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Abstract

Temporal difference methods are theoretically groundedeanpirically effective methods for ad-
dressing reinforcement learning problems. In most realdvweinforcement learning tasks, TD
methods require a function approximator to represent theevfanction. However, using function
approximators requires manually making crucial repregental decisions. This paper investi-
gatesevolutionary function approximatigra novel approach to automatically selecting function
approximator representations that enable efficient idd&i learning. This methodvolvesindi-
viduals that are better able learn. We present a fully implemented instantiation of evolusion
function approximation which combines NEAT, a neuroeviolury optimization technique, with
Q-learning, a popular TD method. The resulting NEAT+Q alkhon automatically discovers ef-
fective representations for neural network function agpnators. This paper also presentsline
evolutionary computatigrnwhich improves the on-line performance of evolutionarynpaitation
by borrowing selection mechanisms used in TD methods to shaalividual actions and using
them in evolutionary computation to select policies forleation. We evaluate these contributions
with extended empirical studies in two domains: 1) the maumntar task, a standard reinforcement
learning benchmark on which neural network function apjpnators have previously performed
poorly and 2) server job scheduling, a large probabilistiméin drawn from the field of autonomic
computing. The results demonstrate that evolutionarytfan@approximation can significantly im-
prove the performance of TD methods and on-line evolutipwamputation can significantly im-
prove evolutionary methods. This paper also presentsiaddittests that offer insight into what
factors can make neural network function approximatiofiadilt in practice.

Keywords: reinforcement learning, temporal difference methodslutiamary computation, neu-
roevolution, on-line learning

1. Introduction

In many machine learning problems, an agent must lequailiay for selecting actions based on its
currentstate Reinforcement learningroblems are the subset of these tasks in which the agent never
sees examples of correct behavior. Instead, it receives only moaitidd negative rewards for the
actions it tries. Since many practical, real world problems (such as robtiot, game playing, and
system optimization) fall in this category, developing effective reinforggrsarning algorithms is
critical to the progress of artificial intelligence.
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The most common approach to reinforcement learning relies on the carfoggtie functions
which indicate, for a particular policy, the long-term value of a given stagtate-action paifTem-
poral difference methodd D) (Sutton, 1988), which combine principles of dynamic programming
with statistical sampling, use the immediate rewards received by the agentdmartially improve
both the agent’s policy and the estimated value function for that policy. Hérzenethods en-
able an agent to learn during its “lifetime” i.e. from its individual experienderacting with the
environment.

For small problems, the value function can be represented as a tablevétothe large, proba-
bilistic domains which arise in the real-world usually require coupling TD methgtisa function
approximator which represents the mapping from state-action pairs to values via a mwise0
parameterized function and uses supervised learning methods to seaitsepens. Many different
methods of function approximation have been used successfully, includit®CS, radial basis
functions, and neural networks (Sutton and Barto, 1998). Howess#ng function approxima-
tors requires making crucial representational decisions (e.g. the nwhbé&den units and ini-
tial weights of a neural network). Poor design choices can result in @ssntlaat diverge from
the optimal value function (Baird, 1995) and agents that perform poé&gn for reinforcement
learning algorithms with guaranteed convergence (Baird and Moor®, 12@oudakis and Parr,
2003), achieving high performance in practice requires finding arogppte representation for the
function approximator. As Lagoudakis and Parr observe, “The drtaméor for a successful ap-
proximate algorithm is the choice of the parametric approximation architectarefshe choice of
the projection (parameter adjustment) method.” (Lagoudakis and Pa8, 200111) Nonetheless,
representational choices are typically made manually, based only on fgaet&sintuition.

Our goal is to automate the search for effective representations by engpbkpphisticated op-
timization techniques. In this paper, we focus on using evolutionary metlidalsliferg, 1989)
because of their demonstrated ability to discover effective represersté@Gonau et al., 1996; Stan-
ley and Miikkulainen, 2002). Synthesizing evolutionary and TD methodsteesis a new approach
calledevolutionary function approximatigmhich automatically selects function approximator rep-
resentations that enable efficient individual learning. Thus, this metholdesndividuals that are
better able tdearn. This biologically intuitive combination has been applied to computational sys-
tems in the past (Hinton and Nowlan, 1987; Ackley and Littman, 1991; Bdek, 4995; French
and Messinger, 1994; Gruau and Whitley, 1993; Nolfi et al., 1994) &utm to our knowledge, to
aid the discovery of good TD function approximators.

Our approach requires only 1) an evolutionary algorithm capable of optigiizpresentations
from a class of functions and 2) a TD method that uses elements of thatfetamction ap-
proximation. This paper focuses on performing evolutionary functiomeqimation with neural
networks. There are several reasons for this choice. First, theygraat experimental value. Non-
linear function approximators are often the most challenging to use; heuneess for evolutionary
function approximation with neural networks is good reason to hope émess with linear methods
too. Second, neural networks have great potential, since they caaseap value functions linear
methods cannot (given the same basis functions). Finally, employinglmeiveorks is feasible
because they have previously succeeded as TD function approxinf@rites and Barto, 1998;
Tesauro, 1994) and sophisticated methods for optimizing their represesté@ouau et al., 1996;
Stanley and Miikkulainen, 2002) already exist.

This paper uses NeuroEvolution of Augmenting Topologies (NEAT) (Syaarid Miikkulainen,
2002) to select neural network function approximators for Q-learniigtkins, 1989), a popular
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TD method. The resulting algorithm, called NEAT+Q, uses NEAT to evolve tapesoand initial
weights of neural networks that are better able to learn, via backpatipagto represent the value
estimates provided by Q-learning.

Evolutionary computation is typically applied tif-line scenarios, where the only goal is to
discover a good policy as quickly as possible. By contrast, TD methodgocally applied toon-
line scenarios, in which the agent tries to learn a good policy quigktito maximize the reward it
obtains while doing so. Hence, for evolutionary function approximationheese its full potential,
the underlying evolutionary method needs to work well on-line.

TD methods excel on-line because they are typically combined with actiortisal&secha-
nisms likee-greedy and softmax selection (Sutton and Barto, 1998). These metisaniprove
on-line performance by explicitly balancing two competing objectives: Ichesy for better poli-
cies exploration) and 2) gathering as much reward as possibiglpitatior). This paper investi-
gates a novel approach we call-line evolutionary computatigrin which selection mechanisms
commonly used by TD methods to choose individual actions are used in emalgtioomputation
to choose policies for evaluation. We present two implementations, basedrerdy and softmax
selection, that distribute evaluations within a generation so as to favor momggimg individu-
als. Since on-line evolutionary computation can be used in conjunction withtierary function
approximation, the ability to optimize representations need not come at thesexpktine on-line
aspects of TD methods. On the contrary, the value function and its repaiea can be optimized
simultaneously, all while the agent interacts with its environment.

We evaluate these contributions with extended empirical studies in two domainsuhtain
car and 2) server job scheduling. The mountain car task (Sutton and B8€8) is a canonical
reinforcement learning benchmark domain that requires function ajppatisn. Though the task
is simple, previous researchers have noted that manually designetmetwark function approxi-
mators are often unable to master it (Boyan and Moore, 1995; Pyeatt@ame, 2001). Hence, this
domain is ideal for a preliminary evaluation of NEAT+Q.

Server job scheduling (Whiteson and Stone, 2004), is a large, protiab#imforcement learn-
ing task from the field chutonomic computinfKephart and Chess, 2003). In server job scheduling,
a server, such as a website’s application server or database, musiidete what order to process
a queue of waiting jobs so as to maximize the system'’s aggregate utility. This dorohallenging
because itis large (the size of both the state and action spaces grow trpdisartion to the size of
the queue) and probabilistic (the server does not know what type ofijbarvive next). Hence, it
is a typical example of a reinforcement learning task that requires efdamction approximation.

Using these domains, our experiments test Q-learning with a series of madesiiyned neu-
ral networks and compare the results to NEAT+Q and regular NEAT (wihéghs action selectors
in lieu of value functions). The results demonstrate that evolutionary funejiproximation can
significantly improve the performance of TD methods. Furthermore, we €8T Nind NEAT+Q
with and withoute-greedy and softmax versions of evolutionary computation. Theseimgres
confirm that such techniques can significantly improve the on-line perfarenaf evolutionary
computation. Finally, we present additional tests that measure the effeohtifiual learning on
function approximators. The results offer insight into why certain methotisediorm others in
these domains and what factors can make neural network functionxamatan difficult in prac-
tice.

We view the impact of this work as two-fold. First, it provides a much-ne@dactical approach
to selecting TD function approximators, automating a critical design step thaidsitly performed
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manually. Second, it provides an objective analysis of the strengthseelchesses of evolutionary
and TD methods, opportunistically combining the strengths into a single approacugh the TD
and evolutionary communities are mostly disjoint and focus on somewhatetiffproblems, we
find that each can benefit from the progress of the other. On the oideWwa show that methods for
evolving neural network topologies can find TD function approximatorsgedorm better. On the
other hand, we show that established techniques from the TD community denaewvalutionary
methods applicable to on-line learning problems.

The remainder of this paper is organized as follows. Section 2 providdgitmund on Q-
learning and NEAT, the constituent learning methods used in this papeiors8dntroduces the
novel methods and details the particular implementations we tested. Sectionideetite moun-
tain car and server job scheduling domains and Section 5 presents amssdisempirical results.
Section 7 overviews related work, Section 8 outlines opportunities fordwtark, and Section 9
concludes.

2. Background

We begin by reviewing Q-learning and NEAT, the algorithms that form the imgjldlocks of our
implementations of evolutionary function approximation.

2.1 Q-Learning

There are several different TD methods currently in use, includinga@ieg (Watkins, 1989),
Sarsa (Sutton and Barto, 1998), and LSPI (Lagoudakis and P&8).Z0he experiments presented
in this paper use Q-learning because it is a well-established, canonicaldrb#t has also enjoyed
empirical success, particularly when combined with neural network fumefiproximators (Crites
and Barto, 1998). We present it as a representative method but damoit is superior to other TD
approaches. In principle, evolutionary function approximation can bd wsth any of them. For
example, many of the experiments described in Section 5 have been replidditethrsa (Sutton
and Barto, 1998), another popular TD method, in place of Q-learninlgliggequalitatively similar
results.

Like many other TD methods, Q-learning attempts to learn a value fun@jera) that maps
state-action pairs to values. In the tabular case, the algorithm is define@ byildwing update
rule, applied each time the agent transitions from stabestates’:

Q(s,a) « (1-0)Q(s,a) +a(r + ymax Q(s, &))

wherea € [0,1] is a learning rate parametgre [0,1] is a discount factor, andis the immediate
reward the agent receives upon taking action

Algorithm 1 describes the Q-learning algorithm when a neural networked tesapproximate
the value function. The inputs to the network describe the agent’s cugtatet the outputs, one
for each action, represent the agent’s current estimate of the value eSHociated state-action
pairs. The initial weights of the network are drawn from a Gaussian distsibwith mean 0.0 and
standard deviatioa (line 5). TheevAaL-NET function (line 9) returns the activation on the network’s
outputs after the given inputs are fed to the network and propagatedrfibr&ince the network uses
a sigmoid activation function, these values will all beldnl] and hence are rescaled according to
a parametek. At each step, the weights of the neural network are adjusted (line tB)tkat its
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output better matches the current value estimate for the state-actiom paimaxy Q(s,a’). The
adjustments are made via taeckpRrRoOPfunction, which implements the standard backpropagation
algorithm (Rumelhart et al., 1986) with the addition of accumulating eligibility traoesrolled by

A (Sutton and Barto, 1998). The agent usageedy selection (Sutton and Barto, 1998) to ensure
it occasionally tests alternatives to its current policy (lines 10-11). Tleetdgteracts with the
environment via th@AKE-ACTION function (line 15), which returns a reward and a new state.

