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Abstract

We determine the asymptotic behaviour of the function camgblpy support vector machines
(SVM) and related algorithms that minimize a regularized&imal convex loss function in the
reproducing kernel Hilbert space of the Gaussian RBF keineghe situation where the number
of examples tends to infinity, the bandwidth of the Gaussieamdl tends to 0, and the regular-
ization parameter is held fixed. Non-asymptotic convergdmmunds to this limit in thé, sense
are provided, together with upper bounds on the classificairor that is shown to converge to
the Bayes risk, therefore proving the Bayes-consisteneywafriety of methods although the reg-
ularization term does not vanish. These results are p&tlguelevant to the one-class SVM, for
which the regularization can not vanish by constructiow, which is shown for the first time to be
a consistent density level set estimator.

Keywords: regularization, Gaussian kernel RKHS, one-class SVM, ewriess functions, kernel
density estimation

1. Introduction

Givennindependent and identically distributed (i.i.d.) cop(i¥s,Y1),..., (X, Yn) of a random vari-
able(X,Y) € RY x {—1,1}, we study in this paper the limit and consistency of learning algorithms
that solve the following problem:

1
argmm{nlchmfoqwﬂu f Hi(,} , ®

feHy
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VERT AND VERT

where@: R — R is a convex loss function andg is the reproducing kernel Hilbert space (RKHS)
of the normalized Gaussian radial basis function kernel (denoted simpiysiza kernel below):

_ 1 —[[x=x]?
kg (%, X) ._(\Enc)dexp<mz> , 0>0. (2)

This framework encompasses in particular the classical support veatbimedSVM) (Boser et al.,
1992) whenp(u) = max(1— u,0) (Theorem 6). Recent years have witnessed important theoretical
advances aimed at understanding the behavior of such regularizedhaigowhenn tends to in-
finity and A decreases to 0. In particular the consistency and convergence fdkesta/o-class
SVM (see, e.g., Steinwart, 2002; Zhang, 2004; Steinwart and Sc@®@4, 2nd references therein)
have been studied in detail, as well as the shape of the asymptotic decistiorduiSteinwart,
2003; Bartlett and Tewari, 2004). The case of more general congsXuactions has also attracted
a lot of attention recently (Zhang, 2004; Lugosi and Vayatis, 2004t/@&get al., 2006), and been
shown to provide under general assumptions consistent proceduhe fdassification error.

All results published so far, however, study the case whedecreases as the number of
points tends to infinity (or, equivalently, wheke 9 converges to 0 if one uses the classical non-
normalized version of the Gaussian kernel instead of (2)). Althougheinsenatural to reduce
regularization as more and more training data are available — even more theai ritis the spirit
of regularization (Tikhonov and Arsenin, 1977; Silverman, 1982) —¢dleat least one important
situation where\ is typically held fixed: the one-class SVM (Sikopf et al., 2001). In that case,
the goal is to estimate am-quantile, that is, a subset & of given probabilitya with minimum
volume. The estimation is performed by thresholding the function output by tielass SVM,
that is, the SVM (1) with only positive examples; in that case supposed to determine the quan-
tile levell Although it is known that the fraction of examples in the selected region cgaeseo
the desired quantile level (Schilkopf et al., 2001), it is still an open question whether the region
converges towards a quantile, that is, a region of minimum volume. Besidas timoretical re-
sults about the consistency and convergence rates of two-class SVMamighing regularization
constant do not translate to the one-class case, as we are preciselgeititra situation where the
SVM is used with a regularization term that does not vanish as the sample @ieasas.

The main contribution of this paper is to show that Bayes consistency fotasiftcation error
can be obtained for algorithms that solve (1) without decreasjrifjinstead the bandwidtly of
the Gaussian kernel decreases at a suitable rate. We prove uppeshmuthe convergence rate
of the classification error towards the Bayes risk for a variety of funstipand of distributiond$>,
in particular for SVM (Theorem 6). Moreover, we provide an explicisa@tion of the function
asymptotically output by the algorithms, and establish converge rates toth#disnit for the L,
norm (Theorem 7). In particular, we show that the decision function olpthe one-class SVM
converges towards the density to be estimated, truncated at theAdgiebrem 8); we finally show
(Theorem 9) that this implies the consistency of one-class SVM as a dengitysét estimator for
the excess-mass functional (Hartigan, 1987).

This paper is organized as follows. In Section 2, we set the framewdtk§tudy and state
the main results. The rest of the paper is devoted to the proofs and somsiengeof these results.
In Section 3, we provide a number of known and new properties of theseauRKHS. Section 4

1. While the original formulation of the one-class SVM involves a parameténere is asymptotically a one-to-one
correspondence betwearandv.
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CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

is devoted to the proof of the main theorem that describes the speed @rgence of the regu-
larized @-risk of its empirical minimizer towards its minimum. This proof involves in particular a
control of the sample error in this particular setting that is dealt with in Secti@eé&tion 6 relates

the minimization of the regularizegrisk to more classical measures of performance, in particular
classification error ant, distance to the limit. These results are discussed in more detail in Sec-
tion 7 for the case of the 1- and 2-SVM. Finally the proof of the consisteftye one-class SVM

as a density level set estimator is postponed to Section 8.

2. Notation and Main Results

Let (X,Y) be a pair of random variables taking valuesiifi x {—1,1}, with distributionP. We
assume throughout this paper that the marginal distributiod bas a density : RY — R with
respect to the Lebesgue measure, and that its support is included in aataep  RY. Letn :
RY — [0,1] denote a measurable version of the conditional distributio ef 1 givenX. The
function 21 — 1 then corresponds to the so-calledression function

The normalized Gaussian radial basis function (RBF) kdeaelith bandwidth parameter > 0
is defined for anyx,x') € RY x RY by:2

. 1 —[Ix=x?
X) =
o) (@o)dex'o< )

the corresponding reproducing kernel Hilbert space (RKHS) is teéenby 7, with associated
norm||.||,, . Moreover let

Ko = || ko ||L. = 1/ (\/ﬁo)d . 3)

Several useful properties of this kernel and its RKHS are gathereekitios 3.
Denoting by the set of measurable real-valued functionsRSnwe define several risks for
functionsf € ar :

e The classification error rate, usually ref
R(f) :=P(sign(f(X)) #Y) .
and the minimum achievable classification error rate aveis called the Bayes risk:

R := inf R(f).

fem

e For a scalai > 0 fixed throughout this paper and a convex functipnR — R, the @-risk
regularized by the RKHS norm is defined, for amy- 0 andf € #4, by

Roo () :=Ep[@(Y f(X))]+A| f|7,
and the minimum achievabk, -risk over(; is denoted by

R:‘p’(, = inf Ryo(f).

feHy

2. We refer the reader to Section 3.2 for a brief discussion on the relagiwveen normalized/unnormalized Gaussian
kernel.
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Furthermore, for any real> 0, we know thatpis Lipschitz on[—r,r], and we denote bl (r)
the Lipschitz constant of the restriction @fto the interval[—r,r]. For example, for the
hinge losgp(u) = max(0,1— u) one can také&(r) = 1, and for the squared hinge lopai) =
max(0,1— u)? one can také(r) = 2(r +1).

¢ Finally, theL,-norm regularizedp-risk is, for anyf € a1 :
Reo () :=Ep[0(Y f (X)) +A| [,

where,
1112, 1:/ f(x)?dx € [0, +oo],
Rd

and the minimum achievabk,o-risk overa/ is denoted by

‘= inf f) <
R(*p70 fenr Rpo(f) <o

As we shall see in the sequel, the above notation is consistent with the fa&yhe the
pointwise limit of R, aso tends to zero.

Each of these risks has an empirical counterpart where the expectéttorespect td° is replaced
by an average over an i.i.d. sample= {(X1,Y1),...,(X,Yn)}. In particular, the following empir-
ical version ofRy, s will be used

~ 10
V0> 0,1 €, Rao(f)i= 1 3 @01 () AITIE,

Furthermore,qu,V0 denotes the minimizer oﬁA?(p’c over Hy (see Steinwart, 2005a, for a proof of
existence and uniquenessfaf,).

The main focus of this paper is the analysis of learning algorithms that minimizartpe-e
ical @-risk regularized by the RKHS norrﬁqw, and their limit as the number of points tends to
infinity and the kernel widtho decreases to 0 at a suitable rate winetiends toco, A being kept
fixed. Roughly speaking, our main result shows that in this situation, the mirtiorizaf ﬁw
asymptotically amounts to minimizinByo. This stems from the fact that the empirical average
term in the definition oﬁp,c, converges to its corresponding expectation, while the norayiof a
function f decreases to itis, norm wheno decreases to zero. To turn this intuition into a rigorous
statement, we need a few more assumptions about the minimiZgoond aboutP. First, we
observe that the minimizer ¢, is indeed well-defined and can often be explicitly computed (the
following lemma is part of Theorem 26 and is proved in Section 6.3):

Lemma 1 (Minimizer of Ryo) For any xe RY, let
fpo(X) = a%lin{p(X) NX)P() + (L= n())p(—a)] + Ao} .

Then {0 is measurable and satisfies:

Roo (fo) = fig;{ Reo(f)
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Second, let us recall the notion of modulus of continuity (DeVore andrtard 993, p.44):

Definition 2 (Modulus of Continuity) Let f be a Lebesgue measurable function fi@fhto R.
Then its modulus of continuity in thgdnorm is defined for ang > 0 as follows

w(f,8):= sup [[f(.+1)—F()L, (4)
0<[t]|<d

where||t|| is the Euclidean norm of¢ RY.

