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Abstract
We present a simple and scalable algorithm for maximum-margin estimation of structured output
models, including an important class of Markov networks andcombinatorial models. We formulate
the estimation problem as a convex-concave saddle-point problem that allows us to use simple
projection methods based on the dual extragradient algorithm (Nesterov, 2003). The projection
step can be solved using dynamic programming or combinatorial algorithms for min-cost convex
flow, depending on the structure of the problem. We show that this approach provides a memory-
efficient alternative to formulations based on reductions to a quadratic program (QP). We analyze
the convergence of the method and present experiments on twovery different structured prediction
tasks: 3D image segmentation and word alignment, illustrating the favorable scaling properties of
our algorithm.1

Keywords: Markov networks, large-margin methods, structured prediction, extragradient, Breg-
man projections

1. Introduction

Structured prediction problems are classification or regression problems inwhich the output vari-
ables (the class labels or regression responses) are interdependent.These dependencies may reflect
sequential, spatial, recursive or combinatorial structure in the problem domain, and capturing these
dependencies is often as important for the purposes of prediction as capturing input-output depen-
dencies. In addition to modeling output correlations, we may wish to incorporate hard constraints
between variables. For example, we may seek a model that maps descriptionsof pairs of structured
objects (shapes, strings, trees, etc.) into alignments of those objects. Real-life examples of such
problems include bipartite matchings in alignment of 2D shapes (Belongie et al., 2002) and word
alignment of sentences from a source language to a target language in machine translation (Ma-
tusov et al., 2004) or non-bipartite matchings of residues in disulfide connectivity prediction for
proteins (Baldi et al., 2005). In these examples, the output variables encode presence of edges in the
matching and may obey hard one-to-one matching constraints. The predictionproblem in such situ-

1. Preliminary versions of some of this work appeared in the proceedings of Advances in Neural Information Processing
Systems 19, 2006 and Empirical Methods in Natural Language Processing, 2005.
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ations is often solved via efficient combinatorial optimization such as finding the maximum weight
matching, where the model provides the appropriate edge weights.

Thus in this paper we define the termstructured output modelvery broadly, as a compact scor-
ing scheme over a (possibly very large) set of combinatorial structures and a method for finding
the highest scoring structure. For example, when a probabilistic graphical model is used to capture
dependencies in a structured output model, the scoring scheme is specifiedvia a factorized proba-
bility distribution for the output variables conditional on the input variables, and the search involves
some form of generalized Viterbi algorithm. More broadly, in models based on combinatorial prob-
lems, the scoring scheme is usually a simple sum of weights associated with vertices, edges, or
other components of a structure; these weights are often represented asparametric functions of the
inputs. Given training data consisting of instances labeled by desired structured outputs and a set
of features that parameterize the scoring function, the (discriminative) learning problem is to find
parameters such that the highest scoring outputs are as close as possibleto the desired outputs.

In the case of structured prediction based on graphical models, which encompasses most work to
date on structured prediction, two major approaches to discriminative learning have been explored:
(1) maximum conditional likelihood (Lafferty et al., 2001, 2004) and (2) maximum margin (Collins,
2002; Altun et al., 2003; Taskar et al., 2004b). Both approaches are viable computationally for re-
stricted classes of graphical models. In the broader context of the current paper, however, only the
maximum-margin approach appears to be viable. In particular, it has been shown that maximum-
margin estimation can be formulated as a tractable convex problem — a polynomial-size quadratic
program (QP) — in several cases of interest (Taskar et al., 2004a, 2005a); such results are not avail-
able for conditional likelihood. Moreover, it is possible to find interesting subfamilies of graphical
models for which maximum-margin methods are provably tractable whereas likelihood-based meth-
ods are not. For example, for the Markov random fields that arise in object segmentation problems
in vision (Kumar and Hebert, 2004; Anguelov et al., 2005) the task of finding the most likely as-
signment reduces to a min-cut problem. In these prediction tasks, the problem of finding the highest
scoring structure is tractable, while computing the partition function is #P-complete. Essentially,
maximum-likelihood estimation requires the partition function, while maximum-margin estimation
does not, and thus remains tractable. Polynomial-time sampling algorithms for approximating the
partition function for some models do exist (Jerrum and Sinclair, 1993), but have high-degree poly-
nomial complexity and have not yet been shown to be effective for conditional likelihood estimation.

