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Abstract
Parallel software for solving the quadratic program arising in trainingsupport vector machinesfor
classification problems is introduced. The software implements an iterative decomposition tech-
nique and exploits both the storage and the computing resources available on multiprocessor sys-
tems, by distributing the heaviest computational tasks of each decomposition iteration. Based on a
wide range of recent theoretical advances, relevant decomposition issues, such as the quadratic sub-
problem solution, the gradient updating, the working set selection, are systematically described and
their careful combination to get an effective parallel toolis discussed. A comparison with state-of-
the-art packages on benchmark problems demonstrates the good accuracy and the remarkable time
saving achieved by the proposed software. Furthermore, challenging experiments on real-world
data sets with millions training samples highlight how the software makes large scale standard
nonlinear support vector machines effectively tractable on common multiprocessor systems. This
feature is not shown by any of the available codes.
Keywords: support vector machines, large scale quadratic programs, decomposition techniques,
gradient projection methods, parallel computation

1. Introduction

Training support vector machines (SVM) for binary classification requires to solve the following
convex quadratic programming (QP) problem (Vapnik, 1998; Cristianini and Shawe-Taylor, 2000)

min F (α) =
1
2

αTGα−
n

∑
i=1

αi

sub. to ∑n
i=1yiαi = 0,

0≤ αi ≤C, i = 1, . . . ,n,

(1)
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whose sizen is equal to the number of examples in the given training set

D =
{

(xi ,yi), i = 1, . . . ,n, xi ∈ R
M, yi ∈ {−1,1}

}

,

and the entries ofG are defined by

Gi j = yiy jK(xi ,x j), i, j = 1,2, . . . ,n,

whereK : R
M ×R

M → R denotes the kernel function. The main features of this problem are the
density of the quadratic form and the special feasible region defined by box constraints and a sin-
gle linear equality constraint. In many practical SVM applications, standard QP solvers based on
the explicit storage of the Hessian matrixG may be very inefficient or, in the case of large data
sets, even not applicable due to excessive memory requirements. For these reasons in recent years
a lot of attention has been dedicated to this problem and severalad hocstrategies have been de-
veloped, which are able to solve the problem withG out of memory. Among these strategies, the
decomposition techniques have been the most investigated approaches andhave given rise to the
state-of-the-art software for the SVM QP problem. The idea behind the decomposition techniques
consists in splitting the problem into a sequence of smaller QP subproblems, sized nsp say, that can
be stored in the available memory and efficiently solved (Boser et al., 1992; Chang and Lin, 2001;
Collobert and Bengio, 2001; Joachims, 1998; Osuna et al., 1997; Platt, 1998). At each decomposi-
tion step, a subset of the variables, usually calledworking set, is optimized through the solution of
the subproblem in order to obtain a progress towards the minimum of the objective functionF (α).
Effective implementations of this simple idea involve important theoretical and practical issues.
From the theoretical point of view, the policy for updating the working set plays a crucial role since
it can guarantee the strict decrease of the objective function at each step (Hush and Scovel, 2003).
The most used working set selections rely on the violations of the Karush-Kuhn-Tucker (KKT) first
order optimality conditions. In case of working sets of minimal size, that is sized2, a proper selec-
tion via themaximal-violating pairprinciple (or related criteria) is sufficient to ensure asymptotic
convergence of the decomposition scheme (Lin, 2002; Chen et al., 2005). For larger working sets,
convergence proofs are available under a further condition which ensures that the distance between
two successive approximations tends to zero (Lin, 2001a; Palagi and Sciandrone, 2005). Further-
more, based on these working set selections and further assumptions, thelinear convergence rate
can be also proved (Lin, 2001b). For the practical efficiency of a decomposition technique, the fast
convergence and the low computational cost per iteration seem the most important features. Unfor-
tunately, these goals are conflicting since the strategies to improve the convergence rate (as the use
of large working sets or the selections based on second order information) usually increase the cost
per iteration. Examples of good trade-offs between the two goals are given by the most widely used
decomposition packages: LIBSVM (Chang and Lin, 2001) and SVMlight (Joachims, 1998).

The LIBSVM software is developed for working sets sized 2, hence it tends to minimize the
computational cost per iteration. In fact, in this case the inner QP subproblem can be analytically
solved without requiring a numerical QP solver and the updating of the objective gradient only
involves the two Hessian columns corresponding to the updated variables. On the other hand, if
only few components are updated per iteration, slow convergence is generally implied. In the last
LIBSVM release (ver. 2.8) this drawback is attenuated by a new working set selection that partially
exploits the second order information, thus getting only a moderate increase of the computational
cost with respect to the standard selections (Fan et al., 2005).
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The SVMlight algorithm uses a more general decomposition strategy, in the sense that it can
also exploit working sets of size larger than 2. By updating more variables per iteration, such an
approach is well suited for a faster convergence, but it introduces additional difficulties and costs.
A generalized maximal-violating pair policy for the working set selection and a numerical solver
for the inner QP subproblems are needed; furthermore, we must recall that the more variables are
changed per iteration, the more expensive is the objective gradient updating. Even if SVMlight can
run with any working set size, numerical experiences show that it effectively faces the above diffi-
culties only in case of small sized working sets (nsp = O(10)), where it often exhibits comparable
performance with LIBSVM.

Following the SVMlight decomposition framework, another attempt to reach a good trade-off
between convergence rate and cost per iteration was introduced by Zanghirati and Zanni (2003).
This was the first approach suited for an effective implementation on multiprocessors systems.
Unlike SVMlight, it is designed to manage medium-to-large sized working sets (nsp = O(102) or
nsp = O(103)), that allow the scheme to converge in very few iterations, whose most expensive
tasks (subproblem solving and gradient updating) can be easily and fruitfully distributed among the
available processors. Of course, several issues must be addressed to achieve good performance,
such as limiting the overhead for kernel evaluations and, also important, choosing a suitable inner
QP solver. Zanghirati and Zanni (2003) obtained an efficient subproblem solution by a gradient
projection-type method: it exploits the simple structure of the constraints, exhibits good conver-
gence rate and is well suited for a parallel implementation. The promising resultsgiven by this
parallel scheme can be now further improved thanks to some recent studieson both the gradient
projection QP solvers (Serafini et al., 2005; Dai and Fletcher, 2006) and the selection rules for large
sized working sets (Serafini and Zanni, 2005). On the basis of these studies a newparallel gradi-
ent projection-based decomposition technique(PGPDT) is developed and implemented in software
available athttp://www.dm.unife/gpdt.

Other parallel approaches to SVMs have been recently proposed, by splitting the training data
into subsets and distributing them among the processors. Some of these approaches, such as those
by Collobert et al. (2002) and by Dong et al. (2003), do not aim to solvethe problem (1) and then
perform non-standard SVM training. Collobert et al. (2002) presented a mixture of multiple SVMs
where, cyclically, single SVMs are trained on subsets of the training set and a neural network is
used to assign samples to different subsets. Dong et al. (2003) used a block-diagonal approximation
of the kernel matrix to derive independent SVMs and filter out the exampleswhich are estimated to
be non-support vectors; then a new serial SVM is trained on the collectedsupport vectors. The idea
to combine asynchronously-trained SVMs is revisited also by thecascade algorithmintroduced by
Graf et al. (2005). The support vectors given by the SVMs of a cascade layer are combined to
form the training sets of the next layer. At the end, the global KKT conditions are checked and the
process is eventually restarted from the beginning, re-inserting the computed support vectors in the
training subsets of the first layer. The authors prove that this feedbackloop allows the algorithm to
converge to a solution of (1) and consequently to perform a standard training. Unfortunately, for all
these approaches no parallel code is available yet.

