constant factor and Z'®Va s the variable factor that depends on R/,
both of which can be looked up from Table 13.

From step 2B of Algorithm 2 and (33), the row cluster update step for I-divergence for [u]]" is
given by

. Z 5
p*(u) = argmin Ey [Zlog <~> —Z+Z] ,
gE{l,---,k} Z
2 Zuy .
= argmin Z Wiy <zuvlog <~) Zuv+2uv> )
gell, k) V&1 Lyy
. n Zyy
= argmin Wy | Zuvlog FonConst —Zwy
ge{L, k} V=

+ Zquv romConst~r9\(AA)/ar zuvlog( rozAN\?r)%

—

a
= argmin

ge{l, Kk} v=

=

rowConst srowVar

Wuv (ZUV Zp/( ) ZuVlog( rO\(I\}\)/\B/.r)> ,

where (a) follows since the first term in the cost function is independent of the row clustering.

As in case B, it is possible to optimize the row assignment step for the co-clustering bases
{Ci}>_, by minimizing a simplified row update cost function dag,, (Z""Red zrowCRed
R/Z"oWRed) hased on equivalent reduced matrices instead of the original cost function
dq;W(Z,ZmWCO”St ® R/Zrow\/ar) where Z'owRed — (W ® Z)C) @ (WC), Z'owCRed  —
((W @ Zroweons)C) o (WC), and R'ZrOWRed — (W @ (R/Z"War))C) o (WC). Further as in
the previous case, Z"VRed can be simplified by noticing that Z"Wer in this case can be writ-
ten as ACT ® BE] for some matrices A and B, ensuring that Z"VRed — A @ (BE["), that is,
independent of R’. Table 13 shows the matrix Z'*VRed for the different co-clustering bases.
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Co-clustering basis C Z (mxn)
G ((RZGE}) ® (EmZyCT)) @ (EmZE})
G RZ;yCT
G ((RZyyC")® (ZuE)) @ (RZGET)
Ca ((RZ_U.\‘/CT)®(EmZ_\/))®(EmZ_\7CT)
G ((RZyyCT) @ (ZuET) ® (EmZv)) @ ((RZGE]) ® (EmZyCT))
G (ZyyCH®(RZyy)) @(RZyyCT)

Table 12: MBI matrix for I-divergence.

Co-clustering

basis C Zrowconst (i 5 ) Zrowar (i » n) ZrowRed (1 5 1)
a (EmZyC") @ (EmZE}) ZyEq ZoE!
G Em Z_LJ.\”/CT Z_uv
s ZyE] (ZyyCH @ (ZgED) | (Zoy) @ (ZoE))
Ca (EmZv) @ (EmZgCT) Z54C" Z5y
G ((ZuE]) ® (EmZv)) @ (EmZyCT) | (Z5yCT) @ (ZgEY) | (Zow) @ (ZgE)
Go Z,yC" (Zgy) @(ZgyCT) n/a

Table 13: Row assignment update matrices for I-divergence.

3. Column Cluster Assignment Step. The optimal column assignments can be obtained in
similar fashion by computing the matrices Z%Cons and 7¢Va shown in Table 14 and op-
timizing the part of the column update cost function that depends on the column clustering,
that is,

n
y(v) = har{glmir|1} > Wuv (Zﬁﬁ,'congiﬁﬂ'var — 7,y log (ZQV )) , [VIf-
(L IS

Further, as in the row clustering case, the column assignment step can be optimized further
for co-clustering bases {C;}?_, by computing Z®Rd = (RT(W ® Z)) @ (RTW), ZICRed =
(RT(W @ Z%9ICons)y o (RTW) and Z9VRACT = (RT(W @ (Z9VaCT))) @ (RTW), using
Table 14 and finding the column clustering C’ that optimizes the cost dg,, (Z°%Red, ZolCRed
2C°'VRedC). The computational time for these update steps is same as in the cases A and B.

E.2.4 CASED: ANY BREGMAN DIVERGENCE AND CO-CLUSTERING BASIS

The proposed meta-algorithm can be instantiated for any Bregman divergence and co-clustering
basis. We now consider a particular example of the general case corresponding to Itakura-Saito
distance, which is the Bregman divergence corresponding to the convex function @(z) = —log(z),
a uniform measure and the co-clustering basis ;. The example is a representative of the general
case, since no divergence/basis specific optimizations are possible in this case.

