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Abstract
Bayesian learning has been widely used and proved to be effective in many data modeling prob-
lems. However, computations involved in it require huge costs and generally cannot be performed
exactly. The variational Bayesian approach, proposed as anapproximation of Bayesian learning,
has provided computational tractability and good generalization performance in many applications.

The properties and capabilities of variational Bayesian learning itself have not been clarified
yet. It is still unknown how good approximation the variational Bayesian approach can achieve.
In this paper, we discuss variational Bayesian learning of Gaussian mixture models and derive up-
per and lower bounds of variational stochastic complexities. The variational stochastic complexity,
which corresponds to the minimum variational free energy and a lower bound of the Bayesian evi-
dence, not only becomes important in addressing the model selection problem, but also enables us
to discuss the accuracy of the variational Bayesian approach as an approximation of true Bayesian
learning.
Keywords: Gaussian mixture model, variational Bayesian learning, stochastic complexity

1. Introduction

A Gaussian mixture model is a learning machine which estimates the target probability density
by the sum of normal distributions. This learning machine is widely used especially in statistical
pattern recognition and data clustering. In spite of wide range of its applications, its properties
have not yet been made clear enough. This is because the Gaussian mixture model is a non-regular
statistical model. A statistical model is regular if and only if a set of conditions (referred to as
“regularity conditions”) that ensure the asymptotic normality of the maximum likelihood estimator
is satisfied. The regularity conditions are not satisfied for mixture models because the parameters
are not identifiable, in other words, the mapping from parameters to probability distributions is not
one-to-one. Other than mixture models, statistical models with hidden variables such as hidden
Markov models and Bayesian networks fall into the class of non-regular models.

Recently, a lot of attentions has been paid to the non-regular models. In Bayesian learning,
mathematical foundation for analyzing non-regular models was established with an algebraic ge-
ometrical method (Watanabe, 2001). The Bayesian stochastic complexities orthe marginal like-
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lihoods of several non-regular models have been clarified in some recent studies (Yamazaki and
Watanabe, 2003a,b). The Bayesian framework provides better generalization performance in non-
regular models than the maximum likelihood (ML) method that tends to overfit the data.

In the Bayesian framework, rather than learning a single model, one computes the distribu-
tion over all possible parameter values and considers an ensemble with respect to the posterior
distribution. However, computing the Bayesian posterior can seldom be performed exactly and re-
quires some approximations. Well-known approximate methods include Markovchain Monte Carlo
(MCMC) methods and the Laplace approximation. The former attempts to find the exact posterior
distribution but typically requires huge computational resources. The latterapproximates the poste-
rior distribution by a Gaussian distribution, which can be insufficient for models containing hidden
variables.

The variational Bayesian (VB) framework was proposed as another approximation for com-
putations in the models with hidden variables (Attias, 1999; Ghahramani and Beal, 2000). This
framework provides computationally tractable posterior distributions over thehidden variables and
the parameters with an iterative algorithm. The variational Bayesian framework has been applied
to various real-world data modeling problems and empirically proved to be both computational
tractable and generalize well.

The properties of variational Bayesian learning remain unclear from a theoretical stand point.
Although the variational Bayesian framework is an approximation, questionslike how accurately it
approximates the true distribution have yet to be answered.

In this paper, we focus on variational Bayesian learning of Gaussian mixture models. As the
main contribution, we derive asymptotic upper and lower bounds on the variational stochastic com-
plexity. It is shown that the variational stochastic complexity is smaller than in regular statistical
models, so the advantage of Bayesian learning still remains in variational Bayesian learning. The
variational stochastic complexity, which corresponds to the minimum variationalfree energy and
a lower bound of the Bayesian evidence, is an important quantity for model selection. Giving the
asymptotic bounds on it also contributes to the following two issues. One is the accuracy of vari-
ational Bayesian learning as an approximation method since the variational stochastic complexity
shows the distance from the variational posterior distribution to the true Bayesian posterior distri-
bution in terms of Kullback information. Another is the influence of the hyperparameters on the
learning process. Since the variational Bayesian algorithm minimizes the variational free energy,
the derived bounds indicate how the hyperparameters influence the learning process. Our results
indicate how to determine the hyperparameter values before the learning process.

We consider the case in which the true distribution is contained in the learned model, in other
words, the model has redundant components to attain the true distribution. Analyzing the variational
stochastic complexity in this case is most valuable for comparing variational Bayesian learning with
true Bayesian learning. This is because the advantage of Bayesian learning is typical in this case
(Watanabe, 2001). Furthermore, this analysis is necessary and essential for addressing the model
selection and hypothesis testing problems.

This paper is organized as follows. In Section 2, the Gaussian mixture modelis briefly intro-
duced. In Section 3, we describe Bayesian learning. In Section 4, the variational Bayesian frame-
work is outlined and the variational stochastic complexity is defined. In Section5, we state the main
theorem of this paper. The main theorem is proved in Section 6. In Section 7,we experimentally
examine the quality of the bounds given in the main theorem. Discussion and conclusions follow in
Section 8 and Section 9.
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2. Gaussian Mixture Models

Denote byg(x|µ,Σ) a density function of anM-dimensional normal distribution whose mean is
µ ∈ RM and variance-covariance matrix isΣ ∈ RM×M. A Gaussian mixture modelp(x|θ) of an
M-dimensional inputx∈ RM with a parameter vectorθ is defined by

p(x|θ) =
K

∑
k=1

akg(x|µk,Σk),

where integerK is the number of components and{ak|ak ≥ 0,∑K
k=1ak = 1} is the set of mixing

proportions. The parameterθ of the model isθ = {ak,µk,Σk}K
k=1.

