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Abstract

Dimensionality reduction is an important pre-processing step in many applications. Linear discrim-
inant analysis (LDA) is a classical statistical approach for supervised dimensionality reduction. It
aims to maximize the ratio of the between-class distance to the within-class distance, thus maximiz-
ing the class discrimination. It has been used widely in manyapplications. However, the classical
LDA formulation requires the nonsingularity of the scattermatrices involved. For undersampled
problems, where the data dimensionality is much larger thanthe sample size, all scatter matrices
are singular and classical LDA fails. Many extensions, including null space LDA (NLDA) and
orthogonal LDA (OLDA), have been proposed in the past to overcome this problem. NLDA aims
to maximize the between-class distance in the null space of the within-class scatter matrix, while
OLDA computes a set of orthogonal discriminant vectors via the simultaneous diagonalization of
the scatter matrices. They have been applied successfully in various applications.

In this paper, we present a computational and theoretical analysis of NLDA and OLDA. Our
main result shows that under a mild condition which holds in many applications involving high-
dimensional data, NLDA is equivalent to OLDA. We have performed extensive experiments on
various types of data and results are consistent with our theoretical analysis. We further apply the
regularization to OLDA. The algorithm is called regularized OLDA (or ROLDA for short). An effi-
cient algorithm is presented to estimate the regularization value in ROLDA. A comparative study on
classification shows that ROLDA is very competitive with OLDA. This confirms the effectiveness
of the regularization in ROLDA.

Keywords: linear discriminant analysis, dimensionality reduction,null space, orthogonal matrix,
regularization

1. Introduction

Dimensionality reduction is important in many applications of data mining, machine learning, and
bioinformatics, due to the so-calledcurse of dimensionality(Bellmanna, 1961; Duda et al., 2000;
Fukunaga, 1990; Hastie et al., 2001). Many methods have been proposed for dimensionality reduc-
tion, such as principal component analysis (PCA) (Jolliffe, 1986) and linear discriminant analysis
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(LDA) (Fukunaga, 1990). LDA aims to find the optimal discriminant vectors (transformation) by
maximizing the ratio of the between-class distance to the within-class distance, thus achieving the
maximum class discrimination. It has been applied successfully in many applications including
information retrieval (Berry et al., 1995; Deerwester et al., 1990), face recognition (Belhumeour
et al., 1997; Swets and Weng, 1996; Turk and Pentland, 1991), and microarray gene expression data
analysis (Dudoit et al., 2002). However, classical LDA requires the so-calledtotal scatter matrixto
be nonsingular. In many applications such as those mentioned above, all scatter matrices in ques-
tion can be singular since the data points are from a very high-dimensional space and in general the
sample size does not exceed this dimensionality. This is known as thesingularityor undersampled
problem(Krzanowski et al., 1995).

In recent years, many approaches have been proposed to deal with such high-dimensional, un-
dersampled problem, including null space LDA (NLDA) (Chen et al., 2000;Huang et al., 2002),
orthogonal LDA (OLDA) (Ye, 2005), uncorrelated LDA (ULDA) (Ye et al., 2004a; Ye, 2005), sub-
space LDA (Belhumeour et al., 1997; Swets and Weng, 1996), regularized LDA (Friedman, 1989),
and pseudo-inverse LDA (Raudys and Duin, 1998; Skurichina and Duin, 1996). Null space LDA
computes the discriminant vectors in the null space of the within-class scatter matrix. Uncorrelated
LDA and orthogonal LDA are among a family of algorithms for generalized discriminant analysis
proposed in (Ye, 2005). The features in ULDA are uncorrelated, whilethe discriminant vectors in
OLDA are orthogonal to each other. Subspace LDA (or PCA+LDA) applies an intermediate di-
mensionality reduction stage such as PCA to reduce the dimensionality of the original data before
classical LDA is applied. Regularized LDA uses a scaled multiple of the identity matrix to make
the scatter matrix nonsingular. Pseudo-inverse LDA employs the pseudo-inverse to overcome the
singularity problem. More details on these methods, as well as their relationship, can be found in
(Ye, 2005). In this paper, we present a detailed computational and theoretical analysis of null space
LDA and orthogonal LDA.

In (Chen et al., 2000), the null space LDA (NLDA) was proposed, where the between-class
distance is maximized in the null space of the within-class scatter matrix. The singularity problem
is thus implicitly avoided. Similar idea has been mentioned briefly in (Belhumeour et al., 1997).
(Huang et al., 2002) improved the efficiency of the algorithm by first removing the null space of
the total scatter matrix, based on the observation that the null space of the total scatter matrix is the
intersection of the null space of the between-class scatter matrix and the nullspace of the within-
class scatter matrix.

In orthogonal LDA (OLDA), a set of orthogonal discriminant vectors iscomputed, based on
a generalized optimization criterion (Ye, 2005). The optimal transformation is computed through
the simultaneous diagonalization of the scatter matrices, while the singularity problem is overcome
implicitly. Discriminant analysis with orthogonal transformations has been studied in (Duchene and
Leclerq, 1988; Foley and Sammon, 1975). By a close examination of the computations involved in
OLDA, we can decompose the OLDA algorithm into three steps: first remove the null space of the
total scatter matrix; followed by classical uncorrelated LDA (ULDA), a variant of classical LDA
(details can be found in Section 2.1); and finally apply an orthogonalization step to the transforma-
tion.

Both the NLDA algorithm (Huang et al., 2002) and the OLDA algorithm (Ye, 2005) result in or-
thogonal transformations. However, they applied different schemes in deriving the optimal transfor-
mations. NLDA computes an orthogonal transformation in the null space of thewithin-class scatter
matrix, while OLDA computes an orthogonal transformation through the simultaneous diagonaliza-
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tion of the scatter matrices. Interestingly, we show in Section 5 that NLDA is equivalent to OLDA,
under a mild condition C1,1 which holds in many applications involving high-dimensional data (see
Section 7). Based on the equivalence result, an improved algorithm for NLDA, called iNLDA, is
presented, which further reduces the computational cost of the originalNLDA algorithm.

We extend the OLDA algorithm by applying the regularization technique, whichis commonly
used to stabilize the sample covariance matrix estimation and improve the classification performance
(Friedman, 1989). The algorithm is called regularized OLDA (or ROLDA for short). The key idea
in ROLDA is to add a constantλ to the diagonal elements of the total scatter matrix. Hereλ > 0
is known as theregularization parameter. Choosing an appropriate regularization value is a critical
issue in ROLDA, as a largeλ may significantly disturb the information in the scatter matrix, while
a smallλ may not be effective in improving the classification performance. Cross-validation is
commonly used to estimate the optimalλ from a finite set of candidates. Selecting an optimal value
for a parameter such asλ is calledmodel selection(Hastie et al., 2001). The computational cost
of model selection for ROLDA can be expensive, especially when the candidate set is large, since
it requires expensive matrix computations for eachλ. We show in Section 6 that the computations
in ROLDA can be decomposed into two components: the first component involves matrices of
high dimensionality but independent ofλ, while the second component involves matrices of low
dimensionality. When searching for the optimalλ from a set of candidates via cross-validation, we
repeat the computations involved in the second component only, thus reducing the computational
cost of model selection in ROLDA.