While the reduction to a tractable convex program such as a QP is a significant step forward, it
is unfortunately not the case that off-the-shelf QP solvers necessarilyprovide practical solutions to
structured prediction problems. Indeed, despite the reduction to a polynomial number of variables,
off-the-shelf QP solvers tend to scale poorly with problem and training sample size for these models.
The number of variables is still large and the memory needed to maintain second-order information
(for example, the inverse Hessian) is a serious practical bottleneck.

To solve the largest-scale machine learning problems, researchers haveoften found it expedient
to consider simple gradient-based algorithms, in which each individual step ischeap in terms of
computation and memory (Platt, 1999; LeCun et al., 1998). Examples of this approach in the struc-
tured prediction setting include the Structured Sequential Minimal Optimization algorithm (Taskar
et al., 2004b; Taskar, 2004) and the Structured Exponentiated Gradient algorithm (Bartlett et al.,
2005). These algorithms are first-order methods for solving QPs arising from low-treewidth Markov
random fields and other decomposable models. In these restricted settings these methods can be
used to solve significantly larger problems than can be solved with off-the-shelf QP solvers. These
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methods are, however, limited in scope in that they rely on dynamic programming tocompute es-
sential quantities such as gradients. They do not extend to models where dynamic programming is
not applicable, for example, to problems such as matchings and min-cuts. Another line of work in
learning structured prediction models aims to approximate the arising QPs via constraint genera-
tion (Altun et al., 2003; Tsochantaridis et al., 2004). This approach only requires finding the highest
scoring structure in the inner loop and incrementally solving a growing QP as constraints are added.

In this paper, we present a solution methodology for structured predictionthat encompasses a
broad range of combinatorial optimization problems, including matchings, min-cutsand other net-
work flow problems. There are two key aspects to our methodology. The first is that we take a
novel approach to the formulation of structured prediction problems, formulating them as saddle-
point problems. This allows us to exploit recent developments in the optimization literature, where
simple gradient-based methods have been developed for solving saddle-point problems (Nesterov,
2003). Moreover, we show that the key computational step in these methods—a certain projection
operation—inherits the favorable computational complexity of the underlying optimization prob-
lem. This important result makes our approach viable computationally. In particular, for decompos-
able graphical models, the projection step is solvable via dynamic programming.For matchings and
min-cuts, projection involves a min-cost quadratic flow computation, a problemfor which efficient,
highly-specialized algorithms are available.

The paper is organized as follows. In Section 2 we present an overviewof structured prediction,
focusing on three classes of tractable optimization problems. Section 3 showshow to formulate the
maximum-margin estimation problem for these models as a saddle-point problem. InSection 4 we
discuss the dual extragradient method for solving saddle-point problemsand show how it specializes
to our setting. We derive a memory-efficient version of the algorithm that requires storage propor-
tional to the number of parameters in the model and is independent of the number of examples in
Section 5. In Section 6 we illustrate the effectiveness of our approach ontwo very different large-
scale structured prediction tasks: 3D image segmentation and word alignment innatural language
translation. Finally, Section 7 presents our conclusions.

2. Structured Output Models

We begin by discussing three special cases of the general framework that we present subsequently:
(1) tree-structured Markov networks, (2) Markov networks with submodular potentials, and (3)
a bipartite matching model. Despite significant differences in the formal specification of these
models, they share the property that in all cases the problem of finding the highest-scoring output
can be formulated as a linear program (LP).

2.1 Tree-Structured Markov Networks

For simplicity of notation, we focus on tree networks, noting in passing that theextension to hy-
pertrees is straightforward. GivenN variables,y = {y1, . . . ,yN}, with discrete domainsy j ∈ D j =
{α1, . . . ,α|D j |}, we define a joint distribution overY = D 1× . . .×DN via