Algorithm 1 Q-LEARN(S A, 0,C,q,VY,\, g, €)
1: /' S: set of all states, A: set of all actiors, standard deviation of initial weights
2: /] c: output scaleq: learning rate,y. discount factorA: eligibility decay rate
3: Il &q: exploration rate, e: total number of episodes

4.

5. N« INIT-NET(S, A, 0) / make a new network N with random weights

6: fori<— 1toedo

7 s,8 < null, INIT-STATE(S) I/l environment picks episode’s initial state

8  repeat

9 Q[] < cxEVAL-NET(N,S) /I compute value estimates for current state
10: with-prob (g4) @ < RANDOM(A) // select random exploratory action
11: elsead’ « argmaxQJj] /I or select greedy action
12: if s null then
13: BACKPROAN, s, a, (r +ymaxQ[j])/c,a,y,A) // adjust weights toward target
14: sa«—¢s.,a
15: r,s < TAKE-ACTION(&') /l take action and transition to new state

16:  until TERMINAL-STATE?(S)

2.2 NEAT!

The implementation of evolutionary function approximation presented in thig peles on Neu-
roEvolution of Augmenting Topologies (NEAT) to automate the search forogpiate topologies
and initial weights of neural network function approximators. NEAT is aprapriate choice be-
cause of its empirical successes on difficult reinforcement learning i&sknon-Markovian double
pole balancing (Stanley and Miikkulainen, 2002), game playing (Stanleiiéikiulainen, 2004b),
and robot control (Stanley and Miikkulainen, 2004a), and becauite alility to automatically op-
timize network topologies.

In a typical neuroevolutionary system (Yao, 1999), the weights of aah@etwork are strung
together to form an individual genome. A population of such genomes istrwved by evaluating
each one and selectively reproducing the fittest individuals througtsaver and mutation. Most
neuroevolutionary systems require the designer to manually determine therkistiwpology (i.e.
how many hidden nodes there are and how they are connected). BastoNMEAT automatically
evolves the topology to fit the complexity of the problem. It combines the usaatis for network
weights with evolution of the network structure.

NEAT is an optimization technique that can be applied to a wide variety of problgettion 3
below describes how we use NEAT to optimize the topology and initial weightdofuhction

1. This section is adapted from the original NEAT paper (Stanley and Maldken, 2002).
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approximators. Here, we describe how NEAT can be used to tackle reami@nt learning problems
without the aid of TD methods, an approach that serves as one basetiompérison in Section 5.
For this method, NEAT does not attempt to learn a value function. Insteadd# §jood policies
directly by trainingaction selectorswhich map states to the action the agent should take in that
state. Hence it is an example pblicy searchreinforcement learning. Like other policy search
methods, e.g. (Sutton et al., 2000; Ng and Jordan, 2000; Mannor eD@8B; Kohl and Stone,
2004), it uses global optimization techniques to directly search the spactearttial policies.

Algorithm 2 NEAT(S A, p,m,,m, g, €)
1: /' S: set of all states, A: set of all actions, p: population sizg, mede mutation rate
2: /[l my: link mutation rate, g: number of generations, e: episodes per generatio

3:

4: P[] < INIT-POPULATION(S A, p) /l create new population P with random networks
5: for i« 1togdo

6. for j«— 1ltoedo

7 N,s,s < RANDOM(PI[]), null, INIT-STATE(S /I select a network randomly
8: repeat

9 Q[] <+ EVAL-NET(N,s) /l evaluate selected network on current state
10: a — argmaxQi] /I select action with highest activation
11: sa«—¢s.,ad

12: r,s « TAKE-ACTION(&) /I take action and transition to new state
13: N.fithess— N.fithesstr /[ update total reward accrued by N
14: until TERMINAL-STATE?(S)

15: N.episodes— N.episodes- 1 // update total number of episodes for N
16: P[] < new array of sizep /I new array will store next generation
17: for j«— ltopdo

18: P'[j] < BREED-NET(PJ[]) /I make a new network based on fit parents in P
19: with-probability m,: ADD-NODE-MUTATION (P'[]]) // add a node to new network
20: with-probability m: ADD-LINK-MUTATION (P'[]]) // add a link to new network
21: P[]« P

Algorithm 2 contains a high-level description of the NEAT algorithm appliedrtepisodic
reinforcement learning problem. This implementation differs slightly from iptessversions of
NEAT in that evaluations are conducted by randomly selecting individuals {lininstead of the
more typical approach of stepping through the population in a fixed oiidgs change does not
significantly alter NEAT’s behavior but facilitates the alterations we introdu&egtion 3.2. During
each step, the agent takes whatever action corresponds to the outpghewithhest activation (lines
10-12). NEAT maintains a running total of the reward accrued by the mktvming its evaluation
(line 13). Each generation ends afteepisodes, at which point each network’s average fithess is
N.fitnesgN.episodes In stochastic domaing typically must be much larger thgR| to ensure
accurate fitness estimates for each network. NEAT creates a new popldatiepeatedly calling
the BREED-NET function (line 18), which performs crossover on two highly fit parentse iew
resulting network can then undergo mutations that add nodes or links to ttusé&ru(lines 19-20).
The remainder of this section provides an overview of the reproductoeeps that occurs in lines
17-20. Stanley and Miikkulainen (2002) present a full description.
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2.2.1 MINIMIZING DIMENSIONALITY

Unlike other systems that evolve network topologies and weights (Grudy &086; Yao, 1999)
NEAT begins with a uniform population of simple networks with no hidden nodes@puts con-
nected directly to outputs. New structure is introduced incrementally via twoapautation
operators. Figure 1 depicts these operators, which add new hidden aod links to the network.
Only the structural mutations that yield performance advantages tend f@esawolution’s selec-
tive pressure. In this way, NEAT tends to search through a minimal nunilvezight dimensions
and find an appropriate complexity level for the problem.

Outputs Outputs
Add Node Add Link
Hidden Mutati Hidden :
Nodes utatton Nodes Mutation
—_— —_—
Inputs o Inputs o
(a) A mutation operator for adding new nodes (b) A mutation operator for adding new links

Figure 1: Examples of NEAT’s mutation operators for adding structurett@arks. In (a), a hidden
node is added by splitting a link in two. In (b), a link, shown with a thicker black,lia
added to connect two nodes.

2.2.2 ENETIC ENCODING WITH HISTORICAL MARKINGS

Evolving network structure requires a flexible genetic encoding. Easbrge in NEAT includes
a list of connection genesach of which refers to twaode gene®eing connected. Each con-
nection gene specifies the in-node, the out-node, the weight of theatammevhether or not the
connection gene is expressed (an enable bit), amtrevation numbemwhich allows NEAT to find
corresponding genes during crossover.

In order to perform crossover, the system must be able to tell whictsgeateh up betweeamny
individuals in the population. For this purpose, NEAT keeps track of therisl origin of every
gene. Whenever a new gene appears (through structural mutatigioja innovation numbeis
incremented and assigned to that gene. The innovation numbers thusergpsechronology of
every gene in the system. Whenever these genomes crossover, inmouatibers on inherited
genes are preserved. Thus, the historical origin of every gene irysitens is known throughout
evolution.

Through innovation numbers, the system knows exactly which genes matelithu which.
Genes that do not match are eitluisjoint or excessdepending on whether they occur within or
outside the range of the other parent’s innovation numbers. When qyassn, the genes in both
genomes with the same innovation numbers are lined up. Genes that do notamatoherited
from the more fit parent, or if they are equally fit, from both parents rargo

Historical markings allow NEAT to perform crossover without expensbgological analysis.
Genomes of different organizations and sizes stay compatible througaution, and the problem
of matching different topologies (Radcliffe, 1993) is essentially avoided.
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2.2.3 SECIATION

In most cases, adding new structure to a network initially reduces its fittidegaiever, NEAT
speciates the population, so that individuals compete primarily within their oviresii@ther than
with the population at large. Hence, topological innovations are protentétdave time to optimize
their structure before competing with other niches in the population.

Historical markings make it possible for the system to divide the population frecies based
on topological similarity. The distan@between two network encodings is a simple linear combi-
nation of the number of exceds)and disjoint D) genes, as well as the average weight differences
of matching genedN):

The coefficientgs, cp, andcs adjust the importance of the three factors, and the fa¢ttine number
of genes in the larger genome, normalizes for genome size. Genomestededies at a time; if
a genome’s distance to a randomly chosen member of the species is lesg, thaompatibility
threshold, it is placed into this species. Each genome is placed into the Bgespvhere this
condition is satisfied, so that no genome is in more than one species.

The reproduction mechanism for NEAT éxplicit fitness sharingGoldberg and Richardson,
1987), where organisms in the same species must share the fitness ofdhejrpneventing any
one species from taking over the population.

3. Method

This section describes evolutionary function approximation and a completenraptation called
NEAT+Q. It also describes on-line evolutionary computation and details @y wf implementing
itin NEAT+Q.

3.1 Evolutionary Function Approximation

When evolutionary methods are applied to reinforcement learning probileeystypically evolve a
population of action selectors, each of which remains fixed during its fisvedgation. The central
insight behind evolutionary function approximation is that, if evolution is dicktbeevolve value
functions instead, then those value functions can be updated, using Tbdagtluring each fithess
evaluation. In this way, the system cawolvefunction approximators that are better abldgarn
via TD.

In addition to automating the search for effective representations, evwinjiéunction approx-
imation can enable synergistic effects between evolution and learning. Hms& gffects occur
depends on which of two possible approaches is employed. The firsibpitg is a Lamarckian
approach, in which the changes made by TD during a given generagonrdten back into the
original genomes, which are then used to breed a new population. Towedspassibility is éDar-
winianimplementation, in which the changes made by TD are discarded and the nelatmopis
bred from the original genomes, as they were at birth.

