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Abstract

The problem of finding the most probable (MAP) configuratiorgraphical models comes up in
a wide range of applications. In a general graphical modslgtoblem is NP hard, but various
approximate algorithms have been developed. Linear pnogiag (LP) relaxations are a standard
method in computer science for approximating combinattgniablems and have been used for
finding the most probable assignment in small graphical nsodiéowever, applying this powerful

method to real-world problems is extremely challenging ttu¢he large numbers of variables
and constraints in the linear program. Tree-ReweighteteBBropagation is a promising recent
algorithm for solving LP relaxations, but little is knownal its running time on large problems.

In this paper we compare tree-reweighted belief propagdfi®RBP) and powerful general-
purpose LP solvers (CPLEX) on relaxations of real-worldpbieal models from the fields of
computer vision and computational biology. We find that TR&8most always finds the solu-
tion significantly faster than all the solvers in CPLEX andrenonportantly, TRBP can be applied
to large scale problems for which the solvers in CPLEX carfmsoapplied. Using TRBP we can
find the MAP configurations in a matter of minutes for a largegeaof real world problems.

1. Introduction

The task of finding the most probable assignment (or MAP) in a graphicddhcomes up in a wide
range of applications including image understanding (Tappen and Fre26€8), error correcting
codes (Feldman et al., 2003) and protein folding (Yanover and Wei82) 2Bor an arbitrary graph,
this problem is known to be NP hard (Shimony, 1994) and various appréagmaigorithms have
been proposed [see. e.g (Marinescu et al., 2003) for a recenivievie

Linear Programming (LP) Relaxatiorese a standard method for approximating combinatorial
optimization problems in computer science (Bertismas and Ttsitskikilis, 1997)y fdne been
used for approximating the MAP problem in a general graphical model &ytoS (1991). More
recently, LP relaxations have been used for error-correcting déaddman et al., 2003), and for
protein folding (Kingsford et al., 2005). LP relaxations have an adgentaer other approximate
inference schemes in that they come with an optimality guarantee — when therstiutiie linear
program is integer, then the LP solution is guaranteed to give the global aptohthe posterior
probability.
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The research described in this paper grew out of our experiencerig LB relaxations for
problems in computer vision, computational biology and statistical physicdl ttmese fields, the
number of variables in a realistic problem may be on the order Bfotdnore. We found that
using powerful, off-the-shelf LP solvers, these problems cannobbed using standard desktop
hardware. However, linear programs that arise out of LP relaxatmngréphical models have a
common structure and are a small subset of all possible linear programshalenge is to find an
LP solver that takes advantage of this special structure.

Tree-reweighted belief propagation (TRBP) is a variant of belief pyapan (BP) suggested by
Wainwright and colleagues (Wainwright et al., 2002), that has beamrstwfind the same solution
as LP relaxations. Each iteration of TRBP is similar in time and space complexityt wf thainary
BP and hence it can be straightforwardly applied to very large grapmmicdéls. However, little is
known regarding the convergence properties of TRBP nor aboutctu@lanumber of iterations
needed to solve large problems.

In this paper we compare tree-reweighted BP and powerful commerciabhM@rs (CPLEX)
on relaxations of real-world graphical models from the fields of compusérrvand computational
biology. We find that TRBP almost always finds the solution significantly falsean all the solvers
in CPLEX and more importantly, TRBP can be applied to large scale problemfol the solvers
in CPLEX cannot be applied. Using TRBP we can find the MAP configuratiora matter of
minutes for a large range of real world problems.

2. MAP, Integer Programming and Linear Programming

We briefly review the formalism of graphical models. We y$edenote a vector of hidden variables
andy to denote the observation vector. We assume the conditional distributixis)Rs Markovian
with respect to a grap@ — that is, it factorizes into a product of potential functions defined on the
cliques of the grapks. In this paper, we focus on pairwise Markov Random Fields and asswahe th

1
Prixly) = = [] Wi (6.x)) [TWi%)
= Ee*Zm>EKNJD*ZEKN%

where< ij > refers to all pairs of nodes that are connected in the g@aphd we definds;; (X, xj),
Ei(x) as the negative logarithm of the potentig} (x,x;), Wi(x).
The MAP assignment is the vectdr which maximizes the posterior probability:

X = argrr)l(ax“ LPij(Xi,Xj)ani(xi)
<ij> i
= argrr)}inz Eij (%, %))+ Ei(%).

<> i

To define the LP relaxation, we first reformulate the MAP problem as om@exjer program-
ming. We introduce indicator variableg(x;) for each individual variable and additional indicator
variablesyj (i, xj) for all connected pairs of nodes in the graph. Using these indicatoblesiwe
define the integer program:
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minimize

Jah) =3 Y i (6x) B 06, x)) + Y > ai(6)Ei(x)

<IJ> X, Xj X

subject to

aij (%)) € {01},
> i) = 1,

Xi, Xj

> Gi (%) = gj(x),
X

where the last equation enforces the consistency of the pairwise indieai@iles with the single-
ton indicator variable.

