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Abstract

Dimensionality reduction is an important pre-processteg é1 many applications. Linear discrim-
inant analysis (LDA) is a classical statistical approaahsigpervised dimensionality reduction. It
aims to maximize the ratio of the between-class distandegtavithin-class distance, thus maximiz-
ing the class discrimination. It has been used widely in nepplications. However, the classical
LDA formulation requires the nonsingularity of the scatteatrices involved. For undersampled
problems, where the data dimensionality is much larger tharsample size, all scatter matrices
are singular and classical LDA fails. Many extensions,udaig null space LDA (NLDA) and
orthogonal LDA (OLDA), have been proposed in the past to cwere this problem. NLDA aims
to maximize the between-class distance in the null spackeofvithin-class scatter matrix, while
OLDA computes a set of orthogonal discriminant vectors kiagimultaneous diagonalization of
the scatter matrices. They have been applied successiulbrious applications.

In this paper, we present a computational and theoreticysis of NLDA and OLDA. Our
main result shows that under a mild condition which holds engnapplications involving high-
dimensional data, NLDA is equivalent to OLDA. We have perfed extensive experiments on
various types of data and results are consistent with owrdieal analysis. We further apply the
regularization to OLDA. The algorithm is called reguladZ8L DA (or ROLDA for short). An effi-
cient algorithm is presented to estimate the regularinatadue in ROLDA. A comparative study on
classification shows that ROLDA is very competitive with QADThis confirms the effectiveness
of the regularization in ROLDA.

Keywords: linear discriminant analysis, dimensionality reductinall space, orthogonal matrix,
regularization

1. Introduction

Dimensionality reduction is important in many applications of data mining, machingingaand
bioinformatics, due to the so-calledirse of dimensionalityBellmanna, 1961; Duda et al., 2000;
Fukunaga, 1990; Hastie et al., 2001). Many methods have been prbfmglimensionality reduc-
tion, such as principal component analysis (PCA) (Jolliffe, 1986) anadidescriminant analysis
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(LDA) (Fukunaga, 1990). LDA aims to find the optimal discriminant vectoransformation) by
maximizing the ratio of the between-class distance to the within-class distansegdhigving the
maximum class discrimination. It has been applied successfully in many appigaticuding
information retrieval (Berry et al., 1995; Deerwester et al., 1990k facognition (Belhumeour
etal., 1997; Swets and Weng, 1996; Turk and Pentland, 1991), andamigy gene expression data
analysis (Dudoit et al., 2002). However, classical LDA requires theadledtotal scatter matrixo
be nonsingular. In many applications such as those mentioned abovegttdl snatrices in ques-
tion can be singular since the data points are from a very high-dimensjuma and in general the
sample size does not exceed this dimensionality. This is known asnifpelarity or undersampled
problem(Krzanowski et al., 1995).

In recent years, many approaches have been proposed to dealighthigh-dimensional, un-
dersampled problem, including null space LDA (NLDA) (Chen et al., 20@@ang et al., 2002),
orthogonal LDA (OLDA) (Ye, 2005), uncorrelated LDA (ULDA) (Yd al., 2004a; Ye, 2005), sub-
space LDA (Belhumeour et al., 1997; Swets and Weng, 1996), regedblr2A (Friedman, 1989),
and pseudo-inverse LDA (Raudys and Duin, 1998; Skurichina and, 2@96). Null space LDA
computes the discriminant vectors in the null space of the within-class scatrex.raecorrelated
LDA and orthogonal LDA are among a family of algorithms for generalizedrdignant analysis
proposed in (Ye, 2005). The features in ULDA are uncorrelated, whéediscriminant vectors in
OLDA are orthogonal to each other. Subspace LDA (or PCA+LDA)liapman intermediate di-
mensionality reduction stage such as PCA to reduce the dimensionality of tireabdgta before
classical LDA is applied. Regularized LDA uses a scaled multiple of the identityixria make
the scatter matrix nonsingular. Pseudo-inverse LDA employs the pseuelsénto overcome the
singularity problem. More details on these methods, as well as their relatipesiifpe found in
(Ye, 2005). In this paper, we present a detailed computational ancetiedranalysis of null space
LDA and orthogonal LDA.

In (Chen et al., 2000), the null space LDA (NLDA) was proposed, nelthe between-class
distance is maximized in the null space of the within-class scatter matrix. Thdagitygproblem
is thus implicitly avoided. Similar idea has been mentioned briefly in (Belhumeodr, 1987).
(Huang et al., 2002) improved the efficiency of the algorithm by first réngpthe null space of
the total scatter matrix, based on the observation that the null space of tfrectitar matrix is the
intersection of the null space of the between-class scatter matrix and thepaa# of the within-
class scatter matrix.

In orthogonal LDA (OLDA), a set of orthogonal discriminant vectors@nputed, based on
a generalized optimization criterion (Ye, 2005). The optimal transformationrigpated through
the simultaneous diagonalization of the scatter matrices, while the singulariteprabovercome
implicitly. Discriminant analysis with orthogonal transformations has been studi@®uchene and
Leclerq, 1988; Foley and Sammon, 1975). By a close examination of theutatigms involved in
OLDA, we can decompose the OLDA algorithm into three steps: first remaveuh space of the
total scatter matrix; followed by classical uncorrelated LDA (ULDA), aiaar of classical LDA
(details can be found in Section 2.1); and finally apply an orthogonalizagpnts the transforma-
tion.

Both the NLDA algorithm (Huang et al., 2002) and the OLDA algorithm (Ye&)2Qesult in or-
thogonal transformations. However, they applied different schemesivirey the optimal transfor-
mations. NLDA computes an orthogonal transformation in the null space @fithm-class scatter
matrix, while OLDA computes an orthogonal transformation through the simwtengiagonaliza-
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tion of the scatter matrices. Interestingly, we show in Section 5 that NLDA ivalgat to OLDA,
under a mild condition C which holds in many applications involving high-dimensional data (see
Section 7). Based on the equivalence result, an improved algorithm fBANtalled iINLDA, is
presented, which further reduces the computational cost of the orMgiriad algorithm.

We extend the OLDA algorithm by applying the regularization technique, wisicommonly
used to stabilize the sample covariance matrix estimation and improve the classifieafarmance
(Friedman, 1989). The algorithm is called regularized OLDA (or ROLDAslort). The key idea
in ROLDA is to add a constarit to the diagonal elements of the total scatter matrix. Here0
is known as theegularization parameterChoosing an appropriate regularization value is a critical
issue in ROLDA, as a largk may significantly disturb the information in the scatter matrix, while
a smallA may not be effective in improving the classification performance. Crabkdation is
commonly used to estimate the optimdrom a finite set of candidates. Selecting an optimal value
for a parameter such asis calledmodel selectiorfHastie et al., 2001). The computational cost
of model selection for ROLDA can be expensive, especially when theidaie set is large, since
it requires expensive matrix computations for eactWe show in Section 6 that the computations
in ROLDA can be decomposed into two components: the first component isvoledrices of
high dimensionality but independent &f while the second component involves matrices of low
dimensionality. When searching for the optimarom a set of candidates via cross-validation, we
repeat the computations involved in the second component only, thusmgdbe computational
cost of model selection in ROLDA.

