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Abstract

The design of a minimum risk classifier based on data usually stems from the stationarity assump-
tion that the conditions during training and test are the same: the misclassification costs assumed
during training must be in agreement with real costs, and the same statistical process must have
generated both training and test data. Unfortunately, in real world applications, these assumptions
may not hold. This paper deals with the problem of training a classifier when prior probabilities
cannot be reliably induced from training data. Some strategies based on optimizing the worst pos-
sible case (conventional minimax) have been proposed previously in the literature, but they may
achieve a robust classification at the expense of a severe performance degradation. In this paper we
propose a minimax regret (minimax deviation) approach, that seeks to minimize the maximum devi-
ation from the performance of the optimal risk classifier. A neural-based minimax regret classifier
for general multi-class decision problems is presented. Experimental results show its robustness
and the advantages in relation to other approaches.

Keywords: classification, imprecise class distribution, minimax regret, minimax deviation, neural
networks

1. Introduction - Problem Motivation

In the general framework of learning from examples and specifically when dealing with uncertainty,
the robustness of the decision machine becomes a key issue. Most machine learning algorithms
are based on the assumption that the classifier will use data drawn from the same distribution as
the training data set. Unfortunately, for most practical applications (such as remote sensing, di-
rect marketing, fraud detection, information filtering, medical diagnosis or intrusion detection) the
target class distribution may not be accurately known during learning: for example, because the
cost of labelling data may be class-dependent or the prior probabilities are non-stationary. There-
fore, the data used to design the classifier (within the Bayesian context (see VanTrees, 1968), the
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prior probabilities and the misclassification costs) may be non representative of the underlying real
distributions.

If the ratio of training data corresponding to each class is not in agreement with real class
distributions, designing Bayes decision rules based on prior probabilities estimated from these data
will be suboptimal and can seriously affect the reliability and performance of the classifier.

A similar problem may arise if real misclassification costs are unknown during training. How-
ever, they are usually known by the end user, who can adapt the classifier decision rules to cost
changes without re-training the classifier. For this reason, our attention in this paper is mainly
focused on the problem of uncertainty in prior probabilities. Furthermore, being aware that class
distribution is seldom known (at least totally) in real world applications, a robust approach (as op-
posite to adaptive) that prevents severe performance degradation appears to be convenient for these
situations.

Besides other adaptive and robust approaches that address this problem (discussed in more detail
in Section 2.2) it is important to highlight those that handle the problem of uncertainty in priors by
following a robust minimax principle: minimize the maximum possible risk. Analytic foundations
of minimax classification are widely considered in the literature (see VanTrees, 1968; Moon and
Stirling, 2000; Duda et al., 2001, for instance) and a few algorithms to carry out minimax decisions
have been proposed. From computationally expensive ones such as estimating probability density
functions (Takimoto and Warmuth, 2000; Kim, 1996) or using methods from optimization (Polak,
1997) to simpler ones like neural network training algorithms (Guerrero-Curieses et al., 2004; Alaiz-
Rodriguez et al., 2005).

Minimax classifiers may, however, be seen as over-conservative since its goal is to optimize
the performance under the least favorable conditions. Consider, for instance, a direct marketing
campaign application carried out in order to maximize profits. Since optimal decisions rely on
the proportion of potential buyers and it is usually unknown in advance, our classification system
should take into account this uncertainty. Nevertheless, following a pure minimax strategy can lead
to solutions where minimizing the maximum loss implies considering there are no potential clients.
If it is the case, this minimax approach does not seem to be suitable for this kind of situation.

In this imprecise class distribution scenario, it can be noticed that the classifier performance may
be highly deviated from the optimal, that is, that of the classifier knowing actual priors. Minimizing
this gap (that is, the maximum possible deviation with respect to the optimal classifier) is the focus of
this paper. We seek for a system as robust as the conventional minimax approach but less pessimistic
at the same time. We will refer to it as a minimax deviation (or minimax regret) classifier. In contrast
to other robust and adaptive approaches, it can be used in general multiclass problems. Furthermore,
as shown in Guerrero-Curieses et al. (2004), minimax approaches can be used in combination with
the adaptive proposal by Saerens et al. (2002) to exploit its advantages.

This minimax regret approach has recently been applied in the context of parameter estimation
(Eldar et al., 2004; Eldar and Merhav, 2004) and a similar competitive strategy has been used in the
context of hypothesis testing (Feder and Merhav, 2002).

Under prior uncertainty, our solution provides an upper bound of the performance divergence
from the optimal classifier. We propose a simple learning rate scaling algorithm in order to train
a neural-based minimax deviation classifier. Although training can be based on minimizing any
objective function, we have chosen objective functions that provide estimates of the posterior prob-
abilities (see Cid-Sueiro and Figueiras-Vidal, 2001, for more details).
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This paper is organized as follows: the next section provides an overview of the problem as well
as some previous approaches to cope with it. Next, Section 3 states the fundamentals of minimax
classification together with a deeper analysis of the minimax regret approach proposed in this pa-
per. Section 4 presents a neural training algorithm to get a neural-based minimax regret classifier
under complete uncertainty. Moreover, practical situations with partial uncertainty in priors are also
discussed. A learning algorithm to solve them is provided in Section 5. In Section 6, some experi-
mental results show that minimax regret classifiers outperform (in terms of maximum risk deviation)
classifiers trained on re-balanced data sets and those with the originally assumed priors. Finally, the
main conclusions are summarized in Section 7.

2. Problem Overview

Traditionally, supervised learning lies in the fact that training data and real data come from the same
(although unknown) statistical model. In order to carefully analyze to what extend classifier per-
formance depends on conditions such as class distribution or decision costs, learning and decision
theory principles are briefly revisited. Next, some previous approaches to deal with environment
imprecision are reviewed.

2.1 Learning and Making Optimal Decisions

Let S = {(xk,dk),k = 1, . . . ,K} denote a set of labelled samples where xk ∈R
N is an observation fea-

ture vector and dk ∈UL = {u0, . . . ,uL−1} is the label vector. Class-i label ui is a unit L-dimensional
vector with components ui, j = δi j, with every component equal to 0, except the i-th component
which is equal to 1.

We assume a learning process that estimates parameters w of a non-linear mapping fw : R
N → P

from the input space into probability space P = {p∈ [0,1]L|∑L−1
i=0 pi = 1}. The soft decision is given

by yk = fw(xk) ∈ P and the hard output of the classifier is denoted by d̂. Note that d and d̂ will be
used to distinguish the actual class from the predicted one, respectively.

Several costs (or benefits) associated with each possible decision are also defined: ci j denotes
the cost of deciding in favor of class i when the true class is j. Negative values represent benefits
(for instance, cii, which is the cost of correctly classifying a sample from class i could be negative
in some practical cases).

In general cost-sensitive classification problems, either misclassification costs ci j or cii costs can
take different values for each class. Thus, there are many applications where classification errors
lead to very different consequences (medical diagnosis, fault detection, credit risk analysis), what
implies misclassification costs ci j that may largely vary between them. In the same way, there are
also many domains where correct decision costs (or benefits) cii do not take the same value. For
instance, in targeted marketing applications (Zadrozny and Elkan, 2001), correctly identifying a
buyer implies some benefit while correctly classifying a non buyer means no income. The same
applies to medical diagnosis domains such as the gastric carcinoma problem studied in Güvenir
et al. (2004). In this case, the benefit of correct classification also depends on the class: the benefit
of correctly classifying an early stage tumor is higher than that of a later stage.