This integer program is completely equivalent to the original MAP problemhjshence com-
putationally intractable. We can obtain the linear programming relaxation by aticivenindicator
variables to take on non-integer values. This leads to the following problem:

The LP relaxation of MAP:

minimize
J({q}):gﬂizquj(xi,xj)'fij(Xi’Xj)JrZ;qi(Xa)Ei(Xi)
subject to
aij (%, %) € [0,], (1)
X‘ZjQij(Xian) = 1 )
%ziqij(Xi’Xj) = (%) ©)

This is now a linear program — the cost and the constraints are linean fheeefore be solved
in polynomial time and we have the following guarantee:

Lemma If the solutions{q;j(xi,Xj),qi(x)} to the MAP LP relaxation are alhteger, that is
aij (Xi,%;),qi (%) € {0,1}, thenx' = argmax, gi(x) is the MAP assignment.+

2.1 The Need for Special Purpose LP Solvers

Given the tremendous amount of research devoted to LP solvers, it maytbat the best way to
solve LP relaxations for graphical models, would be to simply use an indestiréength, general-
purpose LP solver. However, by relaxing the MAP into a linear progranmerease the size of the
problem tremendously. Formally, denote lpyhe number of possible states of nad&he number
of variables and constraints in the LP relaxation is given by

Nvariables = Zk|+ z kikj7

i <>

Nconstraints = Z (ki + Kj + 1).

<>
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The additionaly ; ;.. 2kikj bound constraints, derived from equation (1), are usually not ceresid
part of the constraint matrix.

As an example, consider an image processing problem (an example oaquclem, the
stereo problem, is discussed in Section 4.1). If the image is a modest 200 pixels and each
pixel can take on 30 discrete values, then the LP relaxation will have @&enilfion variables
and four million constraints. Obviously, we need a solver that can somelkevativantage of the
problem structure in order to deal with such a large-scale problem.

3. Solving Linear Programs Using Tree-Reweighted Belief Proggation

Tree-reweighted belief propagation (TRBP) is a variant of belief pyapan introduced by Wain-
wright and colleagues (Wainwright et al., 2002). We start by briefliexewng ordinary max-product
belief propagation [see e.g. (Yedidia et al., 2001; Pearl, 1988)]. Tweithm receives as input a
graphG and the potential®’;;, ;. At each iteration, a nodesends a messag®; (x;) to its neighbor
in the graphj. The messages are updated as follows:

M (X)) ot maxWij (6, ;) Wi(x) [ mia(x) 4)
! KENi\ j

whereN;\ j refers to all neighbors of nodeexceptj. The constanti;j is a normalization constant
typically chosen so that the messages sum to one (the normalization has eodafhn the final

beliefs). After the messages have converged, each node can fagstiarate of its local “belief”

defined as

bi(x) OWi(x) [] mii ().
jeN;

It is easy to show that when the graph is singly-connected, choosingsagneent that maxi-
mizes the local belief will give the MAP estimate (Pearl, 1988). In fact, whergthph is a chain,
equation 4 is simply a distributed computation of dynamic programming. When thk beepcy-
cles, ordinary BP is no longer guaranteed to converge, nor is ther@rargae that it can be used to
find the MAP.

In tree-reweighted BP (TRBP), the algorithm receives as input an adaitet ofedge appear-
ance probabilitiespijj. These edge appearance probabilities are essentially free paranfiehers o
algorithm and are derived from a distribution over spanning trees ofréqgh@. They represent
the probability of an edgéij) appearing in a spanning tree under the chosen distribution. As in
standard belief propagation, at each iteration a ns@@ds a message; (X;) to its neighbor in the
graphj. The messages are updated as follows:

) IJ\_ iy (%)
1/pij €N
I (Xj) — (jj mc_’:lXLPij/p] (Xi,Xj)qu (Xi)ilj—pji . (5)
% m; (%)
Note that forpj; = 1 the algorithm reduces to standard belief propagation.
After one has found a fixed-point of these message update equatiesmdheton and pairwise
beliefs are defined as
bi(x) O Wix)[] m?iji (%),

JEN;
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1/ k I;l\jnﬁiki()(i)k IJ-\'mEFj(Xj)
b (%) O W)W 06) WP (%, %) - e i
e M)

The relationship between TRBP and the solution to the LP relaxation hastbeerddy (Wain-
wright et al., 2002; Kolmogorov, 2005; Kolmogorov and Wainwright, 2086d is a subject of
ongoing research. We briefly summarize some of the relationships.

