
Journal of Machine Learning Research 7 (2006) 877-917 Submitted 6/05; Revised 12/05; Published 5/06

Evolutionary Function Approximation
for Reinforcement Learning

Shimon Whiteson SHIMON@CS.UTEXAS.EDU

Peter Stone PSTONE@CS.UTEXAS.EDU

Department of Computer Sciences
University of Texas at Austin
1 University Station, C0500
Austin, TX 78712-0233

Editor: Georgios Theocharous

Abstract

Temporal difference methods are theoretically grounded and empirically effective methods for ad-
dressing reinforcement learning problems. In most real-world reinforcement learning tasks, TD
methods require a function approximator to represent the value function. However, using function
approximators requires manually making crucial representational decisions. This paper investi-
gatesevolutionary function approximation, a novel approach to automatically selecting function
approximator representations that enable efficient individual learning. This methodevolvesindi-
viduals that are better able tolearn. We present a fully implemented instantiation of evolutionary
function approximation which combines NEAT, a neuroevolutionary optimization technique, with
Q-learning, a popular TD method. The resulting NEAT+Q algorithm automatically discovers ef-
fective representations for neural network function approximators. This paper also presentson-line
evolutionary computation, which improves the on-line performance of evolutionary computation
by borrowing selection mechanisms used in TD methods to choose individual actions and using
them in evolutionary computation to select policies for evaluation. We evaluate these contributions
with extended empirical studies in two domains: 1) the mountain car task, a standard reinforcement
learning benchmark on which neural network function approximators have previously performed
poorly and 2) server job scheduling, a large probabilistic domain drawn from the field of autonomic
computing. The results demonstrate that evolutionary function approximation can significantly im-
prove the performance of TD methods and on-line evolutionary computation can significantly im-
prove evolutionary methods. This paper also presents additional tests that offer insight into what
factors can make neural network function approximation difficult in practice.

Keywords: reinforcement learning, temporal difference methods, evolutionary computation, neu-
roevolution, on-line learning

1. Introduction

In many machine learning problems, an agent must learn apolicy for selecting actions based on its
currentstate. Reinforcement learningproblems are the subset of these tasks in which the agent never
sees examples of correct behavior. Instead, it receives only positive and negative rewards for the
actions it tries. Since many practical, real world problems (such as robot control, game playing, and
system optimization) fall in this category, developing effective reinforcement learning algorithms is
critical to the progress of artificial intelligence.
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The most common approach to reinforcement learning relies on the conceptof value functions,
which indicate, for a particular policy, the long-term value of a given state or state-action pair.Tem-
poral difference methods(TD) (Sutton, 1988), which combine principles of dynamic programming
with statistical sampling, use the immediate rewards received by the agent to incrementally improve
both the agent’s policy and the estimated value function for that policy. Hence, TD methods en-
able an agent to learn during its “lifetime” i.e. from its individual experience interacting with the
environment.

For small problems, the value function can be represented as a table. However, the large, proba-
bilistic domains which arise in the real-world usually require coupling TD methodswith a function
approximator, which represents the mapping from state-action pairs to values via a more concise,
parameterized function and uses supervised learning methods to set its parameters. Many different
methods of function approximation have been used successfully, including CMACs, radial basis
functions, and neural networks (Sutton and Barto, 1998). However,using function approxima-
tors requires making crucial representational decisions (e.g. the numberof hidden units and ini-
tial weights of a neural network). Poor design choices can result in estimates that diverge from
the optimal value function (Baird, 1995) and agents that perform poorly.Even for reinforcement
learning algorithms with guaranteed convergence (Baird and Moore, 1999; Lagoudakis and Parr,
2003), achieving high performance in practice requires finding an appropriate representation for the
function approximator. As Lagoudakis and Parr observe, “The crucial factor for a successful ap-
proximate algorithm is the choice of the parametric approximation architecture(s) and the choice of
the projection (parameter adjustment) method.” (Lagoudakis and Parr, 2003, p. 1111) Nonetheless,
representational choices are typically made manually, based only on the designer’s intuition.

Our goal is to automate the search for effective representations by employing sophisticated op-
timization techniques. In this paper, we focus on using evolutionary methods (Goldberg, 1989)
because of their demonstrated ability to discover effective representations (Gruau et al., 1996; Stan-
ley and Miikkulainen, 2002). Synthesizing evolutionary and TD methods results in a new approach
calledevolutionary function approximation, which automatically selects function approximator rep-
resentations that enable efficient individual learning. Thus, this methodevolvesindividuals that are
better able tolearn. This biologically intuitive combination has been applied to computational sys-
tems in the past (Hinton and Nowlan, 1987; Ackley and Littman, 1991; Boers et al., 1995; French
and Messinger, 1994; Gruau and Whitley, 1993; Nolfi et al., 1994) but never, to our knowledge, to
aid the discovery of good TD function approximators.

Our approach requires only 1) an evolutionary algorithm capable of optimizing representations
from a class of functions and 2) a TD method that uses elements of that classfor function ap-
proximation. This paper focuses on performing evolutionary function approximation with neural
networks. There are several reasons for this choice. First, they have great experimental value. Non-
linear function approximators are often the most challenging to use; hence,success for evolutionary
function approximation with neural networks is good reason to hope for success with linear methods
too. Second, neural networks have great potential, since they can represent value functions linear
methods cannot (given the same basis functions). Finally, employing neural networks is feasible
because they have previously succeeded as TD function approximators(Crites and Barto, 1998;
Tesauro, 1994) and sophisticated methods for optimizing their representations (Gruau et al., 1996;
Stanley and Miikkulainen, 2002) already exist.

This paper uses NeuroEvolution of Augmenting Topologies (NEAT) (Stanley and Miikkulainen,
2002) to select neural network function approximators for Q-learning (Watkins, 1989), a popular
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TD method. The resulting algorithm, called NEAT+Q, uses NEAT to evolve topologies and initial
weights of neural networks that are better able to learn, via backpropagation, to represent the value
estimates provided by Q-learning.

Evolutionary computation is typically applied tooff-line scenarios, where the only goal is to
discover a good policy as quickly as possible. By contrast, TD methods aretypically applied toon-
line scenarios, in which the agent tries to learn a good policy quicklyand to maximize the reward it
obtains while doing so. Hence, for evolutionary function approximation to achieve its full potential,
the underlying evolutionary method needs to work well on-line.

TD methods excel on-line because they are typically combined with action selection mecha-
nisms likeε-greedy and softmax selection (Sutton and Barto, 1998). These mechanisms improve
on-line performance by explicitly balancing two competing objectives: 1) searching for better poli-
cies (exploration) and 2) gathering as much reward as possible (exploitation). This paper investi-
gates a novel approach we callon-line evolutionary computation, in which selection mechanisms
commonly used by TD methods to choose individual actions are used in evolutionary computation
to choose policies for evaluation. We present two implementations, based onε-greedy and softmax
selection, that distribute evaluations within a generation so as to favor more promising individu-
als. Since on-line evolutionary computation can be used in conjunction with evolutionary function
approximation, the ability to optimize representations need not come at the expense of the on-line
aspects of TD methods. On the contrary, the value function and its representation can be optimized
simultaneously, all while the agent interacts with its environment.

We evaluate these contributions with extended empirical studies in two domains: 1) mountain
car and 2) server job scheduling. The mountain car task (Sutton and Barto, 1998) is a canonical
reinforcement learning benchmark domain that requires function approximation. Though the task
is simple, previous researchers have noted that manually designed neural network function approxi-
mators are often unable to master it (Boyan and Moore, 1995; Pyeatt and Howe, 2001). Hence, this
domain is ideal for a preliminary evaluation of NEAT+Q.

Server job scheduling (Whiteson and Stone, 2004), is a large, probabilistic reinforcement learn-
ing task from the field ofautonomic computing(Kephart and Chess, 2003). In server job scheduling,
a server, such as a website’s application server or database, must determine in what order to process
a queue of waiting jobs so as to maximize the system’s aggregate utility. This domain ischallenging
because it is large (the size of both the state and action spaces grow in direct proportion to the size of
the queue) and probabilistic (the server does not know what type of job will arrive next). Hence, it
is a typical example of a reinforcement learning task that requires effective function approximation.

Using these domains, our experiments test Q-learning with a series of manuallydesigned neu-
ral networks and compare the results to NEAT+Q and regular NEAT (whichtrains action selectors
in lieu of value functions). The results demonstrate that evolutionary function approximation can
significantly improve the performance of TD methods. Furthermore, we test NEAT and NEAT+Q
with and withoutε-greedy and softmax versions of evolutionary computation. These experiments
confirm that such techniques can significantly improve the on-line performance of evolutionary
computation. Finally, we present additional tests that measure the effect ofcontinual learning on
function approximators. The results offer insight into why certain methods outperform others in
these domains and what factors can make neural network function approximation difficult in prac-
tice.

We view the impact of this work as two-fold. First, it provides a much-neededpractical approach
to selecting TD function approximators, automating a critical design step that is typically performed
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manually. Second, it provides an objective analysis of the strengths and weaknesses of evolutionary
and TD methods, opportunistically combining the strengths into a single approach. Though the TD
and evolutionary communities are mostly disjoint and focus on somewhat different problems, we
find that each can benefit from the progress of the other. On the one hand, we show that methods for
evolving neural network topologies can find TD function approximators that perform better. On the
other hand, we show that established techniques from the TD community can make evolutionary
methods applicable to on-line learning problems.

The remainder of this paper is organized as follows. Section 2 provides background on Q-
learning and NEAT, the constituent learning methods used in this paper. Section 3 introduces the
novel methods and details the particular implementations we tested. Section 4 describes the moun-
tain car and server job scheduling domains and Section 5 presents and discusses empirical results.
Section 7 overviews related work, Section 8 outlines opportunities for future work, and Section 9
concludes.

2. Background

We begin by reviewing Q-learning and NEAT, the algorithms that form the building blocks of our
implementations of evolutionary function approximation.

2.1 Q-Learning

There are several different TD methods currently in use, including Q-learning (Watkins, 1989),
Sarsa (Sutton and Barto, 1998), and LSPI (Lagoudakis and Parr, 2003). The experiments presented
in this paper use Q-learning because it is a well-established, canonical method that has also enjoyed
empirical success, particularly when combined with neural network function approximators (Crites
and Barto, 1998). We present it as a representative method but do notclaim it is superior to other TD
approaches. In principle, evolutionary function approximation can be used with any of them. For
example, many of the experiments described in Section 5 have been replicatedwith Sarsa (Sutton
and Barto, 1998), another popular TD method, in place of Q-learning, yielding qualitatively similar
results.

Like many other TD methods, Q-learning attempts to learn a value functionQ(s,a) that maps
state-action pairs to values. In the tabular case, the algorithm is defined by the following update
rule, applied each time the agent transitions from states to states′:

Q(s,a)← (1−α)Q(s,a)+α(r + γmaxa′Q(s′,a′))

whereα ∈ [0,1] is a learning rate parameter,γ ∈ [0,1] is a discount factor, andr is the immediate
reward the agent receives upon taking actiona.