We have conducted experiments using 14 data sets from various data sources, including low-
dimensional data from UCI Machine Learning Repository2 and high-dimensional data such as text
documents, face images, and gene expression data. (Details on these datasets can be found in
Section 7.) We did a comparative study of NLDA, iNLDA, OLDA, ULDA, ROLDA, and Support
Vector Machines (SVM) (Scḧokopf and Smola, 2002; Vapnik, 1998) in classification. Experimental
results show that

• For all low-dimensional data sets, the null space of the within-class scatter matrix is empty,
and both NLDA and iNLDA do not apply. However, OLDA is applicable and the reduced
dimensionality of OLDA is in generalk−1, wherek is the number of classes. Condition C1
holds for most high-dimensional data sets (eight out of nine data sets). NLDA, iNLDA, and
OLDA achieve the same classification performance, in all cases when condition C1 holds. For
cases where condition C1 does not hold, OLDA outperforms NLDA and iNLDA, as OLDA
has a larger number of reduced dimensions than NLDA and iNLDA. These empirical results
are consistent with our theoretical analysis.

• iNLDA and NLDA achieve similar performance in all cases. OLDA is very competitive with
ULDA. This confirms the effectiveness of the final orthogonalization stepin OLDA. ROLDA
achieves a better classification performance than OLDA, which shows the effectiveness of
the regularization in ROLDA. Overall, ROLDA and SVM are very competitive with other
methods in classification.

The rest of the paper is organized as follows. An overview of classicalLDA and classical
uncorrelated LDA is given in Section 2. NLDA and OLDA are discussed in Section 3 and Section 4,

1. Condition C1 requires that the rank of the total scatter matrix equals to the sum of the rank of the between-class
scatter matrix and the rank of the within-class scatter matrix. More details will be given in Section 5.

2. http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Notation Description Notation Description

A data matrix n number of training data points
m data dimensionality ℓ reduced dimensionality
k number of classes Sb between-class scatter matrix

Sw within-class scatter matrix St total scatter matrix
G transformation matrix Si covariance matrix of thei-th class
ci centroid of thei-th class ni sample size of thei-th class
c global centroid K number of neighbors in K-NN
t rank ofSt q rank ofSb

Table 1: Notation.

respectively. The relationship between NLDA and OLDA is studied in Section5. The ROLDA
algorithm is presented in Section 6. Section 7 includes the experimental results. We conclude in
Section 8.

For convenience, Table 1 lists the important notation used in the rest of this paper.

2. Classical Linear Discriminant Analysis

Given a data set consisting ofn data points{a j}nj=1 in IRm, classical LDA computes a linear trans-

formationG ∈ IRm×ℓ (ℓ < m) that maps eacha j in the m-dimensional space to a vector ˆa j in the
ℓ-dimensional space by ˆa j = GTa j . Define three matricesHw, Hb, andSt as follows:

Hw =
1√
n
[(A1−c1eT), · · · ,(Ak−cke

T)], (1)

Hb =
1√
n
[
√

n1(c1−c), · · · ,√nk(ck−c)], (2)

Ht =
1√
n
(A−ceT), (3)

whereA = [a1, · · · ,an] is the data matrix,Ai , ci , Si , andni are the data matrix, the centroid, the
covariance matrix, and the sample size of thei-th class, respectively,c is the global centroid,k is
the number of classes, ande is the vector of all ones. Then thebetween-class scatter matrix Sb,
thewithin-class scatter matrix Sw, and thetotal scatter matrix St are defined as follows (Fukunaga,
1990):

Sw = HwHT
w , Sb = HbHT

b , andSt = HtH
T
t .

It follows from the definition (Ye, 2005) that trace(Sw) measures the within-class cohesion,
trace(Sb) measures the between-class separation, and trace(St) measures the variance of the data
set, where the trace of a square matrix is the summation of its diagonal entries (Golub and Van
Loan, 1996). It is easy to verify thatSt = Sb+Sw. In the lower-dimensional space resulting from the
linear transformationG, the scatter matrices becomeSL

w = GTSwG, SL
b = GTSbG, andSL

t = GTStG.
An optimal transformationG would maximize trace(SL

b) and minimize trace(SL
w). Classical LDA
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aims to compute the optimalG by solving the following optimization problem:

G = arg max
G∈IRm×ℓ

:GTSwG=Iℓ

trace
(

(

GTSwG
)−1

GTSbG
)

. (4)

Other optimization criteria, including those based on the determinant could also be used instead
(Duda et al., 2000; Fukunaga, 1990). The solution to the optimization problem in Eq. (4) is given
by the eigenvectors ofS−1

w Sb corresponding to the nonzero eigenvalues, provided that the within-
class scatter matrixSw is nonsingular (Fukunaga, 1990). The columns ofG form the discriminant
vectors of classical LDA. Since the rank of the between-class scatter matrix is bounded from above
by k−1, there are at mostk−1 discriminant vectors in classical LDA. Note that classical LDA does
not handle singular scatter matrices, which limits its applicability to low-dimensional data. Several
methods, including null space LDA and orthogonal LDA subspace LDA, were proposed in the past
to deal with such singularity problem as discussed in Section 1.

2.1 Classical Uncorrelated LDA

Classical uncorrelated LDA (cULDA) is an extension of classical LDA. Akey property of cULDA
is that the features in the transformed space are uncorrelated, thus reducing the redundancy in the
transformed space.

cULDA aims to find the optimal discriminant vectors that areSt-orthogonal.3 Specifically,
supposer vectorsφ1,φ2, · · · ,φr are obtained, then the(r +1)-th vectorφr+1 is the one that maximizes
the Fisher criterion function (Jin et al., 2001):

f (φ) =
φTSbφ
φTSwφ

, (5)

subject to the constraints:φT
r+1Stφi = 0, for i = 1, · · · , r.

The algorithm in (Jin et al., 2001) finds the discriminant vectorsφi ’s successively by solving a
sequence of generalized eigenvalue problems, which is expensive forlarge and high-dimensional
data sets. However, it has been shown (Ye et al., 2004a) that the discriminant vectors of cULDA can
be computed efficiently by solving the following optimization problem:

G = arg max
G∈IRm×ℓ

:GTStG=Iℓ

trace
(

(

GTSwG
)−1

GTSbG
)

, (6)

whereG = [φ1, · · · ,φℓ], if there existℓ discriminant vectors in cULDA. Note that in Eq. (6), all
discriminant vectors inG are computed simultaneously. The optimization problem above is a variant
of the one in Eq. (4). The optimalG is given by the eigenvectors ofS−1

t Sb.

3. Null Space LDA

(Chen et al., 2000) proposed the null space LDA (NLDA) for dimensionality reduction, where
the between-class distance is maximized in the null space of the within-class scatter matrix. The
basic idea behind this algorithm is that the null space ofSw may contain significant discriminant
information if the projection ofSb is not zero in that direction (Chen et al., 2000; Lu et al., 2003).

3. Two vectorsx andy areSt -orthogonal, ifxTSty = 0.
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The singularity problem is thus overcome implicitly. The optimal transformation of NLDA can be
computed by solving the following optimization problem:

G = argmaxGTSwG=0trace(GTSbG). (7)

The computation of the optimalG involves the computation of the null space ofSw, which may
be large for high-dimensional data. Indeed, the dimensionality of the null space ofSw is at least
m+k−n, wherem is the data dimensionality,k is the number of classes, andn is the sample size.
In (Chen et al., 2000), a pixel grouping method was used to extract geometric features and reduce
the dimensionality of samples, and then NLDA was applied in the new feature space. (Huang et al.,
2002) improved the efficiency of the algorithm in (Chen et al., 2000) by first removing the null space
of the total scatter matrixSt . It is based on the observation that the null space ofSt is the intersection
of the null space ofSb and the null space ofSw, asSt = Sw +Sb.