This work deals with the PGPDT software and its practical behaviour. First,we give the reader
an exhaustive self-contained description of the PGPDT algorithm by showing how the crucial sub-
tasks, singly developed in very recent works, are combined with appropriate load balancing strate-
gies newly designed to get an effective parallel tool. Second, we show how, by exploiting the
resources of common multiprocessor systems, PGPDT achieves good time speedup in comparison
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with state-of-the-art serial packages and makes nonlinear SVMs tractable even on millions training
samples.

The paper is organized as follows: Section 2 states the decomposition framework and describes
its parallelization, Section 3 compares the PGPDT with SVMlight and LIBSVM on medium-to-large
benchmark data sets and also faces someO(106) real-world problems, Section 4 draws the main
conclusions and future developments.

2. The Decomposition Framework and its Parallelization

To describe in detail the decomposition technique implemented by PGPDT we needsome basic
notations. At each decomposition iteration, the indices of the variablesαi , i = 1, . . . ,n, are split into
the setB of basicvariables, usually called theworking set, and the setN =

{

1,2, . . . ,n
}

\ B of
nonbasicvariables. As a consequence, the kernel matrixG and the vectorsα = (α1, . . . ,αn)

T and
y = (y1, . . . ,yn)

T can be arranged with respect toB andN as follows:

G =

[

GB B GB N
GN B GN N

]

, α =

[

αB
αN

]

, y =

[

yB
yN

]

.

Furthermore, we denote bynsp the size of the working set (nsp = #B ) and byα∗ a solution of
(1). Finally, suppose a distributed-memory multiprocessor system equippedwith NP processors is
available for solving the problem (1) and that each processor has a local copy of the training set.

The decomposition strategy used by the PGPDT falls within the general schemestated in Al-
gorithm PDT. Here, we denote by the label “Distributed task” the steps where theNP processors
cooperate to perform the required computation; in these steps communicationsand synchronization
are needed. In the other steps, the processors asynchronously perform the same computations on
the same input data to obtain a local copy of the expected output data.

It must be observed that algorithm PDT essentially follows the SVMlight decomposition scheme
proposed by Joachims (1998), but it allows to distribute among the available processors the sub-
problem solution in step A2 and the gradient updating in step A3. Thus, two important implications
can be remarked: from the theoretical viewpoint, the PDT algorithm satisfiesthe same convergence
properties of the SVMlight algorithm, but, in practice, it requires new implementation strategies in
order to effectively exploit the resources of a multiprocessor system. Here, we state the main con-
vergence results of the PDT algorithm and we will describe in the next subsections how its steps
have been implemented in the PGPDT software.

The convergence properties of the sequence{α(k)} generated by the PDT algorithm are mainly
based on the special rule (4) for the working set selection. The rule wasoriginally introduced
by Joachims (1998) following an idea similar to the Zoutendijk’s feasible direction approach, to
define basic variables that make possible a rapid decrease of the objective function. The asymptotic
convergence of the decomposition schemes based on this working set selection was first proved by
Lin (2001a) by relating the selection rule with the violation of the KKT conditions and by assuming
the following strict block-wise convexity assumption onF (α):

min
J

(λmin(GJ J )) > 0 , (5)
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ALGORITHM PDT Parallel decomposition technique

A1. Initialization. Setα(1) = 0 and letnsp andnc be two integer values such thatn≥ nsp≥ nc > 0,
nc even. Choosensp indices for the working setB and setk = 1.

A2. QP subproblem solution. [Distributed task] Compute the solutionα(k+1)
B of

min
1
2

αT
BGB BαB +

(

GB N α(k)
N
−1B

)T
αB

sub. to ∑i∈B yiαi =−∑i∈N yiα
(k)
i ,

0≤ αi ≤C, ∀ i ∈ B ,

(2)

where 1B is thensp-vector of all one; setα(k+1) =
(

α(k+1)
B

T
, α(k)
N

T )T
.

A3. Gradient updating. [Distributed task] Update the gradient

∇F (α(k+1)) = ∇F (α(k))+

[

GB B
GN B

]

(

α(k+1)
B −α(k)

B

)

(3)

and terminate ifα(k+1) satisfies the KKT conditions.

A4. Working set updating. UpdateB by the following selection rule:

A4.1. Find the indices corresponding to the nonzero components of the solution of

min ∇F (α(k+1))Td
sub. to yTd = 0 ,

di ≥ 0 for i such thatα(k+1)
i = 0 ,

di ≤ 0 for i such thatα(k+1)
i = C ,

−1≤ di ≤ 1 ,
#{di | di 6= 0} ≤ nc .

(4)

Let B̄ be the set of these indices.

A4.2. Fill B̄ up tonsp entries with indicesj ∈ B . SetB = B̄ , k← k+1 and go to A2.
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whereJ is any subset of{1, . . . ,n} with #J ≤ nsp andλmin(GJ J ) denotes the smallest eigenvalue of
GJ J . This condition is used to prove that there existsτ > 0 such that

F (α(k+1))≤ F (α(k))− τ
2
‖α(k+1)−α(k)‖2 ∀k , (6)

from which the important property limk→∞ ‖α(k+1)−α(k)‖ = 0 can be derived. Of course, the as-
sumption (5) is satisfied whenG is positive definite (for example, when the Gaussian kernel is used
and all the training examples are distinct), but it may not hold in other instancesof the problem (1).
Convergence results that do not require the condition (5) are given byLin (2002) and Palagi and
Sciandrone (2005).

For the special casensp = 2, where the selection rule (4) gives only the two indices correspond-
ing to the maximal violation of the KKT conditions (themaximal-violating pair), Lin (2002) has
shown that the assumption (5) is not necessary to ensure the convergence.

For any working set size, Palagi and Sciandrone (2005) have shownthat the condition (6) is
ensured by solving at each iteration the following proximal point modification of the subproblem
(2):

min
1
2

αT
BGB BαB +

(

GB N α(k)
N
−1B

)T
αB +

τ
2
‖αB −α(k)

B ‖2

sub. to ∑i∈B yiαi =−∑i∈N yiα
(k)
i ,

0≤ αi ≤C, ∀ i ∈ B .

(7)

Unfortunately, this modification affects the behaviour of standard decomposition schemes in a way
which is not completely understood yet. Our preliminary experiences suggest that sufficiently large
values ofτ can easily allow a better performance of the inner QP solvers, but those values often
imply a dangerous decrease in the convergence rate of the decomposition technique. On the other
hand, too small values forτ do not produce essential differences with respect to the schemes where
the subproblem (2) is solved.

