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Abstract

Bayesian learning has been widely used and proved to betiefée many data modeling prob-
lems. However, computations involved in it require hugesasd generally cannot be performed
exactly. The variational Bayesian approach, proposed approximation of Bayesian learning,
has provided computational tractability and good genzaititin performance in many applications.
The properties and capabilities of variational Bayesiamrimg itself have not been clarified
yet. It is still unknown how good approximation the variati Bayesian approach can achieve.
In this paper, we discuss variational Bayesian learningaisSian mixture models and derive up-
per and lower bounds of variational stochastic complexitighe variational stochastic complexity,
which corresponds to the minimum variational free energyafower bound of the Bayesian evi-
dence, not only becomes important in addressing the moldsitie problem, but also enables us
to discuss the accuracy of the variational Bayesian appraa@n approximation of true Bayesian
learning.
Keywords: Gaussian mixture model, variational Bayesian learniraglsistic complexity

1. Introduction

A Gaussian mixture model is a learning machine which estimates the target titpldmnsity
by the sum of normal distributions. This learning machine is widely used edlyaa statistical
pattern recognition and data clustering. In spite of wide range of its applsatits properties
have not yet been made clear enough. This is because the Gaussiae migtiel is a non-regular
statistical model. A statistical model is regular if and only if a set of conditioefefred to as
“regularity conditions”) that ensure the asymptotic normality of the maximum liketirestimator
is satisfied. The regularity conditions are not satisfied for mixture modetsusedhe parameters
are not identifiable, in other words, the mapping from parameters to glitpdistributions is not
one-to-one. Other than mixture models, statistical models with hidden varialbsas hidden
Markov models and Bayesian networks fall into the class of non-reguldelso

Recently, a lot of attentions has been paid to the non-regular models. ksRaylearning,
mathematical foundation for analyzing non-regular models was establistie@nvalgebraic ge-
ometrical method (Watanabe, 2001). The Bayesian stochastic complexities wrarginal like-
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lihoods of several non-regular models have been clarified in sometrsteties (Yamazaki and
Watanabe, 2003a,b). The Bayesian framework provides better ¢jeagoa performance in non-
regular models than the maximum likelihood (ML) method that tends to overfit tlae da

In the Bayesian framework, rather than learning a single model, one cosnihetedistribu-
tion over all possible parameter values and considers an ensemble wigttrésghe posterior
distribution. However, computing the Bayesian posterior can seldom lberped exactly and re-
guires some approximations. Well-known approximate methods include Mahiainr Monte Carlo
(MCMC) methods and the Laplace approximation. The former attempts to finckéoe gosterior
distribution but typically requires huge computational resources. The tgigpximates the poste-
rior distribution by a Gaussian distribution, which can be insufficient for @gdontaining hidden
variables.

The variational Bayesian (VB) framework was proposed as anotlgogimation for com-
putations in the models with hidden variables (Attias, 1999; Ghahramani aalgd Z80). This
framework provides computationally tractable posterior distributions ovdritieen variables and
the parameters with an iterative algorithm. The variational Bayesian frarkdvesrbeen applied
to various real-world data modeling problems and empirically proved to be lootiputational
tractable and generalize well.

The properties of variational Bayesian learning remain unclear fromaadtieal stand point.
Although the variational Bayesian framework is an approximation, quedti@nBow accurately it
approximates the true distribution have yet to be answered.

In this paper, we focus on variational Bayesian learning of Gaussian mirtodels. As the
main contribution, we derive asymptotic upper and lower bounds on thdigaahstochastic com-
plexity. It is shown that the variational stochastic complexity is smaller than mlaegtatistical
models, so the advantage of Bayesian learning still remains in variationakBaylearning. The
variational stochastic complexity, which corresponds to the minimum variatice®lenergy and
a lower bound of the Bayesian evidence, is an important quantity for moletisa. Giving the
asymptotic bounds on it also contributes to the following two issues. One is theaay of vari-
ational Bayesian learning as an approximation method since the variatioclastic complexity
shows the distance from the variational posterior distribution to the truesgayeosterior distri-
bution in terms of Kullback information. Another is the influence of the hypenpaters on the
learning process. Since the variational Bayesian algorithm minimizes thd¢ioaalafree energy,
the derived bounds indicate how the hyperparameters influence thanpanocess. Our results
indicate how to determine the hyperparameter values before the learnoespro

We consider the case in which the true distribution is contained in the learnea,rirodther
words, the model has redundant components to attain the true distributiaty.zfyg the variational
stochastic complexity in this case is most valuable for comparing variationalsgaylearning with
true Bayesian learning. This is because the advantage of Bayesiaimdeimrtypical in this case
(Watanabe, 2001). Furthermore, this analysis is necessary andigstseraddressing the model
selection and hypothesis testing problems.

