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Abstract

Parallel software for solving the quadratic program agsmtrainingsupport vector machindsr
classification problems is introduced. The software im@eta an iterative decomposition tech-
nigue and exploits both the storage and the computing resswavailable on multiprocessor sys-
tems, by distributing the heaviest computational tasksachalecomposition iteration. Based on a
wide range of recent theoretical advances, relevant degsitigm issues, such as the quadratic sub-
problem solution, the gradient updating, the working sktctimn, are systematically described and
their careful combination to get an effective parallel tsadliscussed. A comparison with state-of-
the-art packages on benchmark problems demonstratesaleagouracy and the remarkable time
saving achieved by the proposed software. Furthermordlealying experiments on real-world
data sets with millions training samples highlight how tloétware makes large scale standard
nonlinear support vector machines effectively tractalleommon multiprocessor systems. This
feature is not shown by any of the available codes.

Keywords: support vector machines, large scale quadratic progragegnaposition techniques,
gradient projection methods, parallel computation

1. Introduction

Training support vector machines (SVM) for binary classification reguio solve the following
convex quadratic programming (QP) problem (Vapnik, 1998; CristiamdiZhawe-Taylor, 2000)
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whose sizen is equal to the number of examples in the given training set
D={(x,yi),i=1,...,n, xR ye{-11}},
and the entries db are defined by
Gij =ViyiK(x,xj), i,j=212,...,n,

whereK : RM x RM — R denotes the kernel function. The main features of this problem are the
density of the quadratic form and the special feasible region definedbgdnstraints and a sin-
gle linear equality constraint. In many practical SVM applications, stand&ddvers based on
the explicit storage of the Hessian matfxmay be very inefficient or, in the case of large data
sets, even not applicable due to excessive memory requirements. F®oreéhsens in recent years
a lot of attention has been dedicated to this problem and seaérabcstrategies have been de-
veloped, which are able to solve the problem wilout of memory. Among these strategies, the
decomposition techniques have been the most investigated approachesvarglven rise to the
state-of-the-art software for the SVM QP problem. The idea behind thenggosition techniques
consists in splitting the problem into a sequence of smaller QP subproblenisngjzay, that can
be stored in the available memory and efficiently solved (Boser et al., 198#1¢gCand Lin, 2001;
Collobert and Bengio, 2001; Joachims, 1998; Osuna et al., 1997; FI88).1At each decomposi-
tion step, a subset of the variables, usually caliedking setis optimized through the solution of
the subproblem in order to obtain a progress towards the minimum of the obj&atiction (a).
Effective implementations of this simple idea involve important theoretical anctigaaissues.
From the theoretical point of view, the policy for updating the working &sga crucial role since

it can guarantee the strict decrease of the objective function at egcfHatsh and Scovel, 2003).
The most used working set selections rely on the violations of the KarusimKucker (KKT) first
order optimality conditions. In case of working sets of minimal size, that is dzadroper selec-
tion via themaximal-violating pairprinciple (or related criteria) is sufficient to ensure asymptotic
convergence of the decomposition scheme (Lin, 2002; Chen et al.,.2605krger working sets,
convergence proofs are available under a further condition whialresnshat the distance between
two successive approximations tends to zero (Lin, 2001a; Palagi aaddsane, 2005). Further-
more, based on these working set selections and further assumptioting#lteconvergence rate
can be also proved (Lin, 2001b). For the practical efficiency of amposition technique, the fast
convergence and the low computational cost per iteration seem the mostantgeatures. Unfor-
tunately, these goals are conflicting since the strategies to improve the genverate (as the use
of large working sets or the selections based on second order inforinasioally increase the cost
per iteration. Examples of good trade-offs between the two goals ane Igyvilhe most widely used
decomposition packages: LIBSVM (Chang and Lin, 2001) and $0\Joachims, 1998).

The LIBSVM software is developed for working sets sized 2, hence dgea minimize the
computational cost per iteration. In fact, in this case the inner QP subpralala be analytically
solved without requiring a numerical QP solver and the updating of the tolgegradient only
involves the two Hessian columns corresponding to the updated variablethether hand, if
only few components are updated per iteration, slow convergence isaffgrimplied. In the last
LIBSVM release (ver. 2.8) this drawback is attenuated by a new worldhgedection that partially
exploits the second order information, thus getting only a moderate incréése ecomputational
cost with respect to the standard selections (Fan et al., 2005).
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The SVM9t algorithm uses a more general decomposition strategy, in the sense that it ca
also exploit working sets of size larger than 2. By updating more varial@eggration, such an
approach is well suited for a faster convergence, but it introducdi§i@thl difficulties and costs.

A generalized maximal-violating pair policy for the working set selection andraemnical solver
for the inner QP subproblems are needed; furthermore, we must reataththmore variables are
changed per iteration, the more expensive is the objective gradierntingpdBven if SVM9™ can
run with any working set size, numerical experiences show that ittefédyg faces the above diffi-
culties only in case of small sized working setg,(= O(10)), where it often exhibits comparable
performance with LIBSVM.

Following the SVM9"t decomposition framework, another attempt to reach a good trade-off
between convergence rate and cost per iteration was introduced lgpizsgtnand Zanni (2003).
This was the first approach suited for an effective implementation on mulépsocs systems.
Unlike SYM'9" it is designed to manage medium-to-large sized working sggs=( O(10?) or
Nsp = 0(10%)), that allow the scheme to converge in very few iterations, whose moshsixpe
tasks (subproblem solving and gradient updating) can be easily dtfdlfyudistributed among the
available processors. Of course, several issues must be adbtessehieve good performance,
such as limiting the overhead for kernel evaluations and, also importarmgsicigoa suitable inner
QP solver. Zanghirati and Zanni (2003) obtained an efficient siibgmo solution by a gradient
projection-type method: it exploits the simple structure of the constraints, iexlgibod conver-
gence rate and is well suited for a parallel implementation. The promising resgis by this
parallel scheme can be now further improved thanks to some recent stidiesth the gradient
projection QP solvers (Serafini et al., 2005; Dai and Fletcher, 20@6)ee selection rules for large
sized working sets (Serafini and Zanni, 2005). On the basis of thediest@ newparallel gradi-
ent projection-based decomposition techni¢R&PDT) is developed and implemented in software
available aht t p: // www. dm uni f e/ gpdt .