We have conducted experiments using 14 data sets from various datasdacluding low-
dimensional data from UCI Machine Learning Repositagd high-dimensional data such as text
documents, face images, and gene expression data. (Details on thesetdatan be found in
Section 7.) We did a comparative study of NLDA, iNLDA, OLDA, ULDA, ROKBDand Support
Vector Machines (SVM) (Satkopf and Smola, 2002; Vapnik, 1998) in classification. Experimental
results show that

e For all low-dimensional data sets, the null space of the within-class scattax isaempty,
and both NLDA and iNLDA do not apply. However, OLDA is applicable and teduced
dimensionality of OLDA is in generdd— 1, wherek is the number of classes. Condition C1
holds for most high-dimensional data sets (eight out of nine data set§)ANNLDA, and
OLDA achieve the same classification performance, in all cases wheitioar@l holds. For
cases where condition C1 does not hold, OLDA outperforms NLDA andiflLas OLDA
has a larger number of reduced dimensions than NLDA and iNLDA. Thegpérieal results
are consistent with our theoretical analysis.

¢ iNLDA and NLDA achieve similar performance in all cases. OLDA is very cetitjwe with
ULDA. This confirms the effectiveness of the final orthogonalization st€pLDA. ROLDA
achieves a better classification performance than OLDA, which showdftéaiveness of
the regularization in ROLDA. Overall, ROLDA and SVM are very competitiviéhvother
methods in classification.

The rest of the paper is organized as follows. An overview of clastib&l and classical
uncorrelated LDA is given in Section 2. NLDA and OLDA are discussectictiSn 3 and Section 4,

1. Condition C1 requires that the rank of the total scatter matrix equals taitheosthe rank of the between-class
scatter matrix and the rank of the within-class scatter matrix. More detailsevijiMen in Section 5.
2. http://www.ics.uci.eduémlearn/MLRepository.html
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| Notation | Description | Notation | Description \
A data matrix n number of training data points
m data dimensionality 14 reduced dimensionality
k number of classes S between-class scatter matrix
Sy within-class scatter matri S total scatter matrix
G transformation matrix S covariance matrix of theth class
G centroid of tha-th class N sample size of theth class
c global centroid K number of neighbors in K-NN
t rank of§ q rank of§

Table 1: Notation.

respectively. The relationship between NLDA and OLDA is studied in Sed&ioifhe ROLDA
algorithm is presented in Section 6. Section 7 includes the experimental réa@tsonclude in
Section 8.

For convenience, Table 1 lists the important notation used in the rest of {iés. pa

2. Classical Linear Discriminant Analysis

Given a data set consisting ofdata points{a; }_; in R™, classical LDA computes a linear trans-

formationG € R™¢ (¢ < m) that maps each; in the m-dimensional space to a vectay in the
¢-dimensional space by, = GTaj. Define three matriced,,, Hp, andS as follows:

Hy = %[(Al—clew,---,<Ak—ckeT>L 1)

Ho = = lV(e— ) Ao @)
1

H = %(A—ceT), (3)

whereA = [a,---,ay] is the data matrixA;, ¢, S, andn; are the data matrix, the centroid, the
covariance matrix, and the sample size of itlik class, respectively, is the global centroidk is
the number of classes, amds the vector of all ones. Then thetween-class scatter matrix,S
thewithin-class scatter matrix,s and thetotal scatter matrix Sare defined as follows (Fukunaga,
1990):

Sv=HwH,, S =HpH], andS = HH,.

It follows from the definition (Ye, 2005) that trat®,) measures the within-class cohesion,
tracdS,) measures the between-class separation, and &aceeasures the variance of the data
set, where the trace of a square matrix is the summation of its diagonal entaks (&d Van
Loan, 1996). Itis easy to verify th& = § + Sy. In the lower-dimensional space resulting from the
linear transformatioi®, the scatter matrices becorig = G'S,G, § = G'S,G, and§ = G'SG.

An optimal transformatiorG would maximize traces;) and minimize traces;). Classical LDA
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aims to compute the optim@ by solving the following optimization problem:

G=arg max trace((GT SWG) 'G' SOG) . (4)
GeR™":GTs,G=1,

Other optimization criteria, including those based on the determinant could @lssedd instead
(Duda et al., 2000; Fukunaga, 1990). The solution to the optimization proinléq. (4) is given

by the eigenvectors d&,'S, corresponding to the nonzero eigenvalues, provided that the within-
class scatter matri®, is nonsingular (Fukunaga, 1990). The column$dbrm the discriminant
vectors of classical LDA. Since the rank of the between-class scattaxmsdtiounded from above

by k— 1, there are at mo&t— 1 discriminant vectors in classical LDA. Note that classical LDA does
not handle singular scatter matrices, which limits its applicability to low-dimensiatal &everal
methods, including null space LDA and orthogonal LDA subspace LDégvproposed in the past

to deal with such singularity problem as discussed in Section 1.

2.1 Classical Uncorrelated LDA

Classical uncorrelated LDA (cULDA) is an extension of classical LDAe¥ property of cULDA
is that the features in the transformed space are uncorrelated, thesngethe redundancy in the
transformed space.

cULDA aims to find the optimal discriminant vectors that &eorthogonaf Specifically,
suppose vectorsp, @, - - -, @ are obtained, then the+ 1)-th vectorg . 1 is the one that maximizes
the Fisher criterion function (Jin et al., 2001):

_ 9S50
O S’

f(q) (5)
subject to the constraintgf, ;S@ =0, fori=1,---,r.

The algorithm in (Jin et al., 2001) finds the discriminant vectpissuccessively by solving a
sequence of generalized eigenvalue problems, which is expensilaagerand high-dimensional
data sets. However, it has been shown (Ye et al., 2004a) that the disaminagctors of CULDA can
be computed efficiently by solving the following optimization problem:

G=arg max trace( (G'SG) 1aT SbG> , (6)
ceR™".GTsG=,

whereG = [@1,---, @], if there exist¢ discriminant vectors in cULDA. Note that in Eq. (6), all
discriminant vectors is are computed simultaneously. The optimization problem above is a variant
of the one in Eq. (4). The optim& is given by the eigenvectors &f 1S,.

3. Null Space LDA

(Chen et al., 2000) proposed the null space LDA (NLDA) for dimendigneeduction, where
the between-class distance is maximized in the null space of the within-cldtesr soatrix. The
basic idea behind this algorithm is that the null spac&pmmay contain significant discriminant
information if the projection of5, is not zero in that direction (Chen et al., 2000; Lu et al., 2003).