This paper is organized as follows. In Section 2, the Gaussian mixture nsololeéfly intro-
duced. In Section 3, we describe Bayesian learning. In Section 4, tiadioaal Bayesian frame-
work is outlined and the variational stochastic complexity is defined. In Sefgtiae state the main
theorem of this paper. The main theorem is proved in Section 6. In Sectiwa &xperimentally
examine the quality of the bounds given in the main theorem. Discussion acldisions follow in
Section 8 and Section 9.
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2. Gaussian Mixture Models
Denote byg(x|y, %) a density function of atM-dimensional normal distribution whose mean is
1€ RM and variance-covariance matrix Isc RM*M, A Gaussian mixture moded(x|8) of an

M-dimensional inpuk € RV with a parameter vectd is defined by

p(x|8) = Z akg(X| M, Zk)

where integeK is the number of components aféy|ax > 0,5K_; ax = 1} is the set of mixing
proportions. The paramet8rof the model i = {a, ki, Zk}f_;.

In some applications, the parameter is restricted to the means of each comnpoténis as-
sumed that there is no correlation between each input dimension. In thjsteaseodel is written
by

K 2
a X—
px8) = 5 e 1 BT, )
21072 %k
k
whereoy > 0 is a constant.

In this paper, we consider this type eq.(1) of Gaussian mixture models infiaéoaal Bayesian
framework and show upper and lower bounds of the variational stocltasnplexity in Theorem
3.

The Gaussian mixture model can be rewritten as follows using a hiddenlegrialgy®, - - -, y¥) €
{(1707'"70)7(0117'"70)7"'>(0707"'71)}’

K

Ll
p(xy|8) = ﬂ{ p{—‘XZG%k’ }}

k=1 2-,-[0-2
The hidden variablg is not observed and is representing the component from which the datum
generated. If the datumis from thekth component, they = 1, if otherwiseyk = 0. And

> p(x,y[8) = p(x(6)
y

holds where the sum ovgranges over all possible values of the hidden variable.

The Gaussian mixture model is a non-regular statistical model, since the parsuae non-
identifiable. More specifically, if the true distribution can be realized by a mwile the smaller
number of components, the true parameter is not a point but an analytigtsedingularities. If
the parameters are non-identifiable, the usual asymptotic theory of retatiatical models cannot
be applied. Some studies have revealed that Gaussian mixture models hawdiftgrent prop-
erties from those of regular statistical models. In particular, the Gaussidarmixodel given by
eg.(1) has been studied as a prototype of non-regular models in thef tagem@aximum likelihood
estimation(Hartigan, 1985; Dacunha-Castelle and Gassiat, 1997).

3. Bayesian Learning

Supposen training sampleX" = {xy,-- -, X, } are independently and identically taken from the true
distribution pp(Xx). In Bayesian learning of a modelx|8) whose parameter 8, first, the prior

627



WATANABE AND WATANABE

distribution$(8) on the parameted is set. Then the posterior distributig{8|X") is computed
from the given data set and the prior by

p(BIX")

rle|’9

whereZ(X") is the normalization constant that is also known as the marginal likelihood or the
Bayesian evidence of the data ¥é&t(Mackay, 1992).

The Bayesian predictive distributige{x|X") is given by averaging the model over the posterior
distribution as follows,

p(x|X™) /p x|0) p(8]X")d6

and its generalization error can be measured by the Kullback informatiortfretrue distributiort,

K(po(X)[|p(x|X")) /p X|x21)dx

The Bayesian stochastic complexityX") is defined by
F(X") = —logz(X"), )

which is also called the free energy and is important in most data modeling prebiRractically, it
is used as a criterion by which the learning model is selected and the hyqertars in the prior
are optimized (Akaike, 1980; Schwarz, 1978).

The Bayesian posterior can be rewritten as

1
BIX") = exp(—nHn(0))d(0),
whereH,(0) is the empirical Kullback information,
120 po(X)
=N lo 3
ni; 956 3)
andZy(X") is the normalization constant. Let
S(X™) = 21'09 Po(X
and define the normalized Bayesian stochastic compl&x{¥") b
R(X") = ~10gZo(X")
F(X") = S(X). (4)

1. Throughout this paper, we use the notatiig(x)||p(x)) for the Kullback information from a distributiog(x) to a
distribution p(x), that is,
q(x)
x)|IP(x) / qlog 17 oY)
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It is noted that the empirical entrof§(X") does not depend on the mod#lx|8). Therefore
minimization ofF (X") is equivalent to that ofp(X").
Let Exn[-] denote the expectation over all sets of training samples. Then it followsdp)
that
Exn[F(X") —Fo(X™)] =nS
whereS= — [ po(x)logpo(x)dx is the entropy. There is the following relationship between the
average Bayesian stochastic complexity and the average generalizatighein et al., 1990),

Exn[K(Po(X)|[P(XX™)] = Exnna[F(X™H)] —Exo[F(X")] - S
= Exoa[Fo(X™H)] — Exn[Fo(X")]. ()

Recently, in Bayesian learning, an advanced mathematical method for iagahan-regular
models was established(Watanabe, 2001), which enabled us to clarifgyimpiatic behavior of
the Bayesian stochastic complexity of non-regular models. More specifibgllysing concepts
in algebraic analysis, it was proved that the average normalized Bay&sigimastic complexity
defined byExn[Fo(X")] has the following asymptotic form,

Exn[Fo(X")] ~ Alogn— (m—1)loglogn+ O(1), (6)
whereA andm are the rational number and the natural number respectively which smeniieed
by the singularities of the true parameter. In regular statistical modglis, @qual to the number
of parameters anth = 1, whereas in non-regular models such as Gaussian mixture models, 2
is not larger than the number of parameters eng 1. This means non-regular models have an
advantage in Bayesian learning. From eq.(5), if the asymptotic form ofubeage normalized
Bayesian stochastic complexity is given by eq.(6), the average gendaaliearor is given by

ExalK (o) [pOX)] = 2 o). @

Since the coefficierk is proportional to the average generalization error, Bayesian learningris
suitable for non-regular models than the maximum likelihood (ML) method.

