
Journal of Machine Learning Research 7 (2006) 1887–1907 Submitted 10/05; Published 9/06

Linear Programming Relaxations and Belief Propagation –
An Empirical Study

Chen Yanover CHENY@CS.HUJI.AC.IL
Talya Meltzer TALYAM @CS.HUJI.AC.IL
Yair Weiss YWEISS@CS.HUJI.AC.IL
School of Computer Science and Engineering
The Hebrew University of Jerusalem
Jerusalem, Israel

Editors: Kristin P. Bennett and Emilio Parrado-Hernández

Abstract

The problem of finding the most probable (MAP) configuration in graphical models comes up in
a wide range of applications. In a general graphical model this problem is NP hard, but various
approximate algorithms have been developed. Linear programming (LP) relaxations are a standard
method in computer science for approximating combinatorial problems and have been used for
finding the most probable assignment in small graphical models. However, applying this powerful
method to real-world problems is extremely challenging dueto the large numbers of variables
and constraints in the linear program. Tree-Reweighted Belief Propagation is a promising recent
algorithm for solving LP relaxations, but little is known about its running time on large problems.

In this paper we compare tree-reweighted belief propagation (TRBP) and powerful general-
purpose LP solvers (CPLEX) on relaxations of real-world graphical models from the fields of
computer vision and computational biology. We find that TRBPalmost always finds the solu-
tion significantly faster than all the solvers in CPLEX and more importantly, TRBP can be applied
to large scale problems for which the solvers in CPLEX cannotbe applied. Using TRBP we can
find the MAP configurations in a matter of minutes for a large range of real world problems.

1. Introduction

The task of finding the most probable assignment (or MAP) in a graphical model comes up in a wide
range of applications including image understanding (Tappen and Freeman, 2003), error correcting
codes (Feldman et al., 2003) and protein folding (Yanover and Weiss, 2002). For an arbitrary graph,
this problem is known to be NP hard (Shimony, 1994) and various approximation algorithms have
been proposed [see. e.g (Marinescu et al., 2003) for a recent review].

Linear Programming (LP) Relaxationsare a standard method for approximating combinatorial
optimization problems in computer science (Bertismas and Ttsitskikilis, 1997). They have been
used for approximating the MAP problem in a general graphical model by Santos (1991). More
recently, LP relaxations have been used for error-correcting codes(Feldman et al., 2003), and for
protein folding (Kingsford et al., 2005). LP relaxations have an advantage over other approximate
inference schemes in that they come with an optimality guarantee – when the solution to the linear
program is integer, then the LP solution is guaranteed to give the global optimum of the posterior
probability.
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The research described in this paper grew out of our experience in using LP relaxations for
problems in computer vision, computational biology and statistical physics. In all these fields, the
number of variables in a realistic problem may be on the order of 106 or more. We found that
using powerful, off-the-shelf LP solvers, these problems cannot be solved using standard desktop
hardware. However, linear programs that arise out of LP relaxations for graphical models have a
common structure and are a small subset of all possible linear programs. The challenge is to find an
LP solver that takes advantage of this special structure.

Tree-reweighted belief propagation (TRBP) is a variant of belief propagation (BP) suggested by
Wainwright and colleagues (Wainwright et al., 2002), that has been shown to find the same solution
as LP relaxations. Each iteration of TRBP is similar in time and space complexity to that of ordinary
BP and hence it can be straightforwardly applied to very large graphicalmodels. However, little is
known regarding the convergence properties of TRBP nor about the actual number of iterations
needed to solve large problems.

In this paper we compare tree-reweighted BP and powerful commercial LPsolvers (CPLEX)
on relaxations of real-world graphical models from the fields of computer vision and computational
biology. We find that TRBP almost always finds the solution significantly faster than all the solvers
in CPLEX and more importantly, TRBP can be applied to large scale problems forwhich the solvers
in CPLEX cannot be applied. Using TRBP we can find the MAP configurations in a matter of
minutes for a large range of real world problems.

2. MAP, Integer Programming and Linear Programming

We briefly review the formalism of graphical models. We usex to denote a vector of hidden variables
andy to denote the observation vector. We assume the conditional distribution Pr(x|y) is Markovian
with respect to a graphG – that is, it factorizes into a product of potential functions defined on the
cliques of the graphG. In this paper, we focus on pairwise Markov Random Fields and assume that

Pr(x|y) =
1
Z ∏

<i j>
Ψi j (xi ,x j)∏

i
Ψi(xi)

=
1
Z

e−∑<i j> Ei j (xi ,x j )−∑i Ei(xi),

where< i j > refers to all pairs of nodes that are connected in the graphG and we defineEi j (xi ,x j),
Ei(xi) as the negative logarithm of the potentialΨi j (xi ,x j),Ψi(xi).

The MAP assignment is the vectorx∗ which maximizes the posterior probability:

x∗ = argmax
x ∏

<i j>

Ψi j (xi ,x j)∏
i

Ψi(xi)

= argmin
x ∑

<i j>

Ei j (xi ,x j)+∑
i

Ei(xi).