3. Two vectors< andy areS§-orthogonal, ifx' Sy = 0.
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The singularity problem is thus overcome implicitly. The optimal transformationLdAcan be
computed by solving the following optimization problem:

G = argmaxrg,g_otraceG' $G). (7

The computation of the optim#& involves the computation of the null space &f, which may
be large for high-dimensional data. Indeed, the dimensionality of the natlespfS, is at least
m+ k — n, wherem s the data dimensionality is the number of classes, ands the sample size.
In (Chen et al., 2000), a pixel grouping method was used to extract geori@atures and reduce
the dimensionality of samples, and then NLDA was applied in the new featuce.sfpduang et al.,
2002) improved the efficiency of the algorithm in (Chen et al., 2000) byréraoving the null space
of the total scatter matri&. It is based on the observation that the null spac® @ the intersection
of the null space 0§, and the null space &,, asS = Sy + .

We can efficiently remove the null space®fas follows. LetH; = U3V T be the Singular Value
Decomposition (SVD) (Golub and Van Loan, 1996)Hf whereH; is defined in Eq. (3}l andV

are orthogonal,
(% 0
(5 %)

3 € R™! is diagonal with the diagonal entries sorted in the non-increasing ottt -arank(S ).
Then )

S=HH =UuzvTvzTUT =UuszzTUT =U <Z(; 8)UT. (8)
LetU = (Uy,U,) be a partition ofJ with U; € R™! andU, € R™ (™Y Then the null space &
can be removed by projecting the data onto the subspace spanned blutheofU;. LetS,, Sy,
and$S be the scatter matrices after the removal of the null spa& dhat is,

& = U7 U1, S =UJ S, and§ = U] SU;.

Note that onlyU; is involved for the projection. We can thus apply the reduced SVD computation
(Golub and Van Loan, 1996) dr with the time complexity oD(mr?), instead ofO(n?n). When
the data dimensionalityn is much larger than the sample siagethis leads to a big reduction in
terms of the computational cost.

With the computedJs, the optimal transformation of NLDA is given g = U1N, whereN is
obtained by solving the following optimization problem:

N = argmaxrg n_otracgNTSN). (9)

That is, the columns df! lie in the null space 0§, while maximizing traceNT§N).

Let W be the matrix so that the columns\&f span the null space &,. ThenN = WM, for
some matrixM, which is to be determined next. Since the constraint in Eq. (9) is satisfied with
N =W M for any M, the optimalM can be computed by maximizing

tracdMTWTSWM).

By imposing the orthogonality constraint &h (Huang et al., 2002), the optim# is given by the
eigenvectors owWTSW corresponding to the nonzero eigenvalues. With the compdited/, and
M above, the optimal transformation of NLDA is given by

G=UWM.
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Algorithm 1: NLDA (Null space LDA)

Input:  data matrixA

Output: transformation matrixG

1. Form the matridH; as in Eq. (3);

2. Compute the reduced SVD Bf asH; = U5, V]";

3. Form the matrice§, = U{ SU; andS, = U] SyUs;

4, Compute the null space/, of SN, via the eigen-decomposition;
5

6

. Construct the matriM, consisting of the top eigenvectorsWwf SW;
.G —UWM.

In (Huang et al., 2002), the matri%/ is computed via the eigen-decompositionSf More
specifically, let
0 O

S=Wa) (o o )"

be its eigen-decomposition, Whe[I&N,VN\I}~ is orthogonal and\, is diagonal with positive diagonal

entries. TheW forms the null space d&,. The pseudo-code for the NLDA algorithm is given in
Algorithm 1.

4. Orthogonal LDA

Orthogonal LDA (OLDA) was proposed in (Ye, 2005) as an extensforiassical LDA. The dis-
criminant vectors in OLDA are orthogonal to each other. Furthermordis applicable even
when all scatter matrices are singular, thus overcoming the singularity prolileas been applied
successfully in many applications, including document classification, fxmgnition, and gene
expression data classification. The optimal transformation in OLDA can ipguted by solving
the following optimization problem:

G = argmax,_pm trace((G'SG)"G'S,G), (10)

ZGTG:U

whereM ™ denotes the pseudo-inverse of matviXGolub and Van Loan, 1996). The orthogonality
condition is imposed in the constraint. The computation of the optimal transformati@hDA is
based on the simultaneous diagonalization of the three scatter matrices as {0¥9\2005).

From Eqg. (8)U- lies in the null space of botf, andS,. Thus,

T T
uTsouz(Ul‘;bul g), uTsNU:<U12”U1 8). (11)

DenoteB = ;XU Hp and letB = PSQT be the SVD ofB, whereP andQ are orthogonal andl is
diagonal. Define the matriX as

1
x—u( =P 0 (12)
0 Imt

It can be shown (Ye, 2005) th&tsimultaneously diagonaliz&, Sy, andS. That is
XTSX = Dp, XTSyX = Dy, andX"SX =Dy, (13)
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Algorithm 2: OLDA (Orthogonal LDA)

Input:  data matrixA

Output: transformation matrixz

1. ComputdJq, 2, andP;

2. Xq + U3 1Py, whereq = rank S);

3. Compute the QR decompositionXf asXq = QR
4.G—Q.

whereDy, D, andD; are diagonal with the diagonal entrieddg sorted in the non-increasing order.
The main resultin (Ye, 2005) has shown that the optimal transformation Bi*Qlan be computed
through the orthogonalization of the columns{nas summarized in the following theorem:

Theorem 4.1 Let X be the matrix defined in Eq. (12) and Igth¢ the matrix consisting of the first
g columns of X, where ¢ rank(S,). Let X, = QR be the QR-decomposition aof, Xvhere Q has
orthonormal columns and R is upper triangular. Then=&) solves the optimization problem in
Eq. (10).

From Theorem 4.1, only the firstcolumns ofX are used in computing the optim@al From
Eqg. (12), the firsg columns ofX are given by

Xq = Uiz Py, (14)

wherePy consists of the firsf columns of the matri¥. We can observe that; corresponds to the
removal of the null space & as in NLDA, WhiIeZt‘lPq is the optimal transformation when clas-
sical ULDA is applied to the intermediate (dimensionality) reduced space bydijecpon ofU;.
The OLDA algorithm can thus be decomposed into three steps: (1) Remaowaltspace of5; (2)
Apply classical ULDA as an intermediate step, since the reduced total seatt@rsingular; and (3)
Apply an orthogonalization step to the transformation, which correspontie QR decomposition
of Xy in Theorem 4.1. The pseudo-code for the OLDA algorithm is giveAlgorithm 2.