However, in order to carry out Bayesian learning practically, one coesghe Bayesian stochas-
tic complexity or the predictive distribution by integrating over the posterioridigion, which
typically cannot be performed analytically.

Hence, approximations must be made. The Laplace approximation is a welilara@ simple
method that approximates the posterior distribution by a Gaussian distributignafproach gives
reasonable approximation in the case of regular statistical models whasgigresconverge to
normal distributions as the sample sizéends to infinity. In contrast, posterior distributions of
non-regular models do not converge to normal distributions in genes, &n tends to infinity.
Therefore, the Laplace approximation can be insufficient for noolaegnodels. Markov chain
Monte Carlo (MCMC) method can provide a better approximation. It attemptarplsarom the
exact posterior distribution but typically requires vast computationalress.

As another approximation, the variational Bayesian framework was pegp(Attias, 1999;
Beal, 2003; Ghahramani and Beal, 2000).

4. Variational Bayesian L earning

In this section, we outline the variational Bayesian framework and defineattetional stochastic
complexity.
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4.1 The Variational Bayesian Framework

Using the complete likelihood of the dafX",Y"}, with the corresponding hidden variabé% =
{y1,---,¥n}, we can rewrite the Bayesian stochastic complexity eq.(2) as

F(x7) = —log [ 5 6(0) ] pix.ye)ce
_ —Iog/;p(x”,Y”,G)de

where the sum over" ranges over all possible values of all hidden variables.

The variational Bayesian framework starts by upper bounding the Baystsiehastic complex-
ity. For an arbitrary conditional distributiag(Y", 6/X") on the hidden variables and the parameters,
the Bayesian stochastic complexity can be upper bounded by applyirenkeimequality,

q(Y", 8|x")

p(x,yn.6)%

FXY) < ;/qY” 8]X" log

= F[qg).

This inequality becomes an equality if and onlygify",6/X") = p(Y",0|X"), that is,q(Y",8|X")
equals the Bayesian posterior distribution. This means that the smaller thhah& [q] is, the
closer the distribution(Y", 8|X") is to the true Bayesian posterior distribution. The functidflaj
is called the variational free energy.

The variational Bayesian approach makes an approximation to ensurgatationally tractable
posterior. More specifically, assuming the parameters and the hiddeblearare conditionally
independent of each other, the variational Bayesian approach te#tecset ofj(Y", 0| X") to dis-
tributions that have the form

q(Y",81X") = Q(Y"X")r(8]X"), (8)

whereQ(Y"|X") andr(6|X") are probability distributions over the hidden variables and the param-
eters respectively. The distributiar{Y",6|X") that minimizes the functiondf|[qg] is termed the
optimal variational posterior and generally differs from the true Baygsiesterior.

Minimization of the functionaF[g] with respect to the distributior®(Y"|X") andr (8|X") can
be performed by using variational methods. Solving the minimization probleer tinel constraints
Jr(81X")de =1 andyyva Q(Y"|X") = 1 gives the following theorem. The proof is well-known(Beal,
2003; Sato, 2001), thus it is omitted in this paper.

Theorem 1 If the functionalF|[q] is minimized under the constraint eq.(8) then the variational
posteriors, (6]X") and QY"|X"), satisfy

r(BIX") = - $(8) exp(Iog PIX". Y"IB)) ey (©)
and 1
Q(Y"X™) = @expdog P(X",Y70)); gxm)» (10)

where G and Gy are the normalization constants.

2. Hereafter for an arbitrary distributigs(x), we use the notatioi) 5 for the expected value ovex(x).
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Note that eq.(9) and eq.(10) give only the necessary condition(®X") andQ(Y"|X") mini-
mize the functionaF[g]. The variational posteriors that satisfy eq.(9) and eq.(10) are sshlgh
an iterative algorithm. It is known that this algorithm is a natural gradient ndettfeen the model
is in the general exponential family of models with hidden variables (Satd,)200

4.2 Stochastic Complexity of Variational Bayes

We define the variational stochastic compleXtyX") by the minimum value of the function&lq]
attained by the above optimal variational posteriors, that is ,

F(X") = rp(i?nf[q].

The variational stochastic complex®(X") gives an estimate (upper bound) for the true Bayesian
stochastic complexityr (X"), which is the minus log evidence. TherefokgX") is used for the
model selection in variational Bayesian learning(Beal, 2003). Moredkerdifference between
F(X") and the Bayesian stochastic compleXtyX") is the Kullback information from the optimal
variational posterior to the true posterior. That is

F(X") —F(X") = minK(q(Y", 81X") || p(Y", 8X")).