Other parallel approaches to SVMs have been recently proposeglittyng the training data
into subsets and distributing them among the processors. Some of thesadhgs; such as those
by Collobert et al. (2002) and by Dong et al. (2003), do not aim to sibiggproblem (1) and then
perform non-standard SVM training. Collobert et al. (2002) preskatmixture of multiple SVMs
where, cyclically, single SVMs are trained on subsets of the training seaareural network is
used to assign samples to different subsets. Dong et al. (2003) ukszkallagonal approximation
of the kernel matrix to derive independent SVMs and filter out the examygiash are estimated to
be non-support vectors; then a new serial SVM is trained on the collsapgubrt vectors. The idea
to combine asynchronously-trained SVMs is revisited also byéseade algorithnmtroduced by
Graf et al. (2005). The support vectors given by the SVMs of aardesdayer are combined to
form the training sets of the next layer. At the end, the global KKT conditeme checked and the
process is eventually restarted from the beginning, re-inserting the codrguytport vectors in the
training subsets of the first layer. The authors prove that this feedbaplallows the algorithm to
converge to a solution of (1) and consequently to perform a standamthtraUnfortunately, for all
these approaches no parallel code is available yet.

This work deals with the PGPDT software and its practical behaviour. Riesgive the reader
an exhaustive self-contained description of the PGPDT algorithm byisgdvaw the crucial sub-
tasks, singly developed in very recent works, are combined with apptepoad balancing strate-
gies newly designed to get an effective parallel tool. Second, we sloawy thy exploiting the
resources of common multiprocessor systems, PGPDT achieves good tieakegie comparison
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with state-of-the-art serial packages and makes nonlinear SVMs ti@etan on millions training
samples.

The paper is organized as follows: Section 2 states the decomposition foakreavd describes
its parallelization, Section 3 compares the PGPDT with $¥Vand LIBSVM on medium-to-large
benchmark data sets and also faces s@tF) real-world problems, Section 4 draws the main
conclusions and future developments.

2. The Decomposition Framework and its Parallelization

To describe in detail the decomposition technique implemented by PGPDT wesagexbasic
notations. At each decomposition iteration, the indices of the variablés=1,...,n, are split into
the sets of basicvariables, usually called th@orking set and the sety = {l, 2,. ..,n} \ 3 of
nonbasicvariables. As a consequence, the kernel ma@riand the vectorst = (ag,...,da,)" and
y=(y1,...,¥n)" can be arranged with respectzcand( as follows:

G'B’B G’Bﬂ\[:| a:|:a$:| y:|:y’B:|

G—
Gys Gaxn Oy Yo

Furthermore, we denote by, the size of the working seh{, = #8) and bya* a solution of
(1). Finally, suppose a distributed-memory multiprocessor system equipedl processors is
available for solving the problem (1) and that each processor haslatymaof the training set.

The decomposition strategy used by the PGPDT falls within the general sctated in Al-
gorithm PDT. Here, we denote by the label “Distributed task” the stepsentheNr processors
cooperate to perform the required computation; in these steps communicattagnchronization
are needed. In the other steps, the processors asynchronouskymtre same computations on
the same input data to obtain a local copy of the expected output data.

It must be observed that algorithm PDT essentially follows the &\ecomposition scheme
proposed by Joachims (1998), but it allows to distribute among the availeddegsors the sub-
problem solution in step A2 and the gradient updating in step A3. Thus, twaiergamplications
can be remarked: from the theoretical viewpoint, the PDT algorithm satibesame convergence
properties of the SVI#" algorithm, but, in practice, it requires new implementation strategies in
order to effectively exploit the resources of a multiprocessor systene, Me state the main con-
vergence results of the PDT algorithm and we will describe in the nexestibas how its steps
have been implemented in the PGPDT software.

The convergence properties of the seque{rufé)} generated by the PDT algorithm are mainly
based on the special rule (4) for the working set selection. The ruleovigimally introduced
by Joachims (1998) following an idea similar to the Zoutendijk’s feasible dinefproach, to
define basic variables that make possible a rapid decrease of the abfantition. The asymptotic
convergence of the decompaosition schemes based on this working stibseleas first proved by
Lin (2001a) by relating the selection rule with the violation of the KKT conditiamd lay assuming
the following strict block-wise convexity assumption @r{a):

n}in()\min(GM)) >0, ()
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ALGORITHM PDT Parallel decomposition technique

Al. Initialization. Seta® =0and letnsp andn; be two integer values such thar ns, > ne > 0,
nc even. Choosesp indices for the working sek and sek = 1.

A2. QP subproblem solution [Distributed task] Compute the solutiou(gkﬂ) of
1 K T
min EGLGM’% + (qugﬁ) _ 195) Oy

SUb 0 Fics Vit = — Yicw Yi(xi(k) ) @
0<a;<C, Vies,

T TA\T
where % is thengy-vector of all one; sett &1 = ( a;kﬂ) , a;'? ) .

A3. Gradient updating [Distributed task] Update the gradient

07 (a® )y =07 (a®) + [ Coa } (ag‘”) —a;k>> 3)
Gy 3

and terminate iti**1) satisfies the KKT conditions.
A4. Working set updatingUpdates by the following selection rule:

A4.1. Find the indices corresponding to the nonzero components of ltteosamf

min O (ak+)Td

subh to y'd=0,
d >0 forisuchthau*™ =0, .
d <0 forisuchthau*™ =c, )
-1<d <1,

#{di | di #0} <nc.

Let 3 be the set of these indices.
A4.2. Fill 8 up tonsp entries with indiceg € 8. Sets = z:, k«— k+1 and go to A2.
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wherey is any subset of1,...,n} with #7 < nsy andAmin(G, ;) denotes the smallest eigenvalue of
G, ,. This condition is used to prove that there exists 0 such that

7 (a®+D) < g (@) - %HG(HI) —a®)32 vk, (6)

from which the important property lig.., [[a*tY) —aK|| = 0 can be derived. Of course, the as-
sumption (5) is satisfied whea is positive definite (for example, when the Gaussian kernel is used
and all the training examples are distinct), but it may not hold in other instari¢ks problem (1).
Convergence results that do not require the condition (5) are givannb{002) and Palagi and
Sciandrone (2005).

For the special cas®, = 2, where the selection rule (4) gives only the two indices correspond-
ing to the maximal violation of the KKT conditions (theaximal-violating pai), Lin (2002) has
shown that the assumption (5) is not necessary to ensure the cora@rgen

For any working set size, Palagi and Sciandrone (2005) have stimtnthe condition (6) is
ensured by solving at each iteration the following proximal point modificatiaihe subproblem

(2):

1 (K) T T (K)
min 2a;G$$G$+(G$NO‘7ﬁ —1$> O(fBJréHaq;—a,B 12
sub to JiczYyiQi = —ien YiGi( ) ) @

0<0i<C, Vies.

Unfortunately, this modification affects the behaviour of standard decsitiposchemes in a way
which is not completely understood yet. Our preliminary experiences stutige sufficiently large
values oft can easily allow a better performance of the inner QP solvers, but thaseswvaften
imply a dangerous decrease in the convergence rate of the decompositinigtee. On the other
hand, too small values fardo not produce essential differences with respect to the schemes wher
the subproblem (2) is solved.