Remark 1 The ULDA algorithm in (Ye et al., 2004a; Ye, 2005) consists of steps R afmbve,

without the final orthogonalization step. Experimental results in Sectiomw siat OLDA is com-
petitive with ULDA. The rationale behind this may be that ULDA involves the mmiradundancy
in the transformed space and is susceptible to overfitting; OLDA, on the b#retf, removes the
R matrix through the QR decomposition in the final orthogonalization step hwhimoduces the
redundancy in the reduced space, but may be less susceptible tatiogerfi

5. Relationship Between NLDA and OLDA

Both the NLDA algorithm and the OLDA algorithm result in orthogonal transi@tions. Our
empirical results show that they often lead to similar performance, espeaaltygh-dimensional
data. This implies there may exist an intrinsic relationship between these twidtlaigar In this
section, we take a closer look at the relationship between NLDA and OLDxeldpecifically, we
show that NLDA is equivalent to OLDA, under a mild condition

Cl:rankKS) =rankS,) +rank(Sy), (15)
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which holds in many applications involving high-dimensional data (see Sec}ioit & easy to
verify from the definition of the scatter matrices that rek < rank(S,) 4 rank(Sy).
From Eqs. (8) and (11), the null spatk, of § can be removed, as follows:

§ =UfSU; =UJSU1 +Uf S =S+ S e RV

Since the null space & is the intersection of the null space &f and the null space d&,, the
following equalities hold:

rank$) =rankS) =t, rank'$) =rank'S,), and rankS,) = rank(Sy).
Thus condition C1 is equivalent to
rank §) = rank'S,) +rank(Sy).

The null space o, and the null space &, are critical in our analysis. The relationship between
these two null spaces is studied in the following lemma.

Lemma5.1 Let§, S, andS, be defined as above and=trank(§). Let{wy,---,w} forms an
orthonormal basis for the null space &, and let{bs,---,bs} forms an orthonormal basis for the
null space ofS,. Then,{w,---,w;,by,---,bs} are linearly independent.

Proof Prove by contradiction. Assume there exiss and(j’s, not all zeros, such that

r s
E;GﬂNi+-:z Bjb; =0.
4 &

It follows that

0= (ZaiWﬁiijJ)TSN(vawjiﬁij) = (iﬁjbj>T§”<,§1ijj> ’

sincew;’s lie in the null space o8,. Hence,

(éls,-bj>Té<§lijj> - (, 1ijj)TéN<éijj>+(éijj)Té@(iijj)

= 0
Since§ is nonsingular, we havg?z1 Bjbj = 0. ThusB; =0, for all j, since{by,---,bs} forms an
orthonormal basis for the null space®f
Similarly, we have

r S T r S
0= (Zlonwi + Zlﬁjbj> S (Zaiwi + Zlﬁjbj>
1= = 1= =

n

|
VR
M-
S
=
N———
_‘
é{)z
VY
M-
S,
=
N———

and
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Henceg{zlalwi =0, anda; = 0, for alli, since{w,---,w; } forms are orthonormal basis for the
null space of5,. This contradicts our assumption that not all of ¢his and the3;’s are zero, Thus,
{wia, -, W, by, -+, bs} are linearly independent. |

Next, we show how to compute the optimal transformation of NLDA using thesenivilo
spaces. Recall that in NLDA, the null space®fmay be removed first. In the following dis-
cussion, we work on the reduced scatter matr&e<s,, andS directly as in Lemma 5.1. The main
result is summarized in the following theorem.

Theorem 5.1 Let U;, §, S, andS, be defined as above and=trank(S). Let R= [W,B], where

W = |wy, -, W], B=[by,---,bg], and{ws,--- ,w;,by,-- -, bs} are defined as in Lemma 5.1. Assume
that condition C1: rankS) = rank(S,) +rank(Sy) holds. Then G= U;W M solves the optimization
problem in Eq. (9), where the matrix M, consisting of the eigenvectors'&W, is orthogonal.

Proof From Lemma5.1{wy,---, W, by, ---,bs} € Rt is linearly independent. Condition C1 implies
thatt =r +s. Thus{wy,---,w,by,---,bs} forms a basis for R that is,R = [W, B] is nonsingular.
It follows that

R'SR = R'SR+R'SR
WISW W'§B wTS,wW W'S,B
BT&w B'&B )T\ BT§wW E'§,B

[ WT§W 0 (0 0
N 0 0 0 B'S,B /-
Since matrixi‘«iTSRhas full rankWT §W, the projection of, onto the null space &,, is non-
singular. LetWTSW = MA,MT be the eigen-decomposition 8T SW, whereM is orthogonal

andA, is diagonal with positive diagonal entries (note tM&tS,W is positive definite). Then, from
Section 3, the optimal transformati@of NLDA is given by G = U;W M. [ |

Recall that the matrid in NLDA is computed so that tra¢®1"WT S W M) is maximized. Since
tracg QAQ" ) = tracdA) for any orthogona®, the solution in NLDA is invariant under an arbitrary
orthogonal transformation. Thus = U;W is also a solution to NLDA, sincM is orthogonal, as
summarized in the following corollary.

Corollary 5.1 Assume condition C1: raf&) = rank(S,) + rank(Sy) holds. Let Y and W be
defined as in Theorem 5.1. Then=3J;W solves the optimization problem in Eq. (9). That is,
G =U4W is an optimal transformation of NLDA.

Corollary 5.1 implies that when condition C1 holds, Step Rlgorithm 1 may be removed,
as well as the formation dof, in Step 3 and the multiplication df;W with M in Step 6. This
improves the efficiency of the NLDA algorithm. The improved NLDA (iNLDA) aligthm is given
in Algorithm 3. Note that it is recommended in (Liu et al., 2004) that the maximization of the
between-class distance in Step 54dforithm 1 should be removed to avoid possible overfitting.
However, Corollary 5.1 shows that under condition C1, the removal g@f Steas no effect on the
performance of the NLDA algorithm.

Next, we show the equivalence relationship between NLDA and OLDA nwdmndition C1
holds. The main result is summarized in the following theorem.
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Algorithm 3: INLDA (improved NLDA)

Input:  data matrixA

Output: transformation matrix;

1. Form the matrit; as in Eq. (3);

2. Compute the reduced SVD Bf asH; = U5, V]";

3. Construct the matri§, = U] SyUs;

4. Compute the null spacd/, of §W, via the eigen-decomposition;
5. G« U;W.

Theorem 5.2 Assume that condition C1: raf) = rank(S,) + rank(Sy) holds. Let Y and W be
defined as in Theorem 5.1. Then=3J1W solves the optimization problem in Eqg. (10). That is,
under the given assumption, OLDA and NLDA are equivalent.