The main result of this paper, whose proof is postponed to Section 4 ppahenstated as follows:

Theorem 3 (Main Result) Leto; >0 >0,0< p<2,0>0, and let ﬂ,m denote the minimizer
of the Iipp risk over #y, where@ is assumed to be convex. Assume that the marginal dgmsity
is bounded, and let M= sup.gdP(X). Then there exist constan{)i—1.4 (depending only
on p,9d, A, d, and M) such that the following holds with probability greater thHan e * over
the draw of the training data

zi 1 [2+(2-p)(1+3)d p 1+5) 1 2L
K (p +p
e N
Kgcp l dyx
2
2

+K3
(6)

1
+ K400( f(p’o, 0'1) ,

where L(r) still denotes the Lipschitz constant@bn the interval—r,r], for any r> 0.

The first two terms in r.h.s. of (5) bound the estimation error (also called saamglg asso-
ciated with the Gaussian RKHS, which naturally tends to be small when the nwhbaining
data increases and when the RKHS is 'small’, i.e., whds large. As is usually the case in such
variance/bias splittings, the variance term here depends on the dimeraitime input space. Note
that it is also parametrized by bothandd. These two parameters come from the bound (36) on
covering numbers that is used to derive the estimation error bound (81).cBnstant&; andKj
depend on them, although we do not know the explicit dependency. Tidetélhm measures the
error due to penalizing thie;-norm of a fixed function iv/s, by its|| . ||, -norm, with 0< o < o1.
This is a price to pay to get a small estimation error. As for the fourth term, it muadon the
approximation error of the Gaussian RKHS. Note that, dnaedo have been fixedy; remains a
free variable parameterizing the bound itself.

From (5), we can deduce tiRy,o-consistency of, for Lipschitz loss functions, as soon &g
is integrable,o = o (n~%(4+9) for somee > 0, ando; — O with /oy — 0. Now, in order to
highlight the type of convergence rates one can obtain from Theorlnua assume that thgloss
function is Lipschitz orR (e.g., take the hinge loss), and suppose that for som@e< 1, c; > 0,
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and for anyh > 0, 0 satisfies the following inequality:
W(fp0,8) < 18P . (6)

Then the right-hand side of (5) can be optimized wait.o, p andd by balancing the first, third
and fourth terms (the second term having always a better convergstiecinan the first one). For
anye > 0, by choosing:

5=1,
&
2d+d[3—[3’

2+B
1\ 4B+2+p)d+e
0= H 5

2
2 1\ 2B+@+p)d+e
01 = 02t = — s
n

p:

the following rate of convergence is obtained:

2
1> 4B (2+P)d+e

Rao (foo) —Rypo=0Op (n

This shows in particular that, whatever the valueg afidd, the convergence rate that can be derived
from Theorem 3 is always slower thari\In, and it gets slower and slower as the dimengion
increases.

Theorem 3 shows that, whepis convex, minimizing theﬁ(p,(j risk for well-chosen widtho
is a an algorithm consistent for th&,o-risk. In order to relate this consistency with more tradi-
tional measures of performance of learning algorithms, the next thedr@nwsghat under a simple
additional condition omp, Ry o-risk-consistency implies Bayes consistency:

Theorem 4 (RelatingRy0-Consistency with Bayes Consistency)f @is convex, differentiable &
with ¢(0) < O, then for every sequence of functidiyg;., €

lim lim R(fj)=R"

lim Reo (i) =Ryo = lim R(f) =

This theorem results from a more general quantitative analysis of the relaiobetween the ex-
cessRyo-risk and the exces’-risk (Theorem 28), and is proved in Section 6.5. In order to state a
refined version of it in the particular case of the support vector maclgoeithm, we first need to
introduce the notion dbw density exponent

Definition 5 We say that a distribution P with marginal densgyw.r.t. Lebesgue measure has a
low density exponeng > 0 if there existgcy, €9) € (0,)? such that

Ve e [0,g], P ({xe RY: p(x) < s}) < cpeY.

3. For instance, it can be shown that the indicator function of the unit b&Finalbeit not continuous, satisfies (6)
with B = 1.
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We are now in position to state a quantitative relationship between the eRggsssk and the
excesdR-risk in the case of support vector machines :

Theorem 6 (Consistency of SVM)Let@ (o) := max(1— a,0) be the hinge loss function and let
@(a) := max(1—a,0)? be the squared hinge loss function. Then for any distribution P with low
density exponent, there exist constar(Ky, Kz, r1,r2) € (0,00)% such that for any f€ &/ with an
excess R o-risk upper bounded by ithe following holds:

R(f) — R" <Ky (Re,o(f) — Ry o) 7

and if the excess regularized,R-risk upper bounded by 1the following holds:

R(f) = R" <Kz (Rp2(f) —%,2)ﬁ,

This theorem is proved in Section 7.3. In combination with Theorem 3, it stagestisistency of
SVM, and gives upper bounds on the convergence rates, for thérfiesin a situation where the
effect of regularization does not vanish asymptotically. In fact, Thred®ds a particular case of
a more general result (Theorem 29) valid for a large class of congsxflmctions. Section 6 is
devoted to the analysis of the general case through the introductioniatieaal arguments, in the
spirit of Bartlett et al. (2006).

Another consequence of tiRg o-consistency of an algorithm is the convergence of the func-
tion output by the algorithm to the minimizer of thgo-risk :

Lemma 7 (Relating Ryo-Consistency withL,-Consistency) For any f e a7, the following holds:

11~ foolf, < 5 (Rao(f) ~Ryo).

This result is the third statement of Theorem 26, proved in Section 6.3. #rriplarly relevant
to study algorithms whose objective is not binary classification. Considezx@mple the one-
class SVM algorithm, which served as the initial motivation for this paper. T¥eoan state the
following result, proved in Section 8.1 :

Theorem 8 (L2-Consistency of One-Class SVM)Let p, denote the function obtained after trun-

cating the density:
BY)if p(x) < 2A
X) =< 2 - 7
PA(X) {1 otherwise. @

Let f; denote the function output by the one-class SVM:
fs =arg. m|n El(p +)\Hf\|}{

Then, under the general conditions of Theorem 3, and assumintirthato w(p,,h) =0,
Jim | fs—prll, =0, in probability,

for a well-calibrated bandwidtlo.
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In this and the next theoremwell-calibratedrefers to any choice of bandwidththat ensure®o-
consistency, as discussed after Theorem 3. A very interesting lojpqgtrof this theorem is the
consistency of the one-class SVM algorithm for density level set estimatioich to the best of
our knowledge has not been stated so far (the proof being postpoSedtion 8.2) :

Theorem 9 (Consistency of One-Class SVM for Density Level Set Estation) LetO< p< 2\ <
M, let G, be the level set of the density functipat level p:

Cyi= {xeRd ; p(x)zu} ,
andC, be the level set &\ f; at level

R d. fy> P

Cyu: {xeR : fc(x)_z)\},

wheref is still the function output by the one-class SVM. For any distribution Q, forsamget C
of RY, define the excess-mass of C with respect to Q as follows:

Hq (C) := Q(C) — HLebi(C) .

Then, under the general assumptions of Theorem 3, and assuminigrthaow(p,,h) = 0, we
have R
Jlim_Hp(Cy) ~Hp (Cu) =0, in probabiliy,

for a well-calibrated bandwidtlo.

The excess-mass functional was first introduced by Hartigan (19833gess the quality of
density level set estimators. It is maximized by the true density leveC;seind acts as a risk
functional in the one-class framework. The proof of Theorem 9 isdasethe following general
result: if p is a density estimator converging to the true denpitip the L, sense, then for any
fixed 0< p < supa {p}, the excess mass of the level setpoéit levelu converges to the excess
mass ofC,.. In other words, as is the case in the classification framework, plug-is bulét onL,-
consistent density estimators are consistent with respect to the excess mass

3. Some Properties of the Gaussian Kernel and its RKHS

This section presents known and new results about the Gaussiankeanelits associated RKH&;,
that are useful for the proofs of our results. They concern the aixgéiscription of the RKHS norm
in terms of Fourier transforms, its relation with the-norm, and some approximation properties
of convolutions with the Gaussian kernel. They make use of basic prapeftieourier transforms
which we now recall (and which can be found in e.g. Folland, 1992, Chgmn205).

For anyf in L1(RY), its Fourier transforn¥ [f] : RY — R is defined by

7 [ (0) = /Rd e <X £ () dx.