Algorithm 1 describes the Q-learning algorithm when a neural network is used to approximate
the value function. The inputs to the network describe the agent’s currentstate; the outputs, one
for each action, represent the agent’s current estimate of the value of the associated state-action
pairs. The initial weights of the network are drawn from a Gaussian distribution with mean 0.0 and
standard deviationσ (line 5). TheEVAL -NET function (line 9) returns the activation on the network’s
outputs after the given inputs are fed to the network and propagated forward. Since the network uses
a sigmoid activation function, these values will all be in[0,1] and hence are rescaled according to
a parameterk. At each step, the weights of the neural network are adjusted (line 13) such that its
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output better matches the current value estimate for the state-action pair:r + γmaxa′Q(s′,a′). The
adjustments are made via theBACKPROPfunction, which implements the standard backpropagation
algorithm (Rumelhart et al., 1986) with the addition of accumulating eligibility tracescontrolled by
λ (Sutton and Barto, 1998). The agent usesε-greedy selection (Sutton and Barto, 1998) to ensure
it occasionally tests alternatives to its current policy (lines 10–11). The agent interacts with the
environment via theTAKE-ACTION function (line 15), which returns a reward and a new state.

Algorithm 1 Q-LEARN(S,A,σ,c,α,γ,λ,εtd,e)
1: // S: set of all states, A: set of all actions,σ: standard deviation of initial weights
2: // c: output scale,α: learning rate,γ: discount factor,λ: eligibility decay rate
3: // εtd: exploration rate, e: total number of episodes
4:

5: N← INIT-NET(S,A,σ) // make a new network N with random weights
6: for i← 1 toedo
7: s,s′← null, INIT-STATE(S) // environment picks episode’s initial state
8: repeat
9: Q[] ← c×EVAL -NET(N,s′) // compute value estimates for current state

10: with-prob (εtd) a′← RANDOM(A) // select random exploratory action
11: elsea′← argmaxjQ[ j] // or select greedy action
12: if s 6= null then
13: BACKPROP(N,s,a,(r + γmaxjQ[ j])/c,α,γ,λ) // adjust weights toward target
14: s,a← s′,a′

15: r,s′← TAKE-ACTION(a′) // take action and transition to new state
16: until TERMINAL -STATE?(s)

2.2 NEAT1

The implementation of evolutionary function approximation presented in this paper relies on Neu-
roEvolution of Augmenting Topologies (NEAT) to automate the search for appropriate topologies
and initial weights of neural network function approximators. NEAT is an appropriate choice be-
cause of its empirical successes on difficult reinforcement learning tasks like non-Markovian double
pole balancing (Stanley and Miikkulainen, 2002), game playing (Stanley andMiikkulainen, 2004b),
and robot control (Stanley and Miikkulainen, 2004a), and because ofits ability to automatically op-
timize network topologies.

In a typical neuroevolutionary system (Yao, 1999), the weights of a neural network are strung
together to form an individual genome. A population of such genomes is thenevolved by evaluating
each one and selectively reproducing the fittest individuals through crossover and mutation. Most
neuroevolutionary systems require the designer to manually determine the network’s topology (i.e.
how many hidden nodes there are and how they are connected). By contrast, NEAT automatically
evolves the topology to fit the complexity of the problem. It combines the usual search for network
weights with evolution of the network structure.

NEAT is an optimization technique that can be applied to a wide variety of problems. Section 3
below describes how we use NEAT to optimize the topology and initial weights of TD function

1. This section is adapted from the original NEAT paper (Stanley and Miikkulainen, 2002).
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approximators. Here, we describe how NEAT can be used to tackle reinforcement learning problems
without the aid of TD methods, an approach that serves as one baseline ofcomparison in Section 5.
For this method, NEAT does not attempt to learn a value function. Instead, it finds good policies
directly by trainingaction selectors, which map states to the action the agent should take in that
state. Hence it is an example ofpolicy searchreinforcement learning. Like other policy search
methods, e.g. (Sutton et al., 2000; Ng and Jordan, 2000; Mannor et al., 2003; Kohl and Stone,
2004), it uses global optimization techniques to directly search the space ofpotential policies.

Algorithm 2 NEAT(S,A, p,mn,ml ,g,e)
1: // S: set of all states, A: set of all actions, p: population size, mn: node mutation rate
2: // ml : link mutation rate, g: number of generations, e: episodes per generation
3:

4: P[]← INIT-POPULATION(S,A, p) // create new population P with random networks
5: for i← 1 tog do
6: for j ← 1 toedo
7: N,s,s′← RANDOM(P[]), null, INIT-STATE(S) // select a network randomly
8: repeat
9: Q[] ← EVAL -NET(N,s′) // evaluate selected network on current state

10: a′← argmaxiQ[i] // select action with highest activation
11: s,a← s′,a′

12: r,s′← TAKE-ACTION(a′) // take action and transition to new state
13: N. f itness← N. f itness+ r // update total reward accrued by N
14: until TERMINAL -STATE?(s)
15: N.episodes← N.episodes+1 // update total number of episodes for N
16: P′[]← new array of sizep // new array will store next generation
17: for j ← 1 to p do
18: P′[ j]← BREED-NET(P[]) // make a new network based on fit parents in P
19: with-probability mn: ADD-NODE-MUTATION (P′[ j]) // add a node to new network
20: with-probability ml : ADD-LINK -MUTATION (P′[ j]) // add a link to new network
21: P[]← P′[]

Algorithm 2 contains a high-level description of the NEAT algorithm applied to an episodic
reinforcement learning problem. This implementation differs slightly from previous versions of
NEAT in that evaluations are conducted by randomly selecting individuals (line 7), instead of the
more typical approach of stepping through the population in a fixed order.This change does not
significantly alter NEAT’s behavior but facilitates the alterations we introduce inSection 3.2. During
each step, the agent takes whatever action corresponds to the output withthe highest activation (lines
10–12). NEAT maintains a running total of the reward accrued by the network during its evaluation
(line 13). Each generation ends aftere episodes, at which point each network’s average fitness is
N. f itness/N.episodes. In stochastic domains,e typically must be much larger than|P| to ensure
accurate fitness estimates for each network. NEAT creates a new population by repeatedly calling
the BREED-NET function (line 18), which performs crossover on two highly fit parents. The new
resulting network can then undergo mutations that add nodes or links to its structure. (lines 19–20).
The remainder of this section provides an overview of the reproductive process that occurs in lines
17–20. Stanley and Miikkulainen (2002) present a full description.

882



EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

2.2.1 MINIMIZING DIMENSIONALITY

Unlike other systems that evolve network topologies and weights (Gruau et al., 1996; Yao, 1999)
NEAT begins with a uniform population of simple networks with no hidden nodes and inputs con-
nected directly to outputs. New structure is introduced incrementally via two special mutation
operators. Figure 1 depicts these operators, which add new hidden nodes and links to the network.
Only the structural mutations that yield performance advantages tend to survive evolution’s selec-
tive pressure. In this way, NEAT tends to search through a minimal number of weight dimensions
and find an appropriate complexity level for the problem.

Inputs

Nodes
Hidden

Outputs

����������������������������

Mutation

Add Node

Inputs

Nodes
Hidden

Outputs

Mutation

Add Link

(a) A mutation operator for adding new nodes (b) A mutation operator for adding new links

Figure 1: Examples of NEAT’s mutation operators for adding structure to networks. In (a), a hidden
node is added by splitting a link in two. In (b), a link, shown with a thicker black line, is
added to connect two nodes.

2.2.2 GENETIC ENCODING WITH HISTORICAL MARKINGS

Evolving network structure requires a flexible genetic encoding. Each genome in NEAT includes
a list of connection genes, each of which refers to twonode genesbeing connected. Each con-
nection gene specifies the in-node, the out-node, the weight of the connection, whether or not the
connection gene is expressed (an enable bit), and aninnovation number, which allows NEAT to find
corresponding genes during crossover.

In order to perform crossover, the system must be able to tell which genes match up betweenany
individuals in the population. For this purpose, NEAT keeps track of the historical origin of every
gene. Whenever a new gene appears (through structural mutation), aglobal innovation numberis
incremented and assigned to that gene. The innovation numbers thus represent a chronology of
every gene in the system. Whenever these genomes crossover, innovation numbers on inherited
genes are preserved. Thus, the historical origin of every gene in the system is known throughout
evolution.

Through innovation numbers, the system knows exactly which genes match up with which.
Genes that do not match are eitherdisjoint or excess, depending on whether they occur within or
outside the range of the other parent’s innovation numbers. When crossing over, the genes in both
genomes with the same innovation numbers are lined up. Genes that do not matchare inherited
from the more fit parent, or if they are equally fit, from both parents randomly.

Historical markings allow NEAT to perform crossover without expensivetopological analysis.
Genomes of different organizations and sizes stay compatible throughoutevolution, and the problem
of matching different topologies (Radcliffe, 1993) is essentially avoided.
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2.2.3 SPECIATION

In most cases, adding new structure to a network initially reduces its fitness.However, NEAT
speciates the population, so that individuals compete primarily within their own niches rather than
with the population at large. Hence, topological innovations are protected and have time to optimize
their structure before competing with other niches in the population.

Historical markings make it possible for the system to divide the population into species based
on topological similarity. The distanceδ between two network encodings is a simple linear combi-
nation of the number of excess (E) and disjoint (D) genes, as well as the average weight differences
of matching genes (W):

δ =
c1E
N

+
c2D
N

+c3 ·W

The coefficientsc1, c2, andc3 adjust the importance of the three factors, and the factorN, the number
of genes in the larger genome, normalizes for genome size. Genomes are tested one at a time; if
a genome’s distance to a randomly chosen member of the species is less thanδt , a compatibility
threshold, it is placed into this species. Each genome is placed into the first species where this
condition is satisfied, so that no genome is in more than one species.

The reproduction mechanism for NEAT isexplicit fitness sharing(Goldberg and Richardson,
1987), where organisms in the same species must share the fitness of their niche, preventing any
one species from taking over the population.

3. Method

This section describes evolutionary function approximation and a complete implementation called
NEAT+Q. It also describes on-line evolutionary computation and details two ways of implementing
it in NEAT+Q.

3.1 Evolutionary Function Approximation

When evolutionary methods are applied to reinforcement learning problems,they typically evolve a
population of action selectors, each of which remains fixed during its fitnessevaluation. The central
insight behind evolutionary function approximation is that, if evolution is directed to evolve value
functions instead, then those value functions can be updated, using TD methods, during each fitness
evaluation. In this way, the system canevolvefunction approximators that are better able tolearn
via TD.

In addition to automating the search for effective representations, evolutionary function approx-
imation can enable synergistic effects between evolution and learning. How these effects occur
depends on which of two possible approaches is employed. The first possibility is a Lamarckian
approach, in which the changes made by TD during a given generation are written back into the
original genomes, which are then used to breed a new population. The second possibility is aDar-
winian implementation, in which the changes made by TD are discarded and the new population is
bred from the original genomes, as they were at birth.