To define the LP relaxation, we first reformulate the MAP problem as one ofinteger program-
ming. We introduce indicator variablesqi(xi) for each individual variable and additional indicator
variablesqi j (xi ,x j) for all connected pairs of nodes in the graph. Using these indicator variables we
define the integer program:
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minimize

J({q}) = ∑
<i j>

∑
xi ,x j

qi j (xi ,x j)Ei j (xi ,x j)+∑
i

∑
xi

qi(xi)Ei(xi)

subject to

qi j (xi ,x j) ∈ {0,1},

∑
xi ,x j

qi j (xi ,x j) = 1,

∑
xi

qi j (xi ,x j) = q j(x j),

where the last equation enforces the consistency of the pairwise indicatorvariables with the single-
ton indicator variable.

This integer program is completely equivalent to the original MAP problem, and is hence com-
putationally intractable. We can obtain the linear programming relaxation by allowing the indicator
variables to take on non-integer values. This leads to the following problem:

The LP relaxation of MAP:
minimize

J({q}) = ∑
<i j>

∑
xi ,x j

qi j (xi ,x j)Ei j (xi ,x j)+∑
i

∑
xi

qi(xi)Ei(xi)

subject to

qi j (xi ,x j) ∈ [0,1], (1)

∑
xi ,x j

qi j (xi ,x j) = 1, (2)

∑
xi

qi j (xi ,x j) = q j(x j). (3)

This is now a linear program – the cost and the constraints are linear. It can therefore be solved
in polynomial time and we have the following guarantee:

Lemma If the solutions{qi j (xi ,x j),qi(xi)} to the MAP LP relaxation are allinteger, that is
qi j (xi ,x j),qi(xi) ∈ {0,1}, thenx∗i = argmaxxi qi(xi) is the MAP assignment.+

2.1 The Need for Special Purpose LP Solvers

Given the tremendous amount of research devoted to LP solvers, it may seem that the best way to
solve LP relaxations for graphical models, would be to simply use an industrial-strength, general-
purpose LP solver. However, by relaxing the MAP into a linear program we increase the size of the
problem tremendously. Formally, denote byki the number of possible states of nodei. The number
of variables and constraints in the LP relaxation is given by

Nvariables = ∑
i

ki + ∑
<i, j>

kik j ,

Nconstraints = ∑
<i, j>

(ki +k j +1).
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The additional∑<i, j> 2kik j bound constraints, derived from equation (1), are usually not considered
part of the constraint matrix.

As an example, consider an image processing problem (an example of sucha problem, the
stereo problem, is discussed in Section 4.1). If the image is a modest 200×200 pixels and each
pixel can take on 30 discrete values, then the LP relaxation will have over 72 million variables
and four million constraints. Obviously, we need a solver that can somehow take advantage of the
problem structure in order to deal with such a large-scale problem.

3. Solving Linear Programs Using Tree-Reweighted Belief Propagation

Tree-reweighted belief propagation (TRBP) is a variant of belief propagation introduced by Wain-
wright and colleagues (Wainwright et al., 2002). We start by briefly reviewing ordinary max-product
belief propagation [see e.g. (Yedidia et al., 2001; Pearl, 1988)]. The algorithm receives as input a
graphG and the potentialsΨi j ,Ψi . At each iteration, a nodei sends a messagemi j (x j) to its neighbor
in the graphj. The messages are updated as follows:

mi j (x j)← αi j max
xi

Ψi j (xi ,x j)Ψi(xi) ∏
k∈Ni\ j

mki(xi) (4)

whereNi\ j refers to all neighbors of nodei except j. The constantαi j is a normalization constant
typically chosen so that the messages sum to one (the normalization has no influence on the final
beliefs). After the messages have converged, each node can form anestimate of its local “belief”
defined as

bi(xi) ∝ Ψi(xi) ∏
j∈Ni

mji (xi).

It is easy to show that when the graph is singly-connected, choosing an assignment that maxi-
mizes the local belief will give the MAP estimate (Pearl, 1988). In fact, when the graph is a chain,
equation 4 is simply a distributed computation of dynamic programming. When the graph has cy-
cles, ordinary BP is no longer guaranteed to converge, nor is there a guarantee that it can be used to
find the MAP.

In tree-reweighted BP (TRBP), the algorithm receives as input an additional set ofedge appear-
ance probabilities, ρi j . These edge appearance probabilities are essentially free parameters of the
algorithm and are derived from a distribution over spanning trees of the graphG. They represent
the probability of an edge(i j ) appearing in a spanning tree under the chosen distribution. As in
standard belief propagation, at each iteration a nodei sends a messagemi j (x j) to its neighbor in the
graph j. The messages are updated as follows:

mi j (x j)← αi j max
xi

Ψ1/ρi j
i j (xi ,x j)Ψi(xi)

∏
k∈Ni\ j

mρki
ki (xi)

m
1−ρ ji
ji (xi)

. (5)

Note that forρi j = 1 the algorithm reduces to standard belief propagation.
After one has found a fixed-point of these message update equations, the singleton and pairwise

beliefs are defined as

bi(xi) ∝ Ψi(xi) ∏
j∈Ni

m
ρ ji
ji (xi),
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bi j (xi ,x j) ∝ Ψi(xi)Ψ j(x j)Ψ
1/ρi j
i j (xi ,x j) ·

∏
k∈Ni\ j

mρki
ki (xi)

m
1−ρ ji
ji (xi)

∏
k∈Nj\i

m
ρk j

k j (x j)

m
1−ρi j
i j (x j)

.