Hence, comparison betwe&{X") andF (X") shows the accuracy of the variational Bayesian ap-
proach as an approximation of true Bayesian learning.
We define the normalized variational stochastic complekig§X") by

Fo(X") =F(X") —g(X"). (11)
From Theorem 1, the following lemma is obtained. The proof is given in Agpen
Lemma 2

Fo(X") = r(rg&q){K(f(GIX”)HdJ(G)) — (logCq+S(X")}, (12)

where
Co= ;expdog P(X™,Y"(0))(g/xn)-

The variational posteriong 8| X") andQ(Y"|X") that satisfy eq.(9) and eq.(10) are parameter-
ized by the variational parameteédefined by

8= (B)r(exn),

if the modelp(x,y|0) is included in the exponential family(Beal, 2003; Ghahramani and Bea)200
Then it is noted tha€q in €q.(12) is also parameterized By Therefore, henceforth we denote
r(8|X") andCq asr (8]8) andCq(8) when they are regarded as functions of the variational parameter
6.

We define the variational estimat@y, of 8 by the variational paramet@rthat attains the mini-
mum value of the normalized variational stochastic complexigX"). By this definition, Lemma
2 claims that

Byp = argmin{K(r(8[6)||¢(6)) — (logCq() + S(X"))}. (13)
]
In variational Bayesian learning, the variational param8ter updated iteratively to find the

optimal solutionB,. Therefore, our aim is to e\ialuate the minimum value of the right hand side of
ed.(13) as a function of the variational paramé&er
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5. Main Results

In this section, we describe two conditions and give the upper and lowsrdsaf the normalized
variational stochastic complexity in Theorem 3.
We assume the following conditions.

(i) The true distributionpy(X) is anM-dimensional Gaussian mixture mod#k|6y) which has
Ko components and the parameigr= {a;, i 1124,

K * Il* 2
X|0g) = E exp— )
P(x) K=1 \/2T[N| 3 2 )

wherex, |y € RM. And suppose that the true distribution can be realized by the model, that is,
the modelp(x|6) hasK components,

0) = E [ — H 14
PO =2, it R ¢

andK > Kg holds.

(i) The prior of the parameters is the product of the following two distributioma = {a}K_,

pa) = (K@) 5 as (15)
M(qo)" 4
|-| @ exp(_zo||uk2—vOH2)7 (16)

where&y > 0,vg € RM andgy > 0 are constants called hyperparameters. These are Dirichlet
and normal distributions respectively. They are the conjugate prior distits and are often
used in variational Bayesian learning of Gaussian mixture models.

Under these conditions, we prove the following theorem. The proof wilkapm the next section.

Theorem 3 (Main Result) Assume the conditions (i) and (ii). Then the normalized variational
stochastic complexitlf o(X") defined by eq.(11) satisfies

Alogn+ nHy(Byp) +Cp < Fo(X") < Alogn+Cy, (17)

with probability 1 for an arbitrary natural number n where ©; are constants independent of n
and the coefficients, A are given by

K—1)g+ M < MLy,
)\—{ $\/IK+K )ipo 2 ((r\ﬂo 2

(g0 > "3,
[ (K Ko) o Mool (< M1
A gl (@ ). 49

Taking expectation over all sets of training samples, we obtain the followirailany.
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Corollary 4 Assume the conditions (i) and (ii). Then the average of the normalizedticaal
stochastic complexitlf o(X") satisfies

Alogn+ Exn[nHn(Bup)] +C1 < Exn[Fo(X™)] < Alogn+Co.

Remark. The following bounds for the variational stochastic compleRfX") = Fo(X") + S(X")
are immediately obtained from Theorem 3 and Corollary 4,

S(X™) +Alogn+nHp(Byp) +C1 < F(X™) < S(X™) +Alogn+Cy,

and
NS+ Alogn+ Exna[nHn(Bub)] + C1 < Exn[F(X™)] < nS+Alogn+Cs,

whereS(X") = — 31 ; log p(xi|Bo) is the empirical entropy anBi= — | p(x|6g) log p(x|6p)dxis the
entropy.

Since the dimension of the paramees MK + K — 1, the penalty term in the Bayesian infor-
mation criterion (BIC) (Schwarz, 1978) is given By c lognh where

MK+K -1
—

Note that, unlike for regular statistical models, the advantage of Bayesiaringdor non-regular
models is demonstrated by the asymptotic analysis as seen in eq.(6) and Buge@tem 3 claims
that the coefficienh of logn is smaller thar\g,c whengy < (M +1)/2. This means the normal-
ized variational stochastic complexiBy(X") becomes smaller than the BIC and implies that the
advantage of non-regular models in Bayesian learning still remains in vaahBayesian learning.
Theorem 3 also shows how the hyperparameters affect the learnicgsgrand implies that the
hyperparameteqy is the only hyperparameter that the leading term of the normalized variational
stochastic complexitfo(X") depends on. The effects of the hyperparameters are discussed in
Section 8.
In the condition (i), we assume that the true distribution is contained in the fraodel Ko <
K). This assumption is necessary for assessing model selection or hypadsting methods and
for developing a new method for these tasks. In real-world applicatioastuk distribution might
not be represented by any model with finite components. Also if the model islevmpough to
almost contain the true distribution with finite training samples, we need to coris&lease when
the model is redundant.