We can efficiently remove the null space ofSt as follows. LetHt = UΣVT be the Singular Value
Decomposition (SVD) (Golub and Van Loan, 1996) ofHt , whereHt is defined in Eq. (3),U andV
are orthogonal,

Σ =

(

Σt 0
0 0

)

,

Σt ∈ IRt×t is diagonal with the diagonal entries sorted in the non-increasing order, and t = rank(St).
Then

St = HtH
T
t = UΣVTVΣTUT = UΣΣTUT = U

(

Σ2
t 0

0 0

)

UT . (8)

Let U = (U1,U2) be a partition ofU with U1 ∈ IRm×t andU2 ∈ IRm×(m−t). Then the null space ofSt

can be removed by projecting the data onto the subspace spanned by the columns ofU1. Let S̃b, S̃w,
andS̃t be the scatter matrices after the removal of the null space ofSt . That is,

S̃b = UT
1 SbU1, S̃w = UT

1 SwU1, andS̃t = UT
1 StU1.

Note that onlyU1 is involved for the projection. We can thus apply the reduced SVD computation
(Golub and Van Loan, 1996) onHt with the time complexity ofO(mn2), instead ofO(m2n). When
the data dimensionalitym is much larger than the sample sizen, this leads to a big reduction in
terms of the computational cost.

With the computedU1, the optimal transformation of NLDA is given byG = U1N, whereN is
obtained by solving the following optimization problem:

N = argmaxNT S̃wN=0trace(NTS̃bN). (9)

That is, the columns ofN lie in the null space of̃Sw, while maximizing trace(NTS̃bN).
Let W be the matrix so that the columns ofW span the null space of̃Sw. ThenN = WM, for

some matrixM, which is to be determined next. Since the constraint in Eq. (9) is satisfied with
N = WM for anyM, the optimalM can be computed by maximizing

trace(MTWTS̃bWM).

By imposing the orthogonality constraint onM (Huang et al., 2002), the optimalM is given by the
eigenvectors ofWTS̃bW corresponding to the nonzero eigenvalues. With the computedU1, W, and
M above, the optimal transformation of NLDA is given by

G = U1WM.
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Algorithm 1: NLDA (Null space LDA)
Input: data matrixA
Output: transformation matrixG
1. Form the matrixHt as in Eq. (3);
2. Compute the reduced SVD ofHt asHt = U1ΣtVT

1 ;
3. Form the matrices̃Sb = UT

1 SbU1 andS̃w = UT
1 SwU1;

4. Compute the null space,W, of S̃w, via the eigen-decomposition;
5. Construct the matrixM, consisting of the top eigenvectors ofWTS̃bW;
6. G←U1WM.

In (Huang et al., 2002), the matrixW is computed via the eigen-decomposition ofS̃w. More
specifically, let

S̃w = [W,W̃]

(

0 0
0 ∆w

)

[W,W̃]T

be its eigen-decomposition, where[W,W̃] is orthogonal and∆w is diagonal with positive diagonal
entries. ThenW forms the null space of̃Sw. The pseudo-code for the NLDA algorithm is given in
Algorithm 1 .

4. Orthogonal LDA

Orthogonal LDA (OLDA) was proposed in (Ye, 2005) as an extension of classical LDA. The dis-
criminant vectors in OLDA are orthogonal to each other. Furthermore, OLDA is applicable even
when all scatter matrices are singular, thus overcoming the singularity problem. It has been applied
successfully in many applications, including document classification, face recognition, and gene
expression data classification. The optimal transformation in OLDA can be computed by solving
the following optimization problem:

G = argmax
G∈IRm×ℓ

:GTG=Iℓ
trace

(

(GTStG)+GTSbG
)

, (10)

whereM+ denotes the pseudo-inverse of matrixM (Golub and Van Loan, 1996). The orthogonality
condition is imposed in the constraint. The computation of the optimal transformationof OLDA is
based on the simultaneous diagonalization of the three scatter matrices as follows (Ye, 2005).

From Eq. (8),U2 lies in the null space of bothSb andSw. Thus,

UTSbU =

(

UT
1 SbU1 0

0 0

)

, UTSwU =

(

UT
1 SwU1 0

0 0

)

. (11)

DenoteB = Σ−1
t UT

1 Hb and letB = PΣ̃QT be the SVD ofB, whereP andQ are orthogonal and̃Σ is
diagonal. Define the matrixX as

X = U

(

Σ−1
t P 0
0 Im−t

)

. (12)

It can be shown (Ye, 2005) thatX simultaneously diagonalizesSb, Sw, andSt . That is

XTSbX = Db, XTSwX = Dw, andXTStX = Dt , (13)
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Algorithm 2: OLDA (Orthogonal LDA)
Input: data matrixA
Output: transformation matrixG
1. ComputeU1, Σt , andP;
2. Xq←U1Σ−1

t Pq, whereq = rank(Sb);
3. Compute the QR decomposition ofXq asXq = QR;
4. G←Q.

whereDb, Dw, andDt are diagonal with the diagonal entries inDb sorted in the non-increasing order.
The main result in (Ye, 2005) has shown that the optimal transformation of OLDA can be computed
through the orthogonalization of the columns inX, as summarized in the following theorem:

Theorem 4.1 Let X be the matrix defined in Eq. (12) and let Xq be the matrix consisting of the first
q columns of X, where q= rank(Sb). Let Xq = QR be the QR-decomposition of Xq, where Q has
orthonormal columns and R is upper triangular. Then G= Q solves the optimization problem in
Eq. (10).

From Theorem 4.1, only the firstq columns ofX are used in computing the optimalG. From
Eq. (12), the firstq columns ofX are given by

Xq = U1Σ−1
t Pq, (14)

wherePq consists of the firstq columns of the matrixP. We can observe thatU1 corresponds to the
removal of the null space ofSt as in NLDA, whileΣ−1

t Pq is the optimal transformation when clas-
sical ULDA is applied to the intermediate (dimensionality) reduced space by the projection ofU1.
The OLDA algorithm can thus be decomposed into three steps: (1) Remove thenull space ofSt ; (2)
Apply classical ULDA as an intermediate step, since the reduced total scatteris nonsingular; and (3)
Apply an orthogonalization step to the transformation, which corresponds tothe QR decomposition
of Xq in Theorem 4.1. The pseudo-code for the OLDA algorithm is given inAlgorithm 2 .

Remark 1 The ULDA algorithm in (Ye et al., 2004a; Ye, 2005) consists of steps 1 and2 above,
without the final orthogonalization step. Experimental results in Section 7 show that OLDA is com-
petitive with ULDA. The rationale behind this may be that ULDA involves the minimum redundancy
in the transformed space and is susceptible to overfitting; OLDA, on the otherhand, removes the
R matrix through the QR decomposition in the final orthogonalization step, which introduces the
redundancy in the reduced space, but may be less susceptible to overfitting.