In some applications, the parameter is restricted to the means of each component and it is as-
sumed that there is no correlation between each input dimension. In this case, the model is written
by

p(x|θ) =
K

∑
k=1

ak
√

2πσ2
k

M exp(−‖x−µk‖2

2σ2
k

), (1)

whereσk > 0 is a constant.
In this paper, we consider this type eq.(1) of Gaussian mixture models in the variational Bayesian

framework and show upper and lower bounds of the variational stochastic complexity in Theorem
3.

The Gaussian mixture model can be rewritten as follows using a hidden variabley= (y1, · · · ,yK)∈
{(1,0, · · · ,0),(0,1, · · · ,0), · · · ,(0,0, · · · ,1)},

p(x,y|θ) =
K

∏
k=1

[ ak
√

2πσ2
k

M exp{−‖x−µk‖2

2σ2
k

}
]yk

.

The hidden variabley is not observed and is representing the component from which the datumx is
generated. If the datumx is from thekth component, thenyk = 1, if otherwise,yk = 0. And

∑
y

p(x,y|θ) = p(x|θ)

holds where the sum overy ranges over all possible values of the hidden variable.
The Gaussian mixture model is a non-regular statistical model, since the parameters are non-

identifiable. More specifically, if the true distribution can be realized by a model with the smaller
number of components, the true parameter is not a point but an analytic set with singularities. If
the parameters are non-identifiable, the usual asymptotic theory of regularstatistical models cannot
be applied. Some studies have revealed that Gaussian mixture models have quite different prop-
erties from those of regular statistical models. In particular, the Gaussian mixture model given by
eq.(1) has been studied as a prototype of non-regular models in the case of the maximum likelihood
estimation(Hartigan, 1985; Dacunha-Castelle and Gassiat, 1997).

3. Bayesian Learning

Supposen training samplesXn = {x1, · · · ,xn} are independently and identically taken from the true
distribution p0(x). In Bayesian learning of a modelp(x|θ) whose parameter isθ, first, the prior
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distributionϕ(θ) on the parameterθ is set. Then the posterior distributionp(θ|Xn) is computed
from the given data set and the prior by

p(θ|Xn) =
1

Z(Xn)
ϕ(θ)

n

∏
i=1

p(xi |θ),

whereZ(Xn) is the normalization constant that is also known as the marginal likelihood or the
Bayesian evidence of the data setXn (Mackay, 1992).

The Bayesian predictive distributionp(x|Xn) is given by averaging the model over the posterior
distribution as follows,

p(x|Xn) =
Z

p(x|θ)p(θ|Xn)dθ,

and its generalization error can be measured by the Kullback information from the true distribution,1

K(p0(x)||p(x|Xn)) =
Z

p0(x) log
p0(x)

p(x|Xn)
dx.

The Bayesian stochastic complexityF(Xn) is defined by

F(Xn) = − logZ(Xn), (2)

which is also called the free energy and is important in most data modeling problems. Practically, it
is used as a criterion by which the learning model is selected and the hyperparameters in the prior
are optimized (Akaike, 1980; Schwarz, 1978).

The Bayesian posterior can be rewritten as

p(θ|Xn) =
1

Z0(Xn)
exp(−nHn(θ))ϕ(θ),

whereHn(θ) is the empirical Kullback information,

Hn(θ) =
1
n

n

∑
i=1

log
p0(xi)

p(xi |θ)
, (3)

andZ0(Xn) is the normalization constant. Let

S(Xn) = −
n

∑
i=1

logp0(x),

and define the normalized Bayesian stochastic complexityF0(Xn) by

F0(X
n) = − logZ0(X

n)

= F(Xn)−S(Xn). (4)

1. Throughout this paper, we use the notationK(q(x)||p(x)) for the Kullback information from a distributionq(x) to a
distributionp(x), that is,

K(q(x)||p(x)) =
Z

q(x) log
q(x)
p(x)

dx.
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It is noted that the empirical entropyS(Xn) does not depend on the modelp(x|θ). Therefore
minimization ofF(Xn) is equivalent to that ofF0(Xn).

Let EXn[·] denote the expectation over all sets of training samples. Then it follows fromeq.(4)
that

EXn[F(Xn)−F0(X
n)] = nS,

whereS= −R

p0(x) logp0(x)dx is the entropy. There is the following relationship between the
average Bayesian stochastic complexity and the average generalization error(Levin et al., 1990),

EXn[K(p0(x)||p(x|Xn))] = EXn+1[F(Xn+1)]−EXn[F(Xn)]−S

= EXn+1[F0(X
n+1)]−EXn[F0(X

n)]. (5)

Recently, in Bayesian learning, an advanced mathematical method for analyzing non-regular
models was established(Watanabe, 2001), which enabled us to clarify the asymptotic behavior of
the Bayesian stochastic complexity of non-regular models. More specifically, by using concepts
in algebraic analysis, it was proved that the average normalized Bayesianstochastic complexity
defined byEXn[F0(Xn)] has the following asymptotic form,

EXn[F0(X
n)] ≃ λ logn− (m−1) log logn+O(1), (6)

whereλ andm are the rational number and the natural number respectively which are determined
by the singularities of the true parameter. In regular statistical models, 2λ is equal to the number
of parameters andm = 1, whereas in non-regular models such as Gaussian mixture models, 2λ
is not larger than the number of parameters andm≥ 1. This means non-regular models have an
advantage in Bayesian learning. From eq.(5), if the asymptotic form of the average normalized
Bayesian stochastic complexity is given by eq.(6), the average generalization error is given by

EXn[K(p0(x)||p(x|Xn))] ≃ λ
n

+o(
1
n
). (7)

Since the coefficientλ is proportional to the average generalization error, Bayesian learning ismore
suitable for non-regular models than the maximum likelihood (ML) method.