Proof Recall that the optimization involved in OLDA is
G= argmaéelRmxp:GTG:utrace((S-ﬁgg,) : (16)

where§ = G'SG andS;, = G'S,G. From Section 4, the maximum numbér,of discriminant
vectors is no larger thag which is the rank of,. Recall that

q=rankS,) =rank§) =rank§) —rankSy) =,

wherer is the dimension of the null space Si.
Based on the property of the trace of matrices, we have

trace((S)"S;) +trace((S)7S;) =trace((F) ") =rank§) <q=r,

where the second equality follows since trageA) = rank(A) for any square matri¥, and the
inequality follows since the rank & < R”‘ is at most < q.

It follows that tracg (§) *S;) <r, since tracé¢(S) "S};), the trace of the product of two positive
semi-definite matrices, is always nonnegative. Next, we show that the maxsraghieved, when
G=UW.

Recall that the dimension of the null spa@é, of SN isr. Thatis,W € R™". It follows that
(UW)TS(UW) € R™", and rank(U;W)T S (U;W)) = r. Furthermore,

(UW) TS, (UW) =WT§W =0,
asW forms the null space (fﬁN. It follows that,
trace(((U1W)T5(U1W))+ (U1W)TSN(U1W)) —0.
Hence,
trace(((U1W)TS(U1W))+ (U1W)TSb(U1W)> — rank((UW) TS (UW))

- trace(((U1W)TS(U1W))+ ((U1W)TSN(U1W))) —r.
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ThusG = U;W solves the optimization problem in Eq. (10). That is, OLDA and NLDA are\egu
lent. |

Theorem 5.2 above shows that under condition C1, OLDA and NLDA gue/alent. Next, we
show that condition C1 holds when the data points are linearly indepensisatranarized below.

Theorem 5.3 Assume that condition C2, that is, the n data points in the data matgxRX™" are
linearly independent, holds. Then condition C1: ré&k = rank(S,) + rank(Sy) holds.

Proof Since then columns inA are linearly independenityy = A— ce' is of rankn— 1. That is,
rank’S) = n— 1. Next we show that rarf§,) = k— 1 and rankS,) = n—k. Thus condition C1
holds.

It is easy to verify that ran}&,) < k—1 and rankS,) < n—k. We have

n—1=rank§) <rankS) +rankSy) < (k—1)+(n—k)=n—1. a7

It follows that all inequalities in Eq. (17) become equalities. That is,
rankS,) = k—1, rank(Sy) = n—k, and rankS) = rank(S,) + rank(Sy). (18)
Thus, condition C1 holds. [ |

Our experimental results in Section 7 show that for high-dimensional d&tdintar indepen-
dence condition C2 holds in many cases, while condition C1 is satisfied in ns&st CEhis explains
why NLDA and OLDA often achieve the same performance in many applicatwo$ving high-
dimensional data, such as text documents, face images, and geneiexpdasa.

6. Regularized Orthogonal LDA

Recall that OLDA involves the pseudo-inverse of the total scatter matrigsebstimation may not
be reliable especially for undersampled data, where the number of dimeesmeeds the sample
size. In such case, the parameter estimates can be highly unstable, geirtg high variance.
By employing a method of regularization, one attempts to improve the estimatesubgtireg this
bias variance trade-off (Friedman, 1989). We employ the regularizatadmitgue to OLDA by
adding a constarX to the diagonal elements of the total scatter matrix. HereO is known as
the regularization parameter The algorithm is called regularized OLDA (ROLDA). The optimal
transformationG", of ROLDA can be computed by solving the following optimization problem:

G' = argmax_gm. G:Iitrace< (GT(S +AIm)G) " GTSOG) . (19)

The optimalG" can be computed by solving an eigenvalue problem as summarized in the fgllowin
theorem (The proof follows Theorem 3.1 in (Ye, 2005) and is thus omitted):

Theorem 6.1 Let x; be the matrix consisting of the first q eigenvectors of the matrix

(S+Nm) 'S (20)

corresponding to the nonzero eigenvalues, wheraank(S,). Let ){5 = QR be the QR-decomposition
of X3, where Q has orthonormal columns and R is upper triangular. Thea@ solves the opti-
mization problem in Eq. (19).
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Theorem 6.1 implies that the main computation involved in ROLDA is the eigen-dexsitign of
the matrix(§ +)\Im)‘1Sb. Direct formation of the matrix is expensive for high-dimensional data,
as it is of sizem by m. In the following, we present an efficient way of computing the eigen-
decomposition. Denote

B" = (22 +Aly)"Y/2U] Hy, (21)

and let y
B"=P'Z(Q)" (22)
be the SVD oB". From Egs. (8) and (11), we have
e _ (ZZ+Al)~t 0 T UfSUi 0,7
(S+Am) S = U< 0 ST LAY o o)V

(IR 0 e
0 0

< (S2+Alp) Y28

—~

~ U B)T(s2+Al)Y2 0 >UT

0
U ( (22 Al 2P Er (5T (P)T (224 M) Y2 0 )UT
0 0 '

t O

It follows that the columns of the matrix
Us(Z2 + ) Y/2R,

form the eigenvectors df + Alm) ~1S, corresponding to the tognonzero eigenvalues, wheng
denotes the firsg columns ofP". That is,X; in Theorem 6.1 is given by

X§ = Up (27 +Al) /2P, (23)

The pseudo-code for the ROLDA algorithm is giverAllgorithm 4 . The computations in ROLDA
can be decomposed into two components: the first component involves thig, tdate R™ !, of
high dimensionality but independent®fwhile the second component involves the matrix,

52+ Alp) 2R, e R,
t q

of low dimensionality. When we apply cross-validation to search for the optinfiadm a set of
candidates, we repeat the computations involved in the second compagrthas making the
computational cost of model selection small.
More specifically, let
AN={N,--- A} (24)

be the candidate set for the regularization parametermhere|/\| denotes the size of the candidate
set/\. We applyv-fold cross-validation for model selection (we choase 5 in our experiment),
where the data is divided into subsets of (approximately) equal size. All subsets are mutually
exclusive, and in theth fold, thei-th subset is held out for testing and all other subsets are used for
training. For each\j(j = 1,---,|A|), we compute the cross-validation accuracy, Agg¢udefined

as the mean of the accuracies for all folds. The optimal regularization Xalugthe one with

j* = argma¥Accu(j). (25)
i
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Algorithm 4: ROLDA (Regularized OLDA)

Input:  data matrixA and regularization valug
Output: transformation matrixG"

1. Computdy, %, andPy, whereq = rank();

2. X(; — U1(2t2+)\lt)_1/2P(5,

3. Compute the QR decompositionXf asX; = QR
4.G" —Q.

The K-Nearest Neighbor algorithm witk = 1, called 1-NN, is used for computing the accuracy.
The pseudo-code for the model selection procedure in ROLDA is givatgiorithm 5. Note that
we apply the QR decomposition to

(Z2+ ) Y/2P, e RV (26)
instead of
X§ = Us(ZZ +Nl) 2P, € R™, (27)
as done in Theorem 6.1, sindg has orthonormal columns.