The expected risk (or loss) R is given by

R =
L−1

∑
j=0

L−1

∑
i=0

ci jP{d̂ = ui|d = u j}Pj , (1)
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ALAIZ-RODRÍGUEZ, GUERRERO-CURIESES, AND CID-SUEIRO

where P{d̂ = ui|d = u j} with i 6= j represent conditional error probabilities, and Pj = P{d = u j} is
the prior probability of class u j.

Defining the conditional risk of misclassifying samples from class u j as

R j =
L−1

∑
i=0

ci jP{d̂ = ui|d = u j} ,

we can express risk (1) as

R =
L−1

∑
i=0

RiPi . (2)

It is well-known that the Bayes decision rule for the minimum risk is given by

d̂ = arg min
ui

{
L−1

∑
j=0

ci jP{d = u j|x}} , (3)

where P{d = ui|x} is the a posteriori probability of class i given sample x.
The optimal decision rule depends on posterior probabilities and therefore, on the prior proba-

bilities and the likelihood.
In theory, as long as posterior probabilities (or likelihood and prior probabilities) are known, the

optimal decision in Eq. (3) can be expressed after a trivial manipulation as a function of the cost
differences between the costs (ci j − c j j) (Duda et al., 2001). This is the reason why c j j is usually
assumed to be zero and the value of the cost difference is directly assigned to ci j. When dealing
with practical applications, however, some authors (Zadrozny and Elkan, 2001; Güvenir et al., 2004)
have urged to use meaningful decision costs measured over a common baseline (and not necessarily
taking c j j = 0) in order to avoid mistakes that otherwise could be overlooked. For this reason and,
what is more important, the uncertainty class distribution problem addressed in this paper, decision
costs measured over a common baseline are considered. Furthermore, absolute values of decision
costs are relevant to the design of classifiers under the minimax regret approach.

2.2 Related Work: Dealing with Cost and Prior Uncertainty

Most proposals to address uncertainty in priors fall into the categories of adaptive and robust solu-
tions. While the aim of a robust solution is to avoid a classifier with very poor performance under
any conditions, an adaptive system pursues to fit the classifier parameters using more incoming data
or more precise information.

With an adaptive-oriented principle, Provost (2000) states that, once the classifier is trained
under specific class distributions and cost assumptions (not necessarily the operating conditions),
the selection of the optimal classifier for specific conditions is carried out by a correct placement
of the decision thresholds. In the same way, the approaches in Kelly et al. (1999) and Kubat et al.
(1998) consider that tuning the classifier parameters should be left to the end user, expecting that
class distributions and misclassification costs will be precisely known then.

Some graphical methods based on the ROC curve have been proposed in Adams and Hand
(1998) and Provost and Fawcett (2001) in order to compare the classifier performance under im-
precise class distributions and/or misclassification costs. The ROC convex hull method presented
in Provost and Fawcett (2001) (or the alternative representation proposed in Drummond and Holte
(2000)) allows the user to select potentially optimal classifiers, providing a flexible way to select

106



MINIMAX REGRET CLASSIFIER

them when precise information about priors or costs is available. Under imprecision, some classi-
fiers can be discarded but this does not necessarily provide a method to select the optimal classifier
between the possible ones and fit its parameters. Furthermore, due to its graphical character, these
methods are limited to binary classification problems.

Changes in prior probabilities have also been discussed by Saerens et al. (2002), who proposes a
method based on re-estimating the prior probabilities of real data in an unsupervised way and subse-
quently adjusting the outputs of the classifier according to the new a priori probabilities. Obviously,
the method requires enough unlabelled data being available for re-estimation.

As an alternative to adaptive schemes, several robust solutions have been proposed, as the re-
sampling methods, especially in domains where imbalanced classes come out (Kubat and Matwin,
1997; Lawrence et al., 1998; Chawla et al., 2002; Barandela et al., 2003). Either by undersampling
or oversampling, the common purpose is to balance artificially the training data set in order to get a
uniform class distribution, which is supposed to be the least biased towards any class and, thus, the
most robust against changes in class distributions.

The same approach is followed in cost sensitive domains, but with some subtle differences in
practice. It is well known that class priors and decision costs are intrinsically related. For instance,
different decision costs can be simulated by altering the priors and vice versa (see Ting, 2002, for
instance). Thus, when a uniform distribution is desired in a cost sensitive domain, but working
with cost insensitive decision machines, class priors are altered according to decision costs, what is
commonly referred as rebalancing.

The manipulation of the training data distribution has been applied to cost-sensitive learning in
two-class problems (Breiman et al., 1984) in the following way: basically, the class with higher
misclassification cost (suppose n times the lowest misclassification cost) is represented with n times
more examples than the other class. Besides random sampling strategies, other sampling-based re-
balancing schemes have been proposed to accomplish this task, like those considering closeness to
the boundaries between classes (Japkowicz and Stephen, 2002; Zhou and LiuJ, 2006) or the cost-
proportionate rejection sampling presented in Zadrozny et al. (2003). Extending the formulation
of this type of procedures to general multiclass problems with multiple (and possibly asymmetric)
inter-class misclassification costs appears to be a nontrivial task (Zadrozny et al., 2003; Zhou and
LiuJ, 2006), but some progress has been made recently with regard to this latter point (Abe et al.,
2004). Note, also, that many (although not all) of these rebalancing strategies are usually imple-
mented by oversampling and/or subsampling, that is, replicating examples (without adding any extra
information) and/or deleting them (which implies information loss).

3. Robust Classifiers Under Prior Uncertainty: Minimax Classifiers

Prior probability uncertainty can be coped from a robust point of view following a minimax derived
strategy. Minimax regret criterion is discussed in this section after presenting the conventional
minimax criterion.

Although our approach extends to general multi-class problems and the discussion is carried out
in that way, we will first illustrate, for the sake of clarity and simplicity, a binary situation.

3.1 Minimax Classifiers

As Eq. (3) shows, the minimum risk decisions depend on the misclassification costs, ci j, and the
posterior class probabilities and, thus, they depend on the prior probabilities, Pi. Different prior
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ALAIZ-RODRÍGUEZ, GUERRERO-CURIESES, AND CID-SUEIRO

distributions (frequency for each class) give rise to different Bayes classifiers. Fig. 1 shows the
Bayes risk curve, RB(P1) versus class-1 prior probability for a binary classification problem.

PSfrag replacements

c11

R1

Minimax RF (Q1mM ,P1)

Standard RF (Q1,P1)

Minimax Deviation RF (Q1mMd ,P1)

RB(P1)

R
is

k

Rbasis

0 Q1 Q1mM Q1mMd 1 P1

c00

R0

Figure 1: Risk vs. P1. Minimum risk curve and performance under prior changes for the standard,
minimax and minimax deviation classifier. RB(P1) stands for the optimal Bayes Risk
against P1. RF(Q1,P1) denotes the Risk of a standard classifier (Fixed decision rule opti-
mized for prior probabilities Q1 estimated in the training phase) against P1. RF(Q1mM,P1)
denotes the Risk of a minimax classifier (Fixed decision rule optimized for the minimax
probabilities Q1mM) against P1. RF(Q1mMd ,P1) denotes the Risk of a minimax deviation
classifier (Fixed decision rule optimized for the minimax deviation probabilities Q1mMd)
against P1.