ABic = (19)

6. Proof of Theorem 3

In this section, we prove Theorem 3. First of all, we derive the variatipoateriorr(6|X"),
Q(Y"|X") and the variational paramet@for the Gaussian mixture model given by eq.(14).

6.1 Variational Posterior for Gaussian Mixture Model

For the complete-data s€X",Y"} = {(x1,¥1), -, (Xn,¥n) }, let
o AR 1o
Y= qumxms M= iZlyik and vg = Fki;yr)q’
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Wherey}( = 1 if ith datumy; is from thekth component, if otherwisqz,ik = 0. The variablen is
the expected number of times data come fromkthecomponent andy is the mean of them. Note
that the variablesy andvy satisfy the constraintgk_, ny = nandyK_; g = S, x.. From eq.(9)
and the respective prior eq.(15) and eq.(16), the variational post€éipt") = r(a/X")r(yX") is
obtained as the product of the following two distributions,

F(aX™) = r(n+Kag) IEI a(N+Kqp)—
M T A+ Kao)) ¢}
and « ,
X = [ e oxp( L B
k=1, / 2ri0% 20
where g
_ Nk+@ _ NkVk + ¢oVo
= , = and -
n+K@' ¢ nm+&’ W= Nk + &o

From eq.(10), the variational posteriQ(Y"|X") is given by

Xi 2 M
1% 2Uk|| u M g2+

QUY"IX™) CQr|exp[yk{wnk+<po W(n-+Keo) - e

N+ &o
whereW(x) = I'(x) /I (x) is the di-gamma(psi) function and we used
(loga)r(ajxm) = W(nk+ @o) — P(n+Kao).

The variational paramet@is given by8 = (8)gjxn) = {a. Fi}k_,. Itis noted that (8]X") and
Q(Y"|X") are parameterized Wy sinceny can be replaced by usiray = ;‘iﬁm Henceforth, we
denoter (6]X") andCq asr(8]6) andCq(6).

6.2 Lemmas

Before proving Theorem 3, we show two lemmas where the two t&im®|6)||$(6)) and(logCo(8) +
S(XM)) in Lemma 2 are respectively evaluated. In the proofs (put in Appendittjeofwo lemmas,
we use inequalities on the di-gamma functié(x) and the log-gamma function légx), for x > 0
(Alzer, 1997), L L

o < logx—W(x) < " (20)
and

0<logr(x) — {(x—f)logx x+fI092r[}< 11 21)

e

The inequalities (20) ensure that substitutingddgr ¥(x) only contributes additive constant terms
to the normalized variational stochastic complexity. The substitution fdr(®gis given by eq.(21)
as well.

Lemmab
E K
K(r(B[B)l16(8) ~{6@)+ 7 5 [Ac—vol?}| <C.
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holds where C is a constant and the functio@ofa = {a}_, is defined by

. MK+K-1 M 1. K
G@) = ————"| = (@p—-2)}S loga.
(@) g 0Nt {5 ~(®-3)} 3 logk
Lemma 6

71112
109Co(6) Zlog[k_ srexp{ (o) —Win-kn) - PEBE B2 ] 22)

and B B N
nHR(6) — n+K(po —(logCq(B) + S(XM)) Snﬁn<e)_Mv (23)

where H,(0) is given by eq.(3) antli,(8) is defined by

P(%i|B0)
(®) = Zl gzk_ e L= L ——

2(ng+min{@o,¢0})

6.3 Upper and Lower Bounds

Now from the above lemmas, we prove Theorem 3 by showing the uppedizmd the lower bound
respectively.
(Proof of Theorem 3)
Proof First we show the upper bound in eq.(17).
From Lemma 2, Lemma 5 and Lemma 6, it follows that

Fo(X") < méinTn(é) +C, (24)

where

T(6) = G(a z [Pk — Vo> + nFin(B).

From eq.(24), it is noted that the function valuesTp(0) at specific points of the variational
paramete® give the upper bounds of the normalized variational stochastic complexity").
Hence, let us consider following two cases.

0 :
=2 (1<k<Ko—1), &=ak,/(K-Ko+1) (Ko<k<K),
B=W (1<k<Ko—1), Be=H, (Ko<k<K),

thennHn(8) < {8 holds and

— MK+K -1 1
TW(8) < %Iogm—CH—O(ﬁ),

whereC’ is a constant.
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an :
D
C n+Ke

(Ko+1<k<K),

Hk:p'ﬁ (1§k§K0)7 Bk = Vo (K0+1§k§K)7

thennHL(0) < (K — Ko)@o + minca + O(1/n) holds and

mlnk{ak

— MKo+Ko—1 1
To() < {(K —Ko)go -+~ >"°—=}logn-+C" +0( ),

whereC” is a constant.