Algorithm 5: Model selection for ROLDA

Input:  data matrixA and candidate sét = {A1,---, Az }

Output: optimal regularization valug;-

1. Fori=1:v * v-fold cross-validation */

2. Construct andA'; )

[* Al = i-th fold, for training andA' = rest, for testing */
ConstrucHy, andH; usingA' as in Egs. (2) and (3), respectively;
Compute the reduced SVD Bf asH; = ulztvf; t < rank(Hy);
Hb,L — Ube,Aq — ranlf(Hb);

A UJA; A« UJA'; I* Projection byU; */
FOFjZlZ|/\| [* )\1,-'~,)\‘/\‘ */
Dj (Zt2+)\j|t)7l/2; B — DjHpL
Compute the SVD 8" asB" = P'3"(Q")T;

10.  Dgp < DjPRy; Compute the QR decompositionDfp asDgp = QR

1. A <QALA —QTA;

12.  Run1-NN on(A‘L,AiL) and compute the accuracy, denoted as Acgis

13. EndFor

14. EndFor

15. Accy(j) < L5V, Aceu(i, j);

16. j* — argmaxAccu(j);

17. OutputAj- as the optimal regularization value.

©o N OA®

6.1 Time Complexity

We conclude this section by analyzing the time complexity of the model selectice¢ure de-
scribed above.
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Line 4 in Algorithm 5 takesO(n?m) time for the reduced SVD computation. Lines 5 and 6
take O(mtk) = O(mnk) and O(tmn) = O(mr?) time, respectively, for the matrix multiplications.
For each\j, for j = 1,---,|A|, of the "For” loop, Lines 9 and 10 tak®(tk?) = O(nk?) time for the
SVD and QR decomposition and matrix multiplication. Line 11 ta®e¢ktn) = O(kr?) time for
the matrix multiplication. The computation of the classification accuracy by 1-NNne 12 takes
O(n%k/v) time, as the size of the test sé},, is aboutn/v. Thus, the time complexity; (|A|), of the
model selection procedure is

T(A]) = O(v(n®m+mrf +mnk+ [A|(nk + kr? +n?k/v))) .

For high-dimensional and undersampled data, where the samplensiganuch smaller than the
dimensionalitym, the time complexity is simplified to

T(|A]) = O (v(n*m+|A|n?k)) = O <vn2m <1+ :1/\0) :

When the numbek, of classes in the data set is much smaller than the dimensiomalittye over-
head of estimating the optimal regularization value among a large candidateyskésmall. Our
experiments on a collection of high-dimensional and undersampled dat3gsgen 7) show that
the computational cost of the model selection procedure in ROLDA growsdysés |/\| increases.

7. Experimental Studies

In this section, we perform extensive experimental studies to evaluatestheetital results and the
ROLDA algorithm presented in this paper. Section 7.1 describes our tessets. We perform a
detailed comparison of NLDA, iNLDA, and OLDA in Section 7.2. Results amnesgstent with our
theoretical analysis. In Section 7.3, we compare the classification perfoentd NLDA, iNLDA,
OLDA, ULDA, ROLDA, and SVM. The K-Nearest-Neighbor (K-NN) algthm with K = 1 is used
as the classifier for all LDA based algorithms.

7.1 Data Sets

We used 14 data sets from various data sources in our experimentassilinkestatistics of our test
data sets are summarized in Table 2.

The first five data sets, including spambésealance, wine, waveform, and vowel, are low-
dimensional data from the UCI Machine Learning Repository. The nex data sets, including
text documents, face images, and gene expression data, have highidiraktys rel, re0, and
tr4l are three text document data sets, where rel and re0 are dedwedReuters-21578ext
categorization test collection Distribution £(gnd tr41 is derived from the TREC-5, TREC-6,
and TREC-7 collection$;0RL,” AR,2 and PIX are three face image data sets; GCM, colon, and
ALLAMLA4 are three gene expression data sets (Ye et al., 2004b).

. Only a subset of the original spambase data set is used in our study.
. http:/lwww.daviddlewis.com/resources/testcollections/reuters21578/
. http:/itrec.nist.gov

. http://www.uk.research.att.com/facedatabase.html

. http:/irvil.ecn.purdue.eduéleix/aleix face DB.html

. http://peipa.essex.ac.uk/ipa/pix/faces/manchester/test-hard/

© 00 ~NO U~
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Data Set Sample sizen) # of dimensiong # of classes
training test total (m) (K)
spambase 400 600 1000 56 2
balance 416 209 625 4 3
wine 118 60 178 13 3
waveform 300 500 800 21 3
vowel 528 462 990 10 11
rel — — 490 3759 5
re0 — — 320 2887 4
tr41 — — 210 7454 7
ORL — — 400 10304 40
AR — — 650 8888 50
PIX — — 300 10000 30
GCM — — 198 16063 14
colon — — 62 2000 2
ALLAMLA4 — — 72 7129 4

Table 2: Statistics of our test data sets. For the first five data sets, wehesgiven partition of
training and test sets, while for the last nine data sets, we did random splittiagsining
and test sets of ratio 2:1.

7.2 Comparison of NLDA, iNLDA, and OLDA

In this experiment, we did a comparative study of NLDA, iNLDA, and OLD/Ar Ehe first five
low-dimensional data sets from the UCI Machine Learning Repository,sed the given splitting
of training and test sets. The result is summarized in Table 3. For the nexhigh-dimensional
data sets, we performed our study by repeated random splittings into tramirtgst sets. The data
was partitioned randomly into a training set, where each class consists thitds-of the whole
class and a test set with each class consisting of one-third of the whote dias splitting was
repeated 20 times and the resulting accuracies of different algorithmseféirghten splittings are
summarized in Table 4. Note that the mean accuracy for the 20 different gdittil be reported
in the next section. The rank of three scatter matri€gsS,, andg, for each of the splittings is
also reported.

The main observations from Table 3 and Table 4 include:

e For the first five low-dimensional data sets, we have (&k= k — 1, and rankS,) =
rank(S) = m, wherem is the data dimensionality. Thus the null spacéSpfis empty, and
both NLDA and iNLDA do not apply. However, OLDA is applicable and théueed dimen-
sionality of OLDA isk— 1.