If the prior probability distribution is unknown when the classifier is designed, or this distribu-
tion changes with time or from one environment to other, the mismatch between training and test
conditions can degrade significantly the classifier performance.

For instance, assume that Q = (Q0,Q1) is the vector with class-0 and class-1 prior probabilities
estimated in the training phase, respectively, and let RB(Q1) represent the minimum (Bayes) risk
attainable by any decision rule for these priors. Note, that, according to Eq. (2), for a given classifier,
the risk is a linear function of priors. Thus, risk RF(Q1,P1) associated to the (fixed) classifier
optimized for Q changes linearly with actual prior probabilities P1 and P0 = 1−P1, going from
(0,R0) to (1,R1) (the continuous line in Fig. 1), where R0 and R1 refer to the class conditional
risks for classes 0 and 1, respectively. Fig. 1 shows the impact of this change in priors and how
performance deviates from optimal.

Also, it can be shown (see VanTrees, 1968, for instance) that the minimum risk curve obtained
for each prior is convex and the risk function of a given classifier verifies RF(Q1,P1) ≥ RB(P1) with
a tangent point at P1 = Q1.

108



MINIMAX REGRET CLASSIFIER

The dashed line in Fig. 1 shows the performance of the minimax classifier, which minimizes the
maximum possible risk under the least favorable priors, thus providing the most robust solution, in
the sense that performance becomes independent from priors. From Fig. 1, it becomes clear that
the minimax classifier is optimal for prior probabilities P = QmM = (Q0mM,Q1mM) maximizing RB.
Thus, this strategy is equivalent to maximizing the minimum risk (Moon and Stirling, 2000; Duda
et al., 2001). We will refer to them as the minimax probabilities.

Fig. 1 also makes clear that although a minimax classifier is a robust solution to address the
imprecision in priors, it may become a somewhat pessimistic approach.

3.2 Minimax Deviation Classifiers

We propose an alternative classifier that, instead of minimizing the maximum risk, minimizes the
maximum deviation (regret) from the optimal Bayes classifier. In the following, we will refer to it
as the minimax deviation or minimax regret classifier.

A comparison between minimax and minimax deviation approaches is also shown in Fig. 1. This
latter case corresponds to a classifier trained on prior probabilities P = QmMd with performance as
a function of priors given by a line (a plane or hyperplane for three or more classes, respectively)
parallel to what we name, in the following, basis risk (Rbasis = c00(1−P1)+ c11P1).

Note that the maximum deviation (with respect to priors) of the classifier optimized for Q is
given by

D(Q) = max
P1

{RF(Q1,P1)−RB(P1)} = max{R0 − c00,R1 − c11} .

The inspection of Fig. 1 shows that the minimum of D (with respect to Q) is achieved when

R0 − c00 = R1 − c11 ,

which means that line RF(Q1,P1) is parallel to arc named Rbasis in the figure and tangent to RB

at Q1mMd . Therefore, the minimax regret classifier is also the Bayes solution with respect to the
least favorable priors (Q0mMd ,Q1mMd) (see Berger, 1985, for instance), which will be denoted as
minimax deviation probabilities.

Now, we extend the formulation to a general L-class problem.

Definition 1 Consider a L-class decision problem with costs ci j,0 ≤ i, j < L and c j j ≤ ci j, and let
Rw(P) be the risk of a decision machine with parameter vector w when prior class probabilities are
given by P = (P0, . . . ,PL−1). The deviation function is defined as

Dw(P) = Rw(P)−RB(P)

and the minimax deviation is defined as

DmMd = inf
w

max
P

{Dw(P)} . (4)

Note that the above definition assumes that the maximum exists. This is actually the case, since
Dw(P) is a linear function over a compact set, P . Note, also, that our definition includes the natural
assumption that c j j is never higher than ci j, meaning that making a decision error is always less
costly than taking the correct decision. This assumption is used in part of our theoretical analysis.

The algorithms proposed in this paper are based on the fact that the minimax deviation can be
computed without knowing RB
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Theorem 2 The minimax deviation is given by

DmMd = inf
w

max
P

{Dw(P)} ,

where
Dw(P) = Rw(P)−Rbasis(P) (5)

and

Rbasis(P) =
L−1

∑
j=0

c j jPj . (6)

Proof Note that, according to Eqs. (1) and (2), for any decision machine and any ui ∈ UL,

R(u j) = R j =
L−1

∑
i=0

ci jP{d̂ = ui|d = u j} ≥ c j j .

Since the bound is reached by the classifier deciding d̂ = u j for any observation x, we have
RB(u j) = c j j. Therefore, using Eq. (6), we find that, for any u ∈ UL,

RB(u) = Rbasis(u)

and, thus,
Dw(u) = Dw(u) .

Since Bayes minimum risk RB(P) is a convex function of priors and Rw(P) is linear, Dw(P) is
concave and, thus, it is maximum at some of the vertices in P (i.e., at some P = u ∈ UL). Thus,

max
P

{Dw(P)} = max
u∈UL

{Dw(u)} . (7)

Since the maximum difference between two hyperplanes defined over P is always at some
vertex, we can conclude that

max
P

{Dw(P)} = max
u∈UL

{Dw(u)} = max
u∈UL

{Dw(u)} . (8)

Combining Eqs. (4), (7) and (8), we get

DmMd = inf
w

max
P

{Dw(P)} .

Note that Rbasis represents the risk baseline of the ideal classifier with zero errors. Th. 2 shows
that the minimax regret can be computed as the minimax deviation to this ideal classifier. Note,
also, that if costs cii do not depend on i, Eq. (5) becomes equivalent (up to a constant) to the Bayes
risk and the minimax regret classifier becomes equivalent to the minimax classifier .

Another important result for the algorithms proposed in this paper is that, under some conditions
on the minimum risk, the minimum and maximum operators can be permuted. Although general
results on the permutability of minimum and maximum operators can be found in the literature (see
Polak, 1997, for instance), we provide here the proof for the specific case interesting to this paper.
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Theorem 3 Consider the minimum deviation function given by

Dmin(P) = inf
w
{Dw(P)} , (9)

where Dw(P) is the normalized deviation function given by Eq. (5), and let P∗ be the prior proba-
bility vector providing the maximum deviation,

P∗ = argmax
P

{
Dmin(P)

}
. (10)

If Dmin(P) is continuously differentiable at P = P∗, then the minimax deviation, DmMd , defined by
Eq. (4), is

DmMd = Dmin(P∗) = max
P

inf
w

{
Dw(P)

}
. (11)

Proof
For any classifier with parameter vector w, we can write,

max
P

Dw(P) ≥ Dw(P∗) ≥ Dmin(P∗)

and, thus,
inf
w

max
P

Dw(P) ≥ Dmin(P∗) . (12)

Therefore, Dmin(P∗) is a lower bound of the minimax regret.
Now we prove that Dmin(P∗) is also an upper bound. According to Eq. (9), for any ε > 0, there

exists a parameter vector wε such that

Dwε(P
∗) ≤ Dmin(P∗)+ ε . (13)

By definition, for any P, Dmin(P) ≤ Dwε(P). Therefore, using Eq. (13), we can write

Dwε(P
∗)−Dwε(P) ≤ Dmin(P∗)−Dmin(P)+ ε . (14)

Since Dmin(P) is continuously differentiable and (according to Eq. (10)) maximum at P∗, for any
ε′ > 0 there exists δ > 0 such that, for any P ∈ P with ‖P∗−P‖ ≤ δ we have

Dmin(P∗)−Dmin(P) ≤ ε′‖P∗−P‖ ≤ ε′δ . (15)

Let Pδ a prior such that ‖P∗−Pδ‖ = δ. Taking ε = ε′δ and combining Eqs. (14) and (15) we can
write

Dwε(P
∗)−Dwε(Pδ) ≤ 2ε′δ .