It has long since been determined that biological systems are Darwinidramarckian. How-
ever, it remains unclear which approach is better computationally, despgtstial research (Pereira
and Costa, 2001; D. Whitley, 1994; Yamasaki and Sekiguchi, 2000¢. pbtential advantage of
Lamarckian evolution is obvious: it prevents each generation from hawirgpeat the same learn-
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ing. However, Darwinian evolution can be advantageous becauselitesn@ach generation to
reproduce the genomes that led to success in the previous generdtientian relying on altered
versions that may not thrive under continued alteration. FurthermoreDemainian system, the
learning conducted by previous generations can be indirectly recamdegopulation’s genomes
via a phenomenon called tiBaldwin EffectBaldwin, 1896), which has been demonstrated in evo-
lutionary computation (Hinton and Nowlan, 1987; Ackley and Littman, 199%krBet al., 1995;
Arita and Suzuki, 2000). The Baldwin Effect occurs in two stages. Irfithestage, the learning
performed by individuals during their lifetimes speeds evolution, becaardeiadividual does not
have to be exactly right at birth; it need only be in the right neighborhoddearning can adjust
it accordingly. In the second stage, those behaviors that were pstyiearned during individu-
als’ lifetimes become known at birth. This stage occurs because individ@lpdhsess adaptive
behaviors at birth have higher overall fithess and are favored Hytevo

Hence, synergistic effects between evolution and learning are possgfaladtess of which im-
plementation is used. In Section 5, we compare the two approaches empiftelyemainder of
this section details NEAT+Q, the implementation of evolutionary function apprailomased in
our experiments.

3.1.1 NEAT+Q

All that is required to make NEAT optimize value functions instead of action gekeds a rein-
terpretation of its output values. The structure of neural network acétatt®rs (one input for
each state feature and one output for each action) is already identicat tf {@-learning function
approximators. Therefore, if the weights of the networks NEAT evolvesupdated during their
fithess evaluations using Q-learning and backpropagation, they witltieté/ evolve value func-
tions instead of action selectors. Hence, the outputs are no longer arbdtaes; they represent
the long-term discounted values of the associated state-action pairseanskedr, not just to select
the most desirable action, but to update the estimates of other state-action pairs

Algorithm 3 summarizes the resulting NEAT+Q method. Note that this algorithm isicdéio
Algorithm 2, except for the delineated section containing lines 13-16. taetthe agent takes an
action, the network is backpropagated towards Q-learning targets (l)rentié-greedy selection
occurs just as in Algorithm 1 (lines 13-14).dfandgy are set to zero, this method degenerates to
regular NEAT.

NEAT+Q combines the power of TD methods with the ability of NEAT to learn ¢iffeaep-
resentations. Traditional neural network function approximators pthel eggs in one basket by
relying on a single manually designed network to represent the value fan™NiBAT+Q, by con-
trast, explores the space of such networks to increase the chancaditg firepresentation that will
perform well.

In NEAT+Q, the weight changes caused by backpropagation accunmlkdie current popula-
tion’s networks throughout each generation. When a network is seligtad episode, its weights
begin exactly as they were at the end of its last episode. In the Lamargpameah, those changes
are copied back into the networks’ genomes and inherited by their offspifim the Darwinian
approach, those changes are discarded at the end of each generatio
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Algorithm 3 NEAT+Q(S A, C, p,my,m,0,€,0,Y,A, &q)

1. // S: set of all states, A: set of all actions, c: output scale, p: populatina

2: I my: node mutation rate, mlink mutation rate, g: number of generations

3: // e: number of episodes per generation,learning rate,y. discount factor

4: I/ A: eligibility decay rate gq: exploration rate

5:

6: P[] < INIT-POPULATION(S A, p) Il create new population P with random networks

7. fori<— 1togdo

8 for j«— 1toedo

9 N,s,s < RANDOM(PI[]), null, INIT-STATE(S /I select a network randomly
10: repeat

11: Q[] «+ cx EVAL-NET(N,s) /I compute value estimates for current state
12:

13: with-prob (g;q) @ < RANDOM(A) I/ select random exploratory action
14: elsea’ — argmaxQlK] /I or select greedy action
15: if s null then

16: BACKPROAN,s,a, (r + ymaxQ[k])/c,a,y,A) /I adjust weights toward target
17:

18: s,a«¢s.,a

19: r,s < TAKE-ACTION(Q) /[ take action and transition to new state
20: N.fitness— N.fitnesst+r /[ update total reward accrued by N
21: until TERMINAL-STATE?(S)
22: N.episodes— N.episodes- 1 // update total number of episodes for N
23: P[] < new array of size /I new array will store next generation
24: for j«—1topdo
25: P'[j] < BREED-NET(P[]) / make a new network based on fit parents in P
26: with-probability m,: ADD-NODE-MUTATION (P'[j]) // add a node to new network
27: with-probability m: ADD-LINK -MUTATION (P'[j]) // add a link to new network
28: P[P
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3.2 On-Line Evolutionary Computation

To excel in on-line scenarios, a learning algorithm must effectively loal&no competing objec-
tives. The first objective is exploration, in which the agent tries alteresitiv its current best policy
in the hopes of improving it. The second objective is exploitation, in which tleatagllows the
current best policy in order to maximize the reward it receives. TD methamd at on-line tasks
because they are typically combined with action selection mechanisms thatestttigdvalance (e.g
e-greedy and softmax selection).

Evolutionary methods, though lacking explicit selection mechanisms, do implicitigrnpethis
balance. In fact, in one of the earliest works on evolutionary computatioltiand (1975) argues
that the reproduction mechanism encourages exploration, since weossw mutation result in
novel genomes, but also encourages exploitation, since each nevatigmé based on the fittest
members of the last one. However, reproduction allows evolutionary metihbdtance exploration
and exploitation onlyacrossgenerations, notvithin them. Once the members of each generation
have been determined, they all typically receive the same evaluation timef seeme individuals
dramatically outperform others in early episodes. Hence, within a gengratigpical evolutionary
method is purely exploratory, as it makes no effort to favor those indigdthat have performed
well so far.

Therefore, to excel on-line, evolutionary methods need a way to limit tHemtjon that occurs
within each generation and force more exploitation. In a sense, this prabke opposite of that
faced by TD methods, which naturally exploit (by following the greedy pdlényd thus need a way
to force more exploration. Nonetheless, the ultimate goal is the same: a pedgece between the
two extremes. Hence, we propose that the solution can be the same too.dectios, we discuss
ways of borrowing the action selection mechanisms traditionally used in TD neetirmbapplying
them in evolutionary computation.

To do so, we must modify the level at which selection is performed. Evolutyosigorithms
cannot perform selection at the level of individual actions becauskinig value functions, they
have no notion of the value of individual actions. However, they cafoparselection at the level
of evaluations, in which entire policies are assessed holistically. The sdenti@e mechanisms
used to choose individual actions in TD methods can be used to select pédicievaluation, an
approach we call on-line evolutionary computation. Using this techniquéytesnary algorithms
can excel on-line by balancing exploration and exploitation withid across generations.

The remainder of this section presents two implementations. The first, which oaekegreedy
selection, switches probabilistically between searching for better policteeagvaluating the best
known policy to garner maximal reward. The second, which relies on sefsakection, dis-
tributes evaluations in proportion to each individual's estimated fitness,bihdéoeusing on the
most promising individuals and increasing the average reward accrued.

3.2.1 UsSING E-GREEDY SELECTION IN EVOLUTIONARY COMPUTATION

Wheneg-greedy selection is used in TD methods, a single paranmeielis used to control what
fraction of the time the agent deviates from greedy behavior. Each time¢nésajects an action, it
chooses probabilistically between exploration and exploitation. With probakilitit will explore
by selecting randomly from the available actions. With probabilityedy, it will exploit by selecting
the greedy action.
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In evolutionary computation, this same mechanism can be used to determinepohiiés to
evaluate within each generation. With probabibty, the algorithm explores by behaving exactly
as it would normally: selecting a policy for evaluation, either randomly or biiteg through the
population. With probability 1 €¢¢, the algorithm exploits by selecting the best policy discovered
so far in the current generation. The score of each policy is just thegeeeward per episode
it has received so far. Each time a policy is selected for evaluation, theréatatd it receives is
incorporated into that average, which can cause it to gain or lose thefaelst policy.

To applye-greedy selection to NEAT and NEAT+Q, we need only alter the assignni¢ghé o
candidate policyN in lines 7 and 9 of Algorithms 2 and 3, respectively. Instead of a random
selection, we use the result of tieegreedy selection function described in Algorithm 4, where
N.average= N.fitnesgN.episodes In the case of NEAT+Q, two differerst parameters control
exploration throughout the systersyy controls the exploration that helps Q-learning estimate the
value function ande. controls exploration that helps NEAT discover appropriate topologies and
initial weights for the neural network function approximators.

Algorithm 4 &-GREEDY SELECTIONP, €¢Q)
1. // P: population,gec: NEAT’s exploration rate

2:
3: with-prob (ge¢) returnRANDOM(P) /I select random network
4: elsereturnN € P | V(N’ € P) N.average> N’.average /I or select champion

Using e-greedy selection in evolutionary computation allows it to thrive in on-line @des
by balancing exploration and exploitation. For the most part, this method deéesdteoevolu-
tion’s search but simply interleaves it with exploitative episodes that ine@asage reward during
learning. The next section describes how softmax selection can be ampbedlutionary compu-
tation to intelligently focus search with each generation and create a moreaulaalance between
exploration and exploitation.

3.2.2 USING SOFTMAX SELECTION IN EVOLUTIONARY COMPUTATION

When softmax selection is used in TD methods, an action’s probability of seld@stéfunction of
its estimated value. In addition to ensuring that the greedy action is chosenfteosthis technique
focuses exploration on the most promising alternatives. There are mgsyovianplement softmax
selection but one popular method relies on a Boltzmann distribution (Sutton amal, B998), in
which case an agent in stagehooses an acticawith probability

eQsa)/t
zbeAeQ(sb)/T

whereA s the set of available action®(s, a) is the agent’s value estimate for the given state-action
pair andt is a positive parameter controlling the degree to which actions with highersvahee
favored in selection. The higher the valuetpthe more equiprobable the actions are.

As with e-greedy selection, we use softmax selection in evolutionary computation it sele
policies for evaluation. At the beginning of each generation, each indiVig evaluated for one
episode, to initialize its fitness. Then, the remaining|P| episodes are allocated according to a
Boltzmann distribution. Before each episode, a popiag a populatiorP is selected with probabil-
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ity
ep)/t
zqepeS(Q)/T

whereS(p) is the average fitness of the polipy

To apply softmax selection to NEAT and NEAT+Q, we need only alter the assighof the
candidate policyN in lines 7 and 9 of Algorithms 2 and 3, respectively. Instead of a randem se
lection, we use the result of the softmax selection function shown in Algorithim Bhe case of
NEAT+Q, &4 controls Q-learning’s exploration anmatontrols NEAT's exploration. Of course, soft-
max exploration could be used within Q-learning too. However, since congpaifferent selection
mechanisms for TD methods is not the subject of our research, in this wapgse onlye-greedy
selection with TD methods.

Algorithm 5 SOFTMAX SELECTIONP,T)
1: /I P: population,t: softmax temperature

2:

3: if 3N € P| N.episodes= 0 then

4:  returnN /I give each network one episode before using softmax
5: else

6: total « yycpeaveraget /I compute denominator of Boltzmann function
7. forall NePdo

8: with-prob (%:lgeﬁ) return N I/ select N for evaluation

9: elsetotal < total — eN-averaggt /I or skip N and reweight probabilities

In addition to providing a more nuanced balance between exploration ahuitetipn, soft-
max selection also allows evolutionary computation to more effectively focusdtsls within each
generation. Instead of spending the same number of evaluations on eatferm# the popula-
tion, softmax selection can quickly abandon poorly performing policies paddsmore episodes
evaluating the most promising individuals.