If in addition 7 [f] € L1(RY), f can be recovered from [f] by the inverse Fourier formula:

1

F(x) = (zmd/Rdf (] ()49 daw.
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Finally Parseval’'s equality relates thg-norm of a function and its Fourier transfornfit= Ly (R9) N
Lo(RY) and 7 [f] € Ly(RY):
1

If1E, = Wll‘f [F1E, - (8)

3.1 Fourier Representation of the Gaussian RKHS

For anyu € RY, the expressioky(u) denotess (0, u), with Fourier transform known to be:

~0?||w|?
2

7 [ko](w) =€ ©)

The general study of translation invariant kernels provides an aeccinaracterization of their
associated RKHS in terms of the their Fourier transform (see, e.g., Maadndatache, 2002). In
the case of the Gaussian kernel, the following holds :

Lemma 10 (Characterization of #5) Letco(RY) denote the set of continuous functionsistthat
vanish at infinity. The set

2|

ﬂ@—{fecdwﬂ:feLﬂNUmMAM?HK@FJEHdw<w} (10)

is the RKHS associated with the Gaussian kergeland the associated dot product is given for

any f,g e 75 by .
(1.9, = (g o7 (117 W)€

02| w|?
2

dw, (11)

where & denotes the conjugate of a complex number a. In particular the associatetis given

for any f e 75 by
1

2 o?|w|?
115, = 2
Hg (2T[)d Rd

doo. (12)

|7 [f] (w)|%e

This lemma readily implies several basic facts about Gaussian RKHS andsbediated norms
summarized in the next lemma. In particular, it shows that the fafmily),., forms a nested
collection of models, and that for any fixed function, the RKHS norm dgesae to thé.,-norm as
the kernel bandwidth decreases to 0.

Lemma 11 The following statements hold:

1. Forany0< o<,

Hy C Hy C Lo(RY). (13)
Moreover, for any fe #f,
[ Py | Y=y [ (14)
and 5
o
o< |12, —If12,< 25 (112 I FIIZ,) - (15)
2. Foranyt > 0and f e 4,
lim [ £, = 1. (16)
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3. Foranyo > 0and f € #Hg,
[l < VKoll s, - (17)
Proof Equations 13 and 14 are direct consequences of the characteriZdtierGaussian RKHS (12)
and of the observation that

) w|? o?|w|?

O<o<t=— € 2 >e 2z >1.

In order to prove (15), we derive from (12) and Parseval's equéBity

02| w|?

I1£1, =11 = g 17 (@7 |

1] doo. (18)

For any 0<u <v, we have(e" — 1) /u < (e — 1)/v by convexity ofe", and therefore:

2 w|?

1 o2 2w
2 2 2
Hf’%—HfHLzﬁ(ZT[)de/Rd\f [f](w)] [e 2

which leads to (15). Equation 16 is now a direct consequence of (1B3l (17) is a classical
bound derived from the observation that, for any RY,

1] doo, (19)
F00 1 =] (F. K)oy | < Il Ko Loy = VKol F 1l -

3.2 Links with the Non-Normalized Gaussian Kernel

It is common in the machine learning literature to work with a non-normalized veddithe Gaus-
sian RBF kernel, namely the kernel:

ko (x,X) := exp<_HX_X/H2> . (20)

202

From the relatiorky; = KGRO (remember thak, is defined in Equation 3), we deduce from the
general theory of RKHS that; = #5 and

viess, |fll; =Kol flly, - (21)

As a result, all statements abdt and its RKHS easily translate into statements alkguand its
RKHS. For example, (14) shows that, for any® < T andf € #f,

d
K¢ 0\2
117 > il Fllz, = (3) 1,
a result that was shown recently (Steinwart et al., 2004, Corollary.3.12)
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3.3 Convolution with the Gaussian Kernel

Besides its positive definiteness, the Gaussian kernel is commonly usekieasehfor function
approximation through convolution. Recall (Folland, 1992) that the datiea between two func-
tions f,g € Ly (RY) is the functionf g € Ly (RY) defined by

fxg(x) ::/ f(x—u)g(u)du
Rd
and that it satisfies (see e.g. Folland, 1992, Chap. 7, p.207)
Flfxd=7[fl7ld . (22)

The convolution with a Gaussian RBF kernel is a technically convenientdoohp any square in-
tegrable function to a Gaussian RKHS. The following lemma (which can alsoumglfin Steinwart
et al., 2004) gives several interesting properties on the RKHI. andrms of functions smoothed
by convolution:

Lemma 12 For anyo > 0and any fe Ly (RY) NL, (RY),

ko*fe}[ﬁc

and

ko = [ flle, - (23)

o5,
For anyo, T > O that satisfy0 < 0 < /21, and for any fe Ly (RY) NL, (RY),
ke x f € g
and
2 , _ O 2
[P F 5, — ke FIIE, < S5l FIIE, - (24)
Proof Using (12), then (22) and (9), followed by Parseval’'s equality (8)campute:

1 2 2
ko T3, = (211)(1/]1@'7 Ik + ] (00) 2671 91l

:(211T)d o [£] (00) 26"l @lIPg@®llP gy

- (2:[)(,/Rd|f [1] (o) 2deo
—ITI3, -

This proves the first two statements of the lemma.
Now, because & o < v/2t, previous first statement and (13) imply

kt*feﬂ\/ﬁcﬂg,
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and, using (15) and (23),

2
kes F12, = ko F1I2, < o (ks FI2 =[x FI2,)
2
o 2
§ﬁ||kr*f||}[ﬁI

= 25l FIE,

A final result we need is an estimate of the approximation properties of kdinrowith the
Gaussian kernel. Convolving a function with a Gaussian kernel with dsicrg bandwidth is known
to provide an approximation of the original function under general comditiBor example, the as-
sumptionf € L1 (RY) is sufficient to show thatks * f — f ||, goes to zero whea goes to zero (see,
for example Devroye and Lugosi, 2000, page 79). We provide belowra mantitative estimate
for the rate of this convergence under some assumption on the modulustofuity of f (see
Definition 2), using methods from DeVore and Lorentz (1993, Chap(72,qa202).

Lemma 13 Let f be a bounded function in [RY). Then for allo > 0, the following holds:
[kox f—flL, < (1+Vd)w(f,0),
wherew( f,.) denotes the modulus of continuity of f in therlorm.

Proof Using the fact thaks is normalized, then Fubini’'s theorem and then the definitiomw,ahe
following can be derived

dx

ko f =L,

ko()[ (x+1) — f(x)]dt
// ko (t) | f(x+1) — f(x)|dtdx

_ /deo(t)[/Rd\f(x+t)—f(x)|dx}dt

< / Ke(t)]| (. +1) — F(.) ||t

[ ket 1 et

Now, using the following subadditivity property of (DeVore and Lorentz, 1993, Chap.2, par.7,
p.44):

IN

IN

0)(f751+52) Sw(f,61)+0)(f,52) , 51,62 >0,

the following inequality can be derived for any positivendo:
w(f,A0) < (1+AN)w(f,d).
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Applying this and also Cauchy-Schwarz inequality leads to
t
Ikoxf—fll, < / <1+H”>w(f,o)ko(t)dt
Rd o
[ 1
= wito) |14 [ tlko(0e
L G Rd
r 1
1 , 1 2 N2
w(f,0) l+0</d\|t|] \ﬁcde zozdt> ]

It

= w(f,0) [1+= (Z/Rd \/TTG ———e »2d t> ]

1 d

= w(f,0) 1+0<_Z t2

= (f,0) -1+ f( \/TT e 202du> ] .

The integral term is exactly the variance of a Gaussian random variabtelpo?. Hence we end
up with

IN

NI

eﬂdn ]

Iko* f =L, < (1+Vd)w(f,0).

4. Proof of Theorem 3

The proof of Theorem 3 is based on the following decomposition of theseXg-risk for the
minimizer of theRy s-risk:

Lemma 14 For any0 < 0 < v/20; and any sampléX;,¥)),_; __,, the minimizerfys of Ry, satis-
fies:

0(Ksy * fqo)] (25)

Proof The exces&o-risk decomposes as follows:

o(feo) ~Rpo = [Rao(foo) —Reo (foo)]
+[Rpo (fwo)—%,o]
[ kol*ftpo)]
+[Ry, kol*f(Po — Rypo(ko, * fgo)]
[F\on (Ko, * Tg0) — pr ] i
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Note that by Lemma 1%, * fqo € #, /55, C Hg C L2 (RY) which justifies the introduction d®¢q (Ko, *
fo0) @andRyo(Ks, * fg0). Now, by definition of the different risks using (14), we have

~

Reo (fas) ~Rao (fae) =2 (Il faslI?, = Il fo 2, ) <0,

and
Roo — Rpo (Ko, * feo) < 0.
[ |

Hence, controllingRyo( fp.o) — R0 to prove Theorem 3 boils down to controlling each of the three
terms arising in (25), which can be done as follows:

e The first term in (25) is usually referred to as the sample error or estimation €The
control of such quantities has been the topic of much research recenhydiimg for exam-
ple Tsybakov (1997); Mammen and Tsybakov (1999); Massart (2@20tlett et al. (2005);
Koltchinskii (2003); Steinwart and Scovel (2004). Using estimates @il IBademacher com-
plexities through covering numbers for the Gaussian RKHS due to SteimnerScovel
(2004), we prove below the following result

Lemma 15 For anyo > 0 small enough, Ieﬁp,0 be the minimizer ofthl§¢70-risk onasample

of size n, where@is a convex loss function. For aly p < 2, 6> 0, and x> 1, the following
holds with probability at least — € over the draw of the sample:

N o ka0(0)) 77 (1) “EE 1y
Reo (foo) —Rpo < Kal \ (c,) <n>

+K2L< K“‘p(°)>2 <1>dx
A g/ n’

where K and K are positive constants depending neitheragmor on n.

e The second term in (25) can be upper bounded by

¢(0)0®
207

Indeed, using Lemma 12, and the fact tbat /201, we have

Rao(kay * figo) ~ Rao(koy * o) = A | 1koy * o2, — [k, * fao 2,
Ao

2
<22 U fe0ll?..
< 20%” eollL,

Since fp0 MinimizesRy,0, we haveRyo (fpo) < Ryo(0), which leads td| fyol|Z, < (0) /A.
Therefore, we have

¢(0)c?
202

R‘Pﬂ(k(fl * f(P70) - R(P,O(kcl * f(P70) <
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e The third term in (25) can be upper bounded by

(@M fgoll. +L (Il faoll.) M) (1+ V) ©(fa0.01) -
Indeed,
Ropo(ko, * fg0) — Reo(fpo)

= Mllkoy * fgollZ, = Il faoll,] + [Ep [@(Y (Ko, * fg0) (X)) ] — Er [9(Y fpo(X))]]
= A <k01 * f(p,O — f(p,O, ko'l * f(p,0+ f(p’0>L2 —i—Ep [(p(Y(ko'l * f(p’o)(X)) — (p(Y f(p70<X))] .