Since the above condition is verified for any ε′ > 0 and any prior Pδ at distance δ from P, and taking
into account that Dwε(P) is a linear function of P, we conclude that the maximum slope of Dwε(P)
is bounded by 2ε′ and, thus, for any P ∈ P , we have

Dwε(P)−Dwε(P
∗) ≤ 2ε′‖P−P∗‖ ≤ 2

√
2ε′ ,

(where we have used the fact that the maximum distance between two probability vectors is
√

2).
Therefore, we can write

max
P

Dwε(P) ≤ Dwε(P
∗)+2

√
2ε′
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and, thus,
inf
w

max
P

Dw(P) ≤ Dwε(P
∗)+2

√
2ε′ .

Finally, using Eq. (13) and taking into account that ε = ε′δ ≤
√

2ε′ we get

inf
w

max
P

Dw(P) ≤ Dmin(P∗)+3
√

2ε′ . (16)

Since the above is true for any ε′ > 0 we conclude that Dmin(P∗) is also an upper bound of Dw.
Therefore, combining Eqs. (12) and (16), we conclude that

inf
w

max
P

Dw(P) = Dmin(P∗) ,

which completes the proof.

Note that the deviation function needs to be neither differentiable nor a continuous function of
w parameters.

If the minimum deviation function is not continuously differentiable at the minimax deviation
probability, P∗, the theorem cannot be applied. The reason is that, although there should exist at least
one classifier providing the minimum deviation at P = P∗, it or they could not provide a constant
deviation with respect to the prior probability. The situation can be illustrated with an example.

Let x ∈ R be given by p(x|d = 0) = 0.8N(x,σ)+ 0.2N(x− 2,σ) and p(x|d = 1) = 0.2N(x−
1,σ)+ 0.8N(x− 3,σ), where σ = 0.5 and N(x,σ) = (2πσ)−1/2 exp(−x2/(2σ2)), and consider the
set Φλ of classifiers given by a single threshold over x and decision

d̂ =

{
1 if x ≥ λ
0 if x < λ.

Fig. 2 shows the distribution of both classes over x, and Fig. 3 shows, as a function of priors, the
minimum error probability (continuous line) that can be obtained using classifiers in Φλ. Note that
decision costs c00 = c11 = 0 and c01 = c10 = 1 have been considered for this illustrative problem.
An abrupt slope change is observed at the minimax deviation probability, for P{d = 1} = 1/2. For
this prior, there are two single threshold classifiers providing the minimum error probability, which
are given by thresholds λ1 and λ2 in Fig. 2. However, as shown in Fig. 3 neither of them provides a
risk that is constant in the prior. The minimax deviation classifier in Φλ, which has a threshold λ0,
does not attain minimum risk at the minimax deviation probability and, thus, cannot be obtained by
using Eq. (11).

For this example, the desired robust classifier should have a deviation function given by the
horizontal dotted line in Fig. 3. Fortunately, it can be obtained by combining the outputs of several
classifiers. For instance, let d̂1 and d̂2 the decisions of classifiers given by thresholds λ1 and λ2,
respectively. It is not difficult to see that the classifier selecting d̂1 and d̂2 at random (for each input
sample x) provides a robust classifier.

This procedure can be extended to the multiclass-case: consider a set of L classifiers with pa-
rameters wk, k = 0, . . . ,L−1, and consider the classifier such that, for any input sample x, makes a
decision equal to d̂k (i.e., the decision of classifier with parameters wk), with probability qk. It is not
difficult to show that the deviation function of this classifier is given by

D(P) =
L−1

∑
j=0

Pj

(
L−1

∑
k=0

qkD j(wk)

)
,

112



MINIMAX REGRET CLASSIFIER

−2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

Li
ke

lih
oo

ds

λ
1

λ
2

λ
0

Figure 2: The conditional data distributions for the one-dimensional example discussed in the text.
λ1 and λ2 are the thresholds providing the minimum risk at the minimax deviation prob-
ability. λ0 provides the minimax deviation classifier.

where D j(wk) = R j(wk)− c j j. In order to get a constant deviation function, probabilities qk should
be chosen in such a way that

L−1

∑
k=0

qkD j(wk) = D ,

where D is a constant. Solving these linear equations for qk, k = 0, . . . ,L− 1 (with the constraint
∑k qk = 1), the required probabilities can be found.

Note that, in order to build the non-deterministic classifier providing a constant deviation, a
set of L independent classifiers that are optimal at the minimax deviation prior should be found.
However, we go no further on the investigation of this special case for two main reasons:

• The situation does not seem to be common in practice. In our simulations, we have found that
the maximum of the minimum risk deviation always provided a response which is approxi-
mately parallel to Rbasis.

• In general, the abrupt change in the derivative may be a symptom that the classifier struc-
ture is not optimal for the data distribution. Instead of building a nondeterministic classifier,
increasing the classifier complexity should be more efficient.

Although the least favorable prior providing the minimax deviation can be computed in closed
form for some simple distributions, in general, it must be computed numerically. Moreover, we
assume here that the data distribution is not known, and must be learned from examples. Thus,
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Figure 3: Error probabilities as a function of prior probability of class 1 for the example in Fig. 2.
Thresholds λ1 and λ2 do not provide the minimax deviation classifier, which is obtained
for threshold λ0. However, the random combination of classifiers with thresholds λ1 and
λ2 (dotted line) provides a robust classifier with deviation lower than that of λ0.

we must incorporate the estimation of the least favorable prior in the learning process. Next, we
propose a training algorithm in order to get a minimax regret classifier based on neural networks.

4. Neural Robust Classifiers Under Complete Uncertainty

Note that, if QmMd is the probability vector providing the maximum in Eq. (11), that is,

QmMd = argmax
P

{
inf
w
{Dw(P)}

}
,

then we can write

DmMd = inf
w
{Dw(QmMd)} .

Therefore, the minimax deviation classifier can be estimated by training a classifier using prior in
QmMd . For this reason, QmMd will be called the minimax deviation prior (or least favorable prior).
Our proposed algorithms are based on an iterative process of estimating parameters w based on an
estimate of the minimax deviation prior, and re-estimating prior based on an estimate of network
weights. This is shown in the following.
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4.1 Updating Network Weights

Learning is based on minimizing some empirical estimate of the overall error function

E{C(y,d)} =
L−1

∑
i=0

P{d = ui}E{C(y,d)|d = ui} =
L−1

∑
i=0

PiCi ,

where C(y,d) may be any error function and Ci is the expected conditional error for class-i.
Selecting the appropriate error function (see Cid-Sueiro and Figueiras-Vidal, 2001, for in-

stance), learning rules can be designed providing a posteriori probability estimates (yi ≈ P{d =
ui|x}, where yi is the soft decision) and, thus, according to Eq. (3), the hard decision minimizing
the risk can be approximated by

d̂ = arg min
i
{

L−1

∑
j=0

ci jy j} .