In summary, on-line evolutionary computation enables the use of evolutionargutation dur-
ing an agent’s interaction with the world. Therefore, the ability of evolutipfiamction approxima-
tion to optimize representations need not come at the expense of the onploésasf TD methods.
On the contrary, the value function and its representation can be optimizektbsignusly, all while
the agent interacts with its environment.

4. Experimental Setup

To empirically compare the methods described above, we used two diffenefarcement learning
domains. The first domain, mountain car, is a standard benchmark tagkngdunction approxi-
mation. We use this domain to establish preliminary, proof-of-concept résuttse novel methods
described in this paper. The second domain, server job schedulingrgeapaobabilistic domain
drawn from the field of autonomic computing. We use this domain to assessewlletise new
methods can scale to a much more complex task. The remainder of this sectitsnedetaof these
domains and describes our approach to solving them with reinforcememiniga
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MounTain CAR Goal
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Figure 2: The Mountain Car Task. This figure was taken from Sutton amtbB1998).

4.1 Mountain Car

In the mountain car task (Boyan and Moore, 1995), depicted in Figune &gent strives to drive a
car to the top of a steep mountain. The car cannot simply accelerate fdreeadse its engine is
not powerful enough to overcome gravity. Instead, the agent must tealrive backwards up the
hill behind it, thus building up sufficient inertia to ascend to the goal befamaing out of speed.
The agent’s state at timestéponsists of its current positiop; and its current velocity.
It receives a reward of -1 at each time step until reaching the goal, iehvgoint the episode
terminates. The agent’s three available actions correspond to the throttlgséttinand -1. The
following equations control the car’s movement:

Pr+1 = boundh(pr + Ve+1)

Vt+1 = bound (v +0.001a; — 0.0025053p;))

whereg; is the action the agent takes at timedtdpound, enforces-1.2 < p1 < 0.5, andbound,
enforces—0.07 < vi;1 < 0.07. In each episode, the agent begins in a state chosen randomly from
these ranges. To prevent episodes from running indefinitely, eashoeps terminated after 2,500
steps if the agent still has not reached the goal.

Though the agent’s state has only two features, they are continuousacellearning the value
function requires a function approximator. Previous research hasttrated that TD methods can
solve the mountain car task using several different function approximatatuding CMACs (Sut-
ton, 1996; Kretchmar and Anderson, 1997), locally weighted regme¢Biayan and Moore, 1995),
decision trees (Pyeatt and Howe, 2001), radial basis functions {i{neticand Anderson, 1997), and
instance-based methods (Boyan and Moore, 1995). By giving theslempriori knowledge about
the goal state and using methods based on experience replay, the moangaioldem has been
solved with neural networks too (Reidmiller, 2005). However, the taskiresmetoriously difficult
for neural networks, as several researchers have noted thatestimates can easily diverge (Boyan
and Moore, 1995; Pyeatt and Howe, 2001).

We hypothesized that the difficulty of using neural networks in this taskesadileast in part
to the problem of finding an appropriate representation. Hence, adimipery evaluation of
evolutionary function approximation, we applied NEAT+Q to the mountain car tiagee if it
could learn better than manually designed networks. The results arefa e Section 5.

To represent the agent's current state to the network, we divided stathfeature into ten
regions. One input was associated with each region (for a total of twamtyshand was set to one
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if the agent’s current state fell in that region, and to zero otherwise céjemly two inputs were
activated for any given state. The networks have three outputs, eadsgonding to one of the
actions available to the agent.

4.2 Server Job Scheduling

While the mountain car task is a useful benchmark, itis a very simple domairss@ésawhether our
methods can scale to a much more complex problem, we use a challengingoesiméot learning
task called server job scheduling. This domain is drawn from the burggdieid of autonomic
computing (Kephart and Chess, 2003). The goal of autonomic computtogdsvelop computer
systems that automatically configure themselves, optimize their own behawvibdiagnose and
repair their own failures. The demand for such features is growinglyagidce computer systems
are becoming so complex that maintaining them with human support staff issiregBeinfeasible.

The vision of autonomic computing poses new challenges to many areas ofiterrapience,
including architecture, operating systems, security, and human-compigdades. However, the
burden on atrtificial intelligence is especially great, since intelligence is &quisite for self-
managing systems. In particular, we believe machine learning will play a prirokrysince com-
puter systems must be adaptive if they are to perform well autonomousére Hie many ways
to apply supervised methods to autonomic systems, e.g. for intrusion detéation €t al., 2004),
spam filtering (Dalvi et al., 2004), or system configuration (Wildstrom.e805). However, there
are also many tasks where no human expert is available and reinforclraeming is applicable,
e.g network routing (Boyan and Littman, 1994), job scheduling (WhitesdnStone, 2004), and
cache allocation (Gomez et al., 2001).

One such task is server job scheduling, in which a server, such assét@i&bpplication server
or database, must determine in what order to process the jobs curreitilygwa its queue. Its
goal is to maximize the aggregate utility of all the jobs it processesitilgy function (not to be
confused with a TD value function) for each job type maps the job’s complétimnto the utility
derived by the user (Walsh et al., 2004). The problem of server jobdading becomes challenging
when these utility functions are nonlinear and/or the server must procdsplentypes of jobs.
Since selecting a particular job for processing necessarily delays thdetampf all other jobs
in the queue, the scheduler must weigh difficult trade-offs to maximize ggtretility. Also, this
domain is challenging because it is large (the size of both the state and actaas gpow in direct
proportion to the size of the queue) and probabilistic (the server dogsowtwhat type of job will
arrive next). Hence, it is a typical example of a reinforcement learnisigttzat requires effective
function approximation.

The server job scheduling task is quite different from traditional sdiregitasks (Zhang and
Dietterich, 1995; Zweben and Fox, 1998). In the latter case, there gically multiple resources
available and each job has a partially ordered list of resource requitenterver job scheduling
is simpler because there is only one resource (the server) and all @ivglependent of each other.
However, itis more complex in that performance is measured via arbitrary @itigtions, whereas
traditional scheduling tasks aim solely to minimize completion times.

Our experiments were conducted in a Java-based simulator. The simulajios Wwéh 100 jobs
preloaded into the server’s queue and ends when the queue becomgs@uanmg each timestep,
the server removes one job from its queue and completes it. During eaahfoktHL 00 timesteps,
a new job of a randomly selected type is added to the end of the queue., litenagent must make
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Utility Functions for All Four Job Types
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Figure 3: The four utility functions used in our experiments.

decisions about which job to process next even as new jobs are grréiimce one job is processed
at each timestep, each episode lasts 200 timesteps. For each job that con@eteseduling agent
receives an immediate reward determined by that job’s utility function.

Four different job types were used in our experiments. Hence, the aasifenerate?2° unique
episodes. Utility functions for the four job types are shown in Figure 3.rdJado create jobs
of type #1 or #2 do not care about their jobs’ completion times so long as tedgss than 100
timesteps. Beyond that, they get increasingly unhappy. The rate of tmgeluliffers between the
two types and switches at timestep 150. Users who create jobs of type #3veari their jobs
completed as quickly as possible. However, once the job becomes 100 timalstdpis too late to
be useful and they become indifferent to it. As with the first two job typessitiyges for job types
#3 and #4 differ from each other and switch, this time at timestep 50. Notelthhése utilities
are negative functions of completion time. Hence, the scheduling agemtsstoi bring aggregate
utility as close to zero as possible.

A primary obstacle to applying reinforcement learning methods to this domain sizéeof
the state and action spaces. A complete state description includes the typgeasfdeach job in
the queue. The scheduler’s actions consist of selecting jobs forgaiage hence a complete action
space includes every job in the queue. To render these spaces mogeatanawe discretize them.
The range of job ages from 0 to 200 is divided into four sections and tredséer is told, at each
timestep, how many jobs in the queue of each type fall in each range, resnlfifgstate features.
The action space is similarly discretized. Instead of selecting a particulaojgirdcessing, the
scheduler specifies what type of job it wants to process and which obthieafje ranges that job
should lie in, resulting in 16 distinct actions. The server processes theggstijob in the queue
that matches the type and age range specified by the action.

These discretizations mean the agent has less information about the cohtiietgob queue.
However, its state is still sufficiently detailed to allow effective learning. Algtothe utility func-
tions can change dramatically within each age range, their slopes do mmech# is the slope
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of the utility function, not the utility function itself, which determines how much utility istlby
delaying a given job.

Even after discretization, the state space is quite large. If the queue hatusstgnax jObS,
(mect1) s a loose upper bound on the number of states, since each job can beoiigniauckets.
Some of these states will not occur (e.g. ones where all the jobs in the gueirethe youngest
age range). Nonetheless, with 16 actions per state, it is clearly infeasildpresent the value
function in a table. Hence, success in this domain requires function ap@tan, as addressed in
the following section.

5. Results

We conducted a series of experiments in the mountain car and server duioly domains to
empirically evaluate the methods presented in this paper. Section 5.1 compaues aved evo-
lutionary function approximators. Section 5.2 compares off-line and oneltutionary compu-
tation. Section 5.3 tests evolutionary function approximation combined with oreliokitionary
computation. Section 5.4 compares these novel approaches to previmisgead non-learning
methods. Section 5.5 compares Darwinian and Lamarckian versions ofiemaly function ap-
proximation. Finally, Section 5.6 presents some addition tests that measuré&titeoetontinual
learning on function approximators. The results offer insight into whiagemethods outperform
others in these domains and what factors can make neural network fuappooximation difficult
in practice.

Each of the graphs presented in these sections include error bargimgli@a% confidence
intervals. In addition, to assess statistical significance, we conductedrBgititests on each pair
of methods evaluated. The results of these tests are summarized in Appendix A

5.1 Comparing Manual and Evolutionary Function Approximation

As an initial baseline, we conducted, in each domain, 25 runs in which NBAMmats to discover
a good policy using the setup described in Section 4. In these runs, th&apop sizep was 100,
the number of generatiorgswas 100, the node mutation ratg was 0.02, the link mutation rate
m was 0.1, and the number of episodes per generatisas 10,000. Hence, each individual was
evaluated for 100 episodes on average. See Appendix B for more detdilte NEAT parameters
used in our experiments.

Next, we performed 25 runs in each domain using NEAT+Q, with the samenpégasettings.
The eligibility decay raté\ was 0.0. and the learning ratewas set to 0.1 and annealed linearly
for each member of the population until reaching zero after 100 epigotteschedulingy was
0.95 andgiqy was 0.05. Those values gfand ;g work well in mountain car too, though in the
experiments presented here they were set to 1.0 and 0.0 respectiveySsitton (1996) found that
discounting and exploration are unnecessary in mountain car. The @afdat was set to -100 in
mountain car and -1000 in scheduling.

We tested both Darwinian and Lamarckian NEAT+Q in this manner. Both penricll, though
which is preferable appears to be domain dependent. For simplicity, in thisrsaad those that
follow, we present results only for Darwinian NEAT+Q. In Section 5.5 wespnt a comparison of
the two approaches.