P(y) ∝ ∏
j∈V

φ j(y j) ∏
jk∈E

φ jk(y j ,yk),

where(V = {1, . . . ,N},E ⊂{ jk : j < k, j ∈V ,k∈V }) is an undirected graph, and where{φ j(y j), j ∈
V } are the node potentials and{φ jk(y j ,yk), jk ∈ E } are the edge potentials. We can find the most
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likely assignment, argmaxy P(y), using the Viterbi dynamic programming algorithm for trees. We
can also find it using a standard linear programming formulation as follows. Weintroduce variables
zjα to denote indicators1(y j = α) for all variablesj ∈ V and their valuesα ∈ D j . Similarly, we
introduce variableszjkαβ to denote indicators1(y j = α,yk = β) for all edgesjk ∈ E and the values
of their nodes,α ∈ D j ,β ∈ D k. We can formulate the problem of finding the maximal probability
configuration as follows:

max
0≤z≤1

∑
j∈V

∑
α∈D j

zjα logφ j(α) + ∑
jk∈E

∑
α∈D j ,β∈D k

zjkαβ logφ jk(α,β) (1)

s.t. ∑
α∈D j

zjα = 1, ∀ j ∈ V ; ∑
α∈D j ,β∈D k

zjkαβ = 1, ∀ jk ∈ E ; (2)

∑
α∈D j

zjkαβ = zkβ, ∀ jk ∈ E ,β ∈ D k; ∑
β∈D k

zjkαβ = zjα, ∀ jk ∈ E ,α ∈ D j , (3)

where (2) expresses normalization constraints and (3) captures marginalization constraints. This LP
has integral optimal solutions ifE is a forest (Chekuri et al., 2001; Wainwright et al., 2002; Chekuri
et al., 2005). In networks of general topology, however, the optimal solution can be fractional
(as expected, since the problem is NP-hard). Other important exceptionscan be found, however,
specifically by focusing on constraints on the potentials rather than constraints on the topology. We
discuss one such example in the following section.

2.2 Markov Networks with Submodular Potentials

We consider a special class of Markov networks, common in vision applications, in which inference
reduces to a tractable min-cut problem (Greig et al., 1989; Kolmogorov andZabih, 2004). We
assume that (1) all variables are binary (D j = {0,1}), and (2) all edge potentials are “regular” (i.e.,
submodular):

logφ jk(0,0)+ logφ jk(1,1) ≥ logφ jk(1,0)+ logφ jk(0,1), ∀ jk ∈ E . (4)

Such potentials prefer assignments where connected nodes have the samelabel, that is,y j = yk.
This notion of regularity can be extended to potentials over more than two variables (Kolmogorov
and Zabih, 2004). These assumptions ensure that the LP in Eq. (1) has integral optimal solu-
tions (Chekuri et al., 2001; Kolmogorov and Wainwright, 2005; Chekuriet al., 2005). Similar
kinds of networks (defined also for non-binary variables and non-pairwise potentials) were called
“associative Markov networks” by Taskar et al. (2004a) and Anguelov et al. (2005), who used them
for object segmentation and hypertext classification.

In figure-ground segmentation (see Fig. 1a), the node potentials capturelocal evidence about
the label of a pixel or range scan point. Edges usually connect nearbypixels in an image, and serve
to correlate their labels. Assuming that such correlations tend to bepositive(connected nodes tend
to have the same label) leads us to consider simplified edge potentials of the formφ jk(y j ,yk) =
exp{−sjk1(y j 6= yk)}, wheresjk is a nonnegative penalty for assigningy j andyk different labels.
Note that such potentials are regular ifsjk ≥ 0. Expressing node potentials asφ j(y j) = exp{sjy j},
we haveP(y) ∝ exp

{
∑ j∈V sjy j −∑ jk∈E sjk1(y j 6= yk)

}
. Under this restriction on the potentials, we

can obtain the following (simpler) LP:

max
0≤z≤1

∑
j∈V

sjzj − ∑
jk∈E

sjkzjk (5)

s.t. zj −zk ≤ zjk, zk−zj ≤ zjk, ∀ jk ∈ E ,
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Figure 1: Structured prediction applications: (a) 3D figure-ground segmentation; (b) Word align-
ment in machine translation.

where the continuous variableszj correspond to a relaxation of the binary variablesy j , and the con-
straints encodezjk = 1(zj 6= zk). To see this, note that the constraints can be equivalently expressed
as |zj − zk| ≤ zjk. Becausesjk is positive,zjk = |zk − zj | at the maximum, which is equivalent to1(zj 6= zk) if the zj ,zk variables are binary. An integral optimal solution always exists, since the
constraint matrix is totally unimodular (Schrijver, 2003).