It has long since been determined that biological systems are Darwinian, not Lamarckian. How-
ever, it remains unclear which approach is better computationally, despite substantial research (Pereira
and Costa, 2001; D. Whitley, 1994; Yamasaki and Sekiguchi, 2000). The potential advantage of
Lamarckian evolution is obvious: it prevents each generation from havingto repeat the same learn-

884



EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

ing. However, Darwinian evolution can be advantageous because it enables each generation to
reproduce the genomes that led to success in the previous generation, rather than relying on altered
versions that may not thrive under continued alteration. Furthermore, in aDarwinian system, the
learning conducted by previous generations can be indirectly recordedin a population’s genomes
via a phenomenon called theBaldwin Effect(Baldwin, 1896), which has been demonstrated in evo-
lutionary computation (Hinton and Nowlan, 1987; Ackley and Littman, 1991; Boers et al., 1995;
Arita and Suzuki, 2000). The Baldwin Effect occurs in two stages. In thefirst stage, the learning
performed by individuals during their lifetimes speeds evolution, because each individual does not
have to be exactly right at birth; it need only be in the right neighborhood and learning can adjust
it accordingly. In the second stage, those behaviors that were previously learned during individu-
als’ lifetimes become known at birth. This stage occurs because individuals that possess adaptive
behaviors at birth have higher overall fitness and are favored by evolution.

Hence, synergistic effects between evolution and learning are possible regardless of which im-
plementation is used. In Section 5, we compare the two approaches empirically.The remainder of
this section details NEAT+Q, the implementation of evolutionary function approximation used in
our experiments.

3.1.1 NEAT+Q

All that is required to make NEAT optimize value functions instead of action selectors is a rein-
terpretation of its output values. The structure of neural network action selectors (one input for
each state feature and one output for each action) is already identical to that of Q-learning function
approximators. Therefore, if the weights of the networks NEAT evolves are updated during their
fitness evaluations using Q-learning and backpropagation, they will effectively evolve value func-
tions instead of action selectors. Hence, the outputs are no longer arbitrary values; they represent
the long-term discounted values of the associated state-action pairs and are used, not just to select
the most desirable action, but to update the estimates of other state-action pairs.

Algorithm 3 summarizes the resulting NEAT+Q method. Note that this algorithm is identical to
Algorithm 2, except for the delineated section containing lines 13–16. Eachtime the agent takes an
action, the network is backpropagated towards Q-learning targets (line 16) andε-greedy selection
occurs just as in Algorithm 1 (lines 13–14). Ifα andεtd are set to zero, this method degenerates to
regular NEAT.

NEAT+Q combines the power of TD methods with the ability of NEAT to learn effective rep-
resentations. Traditional neural network function approximators put alltheir eggs in one basket by
relying on a single manually designed network to represent the value function. NEAT+Q, by con-
trast, explores the space of such networks to increase the chance of finding a representation that will
perform well.

In NEAT+Q, the weight changes caused by backpropagation accumulatein the current popula-
tion’s networks throughout each generation. When a network is selectedfor an episode, its weights
begin exactly as they were at the end of its last episode. In the Lamarckian approach, those changes
are copied back into the networks’ genomes and inherited by their offspring. In the Darwinian
approach, those changes are discarded at the end of each generation.
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Algorithm 3 NEAT+Q(S,A,c, p,mn,ml ,g,e,α,γ,λ,εtd)
1: // S: set of all states, A: set of all actions, c: output scale, p: populationsize
2: // mn: node mutation rate, ml : link mutation rate, g: number of generations
3: // e: number of episodes per generation,α: learning rate,γ: discount factor
4: // λ: eligibility decay rate,εtd: exploration rate
5:

6: P[]← INIT-POPULATION(S,A, p) // create new population P with random networks
7: for i← 1 tog do
8: for j ← 1 toedo
9: N,s,s′← RANDOM(P[]), null, INIT-STATE(S) // select a network randomly

10: repeat
11: Q[] ← c× EVAL -NET(N,s′) // compute value estimates for current state
12:

13: with-prob (εtd) a′← RANDOM(A) // select random exploratory action
14: elsea′← argmaxkQ[k] // or select greedy action
15: if s 6= null then
16: BACKPROP(N,s,a,(r + γmaxkQ[k])/c,α,γ,λ) // adjust weights toward target
17:

18: s,a← s′,a′

19: r,s′← TAKE-ACTION(a′) // take action and transition to new state
20: N. f itness← N. f itness+ r // update total reward accrued by N
21: until TERMINAL -STATE?(s)
22: N.episodes← N.episodes+1 // update total number of episodes for N
23: P′[]← new array of sizep // new array will store next generation
24: for j ← 1 to p do
25: P′[ j]← BREED-NET(P[]) // make a new network based on fit parents in P
26: with-probability mn: ADD-NODE-MUTATION (P′[ j]) // add a node to new network
27: with-probability ml : ADD-LINK -MUTATION (P′[ j]) // add a link to new network
28: P[]← P′[]
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3.2 On-Line Evolutionary Computation

To excel in on-line scenarios, a learning algorithm must effectively balance two competing objec-
tives. The first objective is exploration, in which the agent tries alternatives to its current best policy
in the hopes of improving it. The second objective is exploitation, in which the agent follows the
current best policy in order to maximize the reward it receives. TD methods excel at on-line tasks
because they are typically combined with action selection mechanisms that achieve this balance (e.g
ε-greedy and softmax selection).

Evolutionary methods, though lacking explicit selection mechanisms, do implicitly perform this
balance. In fact, in one of the earliest works on evolutionary computation,Holland (1975) argues
that the reproduction mechanism encourages exploration, since crossover and mutation result in
novel genomes, but also encourages exploitation, since each new generation is based on the fittest
members of the last one. However, reproduction allows evolutionary methodsto balance exploration
and exploitation onlyacrossgenerations, notwithin them. Once the members of each generation
have been determined, they all typically receive the same evaluation time, evenif some individuals
dramatically outperform others in early episodes. Hence, within a generation, a typical evolutionary
method is purely exploratory, as it makes no effort to favor those individuals that have performed
well so far.

Therefore, to excel on-line, evolutionary methods need a way to limit the exploration that occurs
within each generation and force more exploitation. In a sense, this problemis the opposite of that
faced by TD methods, which naturally exploit (by following the greedy policy) and thus need a way
to force more exploration. Nonetheless, the ultimate goal is the same: a properbalance between the
two extremes. Hence, we propose that the solution can be the same too. In thissection, we discuss
ways of borrowing the action selection mechanisms traditionally used in TD methods and applying
them in evolutionary computation.

To do so, we must modify the level at which selection is performed. Evolutionary algorithms
cannot perform selection at the level of individual actions because, lacking value functions, they
have no notion of the value of individual actions. However, they can perform selection at the level
of evaluations, in which entire policies are assessed holistically. The same selection mechanisms
used to choose individual actions in TD methods can be used to select policies for evaluation, an
approach we call on-line evolutionary computation. Using this technique, evolutionary algorithms
can excel on-line by balancing exploration and exploitation withinandacross generations.

The remainder of this section presents two implementations. The first, which relies onε-greedy
selection, switches probabilistically between searching for better policies and re-evaluating the best
known policy to garner maximal reward. The second, which relies on softmax selection, dis-
tributes evaluations in proportion to each individual’s estimated fitness, thereby focusing on the
most promising individuals and increasing the average reward accrued.

3.2.1 USING ε-GREEDY SELECTION IN EVOLUTIONARY COMPUTATION

Whenε-greedy selection is used in TD methods, a single parameter,εtd, is used to control what
fraction of the time the agent deviates from greedy behavior. Each time the agent selects an action, it
chooses probabilistically between exploration and exploitation. With probabilityεtd, it will explore
by selecting randomly from the available actions. With probability 1−εtd, it will exploit by selecting
the greedy action.
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In evolutionary computation, this same mechanism can be used to determine whichpolicies to
evaluate within each generation. With probabilityεec, the algorithm explores by behaving exactly
as it would normally: selecting a policy for evaluation, either randomly or by iterating through the
population. With probability 1− εec, the algorithm exploits by selecting the best policy discovered
so far in the current generation. The score of each policy is just the average reward per episode
it has received so far. Each time a policy is selected for evaluation, the totalreward it receives is
incorporated into that average, which can cause it to gain or lose the rankof best policy.

To applyε-greedy selection to NEAT and NEAT+Q, we need only alter the assignment of the
candidate policyN in lines 7 and 9 of Algorithms 2 and 3, respectively. Instead of a random
selection, we use the result of theε-greedy selection function described in Algorithm 4, where
N.average= N. f itness/N.episodes. In the case of NEAT+Q, two differentε parameters control
exploration throughout the system:εtd controls the exploration that helps Q-learning estimate the
value function andεec controls exploration that helps NEAT discover appropriate topologies and
initial weights for the neural network function approximators.

Algorithm 4 ε-GREEDY SELECTION(P,εec)
1: // P: population,εec: NEAT’s exploration rate
2:

3: with-prob (εec) returnRANDOM(P) // select random network
4: elsereturnN ∈ P | ∀(N′ ∈ P)N.average≥ N′.average // or select champion

Using ε-greedy selection in evolutionary computation allows it to thrive in on-line scenarios
by balancing exploration and exploitation. For the most part, this method does not alter evolu-
tion’s search but simply interleaves it with exploitative episodes that increase average reward during
learning. The next section describes how softmax selection can be appliedto evolutionary compu-
tation to intelligently focus search with each generation and create a more nuanced balance between
exploration and exploitation.

3.2.2 USING SOFTMAX SELECTION IN EVOLUTIONARY COMPUTATION

When softmax selection is used in TD methods, an action’s probability of selection is a function of
its estimated value. In addition to ensuring that the greedy action is chosen mostoften, this technique
focuses exploration on the most promising alternatives. There are many ways to implement softmax
selection but one popular method relies on a Boltzmann distribution (Sutton and Barto, 1998), in
which case an agent in states chooses an actiona with probability

eQ(s,a)/τ

∑b∈AeQ(s,b)/τ

whereA is the set of available actions,Q(s,a) is the agent’s value estimate for the given state-action
pair andτ is a positive parameter controlling the degree to which actions with higher values are
favored in selection. The higher the value ofτ, the more equiprobable the actions are.

As with ε-greedy selection, we use softmax selection in evolutionary computation to select
policies for evaluation. At the beginning of each generation, each individual is evaluated for one
episode, to initialize its fitness. Then, the remaininge− |P| episodes are allocated according to a
Boltzmann distribution. Before each episode, a policyp in a populationP is selected with probabil-
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ity

eS(p)/τ

∑q∈PeS(q)/τ

whereS(p) is the average fitness of the policyp.

To apply softmax selection to NEAT and NEAT+Q, we need only alter the assignment of the
candidate policyN in lines 7 and 9 of Algorithms 2 and 3, respectively. Instead of a random se-
lection, we use the result of the softmax selection function shown in Algorithm 5. In the case of
NEAT+Q,εtd controls Q-learning’s exploration andτ controls NEAT’s exploration. Of course, soft-
max exploration could be used within Q-learning too. However, since comparing different selection
mechanisms for TD methods is not the subject of our research, in this paperwe use onlyε-greedy
selection with TD methods.