2. Other values ok were tested in the context of NEAT+Q but had little effect on performance
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To test Q-learning without NEAT, we tried 24 different configurationsacledomain. These
configurations correspond to every possible combination of the followamgmeter settings. The
networks had feed-forward topologies with 0, 4, or 8 hidden nodes.|ddrning rater was either
0.01 or 0.001. The annealing schedulesdowrere linear, decaying to zero after either 100,000 or
250,000 episodes. The eligibility decay ratevas either 0.0 or 0.6. The other parametgrand
€, were set just as with NEAT+Q, and the standard deviation of initial weight&s 0.1. Each
of these 24 configurations was evaluated for 5 runs. In addition, weriexented informally with
higher and lower values af, higher values of, slower linear annealing, exponential annealing,
and no annealing at all, though none performed as well as the resukntaésere.

In these experiments, each run used a different set of initial weightsicesléhe resulting
performance of each configuration, by averaging over different initeight settings, does not
account for the possibility that some weight settings perform consistentigrtiban others. To
address this, for each domain, we took the best performing configutatimhrandomly selected
five fixed initial weight settings. For each setting, we conducted 5 additronal Finally, we took
the setting with the highest performance and conducted an additional 2foua total of 25. For
simplicity, the graphs that follow show only this Q-learning result: the bedigunmation with the
best initial weight setting.

Figure 4 shows the results of these experiments. For each method, tespooding line in
the graph represents a uniform moving average over the aggregate atifiiyed in the past 1,000
episodes, averaged over all 25 runs. Using average perfornasee do throughout this paper, is
somewhat unorthodox for evolutionary methods, which are more commoalyated on the per-
formance of the generation champion. There are two reasons why \wé adwage performance.
First, it creates a consistent metric for all the methods tested, including the Tiddsehat do not
use evolutionary computation and hence have no generation champicmdSé is an on-line
metric because it incorporateli the reward the learning system accrues. Plotting only generation
champions is an implicitly off-line metric because it does not penalize methodgiticaiver good
policies but fail to accrue much reward while learning. Hence, avergerd is a better metric for
evaluating on-line evolutionary computation, as we do in Section 5.2.

To make a larger number of runs computationally feasible, both NEAT andiMBAwvere run
for only 100 generations. In the scheduling domain, neither method hadeteiyplateaued by
this point. However, a handful of trials conducted for 200 generatienfied that only very small
additional improvements are made after 100 generation, without a qualitiiéeean the results.

Note that the progress of NEAT+Q consists of a series of 10,000-epistervals. Each of
these intervals corresponds to one generation and the changes withiarieie to learning via
Q-learning and backpropagation. Although each individual learnsrflyr100 episodes on average,
NEAT’s system of randomly selecting individuals for evaluation causesehaning to be spread
across the entire generation: each individual changes graduallygdhemeneration as it is repeat-
edly evaluated. The result is a series of intra-generational learnirgswithin the larger learning
curve.

For the particular problems we tested and network configurations we trelitienary func-
tion approximation significantly improves performance over manually desigatdorks. In the
scheduling domain, Q-learning learns much more rapidly in the very eatlppl@arning. In both
domains, however, Q-learning soon plateaus while NEAT and NEAT+@rzanto improve. Of

3. Mountain car parameters were: 4 hidden nodes,0.001, annealed to zero at episode 100,008,0.0. Server job
scheduling parameters were: 4 hidden nodes,0.01, annealed to zero at episode 100,008, 0.6.
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Figure 4: A comparison of the performance of manual and evolutionagtiftn approximators in
the mountain car and server job scheduling domains.

course, after 100,000 episodes, Q-learning’s learningorditeés annealed to zero and no additional
learning is possible. However, its performance plateaus well befamaches zero and, in our
experiments, running Q-learning with slower annealing or no annealinty edresistently led to
inferior and unstable performance.

Nonetheless, the possibility remains that additional engineering of the resiracture, the
feature set, or the learning parameters would significantly improve Q-leggrperformance. In
particular, when Q-learning is started with one of the best networks dised\by NEAT+Q and
the learning rate is annealed aggressively, Q-learning matches NEATpepformance without
directly using evolutionary computation. However, it is unlikely that a maneaitch, no matter
how extensive, would discover these successful topologies, whittaicoirregular and partially
connected hidden layers. Figure 5 shows examples of typical netwaskaed by NEAT+Q.

NEAT+Q also significantly outperforms regular NEAT in both domains. In theimein car
domain, NEAT+Q learns faster, achieving better performance in earliegrgéons, though both
plateau at approximately the same level. In the server job scheduling dontaiHQ learns more
rapidly and also converges to significantly higher performance. Thistdeighlights the value of
TD methods on challenging reinforcement learning problems. Even wheT Eemployed to
find effective representations, the best performance is achievedvbely TD methods are used to
estimate a value function. Hence, the relatively poor performance of iQibggis not due to some
weakness in the TD methodology but merely to the failure to find a good eiedon.

Furthermore, in the scheduling domain, the advantage of NEAT+Q ovellli&g#ot directly ex-
plained just by the learning that occurs via backpropagation within eawragon. After 300,000
episodes, NEAT+Q clearly performs better even at the beginning of gamération, before such
learning has occurred. Just as predicted by the Baldwin Effect, evolptaeeds more quickly in
NEAT+Q because the weight changes made by backpropagation, in addiilmproving that in-
dividual's performance, alter selective pressures and more rapiilg guolution to useful regions
of the search space.
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(a) Mountain Car (b) Server Job Scheduling

Figure 5: Typical examples of the topologies of the best networks evbly&EAT+Q in both the
mountain car and scheduling domains. Input nodes are on the bottom, iddes in
the middle, and output nodes on top. In addition to the links shown, each rioplet
is directly connected to each output node. Note that two output nodes cdincbdy
connected, in which case the activation of one node serves not onty @stjaut of the
network, but as an input to the other node.

5.2 Comparing Off-Line and On-Line Evolutionary Computation

In this section, we present experiments evaluating on-line evolutionary tatigm. Since on-
line evolutionary computation does not depend on evolutionary functiorozippation, we first
test it using regular NEAT, by comparing an off-line version to on-linesiars usinge-greedy
and softmax selection. In Section 5.3 we study the effect of combining NBRANi#th on-line
evolutionary computation.

Figure 6 compares the performance of off-line NEAT to its on-line couatésn both domains.
The results for off-line NEAT are the same as those presented in FiguFe test on-line NEAT
with e-greedy selection, 25 runs were conducted wighset to 0.25. This value is larger than is
typically used in TD methods but makes intuitive sense, since exploration if NEEgafer than in
TD methods. After all, even when NEAT explores, the policies it selects ardnawn randomly
from policy space. On the contrary, they are the children of the pregensration’s fittest parents.
To test on-line NEAT with softmax selection, 25 runs were conducted wstst to 50 in mountain
car and 500 in the scheduling domain. These values are differentdmea@ood value af depends
on the range of possible values, which differ dramatically between the twaids.

These results demonstrate that both versions of on-line evolutionary tatopucan signifi-
cantly improve NEAT’s average performance. In addition, in mountainaaijne evolutionary
computation with softmax selection boosts performance even more-tjgedy selection.

Given the way these two methods work, the advantage of softmaxcayeredy in mountain
car is not surprisinge-greedy selection is a ratherima approach because it treats all exploratory
actions equally, with no attempt to favor the most promising ones. For the nmbst panducts the
search for better policies in the same way as off-line evolutionary computétgmply interleaves
that search with exploitative episodes that employ the best known polidim&oselection, by
contrast, concentrates exploration on the most promising alternativesand alters the way the
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Figure 6: A comparison of the performance off-line and on-line evolutypeamputation in the
mountain car and server job scheduling domains.

search for better policies is conducted. Unlgkgreedy exploration, softmax selection spends fewer
episodes on poorly performing individuals and more on those with the masigeoln this way, it
achieves better performance.

More surprising is that this effect is not replicated in the scheduling dorBaithh on-line meth-
ods perform significantly better than their off-line counterpart but softpgaforms only as well as
e-greedy. It is possible that softmax, though focusing exploration mor#igetetly, exploits less
aggressively thas-greedy, which gives so many evaluations to the champion. Itis also ptsild
some other setting af would make softmax outperforgigreedy, though our informal parameter
search did not uncover one. Even achieving the performance shemerrdguired using different
values oft in the two domains, whereas the same value wbrked in both cases. This highlights
one disadvantage of using softmax selection: the difficulty of choasiAg Sutton and Barto write
“Most people find it easier to set thigparameter with confidence; settingequires knowledge of
the likely action values and of powers @t (Sutton and Barto, 1998, pages 27-30)

It is interesting that the intra-generational learning curves charactesfdEAT+Q appear in
the on-line methods even though backpropagation is not used. Th@eyedormance increases
during each generation without the help of TD methods because the systemés better informed
about which individuals to select on exploitative episodes. Hence, erelialutionary computation
can be thought of as another way of combining evolution and learningadh generation, the
system learns which members of the population are strongest and us&sdhdtdge to boost
average performance.

5.3 Combining Evolutionary Function Approximation with On-Line Evolutio nary
Computation

Sections 5.1 and 5.2 verify that both evolutionary function approximatioroarlthe evolutionary
computation can significantly boost performance in reinforcement leatagks. In this section,
we present experiments that assess how well these two ideas work togethe
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Figure 7 presents the results of combining NEAT+Q with softmax evolutionamypatation,
averaged over 25 runs, and compares it to using each of these mettivitu@lly, i.e. using off-
line NEAT+Q (as done in Section 5.1) and using softmax evolutionary compuoitaiib regular
NEAT (as done in Section 5.2). For the sake of simplicity we do not pressutts fore-greedy
NEAT+Q though we tested it and found that it performed similarly to softmax THEA
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Figure 7: The performance of combining evolutionary function approximatioh on-line evolu-
tionary computation compared to using each individually in the mountain caresmelrs

job scheduling domains.

In both domains, softmax NEAT+Q performs significantly better than off-liB&\N+Q. Hence,
just like regular evolutionary computation, evolutionary function approximagierforms better
when supplemented with selection techniques traditionally used in TD methagsis8igly, in the
mountain car domain, softmax NEAT+Q performs only as well softmax NEATaWéute these
results to a ceiling effect, i.e. the mountain car domain is easy enough that,agiveppropriate
selection mechanism, NEAT is able to learn quite rapidly, even without the helplearning.
In the server job scheduling domain, softmax NEAT+Q does perform kbgersoftmax NEAT,
though the difference is rather modest. Hence, in both domains, the mosldattor to boosting
the performance of evolutionary computation is the use of an approprlattise mechanism.