We can parameterize the node and edge potentials in terms of user-providedfeaturesx j andx jk

associated with the nodes and edges. In particular, in 3D range data,x j might involve spin-image
features or spatial occupancy histograms of a pointj, while x jk might include the distance between
points j andk, the dot-product of their normals, etc. The simplest model of dependenceis a linear
combination of features:sj = w⊤

n fn(x j) andsjk = w⊤
e fe(x jk), wherewn andwe are node and edge

parameters, andfn andfe are node and edge feature mappings, of dimensiondn andde, respectively.
To ensure non-negativity ofsjk, we assume that the edge featuresfe are nonnegative and we impose
the restrictionwe ≥ 0. This constraint is incorporated into the learning formulation we present
below. We assume that the feature mappingsf are provided by the user and our goal is to estimate
parametersw from labeled data. We abbreviate the score assigned to a labelingy for an inputx as
w⊤f(x,y) = ∑ j y jw⊤

n fn(x j)−∑ jk∈E y jkw⊤
e fe(x jk), wherey jk = 1(y j 6= yk).

2.3 Matchings

Consider modeling the task of word alignment of parallel bilingual sentences(Fig. 1b) as a maxi-
mum weight bipartite matching problem in a graph, where the nodesV = V s∪V t correspond to
the words in the “source” sentence(V s) and the “target” sentence(V t) and the edgesE = { jk : j ∈
V s,k∈ V t} correspond to possible alignments between the words. For simplicity, assume that each
word aligns to one or zero words in the other sentence. The edge weightsjk represents the degree
to which word j in one sentence can translate into the wordk in the other sentence. Our objective is
to find an alignment that maximizes the sum of edge scores. We represent a matching using a set of
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binary variablesy jk that are set to 1 if wordj is assigned to wordk in the other sentence, and 0 oth-
erwise. The score of an assignment is the sum of edge scores:s(y) = ∑ jk∈E sjky jk. The maximum
weight bipartite matching problem, argmaxy∈Y s(y), can be found by solving the following LP:

max
0≤z≤1

∑
jk∈E

sjkzjk (6)

s.t. ∑
j∈V s

zjk ≤ 1, ∀k∈ V t ; ∑
k∈V t

zjk ≤ 1, ∀ j ∈ V s.

where again the continuous variableszjk correspond to the relaxation of the binary variablesy jk.
As in the min-cut problem, this LP is guaranteed to have integral solutions for any scoring function
s(y) (Schrijver, 2003).

For word alignment, the scoressjk can be defined in terms of the word pairjk and input features
associated withx jk. We can include the identity of the two words, the relative position in the re-
spective sentences, the part-of-speech tags, the string similarity (for detecting cognates), etc. We let
sjk = w⊤f(x jk) for a user-provided feature mappingf and abbreviatew⊤f(x,y) = ∑ jk y jkw⊤f(x jk).

2.4 General Structure

More generally, we consider prediction problems in which the inputx ∈ X is an arbitrary structured
object and the output is a vector of valuesy = (y1, . . . ,yLx) encoding, for example, a matching or a
cut in the graph. We assume that the lengthLx and the structure encoded byy depend determinis-
tically on the inputx. In our word alignment example, the output space is defined by the length of
the two sentences. Denote the output space for a given inputx asY (x) and the entire output space
asY =

S

x∈X Y (x).
Consider the class of structured prediction modelsH defined by the linear family:

hw(x) = argmax
y∈Y (x)

w⊤f(x,y), (7)

wheref(x,y) is a vector of functionsf : X × Y 7→ IRn. This formulation is very general. Indeed,
it is too general for our purposes—for many(f,Y ) pairs, finding the optimaly is intractable. We
specialize to the class of models in which the optimization problem in Eq. (7) can besolved in poly-
nomial time via convex optimization; this is still a very large class of models. Beyond the examples
discussed here, it includes weighted context-free grammars and dependency grammars (Manning
and Scḧutze, 1999) and string edit distance models for sequence alignment (Durbinet al., 1998).