The relationship between TRBP and the solution to the LP relaxation has been studied by (Wain-
wright et al., 2002; Kolmogorov, 2005; Kolmogorov and Wainwright, 2005) and is a subject of
ongoing research. We briefly summarize some of the relationships.

Given a set of TRBP beliefs, we define thesharpened beliefsas follows:

qi(xi) ∝ δ(bi(xi)−max
xi

bi(xi)),

qi j (xi ,x j) ∝ δ(bi j (xi ,x j)−max
xi ,x j

bi j (xi ,x j)),

whereδ(·) is the Dirac delta function (δ(0) = 1 andδ(x) = 0 for all x 6= 0). That is, we get a uniform
distribution over all the maximizing values and assign 0 probability to all non-maximizing values.
To illustrate this definition, a belief vector(0.6,0.4) would be sharpened to(1,0) and a belief vector
(0.4,0.4,0.2) would be sharpened to(0.5,0.5,0).

Using these sharpened beliefs, the following properties hold:

• At any iteration, and in particular in fixed-point, the TRBP beliefs provide a lower bound on
the solution of the LP (see appendix A).

• If there exists a unique maximizing value for the pairwise beliefsbi j (xi ,x j) then the sharpened
beliefs solve the LP. In that casex∗i = argmaxxi bi(xi) is the MAP.

• Suppose the TRBP beliefs have ties. If there existsx∗ such thatx∗i ,x
∗
j maximizebi j (xi ,x j) and

x∗i maximizebi(xi), thenx∗ is the MAP. In that case, defineq∗i j ,q
∗
i as indicator variables for

x∗, thenq∗i j ,q
∗
i are a solution for the LP.

• If the sharpened beliefs at a fixed-point of TRBP satisfy the LP constraints (equations 1-3),
then the sharpened beliefs are a solution to the LP relaxation.

• Suppose the TRBP beliefs have ties. If there existsb̃i , b̃i j that satisfy the LP constraints and
for all xi ,x j , b̃i(xi) = 0 if qi(xi) = 0 and b̃i j (xi ,x j) = 0 if qi j (xi ,x j) = 0, thenb̃i , b̃i j are a
solution to the LP relaxation.

The lower-bound property is based on Lagrangian duality and is provenin (Wainwright et al.,
2002; Kolmogorov, 2005). The subsequent properties follow from thelower-bound property.

Based on these properties, we use the following algorithm to extract the LP solution and the
MAP from TRBP beliefs:

1. Run TRBP until convergence and identify the tied nodesxT .

2. For all non-tied nodes,xNT, setx∗i = argmaxxi bi(xi).

3. Construct a new graphical model that includes only the tied nodes and the possible states are
only those that maximize the beliefs. The pairwise potentials are 1 if the pair maximizes the
pairwise belief andε otherwise. Use the junction tree algorithm (Cowell, 1998) to findx∗T ,
the MAP in this new graphical model. Ifx∗T has energy equal to zero thenx∗ = (x∗NT,x∗T) is
the MAP andq∗i j ,q

∗
i , defined as indicator variables forx∗, are a solution to the LP.
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3.1 TRBP Complexity

Little is known about the number of iterations needed for TRBP to converge,but what is relatively
straightforward to calculate is the cost per iteration. In every TRBP iteration, each node calculates
and sends messages to all its neighbors. Thus the number of message updates is two times the
number of edges in the graph. Each message update equation involves point-wise multiplication
of vectors of lengthki followed by a matrix by vector max-multiplication,1 where the size of the
matrix isk j ×ki . By working in the log domain, the point-wise multiplications can be transformed
into summations, and the raising of the messages to the powersρi j ,1−ρi j are transformed into mul-
tiplications. In summary, the dominant part of the computation is equivalent to 2|E |multiplications
of aki×k j matrix times ak j ×1 vector (where|E | is the number of edges in the graph).

The amount of memory needed depends on the particular implementation. In the simplest im-
plementation, we would need to store the potentialsΨi j ,Ψi in memory. The size of the potentials
is exactly the number of variables in the linear program:∑i ki + ∑<i, j> kik j . Additionally, storing
the messages in memory requires∑<i, j> ki +k j (which is typically small relative to the memory re-
quired for the pairwise potentials). In many problems, however, the pairwise potentials can be stored
more compactly. For example, in the Potts model, the pairwise potentialΨi j (xi ,x j) is ak×k table
that has only two unique values: 1 on the diagonal ande−λi j for the off-diagonal terms. Additional
implementation techniques for reducing the memory requirements of BP appear in(Felzenszwalb
and Huttenlocher, 2004; Kolmogorov, 2005).