However, in order to carry out Bayesian learning practically, one computes the Bayesian stochas-
tic complexity or the predictive distribution by integrating over the posterior distribution, which
typically cannot be performed analytically.

Hence, approximations must be made. The Laplace approximation is a well-known and simple
method that approximates the posterior distribution by a Gaussian distribution. This approach gives
reasonable approximation in the case of regular statistical models whose posteriors converge to
normal distributions as the sample sizen tends to infinity. In contrast, posterior distributions of
non-regular models do not converge to normal distributions in general, even asn tends to infinity.
Therefore, the Laplace approximation can be insufficient for non-regular models. Markov chain
Monte Carlo (MCMC) method can provide a better approximation. It attempts to sample from the
exact posterior distribution but typically requires vast computational resources.

As another approximation, the variational Bayesian framework was proposed (Attias, 1999;
Beal, 2003; Ghahramani and Beal, 2000).

4. Variational Bayesian Learning

In this section, we outline the variational Bayesian framework and define thevariational stochastic
complexity.
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4.1 The Variational Bayesian Framework

Using the complete likelihood of the data{Xn,Yn}, with the corresponding hidden variablesYn =
{y1, · · · ,yn}, we can rewrite the Bayesian stochastic complexity eq.(2) as

F(Xn) = − log
Z

∑
Yn

ϕ(θ)
n

∏
i=1

p(xi ,yi |θ)dθ

= − log
Z

∑
Yn

p(Xn,Yn,θ)dθ,

where the sum overYn ranges over all possible values of all hidden variables.
The variational Bayesian framework starts by upper bounding the Bayesian stochastic complex-

ity. For an arbitrary conditional distributionq(Yn,θ|Xn) on the hidden variables and the parameters,
the Bayesian stochastic complexity can be upper bounded by applying Jensen’s inequality,

F(Xn) ≤ ∑
Yn

Z

q(Yn,θ|Xn) log
q(Yn,θ|Xn)

p(Xn,Yn,θ)
dθ

≡ F [q].

This inequality becomes an equality if and only ifq(Yn,θ|Xn) = p(Yn,θ|Xn), that is,q(Yn,θ|Xn)
equals the Bayesian posterior distribution. This means that the smaller the functional F [q] is, the
closer the distributionq(Yn,θ|Xn) is to the true Bayesian posterior distribution. The functionalF [q]
is called the variational free energy.

The variational Bayesian approach makes an approximation to ensure a computationally tractable
posterior. More specifically, assuming the parameters and the hidden variables are conditionally
independent of each other, the variational Bayesian approach restricts the set ofq(Yn,θ|Xn) to dis-
tributions that have the form

q(Yn,θ|Xn) = Q(Yn|Xn)r(θ|Xn), (8)

whereQ(Yn|Xn) andr(θ|Xn) are probability distributions over the hidden variables and the param-
eters respectively. The distributionq(Yn,θ|Xn) that minimizes the functionalF [q] is termed the
optimal variational posterior and generally differs from the true Bayesianposterior.

Minimization of the functionalF [q] with respect to the distributionsQ(Yn|Xn) andr(θ|Xn) can
be performed by using variational methods. Solving the minimization problem under the constraints
R

r(θ|Xn)dθ = 1 and∑Yn Q(Yn|Xn) = 1 gives the following theorem. The proof is well-known(Beal,
2003; Sato, 2001), thus it is omitted in this paper.

Theorem 1 If the functionalF [q] is minimized under the constraint eq.(8) then the variational
posteriors, r(θ|Xn) and Q(Yn|Xn), satisfy

r(θ|Xn) =
1
Cr

ϕ(θ)exp〈logp(Xn,Yn|θ)〉Q(Yn|Xn), (9)

and

Q(Yn|Xn) =
1

CQ
exp〈logp(Xn,Yn|θ)〉r(θ|Xn), (10)

where Cr and CQ are the normalization constants.2

2. Hereafter for an arbitrary distributionp(x), we use the notation〈·〉p(x) for the expected value overp(x).
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Note that eq.(9) and eq.(10) give only the necessary condition forr(θ|Xn) andQ(Yn|Xn) mini-
mize the functionalF [q]. The variational posteriors that satisfy eq.(9) and eq.(10) are searched by
an iterative algorithm. It is known that this algorithm is a natural gradient method when the model
is in the general exponential family of models with hidden variables (Sato, 2001).

4.2 Stochastic Complexity of Variational Bayes

We define the variational stochastic complexityF(Xn) by the minimum value of the functionalF [q]
attained by the above optimal variational posteriors, that is ,

F(Xn) = min
r,Q

F [q].

The variational stochastic complexityF(Xn) gives an estimate (upper bound) for the true Bayesian
stochastic complexityF(Xn), which is the minus log evidence. Therefore,F(Xn) is used for the
model selection in variational Bayesian learning(Beal, 2003). Moreover, the difference between
F(Xn) and the Bayesian stochastic complexityF(Xn) is the Kullback information from the optimal
variational posterior to the true posterior. That is

F(Xn)−F(Xn) = min
r,Q

K(q(Yn,θ|Xn)||p(Yn,θ|Xn)).

Hence, comparison betweenF(Xn) andF(Xn) shows the accuracy of the variational Bayesian ap-
proach as an approximation of true Bayesian learning.

We define the normalized variational stochastic complexityF0(Xn) by

F0(X
n) = F(Xn)−S(Xn). (11)

From Theorem 1, the following lemma is obtained. The proof is given in Appendix.