5. Relationship Between NLDA and OLDA

Both the NLDA algorithm and the OLDA algorithm result in orthogonal transformations. Our
empirical results show that they often lead to similar performance, especially for high-dimensional
data. This implies there may exist an intrinsic relationship between these two algorithms. In this
section, we take a closer look at the relationship between NLDA and OLDA. More specifically, we
show that NLDA is equivalent to OLDA, under a mild condition

C1 : rank(St) = rank(Sb)+ rank(Sw), (15)
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which holds in many applications involving high-dimensional data (see Section 7). It is easy to
verify from the definition of the scatter matrices that rank(St)≤ rank(Sb)+ rank(Sw).

From Eqs. (8) and (11), the null space,U2, of St can be removed, as follows:

S̃t = UT
1 StU1 = UT

1 SbU1 +UT
1 SwU1 = S̃w + S̃b ∈ IRt×t .

Since the null space ofSt is the intersection of the null space ofSb and the null space ofSw, the
following equalities hold:

rank(S̃t) = rank(St) = t, rank(S̃b) = rank(Sb), and rank(S̃w) = rank(Sw).

Thus condition C1 is equivalent to

rank(S̃t) = rank(S̃b)+ rank(S̃w).

The null space of̃Sb and the null space of̃Sw are critical in our analysis. The relationship between
these two null spaces is studied in the following lemma.

Lemma 5.1 Let S̃t , S̃b, and S̃w be defined as above and t= rank(S̃t). Let {w1, · · · ,wr} forms an
orthonormal basis for the null space ofS̃w, and let{b1, · · · ,bs} forms an orthonormal basis for the
null space ofS̃b. Then,{w1, · · · ,wr ,b1, · · · ,bs} are linearly independent.

Proof Prove by contradiction. Assume there existαi ’s andβ j ’s, not all zeros, such that

r

∑
i=1

αiwi +
s

∑
j=1

β jb j = 0.

It follows that

0 =

(

r

∑
i=1

αiwi +
s

∑
j=1

β jb j

)T

S̃w

(

r

∑
i=1

αiwi +
s

∑
j=1

β jb j

)

=

(

s

∑
j=1

β jb j

)T

S̃w

(

s

∑
j=1

β jb j

)

,

sincewi ’s lie in the null space of̃Sw. Hence,
(

s

∑
j=1

β jb j

)T

S̃t

(

s

∑
j=1

β jb j

)

=

(

s

∑
j=1

β jb j

)T

S̃w

(

s

∑
j=1

β jb j

)

+

(

s

∑
j=1

β jb j

)T

S̃b

(

s

∑
j=1

β jb j

)

= 0.

SinceS̃t is nonsingular, we have∑s
j=1 β jb j = 0. Thusβ j = 0, for all j, since{b1, · · · ,bs} forms an

orthonormal basis for the null space ofS̃b.
Similarly, we have

0 =

(

r

∑
i=1

αiwi +
s

∑
j=1

β jb j

)T

S̃b

(

r

∑
i=1

αiwi +
s

∑
j=1

β jb j

)

=

(

r

∑
i=1

αiwi

)T

S̃b

(

r

∑
i=1

αiwi

)

.

and
(

r

∑
i=1

αiwi

)T

S̃t

(

r

∑
i=1

αiwi

)

=

(

r

∑
i=1

αiwi

)T

S̃w

(

r

∑
i=1

αiwi

)

+

(

r

∑
i=1

αiwi

)T

S̃b

(

r

∑
i=1

αiwi

)

= 0.
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Hence∑r
i=1 αiwi = 0, andαi = 0, for all i, since{w1, · · · ,wr} forms are orthonormal basis for the

null space ofS̃w. This contradicts our assumption that not all of theαi ’s and theβ j ’s are zero, Thus,
{w1, · · · ,wr ,b1, · · · ,bs} are linearly independent.

Next, we show how to compute the optimal transformation of NLDA using these twonull
spaces. Recall that in NLDA, the null space ofSt may be removed first. In the following dis-
cussion, we work on the reduced scatter matricesS̃w, S̃b, andS̃t directly as in Lemma 5.1. The main
result is summarized in the following theorem.

Theorem 5.1 Let U1, S̃t , S̃b, andS̃w be defined as above and t= rank(S̃t). Let R= [W,B], where
W = [w1, · · · ,wr ], B= [b1, · · · ,bs], and{w1, · · · ,wr ,b1, · · · ,bs} are defined as in Lemma 5.1. Assume
that condition C1: rank(St) = rank(Sb)+ rank(Sw) holds. Then G= U1WM solves the optimization
problem in Eq. (9), where the matrix M, consisting of the eigenvectors of WTS̃bW, is orthogonal.

Proof From Lemma 5.1,{w1, · · · ,wr ,b1, · · · ,bs}∈ IRt is linearly independent. Condition C1 implies
that t = r +s. Thus{w1, · · · ,wr ,b1, · · · ,bs} forms a basis for IRt , that is,R= [W,B] is nonsingular.
It follows that

RTS̃tR = RTS̃bR+RTS̃wR

=

(

WTS̃bW WTS̃bB
BTS̃bW BTS̃bB

)

+

(

WTS̃wW WTS̃wB
BTS̃wW BTS̃wB

)

=

(

WTS̃bW 0
0 0

)

+

(

0 0
0 BTS̃wB

)

.

Since matrixRTS̃tRhas full rank,WTS̃bW, the projection of̃Sb onto the null space of̃Sw, is non-
singular. LetWTS̃bW = M∆bMT be the eigen-decomposition ofWTS̃bW, whereM is orthogonal
and∆b is diagonal with positive diagonal entries (note thatWTS̃bW is positive definite). Then, from
Section 3, the optimal transformationG of NLDA is given byG = U1WM.

Recall that the matrixM in NLDA is computed so that trace(MTWTS̃bWM) is maximized. Since
trace(QAQT) = trace(A) for any orthogonalQ, the solution in NLDA is invariant under an arbitrary
orthogonal transformation. ThusG = U1W is also a solution to NLDA, sinceM is orthogonal, as
summarized in the following corollary.

Corollary 5.1 Assume condition C1: rank(St) = rank(Sb) + rank(Sw) holds. Let U1 and W be
defined as in Theorem 5.1. Then G= U1W solves the optimization problem in Eq. (9). That is,
G = U1W is an optimal transformation of NLDA.

Corollary 5.1 implies that when condition C1 holds, Step 5 inAlgorithm 1 may be removed,
as well as the formation of̃Sb in Step 3 and the multiplication ofU1W with M in Step 6. This
improves the efficiency of the NLDA algorithm. The improved NLDA (iNLDA) algorithm is given
in Algorithm 3 . Note that it is recommended in (Liu et al., 2004) that the maximization of the
between-class distance in Step 5 ofAlgorithm 1 should be removed to avoid possible overfitting.
However, Corollary 5.1 shows that under condition C1, the removal of Step 5 has no effect on the
performance of the NLDA algorithm.

Next, we show the equivalence relationship between NLDA and OLDA, when condition C1
holds. The main result is summarized in the following theorem.
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Algorithm 3: iNLDA (improved NLDA)
Input: data matrixA
Output: transformation matrixG
1. Form the matrixHt as in Eq. (3);
2. Compute the reduced SVD ofHt asHt = U1ΣtVT

1 ;
3. Construct the matrix̃Sw = UT

1 SwU1;
4. Compute the null space,W, of S̃w, via the eigen-decomposition;
5. G←U1W.

Theorem 5.2 Assume that condition C1: rank(St) = rank(Sb)+ rank(Sw) holds. Let U1 and W be
defined as in Theorem 5.1. Then, G= U1W solves the optimization problem in Eq. (10). That is,
under the given assumption, OLDA and NLDA are equivalent.