Given a set of TRBP beliefs, we define thlgarpened beliefas follows:

a(x) O o(bi(x)— mxﬁxbi (%)),

o (,xj) O a(bij (4, X)) — maxbij (%, Xj)),
|

whered(-) is the Dirac delta functiond(0) = 1 andd(x) = 0 for all x £ 0). That is, we get a uniform
distribution over all the maximizing values and assign 0 probability to all non-makigizalues.
To illustrate this definition, a belief vect¢®.6, 0.4) would be sharpened {d,0) and a belief vector
(0.4,0.4,0.2) would be sharpened 1{@.5,0.5,0).

Using these sharpened beliefs, the following properties hold:

At any iteration, and in particular in fixed-point, the TRBP beliefs provideageldoound on
the solution of the LP (see appendix A).

If there exists a unique maximizing value for the pairwise belgfsq, x;) then the sharpened
beliefs solve the LP. In that cagg = argmax, bj(x) is the MAP.

Suppose the TRBP beliefs have ties. If there exis®ich thabg—*,x]f maximizeb;j (x;,X;) and
X maximizebj(x ), thenx" is the MAP. In that case, defirg, g as indicator variables for
X", thengjj, g are a solution for the LP.

If the sharpened beliefs at a fixed-point of TRBP satisfy the LP canstréequations 1-3),
then the sharpened beliefs are a solution to the LP relaxation.

Suppose the TRBP beliefs have ties. If there exdsts j that satisfy the LP constraints and
for all x;,x;j, bi(x) =0 if gi(x) = 0 andb;j(x;,X;) = 0 if g;j(x,X;) = 0, thenb;,by; are a
solution to the LP relaxation.

The lower-bound property is based on Lagrangian duality and is priov@fainwright et al.,
2002; Kolmogorov, 2005). The subsequent properties follow froniaer-bound property.

Based on these properties, we use the following algorithm to extract thelufos and the
MAP from TRBP beliefs:

1.
2.
3.

Run TRBP until convergence and identify the tied nodes
For all non-tied nodesy, setx’ = argmax, bi(x).

Construct a new graphical model that includes only the tied nodes aqe$dsible states are
only those that maximize the beliefs. The pairwise potentials are 1 if the pair magithize
pairwise belief and otherwise. Use the junction tree algorithm (Cowell, 1998) to #hd
the MAP in this new graphical model. ¥ has energy equal to zero theh= (X{,%}) is
the MAP andg;, g, defined as indicator variables fet, are a solution to the LP.
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3.1 TRBP Complexity

Little is known about the number of iterations needed for TRBP to converdeyhat is relatively
straightforward to calculate is the cost per iteration. In every TRBP iteragirh node calculates
and sends messages to all its neighbors. Thus the number of messates updao times the
number of edges in the graph. Each message update equation involves/igeimultiplication
of vectors of lengttk; followed by a matrix by vector max-multiplicationwhere the size of the
matrix isk; x ki. By working in the log domain, the point-wise multiplications can be transformed
into summations, and the raising of the messages to the ppywets- p;j are transformed into mul-
tiplications. In summary, the dominant part of the computation is equivalenttor2ultiplications
of ak; x kj matrix times &; x 1 vector (wherez | is the number of edges in the graph).

The amount of memory needed depends on the particular implementation. imgiless im-
plementation, we would need to store the potentidisW¥; in memory. The size of the potentials
is exactly the number of variables in the linear programki + 5 ; ;- kikj. Additionally, storing
the messages in memory requitgs; ;- ki +k; (which is typically small relative to the memory re-
quired for the pairwise potentials). In many problems, however, the paipatentials can be stored
more compactly. For example, in the Potts model, the pairwise potéifigd, ;) is ak x k table
that has only two unique values: 1 on the diagonal @nd for the off-diagonal terms. Additional
implementation techniques for reducing the memory requirements of BP app@aizenszwalb
and Huttenlocher, 2004; Kolmogorov, 2005).

4. The Benchmark Problems

We constructed benchmark problems from three domains: stereo visierglsagh prediction and
protein design. We give here a short overview of how we constructedrdphical models in all
three cases. The exact graphical models can be downloaded froiltiReweb site.

4.1 Stereo Vision

The stereo problem s illustrated in Figure 1. Given a stereo pair of imag#gy, v) andRight(u, v),
the problem is to find the disparity of each pixel in a reference image. Thgaulkg can be straight-
forwardly translated into depth from the camera.