Algorithm 5 SOFTMAX SELECTION(P,τ)
1: // P: population,τ: softmax temperature
2:

3: if ∃N ∈ P | N.episodes= 0 then
4: returnN // give each network one episode before using softmax
5: else
6: total← ∑N∈PeN.average/τ // compute denominator of Boltzmann function
7: for all N ∈ P do
8: with-prob (eN.average/τ

total ) return N // select N for evaluation
9: elsetotal← total−eN.average/τ // or skip N and reweight probabilities

In addition to providing a more nuanced balance between exploration and exploitation, soft-
max selection also allows evolutionary computation to more effectively focus its search within each
generation. Instead of spending the same number of evaluations on each member of the popula-
tion, softmax selection can quickly abandon poorly performing policies and spend more episodes
evaluating the most promising individuals.

In summary, on-line evolutionary computation enables the use of evolutionarycomputation dur-
ing an agent’s interaction with the world. Therefore, the ability of evolutionary function approxima-
tion to optimize representations need not come at the expense of the on-line aspects of TD methods.
On the contrary, the value function and its representation can be optimized simultaneously, all while
the agent interacts with its environment.

4. Experimental Setup

To empirically compare the methods described above, we used two differentreinforcement learning
domains. The first domain, mountain car, is a standard benchmark task requiring function approxi-
mation. We use this domain to establish preliminary, proof-of-concept resultsfor the novel methods
described in this paper. The second domain, server job scheduling, is a large, probabilistic domain
drawn from the field of autonomic computing. We use this domain to assess whether these new
methods can scale to a much more complex task. The remainder of this section details each of these
domains and describes our approach to solving them with reinforcement learning.
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Figure 2: The Mountain Car Task. This figure was taken from Sutton and Barto (1998).

4.1 Mountain Car

In the mountain car task (Boyan and Moore, 1995), depicted in Figure 2, an agent strives to drive a
car to the top of a steep mountain. The car cannot simply accelerate forwardbecause its engine is
not powerful enough to overcome gravity. Instead, the agent must learn to drive backwards up the
hill behind it, thus building up sufficient inertia to ascend to the goal before running out of speed.

The agent’s state at timestept consists of its current positionpt and its current velocityvt .
It receives a reward of -1 at each time step until reaching the goal, at which point the episode
terminates. The agent’s three available actions correspond to the throttle settings 1,0, and -1. The
following equations control the car’s movement:

pt+1 = boundp(pt +vt+1)

vt+1 = boundv(vt +0.001at −0.0025cos(3pt))

whereat is the action the agent takes at timestept, boundp enforces−1.2≤ pt+1≤ 0.5, andboundv
enforces−0.07≤ vt+1 ≤ 0.07. In each episode, the agent begins in a state chosen randomly from
these ranges. To prevent episodes from running indefinitely, each episode is terminated after 2,500
steps if the agent still has not reached the goal.

Though the agent’s state has only two features, they are continuous and hence learning the value
function requires a function approximator. Previous research has demonstrated that TD methods can
solve the mountain car task using several different function approximators, including CMACs (Sut-
ton, 1996; Kretchmar and Anderson, 1997), locally weighted regression (Boyan and Moore, 1995),
decision trees (Pyeatt and Howe, 2001), radial basis functions (Kretchmar and Anderson, 1997), and
instance-based methods (Boyan and Moore, 1995). By giving the learner a priori knowledge about
the goal state and using methods based on experience replay, the mountain car problem has been
solved with neural networks too (Reidmiller, 2005). However, the task remains notoriously difficult
for neural networks, as several researchers have noted that value estimates can easily diverge (Boyan
and Moore, 1995; Pyeatt and Howe, 2001).

We hypothesized that the difficulty of using neural networks in this task is due at least in part
to the problem of finding an appropriate representation. Hence, as a preliminary evaluation of
evolutionary function approximation, we applied NEAT+Q to the mountain car taskto see if it
could learn better than manually designed networks. The results are presented in Section 5.

To represent the agent’s current state to the network, we divided eachstate feature into ten
regions. One input was associated with each region (for a total of twenty inputs) and was set to one
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if the agent’s current state fell in that region, and to zero otherwise. Hence, only two inputs were
activated for any given state. The networks have three outputs, each corresponding to one of the
actions available to the agent.

4.2 Server Job Scheduling

While the mountain car task is a useful benchmark, it is a very simple domain. To assess whether our
methods can scale to a much more complex problem, we use a challenging reinforcement learning
task called server job scheduling. This domain is drawn from the burgeoning field of autonomic
computing (Kephart and Chess, 2003). The goal of autonomic computing isto develop computer
systems that automatically configure themselves, optimize their own behavior, and diagnose and
repair their own failures. The demand for such features is growing rapidly, since computer systems
are becoming so complex that maintaining them with human support staff is increasingly infeasible.

The vision of autonomic computing poses new challenges to many areas of computer science,
including architecture, operating systems, security, and human-computer interfaces. However, the
burden on artificial intelligence is especially great, since intelligence is a prerequisite for self-
managing systems. In particular, we believe machine learning will play a primaryrole, since com-
puter systems must be adaptive if they are to perform well autonomously. There are many ways
to apply supervised methods to autonomic systems, e.g. for intrusion detection (Ertoz et al., 2004),
spam filtering (Dalvi et al., 2004), or system configuration (Wildstrom et al., 2005). However, there
are also many tasks where no human expert is available and reinforcementlearning is applicable,
e.g network routing (Boyan and Littman, 1994), job scheduling (Whiteson and Stone, 2004), and
cache allocation (Gomez et al., 2001).

One such task is server job scheduling, in which a server, such as a website’s application server
or database, must determine in what order to process the jobs currently waiting in its queue. Its
goal is to maximize the aggregate utility of all the jobs it processes. Autility function (not to be
confused with a TD value function) for each job type maps the job’s completiontime to the utility
derived by the user (Walsh et al., 2004). The problem of server job scheduling becomes challenging
when these utility functions are nonlinear and/or the server must process multiple types of jobs.
Since selecting a particular job for processing necessarily delays the completion of all other jobs
in the queue, the scheduler must weigh difficult trade-offs to maximize aggregate utility. Also, this
domain is challenging because it is large (the size of both the state and action spaces grow in direct
proportion to the size of the queue) and probabilistic (the server does notknow what type of job will
arrive next). Hence, it is a typical example of a reinforcement learning task that requires effective
function approximation.

The server job scheduling task is quite different from traditional scheduling tasks (Zhang and
Dietterich, 1995; Zweben and Fox, 1998). In the latter case, there are typically multiple resources
available and each job has a partially ordered list of resource requirements. Server job scheduling
is simpler because there is only one resource (the server) and all jobs are independent of each other.
However, it is more complex in that performance is measured via arbitrary utilityfunctions, whereas
traditional scheduling tasks aim solely to minimize completion times.

Our experiments were conducted in a Java-based simulator. The simulation begins with 100 jobs
preloaded into the server’s queue and ends when the queue becomes empty. During each timestep,
the server removes one job from its queue and completes it. During each of the first 100 timesteps,
a new job of a randomly selected type is added to the end of the queue. Hence, the agent must make
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Figure 3: The four utility functions used in our experiments.

decisions about which job to process next even as new jobs are arriving. Since one job is processed
at each timestep, each episode lasts 200 timesteps. For each job that completes, the scheduling agent
receives an immediate reward determined by that job’s utility function.

Four different job types were used in our experiments. Hence, the task can generate 4200 unique
episodes. Utility functions for the four job types are shown in Figure 3. Users who create jobs
of type #1 or #2 do not care about their jobs’ completion times so long as they are less than 100
timesteps. Beyond that, they get increasingly unhappy. The rate of this change differs between the
two types and switches at timestep 150. Users who create jobs of type #3 or #4 want their jobs
completed as quickly as possible. However, once the job becomes 100 timesteps old, it is too late to
be useful and they become indifferent to it. As with the first two job types, theslopes for job types
#3 and #4 differ from each other and switch, this time at timestep 50. Note that all these utilities
are negative functions of completion time. Hence, the scheduling agent strives to bring aggregate
utility as close to zero as possible.

A primary obstacle to applying reinforcement learning methods to this domain is thesize of
the state and action spaces. A complete state description includes the type and age of each job in
the queue. The scheduler’s actions consist of selecting jobs for processing; hence a complete action
space includes every job in the queue. To render these spaces more manageable, we discretize them.
The range of job ages from 0 to 200 is divided into four sections and the scheduler is told, at each
timestep, how many jobs in the queue of each type fall in each range, resultingin 16 state features.
The action space is similarly discretized. Instead of selecting a particular job for processing, the
scheduler specifies what type of job it wants to process and which of the four age ranges that job
should lie in, resulting in 16 distinct actions. The server processes the youngest job in the queue
that matches the type and age range specified by the action.

These discretizations mean the agent has less information about the contentsof the job queue.
However, its state is still sufficiently detailed to allow effective learning. Although the utility func-
tions can change dramatically within each age range, their slopes do not change. It is the slope
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of the utility function, not the utility function itself, which determines how much utility is lost by
delaying a given job.

Even after discretization, the state space is quite large. If the queue holds at mostqmax jobs,
(qmax+1

16

)

is a loose upper bound on the number of states, since each job can be in oneof 16 buckets.
Some of these states will not occur (e.g. ones where all the jobs in the queueare in the youngest
age range). Nonetheless, with 16 actions per state, it is clearly infeasible torepresent the value
function in a table. Hence, success in this domain requires function approximation, as addressed in
the following section.

5. Results

We conducted a series of experiments in the mountain car and server job scheduling domains to
empirically evaluate the methods presented in this paper. Section 5.1 compares manual and evo-
lutionary function approximators. Section 5.2 compares off-line and on-lineevolutionary compu-
tation. Section 5.3 tests evolutionary function approximation combined with on-lineevolutionary
computation. Section 5.4 compares these novel approaches to previous learning and non-learning
methods. Section 5.5 compares Darwinian and Lamarckian versions of evolutionary function ap-
proximation. Finally, Section 5.6 presents some addition tests that measure the effect of continual
learning on function approximators. The results offer insight into why certain methods outperform
others in these domains and what factors can make neural network function approximation difficult
in practice.

Each of the graphs presented in these sections include error bars indicating 95% confidence
intervals. In addition, to assess statistical significance, we conducted Student’s t-tests on each pair
of methods evaluated. The results of these tests are summarized in Appendix A.

5.1 Comparing Manual and Evolutionary Function Approximation

As an initial baseline, we conducted, in each domain, 25 runs in which NEAT attempts to discover
a good policy using the setup described in Section 4. In these runs, the population sizep was 100,
the number of generationsg was 100, the node mutation ratemn was 0.02, the link mutation rate
ml was 0.1, and the number of episodes per generatione was 10,000. Hence, each individual was
evaluated for 100 episodes on average. See Appendix B for more detailson the NEAT parameters
used in our experiments.

Next, we performed 25 runs in each domain using NEAT+Q, with the same parameter settings.
The eligibility decay rateλ was 0.0. and the learning rateα was set to 0.1 and annealed linearly
for each member of the population until reaching zero after 100 episodes.2 In scheduling,γ was
0.95 andεtd was 0.05. Those values ofγ and εtd work well in mountain car too, though in the
experiments presented here they were set to 1.0 and 0.0 respectively, since Sutton (1996) found that
discounting and exploration are unnecessary in mountain car. The outputscalec was set to -100 in
mountain car and -1000 in scheduling.