5.4 Comparing to Previous Approaches

The experiments presented thus far verify that the novel methods prddarthis paper can im-
prove performance over the constituent techniques upon which thdyudtreIn this section, we
present experiments that compare the performance of the highestpiadgamovel method, softmax
NEAT+Q, to previous approaches. In the mountain car domain, we cortgpprevious results that
use TD methods with a linear function approximator (Sutton, 1996). In thegeb scheduling do-
main, we compare to a random scheduler, two non-learning schedusrgfevious research (van
Mieghem, 1995; Whiteson and Stone, 2004), and an analytical solutionutechpsing integer

linear programming.
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In the mountain car domain, the results presented above make clear thatsNEAB+Q can
rapidly learn a good policy. However, since these results use an on-litrvecyperformance is
averaged over all members of the population. Hence, they do not teweatlose the best learned
policies are to optimal. To assess this, we selected the generation champidhériinal generation
of each softmax NEAT+Q run and evaluated it for an additional 1,000 épssdlrhen we compared
this to the performance of a learner using Sarsa, a TD method similar to Qhig48utton and
Barto, 1998), with CMACs, a popular linear function approximator (SuttmhBarto, 1998), using
a setup that matches that of Sutton (1996) as closely as possible. Wetfmingderformance to
be nearly identical: softmax NEAT+Q received an average score of55&hile the Sarsa CMAC
learner received -52.02. We believe this performance is approximatéipalpas it matches the
best results published by other researchers, e.g. (Smart and Kaghtlp@).

This does not imply that neural networks are the function approximatoraéetior the moun-
tain car domain. On the contrary, Sutton’s CMACs converge in many fepiso@es. Nonetheless,
these results demonstrate that evolutionary function approximation andeoaviatution make it
feasible to find approximately optimal policies using neural networks, songgithén some previous
approaches (Boyan and Moore, 1995; Pyeatt and Howe, 20044, msnually designed networks,
were unable to do.

Since the mountain car domain has only two state features, it is possible to \@dializalue
function. Figure 8 compares the value functions learned by softmax NRA®+that of Sarsa with
CMACs. For clarity, the graphs plot estimated steps to the goal. Since therageives a reward
of -1 for each timestep until reaching the goal, this is equivalenrt toax,(Q(s,a)). Surprisingly,
the two value functions bear little resemblance to one another. While theysirasevery general
characteristics, they differ markedly in both shape and scale. Hense, gihaphs highlight a fact
that has been noted before (Tesauro, 1994): that TD methods carebazgllent policies even if
they estimate the value function only very grossly. So long as the value faragiigns the highest
value to the correct action, the agent will perform well.

Value Function Value Function

Steps to Goal Steps to Goal

120
100
80

Velocity

-0.3!
Position

Position

(a) NEAT+Q Network (b) CMAC

Figure 8: The value function, shown as estimated steps to the goal, of pidiareed by softmax
NEAT+Q and Sarsa using CMACs.
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In the server job scheduling domain, finding alternative approachesofoparison is less
straightforward. Substantial research about job scheduling alred@stg éut most of the methods
involved are not applicable here because they do not allow jobs to beatesbwith arbitrary utility
functions. For example, Liu and Layland (1973) present methods fasgbbduling in a real-time
environment, in which a hard deadline is associated with each job. McWie¢ekr(2004) present
methods for scheduling jobs with different priority classes. Howevdikeithe utility functions
shown in Section 4.2, the relative importance of a job type does not charmgéuaction of time.
McGovern et al. (2002) use reinforcement learning for CPU instruatitreduling but aim only to
minimize completion time.

One method that can be adapted to the server job scheduling task is thaligedepirule (van
Mieghem, 1995), in which the server always processes atttime oldest job of that typk which
maximizesCy (ox)/pk, whereC, is the derivative of the cost function for job tyjeoy is the age
of the oldest job of typé and py is the average processing time for jobs of typeSince in our
simulation all jobs require unit time to process and the cost function is just @i&vadinverse
of the utility function, this is equivalent to processing the oldest job of that kyjhat maximizes
—Ug(ox), whereUy, is the derivative of the utility function for job type The generalizedp rule
has been proven approximately optimal given convex cost functiomshNiaghem, 1995). Since
the utility functions, and hence the cost functions, are both convex amhee in our simulation,
there is no theoretical guarantee about its performance in the servahjethding domain. To see
how well it performs in practice, we implemented it in our simulator and ran it foa@Q episodes,
obtaining an average score of -10,891.

Another scheduling algorithm applicable to this domain is the insertion scheddimh per-
formed the best in a previous study of a very similar domain (Whiteson aneé S2®04). The
insertion scheduler uses a simple, fast heuristic: it always selectsdoessing the job at the head
of the queue but it keeps the queue ordered in a way it hopes will maximigegage utility. For
any given ordering of a set dfjobs, the aggregate utility is:

ZUi(aieri)

whereU;(-), &, andp; are the utility function, current age, and position in the queue, respbgttive
of jobi. Since there argl|! ways to order the queue, it is clearly infeasible to try them all. Instead,
the insertion scheduler uses the following simple, fast heuristic: every tirae §ob is created, the
insertion scheduler tries inserting it into each position in the queue, settlindiimhever position
yields the highest aggregate utility. Hence, by bootstrapping off the prewiaering, the insertion
scheduler must consider orj3} orderings. We implemented the insertion scheduler in our simulator
and ran it for 1,000 episodes, obtaining an average score of -13,607.

Neither thecpirule nor the insertion scheduler perform as well as softmax NEAT+Qse/final
generation champions received an average score of -9,723 overeépB®des. Softmax NEAT+Q
performed better despite the fact that the alternatives rely on much gagaieri knowledge about
the dynamics of the system. Both alternatives require the scheduler to Ipagdietive model of
the system, since their calculations depend on knowledge of the utility funetimhthe amount of
time each job takes to complete. By contrast, softmax NEAT+Q, like many rearfant learning
algorithms, assumes such information is hidden and discovers a good policyekperience, just
by observing state transitions and rewards.

If, in addition to assuming the scheduler has a model of the system, we maker#adistic
assumption that unlimited computation is available to the scheduler, then we canasbiaforma-
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tive upper bound on performance. At each time step of the simulation, weocapute the optimal
action analytically by treating the scheduling problem as an integer lineargmnog-or each job

i € J and for each positiorj in which it could be placed, the linear program contains a variable
xij € {0,1}. Associated with each variable is a weight = U;(a; + j), which represents the reward
the scheduler will receive when jolzompletes given that it currently resides in positiorSince

the scheduler’s goal is to maximize aggregate utility, the linear program must me3igyz wi; x;; .

In addition to the constraint thaij : x;; € {0,1}, the program is also constrained such that each job
is in exactly one positior¥/i : ¥ ;X = 1 and that each position holds exactly one jgp: 3; x;; = 1.

A solution to the resulting integer linear program is an ordering that will maximzeadgregate
utility of the jobs currently in the queue. If the scheduler always prosesee job in the first
position of this ordering, it will behave optimalssuming no more jobs arriveSince new jobs
are constantly arriving, the linear program must be re-solved aneachttane step. The resulting
behavior may still be suboptimal since the decision about which job to préeesade without
reasoning about what types of jobs are likely to arrive later. Nonethetleis analytical solution
represents an approximate upper bound on performance in this domain.

Using the CPLEX software package, we implemented a scheduler baseel lovetir program
described above and tested in our simulator for 1,000 episodes, obtamiageeage score of -
7,819. Not surprisingly, this performance is superior to that of softma&TNB), though it takes,
on average, 741 times as long to run. The computational requirements dlthisis are not likely
to scale well either, since the number of variables in the linear programsgyoadratically with
respect to the size of the queue.

Figure 9 summarizes the performance of the alternative scheduling metasciibed in this
section and compares them to softmax NEAT+Q. It also includes, as a lowedlon performance,
a random scheduler, which received an average score of -15/8024 ®00 episodes. A Student’s
t-test verified that the difference in performance between each pairtbbais statistically signif-
icant with 95% confidence. Softmax NEAT+Q performs the best excepiiédinear programming
approach, which is computationally expensive and relies on a model oystens. Prior to learn-
ing, softmax NEAT+Q performs similarly to the random scheduler. The @iffee in performance
between the best learned policies and the linear programming upper botbb isetter than that
of the baseline random scheduler and 38% better than that of the nertdtbed, thepscheduler.

5.5 Comparing Darwinian and Lamarckian Evolutionary Computation

As described in Section 3.1, evolutionary function approximation can be imptechén either a
Darwinian or Lamarckian fashion. The results presented so far all ededhwinian implementa-
tion of NEAT+Q. However, it is not clear that this approach is superiendtiough it more closely
matches biological systems. In this section, we compare the two approanbegally in both
the mountain car and server job scheduling domains. Many other empirivglacisons of Dar-
winian and Lamarckian systems have been conducted previously (D. Whidi@g; Yamasaki and
Sekiguchi, 2000; Pereira and Costa, 2001) but ours is novel in thgtdodl learning is based on a
TD function approximator. In other words, these experiments addresgidstion: when trying to
approximate a TD value function, is a Darwinian or Lamarckian approgoérisu?

Figure 10 compares the performance of Darwinian and Lamarckian N@Ad both the moun-
tain car and server job scheduling domains. In both cases, we useeMHHAT+Q, as the on-line
versions tend to mute the differences between the two implementations. Thotlgimiplementa-
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tions perform well in both domains, Lamarckian NEAT+Q does better in mountaifut worse

in server job scheduling. Hence, the relative performance of thesepgroaches seems to depend

critically on the dynamics of the domain to which they are applied. In the followaugien, we

present some additional results that elucidate which factors affect gréarmance.
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5.6 Continual Learning Tests

In this section, we assess the performance of the best networks disdtyeNEAT+Q when eval-
uated for many additional episodes. We compare two scenarios, one thgelearning rate is
annealed to zero after 100 episodes, just as in training, and one wisanetiannealed at all. Com-
paring performance in these two scenarios allows us to assess theéffentinual learning on the
evolved networks.

We hypothesized that NEAT+Q’s best networks would perform wellearantinual learning
in the mountain car domain but not in server job scheduling. This hypothesigwtivated by
the results of early experiments with NEAT+Q. Originally, we did not aneat all. This setup
worked fine in the mountain car domain but in scheduling it worked only witHindf NEAT+Q);
on-line NEAT+Q actually performed worse than off-line NEAT+Q! AnnegIMEAT+Q’s learning
rate eliminated the problem, as the experiments in Section 5.2 verify. If findindtgdlgat remain
stable under continual learning is more difficult in scheduling than in mountaiit cauld explain
this phenomenon, sinaegreedy and softmax selection, by giving many more episodes of learning
to certain networks, could cause those networks to become unstableréordngeoorly.

To test the best networks without continual learning, we selected thegnakation champion
from each run of off-line Darwinian NEAT+Q and evaluated it for anitiddal 5,000 episodes, i.e.
50 times as many episodes as it saw in training. During these additional epitoeléearning rate
was annealed to zero by episode 100, just as in training. To test thediestrks with continual
learning, we repeated this experiment but did not anneal the learningtrate To prevent any
unnecessary discrepancies between training and testing, we repeatdgthal NEAT+Q runs
with annealing turned off and used the resulting final generation champions.