In the PGPDT software, besides the default setting which implements the std?id@ algo-
rithm, two different ways to generate a sequence satisfying the condifi@ré@vailable by user
selection: (i) solving the subproblem (7) in place of (2) at each iteratidit)@olving (7) only as
emergency step, Wheﬂgk”) obtained via (2) fails to satisfy (6). All the computational experiments
of Section 3 are carried out with the default setting that generally yieldsasteperformance. For
what concerns the practical rule used in the PGPDT to stop the iteratiwedanee, the fulfilment of
the KKT conditions within a prefixed tolerance is checked (with the equalitgtcaimt multiplier
computed as suggested by Joachims, 1998). The default tolerance’®jsa%dt is usual in SVM
packages, but different values can be selected by the user.

Before to describe the PGPDT implementation in detail, it must be recalled thadttvisee is
designed to be effective in case of sufficiently langg i.e., when iterations with well parallelizable
tasks are generated. For this reason, in the sequel the reader mane agsto be of medium-to-
large size.

2.1 Parallel Gradient Projection Methods for the Subproblems

The inner QP subproblems (2) and (7) can fit into the following generai:fo

min  f(w) = LT AW+ bTw (8)
weQ 2
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whereA € R"*"se js dense, symmetric and positive semidefinitdh) € R and the feasible region
Q is defined by

Q={weR™, /<w<u c'w=y}, £ uceR™ /<u (9)

We recall that the sizegp is such thai can fit into the available memory.

Since subproblem (8) appears at each decomposition iteration, ativeffaner solver becomes
a crucial tool for the performance of a decomposition technique. Theataribrary QP solvers
can be successfully applied only in the small size cagg=t O(10)), since their computational
cost easily degrades the performance of a decomposition techniquedrasgedium-to-larg@sp.
For such kind of decomposition schemes, it is essential to design morerdffiier solvers able
to exploit the special features of (8) and, for the PGPDT purposes théthdditional property to
be easily parallelizable. To this end, the gradient projection methods grapeealing approaches
(Bertsekas, 1999). They consist in a sequence of projections orfeettible region, that are nonex-
pensive operations in the case of the special constraints (9). In fagirafection ontd (denoted
by Pa(-)) can be performed i@(nsp) operations by efficient algorithms, like those by Pardalos and
Kovoor (1990) and by Dai and Fletcher (2006). Furthermore, thdesitgyation core consists es-
sentially in annsg-dimensional matrix-vector product that is suited to be optimized (by exploiting
the vector sparsity) and also to be parallelized. Thus, the simple and resrsivg iteration moti-
vates the interest for these approaches as possible alternative ta@tsoldars based on expensive
factorizations (usually requirin@(ngp) operations). A general parallel gradient projection scheme
for (8) is depicted in Algorithm PGPM. As in the classical gradient projecti@thods, at each
iteration a feasible descent directidff is obtained by projecting ont@ a point derived by taking
a steepest descent step of lengghirom the curreniv®). A linesearch procedure is then applied
along the directioni® to decide the step siZe able to ensure the global convergence. The paral-
lelization of this iterative scheme is simply obtained by a block row-wise distribatfidnand by a
parallel computation of the heaviest task of each iteration: the matrix-vertdugtAd® .

Concerning the convergence rate, that is the key element for the PGRivipance, the choices
of both the steplengtpx and the linesearch paramefgrplay a crucial role. Recent works have
shown that appropriate selection rules for these parameters can sighjficaprove the typical
slow convergence rate of the traditional gradient projection appredotifer to Ruggiero and Zanni,
2000b, for the R-linear convergence of PGPM-like schemes). Fromsiépéength viewpoint, very
promising results are actually obtained with selection strategies based orr#ilaiBzorwein (BB)
rules (Barzilai and Borwein, 1988):

081 _ d®T gk - d®T Agw |
KL 40T A KL 40T a2g®)

The importance of these rules has been observed in combination with botlhame=amd nonmono-
tone linesearch strategies (Birgin et al., 2000; Dai and Fletcher, 20@gi&o and Zanni, 2000a).
In particular, for the SVM applications, the special BB steplength selecfiomsosed by Serafini
et al. (2005), for the monotone scheme, and by Dai and Fletcher (2f@@6he nonmonotone
method, seem very efficient.
The generalized variable projection methd@VPM) by Serafini et al. (2005) uses a standard

limited minimization rule as linesearch technique and an adaptive alternation ofdal&Bfiormu-
lae. It outperforms the monotone gradient projection scheme used byizaingnd Zanni (2003),
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ALGORITHM PGPM Parallel gradient projection method for step A2 of Algorithm PDT.

B1. Initialization.

[Data distribution] Vp =1,...,Np: allocate a row-wise slicé\, = (a”-)iap, j=1,..ns, OF A,
whererp is the subset of row indices belonging to procegsor

P
c{l...,n}, Jp={1...,n}, 51niy=0 fori#j.

Furthermore, allocate local copies of all the other input data.
Initialize the parameters for the steplength selection rule and for the linbssaategy.
Setw® € Q ,  0< Pmin < Pmax, Po€ [pmim pmax] , k=0.

[Distributed task] Vp=1,...,Np: compute the local slicéjo) = pr(0> and send it to all the
other processors; assemble a local copy of thet Rill= Aw? vector.

Set g© = Of(WO) = AWO +b=t© 1 b,
B2. Projection

Terminate ifw) satisfies a stopping criterion; otherwise compute the descent direction
d® = p, (W(k) _ pkg(k)) —wk
B3. Matrix-vector product

[Distributed task] Vp=1,...,Np: compute the local slicefok) = Apd(") and send it to all the
other processors; assemble a local copy of thezffil= Ad® vector.

B4. Linesearch
Compute the linesearch stapandw®) = w® 4\ d®.
B5. Update

Compute

tk+1) — apfktD) — ¢( +Nﬁd) (M+M5Q
g(k+1) ( (k+1) ) W(k+1 +b= t(k+1) +b,

and a new steplengtby_ 1.
Update the parameters for the linesearch strategy ek + 1 and go to step B2.
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Initialization (step B1) Set i =2, Nmin =3, Nmax=10, A, =0.1, Ay =5, np,=1.
Linesearch (step B4) Compute Ay = arg min oy f(W® +Ad™¥) .
Update (step B5)
If dW7AdX = 0 then
SetPii1 = Pmax

else
compute pPBl, B2, Agpi= argAminf(w(k) +Ad®)

If  (Np>nmin) and [(np >NMmax)  Or  (PRPZ < pk < ppot)

or <()\opt <M andpx=pEBY) or (Agpt> Ay andpx = pEBZ)>] then
set iy« modip,2)+1, ny,=0;
end.

end. _
Compute pgr1=min {pmax, max{ Pmin, pEf'l"}} andset ny—np+1.