We tested both Darwinian and Lamarckian NEAT+Q in this manner. Both perform well, though
which is preferable appears to be domain dependent. For simplicity, in this section and those that
follow, we present results only for Darwinian NEAT+Q. In Section 5.5 we present a comparison of
the two approaches.

2. Other values ofλ were tested in the context of NEAT+Q but had little effect on performance.
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To test Q-learning without NEAT, we tried 24 different configurations in each domain. These
configurations correspond to every possible combination of the following parameter settings. The
networks had feed-forward topologies with 0, 4, or 8 hidden nodes. The learning rateα was either
0.01 or 0.001. The annealing schedules forα were linear, decaying to zero after either 100,000 or
250,000 episodes. The eligibility decay rateλ was either 0.0 or 0.6. The other parameters,γ and
ε, were set just as with NEAT+Q, and the standard deviation of initial weightsσ was 0.1. Each
of these 24 configurations was evaluated for 5 runs. In addition, we experimented informally with
higher and lower values ofα, higher values ofγ, slower linear annealing, exponential annealing,
and no annealing at all, though none performed as well as the results presented here.

In these experiments, each run used a different set of initial weights. Hence, the resulting
performance of each configuration, by averaging over different initial weight settings, does not
account for the possibility that some weight settings perform consistently better than others. To
address this, for each domain, we took the best performing configuration3 and randomly selected
five fixed initial weight settings. For each setting, we conducted 5 additionalruns. Finally, we took
the setting with the highest performance and conducted an additional 20 runs, for a total of 25. For
simplicity, the graphs that follow show only this Q-learning result: the best configuration with the
best initial weight setting.

Figure 4 shows the results of these experiments. For each method, the corresponding line in
the graph represents a uniform moving average over the aggregate utility received in the past 1,000
episodes, averaged over all 25 runs. Using average performance,as we do throughout this paper, is
somewhat unorthodox for evolutionary methods, which are more commonly evaluated on the per-
formance of the generation champion. There are two reasons why we adopt average performance.
First, it creates a consistent metric for all the methods tested, including the TD methods that do not
use evolutionary computation and hence have no generation champions. Second, it is an on-line
metric because it incorporatesall the reward the learning system accrues. Plotting only generation
champions is an implicitly off-line metric because it does not penalize methods thatdiscover good
policies but fail to accrue much reward while learning. Hence, average reward is a better metric for
evaluating on-line evolutionary computation, as we do in Section 5.2.

To make a larger number of runs computationally feasible, both NEAT and NEAT+Q were run
for only 100 generations. In the scheduling domain, neither method has completely plateaued by
this point. However, a handful of trials conducted for 200 generations verified that only very small
additional improvements are made after 100 generation, without a qualitative effect on the results.

Note that the progress of NEAT+Q consists of a series of 10,000-episode intervals. Each of
these intervals corresponds to one generation and the changes within themare due to learning via
Q-learning and backpropagation. Although each individual learns foronly 100 episodes on average,
NEAT’s system of randomly selecting individuals for evaluation causes that learning to be spread
across the entire generation: each individual changes gradually during the generation as it is repeat-
edly evaluated. The result is a series of intra-generational learning curves within the larger learning
curve.

For the particular problems we tested and network configurations we tried, evolutionary func-
tion approximation significantly improves performance over manually designednetworks. In the
scheduling domain, Q-learning learns much more rapidly in the very early part of learning. In both
domains, however, Q-learning soon plateaus while NEAT and NEAT+Q continue to improve. Of

3. Mountain car parameters were: 4 hidden nodes,α = 0.001, annealed to zero at episode 100,000,λ = 0.0. Server job
scheduling parameters were: 4 hidden nodes,α = 0.01, annealed to zero at episode 100,000,λ = 0.6.
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Figure 4: A comparison of the performance of manual and evolutionary function approximators in
the mountain car and server job scheduling domains.

course, after 100,000 episodes, Q-learning’s learning rateα has annealed to zero and no additional
learning is possible. However, its performance plateaus well beforeα reaches zero and, in our
experiments, running Q-learning with slower annealing or no annealing at all consistently led to
inferior and unstable performance.

Nonetheless, the possibility remains that additional engineering of the network structure, the
feature set, or the learning parameters would significantly improve Q-learning’s performance. In
particular, when Q-learning is started with one of the best networks discovered by NEAT+Q and
the learning rate is annealed aggressively, Q-learning matches NEAT+Q’s performance without
directly using evolutionary computation. However, it is unlikely that a manual search, no matter
how extensive, would discover these successful topologies, which contain irregular and partially
connected hidden layers. Figure 5 shows examples of typical networks evolved by NEAT+Q.

NEAT+Q also significantly outperforms regular NEAT in both domains. In the mountain car
domain, NEAT+Q learns faster, achieving better performance in earlier generations, though both
plateau at approximately the same level. In the server job scheduling domain, NEAT+Q learns more
rapidly and also converges to significantly higher performance. This result highlights the value of
TD methods on challenging reinforcement learning problems. Even when NEAT is employed to
find effective representations, the best performance is achieved onlywhen TD methods are used to
estimate a value function. Hence, the relatively poor performance of Q-learning is not due to some
weakness in the TD methodology but merely to the failure to find a good representation.

Furthermore, in the scheduling domain, the advantage of NEAT+Q over NEAT is not directly ex-
plained just by the learning that occurs via backpropagation within each generation. After 300,000
episodes, NEAT+Q clearly performs better even at the beginning of eachgeneration, before such
learning has occurred. Just as predicted by the Baldwin Effect, evolution proceeds more quickly in
NEAT+Q because the weight changes made by backpropagation, in addition to improving that in-
dividual’s performance, alter selective pressures and more rapidly guide evolution to useful regions
of the search space.
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Figure 5: Typical examples of the topologies of the best networks evolvedby NEAT+Q in both the
mountain car and scheduling domains. Input nodes are on the bottom, hiddennodes in
the middle, and output nodes on top. In addition to the links shown, each inputnode
is directly connected to each output node. Note that two output nodes can bedirectly
connected, in which case the activation of one node serves not only as an output of the
network, but as an input to the other node.

5.2 Comparing Off-Line and On-Line Evolutionary Computation

In this section, we present experiments evaluating on-line evolutionary computation. Since on-
line evolutionary computation does not depend on evolutionary function approximation, we first
test it using regular NEAT, by comparing an off-line version to on-line versions usingε-greedy
and softmax selection. In Section 5.3 we study the effect of combining NEAT+Q with on-line
evolutionary computation.

Figure 6 compares the performance of off-line NEAT to its on-line counterparts in both domains.
The results for off-line NEAT are the same as those presented in Figure 4.To test on-line NEAT
with ε-greedy selection, 25 runs were conducted withεec set to 0.25. This value is larger than is
typically used in TD methods but makes intuitive sense, since exploration in NEAT is safer than in
TD methods. After all, even when NEAT explores, the policies it selects are not drawn randomly
from policy space. On the contrary, they are the children of the previousgeneration’s fittest parents.
To test on-line NEAT with softmax selection, 25 runs were conducted withτ set to 50 in mountain
car and 500 in the scheduling domain. These values are different because a good value ofτ depends
on the range of possible values, which differ dramatically between the two domains.

These results demonstrate that both versions of on-line evolutionary computation can signifi-
cantly improve NEAT’s average performance. In addition, in mountain car,on-line evolutionary
computation with softmax selection boosts performance even more thanε-greedy selection.

Given the way these two methods work, the advantage of softmax overε-greedy in mountain
car is not surprising.ε-greedy selection is a rather naı̈ve approach because it treats all exploratory
actions equally, with no attempt to favor the most promising ones. For the most part, it conducts the
search for better policies in the same way as off-line evolutionary computation; it simply interleaves
that search with exploitative episodes that employ the best known policy. Softmax selection, by
contrast, concentrates exploration on the most promising alternatives and hence alters the way the
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mountain car and server job scheduling domains.

search for better policies is conducted. Unlikeε-greedy exploration, softmax selection spends fewer
episodes on poorly performing individuals and more on those with the most promise. In this way, it
achieves better performance.

More surprising is that this effect is not replicated in the scheduling domain.Both on-line meth-
ods perform significantly better than their off-line counterpart but softmax performs only as well as
ε-greedy. It is possible that softmax, though focusing exploration more intelligently, exploits less
aggressively thanε-greedy, which gives so many evaluations to the champion. It is also possible that
some other setting ofτ would make softmax outperformε-greedy, though our informal parameter
search did not uncover one. Even achieving the performance shown here required using different
values ofτ in the two domains, whereas the same value ofε worked in both cases. This highlights
one disadvantage of using softmax selection: the difficulty of choosingτ. As Sutton and Barto write
“Most people find it easier to set theε parameter with confidence; settingτ requires knowledge of
the likely action values and of powers ofe.” (Sutton and Barto, 1998, pages 27-30)

It is interesting that the intra-generational learning curves characteristicof NEAT+Q appear in
the on-line methods even though backpropagation is not used. The average performance increases
during each generation without the help of TD methods because the system becomes better informed
about which individuals to select on exploitative episodes. Hence, on-line evolutionary computation
can be thought of as another way of combining evolution and learning. In each generation, the
system learns which members of the population are strongest and uses thatknowledge to boost
average performance.

5.3 Combining Evolutionary Function Approximation with On-Line Evolutio nary
Computation

Sections 5.1 and 5.2 verify that both evolutionary function approximation andon-line evolutionary
computation can significantly boost performance in reinforcement learningtasks. In this section,
we present experiments that assess how well these two ideas work together.
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Figure 7 presents the results of combining NEAT+Q with softmax evolutionary computation,
averaged over 25 runs, and compares it to using each of these methods individually, i.e. using off-
line NEAT+Q (as done in Section 5.1) and using softmax evolutionary computation with regular
NEAT (as done in Section 5.2). For the sake of simplicity we do not present results forε-greedy
NEAT+Q though we tested it and found that it performed similarly to softmax NEAT+Q.
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Figure 7: The performance of combining evolutionary function approximation with on-line evolu-
tionary computation compared to using each individually in the mountain car and server
job scheduling domains.

In both domains, softmax NEAT+Q performs significantly better than off-line NEAT+Q. Hence,
just like regular evolutionary computation, evolutionary function approximation performs better
when supplemented with selection techniques traditionally used in TD methods. Surprisingly, in the
mountain car domain, softmax NEAT+Q performs only as well softmax NEAT. Weattribute these
results to a ceiling effect, i.e. the mountain car domain is easy enough that, given an appropriate
selection mechanism, NEAT is able to learn quite rapidly, even without the help ofQ-learning.
In the server job scheduling domain, softmax NEAT+Q does perform betterthan softmax NEAT,
though the difference is rather modest. Hence, in both domains, the most critical factor to boosting
the performance of evolutionary computation is the use of an appropriate selection mechanism.