Proof Recall that the optimization involved in OLDA is

G = argmax
G∈IRm×ℓ

:GTG=Iℓ
trace

(

(SL
t )+SL

b

)

, (16)

whereSL
t = GTStG andSL

b = GTSbG. From Section 4, the maximum number,ℓ, of discriminant
vectors is no larger thanq, which is the rank ofSb. Recall that

q = rank(Sb) = rank(S̃b) = rank(S̃t)− rank(S̃w) = r,

wherer is the dimension of the null space ofS̃w.
Based on the property of the trace of matrices, we have

trace
(

(SL
t )+SL

b

)

+ trace
(

(SL
t )+SL

w

)

= trace
(

(SL
t )+SL

t

)

= rank(SL
t )≤ q = r,

where the second equality follows since trace(A+A) = rank(A) for any square matrixA, and the
inequality follows since the rank ofSL

t ∈ IRℓ×ℓ is at mostℓ≤ q.
It follows that trace

(

(SL
t )+SL

b

)

≤ r, since trace
(

(SL
t )+SL

w

)

, the trace of the product of two positive
semi-definite matrices, is always nonnegative. Next, we show that the maximumis achieved, when
G = U1W.

Recall that the dimension of the null space,W, of S̃w is r. That is,W ∈ IRt×r . It follows that
(U1W)TSt(U1W) ∈ IRr×r , and rank((U1W)TSt(U1W)) = r. Furthermore,

(U1W)TSw(U1W) = WTS̃wW = 0,

asW forms the null space of̃Sw. It follows that,

trace
(

(

(U1W)TSt(U1W)
)+

(U1W)TSw(U1W)
)

= 0.

Hence,

trace
(

(

(U1W)TSt(U1W)
)+

(U1W)TSb(U1W)
)

= rank
(

(U1W)TSt(U1W)
)

− trace
(

(

(U1W)TSt(U1W)
)+ (

(U1W)TSw(U1W)
)

)

= r.
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ThusG = U1W solves the optimization problem in Eq. (10). That is, OLDA and NLDA are equiva-
lent.

Theorem 5.2 above shows that under condition C1, OLDA and NLDA are equivalent. Next, we
show that condition C1 holds when the data points are linearly independent as summarized below.

Theorem 5.3 Assume that condition C2, that is, the n data points in the data matrix A∈ IRm×n are
linearly independent, holds. Then condition C1: rank(St) = rank(Sb)+ rank(Sw) holds.

Proof Since then columns inA are linearly independent,Ht = A− ceT is of rankn−1. That is,
rank(St) = n−1. Next we show that rank(Sb) = k−1 and rank(Sw) = n− k. Thus condition C1
holds.

It is easy to verify that rank(Sb)≤ k−1 and rank(Sw)≤ n−k. We have

n−1 = rank(St)≤ rank(Sb)+ rank(Sw)≤ (k−1)+(n−k) = n−1. (17)

It follows that all inequalities in Eq. (17) become equalities. That is,

rank(Sb) = k−1, rank(Sw) = n−k, and rank(St) = rank(Sb)+ rank(Sw). (18)

Thus, condition C1 holds.

Our experimental results in Section 7 show that for high-dimensional data, the linear indepen-
dence condition C2 holds in many cases, while condition C1 is satisfied in most cases. This explains
why NLDA and OLDA often achieve the same performance in many applicationsinvolving high-
dimensional data, such as text documents, face images, and gene expression data.

6. Regularized Orthogonal LDA

Recall that OLDA involves the pseudo-inverse of the total scatter matrix, whose estimation may not
be reliable especially for undersampled data, where the number of dimensionsexceeds the sample
size. In such case, the parameter estimates can be highly unstable, giving rise to high variance.
By employing a method of regularization, one attempts to improve the estimates by regulating this
bias variance trade-off (Friedman, 1989). We employ the regularization technique to OLDA by
adding a constantλ to the diagonal elements of the total scatter matrix. Hereλ > 0 is known as
the regularization parameter. The algorithm is called regularized OLDA (ROLDA). The optimal
transformation,Gr , of ROLDA can be computed by solving the following optimization problem:

Gr = argmax
G∈IRm×ℓ

:GTG=Iℓ
trace

(

(

GT(St +λIm)G
)+

GTSbG
)

. (19)

The optimalGr can be computed by solving an eigenvalue problem as summarized in the following
theorem (The proof follows Theorem 3.1 in (Ye, 2005) and is thus omitted):

Theorem 6.1 Let Xr
q be the matrix consisting of the first q eigenvectors of the matrix

(St +λIm)−1Sb (20)

corresponding to the nonzero eigenvalues, where q= rank(Sb). Let Xr
q = QR be the QR-decomposition

of Xr
q, where Q has orthonormal columns and R is upper triangular. Then G= Q solves the opti-

mization problem in Eq. (19).
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Theorem 6.1 implies that the main computation involved in ROLDA is the eigen-decomposition of
the matrix(St + λIm)−1Sb. Direct formation of the matrix is expensive for high-dimensional data,
as it is of sizem by m. In the following, we present an efficient way of computing the eigen-
decomposition. Denote

Br = (Σ2
t +λIt)

−1/2UT
1 Hb (21)

and let
Br = Pr Σ̃r(Qr)T (22)

be the SVD ofBr . From Eqs. (8) and (11), we have

(St +λIm)−1Sb = U

(

(Σ2
t +λIt)−1 0

0 λ−1Im−t

)

UTU

(

UT
1 SbU1 0

0 0

)

UT

= U

(

(Σ2
t +λIt)−1UT

1 HbHT
b U1 0

0 0

)

UT

= U

(

(Σ2
t +λIt)−1/2Br(Br)T(Σ2

t +λIt)1/2 0
0 0

)

UT

= U

(

(Σ2
t +λIt)−1/2Pr Σ̃r(Σ̃r)T(Pr)T(Σ2

t +λIt)1/2 0
0 0

)

UT .

It follows that the columns of the matrix

U1(Σ2
t +λIt)

−1/2Pr
q

form the eigenvectors of(St + λIm)−1Sb corresponding to the topq nonzero eigenvalues, wherePr
q

denotes the firstq columns ofPr . That is,Xr
q in Theorem 6.1 is given by

Xr
q = U1(Σ2

t +λIt)
−1/2Pr

q. (23)

The pseudo-code for the ROLDA algorithm is given inAlgorithm 4 . The computations in ROLDA
can be decomposed into two components: the first component involves the matrix, U1 ∈ IRm×t , of
high dimensionality but independent ofλ, while the second component involves the matrix,

(Σ2
t +λIt)

−1/2Pr
q ∈ IRt×q,

of low dimensionality. When we apply cross-validation to search for the optimalλ from a set of
candidates, we repeat the computations involved in the second component only, thus making the
computational cost of model selection small.