Lemma 2
F0(X

n) = min
r(θ|Xn)

{K(r(θ|Xn)||ϕ(θ))− (logCQ +S(Xn))}, (12)

where
CQ = ∑

Yn

exp〈logp(Xn,Yn|θ)〉r(θ|Xn).

The variational posteriorsr(θ|Xn) andQ(Yn|Xn) that satisfy eq.(9) and eq.(10) are parameter-
ized by the variational parameterθ defined by

θ = 〈θ〉r(θ|Xn),

if the modelp(x,y|θ) is included in the exponential family(Beal, 2003; Ghahramani and Beal, 2000).
Then it is noted thatCQ in eq.(12) is also parameterized byθ. Therefore, henceforth we denote
r(θ|Xn) andCQ asr(θ|θ) andCQ(θ) when they are regarded as functions of the variational parameter
θ.

We define the variational estimatorθvb of θ by the variational parameterθ that attains the mini-
mum value of the normalized variational stochastic complexityF0(Xn). By this definition, Lemma
2 claims that

θvb = argmin
θ

{K(r(θ|θ)||ϕ(θ))− (logCQ(θ)+S(Xn))}. (13)

In variational Bayesian learning, the variational parameterθ is updated iteratively to find the
optimal solutionθvb. Therefore, our aim is to evaluate the minimum value of the right hand side of
eq.(13) as a function of the variational parameterθ.

631



WATANABE AND WATANABE

5. Main Results

In this section, we describe two conditions and give the upper and lower bounds of the normalized
variational stochastic complexity in Theorem 3.

We assume the following conditions.

(i) The true distributionp0(x) is anM-dimensional Gaussian mixture modelp(x|θ0) which has
K0 components and the parameterθ0 = {a∗k,µ

∗
k}

K0
k=1,

p(x|θ0) =
K0

∑
k=1

a∗k√
2πM exp(−‖x−µ∗k‖2

2
),

wherex,µ∗k ∈ RM. And suppose that the true distribution can be realized by the model, that is,
the modelp(x|θ) hasK components,

p(x|θ) =
K

∑
k=1

ak√
2πM exp(−‖x−µk‖2

2
), (14)

andK ≥ K0 holds.

(ii) The prior of the parameters is the product of the following two distributionson a = {ak}K
k=1

andµ= {µk}K
k=1

ϕ(a) =
Γ(Kφ0)

Γ(φ0)K

K

∏
k=1

aφ0−1
k , (15)

ϕ(µ) =
K

∏
k=1

√

ξ0

2π

M

exp(−ξ0‖µk−ν0‖2

2
), (16)

whereξ0 > 0, ν0 ∈ RM andφ0 > 0 are constants called hyperparameters. These are Dirichlet
and normal distributions respectively. They are the conjugate prior distributions and are often
used in variational Bayesian learning of Gaussian mixture models.

Under these conditions, we prove the following theorem. The proof will appear in the next section.

Theorem 3 (Main Result) Assume the conditions (i) and (ii). Then the normalized variational
stochastic complexityF0(Xn) defined by eq.(11) satisfies

λ logn+nHn(θvb)+C1 ≤ F0(X
n) ≤ λ logn+C2, (17)

with probability 1 for an arbitrary natural number n where C1,C2 are constants independent of n
and the coefficientsλ, λ are given by

λ =

{

(K−1)φ0 + M
2 (φ0 ≤ M+1

2 ),
MK+K−1

2 (φ0 > M+1
2 ),

λ =

{

(K−K0)φ0 + MK0+K0−1
2 (φ0 ≤ M+1

2 ),
MK+K−1

2 (φ0 > M+1
2 ).

(18)

Taking expectation over all sets of training samples, we obtain the following corollary.
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Corollary 4 Assume the conditions (i) and (ii). Then the average of the normalized variational
stochastic complexityF0(Xn) satisfies

λ logn+EXn[nHn(θvb)]+C1 ≤ EXn[F0(X
n)] ≤ λ logn+C2.

Remark. The following bounds for the variational stochastic complexityF(Xn) = F0(Xn)+S(Xn)
are immediately obtained from Theorem 3 and Corollary 4,

S(Xn)+λ logn+nHn(θvb)+C1 ≤ F(Xn) ≤ S(Xn)+λ logn+C2,

and
nS+λ logn+EXn[nHn(θvb)]+C1 ≤ EXn[F(Xn)] ≤ nS+λ logn+C2,

whereS(Xn) = −∑n
i=1 logp(xi |θ0) is the empirical entropy andS= −R

p(x|θ0) logp(x|θ0)dx is the
entropy.

Since the dimension of the parameterθ is MK +K −1, the penalty term in the Bayesian infor-
mation criterion (BIC) (Schwarz, 1978) is given byλBIC logn where

λBIC =
MK +K−1

2
. (19)

Note that, unlike for regular statistical models, the advantage of Bayesian learning for non-regular
models is demonstrated by the asymptotic analysis as seen in eq.(6) and eq.(7).Theorem 3 claims
that the coefficientλ of logn is smaller thanλBIC whenφ0 ≤ (M + 1)/2. This means the normal-
ized variational stochastic complexityF0(Xn) becomes smaller than the BIC and implies that the
advantage of non-regular models in Bayesian learning still remains in variational Bayesian learning.

Theorem 3 also shows how the hyperparameters affect the learning process and implies that the
hyperparameterφ0 is the only hyperparameter that the leading term of the normalized variational
stochastic complexityF0(Xn) depends on. The effects of the hyperparameters are discussed in
Section 8.

In the condition (i), we assume that the true distribution is contained in the learner model (K0 ≤
K). This assumption is necessary for assessing model selection or hypothesis testing methods and
for developing a new method for these tasks. In real-world applications, the true distribution might
not be represented by any model with finite components. Also if the model is complex enough to
almost contain the true distribution with finite training samples, we need to considerthe case when
the model is redundant.