4. The Benchmark Problems

We constructed benchmark problems from three domains: stereo vision, side-chain prediction and
protein design. We give here a short overview of how we constructed the graphical models in all
three cases. The exact graphical models can be downloaded from the JMLR web site.

4.1 Stereo Vision

The stereo problem is illustrated in Figure 1. Given a stereo pair of images,Left(u,v) andRight(u,v),
the problem is to find the disparity of each pixel in a reference image. This disparity can be straight-
forwardly translated into depth from the camera.

The main cue for choosing disparities are the similarities of local image informationin the left
and right image. That is, we search for a disparity so that

Left(u,v)≈ Right(u+disp(u,v),v),

or equivalently,

disp∗(u,v) = arg min
disp(u,v)

[Left(u,v)−Right(u+disp(u,v),v)]2 .

This criterion by itself is typically not enough. Locally, there can be many disparities for a pixel
that are almost equally good. The best algorithms currently known for the stereo problem are those
that minimize a global energy function (Scharstein and Szeliski, 2002):

disp∗ = argmin
disp

∑
u,v

dissim[Left(u,v),Right(u+disp(u,v),v)]+λ ·smoothness(disp),

1. Max-multiplication of a matrix by a vector is equivalent to ordinary matrix multiplication but all summations are
replaced by maximizations.
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Left Right

Disparity

Figure 1: An illustration of the stereo problem. Given two images taken from slightly different
viewpoints (Left,Right) we search for the disparity of each pixel. The best results for this
problem use energy minimization formulations which are equivalent to solving the MAP
for a grid graphical model.

wheresmoothness(disp) is a cost that penalizes disparity fields where neighboring pixels have dif-
ferent disparities anddissim[Left(u,v),Right(u′,v′)] measures the dissimilarity of the left and right
image at corresponding locations.

We associate each disparitydisp(u,v) with an assignment of a nodexi in a two dimensional grid
graph. If we definex to be the disparity field, andP(x|y) ∝ exp(−E(x)) whereE(x) is the energy
function, minimizing the energy is equivalent to maximizing P(x). Furthermore, sinceE(x) is a sum
of singleton and pairwise terms,P(x) will factorize with respect to the two-dimensional grid:

Pr(x|y) ∝ ∏
i

Ψi(xi) ∏
<i j>

Ψi j (xi ,x j) =

= e−∑i Ei(xi)−∑<i j> Ei j (xi ,x j ).

The problem of finding the most probable set of disparities is NP hard. Good approximate
solutions can be achieved using algorithms based on min-cut/max-flow formulations (Boykov et al.,
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(a) (b) (c)

Figure 2: (a) Cow actin binding protein (PDB code 1pne).(b) A closer view of its 6 C-terminal
residues. Given the protein backbone (black) and the amino acid sequence, side-chain
prediction is the problem of predicting the native side-chain conformation (gray). (c)
Problem representation as a graphical model for those C-terminal residues shown in (b)
(nodes located atCα atom positions, edges drawn in black).

1999; Kolmogorov and Zabih, 2004) and Belief Propagation (Felzenszwalb and Huttenlocher, 2004;
Tappen and Freeman, 2003; Sun et al., 2002).

In this work we use the same energy function used by Tappen and Freeman(2003). The local
cost is based on the Birchfield-Tomasi matching cost (Birchfield and Tomasi, 1998) and the pairwise
energy penalizes for neighboring pixels having different disparities. The amount of penalty depends
only on the intensity difference between the two pixels and therefore, for each pair of neighboring
pixels, the penalty for violating the smoothness constraint is constant. Thus the MRF is equivalent
to a Potts model. Specifically, the pairwise energy penalty is defined using 3 parameters –s, P and
T – and set toP ·s when the intensity difference between the two pixels is smaller than a threshold
T, ands otherwise.

We used four images from the standard Middlebury stereo benchmark set(Scharstein and
Szeliski, 2003). By varying the parameters of the energy function, as in (Tappen and Freeman,
2003), we obtained 22 different graphical models. The parameterss,P,T are constant over the
whole image.

4.2 Side-Chain Prediction

Proteins are chains of simpler molecules calledamino acids. All amino acids have a common
structure – a central carbon atom (Cα) to which a hydrogen atom, an amino group (NH2) and a
carboxyl group (COOH) are bonded. In addition, each amino acid has a chemical group called
the side-chain, bound toCα. This group distinguishes one amino acid from another and gives its
distinctive properties. Amino acids are joined end to end during protein synthesis by the formation
of peptide bonds. An amino acid unit in a protein is called aresidue. The formation of a succession
of peptide bonds generates thebackbone(consisting ofCα and its adjacent atoms,N andCO, of
each reside), upon which the side-chains are hanged (Figure 2).