More specifically, let
Λ = {λ1, · · · ,λ|Λ|} (24)

be the candidate set for the regularization parameterλ, where|Λ| denotes the size of the candidate
setΛ. We applyv-fold cross-validation for model selection (we choosev = 5 in our experiment),
where the data is divided intov subsets of (approximately) equal size. All subsets are mutually
exclusive, and in thei-th fold, thei-th subset is held out for testing and all other subsets are used for
training. For eachλ j ( j = 1, · · · , |Λ|), we compute the cross-validation accuracy, Accu( j), defined
as the mean of the accuracies for all folds. The optimal regularization valueλ j∗ is the one with

j∗ = argmax
j

Accu( j). (25)
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Algorithm 4: ROLDA (Regularized OLDA)
Input: data matrixA and regularization valueλ
Output: transformation matrixGr

1. ComputeU1, Σt , andPr
q, whereq = rank(Sb);

2. Xr
q←U1(Σ2

t +λIt)−1/2Pr
q;

3. Compute the QR decomposition ofXr
q asXr

q = QR;
4. Gr ←Q.

TheK-Nearest Neighbor algorithm withK = 1, called 1-NN, is used for computing the accuracy.
The pseudo-code for the model selection procedure in ROLDA is given inAlgorithm 5 . Note that
we apply the QR decomposition to

(Σ2
t +λIt)

−1/2Pr
q ∈ IRt×q (26)

instead of
Xr

q = U1(Σ2
t +λIt)

−1/2Pr
q ∈ IRm×q, (27)

as done in Theorem 6.1, sinceU1 has orthonormal columns.

Algorithm 5: Model selection for ROLDA
Input: data matrixA and candidate setΛ = {λ1, · · · ,λ|Λ|}
Output: optimal regularization valueλ j∗

1. Fori = 1 : v /* v-fold cross-validation */
2. ConstructAi andAî ;

/* Ai = i-th fold, for training andAî = rest, for testing */
3. ConstructHb andHt usingAi as in Eqs. (2) and (3), respectively;
4. Compute the reduced SVD ofHt asHt = U1ΣtVT

1 ; t← rank(Ht);
5. Hb,L←UT

1 Hb, q← rank(Hb);
6. Ai

L←UT
1 Ai ; Aî

L←UT
1 Aî ; /* Projection byU1 */

7. For j = 1 : |Λ| /* λ1, · · · ,λ|Λ| */
8. D j ← (Σ2

t +λ j It)−1/2; Br ← D jHb,L

9. Compute the SVD ofBr asBr = Pr Σ̃r(Qr)T ;
10. Dq,P← D jPr

q; Compute the QR decomposition ofDq,P asDq,P = QR;

11. Ai
L←QTAi

L; Aî
L←QTAî

L;

12. Run 1-NN on
(

Ai
L,A

î
L

)

and compute the accuracy, denoted as Accu(i, j);

13. EndFor
14. EndFor
15. Accu( j)← 1

v ∑v
i=1Accu(i, j);

16. j∗← argmaxj Accu( j);
17. Outputλ j∗ as the optimal regularization value.

6.1 Time Complexity

We conclude this section by analyzing the time complexity of the model selection procedure de-
scribed above.
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Line 4 in Algorithm 5 takesO(n2m) time for the reduced SVD computation. Lines 5 and 6
takeO(mtk) = O(mnk) andO(tmn) = O(mn2) time, respectively, for the matrix multiplications.
For eachλ j , for j = 1, · · · , |Λ|, of the ”For” loop, Lines 9 and 10 takeO(tk2) = O(nk2) time for the
SVD and QR decomposition and matrix multiplication. Line 11 takesO(ktn) = O(kn2) time for
the matrix multiplication. The computation of the classification accuracy by 1-NN in Line 12 takes
O(n2k/v) time, as the size of the test set,Aî

L, is aboutn/v. Thus, the time complexity,T(|Λ|), of the
model selection procedure is

T(|Λ|) = O
(

v
(

n2m+mn2 +mnk+ |Λ|(nk2 +kn2 +n2k/v)
))

.

For high-dimensional and undersampled data, where the sample size,n, is much smaller than the
dimensionalitym, the time complexity is simplified to

T(|Λ|) = O
(

v(n2m+ |Λ|n2k)
)

= O

(

vn2m

(

1+
k
m
|Λ|
))

.

When the number,k, of classes in the data set is much smaller than the dimensionality,m, the over-
head of estimating the optimal regularization value among a large candidate set may be small. Our
experiments on a collection of high-dimensional and undersampled data (seeSection 7) show that
the computational cost of the model selection procedure in ROLDA grows slowly as|Λ| increases.

7. Experimental Studies

In this section, we perform extensive experimental studies to evaluate the theoretical results and the
ROLDA algorithm presented in this paper. Section 7.1 describes our test data sets. We perform a
detailed comparison of NLDA, iNLDA, and OLDA in Section 7.2. Results are consistent with our
theoretical analysis. In Section 7.3, we compare the classification performance of NLDA, iNLDA,
OLDA, ULDA, ROLDA, and SVM. The K-Nearest-Neighbor (K-NN) algorithm with K = 1 is used
as the classifier for all LDA based algorithms.

7.1 Data Sets

We used 14 data sets from various data sources in our experimental studies. The statistics of our test
data sets are summarized in Table 2.

The first five data sets, including spambase,4 balance, wine, waveform, and vowel, are low-
dimensional data from the UCI Machine Learning Repository. The next nine data sets, including
text documents, face images, and gene expression data, have high dimensionality: re1, re0, and
tr41 are three text document data sets, where re1 and re0 are derivedfrom Reuters-21578text
categorization test collection Distribution 1.0,5 and tr41 is derived from the TREC-5, TREC-6,
and TREC-7 collections;6 ORL,7 AR,8 and PIX9 are three face image data sets; GCM, colon, and
ALLAML4 are three gene expression data sets (Ye et al., 2004b).

4. Only a subset of the original spambase data set is used in our study.
5. http://www.daviddlewis.com/resources/testcollections/reuters21578/
6. http://trec.nist.gov
7. http://www.uk.research.att.com/facedatabase.html
8. http://rvl1.ecn.purdue.edu/∼aleix/aleix faceDB.html
9. http://peipa.essex.ac.uk/ipa/pix/faces/manchester/test-hard/
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Data Set Sample size (n) # of dimensions # of classes
training test total (m) (k)

spambase 400 600 1000 56 2
balance 416 209 625 4 3
wine 118 60 178 13 3
waveform 300 500 800 21 3
vowel 528 462 990 10 11
re1 — — 490 3759 5
re0 — — 320 2887 4
tr41 — — 210 7454 7
ORL — — 400 10304 40
AR — — 650 8888 50
PIX — — 300 10000 30
GCM — — 198 16063 14
colon — — 62 2000 2
ALLAML4 — — 72 7129 4

Table 2: Statistics of our test data sets. For the first five data sets, we usedthe given partition of
training and test sets, while for the last nine data sets, we did random splittingsinto training
and test sets of ratio 2:1.

7.2 Comparison of NLDA, iNLDA, and OLDA

In this experiment, we did a comparative study of NLDA, iNLDA, and OLDA. For the first five
low-dimensional data sets from the UCI Machine Learning Repository, we used the given splitting
of training and test sets. The result is summarized in Table 3. For the next nine high-dimensional
data sets, we performed our study by repeated random splittings into trainingand test sets. The data
was partitioned randomly into a training set, where each class consists of two-thirds of the whole
class and a test set with each class consisting of one-third of the whole class. The splitting was
repeated 20 times and the resulting accuracies of different algorithms for the first ten splittings are
summarized in Table 4. Note that the mean accuracy for the 20 different splittings will be reported
in the next section. The rank of three scatter matrices,Sb, Sw, andSt , for each of the splittings is
also reported.