6. Proof of Theorem 3

In this section, we prove Theorem 3. First of all, we derive the variational posterior r(θ|Xn),
Q(Yn|Xn) and the variational parameterθ for the Gaussian mixture model given by eq.(14).

6.1 Variational Posterior for Gaussian Mixture Model

For the complete-data set{Xn,Yn} = {(x1,y1), · · · ,(xn,yn)}, let

yk
i = 〈yk

i 〉Q(Yn|Xn), nk =
n

∑
i=1

yk
i and νk =

1
nk

n

∑
i=1

yk
i xi ,
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whereyk
i = 1 if ith datumxi is from thekth component, if otherwise,yk

i = 0. The variablenk is
the expected number of times data come from thekth component andνk is the mean of them. Note
that the variablesnk andνk satisfy the constraints∑K

k=1nk = n and∑K
k=1nkνk = ∑n

i=1xi . From eq.(9)
and the respective prior eq.(15) and eq.(16), the variational posteriorr(θ|Xn) = r(a|Xn)r(µ|Xn) is
obtained as the product of the following two distributions,

r(a|Xn) =
Γ(n+Kφ0)

∏K
k=1 Γ(ak(n+Kφ0))

K

∏
k=1

aak(n+Kφ0)−1
k ,

and

r(µ|Xn) =
K

∏
k=1

1
√

2πσ2
k

M exp(
−‖µk−µk‖2

2σ2
k

),

where

ak =
nk +φ0

n+Kφ0
, σ2

k =
1

nk +ξ0
, and µk =

nkνk +ξ0ν0

nk +ξ0
.

From eq.(10), the variational posteriorQ(Yn|Xn) is given by

Q(Yn|Xn) =
1

CQ

n

∏
i=1

exp
[

yk
i {Ψ(nk +φ0)−Ψ(n+Kφ0)−

‖xi −µk‖2

2
− M

2
(log2π+

1
nk +ξ0

)}
]

,

whereΨ(x) = Γ′(x)/Γ(x) is the di-gamma(psi) function and we used

〈logak〉r(a|Xn) = Ψ(nk +φ0)−Ψ(n+Kφ0).

The variational parameterθ is given byθ = 〈θ〉r(θ|Xn) = {ak,µk}K
k=1. It is noted thatr(θ|Xn) and

Q(Yn|Xn) are parameterized byθ sincenk can be replaced by usingak = nk+φ0
n+Kφ0

. Henceforth, we

denoter(θ|Xn) andCQ asr(θ|θ) andCQ(θ).

6.2 Lemmas

Before proving Theorem 3, we show two lemmas where the two termsK(r(θ|θ)||ϕ(θ)) and(logCQ(θ)+
S(Xn)) in Lemma 2 are respectively evaluated. In the proofs (put in Appendix) ofthe two lemmas,
we use inequalities on the di-gamma functionΨ(x) and the log-gamma function logΓ(x), for x > 0
(Alzer, 1997),

1
2x

< logx−Ψ(x) <
1
x
, (20)

and

0≤ logΓ(x)−{(x− 1
2
) logx−x+

1
2

log2π} ≤ 1
12x

. (21)

The inequalities (20) ensure that substituting logx for Ψ(x) only contributes additive constant terms
to the normalized variational stochastic complexity. The substitution for logΓ(x) is given by eq.(21)
as well.

Lemma 5

∣

∣

∣
K(r(θ|θ)||ϕ(θ))−{G(a)+

ξ0

2

K

∑
k=1

‖µk−ν0‖2}
∣

∣

∣
≤C,
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holds where C is a constant and the function G(a) of a = {ak}K
k=1 is defined by

G(a) =
MK +K−1

2
logn+{M

2
− (φ0−

1
2
)}

K

∑
k=1

logak.

Lemma 6

logCQ(θ) =
n

∑
i=1

log
[ K

∑
k=1

1
√

2πM exp{Ψ(nk +φ0)−Ψ(n+Kφ0)−
‖xi −µk‖2

2
− M

2
1

nk +ξ0
}
]

, (22)

and
nHn(θ)− n

n+Kφ0
≤−(logCQ(θ)+S(Xn)) ≤ nHn(θ)− n

2(n+Kφ0)
, (23)

where Hn(θ) is given by eq.(3) andHn(θ) is defined by

Hn(θ) =
1
n

n

∑
i=1

log
p(xi |θ0)

∑K
k=1

ak√
2πM exp{− ‖xi−µk‖2

2 − M+2
2(nk+min{φ0,ξ0})}

.

6.3 Upper and Lower Bounds

Now from the above lemmas, we prove Theorem 3 by showing the upper bound and the lower bound
respectively.
(Proof of Theorem 3)
Proof First we show the upper bound in eq.(17).

From Lemma 2, Lemma 5 and Lemma 6, it follows that

F0(X
n) ≤ min

θ
Tn(θ)+C, (24)

where

Tn(θ) = G(a)+
ξ0

2

K

∑
k=1

‖µk−ν0‖2 +nHn(θ).

From eq.(24), it is noted that the function values ofTn(θ) at specific points of the variational
parameterθ give the upper bounds of the normalized variational stochastic complexityF0(Xn).
Hence, let us consider following two cases.