Theside-chain predictionproblem is defined as follows: given the 3 dimensional structure of
the backbone we wish to predict the placements of the side-chains. This problem is considered of
central importance in protein-folding and molecular design and has been tackled extensively using

1894



LP RELAXATIONS AND BP–AN EMPIRICAL STUDY

a wide variety of methods. Typically, an energy function is defined over a discretization of the side-
chain angles and search algorithms are used to find the global minimum. Even when the energy
function contains only pairwise interactions, the configuration space grows exponentially and it can
be shown that the prediction problem is NP-complete (Fraenkel, 1997; Pierce and Winfree, 2002).

Formally, our search space is a set of energetically preferred conformations (calledrotamers)
and we wish to minimize an energy function that is typically defined in terms of pairwise interactions
among nearby residues and interactions between a residue and the backbone:

E(r) = ∑
<i j>

Ei j (r i , r j)+∑
i

Ei(r i ,backbone),

wherer = (r1, ..., rN) denotes an assignment of rotamers for all residues.
Since we have a discrete optimization problem and the energy function is a sumof pairwise

interactions, we can transform the problem into a graphical model with pairwise potentials. Each
node corresponds to a residue, and the state of each node representsthe configuration of the side-
chain of that residue. SinceE(r) is a sum of singleton and pairwise terms,P(r) will factorize:

P(r) =
1
Z

e−E(r) =
1
Z

e
−∑

i
Ei(r i)− ∑

<i j>
Ei j (r i ,r j )

=
1
Z ∏

i
Ψi(r i) ∏

<i j>
Ψi j (r i , r j) (6)

whereZ is an explicit normalization factor. Equation (6) requires multiplyingΨi j for all pairs of
residuesi, j but in all reasonable energy functions the pairwise interactions go to zerofor atoms
that are sufficiently far away. Thus we only need to calculate the pairwise interactions for nearby
residues. To define the topology of the undirected graph, we examine all pairs of residuesi, j and
check whether there exists an assignmentr i , r j for which the energy is nonzero. If it exists, we
connect nodesi and j in the graph and set the potential to be:Ψi j (r i , r j) = e−Ei j (r i ,r j ).

Figure 2(c) shows a subgraph of the undirected graph. The graph is relatively sparse (each node
is connected to nodes that are close in 3D space) but contains many small loops. A typical protein
in the data set gives rise to a model with hundreds of loops of size 3.

As a data set we used 370 X-ray crystal structures with resolution better than or equal to 2̊A, R
factor below 20% and mutual sequence identity less than 50%. Each protein consisted of a single
chain and up to 1,000 residues. Protein structures were acquired from the Protein Data Bank site
(http://www.rcsb.org/pdb). For each protein, we have built two representing graphical models:

1. Using the SCWRL energy function (Canutescu et al., 2003), which approximates the repulsive
portion of Lennard-Jones 12-6 potential.

2. Using the more elaborate energy function used in the Rosetta program (Kuhlman and Baker,
2000) which is comprised of (Rohl et al., 2004): (1) the attractive portionof the 12-6 Lennard-
Jones potential, (2) The repulsive portion of a 12-6 Lennard Jones potential. This term is
dampened in order to compensate for the use of a fixed backbone and rotamer set, (3) solvation
energies calculated using the model of Lazaridis and Karplus (1999), (4) an approximation to
electrostatic interactions in proteins, based on PDB statistics, (5) hydrogen-bonding potential
(Kortemme et al., 2003) and (6) backbone dependent internal free energies of the rotamers
estimated from PDB statistics performed by Dunbrack and Kurplus (1993).
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The Rosetta energy function accounts for distant interactions and therefore gives rise to denser
graphical models, compared to SCWRL’s. In both cases we used Dunbrack and Kurplus (1993)
backbone dependent rotamer library to define up-to 81 configurations for each side-chain. The side-
chain prediction data sets are publicly available and can be downloaded from http://www.jmlr.
org/papers/volume7/yanover06a/SCWRL SCP Dataset.tgz andhttp://www.jmlr.org/pap
ers/volume7/yanover06a/Rosetta SCP Dataset.tgz.2

4.3 Protein Design

The protein design problem is the inverse of the protein folding problem. Given a particular 3D
shape, we wish to find a sequence of amino-acids that will be as stable as possible in that 3D
shape. Typically this is done by finding a set of (1) amino-acids and (2) rotamer configurations
that minimizes an approximate energy [see (Street and Mayo, 1999) for a review of computational
protein design].

While the problem is quite different from side-chain prediction it can be solved using the same
graph structure. The only difference is that now the nodes do not just denote rotamers but also the
identity of the amino-acid at that location. Thus, the state-space here is significantly larger than
in the side-chain prediction problem. We, again, used the Rosetta energy function to define the
pairwise and local potentials (Kuhlman and Baker, 2000). As a data set weused 97 X-ray crystal
structures, 40-180 amino acids long. For each of these proteins, we allowed all residues to assume
any rotamer of any amino acid. There are, therefore, hundreds of possible states for each node. The
protein design data set is available fromhttp://www.jmlr.org/papers/volume7/yanover06a/
Rosetta Design Dataset.tgz.