Now, since|| kg, * fpollL. < |l foollL. |l Ko llLy = || feol|L.., then using Lemma 13, we obtain:
Rpo(Koy * fp0) —Reo(fepo) < 2\ fgollL. |l ko, * oo — fpollL,

+L (Il fpo L) Ee [I(ko, * fg0) (X) = fgo(X)]]
(2A[l fgoll. +L (Il fpo L. ) M)l ko, * fao — foo L,

(2l ool +L (I foollL.) M) (14 V) ©(fa0.04) .

IN

IN

whereM = suprd P(X) iS supposed to be finite.

Now, Theorem 3 is proved by plugging the last three bounds in (25). |

5. Proof of Lemma 15 (Sample Error)

The present section is divided into two subsections: the first one psebenproof of Lemma 15,
and the auxiliary lemmas that are used in it are then proved in the secoretsobs

5.1 Proof of Lemma 15

In order to upper bound the sample error, it is useful to work with a skiraftions as “small” as
possible, in a meaning made rigorous below. Although we study algorithms ¢hkton the whole
RKHS #; a priori, let us first show that we can drastically “downsize” it.

Indeed, recall that the marginal distribution Bfin X is assumed to have a support included
in a compactx C RY. The restriction ofk; to x, denoted byk}, is a positive definite kernel
onx (Aronszajn, 1950) with RKHS defined by:

Hy = {fx: fess}, (26)
wheref , denotes the restriction dfto x, and RKHS norm:
VEr e, Ty c=inf{|[ fll,, : feroandf, =} . (27)
For anyf* € #3* consider the following risks:
Ryo(f*) :=En, [@(Y (X)) ] + Al ¥ (12,
B exy._ Lo  EX x 2
Rao(1)i= 1 3 (M (04)) +AIL T I

We first show that the sample error is the samg/gand #;*:
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Lemma 16 Let f), and f:;fc be respectively the minimizers of Rand FA{EG Then it holds almost
surely that

Roo (foo) = Ryo (Tao) -
Roo (ﬁpac) = R\[;,cr (f(ﬁo) .

From Lemma 16 we deduce that a.s.,

R‘P-,O (ﬁp,o) - R‘Pﬂ (fQG) = %,0 (fA(f)fc) - %,0 (fq))fo) . (28)

In order to upper bound this term, we use concentration inequalities baskedal Rademacher
complexities (Bartlett et al., 2006, 2005; Steinwart and Scovel, 200&idapproach, a crucial role
is played by the covering number of a functional classinder the empirical,-norm. Remember
that for a given sampl& := {(X1,Y1),...,(Xn,Yn) } ande > 0, ane-cover for the empirical, norm
is a family of function(f;);, such that:

n

1
2
Vier diel, ( Z (X5) = fi( X,))) <e.

The covering number( (¥ ,&,L2(T)) is then defined as the smallest cardinal otatover.
We can now mention the following result, adapted to our notation and settingexhetly fits
our need.

Theorem 17 (see Steinwart and Scovel, 2004, Theorem 5.&9r ¢ > O, let ¥, be a convex sub-
set of#3" and letgbe a convex loss function. Defigg as follows:

Go = {0r(xY) = @YT00) + M T2 — oY Rio () ~Al follZs = fETa} . (29)

where ﬁ,o minimizes %0 over ¥4. Suppose that there are constants © and B> 0 such that, for
allg € go,
Ep [0°] < cEp[g]

and
g/, <B.

Furthermore, assume that there are constants hand0 < p < 2 with

suploga( (B *Go,€,L2(T)) <ae P (30)
Tezn

for all € > 0. Then there exists a constarnj s 0 depending only on p such that for albn1 and
all x > 1 we have

Pr(T eZ" : Ryg(fas) > Ryo(fao) +Cpe(n,a B,c x)) <e™, (31)
where

2
a2
g(n,a,B,c,p,x) = (B+Bz+,,c2—p)(n)2 +(B+C)
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Note that we use the outer probability"Rn (31) because the argument is not necessarily measur-
able. From the inequalitiel§f .\, || . < @(0)/A and|| f;;]1% . < ®(0)/A, we see that it is enough
to take

0
Fo = (pg\)ﬁg , (32)
wheres; is the unit ball of#;*, to derive a control of (28) from Theorem 17. In order to apply this
theorem we now provide uniform upper bounds ogerfor the variance of and its uniform norm,

as well as an upper bound on the covering numbegof

Lemma 18 For all 6 > O, for all g € gg,

2
Ep [¢?] < (L ( K°‘;’(°>> VRo+ 2\/A<p<0>> 2Eelg]. (33)
Let us fix
B=2L <\/ K"‘)‘:(O)> \/ K";‘:(O) +@(0). (34)

Then, the following two lemmas can be derived:
Lemma 19 Forall 6 > O, forall g € gg,

9|l <B. (35)

Lemma20 Forallc >0,0< p<2,8>0, >0, the following holds:
loga (B 1Gg,€,La(T)) < cpo (1-P/2(1+8)dg=p (36)

where g and ¢ are constants that depend neither@mor one (but they depend on p, d andA).

Combining now the results of Lemmas 18, 19 and 20 allows to apply Theoreniti 7ryvdefined
by (32), anyp € [0,2], and the following parameters:

2
S ="
B=2L <\/ K“‘}'i(())) \/ K";'f(o) +9(0)

(A-p/2)(143))d

a=0Cy0~

from which we deduce Lemma 15. [ |
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5.2 Proofs of Auxiliary Lemmas

Proof of Lemma 16Because the support 8fis included inx, the following trivial equality holds:
Vi€ Hs, Eplo(YT(X))]=En, [@(Yfix(X)] . (37)
Using first the definition of the restricted RKHS (26), then (37) and (&@&)pbtain

Roo (fao) = inf Ep, [@(Y £ (X)) ]+ £ ],

fXens
= fien}EGEHX [O(Y fe (X))] +N Fix [
= inf Ep[@(Y f(X))] + Al f |,

feHs
= Rpo (foo)

which proves the first statement.
In order to prove the second statement, let us first observe that withlglitgp1, X; € x fori =
1,...,n, and therefore:

(38)

12 12
v € 9o, ﬁi;p(Yif(N)) = ﬁi;(P(Yi fle (%)) (39)
from which we can conclude, using the same line of proof as (38), théllbeving holds a.s.:

Is<Pﬁ (ﬁPﬂ) = ﬁ:[;,o (%0) :

Let us now show that this implies the following equality:

~

foo = foolx - (40)

Indeed, on the one hanifyqx [|,.x < Il fooll, bY (27). On the other hand, (39) implies that
170 ,\ 1 A
ﬁ Zl(p(Yl f(p,o(xi)) = ﬁ Zl(p(Yl f(p,cr\x (Xl)) :
1= 1=

As a result, we geR}  (fooix) < Roo (foo) = Ry, (fé{G), from which we deduce thaf,
and ﬂ;fc both minimize the strictly convex functionﬁlﬁcj on #g", proving (40). We also deduce
from R} ; (foolx) = Reo (feo) and from (39) that

I faolx g = Il foolls, - (41)
Now, using (40), (37), then (41), we can conclude the proof of thers statement as follows:
F%,o (%O) = Rzrgﬂ (f:P,OIX)
= Eﬂx [(p(YfA(p,c\x (X))} +Al fA<p70|x Hﬂ{g‘
= Ep [9(Y fao (X))] + Ml foo Lz
= ch,c (fAcp,o) )
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concluding the proof of Lemma 16. |

Proof of Lemma 18We prove the uniform upper bound on the variances of the exceshadons
in terms of their expectation, using an approach similar to but slightly simpler thate et al.
(2006, Lemma 14) and Steinwart and Scovel (2004, Proposition 6.kt vidérobserve, using (17)
and the fact tha¥; C /@(0) /ABg, that for anyf € 7,

Il < VKall f L

Ko@(0)
< o

As aresult, for any(x,y) € x x {—1,+1},

|91 ()| < [0y T00) ~ @(yTao) |+ A | TI2, ~ I gl

<L (W) | 00 = fao () | + Al f = foo lloe, | T+ foollu, (42)
(L (W) muW) 1= fao g -

Taking the square on both sides of this inequality and averaging with tesgeteads to:

Vf € %o, Ep[g%]§<L(\/ Ko ®(0 >\/@+2\/)\(p ) [RER1 (43)

On the other hand, we deduce from the convexitypdhat for any (x,y) € x x {—1,+1} and
anyf € 7g:

Gy T )+ A T2, + @y foo(X) + Al fooll?,
2

g (p(yf(x) +2yf(p,0(x>> o 1112, +2! fooll,

f+f f+f —f
— (¥ 5000 ) £ NI AR,

Averaging this inequality with respect Brewrites:

o f o (foo o
R(P, ( )+2R<P7 (‘Pv ) _R<pq <f+f(P ) )\H f(P7 ||_7‘[0

IN

f(po'

> Ryo (foo) Jr7\”

where the second inequality is due to the definitiorigf as a mlmmizer oRyc. Therefore we get,
foranyf € 7g,

12 -

Ep[gf] = Rpo(f) — Ryo (foo)

(44)
> 20t = faol2,
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Combining (43) and (44) finishes the proof of Lemma 18 |
Proof of Lemma 19Following a path similar to (42), we can write for afye %, and any (x,y) €
X x{-1,+1}:

[0 0Y) | < [0 T00) ~ 0(yTao) |+ | TIZ, = Il g2,

( <O |10 fgol) +2 22

L
oL (\/ K“(}'f(())) \/ K"‘;)(O) +(0).