1. Obtaining the MBI Solution. For the general case involving a Bregman divergence other
than squared Euclidean distance and I-divergence and a co-clustering basis different from (»,
the MBI solution does not have a closed form, which makes it necessary to use a convex

1979



BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

Co-clustering

basis C Z0olConst (m ) ZooVar (m x |) ZCoVRed (5 )
G (RZGE]) @ (EmZE]) EmZy ExZg
G Enn RZj 249
Gs (ZuET) @ (RZgE]) RZy Zyyg
2 EmZv (RZyg) @ (EmZy) | (Zpg) @ (ExZy)
G (ZuE}) ® (EmZv) @ (RZGE)) | (RZgy) @ (EmZy) | (Zgy) @ (ExZy)
G RZgy (Zyy)@(RZyy) n/a

Table 14: Column assignment update matrices for I-divergence.

optimization algorithm (e.g., Bregman’s algorithm or Iterative Scaling algorithm). Further,
since the reconstructed Z is defined in terms of the optimal Lagrange multipliers, we also
need to compute these Lagrange parameters from the MBI solution. For the example un-
der consideration, 0J@(z) = —%. Hence, using the notation in Section 5.5, the matrix A for
co-clustering basis i corresponds to a (k + 1) x mn membership matrix where the rows cor-
respond to the clusters (first k rows to row clusters and the next | rows to the column clusters)
and the columns correspond to the elements of the matrix Z (or the corresponding mn x 1 vec-
tor z). Assuming Eny is mn x 1 vector consisting of all ones, the update steps in Bregman’s
algorithm (Section 5.5.1) are, therefore, given by

Emn @ Z,t+l == En’n @ Z/t +)\|A|T
AiZtJrl = Az,

where A; is the i'" row in A and A; € R. These updates are cyclically repeated over all the
k-+1 rows in A. On convergence, we get the MBI solution Z (m x n matrix) as well as the
kx1and 1 x| matrices Ay, /Ay containing the optimal Lagrange multipliers.

. Row Cluster Assignment Step. To obtain the row cluster assignment step, we first recon-
struct Z for a candidate co-clustering R’ using the Lagrange multipliers A\; and Ay computed
in the previous step. More specifically, the reconstruction Z is given by

Z=Em®(Z—RNAGE} —EnA\;CT), (34)

Using (34) the row update cost function reduces to

Evulde(Z, Z]

= Byu[Z/Z—log(2/2)-1] = iwu\,(zuv/iuv—Iog(zuv/iuv)—l)

n
— Zwuv(zu\,(i —Ap(u) — )\y(\,)) —log(zyy) + log(z — Aor(u) — }\y(v)) -1)
V=

n n
= ZWUV(ZUV(Z_ Ayw) —log(zw) —1) + ZWUV(_ZUV)\p/(u) +109(Z = Ay (u) — Ayw)))-
V= V=
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Since the first term is independent of the row clustering, it is sufficient to optimize only the
second term. Hence, the row assignment step is given by

n

p(u) = argmin S Wy (—zwAg+109(Z—Ag—Ayw))), [u]
96{1,"',k}vz

3. Column Cluster Assignment Step. The column assignment step can be similarly obtained
by substituting the appropriate reconstructed matrix Z into the column update cost function
and optimizing the part that depends on the column clustering, that is,

m

y(v) = argmin % Wuy(—ZwAn +109(Z = Apw) —An)), [V]1-
he{l,- I} u=1
Appendix F. Notation
Notation | Usage | Introduced in

X, Y Random variables over {x1,...,xm} and {y1,...,Yn} Sec 1.1
m,n Cardinality of support sets of X and Y Secl.l
u,v Indices over the sets {1,--- ,m} and {1,--- ,n} Sec 1.1
X.,Y Compressed/clustered versions of random variables X and Y Sec 1.1
kI Number of row and column clusters Sec 1.1
g,h Indices over the sets {1,---k} and {1,---,1} Sec1.1
p(+) Given joint (and induced) distributions over X, Y, X and Y Sec1l.1
p'() Candidate joint (and induced) distributions over X, Y, X and Y Sec 1.1
q(+) Max. entropy joint (and induced) distributions over X, Y, X and Y Sec1l.1
po(+) Uniform joint (and induced) distributions over X, Y, X and Y Sec1l.1
o) Strictly convex, differentiable function of Legendre type Sec 2.1
do(+) Bregman divergence derived from ¢ Sec2.1
S Effective domain of ¢ Sec2.1
Z,Zi Elements of S Sec 2.1
z Random variable taking values in S Sec2.1
Z Support of Z Sec2.1
w Probability measure associated with random variable Z Sec 2.1
Z Matrix € S™" Sec 2.1
u.v Random variables over {1,...,m} and {1,...,n} Sec 2.2
P,y Row and column cluster mapping Sec 2.3
U,V | Cluster random variables p(U) and y(V) Sec 2.3
Z Matrix approximation of Z (size m x n) Sec 2.3
7 Random variable approximating Z Sec 2.3
Dy Convex function induced on matrix by ¢ Sec 2.3