Figure 1: linesearch and steplength rule for the GVPM method.

that was simply based on an alternation of the BB rules every three iterafemthermore, the
numerical experiments reported by (Serafini et al., 2005) show that #RM3s much more ef-
ficient than the pLOQO (Smola, 1997) and MINOS (Murtagh and Saunders, 1998) spltweo
softwares widely used within the machine learning community. GVPM steplentgttise and
linesearch are described in Figure 1.

The Dai-Fletcher scheme is based on the following steplength selection:

or Motk sk

m>1, (10)

wheres')) = wli+D) —w(i) andv(l) = gli+h —g(i) (') = Of(wll))), j =0,1,.... Observe that the
casem= 1 reduces to the standard BB r@gP?. In order to frequently accept the full steff*t) =
w® +d® generated with the above steplength, a special nonmonotone linesearet).i§igsire 2
describes the version of the Dai-Fletcher method corresponding to theeiars setting suggested
by Zanni (2006) for the SVM applications. It may be observed that thediaech parametey, =
arg min,g.q) f (W +Ad®) is used only iff (W + d) > frf and not at each iteration, as in the
GVPM. The steplength selection corresponds to the rule (10) with2 and, for what concerns
the iteration cost, no significant additional tasks are required in compadgha GVPM g1 is
already available in step B5).

The PGPDT software can run the PGPM with either the GVPM or the Dai-Flescheme, the
latter being the default due to better experimental convergence ratei(2806).

We end this subsection with some further details about the PGPM implementattbwitisie

the PGPDT software. The starting point? is Pg(a(k)) if the stopping rule of the decomposi-

B
tion procedure is nearly satisfied, otherwig® = Pq(0) is used. This aims to start the PGPM with
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Initialization (step B1) Set L =2, fref=, fpest=fc=f(W?), h=0, k=0, sk =
vk =0,

Linesearch (step B4)
If (k=0andf(wk +d®) > f(wk)) or (k>0andf(wk +d®) > f.) then

WD) = w4 A d®  with A = arg minf (wW® +Ad®)
Ae[0.1]

else
wikt D) — Wk gk

end.
Update (step B5) Compute sk =wktD) —wk): vk = gk+l) _ gk,
It SOV =0 then
set  Pk+1 = Pmax

else
if sk DTyk-D—_0 then

_ sk Tk
set  Pir1=MINT Pmax, MaXL Pmin, ————
sk ' y(k)

else

set pk+1:min Pmax, Maxsq Pmin,

s Tyk) 4+ gk—1) Ty k1)

nggm_ng—nTgwa)}}

end.

end.
If f(WkD) < foeer  then
set  fpest= F(WKHD) o= f(wktD), h=0;

else
set  fo=max{fe, f(WkD)}, h=h+1;
If h=L then
set fref=fc, fo=fwkid)y h=0;
end.
end.

Figure 2: linesearch and steplength rule for the Dai-Fletcher method.

sparse vectors in the first decomposition steps, and to save inner solzoite at the end of the de-
composition, where slight changesoiﬂq are expected. At the beginning we alsomgf = 10719,
Pmax = 100 andpo = min{pmaXa max{pmin, 50}}1 Where|50 = HPQ(W(O) - (AW(O) + b)) — w0 Ho_ol-
For the computation dPy(-) in step B2, the default is the following: ifsp < 20 the bisection-like
method described by Pardalos and Kovoor (1990) is used, else th#-basad algorithm proposed
by Dai and Fletcher (2006) is chosen, that usually is faster for large $ibwever, the user can
select one of the two projectors. Finally, we remark that the PGPM stoppiagsrthe same used

1476



PARALLEL SOFTWARE FORTRAINING LARGE SCALE SVMs

for the decomposition technique: the fulfilment of the KKT conditions within dixed tolerance.
In the PGPDT, the tolerance required to the inner solver depends on #fity aqpf the outer it-
eratea™: in the first iterations the same tolerance as the decomposition scheme is hidedy w
progressively lower tolerance is imposed whehl nearly satisfies the outer stopping criterion. In
our experience, a more accurate inner solution just from the beginnegndomply remarkable
increase of the overall performance.

2.2 Parallel Gradient Updating

The gradient updating in step A3 is usually the most expensive task ofaangesition iteration.
Since the matrixG is assumed to be out of memory, in order to obfain (a**1) some entries of
G need to be computed and, consequently, some kernel evaluations dvedntlat can be very
expensive in case of large sized input space and not much spargegteamples. Thus, any strat-
egy able to save kernel evaluations or to optimize their computation is crucialifiimizing the
time consumption for updating the gradient. The updating formula (3) allows @@géa*+Y) by

involving only the columns ofs corresponding to the indices for Whi(:hi(k”) — Gi(k>) #0,1€3.
Further improvements in the number of kernel evaluations can be obtainettdnjucing a caching
strategy, consisting in using an area of the available memory to store some &l@f®ro avoid
their recomputation in subsequent iterations. PGPDT fills the caching aretheitolumns ofs
involved in (3); when the cache is full, the current columns substitute thas&#ve not been used
for the largest number of iterations. This simple trick seems to well combine witlvahdng set
selection used in step A4, which forces some indices of the cusé¢atremain in the new work-
ing set (see the next section for more details), and remarkable reduttioa kernel evaluations
are often observed. Nevertheless, the improvements implied by a cacldteggtare obviously
dependent on the size of the caching area. To this regard, the largetaofigunemory available
on modern multiprocessor systems is an appealing resource for improvipgrfbemance of a de-
composition technique. One of the innovative features of PGPDT is to implerpanabel gradient
updating where both the matrix-vector multiplication and the caching strateghsaribeuted among
the processors. This is done by asking each processor to perfarhat the column combinations
required in (3) and to make available its local memory for caching the colum@s bf this way,
the gradient updating benefits not only from a computations distributiorglbatirom a reduction
of the kernel evaluations due to much larger caching areas. Of ctlese, features are not shared
by standard decomposition packages, designed to exploit the resoticm@g one processor. The
main steps of the above parallel updating procedure are summarized intAdg&GU.

Concerning the reduction of the kernel evaluations, it is worth to recdllthieaentries oiG
stored in the caching area can be used als@fpy in step A2. Moreover, for the computation of
the linear term in (2), the equality

Gya O — 15 =07, (a®) — Gy
can avoid additional kernel evaluations by exploiting already computeutitjaa.

The gradient updating overhead within each decomposition iteration caurtherf reduced
by optimizing the kernel computation. Even if a caching strategy can limit the nuafbernel
evaluations, large problems often require millions of them and their optimizaticonies a need.
PGPDT uses sparse vector representation of the training examplesdaiisethe sparseness in
the dot products required by the kernel evaluations. Three kerreetssailable: linear, polynomial
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ALGORITHM PGU Parallel gradient updating in step A3 of Algorithm PDT

i) Denote byW,,, p=1,2,...,Np, the caching area of the procesgand byG; thei-th column
of G. Let

@1:{i673 | O‘i(kJrl)—O‘i(k)#O}’
an:{ie@l | Gi ¢ Wp, p:1,2...,Np}, Be = B1\ Bn.