5. Experiments

We compared TRBP to the LP solvers available from CPLEX (CPLEXv9.0,tomlab.biz). CPLEX
is widely considered to be one of the most powerful LP packages availablecommercially and (ac-
cording to the company’s website) is used in 95% of all academic papers thatreference an LP
solver. In addition to its widespread use, CPLEX is well suited for our empirical study because it
is highly optimized for solving LP relaxations (as opposed to arbitrary LPs).Indeed as the original
programmer of CPLEX notes “the solution of integer programs is the dominant application of linear
programming in practice” (Bixby, 2001) and CPLEX contains a large numberof optimizations that
are based on exploiting the sparse structure of LPs that arise from LP relaxations (Bixby, 2001).

Specifically, we tried the following solvers from CPLEX.

1. Primal anddualsimplex solvers.

2. CPLEX has a very efficient algorithm fornetworkmodels. Network constraints have the
following property: each non-zero coefficient is either a+1 or a−1 and column appearing in
these constraints has exactly 2 nonzero entries, one with a+1 coefficient and one with a−1
coefficient. CPLEX can also automatically extract networks that do not adhere to the above
conventions as long as they can be transformed to have those properties.

2. Note that loading a protein file in Matlab requires using the sparsecell package available fromhttp://www.cs.
huji.ac.il/∼cheny.
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Figure 3: The number of variables and constraints in the LP relaxation of thestereo disparity prob-

lem as a function of the size of the image. The largest image that could be solved using
the CPLEX solvers is approximately 50×50 while TRBP can be run on full size images.

3. Thebarrier algorithm is a primal-dual logarithmic barrier algorithm which generates a se-
quence of strictly positive primal and dual solutions. The barrier algorithmis highly opti-
mized for large, sparse problems.

4. CPLEX provides asifting algorithm which can be effective on problems with many more
variables than equations. Sifting solves a sequence of LP subproblems where the results from
one subproblem are used to select columns from the original model for inclusion in the next
subproblem.

5. Theconcurrentoptimizer can apply multiple algorithms to a single linear programming prob-
lem. Each algorithm operates on a different CPU.

We used thetomlab package that provides a Matlab interface to CPLEX 9.0. Our TRBP im-
plementation was written in C++ and linked to Matlab as a cmex file. The TRBP implementation is
completely general and receives as input a graph and the potential functions. It iterates the message
updating equations (equation 5) until convergence. To improve the convergence properties “damp-
ening” is used – we only move the new messages halfway towards the new value of the message.
The messages are represented in the log domain so that multiplication is replacedwith summation.
Convergence is declared when the beliefs change by no more than 10−8 between successive itera-
tions and the same threshold is used to determine ties. The edge appearance probabilitiesρi j are
automatically calculated for a given graph by greedily constructing a set ofspanning trees until all
edges in the graph appear in exactly one spanning tree. The junction tree algorithm needed for
the post-processing of the TRBP beliefs is performed in Matlab using Kevin Murphy’s BNT pack-
age (Murphy, 2001). Despite the Matlab implementation, the junction tree run-timeis negligible
compared to the TRBP run times (typically less than 30 seconds for the junction tree). We also
compared the run-times of ordinary BP by running the same code but withρi j = 1 for all edges. All
algorithms were run on a dual processor Pentium 4 with 4G memory (but using a single processor
only).
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Figure 4: The number of variables, constraints and non-zero entries in the constraint matrix for
our benchmark problems in side-chain prediction, using SCWRL (left) and Rosetta (mid-
dle) energy functions, and protein design (right). For the side-chain prediction problem
both TRBP and the CPLEX solvers could solve the LP relaxation for all proteins in the
database. For the protein design problem, on the other hand, the CPLEX solvers could
only solve a small fraction of the database (3/97) while TRBP could solve the relaxations
for all the proteins in the database (the horizontal line in the plots in the right column in-
dicates the largest model that could be solved using CPLEX).
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Figure 5: Comparison of run-times of the six solvers from CPLEX and TRBPon a set of subprob-
lems constructed from the “map” image in the Middlebury stereo benchmark set.The
barrier method is the fastest of the CPLEX solvers but it is still significantly slower than
TRBP for relatively large problems.

The first question we asked was: what is the largest problem in each dataset that can be solved
within 12 hours by each of the solvers ? Figure 3 shows the results for a standard stereo bench-
mark image (the “map” image from the Middlebury stereo benchmark set (Scharstein and Szeliski,
2003)). We constructed smaller problems by taking subimages from the full image. Out of the
CPLEX solvers, the dual simplex algorithm could solve the largest subproblem (the barrier algo-
rithm requires more memory) but it could not solve an image larger than approximately 50× 50
pixels. In contrast, TRBP can be run on the full benchmark images (approximately 250×250 pix-
els). Figure 4 shows the problem sizes for the side-chain prediction and the protein design problems.
For the side-chain prediction problem all solvers could be applied to the fullbenchmark set. How-
ever for the protein design problem (in which the state space is much larger)the CPLEX solvers
could solve only 2 out of the 96 problems in the database (this is indicated by thehorizontal line in
the plots in the right column) while TRBP could solve them all.