Figure 11 shows the results of these tests. In the mountain car domaimnpent® remains
relatively stable regardless of whether the networks continue to leamné&tworks tested without
annealing show more fluctuation but maintain performance similar to those thatamaealed.
However, in the scheduling domain, the networks subjected to continualigarapidly plummet
in performance whereas those that are annealed continue to perfdneyatid in training. These
results directly confirm our hypothesis that evolutionary computation cdmf@ights that perform
well under continual learning in mountain car but not in scheduling. Thidaéxs why on-line
NEAT+Q does not require an annealed learning rate in mountain car bstillecheduling.

These tests also shed light on the comparison between Darwinian and kamaX&EAT+Q
presented in Section 5.5. A surprising feature of the Darwinian appiiedbht it is insensitive to
the issue of continual learning. Since weight changes do not afffsgiriofg, evolution need only
find weights that remain suitable during one individual’s lifetime. By contraghén_amarckian
approach, weight changes accumulate from generation to generatmte Hhe TD updates that
helped in early episodes can hurt later on. In this light it makes perfesestat Lamarckian
NEAT+Q performs better in mountain car than in scheduling, where contieaaling is problem-
atic.

These results suggest that the problem of stability under continual lgasaimgreatly exacer-
bate the difficulty of performing neural network function approximation iacgice. This issue is
not specific to NEAT+Q, since Q-learning with manually designed netwark&eged decent per-
formance only when the learning rate was properly annealed. Darwirlt®T NQ is a novel way of
coping with this problem, since it obviates the need for long-term stability. {lin@nevolutionary
computation annealing may still be necessary but it is less critical to set thef egeay precisely.
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Figure 11: A comparison of the performance of the best networks evdlyeNEAT+Q when
tested, with and without annealing, for an additional 5,000 episodes.

When learning ends, it prevents only a given individual from contingangmprove. The system
as a whole can still progress, as evolution exerts selective pressitesaning begins anew in the
next generation.

6. Discussion

The results in the mountain car domain presented in Section 5, demonstrat&KiatQ can suc-
cessfully train neural network function approximators in a domain whichtsrimasly problematic
for them. However, NEAT+Q requires many more episodes to find goodi@wu(by several or-
ders of magnitude) than CMACs do in the same domain. This contrast highlightsportant

drawback of NEAT+Q: since each candidate network must be trainectlomggh to let Q-learning
work, it has very high sample complexity. In ongoing research, we aesfigating ways of making
NEAT+Q more sample-efficient. For example, preliminary results suggdstthare-training net-
works using methods based on experience replay (Lin, 1992), NEATs#&nple complexity can
be dramatically reduced.

Itis not surprising that NEAT+Q takes longer to learn than CMACs bezdisactually solving
a more challenging problem. CMACSs, like other linear function approximatecgiire the human
designer to engineer a state representation in which the optimal value fuisdiioear with respect
to those state features (or can be reasonably approximated as suckexafple, when CMACs
were applied to the mountain car domain, the two state features were tiled abrglyn¢Sutton,
1996). By contrast, nonlinear function approximators like neural nédsvoan take a simpler state
representation ankarn the important nonlinear relationships. Note that the state representation
used by NEAT+Q, while discretized, does not include any conjunctiaifes of the original two
state features. The important conjunctive features are representédideyr nodes that are evolved
automatically by NEAT.
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Conjunctively tiling all state features is feasible in mountain car but quicklgimes impractical
in domains with more state features. For example, doing so in the schedulingndeowdd require
16 CMACs, one for each action. In addition, each CMAC would have multiplkelitnensional
tilings. If 10 tilings were used and each state feature were discretized iiocke@ts, the resulting
function approximator would have 2610 x 106 cells. Conjunctively tiling only some state fea-
tures is feasible only with a large amount of domain expertise. Hence, mdikeMEAT+Q that
automatically learn nonlinear representations promise to be of great praoicatance.

The results in the scheduling domain demonstrate that the proposed methled st much
larger, probabilistic domain and can learn schedulers that outperfoistingxnon-learning ap-
proaches. The difference in performance between the best leadliectp and the linear pro-
gramming upper bound is 75% better than that of the baseline random &ahadd 38% better
than that of the next best method, #hescheduler. However, the results also demonstrate that non-
learning methods can do quite well in this domain. If so, is it worth the troubleashieg? We
believe so. In a real system, the utility functions that the learner maximizes \ikeillglbe drawn
directly from Service Level Agreements (SLAs), which are legally bindimgtracts governing how
much clients pay their service providers as a function of the quality of setliey receive (Walsh
et al., 2004). Hence, even small improvements in system performancégoéicantly affect the
service provider’s bottom line. Substantial improvements like those demtatstraour results, if
replicated in real systems, could be very valuable indeed.

Overall, the main limitation of the results presented in this paper is that they agglyoameu-
ral networks. In particular, the analysis about the effects of contileaahing (Section 5.6) may
not generalize to other types of function approximation that are not a® poanstability or diver-
gence if over-trained. While evolutionary methods could in principle be cosabivith any kind
of function approximation, in practice it is likely to work well only with very case representa-
tions. Methods like CMACSs, which use many more weights, would result inleegg genomes and
hence be difficult for evolutionary computation to optimize. However, since snethods methods
become impractical as the number of state features and actions grow,ecortisods like neu-
ral networks may become increasingly important in harder domains. lfvetyt®nary function
approximation could be an important tool for automatically optimizing their reptagens.

7. Related Work

A broad range of previous research is related in terms of both methodgoaigito the techniques
presented in this paper. This section highlights some of that researcbuatnasts it with this work.

7.1 Optimizing Representations for TD Methods

A major challenge of using TD methods is finding good representationsriotifun approximators.
This paper addresses that problem by coupling TD methods with evolutitewdmiques like NEAT
that are proven representation optimizers. However, many other ay@oare also possible.

One strategy is to train the function approximator using supervised methadggbaptimize
representations. For example, Rivest and Precup (2003) traindeasoerelation networks as TD
function approximators. Cascade-correlation networks are similar to NEA&fat they grow in-
ternal topologies for neural networks. However, instead of usintuggaary computation to find
such topologies, they rely on the network’s error on a given trainingpsgimpare alternative rep-
resentations. The primary complication of Rivest and Precup’s appisdleat cascade-correlation
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networks, like many representation-optimizing supervised methods, negdittieg set to be both

large and stable. TD methods do not naturally accommodate this requiremesnttséty produce

training examples only in sequence. Furthermore, those examples quickinbestale as the val-
ues upon which they were based are updated. Rivest and Precigssdiis problem using a
novel caching system that in effect creates a hybrid value functiosistorg of a table and a neu-
ral network. While this approach delays the exploitation of the agent'sriexpe, it nonetheless
represents a promising way to marry the representation-optimizing capacigcdde-correlation
networks and other supervised algorithms with the power of TD methods.

Mahadevan (2005) suggests another strategy: using spectralianalgerive basis functions
for TD function approximators. His approach is similar to this work in that thenats responsible
for learning both the value function and its representation. It is différetiiat the representation is
selected by analyzing the underlying structural properties of the state,gaaher than evaluating
potential representations in the domain.

A third approach is advanced by Sherstov and Stone (2005): usingetimed® error generated
by TD updates to assess the reliability of the function approximator in a gagtarr of the state or
action space. They use this metric to automatically adjust the breadth of liggatéra for a CMAC
function approximator. An advantage of this approach is that feedbagksaimmediately, since
Bellman error can be computed after each update. A disadvantage is tifiam¢tien approxima-
tor’s representation is not selected based on its actual performanicé,way correlate poorly with
Bellman error.

There is also substantial research that focuses on optimizing the agaté'sissd action rep-
resentations, rather than the value function representation. For exé®api@maria et al. (1998)
apply skewing functions to state-action pairs before feeding them as topafsnction approxima-
tor. These skewing functions make the state-action spaces non-unifiorireace make it possible
to give more resolution to the most critical regions. Using various skewingtifons, they demon-
strate improvement in the performance of TD learners. However, theypdofier any automatic
way of determining how a given space should be skewed. Hence, a hileammer still faces the
burdensome task of manually choosing a representation, though in somesarsiag skewing
functions may facilitate this process.

Smith (2002) extends this work by introducing a method that uses selfi@hggmaps to
automatically learn nonlinear skewing functions for the state-action spdcES agents. Self-
organizing maps use unsupervised learning methods to create spatiaflizethmternal represen-
tations of the inputs they receive. Hence, the system does not useeaiatd on the performance
of different skewing functions to determine which one is most appropriattead it relies on the
heuristic assumption that more resolution should be given to regions ofdle Hpat are more fre-
guently visited. While this is an intuitive and reasonable heuristic, it doesotdtit general. For
example, a reinforcement learning agent designed to respond to ramgescies may spend most
of its life in safe states where its actions have little consequence and onlyiamally experience
crisis states where its choices are critical. Smith’s heuristic would incorreetigtd most of its
resolution to representing the value function of the unimportant but fretyuesited states. Evolu-
tionary function approximation avoids this problem because it evaluatesstmgpepresentations
by testing them in the actual task. It explicitly favors those representatiatsabult in higher
performance, regardless of whether they obey a given heuristic.
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McCallum (1995) also presents a method for optimizing an agent’s statsespagon. His ap-
proach automatically learns tree-structured short-term memories that aitdarcement learning
agents to prevent the state aliasing that results from hidden state.

7.2 Combining Evolutionary Computation with Other Learning Methods

Because of the potential performance gains offered by the BaldwictEff@any researchers have
developed methods that combine evolutionary computation with other learningasetiat act
within an individual’s lifetime. Some of this work is applied to supervised probJeémsvhich
evolutionary computation can be coupled with any supervised learningdeehsuch as backprop-
agation in a straightforward manner. For example, Boers et al. (1996yirte a neuroevolution
technique that, like NEAT, tries to discover appropriate topologies. Theaybow this method
with backpropagation and apply the result to a simple supervised learrobgepr. Also, Giraud-
Carrier (2000) uses a genetic algorithm to tune the parameters of RBFrketwdnich he applies
to a supervised classification problem.

Inducing the Baldwin Effect on reinforcement learning problems is morkeritang, since they
do not automatically provide the target values necessary for supeteaadng. The algorithms
presented in this paper use TD methods to estimate those targets, thougthersdzave tried many
other approaches. McQuestion and Miikkulainen (1997) presentra@elutionary technique that
relies on each individual’s parents to supply targets and uses baeljatiign to train towards those
targets. Stanley et al. (2003) avoid the problem of generating targetsiby Hebbian rules, an
unsupervised technique, to change a neural network during its fitueksaton. The network’s
changes are not directed by any error signal but they allow the netiwortain a memory of
previously experienced input sequences. Hence their approactaiteamative to recurrent neural
networks. Downing (2001) combines genetic programming with Q-learniimg @éssimple tabular
representation; genetic programming automatically learns how to discretizathsgace.

Nolfi et al. (1994) present a neuroevolutionary system that adds eutpaits to the network
that are designed to predict what inputs will be presented next. Whee ittyasts actually arrive,
they serve as targets for backpropagation, which adjusts the netweeldhts starting from the
added outputs. This technique allows a network to be adjusted during its lifesimg supervised
methods but relies on the assumption that forcing it to learn to predict futpuésimvill help it select
appropriate values for the remaining outputs, which actually control thet’adeehavior. Another
significant restriction is that the weights connecting hidden nodes to the axttpats cannot be
adjusted at all during each fitness evaluation.