From eq.(24), we obtain the upper bound in eq.(17).
Next we show the lower bound in eq.(17). It follows from Lemma 2, Lemmacdblaamma 6,

Fo(X™) > mln{G( a)} +nHy(Byp) —C — 1. (25)
If o> YL, then
G(a) > %Iogn—(%—%)KlogK (26)

since Jensen’s inequality yields trglf ; logay < Klog(# yit_; a) = Klog(%).
If go < M+, then

_ M M+1 1
G(@) = {(K-D@+ 7 }logn+ (—— — @)(K —1)loggo+O( ), (27)
sinceay > n+K holds for everyk and the constralnzk_lak 1 ensures thatogai| is bounded

by a constant mdependentlmfor at least one indek. From egs.(25),(26) and (27), we obtain the
lower bound in eq.(17).
[ |

7. Experiments

In order to examine the quality of the theoretical bounds given in Theorene3onducted ex-
periments of variational Bayesian learning for Gaussian mixture models Msiad andM = 10
dimensional synthetic data. A set of models with different number of commsite€ = 1,2,3,4,5)
was prepared. We applied the variational Bayesian algorithm to each osdglthe data set gener-
ated from the true distribution witlp = 2 components. The true distribution was set to a Gaussian
mixture model with the parametaf = a; = 1/2, i} = —2/+/M-Landy; = 2/v/M -1 wherel is the
M-dimensional vector whose all entries are 1. The hyperparametersateaty = 1.0,vo =0 and
&o = 1.0. In order to achieve the minimum in eq.(13), the initial value of the variatioameter
0 was set around the true parameter, that is, ar@urda, = 1/2,a,=0 (k> 3),; = M Po = 15
andp, = 0 (k> 3). Two sample sets with the size= 1000 anch = 100 were prepared. For each
data set, the normalized variational stochastic complexity (the inside of thesbraeq.(13)) was
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calculated when the variational Bayesian algorithm converged. Denogngsllts for respective
data sets by (X109 andF (X9, we calculated

Mg = (Fo(X'9%%) —Fo(X'%%))/log 10 (28)

to estimate the coefficient of the leading term of the normalized variationalagticlcomplexity
Fo(X"). We averaged the values ®fg over 100 draws of sample sets. The results of the averages
of Avg and the coefficienh given by eq.(18) are presented in Figure 1 against the nuihmsr
components for the case of k&)= 1 and (bM = 10. In Figure 1, an upper bound of the coefficient
of the Bayesian stochastic complexity axgic given by eq.(19) are also plotted for the comparison
of variational Bayesian learning with true Bayesian learning in the nextosecThe variational
Bayesian algorithm gavkyg that coincide with the coefficient. This implies the upper bound in
eq.(17) is tight.

We also calculated the generalization error definel (1y(x|8o)||{P(X|8) ) (g)xn) ), Where(p(x|6)) gjxn)
is the predictive distribution in variational Bayesian learning. In the caskeofzaussian mixture

model, it is given by(p(x|0)),exn) =58, exp(- Ix= “k” ). The generalization error,

= /7(1+72 2(1+02)

multiplied byn for scaling purposes, was approximated by

P(X|80)
- ZI g-—Pl%) (29)

X \6 r(8Xm)

with n" = 10000 test dat@q} ' ; generated from the true distribution. The results of the averages
of Ag over 100 draws of the data sets with the size 1000 are also plotted in Figure 1. The
results of the averages af;z andAg showed different behavior. More specificallhg increased
little while Ay grew proportionally to the numbé¢ of components. From eq.(6) and eq.(®ys
andAg should have shown similar behavior if there were the same relation betweendtage
normalized variational stochastic complexity and the average generalizat@nas in Bayesian
learning. These results imply that in variational Bayesian learning, unlikaye&an learning, the
coefficient of the average generalization error differs from that®ftlrerage variational stochastic
complexityExa [F (X")].

8. Discussion

In this paper, we showed upper and lower bounds of the variationalasttc complexity of the
Gaussian mixture models. We discuss five topics.

8.1 Lower Bound

Let us discuss the lower bound. The lower bound in eq.(17) can be iegtowive
Fo(X") > Alogn+ nHy(Byp) +C, (30)

if the consistency of the variational estimafly, is proven. Note that the coefficieNtis the same

as that of the upper bound given in Theorem 3. The consistency mearthehmixing coefficient

ak does not tend to zero for at led§§ components and they are always used to learrKthieue
components when the sample sids sufficiently large. We conjecture that the variational estimator
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30 VB(Theoretical)

VB(Theoretical)
r Bayes -------- 1 Bayes -
BIC _ BIC -
6L VB(Experimental) —s— VB(Experimental) —e—
n*(generalization error) —s— 25 L n*(generalization error) —=—

20 -

15

coefficient of the leading term
»
coefficient of the leading term

10

1 15 2 25 3 3.5 4 4.5 5 1 15 2 25 3 3.5 4 4.5 5

number of components K number of components K
(a). M=1 (b). M=10

Figure 1: The coefficients of the stochastic complexities for the nurikbef components with
Ko=2, ¢ =1and (@M =1, (b)M = 10. The solid line is\ of the variational Bayes
eq.(18), the dashed line is the upper bound of true Bayesian learning eq.(32) and the
dotted line isAg|c of the BIC eq.(19). The open squares with error bars are the results
of the averages ofyg €q.(28) and the full squares with error bars are the results of the
averages Okg €q.(29). The error bars show 95% confidence intervals.

is consistent and the inequality (30) holds for the Gaussian mixture model. vdgwigtle has
been known so far about the behavior of the variational estimator. Ainglyts behavior and
investigating the consistency are important undertakings.