In the second experiment we asked: how do the run-times of the solvers compare in settings
where all solvers can be applied. Figure 5 compares the run-times on the sequence of subproblems
constructed from the Middlebury stereo benchmark set. As can be seen,the barrier method is the
fastest of the CPLEX solvers but it is still significantly slower than TRBP on large problems.

Figure 6 compares the run times of the different solvers on the side-chain prediction graphical
models. Again, the barrier method is the fastest of the CPLEX solvers (with dual simplex and
network solvers providing similar performance with less memory requirements)but is significantly
slower than TRBP for large problems. Figure 7 shows the run times of TRBP,BP, and the barrier
CPLEX solver on the protein design problem. For the few cases for which the barrier method did
not run out of memory, TRBP is significantly faster.
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Figure 6: A comparison of the run-times of the different solvers in CPLEX and TRBP on the side-
chain prediction benchmark. Again the barrier method is the fastest of the CPLEX solvers
(with dual simplex and the network solver providing similar performance with less mem-
ory requirements). TRBP consistently converges faster than the barriermethod and the
difference becomes more significant as the problem size increases.
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Figure 7: A comparison of the run-times of the barrier method and TRBP on theprotein design
problem. For the few cases in which the barrier method did not run out of memory,
TRBP is significantly faster.

In the third set of experiments we asked: in what fraction of the runs can we use the results of
the LP relaxation to find the MAP? We define a run of TRBP as “successful”if the TRBP beliefs
allowed us to find the MAP of the graphical model (i.e. if we could find an assignmentx∗ that
maximized the pairwise and singleton beliefs). In the stereo benchmark we could directly find the
MAP in 12 out of 22 cases, but by using additional algorithms on the TRBP output we could find
the MAP on 19 out of the 22 cases (Meltzer et al., 2005). Figure 8 shows the success rate for TRBP
in the side-chain prediction problems. For these problems, TRBP’s success rate was over 90% for
proteins in our database with length less than 200 amino acids. As the proteins become larger, the
problem becomes more complex and the success rate decreases. The figures also show the fraction
of times in which the TRBP beliefs allowed us to solve the linear program. The protein design
problem is, apparently, a more difficult problem and the success rate is therefore much lower – the
MAP assignment could be found for 2 proteins only and TRBP beliefs allowed us to solve the LP
relaxations for 6 proteins only. Note, however, that we could still use the TRBP beliefs to obtain a
lower bound on the optimal solution.

We also assessed the success rate of the standard LP solvers, which wedefined as a case when
the LP solution was nonfractional. We found thatin all cases in which the LP solution was nonfrac-
tional the TRBP beliefs had a unique maximum. Thus the success rate of the standard LP solvers
was strictly less than that of TRBP (since TRBP also allows for obtaining a solution with partially
tied beliefs).

6. What is TRBP’s Secret?

Given the performance advantages of TRBP over the solvers in CPLEX,it is natural to ask “what is
TRBP’s secret?”. The first thing to emphasize in this context is thatTRBP is not a general purpose
LP solver. It can only solve a tiny fraction of linear programs with a very special structure.

To see this structure, consider the general LP problem: minimizecTq subject toAq = b and
Cq < d. If we translate LP relaxations of MAP into this form we find that the equality matrix
A, the inequality matrixC, and the vectorsb, d all contain only elements in{−1,0,1}. Tardos
(1986) has shown that linear programs with integer constraint matrices canbe solved with a strongly
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Figure 8: Success rate of TRBP on the side-chain prediction problems. A run of the algorithm was
considered a success if we could use the TRBP beliefs to find the MAP of thegraphical
model. The figures also show the fraction of times in which the TRBP beliefs allowed us
to solve the linear program.
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Figure 9: The sparsity pattern of a typical equality matrixA (a) and a random permutation of this
matrix (b). Blue and red dots indicate+1 and−1 entries respectively.

polynomial algorithm (suggesting that they are easier to solve than generalpurpose LPs for which
no strongly polynomial algorithm is known).

The matrixA that arises in LP relaxations of MAP has additional structure, beyond the fact
that its elements are in{−1,0,1}. Figure 9(a) shows the sparsity pattern of the matrixA for a
small graphical model. The matrix is sparse and has a special block form. The special structure
arises from the fact that we only have a consistency constraint for a pairwise indicatorqi j to the
two singleton indicators, that involve nodesi and j. There is no interaction between the pairwise
indicatorsqi j and any other pairwise indicatorqkl nor is there an interaction with any other singleton
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Figure 10: A comparison of the run-times of the barrier method and TRBP on(a) binary spin glass
models (Potts models with positive and negativeλi j ), as a function of grid size and on
(b) a 25×25 grid Potts model, as a function of the number of possible states,k. Each
datapoint represents the average over 10 random samplings ofλi j .

indicatorqk in the graph. For comparison, Figure 9(b) shows a random permutation ofthe matrix –
this has the same sparsity pattern but without the block structure.