IN

IN

Proof of Lemma 20Let us introduce the notatidgo f(x,y) := @(y(f(x)) andLggo f :=Ilpo f +
Al f Hix, for f € 75" and(x,y) € x x {—1,1}. We can then rewrite (29) as:

Go={Leoof—Lgoofys : feFa} .
The covering number of a set does not change when the set is transjagedingle function,
therefore:
N (B 1Go.€ La(T)) = (B Lgoo Fo. Lo(T)) .
Denoting now{a, b] the set of constant functions with values betwaemdb, we deduce, from the
fact thath || f Hi@ < @(0) for f € 74, that

B 'Lgoo Fo C B Hgo 7o+ [0,B1(0)] .
Using the sub-additivity of the entropy we therefore get:
loga( (B~ Go,2¢,L2(T)) <loga( (B go #o,€,L2(T)) +logC ([0,B¢(0)] ,&,Lo(T)) . (45)

In order to upper bound the first term in the r.h.s. of (45), we obsesiag (17), that for any € 74
andx € x,
@(O)k
11001 < Vol Ly </ BOKT
and therefore a simple computation shows thatify) := B~1¢(y f(x)) andu’(x,y) := B~ 1@(y f'(x))
are two elements cB‘llq,o Fo (with f, f’ € #5), then for any samplé:

B 0K
Ju—u [y <B 1L( %0 ) T

A

and therefore

-1
loga¢ (B~Ygo #o.€, Lo(T)) < loga (70,B£L< q?"") ,LZ(T))

-1
X ®(0)Kg A
<log« <$0,85L< A ) (p(O)’LZ(T)) .
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Recalling the definition oB in (34), we obtain:

-1
PO0)Kg | A
BeL ( )\ > m > 26\/Kg ,

loga (B~ Mo #o,€,L2(T)) <loga (35 ,28y/Ke, La(T)) -

The second term in the r.h.s. of (45) is easily upper bounded by:

and therefore

loga¢ ([0,B19(0)] ,&,Lo(T)) < log <(pé?) ,

and we finally get:

1007¢ (B9 26, Lo(T)) < loga( (83 26\/Ra,Lo(T)) + log <“’é?) | (47)
We now need to upper bound the covering number of the unit ball in the RK¥é¢Snake use of
the following result, proved by Steinwart and Scovel (2004, Theordmpage 5): if3J denotes
the unit ball of the RKHS associated with the non-normalized GaussianlK@f)eon a compact
set, then for all 0< p < 2 and alld > 0 there exists a constagy 5 4 independent of such that for
all € > 0 we have:

log’ (T;é(,é, Lz(T)> < Cpp g0t PP (48)

Now, using (21), we observe that B
BE =/KgBL |

and therefore:

I0g2( (53 ,26/Ko,La(T)) = log( (VKo ,28v/Ko,La(T))

. (49)
=logn( (55,26, Lo(T)) .
Plugging (48) into (49), and (49) into (47) finally leads to the announesdlt, after observing that
the second term in the r.h.s. of (47) becomes negligible compared to thenfrand can therefore
be hidden in the constant fersmall enough. |

6. Some Properties of thd.o-Norm-Regularized @-Risk

In this section we investigate the conditions on the loss fungpiander which the Bayes consis-
tency of the minimization of the regularizedrisk holds. In the spirit of Bartlett et al. (2006), we
introduce a notion of classification-calibration for regularized loss funstppand upper bound the
excess risk of any classifidr in terms of its excess of regularizegrisk. We also upper-bound
the L,-distance betweeh and f in terms of the excess of regularizedisk of f, which is useful
to proove Bayes consistency in the one-class setting.
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6.1 Classification Calibration

In the classical setting, Bartlett et al. (2006, Definition 1, page 7) intredue following notion of
classification-calibrated loss functions:

Definition 21 For any(n,a) € [0,1] x R, let the generic conditionap-risk be defined by:
Cq(a) :=ne(a) + (1—n)e(—a).
The loss functiopis said to be classification-calibrated if, for amy< [0,1]\{1/2}:

inf inf C
aeR:ul(gnfl)gocn (G) - OI(Q]R n(CX)

The importance here is in tigrict inequality, which implies in particular that if the global infimum
of G, is reached at some point, thena > 0 (resp.a < 0) if n > 1/2 (resp.n < 1/2). This
condition, that generalizes the requirement that the minimiz€,6d) has the correct sign, is a
minimal condition that can be viewed as a pointwise form of Fisher consisfencjassification.
In our case, noting that for anfye ar , theL,-regularizedp-risk can be rewritten as follows:

Reo(f) = /Rd {INCYP(F(x)) + (1=n()) o= (x)] p(x) +Af(x)?} dx,
we introduce the regularized generic conditiogalsk:

a2
v(n,p,a) €[0,1] x (0,+0) xR, Cyp(a):=Cy (a)+? :

as well as the related weighted regularized generic conditigniak:
V(nap7a) € [Oa 1] x [07 +°°) xR, Gﬂvp (G) = an (G) +)\a2 :
This leads to the following notion of classification-calibration:

Definition 22 We say thais classification calibrated for the regularized risk, Rrclassification-
calibratedif for any (n,p) € [0,1]\{1/2} x (0,+w)

inf Chp(a) > inf Gy o(a
aeR:a(2n—-1)<0 r],p( ) acR r],p( )

The following result clarifies the relationship between the properties o$iitztion-calibration
and R-classification-calibration.

Lemma 23 For any functiong: R — [0,+), ¢(x) is R-classification-calibrated if and only if for
any t> 0, ¢(x) +tx? is classification-calibrated.

Proof For any@: R — [0,+) andp > 0, let g(x) := @(x) + AxZ/p andC, the corresponding
generic conditionap-risk. Then one easily gets, for anye R
Cr (1) = Cp (00).

As a resultp is R-classification-calibrated if and only if, for amy(Np is classification-calibrated,
which proves the lemma. |

Classification-calibration and R-classification-calibration are two diftgperperties related to
each other by Lemma 23, but none of them implies the other one for gemeralamvex functions
@, as illustrated by the following two examples.
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Example 1 : A classification-calibrated, but not R-classification-calibrated functiohet ¢(x) =

1on (—,—2], ¢(x) =2 on [—1,1], ¢(x) = 0 on [2,+), and ¢ continous linear on—2, —1]
and[1,2]. Then G(a) is also continuous and piecewise linear on the intervals delimited by the
points —2,—1,1, 2, with valuesn on (—c,—2|, 1—n on [2,+), and2 on [-1,1]. As a re-
sult,infqer G (a) = min(n,1—n) andinfgep.q(2n-1)<0Cr (a) = max(n,1—n). This shows thap

is classification-calibratedHowever, as soon gs < 2A, the global minimum of &, (a) is reached

for a = 0 and therefore:

inf OCn,p(O() = inf Cyp(0) =2,

acR:a(2n-1)< aeR
which shows thapis not R-classification-calibrated this case.

Example 2 : A R-classification-calibrated, but not classification-calibrated functiobet@: R —
[0,+) be any function with negative right-hand and positive left-hand derivativessattisfying

O(Iirg Qa) = 0I(im @a)=0, (50)

and
Vo >0, ¢a)<e(—a). (51)
An example of a function that satisfies these conditiopgoi$ = €* for a < 0, () = e~?* for o >

0. Because of (50), it is clear that such functions satisfy
{nfCn (@) = {nfGn (@) = Jof Cn () = 0.

which shows that they are not classification-calibrated. In order to shatthey are R-classification-
calibrated, it suffices to show by Lemma 23 that for amg; @(x) +tx? is classification-calibratedp
being nonnegative, the corresponding generic conditional risk

Cn (o) = ne(0) + (1—n) @(—a) +to®

satisfies: N N
lim C,(a) = lim C, (a) = 4.

O— —o00 O —o00
As aresult, for any) # 1/2, the infimum 06,] over{a € R:a(2n—1) <0} is reached at some fi-
nite pointd,,. MoreoverC, has negative right-hand and positive left-hand derivative} ahsuring
that the minimum is not reached @ta, (2n — 1) < 0. This implies by (51) that
(20— 1) (@(Gin) — (—0in)) > 0.