(I) :
ak = a∗k (1≤ k≤ K0−1), ak = a∗K0

/(K−K0 +1) (K0 ≤ k≤ K),

µk = µ∗k (1≤ k≤ K0−1), µk = µ∗K0
(K0 ≤ k≤ K),

thennHn(θ) < K−K0+1
mink{a∗k}

holds and

Tn(θ) <
MK +K−1

2
logn+C′ +O(

1
n
),

whereC′ is a constant.
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(II) :

ak = a∗k
n+K0φ0

n+Kφ0
(1≤ k≤ K0), ak =

φ0

n+Kφ0
(K0 +1≤ k≤ K),

µk = µ∗k (1≤ k≤ K0), µk = ν0 (K0 +1≤ k≤ K),

thennHn(θ) < (K−K0)φ0 + 1
mink{a∗k}

+O(1/n) holds and

Tn(θ) < {(K−K0)φ0 +
MK0 +K0−1

2
} logn+C′′ +O(

1
n
),

whereC′′ is a constant.

From eq.(24), we obtain the upper bound in eq.(17).
Next we show the lower bound in eq.(17). It follows from Lemma 2, Lemma 5 and Lemma 6,

F0(X
n) ≥ min

a
{G(a)}+nHn(θvb)−C−1. (25)

If φ0 > M+1
2 , then

G(a) ≥ MK +K−1
2

logn− (
M +1

2
−φ0)K logK, (26)

since Jensen’s inequality yields that∑K
k=1 logak ≤ K log( 1

K ∑K
k=1ak) = K log( 1

K ).
If φ0 ≤ M+1

2 , then

G(a) ≥ {(K−1)φ0 +
M
2
} logn+(

M +1
2

−φ0)(K−1) logφ0 +O(
1
n
), (27)

sinceak ≥ φ0
n+Kφ0

holds for everyk and the constraint∑K
k=1ak = 1 ensures that| logak| is bounded

by a constant independent ofn for at least one indexk. From eqs.(25),(26) and (27), we obtain the
lower bound in eq.(17).

7. Experiments

In order to examine the quality of the theoretical bounds given in Theorem 3, we conducted ex-
periments of variational Bayesian learning for Gaussian mixture models usingM = 1 andM = 10
dimensional synthetic data. A set of models with different number of components (K = 1,2,3,4,5)
was prepared. We applied the variational Bayesian algorithm to each modelusing the data set gener-
ated from the true distribution withK0 = 2 components. The true distribution was set to a Gaussian
mixture model with the parametera∗1 = a∗2 = 1/2,µ∗1 =−2/

√
M ·1 andµ∗2 = 2/

√
M ·1 where1 is the

M-dimensional vector whose all entries are 1. The hyperparameters wereset atφ0 = 1.0, ν0 = 0 and
ξ0 = 1.0. In order to achieve the minimum in eq.(13), the initial value of the variational parameter
θ was set around the true parameter, that is, arounda1 = a2 = 1/2, ak = 0 (k≥ 3), µ1 = µ∗1, µ2 = µ∗2
andµk = 0 (k≥ 3). Two sample sets with the sizen = 1000 andn = 100 were prepared. For each
data set, the normalized variational stochastic complexity (the inside of the braces in eq.(13)) was
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calculated when the variational Bayesian algorithm converged. Denoting the results for respective
data sets byF0(X1000) andF0(X100), we calculated

λVB = (F0(X
1000)−F0(X

100))/ log10 (28)

to estimate the coefficient of the leading term of the normalized variational stochastic complexity
F0(Xn). We averaged the values ofλVB over 100 draws of sample sets. The results of the averages
of λVB and the coefficientλ given by eq.(18) are presented in Figure 1 against the numberK of
components for the case of (a)M = 1 and (b)M = 10. In Figure 1, an upper bound of the coefficient
of the Bayesian stochastic complexity andλBIC given by eq.(19) are also plotted for the comparison
of variational Bayesian learning with true Bayesian learning in the next section. The variational
Bayesian algorithm gaveλVB that coincide with the coefficientλ. This implies the upper bound in
eq.(17) is tight.

We also calculated the generalization error defined byK(p(x|θ0)||〈p(x|θ)〉r(θ|Xn)), where〈p(x|θ)〉r(θ|Xn)

is the predictive distribution in variational Bayesian learning. In the case ofthe Gaussian mixture

model, it is given by〈p(x|θ)〉r(θ|Xn) = ∑K
k=1

ak√
2π(1+σ2

k)
M exp(−‖x−µk‖2

2(1+σ2
k)

). The generalization error,

multiplied byn for scaling purposes, was approximated by

λG =
n
n′

n′

∑
i=1

log
p(x′i |θ0)

〈p(x′i |θ)〉r(θ|Xn)
, (29)

with n′ = 10000 test data{x′i}n′
i=1 generated from the true distribution. The results of the averages

of λG over 100 draws of the data sets with the sizen = 1000 are also plotted in Figure 1. The
results of the averages ofλVB andλG showed different behavior. More specifically,λG increased
little while λVB grew proportionally to the numberK of components. From eq.(6) and eq.(7),λVB

andλG should have shown similar behavior if there were the same relation between theaverage
normalized variational stochastic complexity and the average generalization error as in Bayesian
learning. These results imply that in variational Bayesian learning, unlike in Bayesian learning, the
coefficient of the average generalization error differs from that of the average variational stochastic
complexityEXn[F(Xn)].

8. Discussion

In this paper, we showed upper and lower bounds of the variational stochastic complexity of the
Gaussian mixture models. We discuss five topics.