Distribute among the processors the se¢sand 3, and denote by, , and 3, , the sets of
indices assigned to procesgorMake the distribution in such a way that

Bo=UN, Bei,  BeiNBej=0fori#£j, Vies, = GeW,
an:Ui'\lzplan,ia Bn,i N Bn,j =0 for i # |
and by trying to obtain a well balanced workload among the processors.

i) Vp=1,2,...,Np: use the column&; € W,, i € B¢, to compute

(ol —a¥ ).

Bep Bep

r Gy Be,p
p=

N Be,p

then compute the columi@s, i € B, b, Nnecessary to obtain

G
rp—rp+ [ Gaazan,p } (G(kH)—G(k) )

Bn, Bn,
Nﬁn,p P P

and store in\V, as much as possible of these columns, eventually by substituting those less
recently used.

i) Yvp=1,2,...,Np: sendr to all the other processors and assemble a local copy of
p

Np
O (0 ) = g7 (@®) + ziri.
i=
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ALGORITHM SP1 Selection procedure for step A4.1 of algorithm PDT.

i) Sort the indices of the variables according ydl7 (a*Y); in decreasing order and
let 1 = (ig,i2,...,in)T be the sorted list (i.ey, 07 (a® D), >y, 07 (ak+b), > ... >
yi, 07 (D) ).

ii) Repeat the selection of a pdik,ip) € 1 x I, witht < b, as follows:

— moving down from the top of the sorted list, choase Itop(O((k*l)),
— moving up from the bottom of the sorted list, choase Ip(ak+D),

until n¢ indices are selected or a pair with the above properties cannot be found.

i) Let 3 be the set of the selected indices.

and Gaussian. The interested reader is referred to the available cadertodetails on their prac-
tical implementation. We end this section by remarking that, in case of linearlkreeipdating
formula (3) can be simplified in

t= Z YiXi (ai(k+1) _qi(k>)’ B1= {i €3 | ai(k+l) _ai(k) #O},

i€By
07 (a1 =07 @¥)j+yxft,  j=12...n, (11)

and the importance of a caching strategy is generally negligible. Cong6qiBPDT faces linear
SVMs without any caching strategy and performs the gradient updatisgnply distributing the
ntasks (11) among the processors.

2.3 Working Set Selection

In this section we describe how the working set updating in step A4 of thedFithm is imple-
mented within PGPDT. It consists in two phases: in the first phase atmpivgtices are chosen for
the new working set by solving the problem (4), while in the second phdsastns, — nc entries

are selected from the currematto complete the new working set. The selection procedure in step
A4.1 was first introduced by Joachims (1998) and then rigorously jushfiedn (2001a). In short,

by using the notation

Iop(@) = {i | (aj <Candy; = —1) or (aj >0 andy; =1)} ,
Inot(@) = {j | (0j > 0andyj = —1) or (a; <Candy; =1)} ,

this procedure can be stated as in Algorithm SP1.
It is interesting to recall how this selection procedure is related to the violatithre dirst order
optimality conditions. For the convex problem (1) the KKT conditions can adsaiitten as

afeasiblen® is optimal <= max yiOF (a*); <  min y;07 (a);.
i€ Iop(a*) jE€ Ipot(a*)
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ALGORITHM SP2 Selection procedure for step A4.2 of algorithm PDT.

i) Let 3 be the set of indices selected in step A4.1.

(k+1)
]
if these indices are not enough, then add the most recent infieas such thatx
k+1) —C

ii) Fill B up tonsp entries by adding the most recent inditgss 3 satisfying 0< o <G

Ek+1) -0
and, eventually, the most recent indiges 3 satisfyingag
i) Setne = min{nc,max{10,J,nnew} }, Whereld is the largest even integer such tlat % and

Nnew IS the largest even integer such thadw <#{j, j€ 3\ 3} ;
set3 = B8,k k+1 and go to step A2.

TWe mean the indices that are in the working sedince the lowest number of consecutive iterations.

It means that, given a non-optimal feasibipthere exists at least a pdir, j) € Iiop(a) X Ihot(X)
satisfying

yibl# (a)i > y;07 (a);j .

Following Keerthi and Gilbert (2002), these pairs are call&d-violating pairsand, from this point

of view, the above selection procedure chooses indicgs € Top(a k) x 1p0(a**1)) by giving
priority to those pairs which most violate the optimality conditions. In particulagaah iteration
themaximal-violating paitis included in the working set: this property is crucial for the asymptotic
convergence of a decomposition technique.

From the practical viewpoint, the indices selected via problem (4) identi&pst-like feasible
descent directions: this is aimed to get a quick decrease of the objeativgofu7 (o). Never-
theless, for fast convergence, bathand the updating phase in step A4.2 have a key relevance.
In fact, as it is experimentally shown by Serafini and Zanni (2005),egabfn. equal or close to
nsp Often yield a dangerouagzaggingohenomenon (i.e., some variables enter and leave the work-
ing set many times), which can heavily degrade the convergence rataadlypier largens,. This
drawback suggests to st sufficiently smaller thams, and then it opens the problem of how to
select the remaining indices to fill up the new working set. The studies avaifabterature on
this topic (see Hsu and Lin, 2002; Serafini and Zanni, 2005; Zanghingtizanni, 2003, and also
the SVMi9Mt code) suggest that an efficient approach consists in selecting thésesifieom the
current working set. We recall in Algorithm SP2 the filling strategy recemntbppsed in (Serafini
and Zanni, 2005) and used by the PGPDT software.

The selection policy used by Algorithm SP2 is based on two criteria: the @icsirds priority
to the free variables over the variables at either the lower or the uppedbthe second takes
into accounthow long(i.e., how many consecutive decomposition iterations) a variable has been
into the working set. Roughly speaking, both the criteria aim to preserve iatadinking set the
variables which are likely to need further optimization. The interested reaaefind in the papers
by Hsu and Lin (2002) and by Serafini and Zanni (2005) a deepeuskson on these criteria and
the computational evidence of their benefits in terms of convergence ratdlyFAlgorithm SP2
also introduces an adaptive reduction of the paramnmgterseful in case of large sized working sets.
This trick allows the decomposition technique to start wiglslose tonsp, in order to optimize many
new variables in the very first iterations, and avoids zigzagging throwghrtdgressive reduction of
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nc. The reduction takes place onlyrif is larger than an empirical threshold and it is controlled via
the number of those new indices selected in step A4.1 that do not belong tartbetavorking set.