Combining this with the following equality holding for aoy= R:
Cr (@) —Co (—) = (20— 1) (@(0) —9(~a)) .

we obtain

Cn (8) > Cq (—Gin) -
As a result, N N
aeR:al(rzlnfl)go () n (a”) > Gy ( a”) = oI(QR mp(a) )

showing thatp(x) +tx? is classification-calibrated, and therefore thgis R-classification-calibrated.
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6.2 Classification-Calibration of Convex Loss Functions

The following lemma states the equivalence between classification calibratidR-@assification
calibration for convex loss functions, and it gives a simple charactenzafithis property.

Lemma 24 For a convex functiop: R — [0, ), the following properties are equivalent:
1. @is classification-calibrated,
2. @is R-classification-calibrated,
3. @is differentiable ab and @ (0) < 0.

Proof The equivalence of the first and the third properties is shown in Bartleit €006, The-
orem 4). From this and lemma 23, we deduce that R-classification-calibrated iff(x) 4 tx? is
classification-calibrated for arty> 0, iff @(x) +tx? is differentiable at 0 with negative derivative
(for anyt > 0), iff @(x) is differentiable at O with negative derivative. This proves the equinae
between the second and third properties. [ |

6.3 Some Properties of the Minimizer of theRy-Risk

When @ is convex, the functior€, (a) is a convex function (as a convex combination of convex
functions), and therefor&, ,(a) is strictly convex and diverges tpeo in —co and+oo; as a result,
for any(n,p) € [0,1] x [0,+o0), there exists a unique(n, p) that minimizesGy, , onR. It satisfies
the following inequality:

Lemma 25 If ¢: R — [0, +) is a convex function, then for afig, p) € [0, 1] x [0, +c0) and anya €
R,

Gnp (0) = Gnp (a(n,p)) = A(a—a(n,p))” . (52)

Proof For any(n,p) € [0,1] x [0,+), the functionG,p(a) is the sum of the convex func-
tion pCy, () and of the strictly convex functioka?. Let us denote b¢ (a) the right-hand deriva-
tive of G, at the pointa (which is well defined for convex functions). The right-hand derxetf
a convex function being non-negative at a minimum, we have (denating o (n,p)):

pC; (a.)+2ha, > 0. (53)
Now, for anya > a., we have by convexity oty:
Ca (@) > Gy (at) + (@ — o) G (o) - (54)
Moreover, by direct calculation we get:
A2 = Ao+ 2Aa, (0 — o) + A (a—a,)? . (55)
Mutliplying (54) by p, adding (55) and plugging (53) into the result leads to:

Gnp (@) = Gpp (@) > A (a —a,)?.
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This inequality is also valid foa < a,: starting this time from
pCy (a.) +2Aa, <0,
whereC, denotes the left-hand derivative@f, and from

Cal00) > Gy (@) + (a— ) Gy (a1

which holds for anya < o, by convexity ofC,, we can draw exactly the same lines of reasoning as
for the case > a*. |

From this result we obtain the following characterization and propertieseofriimimizer of
the Ry o-risk:

Theorem 26 If @: R — [0,+) is a convex function, then the functiogof: R — R defined for
any xe RY by
fpo(¥) := a(n(x),p(x))
satisfies:
1. fyois measurable.

2. fpo minimizes the Ro-risk:

Rpo (fpo) = inf Reo(f).
fewm
3. Forany fe a7, the following holds:
1 K
I —fpoll?, < 5 (Roo(f) —Rgo) -

Proof To show thatfyo is measurable, it suffices to show that the mappingp) € [0,1] x
[0,4) — a(n,p) is continuous. Indeed, if this is true, thégo is measurable as a continuous
function of two measurable functiomsandp.

In order to show the continuity @f,p) — a(n,p), fix (No,Po) € [0,1] x [0,+) and the corre-
spondingo := o (No, Po). Then, for anye > 0, there exists a neighborho&d of (no, po) such that
for any (n,p) € Bg, for anya € [0p—€,00+ €],

Ae2
‘ Gﬂ-,p (G) - Gﬂo7po (G) ‘ < ? : (56)

To see that, first note that the functignis continuous and thus bounded by some constant
on [0g — €,00+ €], and therefore, for ang in [0 — €, 00+ €], we have

|Gnp (@) = Gngpo (@) = [(NP—nopPo) (@(a) —@(—a)) + (p— Po) ¢(—01) |
< 2A(Inp—nopo|+|p—pol) .

Hence, (56) holds by taking, for instance,
Be :={(n,p) €R? : [Np—nNopo| <Ae?/12A, [p—po| < Ae?/12A} .
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Now, applying (56) successively to + € and toay, then using (52), we easily obtain that for

any(n,p) € B,

Ae2

In the same way, applying (56) successivelyito- € and toag, then using (52), we obtain that for

any(n,p) € Be,

Ae?
Gr]_yp (GO - 8) > Gr]’p (ao) + ? .

This reveals the existence of two points arowng namelyag — € andog + €, at which the func-
tion Gy, takes values larger thaB, , (0p). By convexity ofGy, p, this implies that its minimizer,
namelya (n, p), is in the intervalog — €, 00 + €], as soon agn, p) € Be, which concludes the proof
of the continuity of(n,p) — a(n,p), and therefore of the measurability f¥o.

Now, we have by construction, for arfyc a1 :

"X € R, Gy o0 (fpo(X)) < Grxe (F(X)
which after integration leads to:
proving the second statement of the theorem.

Finally, for anyf € a1, rewriting (52) witha = f(x), p = p(x) andn = n(x) shows that:

Wx € R, Gy p00 (F(X)) = G, (Fpo(X)) = A (F(x) — fcp‘,O(X))z g

which proves the third statement of Theorem 26. |

6.4 Relating theRyo-Risk with the Classification Error Rate

In the “classical” setting (with a regularization parameter converging to 8)idia of relating the
convexified risk to the true risk (more simply called risk) has recently gaiteidodinterest. Zhang
(2004) and Lugosi and Vayatis (2004) upper bound the excesbyristtme function of the excegs
risk to prove consistency of various algorithms (and obtain upper bdantte rates of convergence
of the risk to the Bayes risk). These ideas were then generalized bytBarih. (2006), which we
now adapt to our framework.

Let us define, for anyn, p) € [0,1] x (0, +),

M(n,p) :=minCnp(a) = Cnp (a(n,p)),
and for anyp > 0 the functiony, defined for allg in [0, 1] by

0o (8) =00~ (15%p).

The following lemma summarizes a few propertiedbaindy),. Explicit computations for some
standard loss functions are performed in Section 7.
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Lemma 27 If ¢: R — [0,+) is a convex function, then for amy> 0, the following properties
hold:

1. the functiom — M(n, p) is symmetric around/2, concave, and continuous ¢@ 1];
2. |, is convex, continuous, nonnegative, and nondecreasin@, & andy(0) = 0;

3. if0O< p<rT,thenyp <Y onl0,1];

4. @is R-classification-calibrated if and only i, (8) > O for 6 € (0,1].

Proof For anyp > 0, let
NG

B (X) = @(x) + o

As already observed in the proof of Lemma 23, the corresponding igeswrditional@,-risk ér,
satisfies

Cy (@) =Chp(a) -

@ being convex, the first two points are direct consequences of Battktt(@006, Theorem 4 &
Lemma 6). In particular,the functiaf, is nondecreasing due to the fact that it is minimal at 0 and
convex on0, 1].
To prove the third point, it suffices to observe that fox® < T we have for any(n,a) €
[0,1] x R:
2(1 1
(@)~ o) =2t (3 - 1) 0.

T

which implies, by taking the minimum ia:

M(n,p) > M(n,1),

and therefore, fo € [0, 1]
Wp () < 4k (6).

Finally, by lemma 24 is R-classification-calibrated iff}, is classification-calibrated (because
both properties are equivalent to saying tipas differentiable at 0 angy/(0) < 0), iff Yy(8) >0
for 8 € (0,1] by Bartlett et al. (2006, Theorem 6). [ |

We are now in position to state a first result to relate the exBgggisk to the excess-risk. The
dependence op(x) generates difficulties compared with the “classical” setting, which forcés us
separate the low density regions from the rest in the analysis.
Theorem 28 Supposepis a convex classification-calibrated function, and for any 0, let

A= {xeRd L p(X) gs}.

For any f € o the following holds:

R(f) =R < inf {P(Ac) + W™ (Roo(f) — Ryo) } 57)
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Proof First note that for convex classification-calibrated functianss strictly increasing off0, 1].
Indeed, by Lemma 27, it is convex and reaches its uniqgue minimum at 0 in tlas Sascel; is
also continuous of0, 1], it is therefore invertible, which justifies the useygf! in (57).