5.4 Comparing to Previous Approaches

The experiments presented thus far verify that the novel methods presented in this paper can im-
prove performance over the constituent techniques upon which they arebuilt. In this section, we
present experiments that compare the performance of the highest performing novel method, softmax
NEAT+Q, to previous approaches. In the mountain car domain, we compareto previous results that
use TD methods with a linear function approximator (Sutton, 1996). In the server job scheduling do-
main, we compare to a random scheduler, two non-learning schedulers from previous research (van
Mieghem, 1995; Whiteson and Stone, 2004), and an analytical solution computed using integer
linear programming.
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In the mountain car domain, the results presented above make clear that softmax NEAT+Q can
rapidly learn a good policy. However, since these results use an on-line metric, performance is
averaged over all members of the population. Hence, they do not revealhow close the best learned
policies are to optimal. To assess this, we selected the generation champion from the final generation
of each softmax NEAT+Q run and evaluated it for an additional 1,000 episodes. Then we compared
this to the performance of a learner using Sarsa, a TD method similar to Q-learning (Sutton and
Barto, 1998), with CMACs, a popular linear function approximator (Sutton and Barto, 1998), using
a setup that matches that of Sutton (1996) as closely as possible. We foundtheir performance to
be nearly identical: softmax NEAT+Q received an average score of -52.75 while the Sarsa CMAC
learner received -52.02. We believe this performance is approximately optimal, as it matches the
best results published by other researchers, e.g. (Smart and Kaelbling, 2000).

This does not imply that neural networks are the function approximator of choice for the moun-
tain car domain. On the contrary, Sutton’s CMACs converge in many fewer episodes. Nonetheless,
these results demonstrate that evolutionary function approximation and on-line evolution make it
feasible to find approximately optimal policies using neural networks, something that some previous
approaches (Boyan and Moore, 1995; Pyeatt and Howe, 2001), using manually designed networks,
were unable to do.

Since the mountain car domain has only two state features, it is possible to visualize the value
function. Figure 8 compares the value functions learned by softmax NEAT+Q to that of Sarsa with
CMACs. For clarity, the graphs plot estimated steps to the goal. Since the agent receives a reward
of -1 for each timestep until reaching the goal, this is equivalent to−maxa(Q(s,a)). Surprisingly,
the two value functions bear little resemblance to one another. While they sharesome very general
characteristics, they differ markedly in both shape and scale. Hence, these graphs highlight a fact
that has been noted before (Tesauro, 1994): that TD methods can learn excellent policies even if
they estimate the value function only very grossly. So long as the value function assigns the highest
value to the correct action, the agent will perform well.
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Figure 8: The value function, shown as estimated steps to the goal, of policieslearned by softmax
NEAT+Q and Sarsa using CMACs.
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In the server job scheduling domain, finding alternative approaches forcomparison is less
straightforward. Substantial research about job scheduling already exists but most of the methods
involved are not applicable here because they do not allow jobs to be associated with arbitrary utility
functions. For example, Liu and Layland (1973) present methods for jobscheduling in a real-time
environment, in which a hard deadline is associated with each job. McWherteret al. (2004) present
methods for scheduling jobs with different priority classes. However, unlike the utility functions
shown in Section 4.2, the relative importance of a job type does not change as a function of time.
McGovern et al. (2002) use reinforcement learning for CPU instructionscheduling but aim only to
minimize completion time.

One method that can be adapted to the server job scheduling task is the generalizedcµ rule (van
Mieghem, 1995), in which the server always processes at timet the oldest job of that typek which
maximizesC′k(ok)/pk, whereC′k is the derivative of the cost function for job typek, ok is the age
of the oldest job of typek and pk is the average processing time for jobs of typek. Since in our
simulation all jobs require unit time to process and the cost function is just the additive inverse
of the utility function, this is equivalent to processing the oldest job of that type k that maximizes
−U ′k(ok), whereU ′k is the derivative of the utility function for job typek. The generalizedcµ rule
has been proven approximately optimal given convex cost functions (van Mieghem, 1995). Since
the utility functions, and hence the cost functions, are both convex and concave in our simulation,
there is no theoretical guarantee about its performance in the server job scheduling domain. To see
how well it performs in practice, we implemented it in our simulator and ran it for 1,000 episodes,
obtaining an average score of -10,891.

Another scheduling algorithm applicable to this domain is the insertion scheduler, which per-
formed the best in a previous study of a very similar domain (Whiteson and Stone, 2004). The
insertion scheduler uses a simple, fast heuristic: it always selects for processing the job at the head
of the queue but it keeps the queue ordered in a way it hopes will maximize aggregate utility. For
any given ordering of a set ofJ jobs, the aggregate utility is:

∑
i∈J

Ui(ai + pi)

whereUi(·), ai , andpi are the utility function, current age, and position in the queue, respectively,
of job i. Since there are|J|! ways to order the queue, it is clearly infeasible to try them all. Instead,
the insertion scheduler uses the following simple, fast heuristic: every time a new job is created, the
insertion scheduler tries inserting it into each position in the queue, settling on whichever position
yields the highest aggregate utility. Hence, by bootstrapping off the previous ordering, the insertion
scheduler must consider only|J] orderings. We implemented the insertion scheduler in our simulator
and ran it for 1,000 episodes, obtaining an average score of -13,607.

Neither thecµrule nor the insertion scheduler perform as well as softmax NEAT+Q, whose final
generation champions received an average score of -9,723 over 1,000 episodes. Softmax NEAT+Q
performed better despite the fact that the alternatives rely on much greatera priori knowledge about
the dynamics of the system. Both alternatives require the scheduler to have apredictive model of
the system, since their calculations depend on knowledge of the utility functionsand the amount of
time each job takes to complete. By contrast, softmax NEAT+Q, like many reinforcement learning
algorithms, assumes such information is hidden and discovers a good policy from experience, just
by observing state transitions and rewards.

If, in addition to assuming the scheduler has a model of the system, we make the unrealistic
assumption that unlimited computation is available to the scheduler, then we can obtain an informa-
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tive upper bound on performance. At each time step of the simulation, we cancompute the optimal
action analytically by treating the scheduling problem as an integer linear program. For each job
i ∈ J and for each positionj in which it could be placed, the linear program contains a variable
xi j ∈ {0,1}. Associated with each variable is a weightwi j =Ui(ai + j), which represents the reward
the scheduler will receive when jobi completes given that it currently resides in positionj. Since
the scheduler’s goal is to maximize aggregate utility, the linear program must maximize∑i ∑ j wi j xi j .
In addition to the constraint that∀i j : xi j ∈ {0,1}, the program is also constrained such that each job
is in exactly one position:∀i : ∑ j xi j = 1 and that each position holds exactly one job:∀ j : ∑i xi j = 1.

A solution to the resulting integer linear program is an ordering that will maximize the aggregate
utility of the jobs currently in the queue. If the scheduler always processes the job in the first
position of this ordering, it will behave optimallyassuming no more jobs arrive. Since new jobs
are constantly arriving, the linear program must be re-solved anew at each time step. The resulting
behavior may still be suboptimal since the decision about which job to processis made without
reasoning about what types of jobs are likely to arrive later. Nonetheless, this analytical solution
represents an approximate upper bound on performance in this domain.

Using the CPLEX software package, we implemented a scheduler based on the linear program
described above and tested in our simulator for 1,000 episodes, obtaining an average score of -
7,819. Not surprisingly, this performance is superior to that of softmax NEAT+Q, though it takes,
on average, 741 times as long to run. The computational requirements of this solution are not likely
to scale well either, since the number of variables in the linear program grows quadratically with
respect to the size of the queue.

Figure 9 summarizes the performance of the alternative scheduling methods described in this
section and compares them to softmax NEAT+Q. It also includes, as a lower bound on performance,
a random scheduler, which received an average score of -15,502 over 1,000 episodes. A Student’s
t-test verified that the difference in performance between each pair of methods is statistically signif-
icant with 95% confidence. Softmax NEAT+Q performs the best except for the linear programming
approach, which is computationally expensive and relies on a model of the system. Prior to learn-
ing, softmax NEAT+Q performs similarly to the random scheduler. The difference in performance
between the best learned policies and the linear programming upper bound is75% better than that
of the baseline random scheduler and 38% better than that of the next best method, thecµscheduler.

5.5 Comparing Darwinian and Lamarckian Evolutionary Computation

As described in Section 3.1, evolutionary function approximation can be implemented in either a
Darwinian or Lamarckian fashion. The results presented so far all use the Darwinian implementa-
tion of NEAT+Q. However, it is not clear that this approach is superior even though it more closely
matches biological systems. In this section, we compare the two approaches empirically in both
the mountain car and server job scheduling domains. Many other empirical comparisons of Dar-
winian and Lamarckian systems have been conducted previously (D. Whitley, 1994; Yamasaki and
Sekiguchi, 2000; Pereira and Costa, 2001) but ours is novel in that individual learning is based on a
TD function approximator. In other words, these experiments address thequestion: when trying to
approximate a TD value function, is a Darwinian or Lamarckian approach superior?

Figure 10 compares the performance of Darwinian and Lamarckian NEAT+Q in both the moun-
tain car and server job scheduling domains. In both cases, we use off-line NEAT+Q, as the on-line
versions tend to mute the differences between the two implementations. Though both implementa-
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Figure 9: A comparison of the performance of softmax NEAT+Q and several alternative methods
in the server job scheduling domain.

tions perform well in both domains, Lamarckian NEAT+Q does better in mountaincar but worse
in server job scheduling. Hence, the relative performance of these two approaches seems to depend
critically on the dynamics of the domain to which they are applied. In the following section, we
present some additional results that elucidate which factors affect their performance.
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5.6 Continual Learning Tests

In this section, we assess the performance of the best networks discovered by NEAT+Q when eval-
uated for many additional episodes. We compare two scenarios, one where the learning rate is
annealed to zero after 100 episodes, just as in training, and one where itis not annealed at all. Com-
paring performance in these two scenarios allows us to assess the effectof continual learning on the
evolved networks.

We hypothesized that NEAT+Q’s best networks would perform well under continual learning
in the mountain car domain but not in server job scheduling. This hypothesis was motivated by
the results of early experiments with NEAT+Q. Originally, we did not annealα at all. This setup
worked fine in the mountain car domain but in scheduling it worked only with off-line NEAT+Q;
on-line NEAT+Q actually performed worse than off-line NEAT+Q! Annealing NEAT+Q’s learning
rate eliminated the problem, as the experiments in Section 5.2 verify. If finding weights that remain
stable under continual learning is more difficult in scheduling than in mountain car, it could explain
this phenomenon, sinceε-greedy and softmax selection, by giving many more episodes of learning
to certain networks, could cause those networks to become unstable and perform poorly.

To test the best networks without continual learning, we selected the finalgeneration champion
from each run of off-line Darwinian NEAT+Q and evaluated it for an additional 5,000 episodes, i.e.
50 times as many episodes as it saw in training. During these additional episodes, the learning rate
was annealed to zero by episode 100, just as in training. To test the best networks with continual
learning, we repeated this experiment but did not anneal the learning rateat all. To prevent any
unnecessary discrepancies between training and testing, we repeated the original NEAT+Q runs
with annealing turned off and used the resulting final generation champions.