In the PGPDT software, besides the default setting which implements the standard PDT algo-
rithm, two different ways to generate a sequence satisfying the condition (6) are available by user
selection: (i) solving the subproblem (7) in place of (2) at each iteration or(ii) solving (7) only as
emergency step, whenα(k+1)

B obtained via (2) fails to satisfy (6). All the computational experiments
of Section 3 are carried out with the default setting that generally yields the best performance. For
what concerns the practical rule used in the PGPDT to stop the iterative procedure, the fulfilment of
the KKT conditions within a prefixed tolerance is checked (with the equality constraint multiplier
computed as suggested by Joachims, 1998). The default tolerance is 10−3, as it is usual in SVM
packages, but different values can be selected by the user.

Before to describe the PGPDT implementation in detail, it must be recalled that this software is
designed to be effective in case of sufficiently largensp, i.e., when iterations with well parallelizable
tasks are generated. For this reason, in the sequel the reader may assumensp to be of medium-to-
large size.

2.1 Parallel Gradient Projection Methods for the Subproblems

The inner QP subproblems (2) and (7) can fit into the following general form:

min
w∈Ω

f (w) =
1
2

wTAw+bTw (8)
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whereA∈R
nsp×nsp is dense, symmetric and positive semidefinite,w,b∈R

nsp and the feasible region
Ω is defined by

Ω = {w∈ R
nsp, ℓ≤ w≤ u, cTw = γ}, ℓ, u, c∈ R

nsp, ℓ < u. (9)

We recall that the sizensp is such thatA can fit into the available memory.
Since subproblem (8) appears at each decomposition iteration, an effective inner solver becomes

a crucial tool for the performance of a decomposition technique. The standard library QP solvers
can be successfully applied only in the small size case (nsp = O(10)), since their computational
cost easily degrades the performance of a decomposition technique based on medium-to-largensp.
For such kind of decomposition schemes, it is essential to design more efficient inner solvers able
to exploit the special features of (8) and, for the PGPDT purposes, withthe additional property to
be easily parallelizable. To this end, the gradient projection methods are very appealing approaches
(Bertsekas, 1999). They consist in a sequence of projections onto thefeasible region, that are nonex-
pensive operations in the case of the special constraints (9). In fact, the projection ontoΩ (denoted
by PΩ(·)) can be performed inO(nsp) operations by efficient algorithms, like those by Pardalos and
Kovoor (1990) and by Dai and Fletcher (2006). Furthermore, the single iteration core consists es-
sentially in annsp-dimensional matrix-vector product that is suited to be optimized (by exploiting
the vector sparsity) and also to be parallelized. Thus, the simple and nonexpensive iteration moti-
vates the interest for these approaches as possible alternative to standard solvers based on expensive
factorizations (usually requiringO(n3

sp) operations). A general parallel gradient projection scheme
for (8) is depicted in Algorithm PGPM. As in the classical gradient projectionmethods, at each
iteration a feasible descent directiond(k) is obtained by projecting ontoΩ a point derived by taking
a steepest descent step of lengthρk from the currentw(k). A linesearch procedure is then applied
along the directiond(k) to decide the step sizeλk able to ensure the global convergence. The paral-
lelization of this iterative scheme is simply obtained by a block row-wise distributionof A and by a
parallel computation of the heaviest task of each iteration: the matrix-vector productAd(k).

Concerning the convergence rate, that is the key element for the PGPM performance, the choices
of both the steplengthρk and the linesearch parameterλk play a crucial role. Recent works have
shown that appropriate selection rules for these parameters can significantly improve the typical
slow convergence rate of the traditional gradient projection approaches (refer to Ruggiero and Zanni,
2000b, for the R-linear convergence of PGPM-like schemes). From thesteplength viewpoint, very
promising results are actually obtained with selection strategies based on the Barzilai-Borwein (BB)
rules (Barzilai and Borwein, 1988):

ρBB1
k+1 =

d(k)T
d(k)

d(k)T
Ad(k)

, ρBB2
k+1 =

d(k)T
Ad(k)

d(k)T
A2d(k)

.

The importance of these rules has been observed in combination with both monotone and nonmono-
tone linesearch strategies (Birgin et al., 2000; Dai and Fletcher, 2005; Ruggiero and Zanni, 2000a).
In particular, for the SVM applications, the special BB steplength selectionsproposed by Serafini
et al. (2005), for the monotone scheme, and by Dai and Fletcher (2006), for the nonmonotone
method, seem very efficient.

Thegeneralized variable projection method(GVPM) by Serafini et al. (2005) uses a standard
limited minimization rule as linesearch technique and an adaptive alternation of the two BB formu-
lae. It outperforms the monotone gradient projection scheme used by Zanghirati and Zanni (2003),
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ALGORITHM PGPM Parallel gradient projection method for step A2 of Algorithm PDT.

B1. Initialization.

[Data distribution] ∀p = 1, . . . ,NP: allocate a row-wise sliceAp = (ai j )i∈I p, j=1,...,nsp of A,
whereI p is the subset of row indices belonging to processorp:

I p⊂ {1, . . . ,n},
NP
[

p=1

I p = {1, . . . ,n} , I i ∩ I j = /0 for i 6= j.

Furthermore, allocate local copies of all the other input data.

Initialize the parameters for the steplength selection rule and for the linesearch strategy.

Setw(0) ∈Ω , 0< ρmin < ρmax , ρ0 ∈ [ρmin,ρmax] , k = 0.

[Distributed task] ∀p = 1, . . . ,NP: compute the local slicet(0)
p = Apw(0) and send it to all the

other processors; assemble a local copy of the fullt(0) = Aw(0) vector.

Set g(0) = ∇ f (w(0)) = Aw(0) +b = t(0) +b .

B2. Projection.

Terminate ifw(k) satisfies a stopping criterion; otherwise compute the descent direction

d(k) = PΩ
(

w(k)−ρkg
(k))−w(k) .

B3. Matrix-vector product.

[Distributed task] ∀p = 1, . . . ,NP: compute the local slicez(k)
p = Apd(k) and send it to all the

other processors; assemble a local copy of the fullz(k) = Ad(k) vector.

B4. Linesearch.

Compute the linesearch stepλk andw(k+1) = w(k) +λkd
(k).

B5. Update.

Compute

t(k+1) = Aw(k+1) = t(k) +λkAd(k) = t(k) +λkz
(k),

g(k+1) = ∇ f (w(k+1)) = Aw(k+1) +b = t(k+1) +b,

and a new steplengthρk+1.

Update the parameters for the linesearch strategy, setk← k+1 and go to step B2.
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Initialization (step B1). Set iρ = 2, nmin = 3, nmax = 10, λℓ = 0.1, λu = 5, nρ = 1 .

Linesearch (step B4). Compute λk = arg minλ∈[0,1] f (w(k) +λd(k)) .

Update (step B5).

If d(k)T
Ad(k) = 0 then

setρk+1 = ρmax

else
compute ρBB1

k+1 , ρBB2
k+1 , λopt = arg min

λ
f (w(k) +λd(k)) .