8.1 Lower Bound

Let us discuss the lower bound. The lower bound in eq.(17) can be improved to give

F0(X
n) ≥ λ logn+nHn(θvb)+C1, (30)

if the consistency of the variational estimatorθvb is proven. Note that the coefficientλ is the same
as that of the upper bound given in Theorem 3. The consistency means that the mixing coefficient
ak does not tend to zero for at leastK0 components and they are always used to learn theK0 true
components when the sample sizen is sufficiently large. We conjecture that the variational estimator
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Figure 1: The coefficients of the stochastic complexities for the numberK of components with
K0 = 2, φ0 = 1 and (a)M = 1, (b) M = 10. The solid line isλ of the variational Bayes
eq.(18), the dashed line is the upper bound ofλ in true Bayesian learning eq.(32) and the
dotted line isλBIC of the BIC eq.(19). The open squares with error bars are the results
of the averages ofλVB eq.(28) and the full squares with error bars are the results of the
averages ofλG eq.(29). The error bars show 95% confidence intervals.

is consistent and the inequality (30) holds for the Gaussian mixture model. However, little has
been known so far about the behavior of the variational estimator. Analyzing its behavior and
investigating the consistency are important undertakings.

Furthermore, on the left hand side of eq.(17),nHn(θvb) is a kind of training error. If the maxi-
mum likelihood estimator exists, it is lower bounded by

min
θ

nHn(θ) = min
θ

n

∑
i=1

log
p(xi |θ0)

p(xi |θ)
,

which is the (maximum) likelihood ratio statistic with sign inversion. It is known that thelikelihood
ratio statistics of some non-regular models diverge to infinity asn grows and that the divergence
of the likelihood ratio makes the generalization performance worse in the maximumlikelihood
estimation. In the case of the Gaussian mixture model, it is conjectured that the likelihood ratio
diverges in the order of log logn (Hartigan, 1985). Although this has not been proved, it suggests that
the upper bound in eq.(17) is tight. More specifically, if eq.(30) holds and the order of divergence of
the likelihood ratio is smaller than logn, that is,EXn[minθ nHn(θ)] = o(logn), then it immediately
follows from Corollary 4 that

EXn[F0(X
n)]/ logn→ λ (n→ ∞). (31)

This was suggested also by the experimental results presented in the previous section.

8.2 Comparison to Bayesian Learning

We compare the normalized variational stochastic complexity shown in Theorem3 with the one
in true Bayesian learning assuming eq.(31) holds. The Bayesian stochasticcomplexities of several
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non-regular models have been clarified in some recent studies. For the Gaussian mixture model
in particular, the following upper bound on the coefficient of the averagenormalized Bayesian
stochastic complexityEXn[F0(Xn)] described as eq.(6) is known (Watanabe et al., 2004),

λ ≤ (MK0 +K−1)/2, (32)

under the same condition about the true distribution and the model as the condition (i) described in
Section 5 and certain conditions about the prior distribution. Since these conditions about the prior
are satisfied by puttingφ0 = 1 in the condition (ii) of Theorem 3, we can compare the stochastic
complexities in this case. Puttingφ0 = 1 in eq.(18), we have

λ = K−K0 +(MK0 +K0−1)/2. (33)

Let us compare thisλ of variational Bayesian learning toλ in eq.(32) of true Bayesian learning.
For anyM,

λ−λ ≥ (K−K0)/2

holds. This implies that the more redundant components the model has, the morevariational
Bayesian learning differs from true Bayesian learning. However the difference(K−K0)/2 is rather
small since it is independent of the dimensionM of the input space. This implies the variational
posterior is close to the true Bayesian posterior. Moreover, it is noted thatwhenM = 1, that is, the
input is one-dimensional, 2λ is equal to 2K −1 that is the number of the parameters of the model.
Hence the Bayesian information criterion (BIC) (Schwarz, 1978) and theminimum description
length (MDL) (Rissanen, 1986) correspond toλ logn whenM = 1.

Figure 1 shows the coefficientsλ, λBIC and the upper bound of the coefficientλ of the Bayesian
stochastic complexity with respect to the numberK of components for the case whenK0 = 2, φ0 = 1
and (a)M = 1 and (b)M = 10. In (a) of Figure 1,λ (solid line) andλBIC (dotted line) coincide.
It is noted thatλ of variational Bayesian learning eq.(33) relatively approaches the upper bound in
Bayesian learning eq.(32) and becomes far smaller than that of BIC eq.(19) as the dimensionM
becomes larger.

8.3 Stochastic Complexity and Generalization

We have discussed how much the variational posterior differs from the true Bayesian posterior
by comparing the stochastic complexities. In variational Bayesian learning, there is no apparent
relationship between the average variational stochastic complexity and the average generalization
error unlike in Bayesian learning where their leading terms are given by thesame coefficientλ as in
eq.(6) and eq.(7). This was also observed experimentally by the different behavior ofλVB andλG

in the previous section. Hence, assessing the generalization performance of the Gaussian mixture
model in variational Bayesian learning is an important issue to be addressed. The term(logCQ(θ)+
S(Xn)) in Lemma 6 may diverge to infinity as the likelihood ratio statistic in the maximum likelihood
method as mentioned above. It would be important to clarify how this term affects the generalization
performance in variational Bayesian learning.

8.4 Effect of Hyperparameters

Let us discuss the effects of the hyperparameters. From Theorem 3, only the hyperparameterφ0

affects the leading term of the normalized variational stochastic complexityF0(Xn) and the other
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hyperparametersξ0 andν0 affect only the lower order terms. This is due to the influence of the
hyperparameters on the prior probability density around the true parameters. Consider the case
whenK0 < K. In this case, for a parameter that gives the true distribution, either of the followings
holds, ak = 0 for somek or µi = µj for some pair(i, j). The prior distributionϕ(a) given by
eq.(15) can drastically change the probability density around the points where ak = 0 for somek
by changing the hyperparameterφ0 while the prior distributionϕ(µ) given by eq.(16) always takes
positive values for any values of the hyperparametersξ0 andν0.