The main cue for choosing disparities are the similarities of local image informiatibie left
and rightimage. That is, we search for a disparity so that

Left(u,v) ~ Right(u+disp(u,v),Vv),
or equivalently,

disp’(u,v) =arg min [Left(u,v) — Right(u-+ disp(u, V), v)]?.
disp(u,v)

This criterion by itself is typically not enough. Locally, there can be manyatitps for a pixel
that are almost equally good. The best algorithms currently known foteéhecssproblem are those
that minimize a global energy function (Scharstein and Szeliski, 2002):

disp' = argg%iglz dissimLeft(u,v), Right(u+disp(u,V),Vv)] + A - smoothnesslisp),
uv

1. Max-multiplication of a matrix by a vector is equivalent to ordinary matrixitiplication but all summations are
replaced by maximizations
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Left

Disparity

Figure 1: An illustration of the stereo problem. Given two images taken frorhtgliglifferent
viewpoints (eft Right) we search for the disparity of each pixel. The best results for this
problem use energy minimization formulations which are equivalent to solvenlyltiP
for a grid graphical model.

wheresmoothnegslisp) is a cost that penalizes disparity fields where neighboring pixels have dif-
ferent disparities andissinjLeft(u, v), Right(u,v')] measures the dissimilarity of the left and right
image at corresponding locations.

We associate each disparitis p(u, v) with an assignment of a noaein a two dimensional grid
graph. If we define to be the disparity field, anB(x|y) O exp(—E(X)) whereE(x) is the energy
function, minimizing the energy is equivalent to maximizing P(x). Furthermanee& (x) is a sum
of singleton and pairwise termB(x) will factorize with respect to the two-dimensional grid:

Pr(xly) O |_|‘4J. ) ] Wi (%)) =

<ij>
e YiEi(X) =3 <ij> Eij (% XJ)

The problem of finding the most probable set of disparities is NP hard.d @pproximate
solutions can be achieved using algorithms based on min-cut/max-flow fornrmsléBoykov et al.,

1893



YANOVER, MELTZER AND WEISS

(b)

Figure 2: (a) Cow actin binding protein (PDB code 1png)) A closer view of its 6 C-terminal
residues. Given the protein backbone (black) and the amino acid sexjugde-chain
prediction is the problem of predicting the native side-chain conformaticay)g (c)
Problem representation as a graphical model for those C-terminal essstiown in (b)
(nodes located & atom positions, edges drawn in black).

1999; Kolmogorov and Zabih, 2004) and Belief Propagation (Felzeslbzand Huttenlocher, 2004;
Tappen and Freeman, 2003; Sun et al., 2002).

In this work we use the same energy function used by Tappen and Fr¢268). The local
cost is based on the Birchfield-Tomasi matching cost (Birchfield and Tiofr@88) and the pairwise
energy penalizes for neighboring pixels having different disparitibs.amount of penalty depends
only on the intensity difference between the two pixels and thereforeafdr pair of neighboring
pixels, the penalty for violating the smoothness constraint is constant. TBdRE is equivalent
to a Potts model. Specifically, the pairwise energy penalty is defined using@eters -s, P and
T — and set td® - swhen the intensity difference between the two pixels is smaller than a threshold
T, ands otherwise.

We used four images from the standard Middlebury stereo benchmarSaearstein and
Szeliski, 2003). By varying the parameters of the energy function, asappen and Freeman,
2003), we obtained 22 different graphical models. The parametEf$ are constant over the
whole image.

4.2 Side-Chain Prediction

Proteins are chains of simpler molecules caldedino acids All amino acids have a common
structure — a central carbon ato®@“) to which a hydrogen atom, an amino groupH>) and a
carboxyl group COOH) are bonded. In addition, each amino acid has a chemical group called
the side-chain bound toC®. This group distinguishes one amino acid from another and gives its
distinctive properties. Amino acids are joined end to end during protein asisthy the formation
of peptide bonds. An amino acid unit in a protein is calledsidue The formation of a succession
of peptide bonds generates thackbongconsisting ofC* and its adjacent atoms| andCO, of
each reside), upon which the side-chains are hanged (Figure 2).

The side-chain predictiomproblem is defined as follows: given the 3 dimensional structure of
the backbone we wish to predict the placements of the side-chains. Thiempris considered of
central importance in protein-folding and molecular design and has badadaxtensively using
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a wide variety of methods. Typically, an energy function is defined ovésaaetization of the side-
chain angles and search algorithms are used to find the global minimum. Eesntkéenergy
function contains only pairwise interactions, the configuration spacesgegponentially and it can
be shown that the prediction problem is NP-complete (Fraenkel, 199¢eRiad Winfree, 2002).

Formally, our search space is a set of energetically preferred ecoafmns (calledotamerg
and we wish to minimize an energy function that is typically defined in terms of [siwteractions
among nearby residues and interactions between a residue and thereckb

<>

wherer = (rq,...,ry) denotes an assignment of rotamers for all residues.