Note that TRBP does not even represent the matrixA explicitly. Instead, TRBP explicitly repre-
sents the graphG which implicitly defines the matrixA. In contrast, the CPLEX solvers explicitly
representA and this matrix implicitly represents the graphG (by finding the correct permutation of
A that reveals the block structure, it is possible to reconstruct the graphG). We believe that this
difference in representation may be responsible for TRBP’s superior performance.

To investigate the conjecture that TRBP’s advantage is related to an explicit representation of
the graph structure, we compared the run-times of the barrier LP solver and TRBP on spin glass
models (Potts models with positive and negativeλi j ) with different numbers of possible states per
node,k. Note that the size of the block in the constraint matrix in Figure 9 is directly related to k
– for binary nodes the blocks are of size 5×4 and we conjectured that when the blocks are small,
TRBP’s advantage will decrease.

As Figure 10(a) shows, for binary nodes the barrier solver was consistently faster than TRBP.
However, as we increasedk, and consequently – the size of the blocks inA, the barrier solver
became much slower than TRBP (Figure 10(b)). This seems to support the assumption that the
explicit representation of block structure was responsible for TRBP’s superior performance in our
benchmark set. In the benchmark set,k was (at least) in the order of dozens. We should also note,
that even for binary problems, the barrier method will run out of memory muchfaster than TRBP.

7. Discussion

As pointed out in (Bixby, 2001), advances in hardware and in LP algorithms have greatly expanded
the size of problems that can be solved using LP relaxations. Despite this progress, many real world
problems are still too large to be handled using desktop hardware and standard LP solvers. In this
paper we have experimented with the powerful solvers in CPLEX on LP relaxations of the MAP
problem for graphical models from the fields of computer vision and computational biology. Despite
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the many optimizations in CPLEX for exploiting sparsity, we found that many of thegraphical
models gave rise to linear programs that were beyond the capability of all the solvers in CPLEX. In
contrast, tree-reweighted BP could be applied to all the linear programs in our database and almost
always gave faster solutions. By running the junction tree algorithm on a reduced graphical model
defined by the nodes for which the TRBP beliefs had ties, we could find the MAP solution for a
large range of real-world problems.

The LP solvers available in CPLEX are of course only a subset of the large number of LP
algorithms suggested in the literature and it may very well be possible to design LP solvers that
outperform TRBP on our benchmark set. To stimulate research in this direction, both the linear
programs used in this paper and our implementation of TRBP are available on theinternet. One
direction of research that we are currently working on, involves tighter LP relaxations (Meltzer et al.,
2005). As the problems become more complex, the standard LP relaxation of MAP is apparently
not tight enough and solving the LP often does not enable solving for the MAP. We are exploring
methods for solving a sequence of tighter and tighter relaxations and are interested in a method that
will allow us to use some of the computations used in one relaxation in solving a tighter relaxation.
We believe this research direction offers great potential benefit for interaction between researchers
in the field of graphical models and convex optimization.
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Appendix A. Deriving Bounds for the LP Solution Using TRBP

In this section, we give the formula for calculating a bound on the LP solution from TRBP fixed-
point beliefsbi j ,bi . We assume that the beliefs have been normalized so that maxxi ,x j bi j (xi ,x j) = 1
and maxxi bi(xi) = 1. Note that this normalization does not change the nature of fixed-points soin
case we have any set of fixed-point beliefs, we can just divide everypairwise belief by the maximal
value in that belief and similarly divide every singleton belief by its maximal value.The normalized
beliefs will still be fixed-points.

It can be shown (Wainwright et al., 2002) that any fixed-point of TRBPsatisfies the “admissibil-
ity” equation. For any assignmentx, the probability (or equivalently the energy) can be calculated
from the original potentials or from the beliefs:

ZPr(x) = ∏
i j

Ψi j (xi ,x j)Ψi(xi)

= K(b)∏
i j

b
ρi j
i j (xi ,x j)∏

i
bci

i (xi)

with ci = 1−∑ j ρi j and K(b) is a constantindependent of x. K(b) can be calculated from any
assignmentx, e.g.x0 = 0 where all nodes are in their first state, by

K(b) =
∏i j Ψi j (x0

i ,x
0
j )Ψi(x0

i )

∏i j b
ρi j
i j (x0

i ,x
0
j )∏i b

ci
i (x0

i )
(7)
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Similarly, it can be shown that for anyqi j ,qi that satisfy the LP constraints, one can calculate
the energy from the beliefs:

J(q) = ∑
<i j>

∑
xi ,x j

qi j (xi ,x j)Ei j (xi ,x j)+∑
i

∑
xi

qi(xi)Ei(xi)

= − lnK(b)− ∑
<i j>

ρi j ∑
xi ,x j

qi j (xi ,x j) lnbi j (xi ,x j)−∑
i

ci ∑
xi

qi(xi) lnbi(xi).

By using the admissibility constraint and the properties of the numbersρi j ,ci it can be shown
that J(q) ≥ − lnK(b). Direct inspection shows that ifqi j,qi are the sharpened beliefs then they
achieve the bound (since they are nonzero only whenbi j (xi ,x j) = 1 orbi(xi) = 1).
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