We also point out that Theorem 3 shows how the hyperparameterφ0 influence variational
Bayesian learning. The coefficientsλ and λ in eq.(18) are divided into two cases. These cases
correspond to whetherφ0 ≤ (M + 1)/2 holds, indicating that the influence of the hyperparameter
φ0 in the priorϕ(a) appears depending on the dimensionM of the input space. More specifically,
only whenφ0 ≤ (M +1)/2, the prior distribution reduces redundant components; otherwise it uses
all the components.

8.5 Applications of the Bounds

Finally, let us give examples of how to use the theoretical bounds given in Theorem 3 and discuss
issues to be addressed.

Comparing the theoretical bounds in eq.(17) with experimental results, one can investigate the
properties of the actual iterative algorithm in variational Bayesian learning. Although the actual
iterative algorithm gives the variational posterior that satisfies eq.(9) andeq.(10), it may converge to
local minima of the functionalF [q]. Remember that eq.(9) and eq.(10) are just a necessary condition
for F [q] to be minimized. One can examine experimentally whether the algorithm convergesto the
optimal variational posterior that minimizes the functional instead of local minima bycomparing
the experimental results with the theoretical bounds. Moreover, the theoretical bounds would enable
us to compare the accuracy of variational Bayesian learning with that of theLaplace approximation
or the MCMC method. However, in order to make such comparisons more accurately, one will need
not only the leading term but also the lower order terms of the asymptotic form of the variational
stochastic complexity. Giving the more accurate asymptotic form is important forsuch comparisons.

The Gaussian mixture model is included in general exponential family models withhidden vari-
ables (Sato, 2001) and furthermore, in general graphical models to which the variational Bayesian
framework can be applied (Attias, 1999). Analyzing the variational stochastic complexities in the
more general cases would be an important undertaking.

Furthermore, as mentioned in Section 4, the variational stochastic complexityF(Xn) is used as a
criterion for model selection in variational Bayesian learning. Theorem 3 shows how accurately one
can estimate the Bayesian stochastic complexityF(Xn), the negative log of the Bayesian evidence,
by its upper boundF(Xn). By the above comparison to Bayesian learning, it is expected thatF(Xn)
provides a rather good approximation toF(Xn). This gives a theoretical justification for its use in
model selection. Our result is important for developing effective model selection methods using
F(Xn).

9. Conclusion

In this paper, we derived upper and lower bounds of the variational stochastic complexity of the
Gaussian mixture models. Using the derived bounds, we discussed the influence of the hyperpa-
rameters and the accuracy of variational Bayesian learning as an approximation of true Bayesian
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learning. These bounds can be used for evaluation and optimization of learning algorithms based
on the variational Bayesian approximation.
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Appendix A.

Proof of Lemma 2

Proof From the restriction of the variational Bayesian approximation eq.(8),F(Xn) can be divided
into two terms,

F(Xn) = min
r,Q

[

〈log
r(θ|Xn)

ϕ(θ)
〉r(θ|Xn) + 〈log

Q(Yn|Xn)

p(Xn,Yn|θ)
〉r(θ|Xn)Q(Yn|Xn)

]

.

Since the optimal variational posteriors satisfy eq.(9) and eq.(10), if the variational posteriorQ(Yn|Xn)
is optimized, then

〈log
Q(Yn|Xn)

p(Xn,Yn|θ)
〉r(θ|Xn)Q(Yn|Xn) = − logCQ

holds. Thus we obtain eq.(12).

Proof of Lemma 5

Proof Calculating the Kullback information between the posterior and the prior, we obtain

K(r(a|a)||ϕ(a)) =
K

∑
k=1

h(nk)−nΨ(n+Kφ0)+ logΓ(n+Kφ0)+ log
Γ(φ0)

K

Γ(Kφ0)
, (34)

where we use the notationh(x) = xΨ(x+φ0)− logΓ(x+φ0). Similarly,

K(r(µ|µ)||ϕ(µ)) =
K

∑
k=1

M
2

log
nk +ξ0

ξ0
− KM

2
+

1
2

ξ0

K

∑
k=1

{ M
nk +ξ0

+‖µk−ν0‖2}. (35)

By using inequalities (20) and (21), we obtain

h(x) = −(φ0−
1
2
) log(x+φ0)+x+O(1).

Thus we have, from eqs.(34),(35) andK(r(θ|θ)||ϕ(θ)) = K(r(a|a)||ϕ(a))+K(r(µ|µ)||ϕ(µ)),

∣

∣

∣
K(r(θ|θ)||ϕ(θ))−

{

G(a)+
ξ0

2

K

∑
k=1

‖µk−ν0‖2
}∣

∣

∣
≤C,
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whereC is a constant since1
n+ξ0

< 1
nk+ξ0

< 1
ξ0

.

Proof of Lemma 6

Proof

CQ(θ) =
n

∏
i=1

∑
yi

exp〈logp(xi ,yi |θ)〉r(θ|θ)

=
n

∏
i=1

K

∑
k=1

1
√

2πM exp{Ψ(nk +φ0)−Ψ(n+Kφ0)−
‖xi −µk‖2

2
− M

2
1

nk +ξ0
}.

(36)

Thus we have eq.(22).
Using again the inequalities (20), we obtain

− logCQ(θ) ≤−
n

∑
i=1

log
[ K

∑
k=1

ak√
2πM exp{−‖xi −µk‖2

2
− M +2

2(nk +min{φ0,ξ0})
}
]

− n
2(n+Kφ0)

,

and

− logCQ(θ) ≥−
n

∑
i=1

log
[ K

∑
k=1

ak√
2πM exp{−‖xi −µk‖2

2
}
]

− n
n+Kφ0

,

which give the upper and lower bounds in eq.(23) respectively.
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