¢ For the next nine high-dimensional data sets, condition C1:(8nk rank(S,) +rank(Sy) is
satisfied in all cases except the re0 data set. For the re0 data set, eili&)ra rank'S,) +
rank(Sy) or rankS) = rank(S,) + rank(S,) — 1 holds, that is, condition C1 is not severely
violated for re0. Note that re0 has the smallest number of dimensions amonméhleigh-
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Data Set

spambase balance wine waveform vowel
NLDA — — — — —

Method iNLDA — — — — —
OLDA 88.17 86.60 98.33 73.20 56.28

S 1 2 2 2 10
Rank Sw 56 4 13 21 10
S 56 4 13 21 10

Table 3: Comparison of NLDA, iNLDA, and OLDA on classification accyréio percentage) us-
ing five low-dimensional data sets from UCI Machine Learning Reposifting ranks of
three scatter matrices are reported.

dimensional data sets. From the experiments, we may infer that condition CXadikety
to hold for high-dimensional data.

e NLDA, iNLDA, and OLDA achieve the same classification performance in afles when
condition C1 holds. The empirical result confirms the theoretical analysisatids 5. This
explains why NLDA and OLDA often achieve similar performance for higihehsional data.
We can also observe that NLDA and iNLDA achieve similar performance iceaks.

e The numbers of training data points for the nine high-dimensional data (irathe erder as
in the table) are 325, 212, 140, 280, 450, 210, 125, 68, and 4&atsgly. By examining
the rank ofS in Table 4, we can observe that the training data in six out of nine data sets,
including tr41, ORL, AR, GCM, colon, and ALLAMLA4, are linearly indeptent. That is, the
independence assumption C2 from Theorem 5.3 holds for these dath setéear from the
table that for these six data sets, condition C1 holds and NLDA, iNLDA, dnd/Oachieve
the same performance. These are consistent with the theoretical anaysidion 5.

e For the re0 data set, where condition C1 does not hold, i.e.(8nk rank'S,) + rank(Sy),
OLDA achieves higher classification accuracy than NLDA and iINLDA. &lethat the re-
duced dimensionality of OLDA equals raff) = g. The reduced dimensionality in NLDA
and iNLDA equals the dimension of the null spac&gfwhich equals ranl§) — rank(S,) <
rankS,). That is, OLDA keeps more dimensions in the transformed space than NbDA a
iINLDA. Experimental results in re0 show that these extra dimensions useldiv@nprove
its classification performance.

7.3 Comparative Studies on Classification

In this experiment, we conducted a comparative study of NLDA, iNLDA, @l.DLDA, ROLDA,

and SVM in terms of classification. For ROLDA, the optimas estimated through cross-validation
on a candidate sefy = {)\j}‘j/il. Recall thatT (]A]) denotes the computational cost of the model
selection procedure in ROLDA, whej#&| is the size of the candidate set of the regularization values.

We have performed model selection on all nine high-dimensional data ssgsdifferent values of
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[ DataSet ][ Method | Ten different splittings into training and test sets ofo&il ]
NLDA | 92.73 93.33 9333 0394 9455 0515 09636 9515 9212 0OB.94
iNLDA | 92.73 93.33 93.33 9394 9455 9515 96.36 95.15 9212 9B.94

rel OLDA | 92.73 93.33 93.33 93.94 0455 0515 9636 9515 92.12 98.94
S 4 4 4 4 4 4 4 4 4 4
Sy 316 318 319 316 316 320 316 318 317 318
S 320 322 323 320 320 324 320 322 321 322

NLDA | 64.81 62.04 6481 6852 8796 7037 7130 73.15 87.04 75.93
iNLDA | 65.74 62.04 6481 69.44 8796 70.37 7130 7222 87.04 75.93

re0 OLDA | 7593 7500 77.78 7407 8796 8056 74.07 78.70 87.04 79.63
S 3 3 3 3 3 3 3 3 3 3
Sw 205 204 203 203 205 204 201 203 203 205
S 207 206 205 205 208 206 203 205 206 207
NLDA | 97.14 95.71 97.14 9857 97.14 98,57 100.0 9571 98,57 95.71
iNLDA | 97.14 9571 97.14 9857 97.14 9857 100.0 9571 9857 95.71
tr4l OLDA | 97.14 9571 97.14 9857 97.14 9857 100.0 9571 9857 95.71
S 6 6 6 6 6 6 6 6 6 6
Sw 133 133 133 133 133 133 133 133 133 133
S 139 139 139 139 139 139 139 139 139 139
NLDA | 99.17 96.67 98.33 98.33 95.00 95.83 98.33 97.50 98.33 95.83
iNLDA | 99.17 96.67 98.33 98.33 95.00 9583 9833 9750 98.33 95.83
ORL OLDA | 99.17 96.67 98.33 98.33 95.00 9583 9833 97.50 98.33 95.83
S 39 39 39 39 39 39 39 39 39 39
Sy 240 240 240 240 240 240 240 240 240 240
S 279 279 279 279 279 279 279 279 279 279
NLDA | 96.50 9450 96.50 94.00 9350 9450 9350 97.00 94.00 96.00
iNLDA | 96.50 9450 96.50 94.00 93.50 94.50 9350 97.00 94.00 96.00
AR OLDA | 9650 9450 96.50 94.00 9350 9450 9350 97.00 94.00 96.00
S 49 49 49 49 49 49 49 49 49 49
Sw 400 400 400 400 400 400 400 400 400 400
S 449 449 449 449 449 449 449 449 449 449

NLDA | 98.89 97.78 98.89 97.78 98.89 9889 9889 97.78 98.89 9}.78
iNLDA | 98.89 97.78 9889 97.78 98.89 98.89 98.89 97.78 98.89 9}.78

PIX OLDA | 9889 97.78 98.89 97.78 98.89 98.89 98.89 97.78 98.89 9}.78
S 29 29 29 29 29 29 29 29 29 29
Sw 178 179 179 179 178 180 179 179 180 178
S 207 208 208 208 207 209 208 208 209 207

NLDA | 8154 80.00 8154 83.08 84.62 87.69 7538 78.46 84.62 88.08
iNLDA | 81.54 80.00 8154 83.08 84.62 87.69 7538 7846 84.62 8B.08

GCM OLDA | 81.54 80.00 8154 83.08 84.62 87.69 7538 7846 84.62 838.08
S 13 13 13 13 13 13 13 13 13 13
Sw 111 111 111 111 111 111 111 111 111 11
S 124 124 124 124 124 124 124 124 124 124

NLDA | 91.18 94.12 100.0 97.06 91.18 91.18 97.06 94.12 94.12 9y.06
iNLDA | 91.18 94.12 1000 97.06 91.18 91.18 97.06 94.12 9412 9}.06

colon OLDA | 91.18 94.12 100.0 97.06 91.18 91.18 97.06 94.12 94.12 97.06
S 1 1 1 1 1 1 1 1 1 1
Sy 66 66 66 66 66 66 66 66 66 66
S 67 67 67 67 67 67 67 67 67 67
NLDA | 95.83 91.67 95.83 9583 8750 9583 9583 100.0 91.67 95.83
iNLDA | 95.83 91.67 9583 9583 87.50 9583 9583 100.0 91.67 95.83
ALLAML4 OLDA | 9583 91.67 9583 9583 8750 95.83 9583 100.0 91.67 95.83
S 3 3 3 3 3 3 3 3 3 3
Sw 44 44 44 44 44 44 44 44 44 44
S a7 a7 47 47 a7 a7 47 a7 a7 47

Table 4: Comparison of classification accuracy (in percentage) for&\iMLDA, and OLDA us-
ing nine high-dimensional data sets. Ten different splittings into training atcgéés of
ratio 2:1 (for each of th& classes) are applied. The rank of three scatter matrices for each
splitting is reported.