Fix now a functionf € a7, and letU (x) := 1 if f(x)(2n(x)—1) < 0, 0 otherwise is the
indicator function of the set wheré and the optimal classifier disagree). For any 0, if we
defineB, := RY\ A¢, we can compute:

—/ws %)|21(9 1)) p(lx

—P(Ey) [ We(UO120100 1)) oy
SLME (188) . 12109 - 1juptx)

_mn ( / E\2n<x>—1ru<x>p<x>dx)

e (12000 - 21U 0p09x- [ 2000~ 2jU p01x)

Il
)
3

where the successive (in)equalities are respectively justified by: (@efeition ofR,0 and the sec-
ond point of Theorem 26; (ii) the fact thidt < 1; (iii) the fact that wherf and 2 — 1 have different
signs, therCy, , () > G, o (0) = ¢(0); (iv) the definition ofy,; (v) the obvious fact thaB, C RY;
(vi) the observation that, by definitiop,is larger tharg on B, and the third point of Lemma 27; (vii)
the fact thatpe(0) = 0 andU (x) € {0, 1}; (viii) a simple division and multiplication bf?(B¢) > 0;
(ix) Jensen’s inequality; (x) the convexity gt and the facts thap(0) = 0 andP(Bg) < 1; (xi) the
fact thatB; = R\ A¢; (xii) the upper bound2n(x) —1|U (x) < 1 and the fact thap is increasing;
and (xiii) a classical inequality that can be found, e.g., in Devroye et 88G,1Theorem 2.2, page
16). Composing each side by the strictly increasing funatiph leads to the announced resulll
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6.5 Proof of Theorem 4

Theorem 4 is a direct corollary of Theorem 28Indeed, keeping the notation of the previous
section, let us choose for ady> 0 ane small enough to ensui(A¢) < 8/2, andN € N such that
foranyn > N,

Roo(f) ~Rao < s (3

Then a direct application of Theorem 28 in this case shows that fonan\, R(f,) — Rx < 9,
concluding the proof of Theorem 4. |

This important result shows that any consistency result for the regedapizisk implies con-
sistency for the true risk, that is, convergence to the Bayes risk. Besidegergence rates for
the regularized-risk towards its minimum translate into convergence rates for the risk towseds
Bayes risk thanks to (57), as we will show in the next subsection.

6.6 Refinements under a Low Noise Assumption

When the distributiorP satisfies a low noise assumption as defined in section 2, we have the fol-
lowing result:

Theorem 29 Let@be a convex loss function such that there esB,v) € (0, +o0)2 satisfying:
V(g,u) € (0,40) xR, g (u) < kuPe.

Then for any distribution P with low density expongnthere exist constaniK,r) € (0,+) such
that for any fe a¢ with an excess regularizegirisk upper bounded by r the following holds:

By

R(f) —R" <K (Rgo(f) — Ryo) ™

Proof Let (cy,€0) € (0,+)? such that

Ve € (0,6, P(A¢) < e, (58)
and define - .
yrv 1 =

ri=¢g,’ K Bch. (59)

Given any functionf € & such thad = Ry (f) — R’(‘go <r, let

1 -1 B
g1=KWe, "oV, (60)

Because < r, we can upper bounglby:

< it v B
Y+v Vv

g <K¥ve, "r (61)
= &p.

4. \We note that after this work was submitted, a related analysis has begwspd in Steinwart (2005b). The latter
provides a very general framework, which in particular allows to @efilkeorem 4 without the use of Theorem 28.
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Combining (61) and (58), we obtain:
P(A¢) < cpeY
v 62
< Kv%vc%HV 6\/%. (62)
On the other hand,
W1 (8) <kdPe
Y B (63)
= KYvey U OV,
Combining Theorem 28 with (62) and (63) leads to the result claimed with thetaoain defined
in (59) and
K = 2kwve)”

7. Consistency of SVMs

In this section we illustrate the results obtained throughout Section 6 foraxajdoss functiony,

in particular the control of the exceBsrisk by the excesRgo-risk of Theorem 29, to the specific
cases of the loss functions used in 1- and 2-SVM. This leads to the prddiearem 6 in Section
7.3.

7.1 The Case of 1-SVM
Let@(a) = max(1— a,0). Then we easily obtain, for ariy),p) € [—1,1] x (0, +):

n(1—a)+Aa?/p if o € (—co0,—1]
Crp(@)=9n1-0)+(1-n)(1+a)+Aa?/p ifae[-1,1]
(1-n)(1+a)+Aa?/p if o€ [1,+00).

This shows that, ;, is strictly decreasing of-e, —1] and strictly increasing ofi, 4+); as a result
it reaches its minimum ofi-1,1]. Its derivative on this interval is equal to:

2\
vae (-1,1), Co(a)= p“+1—2n.

This shows tha€,, , reaches its minimum at the point:

-1 ifn<1/2—A/p
a(n,p) =9 —-1/2)p/x ifnell/2-A/p,1/2+A/p] (64)
1 ifn>1/2+A/p
and that the value of this minimum is equal to:
n+A/p ifn<1/2-A/p
M(n,p)=1{1-p(N—1/2)*/A if ne[1/2—\/p,1/2+A/p]
2(1-n)+A/p ifn>1/24+A/p
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From this we deduce that for &b, 8) € (0, +) x [—1,1]:

po%/(4N) ifO<B<2\/p,
Yo (8) = 52 .
—Ap if2A/p<6<1

whose inverse function is

1 dhu/p IfO<u<A/p,
Vo (u)_{u+>\/p it u>A/p. (65)

7.2 The Case of 2-SVM
Let@(a) = max(1— 0,0)2. Then we obtain, for anyn,p) € [—1,1] x (0, +):

n(1—a)*+Ara2/p if o € (—o0,—1]
Cop(0) =4 n(1—a)®+(1-n)(1+a)’+ra?/p ifae[-11]
(1-n)(14a)®+Aa?/p if o € [1,+c0).

This shows that, ,, is strictly decreasing of-e, —1] and strictly increasing ofi, +); as a result
it reaches its minimum ofi-1,1]. Its derivative on this interval is equal to:

Va e (—1,1), Cﬁlvp(a):2<1+2>a+l—2n.
This shows thaC, , reaches its minimum at the point:
P
an,p)=2n—-1)——. 66
(n:p)=(n=1)5— (66)

and that the value of this minimum is equal to:

p
M =1-(2n-1°2-"_.
(n,p) (2n-1)%5 5
From this we deduce that for &b, 8) € (0, +) x [—1,1]:

P 2

0)=—0
whose inverse function is
A
Yot (u) = <1+p> u. (67)

Remark 30 The minimum of &, being reached ori—1,1) for any (n,p) € [0,1] x (0, +), the
result would be identical for any convex loss functigrthat is equal tq1 — a)2 on(—eo,1). Indeed,

the corresponding regularized generic conditiogadrisk would coincide with €, on(—1,1) and
would be no smaller than {5 outside of this interval; it would therefore have the same minimal
value reached at the same point, and consequently the same function ¥ aihds is for example
the case with the loss function used in LS-Syier) = (1—a)?
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7.3 Proof of Theorem 6

Starting with@, (a) = max(1— a,0), let us follow the proof of Theorem 29 by takifig=v = 1/2
andk = 2v/A. Forr defined as in (59), let us choose

1
] CZ)\V+V By
ri=min{r, {5 .
K2 B

For a functionf € ar, choosinge as in (60),0 < r; implies

1
COAYTV Y Bryv
5< ( 2

y+v
K2 B

_ 1
- (g*(W’V) 2~ F \VHV 58) BHVY

and therefore: \
< .
£

I

02
This ensures by (65) that for= 627%, one indeed has
Wt (u) = kuPe™,

which allows the rest of the proof, in particular (59), to be valid. This psathe result fo;, with

Ky— 2 x 23N,
For g(a) = max(1—a,0)% we can observe from (67) that, for asy (0, ],

bW < [0 reo)
and the proof of Theorem 29 leads to the claimed result wyith r defined in (59), and

1
Ko =2x (A +£0) 5T 2.

Remark 31 We note here thatcan be chosen as small as possible in order to move the constant K
as close as possible to its lower bound:

— 1
Ky=2x )\ﬁczzwl.

but the counterpart of decreasing s to decreasextoo, by (59). We also notice the constant
corresponding to the 1-SVM loss function is larger than that of the 2-SV&flmstion, by a factor

2y
of up to22+1
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8. Consistency of One-class SVMs for Density Level Set Estimati

In this section we focus on the one-class capis identically equal to 1, anB is just considered
as a distribution ofRY, with densityp with respect to the Lebesgue measure. The first subsection is
devoted to the proof of Theorem 8, and the second subsection to theopidoeorem 9.

8.1 Proof of Theorem 8

Theorem 8 easily follows from combining some results given in this papest, Kirfollows from
(64) that, in the one-class case whare- 1 on its domain, the asymptotic functidgo equals the
truncated densitp,. Then, using Lemma 7, we get the following bound:

o= l2, < § (Reol o) ~Ry).

Finally, under the assumption lgmgw(py,d) = 0, using Theorem 3 with, for instance= 1,5 =
1,0 = (1/n¥* o, = (1/n)Y# andx = log(n), we deduce that for arg/> 0,

P{lfs—prll.>€} -0

asn — oo,

8.2 Proof of Theorem 9

Theorem 9 directly follows from combining Theorem 8 with Theorem 33, whgcstated and
proved at the end of this section. To prove Theorem 33, it will be usefist state Lemma 32.