Furthermore, on the left hand side of eq.(1M,(8yp) is a kind of training error. If the maxi-
mum likelihood estimator exists, it is lower bounded by

P(xi|60)
p(xi|0) ’

which is the (maximum) likelihood ratio statistic with sign inversion. It is known thatikedihood

ratio statistics of some non-regular models diverge to infinity gsows and that the divergence

of the likelihood ratio makes the generalization performance worse in the maxirkeiihood
estimation. In the case of the Gaussian mixture model, it is conjectured that thieokice ratio
diverges in the order of log lag(Hartigan, 1985). Although this has not been proved, it suggests that
the upper bound in eq.(17) is tight. More specifically, if eq.(30) holds amdttier of divergence of

the likelihood ratio is smaller than log that is,Exn»[mingnHy(6)] = o(logn), then it immediately
follows from Corollary 4 that

n
melnan(e) = melni;Iog

Exo[Fo(X")]/logn— X (n— o). (31)

This was suggested also by the experimental results presented in theipres@ion.

8.2 Comparison to Bayesian Learning

We compare the normalized variational stochastic complexity shown in Thedneith the one
in true Bayesian learning assuming eq.(31) holds. The Bayesian stoad@siiexities of several

638



STOCHASTIC COMPLEXITIES OF GAUSSIAN MIXTURES

non-regular models have been clarified in some recent studies. For tesi@a mixture model
in particular, the following upper bound on the coefficient of the averagenalized Bayesian
stochastic complexitixn [Fo(X")] described as eq.(6) is known (Watanabe et al., 2004),

A < (MKo+K—1)/2, (32)

under the same condition about the true distribution and the model as the cofijitlescribed in
Section 5 and certain conditions about the prior distribution. Since thesktioms about the prior
are satisfied by puttingp = 1 in the condition (ii) of Theorem 3, we can compare the stochastic
complexities in this case. Putting = 1 in eq.(18), we have

A=K —Ko+ (MKo+Ko—1)/2. (33)

Let us compare thia of variational Bayesian learning foin eq.(32) of true Bayesian learning.
For anyM, B
A—A>(K—Kp)/2

holds. This implies that the more redundant components the model has, thevaniateonal
Bayesian learning differs from true Bayesian learning. However ttierdiice(K — Kp) /2 is rather
small since it is independent of the dimensidnof the input space. This implies the variational
posterior is close to the true Bayesian posterior. Moreover, it is notesvtieriM = 1, that is, the
input is one-dimensional Xis equal to X — 1 that is the number of the parameters of the model.
Hence the Bayesian information criterion (BIC) (Schwarz, 1978) andrtimmum description
length (MDL) (Rissanen, 1986) correspond\togn whenM = 1.

Figure 1 shows the coefficienks Agic and the upper bound of the coefficiénof the Bayesian
stochastic complexity with respect to the numiesf components for the case whkp=2, @ =1
and ()M =1 and (b)M = 10. In (a) of Figure 1) (solid line) and\gic (dotted line) coincide.
It is noted tha\ of variational Bayesian learning eq.(33) relatively approaches therugpind in
Bayesian learning eq.(32) and becomes far smaller than that of BIC paglie dimensioi
becomes larger.

8.3 Stochastic Complexity and Generalization

We have discussed how much the variational posterior differs from tleeBayesian posterior
by comparing the stochastic complexities. In variational Bayesian learniarg th no apparent
relationship between the average variational stochastic complexity anddtegavgeneralization
error unlike in Bayesian learning where their leading terms are given lsetine coefficierk as in
eg.(6) and eq.(7). This was also observed experimentally by the diffeedavior ofAyg andAg

in the previous section. Hence, assessing the generalization perfamiiie Gaussian mixture
model in variational Bayesian learning is an important issue to be addrédseterm(logCq(6) +
S(X™)) in Lemma 6 may diverge to infinity as the likelihood ratio statistic in the maximum likelihood
method as mentioned above. It would be important to clarify how this termtatfee generalization
performance in variational Bayesian learning.

8.4 Effect of Hyperparameters

Let us discuss the effects of the hyperparameters. From Theoreniy3the hyperparameteg
affects the leading term of the normalized variational stochastic complexit¢") and the other
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hyperparameter§, andvg affect only the lower order terms. This is due to the influence of the
hyperparameters on the prior probability density around the true paramefensider the case
whenKp < K. In this case, for a parameter that gives the true distribution, either obllogvings
holds, ax = 0 for somek or p = p; for some pair(i, j). The prior distribution¢(a) given by
eg.(15) can drastically change the probability density around the pointewaphe- 0 for somek

by changing the hyperparametgywhile the prior distributiorp(p) given by eq.(16) always takes
positive values for any values of the hyperparamefgandvy.