If (nρ ≥ nmin) and

[

(nρ ≥ nmax) or (ρBB2
k+1 ≤ ρk ≤ ρBB1

k+1)

or
(

(λopt < λℓ andρk = ρBB1
k ) or (λopt > λu andρk = ρBB2

k )
)

]

then

set iρ←mod(iρ,2)+1, nρ = 0 ;

end.

end.
Compute ρk+1 = min

{

ρmax,max
{

ρmin,ρ
BBiρ
k+1

}}

and set nρ← nρ +1 .

Figure 1: linesearch and steplength rule for the GVPM method.

that was simply based on an alternation of the BB rules every three iterations.Furthermore, the
numerical experiments reported by (Serafini et al., 2005) show that the GVPM is much more ef-
ficient than the prLOQO (Smola, 1997) and MINOS (Murtagh and Saunders, 1998) solvers, two
softwares widely used within the machine learning community. GVPM steplength selection and
linesearch are described in Figure 1.

The Dai-Fletcher scheme is based on the following steplength selection:

ρDF
k+1 =

∑m−1
i=0 s(k−i)T

s(k−i)

∑m−1
i=0 s(k−i)T

v(k−i)
, m≥ 1 , (10)

wheres( j) = w( j+1)−w( j) andv( j) = g( j+1)−g( j), (g( j) = ∇ f (w( j))), j = 0,1, . . .. Observe that the
casem= 1 reduces to the standard BB ruleρBB1

k+1. In order to frequently accept the full stepw(k+1) =

w(k) +d(k) generated with the above steplength, a special nonmonotone linesearch is used. Figure 2
describes the version of the Dai-Fletcher method corresponding to the parameters setting suggested
by Zanni (2006) for the SVM applications. It may be observed that the linesearch parameterλk =
arg minλ∈[0,1] f (w(k) +λd(k)) is used only iff (w(k) +d(k))≥ fref and not at each iteration, as in the
GVPM. The steplength selection corresponds to the rule (10) withm= 2 and, for what concerns
the iteration cost, no significant additional tasks are required in comparisonto the GVPM (g(k+1) is
already available in step B5).

The PGPDT software can run the PGPM with either the GVPM or the Dai-Fletcher scheme, the
latter being the default due to better experimental convergence rate (Zanni, 2006).

We end this subsection with some further details about the PGPM implementation used within
the PGPDT software. The starting pointw(0) is PΩ(α(k)

B ) if the stopping rule of the decomposi-
tion procedure is nearly satisfied, otherwisew(0) = PΩ(0) is used. This aims to start the PGPM with
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Initialization (step B1). Set L = 2, fref = ∞, fbest= fc = f (w(0)), h = 0, k = 0, s(k−1) =
v(k−1) = 0 .

Linesearch (step B4).
If

(

k = 0 and f (w(k) +d(k))≥ f (w(k))
)

or
(

k > 0 and f (w(k) +d(k))≥ fref
)

then

w(k+1) = w(k) +λkd
(k) with λk = arg min

λ∈[0,1]

f (w(k) +λd(k))

else
w(k+1) = w(k) +d(k)

end.

Update (step B5). Compute s(k) = w(k+1)−w(k); v(k) = g(k+1)−g(k).

If s(k)T
v(k) = 0 then

set ρk+1 = ρmax

else
If s(k−1)T

v(k−1) = 0 then

set ρk+1 = min

{

ρmax,max

{

ρmin,
s(k)T

s(k)

s(k)T
v(k)

}}

else

set ρk+1 = min

{

ρmax,max

{

ρmin,
s(k)T

s(k) +s(k−1)T
s(k−1)

s(k)T
v(k) +s(k−1)T

v(k−1)

}}

end.

end.
If f (w(k+1)) < fbest then

set fbest= f (w(k+1)) , fc = f (w(k+1)) , h = 0 ;

else
set fc = max

{

fc, f (w(k+1))
}

, h = h+1 ;

If h = L then
set fref = fc , fc = f (w(k+1)) , h = 0 ;

end.

end.

Figure 2: linesearch and steplength rule for the Dai-Fletcher method.

sparse vectors in the first decomposition steps, and to save inner solver iterations at the end of the de-
composition, where slight changes inα(k)

B are expected. At the beginning we also setρmin = 10−10,
ρmax = 1010 andρ0 = min{ρmax,max{ρmin, ρ̄0}}, whereρ̄0 = ‖PΩ(w(0)− (Aw(0) +b))−w(0)‖−1

∞ .
For the computation ofPΩ(·) in step B2, the default is the following: ifnsp≤ 20 the bisection-like
method described by Pardalos and Kovoor (1990) is used, else the secant-based algorithm proposed
by Dai and Fletcher (2006) is chosen, that usually is faster for large size. However, the user can
select one of the two projectors. Finally, we remark that the PGPM stopping rule is the same used
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for the decomposition technique: the fulfilment of the KKT conditions within a prefixed tolerance.
In the PGPDT, the tolerance required to the inner solver depends on the quality of the outer it-
erateα(k): in the first iterations the same tolerance as the decomposition scheme is used, while a
progressively lower tolerance is imposed whenα(k) nearly satisfies the outer stopping criterion. In
our experience, a more accurate inner solution just from the beginning doesn’t imply remarkable
increase of the overall performance.

2.2 Parallel Gradient Updating

The gradient updating in step A3 is usually the most expensive task of a decomposition iteration.
Since the matrixG is assumed to be out of memory, in order to obtain∇F (α(k+1)) some entries of
G need to be computed and, consequently, some kernel evaluations are involved that can be very
expensive in case of large sized input space and not much sparse training examples. Thus, any strat-
egy able to save kernel evaluations or to optimize their computation is crucial for minimizing the
time consumption for updating the gradient. The updating formula (3) allows to get ∇F (α(k+1)) by

involving only the columns ofG corresponding to the indices for which(α(k+1)
i −α(k)

i ) 6= 0, i ∈ B .
Further improvements in the number of kernel evaluations can be obtained byintroducing a caching
strategy, consisting in using an area of the available memory to store some elements of G to avoid
their recomputation in subsequent iterations. PGPDT fills the caching area withthe columns ofG
involved in (3); when the cache is full, the current columns substitute those that have not been used
for the largest number of iterations. This simple trick seems to well combine with theworking set
selection used in step A4, which forces some indices of the currentB to remain in the new work-
ing set (see the next section for more details), and remarkable reduction of the kernel evaluations
are often observed. Nevertheless, the improvements implied by a caching strategy are obviously
dependent on the size of the caching area. To this regard, the large amount of memory available
on modern multiprocessor systems is an appealing resource for improving theperformance of a de-
composition technique. One of the innovative features of PGPDT is to implement aparallel gradient
updating where both the matrix-vector multiplication and the caching strategy aredistributed among
the processors. This is done by asking each processor to perform a part of the column combinations
required in (3) and to make available its local memory for caching the columns ofG. In this way,
the gradient updating benefits not only from a computations distribution, butalso from a reduction
of the kernel evaluations due to much larger caching areas. Of course,these features are not shared
by standard decomposition packages, designed to exploit the resourcesof only one processor. The
main steps of the above parallel updating procedure are summarized in Algorithm PGU.