Table 15: Notation used in the paper
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Notation | Usage | Introduced in
a,v Indices representing p(u) and y(v) Sec3.1
SA Set of random variables preserving co-cluster means Sec 3.1
Za Minimum Bregman information solution Sec 3.1
Z Element of Sa Sec 3.1
SB Set of random variables that are functions of co-cluster means Sec 3.1
Zs Best approximation to Z in Sg Sec 3.1
Z" Element of Sg Sec 3.1
Z Same as Za and Zg Sec 3.1

(p*,y") | Optimal row and column clustering Sec 3.2
Ha,o co-cluster mean E[Z|0, V] Sec 3.3
Ju() Contribution of uth row to the objective function Sec 3.3
ot Row clustering in the t' iteration Sec 3.3
v Column clustering in the t'" iteration Sec 3.3
Zt MBI solution corresponding to (p',y!) Sec 3.3
Zt Row permuted version of Zt according to pt Sec 3.3
R Row assignment matrix (size m x k) Sec 3.4
C Column assignment matrix (size n x 1) Sec 3.4
M Co-cluster mean matrix (size k x I) Sec 3.4
Uo Constant random variable over rows Sec 4.1
Vo Constant random variable over columns Sec 4.1
M Set of index random variables Sec 4.1
M Unique sub-o-algebra of Z Sec 4.1
C,G Co-clustering basis Sec 4.1
G, Gi Sub-o algebra corresponding to co-clustering basis Sec 4.1
S Total number of constraints in a co-clustering basis Sec 4.2

r Index over the set {1,---s} Sec 4.2
AZﬁ ,A\g, | (Optimal) Lagrange multipliers associated with Gy Sec 4.2
Wg, Induced measure on G; Sec 4.2
J() Lagrangian for the minimum Bregman information problem Sec 4.2
L(-) Lagrange dual of the Bregman information Sec 4.2
SA Set of random variables preserving summary statistics Sec4.2
Za MBI solution in S Sec 4.2
Z Element of Sa Sec 4.2
1] Legendre conjugate of ¢ Sec4.4
(C] Domain of Y Sec 4.4
8, Random variables corresponding to E[Z|G,] in © Sec 4.4
O Set of generalized additive models of 84, in © space Sec 4.4
e’ Element of Og Sec 4.4
SB Set of generalized additive models of summary statistics in © space Sec4.4
Zs Best approximation to Z in Sg Sec 4.4
Z" Element of Sg Sec 4.4
or(-) Avrbitrary function of E[Z|G,] and 8, Sec 4.4

Table 16: Notation used in the paper

1982



BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

Notation | Usage | Introduced in

p,Y,N) Functional form of the min. Bregman information solution for (p,y) Sec 5.2
with Lagrange multipliers A possibly instead of optimal A*
&(U,p(U),V,y(V)) | Objective function E [de(Z,Z)] Sec 5.2
z2,2,7 Vectorized versions of Z, Z and Z/ respectively Sec5.5
z mn x 1 vector with all values = E[Z] Sec5.5
A Matrix corresponding to the linear conditional expectation constraints Sec 5.5
c Number of linear constraints (rows in A) Sec 5.5
Ly Legendre-Bregman projection derived from ¢ Sech.5
AL A Lagrange multipliers corresponding to A; and A resp. Sec5.5
z Initial choice of 2/ Sec5.5
Sij Sign of Ajj Sec 5.5
N;j Upper bound on Ly norm of jt" column of A Sec 5.5
w m x n matrix corresponding to the measure w SecE.1l
Em (En) constant m x 1 (n x 1) vector consisting of all ones SecE.1
Z? Matrix of conditional expectations over G SecE.1
Zﬁ m x n matrix expansion of Z 5 SecE.1
Z Matrix corresponding to Z SecE.2
Py Candidate row and column clustering Sec E.2
R’,C’ Candidate row and column membership matrices Sec E.2
Z rowar Variable part of Z during row clustering (size k x n) SecE.2
ZrowcConst Constant part of Z during row clustering (size m x n) Sec E.2
zrow Constant matrix determining row-clustering (size m x n) SecE.2
ZrowRed Reduced representation of Z™W (size m x 1) Sec E.2
ZrowVRed Reduced representation of 2oV (size k x 1) Sec E.2
Zcolvar Variable part of Z during column clustering (size m x 1) SecE.2
ZcolConst Constant part of Z during column clustering (size m x n) Sec E.2
zc Constant matrix determining column clustering (size m x n) Sec E.2
Z colRed Reduced representation of Z' (size k x n) SecE.2
ZcolVRed Reduced representation of Z%Var (size k x I) Sec E.2
Emxn m x n matrix consisting of all ones Sec E.2
Table 17: Notation used in the paper
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