The overall empirical error function (cost function) used in learning for priors P̂ = (P̂0, . . . , P̂L−1)
may be written as

Ĉ =
L−1

∑
i=0

P̂iĈi =
L−1

∑
i=0

P̂i
1
Ki

K

∑
k=1

dk
i Ĉ(yk,dk),

=
1
K

[
L−1

∑
i=0

(
P̂i

Ki/K

K

∑
k=1

dk
i C(yk,dk)

)]
,

=
1
K

K

∑
k=1

[
L−1

∑
i=0

P̂i

P̂(0)
i

dk
i Ĉ(yk,dk)

]
, (17)

where P̂(0)
i = Ki/K is an initial estimate of class-i prior based on class frequencies in the training set

and P̂i is the current prior estimate.
Minimizing error function (17) by means of a stochastic gradient descent learning rule leads to

update the network weights at k-th iteration as

w(k+1) = w(k)−µ
(L−1

∑
i=0

P̂(n)
i

P̂(0)
i

dk
i ∇wC(yk,dk)

)
,

= w(k)−
(L−1

∑
i=0

µ(n)
i dk

i

)
∇wC(yk,dk) , (18)

where

µ(n)
i = µ

P̂(n)
i

P̂(0)
i

(19)

is a learning step scaled by the prior ratio. Note that di selects the appropriate µ(n)
i according to

the pattern class membership. The classifier is trained without altering the original training data set
class distribution P̂(0)

i and therefore, without missing or duplicating information.
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4.2 Updating Prior Probabilities

Eq. (11) shows that the learning process should maximize (5) with respect to the prior probabilities.
The estimate of (5) can be computed as

̂̄Dw(P) = R̂w(P)−Rbasis(P) , (20)

where

R̂w(P) =
L−1

∑
j=0

R̂ jPj (21)

is the overall Bayes risk estimate and

R̂ j =
1

N j

L−1

∑
i=0

ci jNi j (22)

is the class- j conditional risk estimate where N j is the number of class u j patterns in the training
phase and Ni j is the number of samples from class u j assigned to ui.

In order to derive a learning rule to find an estimate P̂i satisfying constraints ∑L−1
i=0 P̂i = 1 and

0 ≤ P̂i ≤ 1, we will use auxiliary variables Bi such that

P̂i =
exp(Bi)

∑L−1
j=0 exp(B j)

. (23)

We maximize ̂̄Dw with respect to Bi. Applying the chain rule,

∂ ̂̄Dw

∂Bi
=

L−1

∑
j=0

∂ ̂̄Dw

∂P̂j

∂P̂j

∂Bi
,

and using Eqs. (20), (21) and (23), we get

∂ ̂̄Dw

∂Bi
=

L−1

∑
j=0

(R̂ j − c j j)P̂i(δi j − P̂j),

= P̂i

(
R̂i − cii −

L−1

∑
j=0

(R̂ jP̂j)+
L−1

∑
j=0

(c j jP̂j)

)
,

= P̂i

((
R̂i − cii

)
−
(

R̂w − R̂basis

))
,

= P̂iR̂di ,

where
R̂di = (R̂i − cii)− (R̂w − R̂basis) .

The learning rule for auxiliary variable Bi is

Bi
(n+1) = B(n)

i +ρ
∂D̂w

∂Bi
,

= B(n)
i +ρP̂(n)

i R̂(n)
di , (24)
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where parameter ρ > 0 controls the rate of convergence. Using Eq. (23) and Eq. (24), the updated
learning rule for P̂i is

P̂(n+1)
i =

exp(B(n)
i )exp

(
ρP̂(n)

i R̂(n)
di

)

∑L−1
j=0

[
exp
(

B(n)
j

)
exp
(

ρP̂(n)
j R̂(n)

d j

)] ,

=
P̂(n)

i exp
(

ρP̂(n)
i R̂(n)

di

)

∑L−1
j=0

[
P̂(n)

j exp
(

ρP̂(n)
j R̂(n)

d j

)] . (25)

4.3 Training Algorithm for a Minimax Deviation Classifier

In the previous section, both the network weights updating rule (18) and the prior probability update
rule (25) have been derived. The algorithm resulting from the combination is shown as follows:

for n = 0 to Niterations −1 do
for k = 1 to K do

w(k+1) = w(k)−
(L−1

∑
i=0

µ(n)
i dk

i

)
∇wC(yk,dk)

end for
Estimate R̂(n), R̂(n)

i , i = 0, . . . ,L−1, according to (21) and (22)

Update minimax probability P̂(n+1)
i , i = 0, . . . ,L−1 according to (25) and compute µ(n+1)

i with
(19)

end for

5. Robust Classifiers Under Partial Uncertainty

Although in many practical situations prior probabilities may not be specified with precision, they
can be partially known. In this section we discuss how partial information about priors can be used
to improve the classifier performance in relation to a complete uncertainty situation.

From now on, let us consider that lower (or upper) bounds of the priors are known based on
previous experience. We will denote the lower and upper bounds of class-i prior probability as Pil

and Piu, respectively.

In order to illustrate this situation consider a binary classification problem where probability
lower bounds P0l and P1l are known. That is, P1 ∈ [P1l,1−P0l] where this interval represents the un-
certainty region. Let us denote by Γ = {P : 0 ≤ Pi ≤ 1, ∑L−1

i=0 Pi = 1,Pi ≥ Pil} the probability region
satisfying the imposed constraints. In the following, we will refer to Γ as the uncertainty region.

Now, the aim is to design a classifier that minimizes the maximum regret from the minimum
risk only inside the uncertainty region. This is depicted in Fig. 4(a), which shows that reducing the
uncertainty in priors allows to reduce deviation from the optimal classifier. This minimax regret
approach for the uncertainty region Γ is often called Γ-minimax regret. As discussed before, the
minimax deviation solution gives a Bayes solution with respect some priors denoted in the partial
uncertainty case as QΓ

mMd in Fig. 4(a), which is the least favorable distribution according to the
regret criterion.
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Figure 4: Minimax deviation classifier under partial uncertainty of prior probabilities:
(a)Γ-minMaxDev Classifier. (b) Modified cost function defined as RB(P)+ψ(P).

In contrast to the minimax regret criterion, note that a classical minimax classifier for the con-
sidered uncertainty region would minimize the worst-case risk. It would be a Bayes solution for the
prior where the minimum risk reaches its maximum and it could be denoted as QΓ

mM .
Notice, also, that these solutions will be the same if the risk for the vertex of Γ take the same

value (cΓ
ii = k).

5.1 Neural Robust Classifiers Under Partial Uncertainty

Minimax search can be formulated as maximizing (with respect to priors) the minimum (with re-
spect to network parameters) of deviation function (5), as described in previous section, but subject
to some constraints

arg max
P

inf
w

{DΓ
w(P)} ,

s.t. Pi ≥ Pil , i = 0, . . . ,L−1

where DΓ
w = RΓ

w −RΓ
basis. When uncertainty is global, this hyperplane is defined by the risk in the L

extreme cases with Pi = δik, that is, by the corresponding cii. However, with partial knowledge of
the prior probabilities, this hyperplane becomes defined by the risk in L points which are the vertex
given by the restrictions and with associated risk denoted by cΓ

j j.
Defining

l(Pi) =
1

1+ exp−τ(Pi−Pil)
, (26)

where τ controls the hardness of this restriction, the minimax problem can be re-formulated as

arg max
P

inf
w

{DΓ
w(P)}

s.t. l(Pi) ≥ 1/2, i = 0, . . . ,L−1.