1200



ANALYSIS OF NULL SPACE AND ORTHOGONAL LINEAR DISCRIMINANT ANALYSIS

[DataSet [ NLDA iNLDA OLDA ULDA ROLDA SVM ]
rel 9433 (1.72) 94.33(L.72) 94.33(L.72) 04.76(L67) 941841 9454 (1.88)
re0 74.03(9.22) 74.15(8.19) 79.54(4.73) 79.72(4.82) 8578638 85.87 (3.34)
tr41 97.00(2.01) 97.00(2.01) 97.00(2.01) 97.14(2.02) 97.104p 97.14 (2.01)
ORL 97.29(1.79) 97.29(1.79) 97.29(1.79) 92.75(1.82) 97.5@4) 97.55 (1.34)
AR 95.42(1.30) 95.42(1.30) 95.42(1.30) 94.37 (1.46) 97.382AL 95.75 (1.43)
PIX 98.22 (1.41) 98.22(1.41) 98.22(1.41) 96.61(1.92) 98.23A1 98.50 (1.24)
GCM 81.77(3.61) 81.77(3.61) 81.77(3.61) 80.46(3.71) 82.69A8 75.31 (4.45)
Colon 86.50 (5.64) 86.50 (5.64) 86.50 (5.64) 86.50 (5.64) 87.006)6 87.25 (5.25)
ALLAMLA || 93.54(3.70) 93.54(3.70) 93.54(3.70) 93.75(3.45) 93.785B 93.70 (3.40)

Table 5: Comparison of classification accuracy (in percentage) foriffereht methods: NLDA,
iINLDA, OLDA, ULDA, ROLDA, and SVM using nine high-dimensional datatse The
mean accuracy and standard deviation (in parenthesis) from 20 differes are reported.

|A]. We have observed that(|A|) grows slowly ag/\| increases, and the rati©®(1024)/T (1), on
all nine data sets ranges from 1 to 5. Thus, we can run model selectiapaukirge candidate set
of regularization values, without dramatically increasing the cost. In thefwitpexperiments, we
apply model selection to ROLDA with a candidate set of $ize= 1024, where

Aj=aj/(1-aj), (28)

with {a; }‘Ql uniformly distributed between 0 and 1. As for SVM, we employed the crasigation

to estimate the optimal parameter using a candidate set of size 50. To compenentiflassifi-
cation algorithms, we applied the same experimental setting as in Section 7.2. littivegspto
training and test sets of ratio 2:1 (for each of helasses) was repeated 20 times. The final accu-
racy reported was the average of the 20 different runs. The sthddaiation for each data set was
also reported. The result on the nine high-dimensionality data sets is sumnaritable 5.

As observed in Section 7.2, OLDA has the same performance as NLDA drdANh all
cases except the re0 data set, while NLDA and iNLDA achieve similar pedioce in all cases.
Overall, ROLDA and SVM are very competitive with other methods. SVM pantowell in all
cases except GCM. The poor performance of SVM in GCM has also dlesarved in (Li et al.,
2004). ROLDA outperforms OLDA for re0, AR, and GCM, while it is comalale to OLDA for
all other cases. This confirms the effectiveness of the regularizatigiedpn ROLDA. Note that
from Remark 1, ULDA is closely related to OLDA. However, unlike OLDA, DA does not apply
the final orthogonalization step. Experimental result in Table 5 confirmsfteetieeness of the
orthogonalization step in OLDA, especially for three face image data sets@m

8. Conclusions

In this paper, we present a computational and theoretical analysis of D&oblased algorithms,
including null space LDA and orthogonal LDA. NLDA computes the discriminaectors in the
null space of the within-class scatter matrix, while OLDA computes a set obgotial discrimi-
nant vectors via the simultaneous diagonalization of the scatter matrices.hn@heyeen applied
successfully in many applications, such as document classification,deagnition, and gene ex-
pression data classification.
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Both NLDA and OLDA result in orthogonal transformations. Howeverythpplied different
schemes in deriving the optimal transformation. Our theoretical analysis ipethes shows that un-
der a mild condition C1 which holds in many applications involving high-dimensidat, NLDA
is equivalent to OLDA. Based on the theoretical analysis, an improvedithgofor null space
LDA algorithm, called iINLDA, is proposed. We have performed extensigeamental studies on
14 data sets, including both low-dimensional and high-dimensional datalt®Rbave shown that
condition C1 holds for eight out of the nine high-dimensional data sets, wiglaull space 0§,
is empty for all five low-dimensional data. Thus, NLDA may not be applicatmédiv-dimensional
data, while OLDA is still applicable in this case. Results are also consistent wittheoretical
analysis. That is, for all cases when condition C1 holds, NLDA, iNLDAd ®LDA achieve the
same classification performance. We also observe that for other cabesowndition C1 violated,
OLDA outperforms NLDA and iNLDA, due to the extra number of dimensionglusé®LDA. We
also compare NLDA, iNLDA, and OLDA with uncorrelated LDA (ULDA), whiaoes not perform
the final orthogonalization step. Results show that OLDA is very competititte WL DA, which
confirms the effectiveness of the orthogonalization step used in OLDAefpirical and theoret-
ical results presented in this paper provide further insights into the ndttinese two LDA based
algorithms.

We also present the ROLDA algorithm, which extends the OLDA algorithm Iplyapg the
regularization technique. Regularization may stabilize the sample covariamte estimation and
improve the classification performance. ROLDA involves the regularizatevameterA, which
is commonly estimated via cross-validation. To speed up the cross-validatioesgt we decom-
pose the computations in ROLDA into two components: the first component isvoledrices of
high dimensionality but independent df while the second component involves matrices of low
dimensionality. When searching for the optimdom a candidate set, we repeat the computations
involved in the second component only. A comparative study on classificsttiowvs that ROLDA
is very competitive with OLDA, which shows the effectiveness of the regation applied in
ROLDA.

Our extensive experimental studies have shown that condition C1 hold®&t high-dimensional
data sets. We plan to carry out theoretical analysis on this property inttive fisome of the theo-
retical results in (Hall et al., 2005) may be useful for our analysis.

The algorithms in (Yang et al., 2005; Yu and Yang, 2001) are closely tetatéhe null space
LDA algorithm discussed in this paper. The analysis presented in this papebe useful in un-
derstanding why these algorithms perform well in many applications, e$lgecitace recognition.
We plan to explore this further in the future.
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