Before going to this point, let us recall some specific notation in the contelardity level set
estimation. The aim is to estimate a density level set of |gvidr someu > 0:

Cui= {xeRd : p(X) 2u} . (68)

The estimator that is considered here is the plug-in density level set estirsatmiaed withf,
denoted byC,;:

Cui= {xeRd : 20 () > u} . (69)

Recall that the asymptotic behaviour &fin the one-class case is given in Theorenfgconverge
to p,, which is proportional to the densifytruncated at level® Taking into account the behaviour
of p), we only consider the situation where<Op < 2\ < sup(p) = M. The densityp is still
assumed to have a compact supget x . To assess the quality GAL we use the so-callegkcess
massfunctional, first introduced by Hartigan (1987), which is defined for em@asurable subs€t
of RY as follows:

Hp(C) :=P(C) — pLeb(C) , (70)
where Leb is the Lebesgue measure. Note lthais defined with respect to bothandy, and that
it is maximized byC,,. Hence, the quality of an estimafedepends here on how its excess mass is
close to this oC,..
The following lemma relates thie, convergence of a density estimator to the consistency of the
associated plug-in density level set estimator, with respect to the excessmtason:
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Lemma 32 Let P be a probability distribution oY with compact support 8 x. Assume that P

is absolutely continuous with respect to the Lebesgue’s measure, apdiégtote its associated
density function. Assume furthermore timais bounded on S. Consider a non-negative density
estimated defined orRY. Then the following holds

Hp(Cu) —Hp(C) < Ks||p—plIL, - (71)

whereC is the level set ab at level p, and

2¢m|| p||Lw + 555

Proof To prove the lemma, it is convenient to first bund an artificial classificatioblero using the
density functiorp and the desired level then to relate the excess-risk involved in this classification
problem to the excess-mass involved in the original one-class problemth¥otais technique has
already been used in Steinwart et al. (2005). Let us consider the fotigwint distributionQ
defined by its marginal density function

mp(X) + (1 —m) & if xe S,
4 1= { 09+ (1= M teies | 72)
0 otherwise ,
and by its regression function
mp(X)
No(X) := , XES, (73)
mp(x) + (1 M) et
wheremis chosen such that x)
p(x
X) = , 74
No(X) o(X) + i (74)
that is
_ # (75)
~ l+pLeb(S)

In words, in the above artificial classification problem, the initial distributfostands for the
marginal distribution of the positive class, and the negative class is dedénathe uniform distri-
bution over the support &. The mixture coefficieninis determined by the initially desired density
level w. The corresponding Bayes classifier, which is the plug-in rule assdaidtie no, is denoted
by h*.

Furthermore let us defingy := p/ (p+ 1), which stands for an estimate ig§ in our artificial clas-
sification problem, anth as the plug-in classifier associated wnm h:= sign(2fp—1). Then it

is straightforward thah* is the indicator function o€, and thath is the indicator function of.
Moreover

R(A) — R(h*) =m (HP(C*) - Hp(é)) .
Indeed,
RE) = QROOAY) )
= Q(Y=-1)Q(h(X) =1y = -1) + Q(Y = 1)Q(h(X) = —1|Y = 1)
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and, similarly,

RN = (L= m) 2 m1-P(C) (76)

which proves the claim.
Now, the following can be derived, starting from an equality that can hadan Devroye et al.
(1996, page 16):

1

R -RN) = 2Eo||no-

< 2Eq [! No— "o \Z] v

A
N
-
N
~~
%\
o
N
~~
o>
=
I=
/'\l
35}
XX
T =
=
~_
N
=3
>
=
N

VA .
< ZTIIp—pHLz,

whereA is a positive uniform upper bound ajix), for instanceA = m||p||.., + (1 —m) /Leb(S).
Combining the previous equality with the last inequality concludes the proof. |

We could just directly apply this lemma 3, p and the distributiorP, defined throughp,, but

this would prove the consistency &f with respect to the excess masds, which is different from

the criterionHp of interest. The following lemma implies that the plug-in density level set estimator
at level O< p < 2\ based on the one-class SVM estimator is indeed consistent with respect to the
excess masidp.

Theorem 33 Let f be a non-negative squared integrable function that estimaytesis defined in
Equation 7). LeD < p < 2A. LetC denote the level set @A f at level . Then

He(Cy) — He(C) < Ko f —pa L, (77)
where kK > 0 depends neither o, nor on n.
Proof Let us introduce the following estimator:
p:=2AF+py, (78)

where the functiom, is defined as follows:

5 {p(x)—Z)\ if p(X) > 2\, 79)

0 otherwise,

5. Note thatP, is not a probability distribution, since the functipy does not integrate to 1. Still, the excess-mass
remains well-defined.
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and letC denote the level set @ at levelp. It can be checked th@it—p = 2\ (f —p, ), implying
that

1B—pll, =2\ f—pallL, - (80)
Hence, using Lemma 32, we have
He (C) —Hep (€) < Ks|| —pllL, = 2Ks|| f —pa L (81)
leading to
Hp(Cy) — He(C) < 24| f — py 1L, + | He (€) ~HR(C) | (82)

The last thing to do is to bOUﬂP"P(é\) —Hp(é) ‘ SinceP has a bounded density w.r.t. the
Lebesgue’s measure,

‘ Hp(C) — Hp(€) ‘ < (p+ M)Leb(éAé) . (83)

By construction op, if Co denotes the level set pfat level A, andC,, its complementary iiRY,
then we hav€ NC,, =CNCy and Af >y = p > W Hence

Leb(CAc) = /%1{2Af<wﬁ>u}
< [ s
o {aaf<u}

_ / A-af,
T Jc, 2A—H {2 f<p}
1

o\ 12
< 7/ 2Apy — 2\ f
B 2?\—u<%( o2 )>
) N
< r_unf_p)\HLz'
This concludes the proof. |

Acknowledgments

The authors are grateful to &thane Boucheron, Pascal Massart and Ingo Steinwart for fruitfu
discussions and advices. JPV is supported by NHGRI NIH award RIBB& 0 and by the grant
ACI NIM 2003-72 of the French Ministry for Research and New Tedbgies. This work was
supported in part by the IST Programme of the European Community, ureleABICAL Network

of Excellence, 1ST-2002-506778. This publication only reflects theaastiiews.

References
N. Aronszajn. Theory of reproducing kernelgans. Am. Math. Soc68:337 — 404, 1950.

P. I. Bartlett, M. |. Jordan, and J. D. McAuliffe. Convexity, classificatand risk boundsJ. Amer.
Statist. Asso¢101(473):138-156, 2006.

852



CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

P. L. Bartlett and A. Tewari. Sparseness vs estimating conditional pilitiegb Some asymptotic
results. InLecture Notes in Computer Sciengelume 3120, pages 564-578. Springer, 2004.

P. L. Bartlett, O. Bousquet, and S. Mendelson. Local Rademacher cxitigdeAnn. Stat. 33(4):
1497-1537, 2005.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimzargin classifiers. In
Proceedings of the 5th annual ACM workshop on Computational Leguwfirveory pages 144—
152. ACM Press, 1992.

R. A. DeVore and G. G. LorentzConstructive ApproximationSpringer Grundlehren der Mathe-
matischen Wissenschaften. Springer Verlag, 1993.

L. Devroye and G. Lugosi.Combinatorial Methods in Density EstimatiorSpringer Series in
Statistics. Springer, 2000.

L. Devroye, L. Gyrfi, and G. LugosiA Probabilistic Theory of Pattern Recognitiorolume 31 of
Applications of MathematicsSpringer, 1996.

G. B. Folland.Fourier analysis and its applicationsThe Wadsworth & Brooks/Cole Mathematics
Series. Wadsworth & Brooks/Cole Advanced Books & Software, PaBifae, CA, 1992.

J. A. Hartigan. Estimation of a convex density contour in two dimensidn&mer. Statist. Assqc.
82(397):267-270, 1987.

V. Koltchinskii. Localized Rademacher complexities. Manuscript, SeptenQis.2

G. Lugosi and N. Vayatis. On the Bayes-risk consistency of regulbp®sting methodsAnn.
Stat, 32:30-55, 2004.

E. Mammen and A. Tsybakov. Smooth discrimination analysis. Stat.27(6):1808—-1829, 1999.

P. Massart. Some applications of concentration inequalities to stati&tics Fac. Sc. ToulouséX
(2):245-303, 2000.

M. T. Matache and V. Matache. Hilbert spaces induced by Toeplitz @nee kernels. Ihecture
Notes in Control and Information Scien¢ceslume 280, pages 319—-334. Springer, Jan 2002.

B. Sctolkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. EStignéhe
support of a high-dimensional distributioNeural Comput.13:1443-1471, 2001.

B. W. Silverman. On the estimation of a probability density function by the maximumalized
likelihood method Ann. Stat.10:795-810, 1982.

I. Steinwart. Support vector machines are universally consisie@omplexity18:768—791, 2002.
I. Steinwart. Sparseness of support vector machihedach. Learn. Res4:1071-1105, 2003.

I. Steinwart. Consistency of support vector machines and other rezpddeernel classifierdEEE
Trans. Inform. Theory51(1):128-142, 2005a.

853



VERT AND VERT

I. Steinwart. How to compare loss functions and their risks. Technicaltdpms Alamos National
Laboratory, 2005b.

I. Steinwart and C. Scovel. Fast rates for support vector machingg @Gaussian kernels. Technical
Report LA-UR 04-8796, Los Alamos National Laboratory, 2004.

. Steinwart, D. Hush, and C. Scovel. An explicit description of the rdpcing kernel Hilbert
spaces of Gaussian RBF kernels. Technical Report LA-UR 04;82&1Alamos National Lab-
oratory, 2004.

. Steinwart, D. Hush, and Scovel C. A classification framework fomaaly detection.J. Mach.
Learn. Res.6:211-232, 2005.

A.N. Tikhonov and V.Y. ArseninSolutions of ill-posed problem®V.H. Winston, 1977.

A. B. Tsybakov. On nonparametric estimation of density level satm. Stat. 25:948-969, June
1997.

T. Zhang. Statistical behavior and consistency of classification methsdsl loa convex risk mini-
mization. Ann. Stat. 32:56-134, 2004.

854