Concerning the reduction of the kernel evaluations, it is worth to recall that the entries ofG
stored in the caching area can be used also forGB B in step A2. Moreover, for the computation of
the linear term in (2), the equality

GB N α(k)
N
−1B = ∇FB (α(k))−GB Bα(k)

B

can avoid additional kernel evaluations by exploiting already computed quantities.
The gradient updating overhead within each decomposition iteration can be further reduced

by optimizing the kernel computation. Even if a caching strategy can limit the number of kernel
evaluations, large problems often require millions of them and their optimization becomes a need.
PGPDT uses sparse vector representation of the training examples and exploits the sparseness in
the dot products required by the kernel evaluations. Three kernels are available: linear, polynomial
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ALGORITHM PGU Parallel gradient updating in step A3 of Algorithm PDT

i) Denote byWp, p= 1,2, . . . ,NP, the caching area of the processorp and byGi thei-th column
of G. Let

B1 =
{

i ∈ B | α(k+1)
i −α(k)

i 6= 0
}

,

Bn =
{

i ∈ B1 | Gi /∈Wp, p = 1,2. . . ,NP

}

, B c = B1\Bn.

Distribute among the processors the setsB c andBn and denote byB c,p andBn,p the sets of
indices assigned to processorp. Make the distribution in such a way that

B c =
SNP

i=1B c,i , B c,i ∩B c, j = /0 for i 6= j, ∀i ∈ B c,p ⇒ Gi ∈Wp,

Bn =
SNP

i=1Bn,i , Bn,i ∩Bn, j = /0 for i 6= j

and by trying to obtain a well balanced workload among the processors.

ii) ∀p = 1,2, . . . ,NP: use the columnsGi ∈Wp, i ∈ B c,p, to compute

r p =

[

GB Bc,p

GN B c,p

]

(

α(k+1)
Bc,p

−α(k)
Bc,p

)

,

then compute the columnsGi , i ∈ Bn,p, necessary to obtain

r p← r p +

[

GB Bn,p

GN Bn,p

]

(

α(k+1)
Bn,p

−α(k)
Bn,p

)

and store inWp as much as possible of these columns, eventually by substituting those less
recently used.

iii) ∀p = 1,2, . . . ,NP: sendr p to all the other processors and assemble a local copy of

∇F (α(k+1)) = ∇F (α(k))+
NP

∑
i=1

r i .
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ALGORITHM SP1 Selection procedure for step A4.1 of algorithm PDT.

i) Sort the indices of the variables according toyi∇F (α(k+1))i in decreasing order and
let I ≡ (i1, i2, . . . , in)T be the sorted list (i.e.,yi1∇F (α(k+1))i1 ≥ yi2∇F (α(k+1))i2 ≥ . . . ≥
yin∇F (α(k+1))in).

ii) Repeat the selection of a pair(it , ib) ∈ I × I , with t < b, as follows:

– moving down from the top of the sorted list, chooseit ∈ I top(α(k+1)),

– moving up from the bottom of the sorted list, chooseib ∈ Ibot(α(k+1)),

until nc indices are selected or a pair with the above properties cannot be found.

iii) Let B̄ be the set of the selected indices.

and Gaussian. The interested reader is referred to the available code for more details on their prac-
tical implementation. We end this section by remarking that, in case of linear kernel, the updating
formula (3) can be simplified in

t = ∑
i∈B1

yixi

(

α(k+1)
i −α(k)

i

)

, B1 =
{

i ∈ B | α(k+1)
i −α(k)

i 6= 0
}

,

∇F (α(k+1)) j = ∇F (α(k)) j +y jx
T
j t, j = 1,2, . . . ,n, (11)

and the importance of a caching strategy is generally negligible. Consequently, PGPDT faces linear
SVMs without any caching strategy and performs the gradient updating bysimply distributing the
n tasks (11) among the processors.

2.3 Working Set Selection

In this section we describe how the working set updating in step A4 of the PDTalgorithm is imple-
mented within PGPDT. It consists in two phases: in the first phase at mostnc indices are chosen for
the new working set by solving the problem (4), while in the second phase at leastnsp−nc entries
are selected from the currentB to complete the new working set. The selection procedure in step
A4.1 was first introduced by Joachims (1998) and then rigorously justifiedby Lin (2001a). In short,
by using the notation

I top(α)≡
{

i | (αi < C andyi =−1) or (αi > 0 andyi = 1)
}

,

Ibot(α)≡
{

j | (α j > 0 andy j =−1) or (α j < C andy j = 1)
}

,

this procedure can be stated as in Algorithm SP1.
It is interesting to recall how this selection procedure is related to the violation of the first order

optimality conditions. For the convex problem (1) the KKT conditions can also be written as

a feasibleα∗ is optimal ⇐⇒ max
i∈I top(α∗)

yi∇F (α∗)i ≤ min
j∈Ibot(α∗)

y j∇F (α∗) j .
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ALGORITHM SP2 Selection procedure for step A4.2 of algorithm PDT.

i) Let B̄ be the set of indices selected in step A4.1.

ii) Fill B̄ up tonsp entries by adding the most recent indices† j ∈ B satisfying 0< α(k+1)
j < C;

if these indices are not enough, then add the most recent indicesj ∈ B such thatα(k+1)
j = 0

and, eventually, the most recent indicesj ∈ B satisfyingα(k+1)
j = C.

iii) Set nc = min{nc,max{10,J,nnew}}, whereJ is the largest even integer such thatJ≤ nsp

10 and
nnew is the largest even integer such thatnnew≤ #{ j, j ∈ B̄ \B } ;
setB = B̄ , k← k+1 and go to step A2.

†We mean the indices that are in the working setB since the lowest number of consecutive iterations.

It means that, given a non-optimal feasibleα, there exists at least a pair(i, j) ∈ I top(α)× Ibot(α)
satisfying

yi∇F (α)i > y j∇F (α) j .

Following Keerthi and Gilbert (2002), these pairs are calledKKT-violating pairsand, from this point
of view, the above selection procedure chooses indices(i, j) ∈ I top(α(k+1))× Ibot(α(k+1)) by giving
priority to those pairs which most violate the optimality conditions. In particular, ateach iteration
themaximal-violating pairis included in the working set: this property is crucial for the asymptotic
convergence of a decomposition technique.

From the practical viewpoint, the indices selected via problem (4) identify steepest-like feasible
descent directions: this is aimed to get a quick decrease of the objective function F (α). Never-
theless, for fast convergence, bothnc and the updating phase in step A4.2 have a key relevance.
In fact, as it is experimentally shown by Serafini and Zanni (2005), values ofnc equal or close to
nsp often yield a dangerouszigzaggingphenomenon (i.e., some variables enter and leave the work-
ing set many times), which can heavily degrade the convergence rate especially for largensp. This
drawback suggests to setnc sufficiently smaller thannsp and then it opens the problem of how to
select the remaining indices to fill up the new working set. The studies availablein literature on
this topic (see Hsu and Lin, 2002; Serafini and Zanni, 2005; Zanghiratiand Zanni, 2003, and also
the SVMlight code) suggest that an efficient approach consists in selecting these indices from the
current working set. We recall in Algorithm SP2 the filling strategy recently proposed in (Serafini
and Zanni, 2005) and used by the PGPDT software.