Figure 11 shows the results of these tests. In the mountain car domain, performance remains
relatively stable regardless of whether the networks continue to learn. The networks tested without
annealing show more fluctuation but maintain performance similar to those that were annealed.
However, in the scheduling domain, the networks subjected to continual learning rapidly plummet
in performance whereas those that are annealed continue to perform asthey did in training. These
results directly confirm our hypothesis that evolutionary computation can find weights that perform
well under continual learning in mountain car but not in scheduling. This explains why on-line
NEAT+Q does not require an annealed learning rate in mountain car but does in scheduling.

These tests also shed light on the comparison between Darwinian and Lamarckian NEAT+Q
presented in Section 5.5. A surprising feature of the Darwinian approachis that it is insensitive to
the issue of continual learning. Since weight changes do not affect offspring, evolution need only
find weights that remain suitable during one individual’s lifetime. By contrast, inthe Lamarckian
approach, weight changes accumulate from generation to generation. Hence, the TD updates that
helped in early episodes can hurt later on. In this light it makes perfect sense that Lamarckian
NEAT+Q performs better in mountain car than in scheduling, where continuallearning is problem-
atic.

These results suggest that the problem of stability under continual learning can greatly exacer-
bate the difficulty of performing neural network function approximation in practice. This issue is
not specific to NEAT+Q, since Q-learning with manually designed networks achieved decent per-
formance only when the learning rate was properly annealed. Darwinian NEAT+Q is a novel way of
coping with this problem, since it obviates the need for long-term stability. In on-line evolutionary
computation annealing may still be necessary but it is less critical to set the rateof decay precisely.
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Figure 11: A comparison of the performance of the best networks evolved by NEAT+Q when
tested, with and without annealing, for an additional 5,000 episodes.

When learning ends, it prevents only a given individual from continuingto improve. The system
as a whole can still progress, as evolution exerts selective pressure and learning begins anew in the
next generation.

6. Discussion

The results in the mountain car domain presented in Section 5, demonstrate that NEAT+Q can suc-
cessfully train neural network function approximators in a domain which is notoriously problematic
for them. However, NEAT+Q requires many more episodes to find good solutions (by several or-
ders of magnitude) than CMACs do in the same domain. This contrast highlights an important
drawback of NEAT+Q: since each candidate network must be trained longenough to let Q-learning
work, it has very high sample complexity. In ongoing research, we are investigating ways of making
NEAT+Q more sample-efficient. For example, preliminary results suggest that, by pre-training net-
works using methods based on experience replay (Lin, 1992), NEAT+Q’s sample complexity can
be dramatically reduced.

It is not surprising that NEAT+Q takes longer to learn than CMACs because it is actually solving
a more challenging problem. CMACs, like other linear function approximators,require the human
designer to engineer a state representation in which the optimal value functionis linear with respect
to those state features (or can be reasonably approximated as such). For example, when CMACs
were applied to the mountain car domain, the two state features were tiled conjunctively (Sutton,
1996). By contrast, nonlinear function approximators like neural networks can take a simpler state
representation andlearn the important nonlinear relationships. Note that the state representation
used by NEAT+Q, while discretized, does not include any conjunctive features of the original two
state features. The important conjunctive features are represented byhidden nodes that are evolved
automatically by NEAT.
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Conjunctively tiling all state features is feasible in mountain car but quickly becomes impractical
in domains with more state features. For example, doing so in the scheduling domain would require
16 CMACs, one for each action. In addition, each CMAC would have multiple 16-dimensional
tilings. If 10 tilings were used and each state feature were discretized into 10buckets, the resulting
function approximator would have 16×10×1016 cells. Conjunctively tiling only some state fea-
tures is feasible only with a large amount of domain expertise. Hence, methodslike NEAT+Q that
automatically learn nonlinear representations promise to be of great practical importance.

The results in the scheduling domain demonstrate that the proposed methods scale to a much
larger, probabilistic domain and can learn schedulers that outperform existing non-learning ap-
proaches. The difference in performance between the best learned policies and the linear pro-
gramming upper bound is 75% better than that of the baseline random scheduler and 38% better
than that of the next best method, thecµscheduler. However, the results also demonstrate that non-
learning methods can do quite well in this domain. If so, is it worth the trouble of learning? We
believe so. In a real system, the utility functions that the learner maximizes wouldlikely be drawn
directly from Service Level Agreements (SLAs), which are legally bindingcontracts governing how
much clients pay their service providers as a function of the quality of service they receive (Walsh
et al., 2004). Hence, even small improvements in system performance can significantly affect the
service provider’s bottom line. Substantial improvements like those demonstrated in our results, if
replicated in real systems, could be very valuable indeed.

Overall, the main limitation of the results presented in this paper is that they apply only to neu-
ral networks. In particular, the analysis about the effects of continuallearning (Section 5.6) may
not generalize to other types of function approximation that are not as prone to instability or diver-
gence if over-trained. While evolutionary methods could in principle be combined with any kind
of function approximation, in practice it is likely to work well only with very concise representa-
tions. Methods like CMACs, which use many more weights, would result in verylarge genomes and
hence be difficult for evolutionary computation to optimize. However, since such methods methods
become impractical as the number of state features and actions grow, concise methods like neu-
ral networks may become increasingly important in harder domains. If so, evolutionary function
approximation could be an important tool for automatically optimizing their representations.

7. Related Work

A broad range of previous research is related in terms of both methods andgoals to the techniques
presented in this paper. This section highlights some of that research and contrasts it with this work.

7.1 Optimizing Representations for TD Methods

A major challenge of using TD methods is finding good representations for function approximators.
This paper addresses that problem by coupling TD methods with evolutionary techniques like NEAT
that are proven representation optimizers. However, many other approaches are also possible.

One strategy is to train the function approximator using supervised methods that also optimize
representations. For example, Rivest and Precup (2003) train cascade-correlation networks as TD
function approximators. Cascade-correlation networks are similar to NEATin that they grow in-
ternal topologies for neural networks. However, instead of using evolutionary computation to find
such topologies, they rely on the network’s error on a given training setto compare alternative rep-
resentations. The primary complication of Rivest and Precup’s approach is that cascade-correlation
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networks, like many representation-optimizing supervised methods, need thetraining set to be both
large and stable. TD methods do not naturally accommodate this requirement since they produce
training examples only in sequence. Furthermore, those examples quickly become stale as the val-
ues upon which they were based are updated. Rivest and Precup address this problem using a
novel caching system that in effect creates a hybrid value function consisting of a table and a neu-
ral network. While this approach delays the exploitation of the agent’s experience, it nonetheless
represents a promising way to marry the representation-optimizing capacity ofcascade-correlation
networks and other supervised algorithms with the power of TD methods.

Mahadevan (2005) suggests another strategy: using spectral analysis to derive basis functions
for TD function approximators. His approach is similar to this work in that the agent is responsible
for learning both the value function and its representation. It is differentin that the representation is
selected by analyzing the underlying structural properties of the state space, rather than evaluating
potential representations in the domain.

A third approach is advanced by Sherstov and Stone (2005): using the Bellman error generated
by TD updates to assess the reliability of the function approximator in a given region of the state or
action space. They use this metric to automatically adjust the breadth of generalization for a CMAC
function approximator. An advantage of this approach is that feedback arrives immediately, since
Bellman error can be computed after each update. A disadvantage is that thefunction approxima-
tor’s representation is not selected based on its actual performance, which may correlate poorly with
Bellman error.

There is also substantial research that focuses on optimizing the agent’s state and action rep-
resentations, rather than the value function representation. For example,Santamaria et al. (1998)
apply skewing functions to state-action pairs before feeding them as inputsto a function approxima-
tor. These skewing functions make the state-action spaces non-uniform and hence make it possible
to give more resolution to the most critical regions. Using various skewing functions, they demon-
strate improvement in the performance of TD learners. However, they do not offer any automatic
way of determining how a given space should be skewed. Hence, a humandesigner still faces the
burdensome task of manually choosing a representation, though in some domains using skewing
functions may facilitate this process.

Smith (2002) extends this work by introducing a method that uses self-organizing maps to
automatically learn nonlinear skewing functions for the state-action spaces of TD agents. Self-
organizing maps use unsupervised learning methods to create spatially organized internal represen-
tations of the inputs they receive. Hence, the system does not use any feedback on the performance
of different skewing functions to determine which one is most appropriate.Instead it relies on the
heuristic assumption that more resolution should be given to regions of the space that are more fre-
quently visited. While this is an intuitive and reasonable heuristic, it does not hold in general. For
example, a reinforcement learning agent designed to respond to rare emergencies may spend most
of its life in safe states where its actions have little consequence and only occasionally experience
crisis states where its choices are critical. Smith’s heuristic would incorrectly devote most of its
resolution to representing the value function of the unimportant but frequently visited states. Evolu-
tionary function approximation avoids this problem because it evaluates competing representations
by testing them in the actual task. It explicitly favors those representations that result in higher
performance, regardless of whether they obey a given heuristic.
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McCallum (1995) also presents a method for optimizing an agent’s state representation. His ap-
proach automatically learns tree-structured short-term memories that allow reinforcement learning
agents to prevent the state aliasing that results from hidden state.

7.2 Combining Evolutionary Computation with Other Learning Methods

Because of the potential performance gains offered by the Baldwin Effect, many researchers have
developed methods that combine evolutionary computation with other learning methods that act
within an individual’s lifetime. Some of this work is applied to supervised problems, in which
evolutionary computation can be coupled with any supervised learning technique such as backprop-
agation in a straightforward manner. For example, Boers et al. (1995) introduce a neuroevolution
technique that, like NEAT, tries to discover appropriate topologies. They combine this method
with backpropagation and apply the result to a simple supervised learning problem. Also, Giraud-
Carrier (2000) uses a genetic algorithm to tune the parameters of RBF networks, which he applies
to a supervised classification problem.

Inducing the Baldwin Effect on reinforcement learning problems is more challenging, since they
do not automatically provide the target values necessary for supervisedlearning. The algorithms
presented in this paper use TD methods to estimate those targets, though researchers have tried many
other approaches. McQuestion and Miikkulainen (1997) present a neuroevolutionary technique that
relies on each individual’s parents to supply targets and uses backpropagation to train towards those
targets. Stanley et al. (2003) avoid the problem of generating targets by using Hebbian rules, an
unsupervised technique, to change a neural network during its fitness evaluation. The network’s
changes are not directed by any error signal but they allow the networkto retain a memory of
previously experienced input sequences. Hence their approach is analternative to recurrent neural
networks. Downing (2001) combines genetic programming with Q-learning using a simple tabular
representation; genetic programming automatically learns how to discretize the state space.

Nolfi et al. (1994) present a neuroevolutionary system that adds extraoutputs to the network
that are designed to predict what inputs will be presented next. When those inputs actually arrive,
they serve as targets for backpropagation, which adjusts the network’sweights starting from the
added outputs. This technique allows a network to be adjusted during its lifetime using supervised
methods but relies on the assumption that forcing it to learn to predict future inputs will help it select
appropriate values for the remaining outputs, which actually control the agent’s behavior. Another
significant restriction is that the weights connecting hidden nodes to the actionoutputs cannot be
adjusted at all during each fitness evaluation.