Ackley and Littman (1991) combine neuroevolution with reinforcement legrimiran artificial
life context. Evolutionary computation optimizes the initial weights of an “action agkimhat
controls an agent in a foraging scenario. The weights of the netwonkpal&ted during each indi-
vidual’s lifetime using a reinforcement learning algorithm called CRBP on theslud a feedback
signal that is also optimized with neuroevolution. Hence, their approach is simithe one de-
scribed in this paper, though the neuroevolution technique they employndbegptimize network
topologies and CRBP does not learn a value function.

XCS (Butz and Wilson, 2002), based on learning classifier systemsi(&galz, 2000), combine
evolutionary computation and reinforcement learning in a different waghEnember of the pop-
ulation, instead of representing a complete policy, represents just a siaggéfier, which specifies
the action the agent should take for some subset of the state space, tHenqm®pulation as a whole
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represents a single evolving policy. Classifiers are selected for negtiod based on the accuracy
of their value estimates and speciation is used to ensure the state spaceilymogered.

Other combinations of evolutionary computation with other learning methods méltith and
Suzuki (2000), who study iterated prisoner’s dilemma; French andiMpss(1994) and Sasaki
and Tokoro (1999), who use artificial life domains; and Niv et al. (3002 foraging bees domain.

Another important related method is VAPS (Baird and Moore, 1999). Whiledschot use
evolutionary computation, it does combine TD methods with policy search methibdsovides
a unified approach to reinforcement learning that uses gradientrdescty to simultaneously
maximize reward and minimize error on Bellman residuals. A single parametemiedsrthe
relative weight of these goals. Because it integrates policy searchizantethods, VAPS is in much
the same spirit as evolutionary function approximation. However, the reguttegthods are quite
different. While VAPS provides several impressive convergencesgiees, it does not address the
guestion of how to represent the value function.

Other researchers have also sought to combine TD and policy searchdsiefror example,
Sutton et al. (2000) use policy gradient methods to search policy spacelypon TD methods to
obtain an unbiased estimate of the gradient. Similarly, in actor-critic methods &k&ondiT sitsiklis,
1999), the actor optimizes a parameterized policy by following a gradiemnirgf by the critic’s
estimate of the value function. Like VAPS, these methods do not learn asegpagion for the value
function.

7.3 Variable Evaluations in Evolutionary Computation

Because it allows members of the same population to receive different mofevaluations, the
approach to on-line evolutionary computation presented here is similar topseesearch about
optimizing noisy fitness functions. For example, Stagge (1998) introducasamisms for deciding
which individuals need more evaluations for the special case whereigeia@Gaussian. Beielstein
and Markon (2002) use a similar approach to develop tests for determihicg imdividuals should
survive. However, this area of research has a significantly difféoens, since the goal is to find
the best individuals using the fewest evaluations, not to maximize the rewarded during those
evaluations.

The problem of using evolutionary systems on-line is more closely related év mhearch
about the exploration/exploitation tradeoff, which has been studied é&agn the context of
TD methods (Watkins, 1989; Sutton and Barto, 1998) and multiarmed bandieprs (Bellman,
1956; Macready and Wolpert, 1998; Auer et al., 2002). The selectichamisms we employ in our
system are well-established though, to our knowledge, their applicatioplictievnary computation
is novel.

8. Future Work

There are many ways that the work presented in this paper could be edtenefined, or further
evaluated. This section enumerates a few of the possibilities.

Using Different Policy Search Methods This paper focuses on using evolutionary methods to
automate the search for good function approximator representationgvidgunany other forms of
policy search such as PEGASUS (Ng and Jordan, 2000) and polidiegtanethods (Sutton et al.,
2000; Kohl and Stone, 2004) have also succeeded on difficult regrfeent learning tasks. TD
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methods could be combined with these methods in the same way they are combinebluition-
ary computation in this paper. In the future, we plan to test some of theseadiferoombinations.

Reducing Sample Complexity As mentioned in Section 6, one disadvantage of evolutionary
function approximation is its high sample complexity, since each fithess evallasisrfor many
episodes. However, in domains where the fitness function is not too maisly, fithess evaluation
could be conducted in a single episode if the candidate function approximasqre-trained using
methods based on experience replay (Lin, 1992). By saving sampl&itrasgrom the previous
generation, each new generation could be be trained off-line. This methold wse much more
computation time but many fewer sample episodes. Since sample experiendeatiytyppmuch
scarcer resource than computation time, this enhancement could greatlyentipeopractical ap-
plicability of evolutionary function approximation.

Addressing Non-Stationarity In non-stationarydomains, the environment can change in ways
that alter the optimal policy. Since this phenomenon occurs in many real-wiatéhg0s, it is im-
portant to develop methods that can handle it robustly. Evolutionary antidtbods are both well
suited to non-stationary tasks and we expect them to retain that capabilityoshebined. In fact,
we hypothesize that evolutionary function approximation will adapt to natiegary environments
betterthan manual alternatives. If the environment changes in ways that alteptimeal repre-
sentation, evolutionary function approximation can adapt, since it is cofijirteating different
representations and retaining the best ones. By contrast, even if theffective at the original
task, manually designed representations cannot adapt in the facengirfp@nvironments.
On-line evolutionary computation should also excel in non-stationary emmieats, though
some refinement will be necessary. The methods presented in this papeitiyrgdisume a station-
ary environment because they compute the fitness of each individuaébyging ovegll episodes
of evaluation. In non-stationary environments, older evaluations caniestale and misleading.
Hence, fitness estimates should place less trust in older evaluations. fHgiscsiuld easily be
achieved using recency-weighting update rules like those employed bybabdel TD methods.

Using Steady-State Evolutionary Computation The NEAT algorithm used in this paper is an
example ofgenerationalevolutionary computation, in which an entire population is is evaluated
before any new individuals are bred. Evolutionary function approximatight be improved by
using asteady-statémplementation instead (Fogarty, 1989). Steady-state systems never r@place
entire population at once. Instead, the population changes incrementalyath fitness evalua-
tion, when one of the worst individuals is removed and replaced by a fispring whose parents
are among the best. Hence, an individual that receives a high scona@= rapidly effect the
search, since it immediately becomes a potential parent. In a generatistexhsyhat individual
cannot breed until the beginning of the following generation, which migthdesands of episodes
later. Hence, steady-state systems could help evolutionary functionxiypatamn perform better

in on-line and non-stationary environments by speeding the adoption ahmenevements. Fortu-
nately, a steady-state version of NEAT already exists (Stanley et al.) 20@bis extension is quite
feasible.

9. Conclusion

Reinforcement learning is an appealing and empirically successful agpto finding effective
control policies in large probabilistic domains. However, it requires a gieadiof expert knowledge
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to put into practice, due in large part to the need for manually defining funetpproximator
representations. This paper offers hope that machine learning metols ased to discover those
representations automatically, thus broadening the practical applicabilgynédrcement learning.

This paper makes three main contributions. First, it introduces evolutionagfibn approx-
imation, which automatically discovers effective representations for Ttim approximators.
Second, it introduces on-line evolutionary computation, which employstseianechanisms bor-
rowed from TD methods to improve the on-line performance of evolutionampeitation. Third, it
provides a detailed empirical study of these methods in the mountain car &ed jsérscheduling
domains.

The results demonstrate that evolutionary function approximation can sagrilfigmprove the
performance of TD methods and on-line evolutionary computation can seymtiffcimprove evo-
lutionary methods. Combined, our novel algorithms offer a promising andrgkeapproach to
reinforcement learning in large probabilistic domains.
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Appendix A. Statistical Significance

To assess the statistical significance of the results presented in SectierpBrfarmed a series of
Student’s t-tests on each pair of methods in each domain. For each pagrfomped a t-test after
every 100,000 episodes. Tables 1 and 2 summarize the results of thedertéstsmountain car
and server job scheduling domains, respectively. In each table, thesvialeach cell indicate the
range of episodes for which performance differences were sigmiificith 95% confidence.

Appendix B. NEAT Parameters

Table 3 details the NEAT parameters used in our experiments. Stanley anduMiiién (2002)
describe the semantics of these parameters in detalil.
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Episodes | Q-Learning| Off-Line | e-Greedy| Softmax| Off-Line | Softmax | Lamarckian
(x1000) NEAT NEAT NEAT | NEAT+Q | NEAT+Q | NEAT+Q
Q-Learning
Off-Line 300to
NEAT 1000
e-Greedy 200 to 200to
NEAT 1000 1000
Softmax 200to 200 to 200to
NEAT 1000 1000 1000
Off-Line 200 to 200to 200 to 200 to
NEAT+Q 1000 500 1000 1000
Softmax 100 to 200 to 200 to 900 to 200 to
NEAT+Q 1000 1000 1000 1000 1000
Lamarkian 200 to 200to 200 to 200 to 200 to 100 to
NEAT+Q 1000 1000 1000 1000 1000 1000

Table 1: A summary of the statistical significance of differences in avgsagermance between
each pair of methods in mountain car (see Figures 4, 6, 7 & 10). Valuescin gl
indicate the range of episodes for which differences were significéim®&% confidence.

Episodes | Q-Learning| Off-Line e-Greedy Softmax| Off-Line | Softmax | Lamarckian
(x1000) NEAT NEAT NEAT | NEAT+Q | NEAT+Q | NEAT+Q
Q-Learning

Off-Line 300 to

NEAT 1000

e-Greedy 200 to 200 to

NEAT 1000 1000

Softmax 200 to 200to | not significant

NEAT 1000 1000 throughout

Off-Line 300 to 300 to 100 to 200 to

NEAT+Q 1000 500 1000 1000

Softmax 200 to 200 to 400to 200 to 200 to

NEAT+Q 1000 1000 1000 1000 1000

Lamarckian 300 to 300 to 100 to 100 to 700 to 200 to

NEAT+Q 1000 1000 1000 1000 1000 1000

Table 2: A summary of the statistical significance of differences in avgragermance between
each pair of methods in server job scheduling (see Figures 4, 6, 7 &&lies in each cell
indicate the range of episodes for which differences were significéimO®&% confidence.
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Parameter Value Parameter Value Parameter Value
weight-mut-power 0.5 recur-prop 0.0 disjoint-coeff €1) 1.0
excess-coeffd)) 1.0 mutdiff-coeff (c3) 2.0 compat-threshold 3.0

age-significance 1.0 survival-thresh 0.2 mutate-only-prob 0.25
mutate-link-weights-proly 0.9 | mutate-add-node-prolog) | 0.02 || mutate-add-link-probrgy) | 0.1
interspecies-mate-rate| 0.01 mate-multipoint-prob 0.6 mate-multipoint-avg-proy 0.4
mate-singlepoint-prob | 0.0 mate-only-prob 0.2 recur-only-prob 0.0
pop-size p) 100 dropoff-age 100 newlink-tries 50

babies-stolen 0 num-compat-mod 0.3 num-species-target 6

Table 3: The NEAT parameters used in our experiments.
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