The selection policy used by Algorithm SP2 is based on two criteria: the first accords priority
to the free variables over the variables at either the lower or the upper bound, the second takes
into accounthow long(i.e., how many consecutive decomposition iterations) a variable has been
into the working set. Roughly speaking, both the criteria aim to preserve into the working set the
variables which are likely to need further optimization. The interested readercan find in the papers
by Hsu and Lin (2002) and by Serafini and Zanni (2005) a deeper discussion on these criteria and
the computational evidence of their benefits in terms of convergence rate. Finally, Algorithm SP2
also introduces an adaptive reduction of the parameternc, useful in case of large sized working sets.
This trick allows the decomposition technique to start withnc close tonsp, in order to optimize many
new variables in the very first iterations, and avoids zigzagging through the progressive reduction of
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nc. The reduction takes place only ifnc is larger than an empirical threshold and it is controlled via
the number of those new indices selected in step A4.1 that do not belong to the current working set.

3. Computational Experiments

The aim of this computational study is to analyse the PGPDT performance. To thisend, it is also
worth to show that the serial version of the proposed software (called GPDT) can train SVMs with
effectiveness comparable to that of the state-of-the-art softwares LIBSVM (ver. 2.8) and SVMlight

(ver. 6.01). Since there are no other parallel software currently available for comparison, the PGPDT
will be evaluated in terms of scaling properties with respect to the serial packages.

Our implementation is an object oriented C++ code and its parallel version uses standard MPI
communication routines (Message Passing Interface Forum, 1995), hence it is easily portable on
many multiprocessor systems. Most of the experiments are carried out on anIBM SP5, which is an
IBM SP Cluster 1600 equipped with 64 nodes p5-575 interconnected by a high performance switch
(HPS). Each node owns 8 IBM SMP Power5 processors at 1.9GHz and16GB of RAM (2GB per
CPU). The serial packages run on this computer by exploiting only a single CPU. PGPDT has been
tested also on different parallel architectures and, for completeness, we report the results obtained
on a system where less memory than in the IBM SP5 is available for each CPU: the IBM CLX/1024
Linux Cluster, that owns 512 nodes equipped with two Intel Xeon processors at 3.0GHz and 1GB
of RAM per CPU. Both the systems are available at the CINECA Supercomputing center (Bologna,
Italy, http://www.cineca.it).

The considered softwares are compared on several medium, large and very large test problems
generated from well known benchmark data sets, described in the next subsection.

3.1 Test Problems

We trained Gaussian and polynomial SVMs with kernel functionsK(xi ,x j)= exp
(

−‖xi−x j‖2/(2σ2)
)

andK(xi ,x j) =
(

s(xi
Tx j)+1

)d
, respectively1.

In what follows we give some details on the databases used for the generation of the training
sets, as well as on the SVM parameters we have chosen. Error rates aregiven as the percentage of
misclassifications.

The UCI Adult data set (athttp://www.research.microsoft.com/∼jplatt/smo.html) al-
lows to train an SVM to predict whether a household has an income greater than $50000. The inputs
are 123-dimensional binary sparse vectors with sparsity level≈ 89%. We use the largest version
of the data set, sized 32561. We train a Gaussian SVM with training parameterschosen accord-
ingly to the database technical documentation, i.e.,C = 1 andσ =

√
10, that are indicated as those

maximizing the performance on a (unavailable) validation set.
The Web data set (available athttp://www.research.microsoft.com/∼jplatt/smo.html)

concerns a web page classification problem with a binary representation based on 300 keyword
features. On average, the sparsity level of the examples is about 96%. We use the largest version
of the data set, sized 49749. We train a Gaussian SVM with the parameters suggested in the data
set documentation:C = 5 andσ =

√
10. As before, these values are claimed to give the best

performance on a (unavailable) validation set.

1. Here the notation has the usual meaning:σ is the Gaussian’s variance,s is the polynomial scaling parameter andd is
the polynomial degree.
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The MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist) contains
784-dimensional nonbinary sparse vectors; the data set size is 60000 and the data sparsity is≈
81%. The provided test set is sized 10000. We train two SVM classifiers for the digit “8” with the
following parameters:C = 10,σ = 1800 for the Gaussian kernel andC = 3000,d = 4, s= 3 ·10−9

for the polynomial kernel. This setting gives the following error rates on thetest set: 0.55% for the
Gaussian kernel and 0.60% for the polynomial kernel.

The Forest Cover Type data set2 has 581012 samples with 54 attributes, distributed in 8 classes.
The average sparsity level of the samples is about 78%. We train some SVM classifiers for separat-
ing class 2 from the other classes. The training sets, sized up to 300000, are generated by randomly
sampling the data set. We use a Gaussian kernel withσ2 = 2.5·104, C = 10. For the largest training
set the error rate is about 3.6% on the test set given by the remaining 281012 examples.

The KDDCUP-99 Intrusion Detection data set3 consists in binary TCP dump data from seven
weeks of network traffic. Each original pattern has 34 continuous features and 7 symbolic fea-
tures. As suggested by Tsang et al. (2005), we normalize each continuous feature to the range[0,1]
and transform each symbolic feature to multiple binary features. In this way,the inputs are 122-
dimensional sparse vectors with sparsity level≈ 90%. We work with the whole training set sized
4898431 and with some smaller subsets obtained by randomly sampling the original database. We
use a Gaussian kernel with parametersσ2 = (1.2)−1, C = 2. This choice yields error rates of about
7% on the test set of 311029 examples available in the database.

3.2 Serial Behaviour

In the first experiments set, we analyse the behaviour of the serial code on the test problems just
described. In Table 1 we report the time in seconds (sec.), the decomposition iteration count (it.)
and the number of kernel evaluations in millions (MKernel) required for each one of the considered
SVM training packages. The values we use for the working set parameters nsp and nc are also
reported: as mentioned, the LIBSVM software works only withnsp = nc = 2, whilst both SVMlight

and GPDT accept larger values. For these two softwares, meaningful ranges of parameters were
explored: we report the results corresponding to the pairs that gave thebest training time and to the
default setting (nsp = nc = 10 for SVMlight, nsp = 400,nc = ⌊nsp/3⌋= 132 for GPDT). SVMlight is
run with several values ofnsp in the range[2,80] with both its inner solvers: the Hildreth-D’Esopo
and the prLOQO. The best training time is obtained by using the Hildreth-D’Esopo solverwith nsp

small andnc = nsp/2, generally observing a significant performance decrease fornsp > 40.
We run the codes assigning to the caching area 512MB for the MNIST test problems and 768MB

in the other cases; the default thresholdε = 10−3 for the termination criterion is used, except for
the two largest Cover Type and KDDCUP-99 test problems, where the stopping toleranceε is set
to 10−2. All the other parameters are assigned default values. This means that both LIBSVM and
SVMlight benefit from theshrinking(Joachims, 1998) strategy that is not implemented in the current
release of GPDT.