Since we have a discrete optimization problem and the energy function is afspairwise
interactions, we can transform the problem into a graphical model with is&ipotentials. Each
node corresponds to a residue, and the state of each node repthsamusfiguration of the side-
chain of that residue. Sindg&(r) is a sum of singleton and pairwise terri§r) will factorize:

—3E(r)— 3 Ej(rirj)
P(r)zle_E(r) - 1t g i

r]qﬂ r] W” Fi,rj (6)

whereZ is an explicit normalization factor. Equation (6) requires multiplytg for all pairs of
residued, j but in all reasonable energy functions the pairwise interactions go tofaeeioms
that are sufficiently far away. Thus we only need to calculate the pairwiseitions for nearby
residues. To define the topology of the undirected graph, we examinailgf residues, j and
check whether there exists an assignnent; for which the energy is nonzero. If it exists, we
connect nodesand j in the graph and set the potential to big; (ri,rj) = e~ Bij(rirj),

Figure 2(c) shows a subgraph of the undirected graph. The graplais/ely sparse (each node
is connected to nodes that are close in 3D space) but contains many srpall fotypical protein
in the data set gives rise to a model with hundreds of loops of size 3.

As a data set we used 370 X-ray crystal structures with resolution bedtepttequal to A& R
factor below 20% and mutual sequence identity less than 50%. Each protesisted of a single
chain and up to D00 residues. Protein structures were acquired from the Protein DalasBa
(http: //wwv. rcsb. or g/ pdb). For each protein, we have built two representing graphical models:

1. Usingthe SCWRL energy function (Canutescu et al., 2003), whicloappates the repulsive
portion of Lennard-Jones 12-6 potential.

2. Using the more elaborate energy function used in the Rosetta prograrm(#&n and Baker,
2000) which is comprised of (Rohl et al., 2004): (1) the attractive podfdhe 12-6 Lennard-
Jones potential, (2) The repulsive portion of a 12-6 Lennard Jonestd. This term is
dampened in order to compensate for the use of a fixed backbone amérst, (3) solvation
energies calculated using the model of Lazaridis and Karplus (199%n @pproximation to
electrostatic interactions in proteins, based on PDB statistics, (5) hydhmgeting potential
(Kortemme et al., 2003) and (6) backbone dependent internal fregies®f the rotamers
estimated from PDB statistics performed by Dunbrack and Kurplus (1993).
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The Rosetta energy function accounts for distant interactions anddhegfes rise to denser
graphical models, compared to SCWRL's. In both cases we used Duknaral Kurplus (1993)
backbone dependent rotamer library to define up-to 81 configuratoesth side-chain. The side-
chain prediction data sets are publicly available and can be downloadwedfig: / / www. j i r.
or g/ paper s/ vol ume7/ yanover 06a/ SCWRL_SCP_Dat aset.tgz andhttp://waww. j m r. or g/ pap
ers/ vol une7/ yanover 06a/ Roset t a_SCP_Dat aset . t gz.2

4.3 Protein Design

The protein design problem is the inverse of the protein folding problemerGavparticular 3D
shape, we wish to find a sequence of amino-acids that will be as stablesgiblpdn that 3D
shape. Typically this is done by finding a set of (1) amino-acids and (a3)n@r configurations
that minimizes an approximate energy [see (Street and Mayo, 1999) éeieavrof computational
protein design].

While the problem is quite different from side-chain prediction it can beesbiwsing the same
graph structure. The only difference is that now the nodes do not gultd rotamers but also the
identity of the amino-acid at that location. Thus, the state-space here is cagtiifi larger than
in the side-chain prediction problem. We, again, used the Rosetta energijofuto define the
pairwise and local potentials (Kuhiman and Baker, 2000). As a data ses&k97 X-ray crystal
structures, 40-180 amino acids long. For each of these proteins, wedlkiwesidues to assume
any rotamer of any amino acid. There are, therefore, hundreds sibpmstates for each node. The
protein design data set is available fratrt p: / / www. j mi r. or g/ paper s/ vol une7/ yanover 06a/
Roset t a_Desi gn_Dat aset . t gz.

5. Experiments

We compared TRBP to the LP solvers available from CPLEX (CPMER, t on ab. bi z). CPLEX
is widely considered to be one of the most powerful LP packages avadabieercially and (ac-
cording to the company’s website) is used in 95% of all academic papersefieaence an LP
solver. In addition to its widespread use, CPLEX is well suited for our engbisittidy because it
is highly optimized for solving LP relaxations (as opposed to arbitrary LIRdeed as the original
programmer of CPLEX notes “the solution of integer programs is the domipatitation of linear
programming in practice” (Bixby, 2001) and CPLEX contains a large nurobeptimizations that
are based on exploiting the sparse structure of LPs that arise fromax@tiens (Bixby, 2001).
Specifically, we tried the following solvers from CPLEX.