3. Computational Experiments

The aim of this computational study is to analyse the PGPDT performance. Tenthist is also
worth to show that the serial version of the proposed software (call&iTGean train SVMs with
effectiveness comparable to that of the state-of-the-art softwaBSMM (ver. 2.8) and SVNENt
(ver. 6.01). Since there are no other parallel software currently &lafiar comparison, the PGPDT
will be evaluated in terms of scaling properties with respect to the seriabgask

Our implementation is an object oriented+@ode and its parallel version uses standard MPI
communication routines (Message Passing Interface Forum, 1995 ldaeasily portable on
many multiprocessor systems. Most of the experiments are carried outlBMa®P5, which is an
IBM SP Cluster 1600 equipped with 64 nodes p5-575 interconnected igy gplrformance switch
(HPS). Each node owns 8 IBM SMP Power5 processors at 1.9GH2&@8 of RAM (2GB per
CPU). The serial packages run on this computer by exploiting only a sirRlle EGPDT has been
tested also on different parallel architectures and, for completenesgpart the results obtained
on a system where less memory than in the IBM SP5 is available for each GPIBMhCLX/1024
Linux Cluster, that owns 512 nodes equipped with two Intel Xeon procesd 3.0GHz and 1GB
of RAM per CPU. Both the systems are available at the CINECA Supercongméinter (Bologna,
Italy, htt p: // www. ci neca.it).

The considered softwares are compared on several medium, largegridrge test problems
generated from well known benchmark data sets, described in theuiesddion.

3.1 Test Problems

We trained Gaussian and polynomial SVMs with kernel functio(s, x; ) = exp(—Hxi —Xj ||2/(202))
andK (x;,Xj) = (s(x"Xj) +1)d, respectively.

In what follows we give some details on the databases used for the enashthe training
sets, as well as on the SVM parameters we have chosen. Error ratigearas the percentage of
misclassifications.

The UCI Adult data set (dtt t p: / / www. r esear ch. nmi crosoft. conl ~j platt/sno. htm ) al-
lows to train an SVM to predict whether a household has an income greate$30800. The inputs
are 123-dimensional binary sparse vectors with sparsity kev@®%. We use the largest version
of the data set, sized 32561. We train a Gaussian SVM with training parancatessn accord-
ingly to the database technical documentation, Ce-, 1 andoc = V/10, that are indicated as those
maximizing the performance on a (unavailable) validation set.

The Web data set (availablelstt p: / / www. r esear ch. mi crosoft. com ~jplatt/sno. htm)
concerns a web page classification problem with a binary representased ba 300 keyword
features. On average, the sparsity level of the examples is about 9€%is&\the largest version
of the data set, sized 49749. We train a Gaussian SVM with the parametgestdyin the data
set documentationC = 5 ando = v/10. As before, these values are claimed to give the best
performance on a (unavailable) validation set.

1. Here the notation has the usual meanimgs the Gaussian’s varianceis the polynomial scaling parameter athis
the polynomial degree.
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The MNIST database of handwritten digitg { p: / / yann. | ecun. conl exdb/ mi st) contains
784-dimensional nonbinary sparse vectors; the data set size is 6680bedata sparsity is
81%. The provided test set is sized 10000. We train two SVM classifiethdéadigit “8” with the
following parametersC = 10,0 = 1800 for the Gaussian kernel a@d= 3000,d = 4,s= 3- 10°°
for the polynomial kernel. This setting gives the following error rates ongheset: 0.55% for the
Gaussian kernel and 0.60% for the polynomial kernel.

The Forest Cover Type data $étas 581012 samples with 54 attributes, distributed in 8 classes.
The average sparsity level of the samples is about 78%. We train some Bg8&ifiers for separat-
ing class 2 from the other classes. The training sets, sized up to 3008@®&rerated by randomly
sampling the data set. We use a Gaussian kernela®ith 2.5- 10%, C = 10. For the largest training
set the error rate is about 3.6% on the test set given by the remaining288mples.

The KDDCUP-99 Intrusion Detection data $ebnsists in binary TCP dump data from seven
weeks of network traffic. Each original pattern has 34 continuous festand 7 symbolic fea-
tures. As suggested by Tsang et al. (2005), we normalize each cargifeature to the rande, 1]
and transform each symbolic feature to multiple binary features. In thistwaynputs are 122-
dimensional sparse vectors with sparsity lexe®0%. We work with the whole training set sized
4898431 and with some smaller subsets obtained by randomly sampling the ladagmizase. We
use a Gaussian kernel with parametets- (1.2)~%, C = 2. This choice yields error rates of about
7% on the test set of 311029 examples available in the database.

3.2 Serial Behaviour

In the first experiments set, we analyse the behaviour of the serial cottedest problems just
described. In Table 1 we report the time in seconds (sec.), the decompastation count (it.)
and the number of kernel evaluations in millions (MKernel) required foheae of the considered
SVM training packages. The values we use for the working set parssmggeand n; are also
reported: as mentioned, the LIBSVM software works only wigh= nc = 2, whilst both SVMd"t
and GPDT accept larger values. For these two softwares, meaniagfygs of parameters were
explored: we report the results corresponding to the pairs that gabeshéaining time and to the
default settingfsp = nc = 10 for SVM'IM, ng, = 400,n = [nsp/3| = 132 for GPDT). SVMIM is
run with several values afs, in the rangg2, 80] with both its inner solvers: the Hildreth-D’Esopo
and the prLOQO. The best training time is obtained by using the Hildreth-D’Esopo salitbms,
small andn; = nsp/2, generally observing a significant performance decreasgfor 40.

We run the codes assigning to the caching area 512MB for the MNISTrtésdems and 768MB
in the other cases; the default threshelg: 102 for the termination criterion is used, except for
the two largest Cover Type and KDDCUP-99 test problems, where theistpfolerance is set
to 1072, All the other parameters are assigned default values. This means thatiB&VM and
SVM'9ht penefit from theshrinking(Joachims, 1998) strategy that is not implemented in the current
release of GPDT.