Table 1 well emphasizes the different approach of the three softwares.In particular we see how
GPDT, by exploiting large working sets, converges in far less iterations than the other softwares,
but its iterations are much heavier. Looking at the computational time, GPDT seems to be very
competitive with respect to both LIBSVM and SVMlight. Furthermore, the kernel column highlights

2. Available atftp://ftp.ics.uci.edu/pub/machine-learning-databases/covtype.
3. Available athttp://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
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Data set n nsp nc sec. it. MKernel
GPDT

UCI Adult 32561 400 132 94.1 162 494.2
400 200 93.6 129 498.5

MNIST (poly) 60000 400 132 379.6 598 424.6
600 200 345.3 221 324.4

MNIST (Gauss) 60000 400 132 359.2 136 504.8
2000 300 341.2 22 396.4

Web Pages 49749 400 132 69.6 228 285.5
600 200 62.2 101 252.9

Cover Type 300000 400 132 24365.5 3730 120846.5
500 80 21561.4 5018 99880.0

KDDCUP-99 400000 400 132 10239.0 1149 56548.3
180 60 9190.3 2248 51336.7

LIBSVM
UCI Adult 32561 2 2 165.9 15388 452.1

MNIST (poly) 60000 2 2 2154.4 452836 792.0
MNIST (Gauss) 60000 2 2 1081.8 20533 409.4

Web Pages 49749 2 2 64.0 13237 170.3
Cover Type 300000 2 2 17271.7 274092 53152.6

KDDCUP-99 400000 2 2 11220.8 40767 50773.8
SVMlight

UCI Adult 32561 10 10 216.7 10448 405.1
20 10 201.1 4317 393.5
40 20 203.8 2565 410.3

MNIST (poly) 60000 10 10 6454.1 380743 1943.8
4 2 3090.2 420038 859.8
8 4 3124.0 238609 905.6

MNIST (Gauss) 60000 10 10 795.6 10262 278.3
4 2 570.3 18401 204.1

16 8 562.8 4970 203.8
Web Pages 49749 10 10 108.6 8728 208.5

4 2 93.8 12195 166.9
16 8 92.7 4444 188.2

Cover Type 300000 10 10 82892.6 266632 146053.2
8 4 29902.3 151762 44791.4

16 8 28585.5 78026 48864.9
KDDCUP-99 400000 10 10 11356.4 21950 23941.3

8 4 10141.8 28254 21663.6
20 10 12308.4 20654 24966.0

Table 1: performance of the serial packages on different test problems.
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Solver SV BSV Fopt b test error
MNIST (poly) test problem

GPDT 2712 640 −2555033.8 3.54283 0.63%
LIBSVM 2715 640 −2555033.6 3.54231 0.63%
SVMlight 2714 640 −2555033.0 3.54213 0.62%

Cover Type test problem
GPDT 50853 32683 −299399.7 0.22083 3.62%
LIBSVM 51131 32573 −299396.0 0.22110 3.63%
SVMlight 51326 32511 −299393.9 0.22149 3.62%

Table 2: accuracy of the serial solvers.

how GPDT benefits from a good optimization of the execution time for the kernelcomputation:
compare, for instance, the results for the MNIST Gaussian test, where thekernel evaluations are
very expensive. Here, in front of a number of kernel evaluations similar to LIBSVM and larger than
SVMlight, a significant lower training time is exhibited. The same consideration holds truefor the
MNIST polynomial test; however in this case the good GPDT performance is also due to a lower
number of kernel evaluations.

The next experiments are intended to underline how the good training time given by GPDT
is accompanied by scaling and accuracy properties very similar to the other packages. From the
accuracy viewpoint, this is shown for two of the considered test problems by reporting in Table
2 the number of support vectors (SV) and bound support vectors (BSV), the computed optimal
valueFopt of the objective function, the biasb of the separating surface expression4 (Cristianini and
Shawe-Taylor, 2000) and the error rate on the test set.

For what concerns the scaling, Figure 3a shows, for the Cover Type test problem (the worst case
for GPDT), the training time with respect to the problem size. All the packagesexhibit almost the
same dependence that, for this particular data set, seems between quadraticand cubic with respect
to the number of examples. For completeness, the number of support vectors of these test problems
is also reported in Figure 3b.

3.3 Parallel Behaviour

The second experiments set concerns with the behaviour of PGPDT. We evaluate PGPDT on
the previous four largest problems and some very large problems sizedO(106) derived from the
KDDCUP-99 data set.

3.3.1 LARGE TEST PROBLEMS

For a meaningful comparison against the serial version, PGPDT is run onthe MNIST, Cover Type
and KDDCUP-99 (n = 400000) test problems with the samensp, nc and ε parameters as in the
previous experiments; furthermore, the same amount of caching area (768MB) is now allocated on
each CPU of the IBM SP5. Default values are assigned to the other parameters.

4. Thesupport vectorsare those samples in the training set corresponding toα∗i > 0; the samples withα∗i = C are
calledbound support vectors. Roughly speaking, the support vectors are the samples characterizing the hypersurface
separating the two classes and the biasb is its displacement.
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Figure 3: scaling of the serial solvers on test problems from the Cover Type data set.

NP sec. spr it. MKernel SV BSV Fopt

MNIST (poly) test problem
1 345.3 221 324.2 2712 640 −2555033.8
2 158.6 2.18 212 249.2 2710 640 −2555033.8
4 100.5 3.44 214 253.9 2711 641 −2555033.8
8 59.7 5.78 212 259.8 2711 641 −2555033.7

16 47.3 7.30 217 271.4 2711 641 −2555033.8
Cover Type test problem

1 21561 5018 99880 50853 32683 −299399.7
2 11123 1.94 5047 98925 50786 32673 −299399.8
4 5715 3.77 5059 93597 50786 32668 −299399.9
8 3016 7.15 5086 82853 50832 32664 −299399.9

16 1673 12.89 5029 59439 50826 32697 −299399.9

Table 3: PGPDT scaling on the IBM SP5 system.

Table 3 and Figure 4 summarize the results obtained by running PGPDT on different numbers
of processors. We evaluate the parallel performance by therelative speedup, defined asspr =
Tserial/Tparallel, whereTserial is the training time spent on a single processor, whileTparalleldenotes the
training time onNP processors.

Seeking clearness, in Table 3 we also report additional information on the overall PGPDT be-
haviour. In particular, we can see an essentially constant number of decomposition iterations (recall
that only the computational burden within the decomposition iteration is distributed)and the same
solution accuracy as the serial run (compare the numbers in SV, BSV andFopt columns). More-
over, remark the lower number of total kernel evaluations needed by the parallel version, due to the
growing amount of global caching memory available, which our parallel caching strategy is able
to exploit. This is the motivation of the superlinear speedup observed in some situations like the
MNIST (Gaussian) test problem (Figure 4a). Unfortunately, there may be cases where the bene-
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(a) MNIST (Gauss) test problem.
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(b) KDDCUP-99 (n = 400000) test problem.
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(c) MNIST (poly) test problem.
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(d) Cover Type test problem.