1. Primal anddual simplex solvers.

2. CPLEX has a very efficient algorithm foretworkmodels. Network constraints have the
following property: each non-zero coefficient is eitherhor a—1 and column appearing in
these constraints has exactly 2 nonzero entries, one with eoefficient and one with a1
coefficient. CPLEX can also automatically extract networks that do natradio the above
conventions as long as they can be transformed to have those properties.

2. Note that loading a protein file in Matlab requires using the speefigpackage available frort t p: / / www. cs.
huji.ac.il/~cheny.
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Figure 3: The number of variables and constraints in the LP relaxation sfeheo disparity prob-
lem as a function of the size of the image. The largest image that could bel ssivey
the CPLEX solvers is approximately 5%¥%B0 while TRBP can be run on full size images.

3. Thebarrier algorithm is a primal-dual logarithmic barrier algorithm which generates a se-
guence of strictly positive primal and dual solutions. The barrier algorighimghly opti-
mized for large, sparse problems.

4. CPLEX provides asifting algorithm which can be effective on problems with many more
variables than equations. Sifting solves a sequence of LP subproblesns thib results from
one subproblem are used to select columns from the original model fasiog in the next
subproblem.

5. Theconcurrentoptimizer can apply multiple algorithms to a single linear programming prob-
lem. Each algorithm operates on a different CPU.

We used the onl ab package that provides a Matlab interface to CPLEX 9.0. Our TRBP im-
plementation was written in C++ and linked to Matlab as a cmex file. The TRBP impletioenta
completely general and receives as input a graph and the potentiibiigidt iterates the message
updating equations (equation 5) until convergence. To improve the ig@anee properties “damp-
ening” is used — we only move the new messages halfway towards the nesvofeéhe message.
The messages are represented in the log domain so that multiplication is repidcedmmation.
Convergence is declared when the beliefs change by no more th&rb&iveen successive itera-
tions and the same threshold is used to determine ties. The edge appeaciatelipesp;; are
automatically calculated for a given graph by greedily constructing a sgtasfning trees until all
edges in the graph appear in exactly one spanning tree. The junctiorigogighan needed for
the post-processing of the TRBP beliefs is performed in Matlab using Keuipl’'s BNT pack-
age (Murphy, 2001). Despite the Matlab implementation, the junction tree runigimegligible
compared to the TRBP run times (typically less than 30 seconds for the junaien We also
compared the run-times of ordinary BP by running the same code bupwithl for all edges. All
algorithms were run on a dual processor Pentium 4 w@&m#emory (but using a single processor

only).
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Figure 4: The number of variables, constraints and non-zero entrie® iootistraint matrix for

our benchmark problems in side-chain prediction, using SCWRL (left) asefa (mid-
dle) energy functions, and protein design (right). For the side-chaidigiion problem
both TRBP and the CPLEX solvers could solve the LP relaxation for all p®ie the
database. For the protein design problem, on the other hand, the CPIl\EXsswould
only solve a small fraction of the databas¢43) while TRBP could solve the relaxations
for all the proteins in the database (the harizontal line in the plots in the rigintnecoin-
dicates the largest model that could be solved using CPLEX).
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Figure 5: Comparison of run-times of the six solvers from CPLEX and TRBR set of subprob-
lems constructed from the “map” image in the Middlebury stereo benchmarkiset.
barrier method is the fastest of the CPLEX solvers but it is still significanthyesiaghan
TRBP for relatively large problems.

The first question we asked was: what is the largest problem in eacketdteat can be solved
within 12 hours by each of the solvers ? Figure 3 shows the results fondasthstereo bench-
mark image (the “map” image from the Middlebury stereo benchmark set (8elmand Szeliski,
2003)). We constructed smaller problems by taking subimages from the fujeim@ut of the
CPLEX solvers, the dual simplex algorithm could solve the largest sulgmofihe barrier algo-
rithm requires more memory) but it could not solve an image larger than dppately 50x 50
pixels. In contrast, TRBP can be run on the full benchmark images (eippaitely 250x 250 pix-
els). Figure 4 shows the problem sizes for the side-chain prediction epddtein design problems.
For the side-chain prediction problem all solvers could be applied to thbduthmark set. How-
ever for the protein design problem (in which the state space is much lahgeQPLEX solvers
could solve only 2 out of the 96 problems in the database (this is indicated hptizental line in
the plots in the right column) while TRBP could solve them all.

In the second experiment we asked: how do the run-times of the solvegace in settings
where all solvers can be applied. Figure 5 compares the run-times orgilense of subproblems
constructed from the Middlebury stereo benchmark set. As can betbedparrier method is the
fastest of the CPLEX solvers but it is still significantly slower than TRBP ogel@roblems.