Table 1 well emphasizes the different approach of the three softwarparticular we see how
GPDT, by exploiting large working sets, converges in far less iterationsttf@other softwares,
but its iterations are much heavier. Looking at the computational time, GPDWsst&ebe very
competitive with respect to both LIBSVM and SV, Furthermore, the kernel column highlights

2. Available aff t p: // ft p. i cs. uci . edu/ pub/ machi ne- | ear ni ng- dat abases/ covt ype
3. Available atht t p: // kdd. i ¢s. uci . edu/ dat abases/ kddcup99/ kddcup99. ht nl
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Data set n Nsp nc\ sec. it.  MKernel

GPDT

UCI Adult 32561 400 132 94.1 162 4942
400 200 93.6 129 4985
MNIST (poly) 60000, 400 132 3796 598 4246
600 200, 3453 221 3244
MNIST (Gauss) 60000 400 132 3592 136 5048
2000 300] 3412 22 3964
Web Pages 49740 400 132 69.6 228 2855
600 200 62.2 101 2529
Cover Type 300000 400 132| 243655 3730 1208465
500 80| 215614 5018 9988Mm
KDDCUP-99 400000 400 132| 102390 1149 56548
180 60| 91903 2248 5133«

LIBSVM

UCI Adult 32561
MNIST (poly) 60000
MNIST (Gauss) 60000
Web Pages 49749
Cover Type 300000
KDDCUP-99 400000

2 1659 15388 452
2| 21544 452836 79D
2| 10818 20533 409
2 64.0 13237 1738
2172717 274092 53153
2112208 40767 50773

NNNMNNNDN

SVMIIght

UCIAdult 32561 10 10| 2167 10448 404l
20 10| 2011 4317  39%
40 20| 2038 2565 418
MNIST (poly) 60000[ 10 10| 64541 380743 1943
4 2| 30902 420038  85B
8 4| 31240 238609  90%
MNIST (Gauss) 60000 10 10| 7956 10262 2783
4 2| 5703 18401 204
16 8| 5628 4970 2038
Web Pages 49740 10 10| 1086 8728  20%
4 2| 938 12195  16®@
16 8| 927 4444 18
Cover Type 300000 10 10| 828926 266632 146052
8  4|299023 151762 44794
16  8|285855 78026 48864
KDDCUP-99 400000 10 10| 113564 21950 23948
8 4|101418 28254 21663
20 10| 123084 20654 24968

Table 1: performance of the serial packages on different test pnsble
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Solver | SV BSV| Fopt b | test error
MNIST (poly) test problem
GPDT 2712 640 —25550338 354283 0.63%
LIBSVM | 2715 640 —25550336 354231 0.63%
SvMiight | 2714 640 —25550330 354213| 0.62%
Cover Type test problem
GPDT 50853 32683 —2993997 0.22083| 3.62%
LIBSVM | 51131 32573 —-2993960 0.22110| 3.63%
SvMlight | 51326 32511 —2993939 0.22149| 3.62%

Table 2: accuracy of the serial solvers.

how GPDT benefits from a good optimization of the execution time for the kearaputation:
compare, for instance, the results for the MNIST Gaussian test, whekethel evaluations are
very expensive. Here, in front of a number of kernel evaluations sinalalBSVM and larger than
SVMIiaht 3 significant lower training time is exhibited. The same consideration hold$drilee
MNIST polynomial test; however in this case the good GPDT performanceaddaks to a lower
number of kernel evaluations.

The next experiments are intended to underline how the good training time gQw&PDT
is accompanied by scaling and accuracy properties very similar to the atbkages. From the
accuracy viewpoint, this is shown for two of the considered test problgnregmorting in Table
2 the number of support vectors (SV) and bound support vector¥)(BBe computed optimal
value 7,pt Of the objective function, the bidsof the separating surface expres$i¢@ristianini and
Shawe-Taylor, 2000) and the error rate on the test set.

For what concerns the scaling, Figure 3a shows, for the Cover Tgpprteblem (the worst case
for GPDT), the training time with respect to the problem size. All the packegleibit almost the
same dependence that, for this particular data set, seems between quemtatibdic with respect
to the number of examples. For completeness, the number of supportsvelctioese test problems
is also reported in Figure 3b.

3.3 Parallel Behaviour

The second experiments set concerns with the behaviour of PGPDT. valleaie PGPDT on
the previous four largest problems and some very large problems GiZ#) derived from the
KDDCUP-99 data set.

3.3.1 LARGE TESTPROBLEMS

For a meaningful comparison against the serial version, PGPDT is rtiediNIST, Cover Type

and KDDCUP-99 it = 400000) test problems with the samg, n. ande parameters as in the
previous experiments; furthermore, the same amount of caching a@dBjés now allocated on

each CPU of the IBM SP5. Default values are assigned to the other garame

4. Thesupport vectorsare those samples in the training set corresponding‘to- 0; the samples witln* = C are
calledbound support vector®koughly speaking, the support vectors are the samples charagéhieihypersurface
separating the two classes and the bi#sits displacement.
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Figure 3: scaling of the serial solvers on test problems from the Coyer dgta set.

Ne| sec. sp it. MKernel| SV BSV Fopt
MNIST (poly) test problem
1| 3453 221 3242 | 2712 640 —25550333
2| 1586 218 212 24 | 2710 640 —25550338
4| 1005 344 214 2530 | 2711 641 —25550338
8| 597 578 212 258 | 2711 641 —25550337
16| 473 730 217 2714 | 2711 641 —25550338
Cover Type test problem
1121561 5018 9988050853 32683 —2993997
2|11123 194 5047 98925 50786 32673 —2993998
4| 5715 377 5059 93597 50786 32668 —2993999
8| 3016 715 5086 82853 50832 32664 —2993999
16| 1673 1289 5029 59439 50826 32697 —2993999

Table 3: PGPDT scaling on the IBM SP5 system.

Table 3 and Figure 4 summarize the results obtained by running PGPDT eredifhumbers
of processors. We evaluate the parallel performance byeladive speedupdefined assp =
Tserial/ Tparalles WhereTserialis the training time spent on a single processor, Whilgaieidenotes the
training time onNp processors.

Seeking clearness, in Table 3 we also report additional information ornvdralbPGPDT be-
haviour. In particular, we can see an essentially constant numberaihgesition iterations (recall
that only the computational burden within the decomposition iteration is distribatetjhe same
solution accuracy as the serial run (compare the numbers in SV, BS¥ gndolumns). More-
over, remark the lower number of total kernel evaluations needed byatlded version, due to the
growing amount of global caching memory available, which our paralldiingcstrategy is able
to exploit. This is the motivation of the superlinear speedup observed in saméms like the
MNIST (Gaussian) test problem (Figure 4a). Unfortunately, there neagases where the bene-
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Figure 4: PGPDT scaling on the IBM SP5 system.

fits due to the parallel caching strategy are not sufficient to ensure opeatups. For instance,
sometimes thaes values that give satisfactory serial performance are not suited tmt BGPDT
scaling. This is the case of the KDDCUP-99 test problem (Figure 4b)rene small working

sets sizedsp = 180 imply many decomposition iterations and consequently the fixed costs of the
non-distributed tasks (working set selection and stopping rule) becomé&eavy. Another exam-

ple is provided by the MNIST (polynomial) test problem (Figure 4c): heeestibproblem solution

is a dominant task in comparison to the gradient updating and the suboptiniad sfahe PGPM
solver on 16 processors leads to poor speedups. However, alsosin d¢hses remarkable time
reductions are observed in comparison with the serial softwares (beIla

We further remark that all these considerations are quite dependen¢ amderlying parallel
architecture. In particular, on multiprocessor systems where less memarinttiee SP5 platform
is available for each CPU, even better speedups can be expected deeeffetiiiveness of the
parallel caching strategy. For instance, we report in Figure 5 whaetvgthe KDDCUP-99 test
problem on the IBM CLX/1024 Linux Cluster, where only 400MB of cachamga can be allocated
on each CPU. Due to both the worse performance of this machine and tieededaching area,
larger training time is required, but an optimal PGPDT speedup is now aisapto 16 processors.
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Figure 5:PGPDT scaling on the CLX/1024 system for the KDDCUP-89-(4- 10°) test problem.