Figure 4: PGPDT scaling on the IBM SP5 system.

fits due to the parallel caching strategy are not sufficient to ensure optimalspeedups. For instance,
sometimes thensp values that give satisfactory serial performance are not suited for good PGPDT
scaling. This is the case of the KDDCUP-99 test problem (Figure 4b), where the small working
sets sizednsp = 180 imply many decomposition iterations and consequently the fixed costs of the
non-distributed tasks (working set selection and stopping rule) become very heavy. Another exam-
ple is provided by the MNIST (polynomial) test problem (Figure 4c): here the subproblem solution
is a dominant task in comparison to the gradient updating and the suboptimal scaling of the PGPM
solver on 16 processors leads to poor speedups. However, also in these cases remarkable time
reductions are observed in comparison with the serial softwares (see Table 1).

We further remark that all these considerations are quite dependent on the underlying parallel
architecture. In particular, on multiprocessor systems where less memory than in the SP5 platform
is available for each CPU, even better speedups can be expected due to the effectiveness of the
parallel caching strategy. For instance, we report in Figure 5 what we get for the KDDCUP-99 test
problem on the IBM CLX/1024 Linux Cluster, where only 400MB of cachingarea can be allocated
on each CPU. Due to both the worse performance of this machine and the reduced caching area,
larger training time is required, but an optimal PGPDT speedup is now observed up to 16 processors.

1486



PARALLEL SOFTWARE FORTRAINING LARGE SCALE SVMS

1 2 4 8 16 32
0

6000

12000

18000

24000

30000

36000

T
im

e 
(s

ec
.)

Number of processors

 

 

2
4

8

16

32

R
el

at
iv

e 
sp

ee
du

pLinear speedup

Time (sec.)
Rel. speedup

Figure 5:PGPDT scaling on the CLX/1024 system for the KDDCUP-99 (n = 4·105) test problem.
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Figure 6: Parallel training time for different sizes of the KDDCUP-99 test probelms

3.3.2 VERY LARGE TEST PROBLEMS

In this section we present the behavior of the PGPDT code on very large test problems. In partic-
ular we considered three test problems from the KDDCUP-99 data set of size n = 106, 2·106 and
4898431, the latter being the full data set size. The test problems are obtained by training Gaussian
SVMs with the parameters setting previously used for this data set.

In the two larger cases a different setting for thensp, nc and caching area have been used. In
particular, for the casen = 2 ·106 we usednsp = 150,nc = 40 and 600Mb of caching area; for the
full case we usednsp= 90,nc = 30 and 250Mb of caching area. The reason for reducing the caching
area is that every processor can allocate no more that 1.7Gb of memory and, when the data set size
increases, most of the memory is used for storing the training data and cannot be used for caching.

TheseO(106) test problems are firstly used to study how the PGPDT time complexity scales
with the size of the data sets. In Figure 6a the training time is reported for 4, 8 and 16 proces-
sors. Figure 6b shows the growth rate of the support vectors for thesetest problems. It can be
observed that the scaling is close toO(n2), as often exhibited by the serial state-of-the-art decom-
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position packages (Collobert and Bengio, 2001; Joachims, 1998). Thisresult is quite natural if we
remember that PGPDT is based on a parallelization of each iteration of a standard decomposition
technique. Concerning the subquadratic scaling exhibited for increasingsizes, it can be motivated
by the sublinear growth of the support vectors observed on these experiments; however, in different
situations it may be expected a training time complexity that scales at least quadratically (see, for
instance, the experiments on the Cover Type data set described in Figure 3).

Table 4 shows the PGPDT performance in terms of training time and accuracy for different
number of processors. Here, the time is measured in hours and minutes and the kernel evaluations
are expressed in billions. For the test problem sizedn = 2 · 106, the serial results concern only
the GPDT because LIBSVM exceeded the time limit of 60 hours and SVMlight stopped without a
valid solution after relaxing the KKT conditions. Due to the very large size of the problem, the
amount of 600MB for the caching area seems not sufficient to prevent ahuge number of kernel
evaluations in the serial run. Again, this drawback is reduced in the multiprocessor runs, due to
increased memory for caching. Thus, analogously to some previous experiments (see Figures 4a,
5), superlinear speedup is exhibited, in this case up to about 20 processors. The largest test problem,
with size about 5 millions and more than 105 support vectors, can be faced in a reasonable time only
with the parallel version. In this case the overall remark is that, on the considered architecture, few
processors allow to train the Gaussian SVM in less than one day while few tensof processors can
be exploited to reduce the training time to about 10 hours.

Finally, by observing in Table 4 the column of the objective function values, we may confirm that
also in these experiments the training time saving ensured by PGPDT is obtained without damaging
the solution accuracy.

These results show that PGPDT is able to exploit the resources of today multiprocessor systems
to overcome the limits of the serial SVM implementations in solvingO(106) problems (see also
the training time in Figure 6a). As already mentioned, there is no other available parallel software
to perform a fair comparison on the same architecture and the same data; however, an indirect
comparison with the results reported by Graf et al. (2005) for the cascadealgorithm suggests that
PGPDT could be really competitive. Furthermore, since the cascade algorithm and PGPDT exploit
very different parallelization ideas (recall that the former is based on thedistribution of smaller
independent SVMs), promising improvements could be achieved by an appropriate combination of
the two approaches.

4. Conclusions and Future Work

Parallel software to train linear and nonlinear SVMs for classification problems is presented, which
is suitable for distributed memory multiprocessors systems. It implements an iterative decompo-
sition technique based on a gradient projection solver for the inner subproblems. At each decom-
position iteration, the heaviest tasks, i.e., solving the subproblem and updating the gradient, are
distributed among the available processors. Furthermore, a parallel caching strategy allows to effec-
tively exploit as much memory as available to avoid expensive kernel recomputations. Numerical
comparisons with the state-of-the-art softwares LIBSVM and SVMlight on benchmark problems
show the significant speedup that the proposed parallel package can achieve in training large scale
SVMs. In short, experiments onO(106) data sets show that nonlinear SVMs withO(105) support
vectors can be trained in few hours by exploiting some tens of processors. Thus, this parallel pack-
age, available athttp://dm.unife.it/gpdt, can be a useful tool for overcoming the limits of the
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NP time it. GKernel SV BSV Fopt

n = 2·106

1 54h 59m 6192 1135.8 82521 466 −9625.9
2 14h 22m 6077 468.5 84565 463 −9625.8
4 7h 44m 6005 458.1 82193 464 −9625.7
8 4h 18m 6064 462.9 82723 462 −9625.8

16 3h 08m 6116 467.0 84100 460 −9625.9
24 2h 47m 6202 473.0 83626 464 −9626.0

n = 4898431
8 19h 08m 12300 1752.9 131041 1021 −14479.6

16 12h 16m 12295 1739.7 130918 1046 −14479.6
32 9h 22m 12310 1742.9 131736 1017 −14479.6

Table 4: PGPDT scaling on very large test problems from the KDDCUP-99 data set.

serial SVM implementation currently available. The main improvements will concern: (i) the opti-
mization/distribution of the tasks which are not currently parallelized, to improvethe scalability; (ii)
the introduction of a shrinking strategy, for further reducing the number of kernel evaluations; (iii)
the inner solver robustness, to better face the subproblems arising from badly scaled training data.
Furthermore, work is in progress to include in a new PGPDT release a suitable data distribution and
the extension to regression problems.
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