Figure 6 compares the run times of the different solvers on the side-ctediton graphical
models. Again, the barrier method is the fastest of the CPLEX solvers (wahsilmplex and
network solvers providing similar performance with less memory requiremleut$3 significantly
slower than TRBP for large problems. Figure 7 shows the run times of TRBRnd the barrier
CPLEX solver on the protein design problem. For the few cases for whechdlrier method did
not run out of memory, TRBP is significantly faster.
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Figure 6: A comparison of the run-times of the different solvers in CPLEXBRBP on the side-
chain prediction benchmark. Again the barrier method is the fastest of theXCgolvers
(with dual simplex and the network solver providing similar performance withrigsm-
ory requirements). TRBP consistently converges faster than the bexetbiod and the
difference becomes more significant as the problem size increases.
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Figure 7: A comparison of the run-times of the barrier method and TRBP oprttein design
problem. For the few cases in which the barrier method did not run out of myemo
TRBP is significantly faster.

In the third set of experiments we asked: in what fraction of the runs eanse the results of
the LP relaxation to find the MAP? We define a run of TRBP as “succesfilie TRBP beliefs
allowed us to find the MAP of the graphical model (i.e. if we could find an assentx* that
maximized the pairwise and singleton beliefs). In the stereo benchmark Wweedicectly find the
MAP in 12 out of 22 cases, but by using additional algorithms on the TRBpubwe could find
the MAP on 19 out of the 22 cases (Meltzer et al., 2005). Figure 8 shensuittess rate for TRBP
in the side-chain prediction problems. For these problems, TRBP’s suateswas over 90% for
proteins in our database with length less than 200 amino acids. As the pratemad larger, the
problem becomes more complex and the success rate decreases. Tagedigoishow the fraction
of times in which the TRBP beliefs allowed us to solve the linear program. Theiprdesign
problem is, apparently, a more difficult problem and the success raterésareemuch lower — the
MAP assignment could be found for 2 proteins only and TRBP beliefs atlavgeto solve the LP
relaxations for 6 proteins only. Note, however, that we could still use RBF beliefs to obtain a
lower bound on the optimal solution.

We also assessed the success rate of the standard LP solvers, whiefined as a case when
the LP solution was nonfractional. We found tivatill cases in which the LP solution was nonfrac-
tional the TRBP beliefs had a uniqgue maximummus the success rate of the standard LP solvers
was strictly less than that of TRBP (since TRBP also allows for obtaining éicolwith partially
tied beliefs).

6. What is TRBP’s Secret?

Given the performance advantages of TRBP over the solvers in CALEXatural to ask “what is
TRBP’s secret?”. The first thing to emphasize in this context iSTRBP is not a general purpose
LP solver It can only solve a tiny fraction of linear programs with a very speciacstre.

To see this structure, consider the general LP problem: minigligesubject toAq= b and
Cg< d. If we translate LP relaxations of MAP into this form we find that the equality inatr
A, the inequality matrixC, and the vector$, d all contain only elements i¥—1,0,1}. Tardos
(1986) has shown that linear programs with integer constraint matricdsecsrived with a strongly
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Figure 8: Success rate of TRBP on the side-chain prediction problemsm #&f the algorithm was
considered a success if we could use the TRBP beliefs to find the MAP gfaiphical
model. The figures also show the fraction of times in which the TRBP beliefsedlas
to solve the linear program.
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Figure 9: The sparsity pattern of a typical equality makita) and a random permutation of this
matrix (b). Blue and red dots indicatel and—1 entries respectively.

polynomial algorithm (suggesting that they are easier to solve than genepase LPs for which
no strongly polynomial algorithm is known).

The matrixA that arises in LP relaxations of MAP has additional structure, beyondattte f
that its elements are ifi—1,0,1}. Figure 9(a) shows the sparsity pattern of the ma#ifor a
small graphical model. The matrix is sparse and has a special block forsmnspéctial structure
arises from the fact that we only have a consistency constraint foimaipa indicatorg;j to the
two singleton indicators, that involve nodieand j. There is no interaction between the pairwise
indicatorsg;j and any other pairwise indicatqg nor is there an interaction with any other singleton

1902



LP RELAXATIONS AND BP—AN EMPIRICAL STUDY

1 BP A TRBP + BARRIER 7 BP A TRBP + BARRIER
+
15/
20} "
@ 10t g 15 n
[2) [%2)
o ‘0 10 i
£ 5 E +
— +~ +
5/ Lo+
o Resobdosssesnsd
A 5 10 15
Grid size k
@ (b)

Figure 10: A comparison of the run-times of the barrier method and TRBR)dainary spin glass
models (Potts models with positive and negativg, as a function of grid size and on
(b) a 25x 25 grid Potts model, as a function of the number of possible statdsach
datapoint represents the average over 10 random samplings of

indicatorg in the graph. For comparison, Figure 9(b) shows a random permutattbe afatrix —
this has the same sparsity pattern but without the block structure.