Ackley and Littman (1991) combine neuroevolution with reinforcement learning in an artificial
life context. Evolutionary computation optimizes the initial weights of an “action network” that
controls an agent in a foraging scenario. The weights of the network areupdated during each indi-
vidual’s lifetime using a reinforcement learning algorithm called CRBP on the basis of a feedback
signal that is also optimized with neuroevolution. Hence, their approach is similar to the one de-
scribed in this paper, though the neuroevolution technique they employ doesnot optimize network
topologies and CRBP does not learn a value function.

XCS (Butz and Wilson, 2002), based on learning classifier systems (Lanzi et al., 2000), combine
evolutionary computation and reinforcement learning in a different way. Each member of the pop-
ulation, instead of representing a complete policy, represents just a single classifier, which specifies
the action the agent should take for some subset of the state space. Hence, the population as a whole
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represents a single evolving policy. Classifiers are selected for reproduction based on the accuracy
of their value estimates and speciation is used to ensure the state space is properly covered.

Other combinations of evolutionary computation with other learning methods include Arita and
Suzuki (2000), who study iterated prisoner’s dilemma; French and Messinger (1994) and Sasaki
and Tokoro (1999), who use artificial life domains; and Niv et al. (2002) in a foraging bees domain.

Another important related method is VAPS (Baird and Moore, 1999). While it does not use
evolutionary computation, it does combine TD methods with policy search methods. It provides
a unified approach to reinforcement learning that uses gradient descent to try to simultaneously
maximize reward and minimize error on Bellman residuals. A single parameter determines the
relative weight of these goals. Because it integrates policy search and TD methods, VAPS is in much
the same spirit as evolutionary function approximation. However, the resulting methods are quite
different. While VAPS provides several impressive convergence guarantees, it does not address the
question of how to represent the value function.

Other researchers have also sought to combine TD and policy search methods. For example,
Sutton et al. (2000) use policy gradient methods to search policy space but rely on TD methods to
obtain an unbiased estimate of the gradient. Similarly, in actor-critic methods (Konda and Tsitsiklis,
1999), the actor optimizes a parameterized policy by following a gradient informed by the critic’s
estimate of the value function. Like VAPS, these methods do not learn a representation for the value
function.

7.3 Variable Evaluations in Evolutionary Computation

Because it allows members of the same population to receive different numbers of evaluations, the
approach to on-line evolutionary computation presented here is similar to previous research about
optimizing noisy fitness functions. For example, Stagge (1998) introduces mechanisms for deciding
which individuals need more evaluations for the special case where the noise is Gaussian. Beielstein
and Markon (2002) use a similar approach to develop tests for determining which individuals should
survive. However, this area of research has a significantly different focus, since the goal is to find
the best individuals using the fewest evaluations, not to maximize the rewardaccrued during those
evaluations.

The problem of using evolutionary systems on-line is more closely related to other research
about the exploration/exploitation tradeoff, which has been studied extensively in the context of
TD methods (Watkins, 1989; Sutton and Barto, 1998) and multiarmed bandit problems (Bellman,
1956; Macready and Wolpert, 1998; Auer et al., 2002). The selection mechanisms we employ in our
system are well-established though, to our knowledge, their application to evolutionary computation
is novel.

8. Future Work

There are many ways that the work presented in this paper could be extended, refined, or further
evaluated. This section enumerates a few of the possibilities.

Using Different Policy Search Methods This paper focuses on using evolutionary methods to
automate the search for good function approximator representations. However, many other forms of
policy search such as PEGASUS (Ng and Jordan, 2000) and policy gradient methods (Sutton et al.,
2000; Kohl and Stone, 2004) have also succeeded on difficult reinforcement learning tasks. TD
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methods could be combined with these methods in the same way they are combined withevolution-
ary computation in this paper. In the future, we plan to test some of these alternative combinations.

Reducing Sample Complexity As mentioned in Section 6, one disadvantage of evolutionary
function approximation is its high sample complexity, since each fitness evaluationlasts for many
episodes. However, in domains where the fitness function is not too noisy,each fitness evaluation
could be conducted in a single episode if the candidate function approximatorwas pre-trained using
methods based on experience replay (Lin, 1992). By saving sample transitions from the previous
generation, each new generation could be be trained off-line. This method would use much more
computation time but many fewer sample episodes. Since sample experience is typically a much
scarcer resource than computation time, this enhancement could greatly improve the practical ap-
plicability of evolutionary function approximation.

Addressing Non-Stationarity In non-stationarydomains, the environment can change in ways
that alter the optimal policy. Since this phenomenon occurs in many real-world scenarios, it is im-
portant to develop methods that can handle it robustly. Evolutionary and TDmethods are both well
suited to non-stationary tasks and we expect them to retain that capability when combined. In fact,
we hypothesize that evolutionary function approximation will adapt to non-stationary environments
better than manual alternatives. If the environment changes in ways that alter theoptimal repre-
sentation, evolutionary function approximation can adapt, since it is continually testing different
representations and retaining the best ones. By contrast, even if they are effective at the original
task, manually designed representations cannot adapt in the face of changing environments.

On-line evolutionary computation should also excel in non-stationary environments, though
some refinement will be necessary. The methods presented in this paper implicitly assume a station-
ary environment because they compute the fitness of each individual by averaging overall episodes
of evaluation. In non-stationary environments, older evaluations can become stale and misleading.
Hence, fitness estimates should place less trust in older evaluations. This effect could easily be
achieved using recency-weighting update rules like those employed by table-based TD methods.

Using Steady-State Evolutionary Computation The NEAT algorithm used in this paper is an
example ofgenerationalevolutionary computation, in which an entire population is is evaluated
before any new individuals are bred. Evolutionary function approximation might be improved by
using asteady-stateimplementation instead (Fogarty, 1989). Steady-state systems never replacean
entire population at once. Instead, the population changes incrementally after each fitness evalua-
tion, when one of the worst individuals is removed and replaced by a new offspring whose parents
are among the best. Hence, an individual that receives a high score can more rapidly effect the
search, since it immediately becomes a potential parent. In a generational system, that individual
cannot breed until the beginning of the following generation, which might bethousands of episodes
later. Hence, steady-state systems could help evolutionary function approximation perform better
in on-line and non-stationary environments by speeding the adoption of newimprovements. Fortu-
nately, a steady-state version of NEAT already exists (Stanley et al., 2005) so this extension is quite
feasible.

9. Conclusion

Reinforcement learning is an appealing and empirically successful approach to finding effective
control policies in large probabilistic domains. However, it requires a gooddeal of expert knowledge
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to put into practice, due in large part to the need for manually defining function approximator
representations. This paper offers hope that machine learning methods can be used to discover those
representations automatically, thus broadening the practical applicability of reinforcement learning.

This paper makes three main contributions. First, it introduces evolutionary function approx-
imation, which automatically discovers effective representations for TD function approximators.
Second, it introduces on-line evolutionary computation, which employs selection mechanisms bor-
rowed from TD methods to improve the on-line performance of evolutionary computation. Third, it
provides a detailed empirical study of these methods in the mountain car and server job scheduling
domains.

The results demonstrate that evolutionary function approximation can significantly improve the
performance of TD methods and on-line evolutionary computation can significantly improve evo-
lutionary methods. Combined, our novel algorithms offer a promising and general approach to
reinforcement learning in large probabilistic domains.

Acknowledgments

Thanks to Richard Sutton, Michael Littman, Gerry Tesauro, and Manuela Veloso for helpful discus-
sions and ideas. Thanks to Risto Miikkulainen, Nick Jong, Bikram Banerjee, Shivaram Kalyanakr-
ishnan, and the anonymous reviewers for constructive comments about earlier versions of this work.
This research was supported in part by NSF CAREER award IIS-0237699 and an IBM faculty
award.

Appendix A. Statistical Significance

To assess the statistical significance of the results presented in Section 5, we performed a series of
Student’s t-tests on each pair of methods in each domain. For each pair, we performed a t-test after
every 100,000 episodes. Tables 1 and 2 summarize the results of these testsfor the mountain car
and server job scheduling domains, respectively. In each table, the values in each cell indicate the
range of episodes for which performance differences were significant with 95% confidence.

Appendix B. NEAT Parameters

Table 3 details the NEAT parameters used in our experiments. Stanley and Miikkulainen (2002)
describe the semantics of these parameters in detail.
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Episodes Q-Learning Off-Line ε-Greedy Softmax Off-Line Softmax Lamarckian
(x1000) NEAT NEAT NEAT NEAT+Q NEAT+Q NEAT+Q

Q-Learning
Off-Line 300 to
NEAT 1000

ε-Greedy 200 to 200 to
NEAT 1000 1000

Softmax 200 to 200 to 200 to
NEAT 1000 1000 1000

Off-Line 200 to 200 to 200 to 200 to
NEAT+Q 1000 500 1000 1000
Softmax 100 to 200 to 200 to 900 to 200 to
NEAT+Q 1000 1000 1000 1000 1000
Lamarkian 200 to 200 to 200 to 200 to 200 to 100 to
NEAT+Q 1000 1000 1000 1000 1000 1000

Table 1: A summary of the statistical significance of differences in averageperformance between
each pair of methods in mountain car (see Figures 4, 6, 7 & 10). Values in each cell
indicate the range of episodes for which differences were significant with 95% confidence.

Episodes Q-Learning Off-Line ε-Greedy Softmax Off-Line Softmax Lamarckian
(x1000) NEAT NEAT NEAT NEAT+Q NEAT+Q NEAT+Q

Q-Learning
Off-Line 300 to
NEAT 1000

ε-Greedy 200 to 200 to
NEAT 1000 1000

Softmax 200 to 200 to not significant
NEAT 1000 1000 throughout

Off-Line 300 to 300 to 100 to 200 to
NEAT+Q 1000 500 1000 1000
Softmax 200 to 200 to 400 to 200 to 200 to
NEAT+Q 1000 1000 1000 1000 1000

Lamarckian 300 to 300 to 100 to 100 to 700 to 200 to
NEAT+Q 1000 1000 1000 1000 1000 1000

Table 2: A summary of the statistical significance of differences in averageperformance between
each pair of methods in server job scheduling (see Figures 4, 6, 7 & 10).Values in each cell
indicate the range of episodes for which differences were significant with 95% confidence.
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Parameter Value Parameter Value Parameter Value
weight-mut-power 0.5 recur-prop 0.0 disjoint-coeff (c1) 1.0
excess-coeff (c2) 1.0 mutdiff-coeff (c3) 2.0 compat-threshold 3.0
age-significance 1.0 survival-thresh 0.2 mutate-only-prob 0.25

mutate-link-weights-prob 0.9 mutate-add-node-prob (mn) 0.02 mutate-add-link-prob (ml ) 0.1
interspecies-mate-rate 0.01 mate-multipoint-prob 0.6 mate-multipoint-avg-prob 0.4
mate-singlepoint-prob 0.0 mate-only-prob 0.2 recur-only-prob 0.0

pop-size (p) 100 dropoff-age 100 newlink-tries 50
babies-stolen 0 num-compat-mod 0.3 num-species-target 6

Table 3: The NEAT parameters used in our experiments.
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