The main observations from Table 3 and Table 4 include:

• For the first five low-dimensional data sets, we have rank(Sb) = k− 1, and rank(Sw) =
rank(St) = m, wherem is the data dimensionality. Thus the null space ofS̃w is empty, and
both NLDA and iNLDA do not apply. However, OLDA is applicable and the reduced dimen-
sionality of OLDA isk−1.

• For the next nine high-dimensional data sets, condition C1: rank(St) = rank(Sb)+ rank(Sw) is
satisfied in all cases except the re0 data set. For the re0 data set, either rank(St) = rank(Sb)+
rank(Sw) or rank(St) = rank(Sb)+ rank(Sw)−1 holds, that is, condition C1 is not severely
violated for re0. Note that re0 has the smallest number of dimensions among thenine high-
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Data Set
spambase balance wine waveform vowel

NLDA — — — — —
Method iNLDA — — — — —

OLDA 88.17 86.60 98.33 73.20 56.28
Sb 1 2 2 2 10

Rank Sw 56 4 13 21 10
St 56 4 13 21 10

Table 3: Comparison of NLDA, iNLDA, and OLDA on classification accuracy (in percentage) us-
ing five low-dimensional data sets from UCI Machine Learning Repository.The ranks of
three scatter matrices are reported.

dimensional data sets. From the experiments, we may infer that condition C1 is more likely
to hold for high-dimensional data.

• NLDA, iNLDA, and OLDA achieve the same classification performance in all cases when
condition C1 holds. The empirical result confirms the theoretical analysis in Section 5. This
explains why NLDA and OLDA often achieve similar performance for high-dimensional data.
We can also observe that NLDA and iNLDA achieve similar performance in allcases.

• The numbers of training data points for the nine high-dimensional data (in the same order as
in the table) are 325, 212, 140, 280, 450, 210, 125, 68, and 48, respectively. By examining
the rank ofSt in Table 4, we can observe that the training data in six out of nine data sets,
including tr41, ORL, AR, GCM, colon, and ALLAML4, are linearly independent. That is, the
independence assumption C2 from Theorem 5.3 holds for these data sets.It is clear from the
table that for these six data sets, condition C1 holds and NLDA, iNLDA, and OLDA achieve
the same performance. These are consistent with the theoretical analysis inSection 5.

• For the re0 data set, where condition C1 does not hold, i.e., rank(St) < rank(Sb)+ rank(Sw),
OLDA achieves higher classification accuracy than NLDA and iNLDA. Recall that the re-
duced dimensionality of OLDA equals rank(Sb) ≡ q. The reduced dimensionality in NLDA
and iNLDA equals the dimension of the null space ofS̃w, which equals rank(St)− rank(Sw) <
rank(Sb). That is, OLDA keeps more dimensions in the transformed space than NLDA and
iNLDA. Experimental results in re0 show that these extra dimensions used in OLDA improve
its classification performance.

7.3 Comparative Studies on Classification

In this experiment, we conducted a comparative study of NLDA, iNLDA, OLDA, ULDA, ROLDA,
and SVM in terms of classification. For ROLDA, the optimalλ is estimated through cross-validation
on a candidate set,Λ = {λ j}|Λ|j=1. Recall thatT(|Λ|) denotes the computational cost of the model
selection procedure in ROLDA, where|Λ| is the size of the candidate set of the regularization values.
We have performed model selection on all nine high-dimensional data sets using different values of
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Data Set Method Ten different splittings into training and test sets of ratio 2:1

NLDA 92.73 93.33 93.33 93.94 94.55 95.15 96.36 95.15 92.12 93.94
iNLDA 92.73 93.33 93.33 93.94 94.55 95.15 96.36 95.15 92.12 93.94

re1 OLDA 92.73 93.33 93.33 93.94 94.55 95.15 96.36 95.15 92.12 93.94
Sb 4 4 4 4 4 4 4 4 4 4
Sw 316 318 319 316 316 320 316 318 317 318
St 320 322 323 320 320 324 320 322 321 322

NLDA 64.81 62.04 64.81 68.52 87.96 70.37 71.30 73.15 87.04 75.93
iNLDA 65.74 62.04 64.81 69.44 87.96 70.37 71.30 72.22 87.04 75.93

re0 OLDA 75.93 75.00 77.78 74.07 87.96 80.56 74.07 78.70 87.04 79.63
Sb 3 3 3 3 3 3 3 3 3 3
Sw 205 204 203 203 205 204 201 203 203 205
St 207 206 205 205 208 206 203 205 206 207

NLDA 97.14 95.71 97.14 98.57 97.14 98.57 100.0 95.71 98.57 95.71
iNLDA 97.14 95.71 97.14 98.57 97.14 98.57 100.0 95.71 98.57 95.71

tr41 OLDA 97.14 95.71 97.14 98.57 97.14 98.57 100.0 95.71 98.57 95.71
Sb 6 6 6 6 6 6 6 6 6 6
Sw 133 133 133 133 133 133 133 133 133 133
St 139 139 139 139 139 139 139 139 139 139

NLDA 99.17 96.67 98.33 98.33 95.00 95.83 98.33 97.50 98.33 95.83
iNLDA 99.17 96.67 98.33 98.33 95.00 95.83 98.33 97.50 98.33 95.83

ORL OLDA 99.17 96.67 98.33 98.33 95.00 95.83 98.33 97.50 98.33 95.83
Sb 39 39 39 39 39 39 39 39 39 39
Sw 240 240 240 240 240 240 240 240 240 240
St 279 279 279 279 279 279 279 279 279 279

NLDA 96.50 94.50 96.50 94.00 93.50 94.50 93.50 97.00 94.00 96.00
iNLDA 96.50 94.50 96.50 94.00 93.50 94.50 93.50 97.00 94.00 96.00

AR OLDA 96.50 94.50 96.50 94.00 93.50 94.50 93.50 97.00 94.00 96.00
Sb 49 49 49 49 49 49 49 49 49 49
Sw 400 400 400 400 400 400 400 400 400 400
St 449 449 449 449 449 449 449 449 449 449

NLDA 98.89 97.78 98.89 97.78 98.89 98.89 98.89 97.78 98.89 97.78
iNLDA 98.89 97.78 98.89 97.78 98.89 98.89 98.89 97.78 98.89 97.78

PIX OLDA 98.89 97.78 98.89 97.78 98.89 98.89 98.89 97.78 98.89 97.78
Sb 29 29 29 29 29 29 29 29 29 29
Sw 178 179 179 179 178 180 179 179 180 178
St 207 208 208 208 207 209 208 208 209 207

NLDA 81.54 80.00 81.54 83.08 84.62 87.69 75.38 78.46 84.62 83.08
iNLDA 81.54 80.00 81.54 83.08 84.62 87.69 75.38 78.46 84.62 83.08

GCM OLDA 81.54 80.00 81.54 83.08 84.62 87.69 75.38 78.46 84.62 83.08
Sb 13 13 13 13 13 13 13 13 13 13
Sw 111 111 111 111 111 111 111 111 111 111
St 124 124 124 124 124 124 124 124 124 124

NLDA 91.18 94.12 100.0 97.06 91.18 91.18 97.06 94.12 94.12 97.06
iNLDA 91.18 94.12 100.0 97.06 91.18 91.18 97.06 94.12 94.12 97.06

colon OLDA 91.18 94.12 100.0 97.06 91.18 91.18 97.06 94.12 94.12 97.06
Sb 1 1 1 1 1 1 1 1 1 1
Sw 66 66 66 66 66 66 66 66 66 66
St 67 67 67 67 67 67 67 67 67 67