Note that TRBP does not even represent the matexplicitly. Instead, TRBP explicitly repre-
sents the grapf® which implicitly defines the matriXA. In contrast, the CPLEX solvers explicitly
represenf and this matrix implicitly represents the gra@by finding the correct permutation of
A that reveals the block structure, it is possible to reconstruct the ggaphVe believe that this
difference in representation may be responsible for TRBP’s supeasitommance.

To investigate the conjecture that TRBP’s advantage is related to an expfioitsentation of
the graph structure, we compared the run-times of the barrier LP soldefRBP on spin glass
models (Potts models with positive and negahvg with different numbers of possible states per
node,k. Note that the size of the block in the constraint matrix in Figure 9 is directly cetatk
— for binary nodes the blocks are of sizex8 and we conjectured that when the blocks are small,
TRBP’s advantage will decrease.

As Figure 10(a) shows, for binary nodes the barrier solver wasistendly faster than TRBP.
However, as we increasdd and consequently — the size of the blocksAinthe barrier solver
became much slower than TRBP (Figure 10(b)). This seems to supporsghmption that the
explicit representation of block structure was responsible for TRBRersor performance in our
benchmark set. In the benchmark detyas (at least) in the order of dozens. We should also note,
that even for binary problems, the barrier method will run out of memory nfastier than TRBP.

7. Discussion

As pointed out in (Bixby, 2001), advances in hardware and in LP algosthave greatly expanded
the size of problems that can be solved using LP relaxations. Despite thiepspmany real world
problems are still too large to be handled using desktop hardware ancstdriel solvers. In this
paper we have experimented with the powerful solvers in CPLEX on LRaties of the MAP
problem for graphical models from the fields of computer vision and cortipn#d biology. Despite
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the many optimizations in CPLEX for exploiting sparsity, we found that many ofgtlaghical
models gave rise to linear programs that were beyond the capability of ablthersin CPLEX. In
contrast, tree-reweighted BP could be applied to all the linear programs database and almost
always gave faster solutions. By running the junction tree algorithm odwcesl graphical model
defined by the nodes for which the TRBP beliefs had ties, we could find thieé &blution for a
large range of real-world problems.

The LP solvers available in CPLEX are of course only a subset of the lamghber of LP
algorithms suggested in the literature and it may very well be possible to deBiglkers that
outperform TRBP on our benchmark set. To stimulate research in this direbibth the linear
programs used in this paper and our implementation of TRBP are available orte¢h®et. One
direction of research that we are currently working on, involves tighferdlaxations (Meltzer et al.,
2005). As the problems become more complex, the standard LP relaxatioABfidapparently
not tight enough and solving the LP often does not enable solving for the. M/e are exploring
methods for solving a sequence of tighter and tighter relaxations and aestetdin a method that
will allow us to use some of the computations used in one relaxation in solving artigharation.
We believe this research direction offers great potential benefit faiaiction between researchers
in the field of graphical models and convex optimization.
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Appendix A. Deriving Bounds for the LP Solution Using TRBP

In this section, we give the formula for calculating a bound on the LP solut@mn TRBP fixed-
point beliefshjj, bi. We assume that the beliefs have been normalized so thatmax(x, xj) = 1
and max, bi(x;) = 1. Note that this normalization does not change the nature of fixed-poitirts so
case we have any set of fixed-point beliefs, we can just divide @arwise belief by the maximal
value in that belief and similarly divide every singleton belief by its maximal valile. normalized
beliefs will still be fixed-points.

It can be shown (Wainwright et al., 2002) that any fixed-point of TRB&sfies the “admissibil-
ity” equation. For any assignmegtthe probability (or equivalently the energy) can be calculated
from the original potentials or from the beliefs:

ZPr(x) = []Wij(x,x)Wi(x)
ij

= K(b) []bF (4. 5) [ 0% %)

ij i

with ¢ = 1— ¥ pi; andK(b) is a constantndependent of xK(b) can be calculated from any
assignmenk, e.g.x° = 0 where all nodes are in their first state, by

Mij Wi O, X)) Wi )
iy biy’ O9) M b OF)

K(b) = (7)
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Similarly, it can be shown that for aryyj, g that satisfy the LP constraints, one can calculate
the energy from the beliefs:

) = 5 > ax)E;ex)+ Y Y ai6)Ei(x)
<IT> % Xj T X
= —InK{) =5 pij > 6 06x)Inbij (X)) — 3 & H 6 (%) Inbi(xi).

<> XX [ X;

By using the admissibility constraint and the properties of the nungrs it can be shown
thatJ(q) > —InK(b). Direct inspection shows that & j,q; are the sharpened beliefs then they
achieve the bound (since they are nonzero only Whgm;, Xj) = 1 orb;(x) = 1).
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