Thus, this constrained optimization problem can be solved as a non-constrained problem by
considering an auxiliary function that incorporates the restriction as a barrier function
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arg max
P

inf
w

{DΓ
w(P)+Aψ(P)} ,

where ψ(Pi) = log(l(Pi)) and the constant A determines the contribution of the barrier function.
Fig. 4(b) shows the new risk function corresponding to the binary case previously depicted in

Fig. 4(a). Note that, it is the sum of the original RB(P) and the barrier function ψ(P).
As in Section 4.1, in order to derive the network weight learning rule, we need to compute

∂ψ̂
∂Bi

=
L−1

∑
j=0

∂ψ̂
∂P̂j

∂P̂j

∂Bi
,

= τP̂i

L−1

∑
k=0

(
1− l(P̂k)

)
(δik − P̂k),

= τP̂iψ̂di ,

where ψ̂di = ∑L−1
k=0 (1− l(P̂k))(δik − P̂k)

As τ increases, the constraints become harder around the specified bound.
The update learning rule for the auxiliary variable Bi at cycle n is

B(n+1)
i = Bi

(n) +ρP̂(n)
i R̂Γ(n)

di +ρAτP̂(n)
i ψ̂(n)

di .

And therefore, using (23), the update learning rule for Pi is

P̂(n+1)
i =

P̂(n)
i exp

(
ρP̂(n)

i R̂Γ(n)
di

)
exp
(

ρAτP̂(n)
i ψ̂(n)

di

)

L−1

∑
j=0

{
P̂(n)

j exp
(

ρP̂(n)
j R̂Γ(n)

d j

)
exp
(

ρAτP̂(n)
j ψ̂(n)

d j

)} .

Note that if the upper bound is known instead of the lower bound, l(Pi) defined by (26) should
be replaced by u(Pi) = (1+ exp(τ(Pi −Piu)))

−1 at the previous formulation.
The minimax constrained optimization problem has been tackled by considering a new objective

function defined by the sum of the original cost function and a barrier function. Studying the
convexity of this new function becomes important from the fact that a stationary point of this risk
curve is a global maximum.

Since the minimum risk curve (RB(P)) is a convex function of the priors (see VanTrees, 1968,
for details), if we verify the convexity of the barrier function, we can conclude that the function
defined by the sum of both of them is also convex.

This barrier function is convex in P if the Hessian matrix HR verifies PTHRP ≤ 0
The Hessian matrix of the barrier function equals to a diagonal matrix Dr = diag(r) with all

negative diagonal entries ri = Aτ2(−l(Pi)(1− l(Pi))). As l(Pi) ∈ [0,1] and therefore, ri ≤ 0, it is
straightforward to see that

PTHRP = PTDrP,

=
L−1

∑
i=0

P2
i ri ≤ 0 .

Since the barrier function is convex, the new objective function (defined by the sum of two
convex functions) is also convex.
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ALAIZ-RODRÍGUEZ, GUERRERO-CURIESES, AND CID-SUEIRO

5.2 Extension to Other Learning Algorithms

The learning algorithm proposed in this paper is intended to train a minimax deviation classifier
based on neural networks with feedforward architecture. Actually, the learning algorithm we pro-
pose becomes a feasible solution for any learning process based on minimizing some empirical
estimate of an overall cost (error) function.

However, it is also applicable to a general classifier provided it is trained (in an iterative process)
for the estimated minimax deviation probabilities and the assumed decision costs. Specifically, in
this paper, scaling the learning rate allows to simulate different class distributions and the hard
decisions are made based on posterior probability estimates and decision costs. Furthermore, the
neural learning phase carried out in one iteration can be re-used for the next one, what allows
to reduce computational cost with respect to a complete optimization process on each iteration.
Apart from the general approach of completely training a classifier on each iteration and in order
to reduce its computational cost, specific solutions may be studied for different learning machines.
Nonetheless, it seems not feasible to readily achieve this improvement for classifiers like SVMs,
where support vectors for one solution may have nothing in common with the ones obtained in next
iteration and thus, making necessary to re-train the classifier in each iteration.

Another possible solution for any classifier that provides a posteriori probabilities estimates or
any score that can be converted into probabilities (for details on calibration methods see Wei et al.,
1999; Zadrozny and Elkan, 2002; Niculescu-Mizil and Caruana, 2005) is outlined here. In this
case, an iterative procedure able to estimate the minimax deviation probabilities and consequently
to adjust (without re-training) the outputs of the classifier could be studied. The general idea for this
approach is as follows: first, the new minimax deviation prior probabilities are estimated according
to (25) and then, posterior probabilities provided by the model are adjusted as follows (see Saerens
et al., 2002, for more details)

P(k){d = ui|x} =

P(k)
i

P(k−1)
i

P(k−1){d = ui|x}

L−1

∑
j=0

P(k)
j

P(k−1)
j

P(k−1){d = u j|x}
. (27)

The algorithm’s main structure is summarized as

for k = 1 to K do
Estimate R̂(k), R̂(k)

i , i = 0, . . . ,L−1, according to (21), (22) and decision costs ci j

Update minimax probability P̂(k+1)
i according to (25)

Adjust classifier outputs according to (27)
end for

The effectiveness of this method relies on the accuracy of the initial a posteriori probability
estimates. Studying in depth this approach and comparing different minimax deviation classifiers
(decision trees, SVMs, RBF networks, feedforward networks and committee machines) together
with different probability calibration methods appears as a challenging issue to be explored in future
work.
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6. Experimental Results

In this section, we first present the neural network architecture used in the experiments and illustrate
the proposed minimax deviation strategy on an artificial data set. Then, we apply it to several real-
world classification problems. Moreover, a comparison with other proposals such as the traditional
minimax and the common re-balancing approach is carried out.

6.1 Softmax-based Network

Although our algorithms can be applied to any classifier architecture, we have chosen a neural
network based on the softmax non-linearity with soft decisions given by

yi =
Mi

∑
j=1

yi j ,

with

yi j =
exp(wT

i jx+wi j0)

∑L−1
k=0 ∑Mk

l=1 exp(wT
klx+wkl0)

,

where L stands for the number of classes, M j the number of softmax outputs used to compute y j and
wi j are weight vectors. We will refer to this network as a Generalized Softmax Perceptron(GSP).1

A simple network with M j = 2 is used in the experiments.

...SOFTMAX

n inputs / outputs

wj,kx1

x2

x3

xd

...

...

y1,1

y1,M1

yL,1

yL,ML
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HARD
DECISION

Class i

y1

yL

Figure 5: GSP(Generalized Softmax Perceptron) Network

Fig. 5 corresponds to the neural network architecture used to classify the samples represented by
feature vector x. Learning consists of estimating network parameters w by means of the stochastic
gradient minimization of certain objective functions. In the experiments, we have considered the
Cross Entropy objective function given by

CE(y,d) = −
L

∑
i=1

di logyi .

The stochastic gradient learning rule for the GSP network is given by Eq. (18). Learning step

µ(k) decreases according to µ(k) = µ(0)

1+k/η , where k is the iteration number, µ(0) the initial learning
rate and η a decay factor.