= ‘ ‘ ‘ ‘ ‘ [~e=PGPOT]
——4PE PGPDT

=0~ 8 PE 8r
016 PE

10"}

Time (sec.)
=
o
%
-
EN o
- -

Number of SV ( x 104)
a

w
T

10%F

N
T

101 L L L L L L 1 L L L L Il
5 10 20 40 100 200 51020 40 100 200
Number of training examples ( x 10* ) Number of training examples ( x 104)
(a) dependence an (b) number of support vectors.

Figure 6: Parallel training time for different sizes of the KDDCUP-99 tesbplms

3.3.2 VERY LARGE TESTPROBLEMS

In this section we present the behavior of the PGPDT code on very lagprtblems. In partic-
ular we considered three test problems from the KDDCUP-99 data sizeai s 10°, 2- 10° and
4898431, the latter being the full data set size. The test problems areaablgjirtraining Gaussian
SVMs with the parameters setting previously used for this data set.

In the two larger cases a different setting for thg, n. and caching area have been used. In
particular, for the case = 2- 106 we usednsp = 150, nc = 40 and 600Mb of caching area; for the
full case we usedsp = 90, nc = 30 and 250Mb of caching area. The reason for reducing the caching
area is that every processor can allocate no more that 1.7Gb of memomytsmthe data set size
increases, most of the memory is used for storing the training data andt ¢ennsed for caching.

TheseO(1(P) test problems are firstly used to study how the PGPDT time complexity scales
with the size of the data sets. In Figure 6a the training time is reported for 4¢d 8 &proces-
sors. Figure 6b shows the growth rate of the support vectors for tees@roblems. It can be
observed that the scaling is close@n?), as often exhibited by the serial state-of-the-art decom-
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position packages (Collobert and Bengio, 2001; Joachims, 1998)rdsutt is quite natural if we
remember that PGPDT is based on a parallelization of each iteration of astalet@mposition
technique. Concerning the subquadratic scaling exhibited for incresigieg, it can be motivated
by the sublinear growth of the support vectors observed on thesermepes; however, in different
situations it may be expected a training time complexity that scales at least ticeltirdsee, for
instance, the experiments on the Cover Type data set described in Figure 3

Table 4 shows the PGPDT performance in terms of training time and accuwacyfferent
number of processors. Here, the time is measured in hours and minutesdeadrtal evaluations
are expressed in billions. For the test problem siged 2- 10°, the serial results concern only
the GPDT because LIBSVM exceeded the time limit of 60 hours and '9¥Mtopped without a
valid solution after relaxing the KKT conditions. Due to the very large size efpgtoblem, the
amount of 600MB for the caching area seems not sufficient to preveoga number of kernel
evaluations in the serial run. Again, this drawback is reduced in the multigsoceuns, due to
increased memory for caching. Thus, analogously to some previousraepts (see Figures 4a,
5), superlinear speedup is exhibited, in this case up to about 20 poogeshe largest test problem,
with size about 5 millions and more than®l€upport vectors, can be faced in a reasonable time only
with the parallel version. In this case the overall remark is that, on the @mesidrchitecture, few
processors allow to train the Gaussian SVM in less than one day while fewft@ngcessors can
be exploited to reduce the training time to about 10 hours.

Finally, by observing in Table 4 the column of the objective function valuesyay confirm that
also in these experiments the training time saving ensured by PGPDT is obtaihedtwiamaging
the solution accuracy.

These results show that PGPDT is able to exploit the resources of todaynodggor systems
to overcome the limits of the serial SVM implementations in solvd.0°) problems (see also
the training time in Figure 6a). As already mentioned, there is no other availatdégb software
to perform a fair comparison on the same architecture and the same datyenoan indirect
comparison with the results reported by Graf et al. (2005) for the casdgdathm suggests that
PGPDT could be really competitive. Furthermore, since the cascade afganiti PGPDT exploit
very different parallelization ideas (recall that the former is based omligtabution of smaller
independent SVMs), promising improvements could be achieved by ao@mpe combination of
the two approaches.

4. Conclusions and Future Work

Parallel software to train linear and nonlinear SVMs for classificationlprob is presented, which
is suitable for distributed memory multiprocessors systems. It implements an gedattompo-
sition technique based on a gradient projection solver for the inner ailepns. At each decom-
position iteration, the heaviest tasks, i.e., solving the subproblem and updagrgradient, are
distributed among the available processors. Furthermore, a parall@igattategy allows to effec-
tively exploit as much memory as available to avoid expensive kernel ragatigns. Numerical
comparisons with the state-of-the-art softwares LIBSVM and $%¥Mon benchmark problems
show the significant speedup that the proposed parallel packageltianein training large scale
SVMs. In short, experiments dd(10°) data sets show that nonlinear SVMs wii10°) support
vectors can be trained in few hours by exploiting some tens of proce§durs, this parallel pack-
age, available dttt p: // dmuni fe. it/ gpdt, can be a useful tool for overcoming the limits of the
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Np time it. GKernel| SV BSV Fopt
n=2-10°

1|54'59" 6192 11353 82521 466 —96259

2| 14h22™ 6077  4685| 84565 463 —96258

4| 7h4a4™ 6005 4581 | 82193 464 —96257

8| 4h18™ 6064  4629| 82723 462 —96258

16| 3"08"™ 6116 4670 | 84100 460 —96259

24| 2"47™ 6202 4730 | 83626 464 —-96260
n=4898431

819'08™ 12300 1752131041 1021 —144796
16 | 12"16™ 12295 17397 | 130918 1046 —144796
32| 9h22™ 12310 174D | 131736 1017 —144796

Table 4: PGPDT scaling on very large test problems from the KDDCUPa¢® skt.

serial SVM implementation currently available. The main improvements will con¢grme opti-
mization/distribution of the tasks which are not currently parallelized, to impiterecalability; (ii)
the introduction of a shrinking strategy, for further reducing the numbkeimel evaluations; (iii)
the inner solver robustness, to better face the subproblems arising &digndraled training data.
Furthermore, work is in progress to include in a new PGPDT release alsuith distribution and
the extension to regression problems.
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