NLDA 95.83 91.67 95.83 95.83 87.50 95.83 95.83 100.0 91.67 95.83
iNLDA 95.83 91.67 95.83 95.83 87.50 95.83 95.83 100.0 91.67 95.83

ALLAML4 OLDA 95.83 91.67 95.83 95.83 87.50 95.83 95.83 100.0 91.67 95.83
Sb 3 3 3 3 3 3 3 3 3 3
Sw 44 44 44 44 44 44 44 44 44 44
St 47 47 47 47 47 47 47 47 47 47

Table 4: Comparison of classification accuracy (in percentage) for NLDA, iNLDA, and OLDA us-
ing nine high-dimensional data sets. Ten different splittings into training and test sets of
ratio 2:1 (for each of thek classes) are applied. The rank of three scatter matrices for each
splitting is reported.
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Data Set NLDA iNLDA OLDA ULDA ROLDA SVM

re1 94.33 (1.72) 94.33 (1.72) 94.33 (1.72) 94.76 (1.67) 94.79 (1.64) 94.54 (1.88)
re0 74.03 (9.22) 74.15 (8.19) 79.54 (4.73) 79.72 (4.82) 85.79 (3.66) 85.87 (3.34)
tr41 97.00 (2.01) 97.00 (2.01) 97.00 (2.01) 97.14 (2.02) 97.17 (2.04) 97.14 (2.01)
ORL 97.29 (1.79) 97.29 (1.79) 97.29 (1.79) 92.75 (1.82) 97.52 (1.64) 97.55 (1.34)
AR 95.42 (1.30) 95.42 (1.30) 95.42 (1.30) 94.37 (1.46) 97.30 (1.32) 95.75 (1.43)
PIX 98.22 (1.41) 98.22 (1.41) 98.22 (1.41) 96.61 (1.92) 98.29 (1.32) 98.50 (1.24)
GCM 81.77 (3.61) 81.77 (3.61) 81.77 (3.61) 80.46 (3.71) 82.69 (3.42) 75.31 (4.45)
Colon 86.50 (5.64) 86.50 (5.64) 86.50 (5.64) 86.50 (5.64) 87.00 (6.16) 87.25 (5.25)
ALLAML4 93.54 (3.70) 93.54 (3.70) 93.54 (3.70) 93.75 (3.45) 93.75 (3.45) 93.70 (3.40)

Table 5: Comparison of classification accuracy (in percentage) for six different methods: NLDA,
iNLDA, OLDA, ULDA, ROLDA, and SVM using nine high-dimensional data sets. The
mean accuracy and standard deviation (in parenthesis) from 20 different runs are reported.

|Λ|. We have observed thatT(|Λ|) grows slowly as|Λ| increases, and the ratio,T(1024)/T(1), on
all nine data sets ranges from 1 to 5. Thus, we can run model selection using a large candidate set
of regularization values, without dramatically increasing the cost. In the following experiments, we
apply model selection to ROLDA with a candidate set of size|Λ|= 1024, where

λ j = α j/(1−α j), (28)

with {α j}|Λ|j=1 uniformly distributed between 0 and 1. As for SVM, we employed the cross-validation
to estimate the optimal parameter using a candidate set of size 50. To compare different classifi-
cation algorithms, we applied the same experimental setting as in Section 7.2. The splitting into
training and test sets of ratio 2:1 (for each of thek classes) was repeated 20 times. The final accu-
racy reported was the average of the 20 different runs. The standard deviation for each data set was
also reported. The result on the nine high-dimensionality data sets is summarized in Table 5.

As observed in Section 7.2, OLDA has the same performance as NLDA and iNLDA in all
cases except the re0 data set, while NLDA and iNLDA achieve similar performance in all cases.
Overall, ROLDA and SVM are very competitive with other methods. SVM performs well in all
cases except GCM. The poor performance of SVM in GCM has also beenobserved in (Li et al.,
2004). ROLDA outperforms OLDA for re0, AR, and GCM, while it is comparable to OLDA for
all other cases. This confirms the effectiveness of the regularization applied in ROLDA. Note that
from Remark 1, ULDA is closely related to OLDA. However, unlike OLDA, ULDA does not apply
the final orthogonalization step. Experimental result in Table 5 confirms the effectiveness of the
orthogonalization step in OLDA, especially for three face image data sets andGCM.

8. Conclusions

In this paper, we present a computational and theoretical analysis of two LDA based algorithms,
including null space LDA and orthogonal LDA. NLDA computes the discriminant vectors in the
null space of the within-class scatter matrix, while OLDA computes a set of orthogonal discrimi-
nant vectors via the simultaneous diagonalization of the scatter matrices. Theyhave been applied
successfully in many applications, such as document classification, face recognition, and gene ex-
pression data classification.
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Both NLDA and OLDA result in orthogonal transformations. However, they applied different
schemes in deriving the optimal transformation. Our theoretical analysis in thispaper shows that un-
der a mild condition C1 which holds in many applications involving high-dimensionaldata, NLDA
is equivalent to OLDA. Based on the theoretical analysis, an improved algorithm for null space
LDA algorithm, called iNLDA, is proposed. We have performed extensive experimental studies on
14 data sets, including both low-dimensional and high-dimensional data. Results have shown that
condition C1 holds for eight out of the nine high-dimensional data sets, whilethe null space of̃Sw

is empty for all five low-dimensional data. Thus, NLDA may not be applicable for low-dimensional
data, while OLDA is still applicable in this case. Results are also consistent with our theoretical
analysis. That is, for all cases when condition C1 holds, NLDA, iNLDA, and OLDA achieve the
same classification performance. We also observe that for other cases with condition C1 violated,
OLDA outperforms NLDA and iNLDA, due to the extra number of dimensions used in OLDA. We
also compare NLDA, iNLDA, and OLDA with uncorrelated LDA (ULDA), which does not perform
the final orthogonalization step. Results show that OLDA is very competitive with ULDA, which
confirms the effectiveness of the orthogonalization step used in OLDA. Our empirical and theoret-
ical results presented in this paper provide further insights into the nature of these two LDA based
algorithms.

We also present the ROLDA algorithm, which extends the OLDA algorithm by applying the
regularization technique. Regularization may stabilize the sample covariance matrix estimation and
improve the classification performance. ROLDA involves the regularization parameterλ, which
is commonly estimated via cross-validation. To speed up the cross-validation process, we decom-
pose the computations in ROLDA into two components: the first component involves matrices of
high dimensionality but independent ofλ, while the second component involves matrices of low
dimensionality. When searching for the optimalλ from a candidate set, we repeat the computations
involved in the second component only. A comparative study on classification shows that ROLDA
is very competitive with OLDA, which shows the effectiveness of the regularization applied in
ROLDA.

Our extensive experimental studies have shown that condition C1 holds for most high-dimensional
data sets. We plan to carry out theoretical analysis on this property in the future. Some of the theo-
retical results in (Hall et al., 2005) may be useful for our analysis.

The algorithms in (Yang et al., 2005; Yu and Yang, 2001) are closely related to the null space
LDA algorithm discussed in this paper. The analysis presented in this papermay be useful in un-
derstanding why these algorithms perform well in many applications, especially in face recognition.
We plan to explore this further in the future.
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