1. Note that the GSP is similar to a two layer MLP with a single layer of weights and with coupled saturation function
(softmax), instead of sigmoidal units.
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The reason to illustrate this approach with a feedforward architecture is that, as mentioned in
Section 5.2, it allows to exploit (in the iterative learning process) the partially optimized solution
in current iteration for the next one. On the other hand, posterior probability estimation makes it
possible to apply the adaptive strategy based on prior re-estimation proposed by Saerens to the min-
imax deviation classifier, as long as a data set representative of the operation conditions is available.
Finally, the fact that intermediate outputs yi j of the GSP can be interpreted as subclass probabilities
may provide quite a natural way to cope with the unexplored problem of uncertainty in subclass
distributions as already pointed out by Webb and Ting (2005). Nonetheless, both architecture and
cost function issues are not the goal of this paper, but merely illustrative tools.

6.2 Artificial Data Set

To illustrate the minimax regret approach proposed in this paper both under complete and partial
uncertainty, an artificial data set with two classes (class u0 and class u1) has been created. Data ex-
amples are drawn from the normal distribution p(x|d = ui) = N(mi,σ2

i ) with mean mi and standard
deviation σi. Mean values were set to m0 = 0, m1 = 2 and standard deviation to σ0 = σ1 =

√
2. A to-

tal of 4000 instances were generated with prior probabilities of class membership P{d = u0}= 0.93

and P{d = u1} = 0.07. The cost-benefit matrix

(
c00 c01

c10 c11

)
is given by

(
2 5
4 0

)
.

Initial learning rate was set to µ(0) = 0.3, decay factor to η = 2000 and training was ended after
80 cycles. Classifier assessment was carried out by following 10-fold cross-validation.

Two classifiers were trained, to be called a standard classifier and a minMaxDev classifier. The
former is built by considering that the estimated class prior information is precise and stationary
and the latter is the approach proposed in this paper to cope with uncertainty in priors. Thus, for the
standard classifier, its performance may deviate from the optimal risk in 3.39 when priors change
from training to test conditions. However, a minimax deviation classifier reduces this worst-case
difference from the optimal classifier to 0.77.

Now, we suppose that some information about priors is available (partial uncertainty). For
instance, we consider that the lower bound for prior probabilities P0 and P1 are known and set
to P0l = 0.55 and P1l = 0.05, respectively, so that the uncertainty region is Γ = {(P0,P1)|P0 ∈
[0.55,0.95],P1 ∈ [0.05,0.45]}.

A minimax deviation classifier can be derived for Γ (it will be called Γ-minMaxDev classi-
fier).The narrower Γ is, the closer the minimax deviation classifier performance is to the optimal.
For this particular case, under partially imprecise priors, the standard classifier may differ from
optimal (in Γ) in 0.83, while the use of the simple minMaxDev classifier designed under total prior
uncertainty conditions attains a maximum deviation of 0.53. However, the Γ-minMaxDev classifier
only differs from optimal in 0.24. These data are reported in Table 1 where both, experimental and
also theoretical results, are shown.

6.3 Real Databases

In this section we report experimental results obtained with several publicly available data sets.
From the UCI repository (Blake and Merz, 1998) the following benchmarks: German Credits, Aus-
tralian Credits, Insurance Company, DNA slice-junction, Page-blocks, Dermatology and Pen-digits.
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Classifier
Standard minMaxDev Γ-minMaxDev
Th/Exp Th/Exp Th/Exp

Maximum deviation from optimal
(complete uncertainty) 3.41/3.39 0.72/0.77 –
Maximum deviation from optimal in Γ
(partial uncertainty) 0.85/0.83 0.50/0.53 0.19/0.24

Table 1: A comparison between the standard classifier (build under stationary prior assumptions),
the minimax deviation classifier (minMaxDev) and the minimax deviation classifier under
partial uncertainty (Γ-minMaxDev) for an artificial data set

Database # Classes Class distribution # Attributes # Instances
German Credits (GCRE) 2 [0.70 0.30] 8 1000
Australian Credits (AUS) 2 [0.32 0.68] 14 690
Munich Credits (MCRE) 2 [0.30 0.70] 20 1000
Insurance Company (COIL) 2 [0.94 0.06] 85 9822
DNA Slice-junction (DNA) 3 [0.24 0.24 0.52] 180 3186
Page-blocks (PAG) 5 [0.90 0.06 0.01 0.01 0.02] 10 5473
Dermatology (DER) 6 [0.31 0.16 0.20 0.13 0.14 0.06] 34 366
Pen-digits (PEN) 10 [0.104 0.104 0.104 0.096 0.104

0.096 0.096 0.104 0.096 0.096]
16 10992

Table 2: Experimental Data sets

Other public data set used is Munich Credits from the Dept. of Statistics at the University of Mu-
nich.2

Data set description is summarized in Table 2, and cost-benefit matrices are shown in Table 3.
We have used the cost values that appear in Ikizler (2002) for those data sets in common. Otherwise,
for lack of an expert analyst, the cost values have been chosen by hand.

2. Data sets available at http://www.stat.uni-muenchen.de/service/datenarchiv/welcome e.html.

Insurance Company German, Australian, Munich Credits DNA
(

0 0
1 −17

) (
−1 5
0 0

) 


−1 2 3
2 −1 3
2 2 0




Page-Blocks Dermatology Pendigits



−1 1 1 1 1
2 0 1 1 1
2 1 0 1 1
2 1 1 0 1
2 1 1 1 0







−4 3 3 2 2 2
2 −3 3 2 1 3
3 3 −8 4 4 5
4 5 5 −10 5 2
3 1 4 3 −6 3
4 5 5 4 5 −10




ci j =

{
0 if i = j
1 Otherwise

Table 3: Cost-Benefit matrices for the experimental Data sets
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Maximum Risk Deviation from the optimal classifier
Standard Re-balanced Minimax Deviation Minimax

minMaxDev minMax

GCRE 0.70 0.80 (0.55 0.60) 0.99

ACRE 1.00 1.00 (0.76 0.86) 1.00

MCRE 0.91 0.77 (0.54 0.59) 0.99

COIL 2.78 0.99 (0.87 0.92) 16.32

DNA 0.34 0.53 (0.30 0.27 0.25) 1.14

PAG 0.62 0.26 (0.13 0.13 0.20 0.16 0.16) 0.86

DER 1.03 1.28 (0.67 0.78 0.51 0.48 0.54 0.60) 7.62

PEN 0.061 0.059
(0.024 0.025 0.023 0.026 0.023
0.028 0.019 0.021 0.022 0.029)

0.029

Table 4: Classifier Performance evaluated as Maximum Risk Deviation from the optimal classifier
for several real-world applications. Class-conditional risk deviations (Ri − cii) reported for
the minMaxDev classifier.

Experimental results for these data sets are shown in the following sections. The robustness of
different decision machines under complete uncertainty of prior probabilities is analyzed in Section
6.3.1. If uncertainty is only partial, a similar study and comparison with the previous approach
(complete uncertainty) is carried out in Section 6.3.2.

6.3.1 CLASSIFIER ROBUSTNESS UNDER COMPLETE UNCERTAINTY

We now study how different neural-based classifiers cope with worst-case situations in prior prob-
abilities. The maximum deviation from the optimal classifier (see Table 4) is reported for the pro-
posed minMaxDev strategy as well as for other alternative approaches: the one based on the as-
sumption of stationary priors (standard) and the common alternative of deriving the classifier from
an equally distributed data set (re-balanced). A comparison with the traditional minimax strategy
is also provided. Together with the previously mentioned value (maximum deviation or regret),
deviation for the L class-conditional extreme cases (Ri − cii) is also reported for the minMaxDev
classifier in Table 4. Results allow to verify that this solution is fairly close to the optimal one where
deviation is not dependent on priors and thus, class-conditional deviations take the same value.