We also point out that Theorem 3 shows how the hyperparanggtarfluence variational
Bayesian learning. The coefficiemksand A in eq.(18) are divided into two cases. These cases
correspond to whetheg < (M + 1)/2 holds, indicating that the influence of the hyperparameter
@ in the priord(a) appears depending on the dimenshrof the input space. More specifically,
only whengy < (M +1)/2, the prior distribution reduces redundant components; otherwisesit use
all the components.

8.5 Applications of the Bounds

Finally, let us give examples of how to use the theoretical bounds giveheorém 3 and discuss
issues to be addressed.

Comparing the theoretical bounds in eq.(17) with experimental results,amnevestigate the
properties of the actual iterative algorithm in variational Bayesian learnkithough the actual
iterative algorithm gives the variational posterior that satisfies eq.(9¢qu{#l0), it may converge to
local minima of the functiondF[q]. Remember that eq.(9) and eq.(10) are just a necessary condition
for F[g] to be minimized. One can examine experimentally whether the algorithm convertes
optimal variational posterior that minimizes the functional instead of local minimeobhyparing
the experimental results with the theoretical bounds. Moreover, the tleadi®ounds would enable
us to compare the accuracy of variational Bayesian learning with that dfjlace approximation
or the MCMC method. However, in order to make such comparisons moresaelyyione will need
not only the leading term but also the lower order terms of the asymptotic fotheoariational
stochastic complexity. Giving the more accurate asymptotic form is importasmiébrcomparisons.

The Gaussian mixture model is included in general exponential family modelfididkn vari-
ables (Sato, 2001) and furthermore, in general graphical models td Wieéovariational Bayesian
framework can be applied (Attias, 1999). Analyzing the variational s&tghaomplexities in the
more general cases would be an important undertaking.

Furthermore, as mentioned in Section 4, the variational stochastic comptéXity is used as a
criterion for model selection in variational Bayesian learning. Theoreho®s how accurately one
can estimate the Bayesian stochastic complexity"), the negative log of the Bayesian evidence,
by its upper boundF (X"). By the above comparison to Bayesian learning, it is expectedFipét)
provides a rather good approximationR¢X"). This gives a theoretical justification for its use in
model selection. Our result is important for developing effective modet8en methods using
F(X™).

9. Conclusion

In this paper, we derived upper and lower bounds of the variationahastic complexity of the
Gaussian mixture models. Using the derived bounds, we discussed tlenadlof the hyperpa-
rameters and the accuracy of variational Bayesian learning as anxapation of true Bayesian
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learning. These bounds can be used for evaluation and optimization oinigaigorithms based
on the variational Bayesian approximation.
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Appendix A.
Proof of Lemma 2

Proof From the restriction of the variational Bayesian approximation ed8}"") can be divided

into two terms,
= r(6jxm) Q(Y"X™)
F(X") = rp(lgn <|097¢(e) >r(e\xn)+<097(xn Y”|e)> (O1XMQ (Y"|X”)]'

Since the optimal variational posteriors satisfy eq.(9) and eq.(10), if thetiemal posterioQ(Y"|X")
is optimized, then
Q(Y"[X")
(log 5 xmyajg) /riexmaurix = ~109Cq

holds. Thus we obtain eq.(12). |

Proof of Lemma5b

Proof Calculating the Kullback information between the posterior and the prior, t&rob

K(r(ala)||¢(a % h(ng) —nW( n+K(p0)+IogF(n+K(p0)+Iog [ (g0)" (34)
=1 M(Kgo)’

where we use the notatidrix) = XW(x+ @) — logl" (X+ o). Similarly,

K
o) - 3 o™ 0 Zeo 5 Mol @9

k=1

By using inequalities (20) and (21), we obtain
h(x) = — (@ — %)Iog(X+(Po)+X+O(1).
Thus we have, from eqgs.(34),(35) akiér (8/6)||6(6)) = K (r (a/a)||6(a)) + K (r (W) [ (W),

Kr@m9@) - {a@+ 2 3 In-vol2}| <c.
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whereC is a constant smcg,—;g < nk+§0 < ?10. |

Proof of Lemma 6
Pr oof

Co(®) = |‘12exp log p(x;,Yi[6)), ep)

% —Rd> M 1

= exp{W(nk+ @) — WY(n+Kqp) — - .
-ﬂéﬁ“ﬂ P{W(M+ o) — W(n+Kap) — A — D)
(36)
Thus we have eq.(22).
Using again the inequalities (20), we obtain
1% — uk|!2 M+2 n
—I )<=V : S
°9%e(®) Zl 09[ 0 P ~ o minle &) 2K
and ,
It Y L
—logCo(8) > — Zlog[ exp{ > }} Ko
which give the upper and lower bounds in eq.(23) respectively. [ |
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