Although the balanced class distribution to train the classifier can be obtained by means of
undersampling and/or oversampling, it is simulated by altering the learning rate used in the training

phase according to (19) as µi = µ
1/L

P̂(0)
i

, where 1/L represents the simulated probability, equal for

all classes.
Results evidence that the assumption of stationary priors may lead to significant deviations from

the optimal decision rule under “unexpected”, but rather realistic, prior changes. This deviation
may reach up to three times more than the robust minimax deviation strategy. Thus, for classifica-
tion problems like Page-blocks the maximum deviation from the optimal classifier is 0.62 for the
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Maximum Risk

Standard Re-balanced Minimax Deviation Minimax

minMaxDev minMax

GCRE 0.70 0.15 0.60 0.00

ACRE 0.01 0.02 0.86 -0.00

MCRE 0.05 0.20 0.59 0.00

COIL 0.76 0.99 0.86 0.02

DNA 0.34 0.53 0.25 0.13

PAG 0.62 0.26 0.20 0.10

DER -2.10 -1.68 -2.21 -2.38

PEN 0.061 0.059 0.029 0.029

Table 5: Classifier Performance measured as Maximum Risk for several real-world applications.

standard classifier while this reduces to 0.20 for the minMaxDev one. Likewise, for the Insurance
company(COIL) application the maximum deviation for the standard classifier is 2.78 compared
with 0.92 for the minMaxDev model. The remaining databases also show the same behavior as it is
presented in Table 4.

On the other hand, the use of a classifier inferred from a re-balanced data set does not necessarily
involve a decrease in the maximum deviation with respect to the standard classifier. In the same
way, the traditional minimax classifier does not protect against prior changes in terms of maximum
relative deviation from the minimum risk classifier.

However, if our criterion is more conservative and our aim is the minimization of the maximum
possible risk (not the minimization of the deviation), the traditional minimax classifier represents the
best option. It is shown in Table 5 where the maximum risk for the different classifiers is reported.
Positive values in this table indicate a cost while negative values represent a benefit. For instance,
for the Page-blocks application the minimax classifier assures a maximum risk of 0.10 while the
standard, re-balanced and minMaxDev classifiers reach values of 0.62, 0.26 and 0.20, respectively.
It can be noticed that for the Pen-digits data set, the minimax deviation and minimax approaches
attain the same results. The reason is that, for this problem, the Rbasis plane takes the same value (in
this case, zero) in the probability space.

6.3.2 CLASSIFIER ROBUSTNESS UNDER PARTIAL UNCERTAINTY

Unlike the previous section, we consider now that partial information about the class priors is avail-
able. The aim is to find a classifier that behaves well for a delimited and realistic range of priors
what constitutes an aid in reducing the maximum deviation from the optimal classifier. This situ-
ation can be treated as a constrained minimax regret strategy where the constraints represent any
extra information about prior probability value.

Experimental results for several situations of partial prior uncertainty are presented in this sec-
tion. We consider that lower bounds for the prior probabilities are available (see Table 6). In order
to get the Γ-minMaxDev classifier, the risk for the different vertex of the uncertainty domain needs
to be calculated. With them, the basis risk RΓ

basis over which deviations are measured is derived.
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Lower bound for prior probabilities

Data Set P0l P1l P2l P3l P4l P5l P6l P7l P8l P9l

GCRE 0.40 0.25

ACRE 0.20 0.25

MCRE 0.20 0.25

COIL 0.15 0.03

DNA 0.10 0.10 0.25

PAG 0.22 0.02 0.00 0.01 0.02

DER 0.1 0.20 0.10 0.10 0.10 0.02

PEN 0.10 0.06 0.06 0.10 0.10 0.06 0.06 0.10 0.05 0.05

Table 6: Lower bounds for prior probabilities defining the uncertainty region, Γ region for the ex-
perimental data sets.

Maximum Risk Deviation in the uncertainty region

Standard Minimax Deviation Minimax Deviation with restriction

minMaxDev Γ-minMaxDev

GCRE 0.24 0.19 (0.10 0.09)

ACRE 0.03 0.64 (0.03 0.03)

MCRE 0.22 0.38 (0.13 0.10)

COIL 2.33 0.77 (0.17 0.11)

DNA 0.14 0.08 (0.07 0.07 0.06)

PAG 0.37 0.15 (0.10 0.08 0.08 0.05 0.04)

DER 0.08 0.05 (0.03 0.03 0.04 0.02 0.05 0.05)

PEN 0.013 0.007
(0.003 0.003 0.001 0.000 0.001
0.001 0.000 0.001 0.003 0.001)

Table 7: Classifier Performance under partial knowledge of prior probabilities measured as Maxi-
mum Risk Deviation for several real-world applications. Class-conditional risk deviations
(RΓ

i − cΓ
ii) are reported for the Γ-minMaxDev classifier.

Maximum deviation from the optimal in Γ is reported for the Γ-minMaxDev classifier together
with the standard and the minMaxDev ones. For instance, the standard classifier for the Page-
blocks data set deviates from the optimal classifier, in the defined uncertainty region, up to 0.37,
while when complete uncertainty is assumed the maximum deviation is equal to 0.62.

In the same way, reducing the uncertainty also means a reduction in the maximum deviation
for minMaxDev classifier (trained without considering this partial knowledge). Thus, for Γ, this
classifier assures a deviation bound of 0.15. However, taking into account this partial information to
train a Γ-minMaxDev classifier allows to reduce the deviation for the worst-case conditions to 0.10.
It can be seen the same behavior for the other databases in Table 7.
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7. Conclusions

This work concerns the design of robust neural-based classifiers when the prior probabilities of the
classes are partially or completely unknown, even by the end user.

This problem of uncertainty in the class priors is often ignored in supervised classification, even
though it is a widespread situation in real world applications. As a result, the reliability of the
inducted classifier can be greatly affected as previously shown by the experiments.

To tackle this problem, we have proposed a novel minimax deviation strategy with the goal to
minimize the maximum deviation with respect to the optimal classifier.

A neural network training algorithm based on learning rate scaling has been developed. The
experimental results show that this minimax deviation (minMaxDev) classifier protects against prior
changes while other approaches like ignoring this uncertainty or use a balanced learning data set
may result in large differences in performance with respect to the minimum risk classifier. Also,
it has been shown that the conventional minimax classifier reduces the maximum possible risk
following a conservative attitude but at the expense of large worst-case differences from the optimal
classifier.

Furthermore, a constrained minimax deviation approach (Γ-minMaxDev) has been derived for
those situations where uncertainty is only partial. This may be seen as a general approach with some
particular cases: a) precise knowledge of prior probabilities and b) complete uncertainty about the
priors. In a) the region of uncertainty collapses to a point and we have the Bayes’ rule of minimum
risk and in b) the pure minimax deviation strategy comes up. While the first one may be criticized
for being quite unrealistic, the other may be seen rather pessimistic. The experimental results for
this proposed intermediate situation show that the Γ-minMaxDev classifier allows to reduce the
maximum deviation from the optimal and performs well over a range of prior probabilities.
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