3. Large Margin Estimation

We assume a set of training instancesS= {(xi ,yi)}
m
i=1, where each instance consists of a structured

objectxi (such as a graph) and a target solutionyi (such as a matching). Consider learning the
parametersw in the conditional likelihood setting. We can definePw(y | x) = 1

Zw(x) exp{w⊤f(x,y)},

whereZw(x) = ∑y′∈Y (x) exp{w⊤f(x,y′)}, and maximize the conditional log-likelihood∑i logPw(yi |
xi), perhaps with additional regularization of the parametersw. As we have noted earlier, however,
the problem of computing the partition functionZw(x) is computationally intractable for many of the
problems we are interested in. In particular, it is #P-complete for matchings andmin-cuts (Valiant,
1979; Jerrum and Sinclair, 1993).
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We thus retreat from conditional likelihood and consider the max-margin formulation developed
in several recent papers (Collins, 2002; Altun et al., 2003; Taskar etal., 2004b). In this formulation,
we seek to find parametersw such that:

yi = argmax
y′i∈Y i

w⊤f(xi ,y′i), ∀i,

whereY i = Y (xi). The solution spaceY i depends on the structured objectxi ; for example, the space
of possible matchings depends on the precise set of nodes and edges in the graph.

As in univariate prediction, we measure the error of prediction using a lossfunction ℓ(yi ,y′i).
To obtain a convex formulation, we upper bound the lossℓ(yi ,hw(xi)) using the hinge function:
maxy′i∈Y i

[w⊤f i(y′i) + ℓi(y′i)−w⊤f i(yi)], whereℓi(y′i) = ℓ(yi ,y′i), andf i(y′i) = f(xi ,y′i). Minimizing
this upper bound will force the true structureyi to be optimal with respect tow for each instancei:

min
w∈W

∑
i

max
y′i∈Y i

[w⊤f i(y′i)+ ℓi(y′i)]−w⊤f i(yi), (8)

whereW is the set of allowed parametersw. We assume that the parameter spaceW is a convex
set, typically a norm ball{w : ||w||p ≤ γ} with p= 1,2 and a regularization parameterγ. In the case
thatW = {w : ||w||2 ≤ γ}, this formulation is equivalent to the standard large margin formulation
using slack variablesξ and slack penaltyC (cf. Taskar et al., 2004b), for some suitable values ofC
depending onγ. The correspondence can be seen as follows: letw∗(C) be a solution to the optimiza-
tion problem with slack penaltyC and defineγ(C) = ||w∗(C)||. Thenw∗ is also a solution to Eq. (8).
Conversely, we can invert the mappingγ(·) to find those values ofC (possibly non-unique) that give
rise to the same solution as Eq. (8) for a specificγ. In the case of submodular potentials, there are
additional linear constraints on the edge potentials. In the setting of Eq. (5),we simply constrain
we ≥ 0. For general submodular potentials, we can parameterize the log of the edge potential using
four sets of edge parameters,we00,we01,we10,we11, as follows: logφ jk(α,β) = w⊤

eαβf(x jk). Assum-
ing, as before, that the edge features are nonnegative, the regularityof the potentials can be enforced
via a linear constraint:we00+we11 ≥ we10+we01, where the inequality should be interpreted com-
ponentwise.

The key to solving Eq. (8) efficiently is theloss-augmented inference problem,

max
y′i∈Y i

[w⊤f i(y′i)+ ℓi(y′i)]. (9)

This optimization problem has precisely the same form as the prediction problemwhose parameters
we are trying to learn—maxy′i∈Y i

w⊤f i(y′i)—but with an additional term corresponding to the loss
function. Tractability of the loss-augmented inference thus depends not only on the tractability of
maxy′i∈Y i

w⊤f i(y′i), but also on the form of the loss termℓi(y′i). A natural choice in this regard is the
Hamming distance, which simply counts the number of variables in which a candidate solutiony′i
differs from the target outputyi . In general, we need only assume that the loss function decomposes
over the variables inyi .

In particular, for word alignment, we use weighted Hamming distance, which counts the number
of variables in which a candidate matchingy′i differs from the target alignmentyi , with different cost
for false positives(c+) and false negatives(c-):

ℓ(yi ,y′i) = ∑
jk∈E i

[
c-yi, jk(1−y′i, jk)+c+ y′i, jk(1−yi, jk)

]
(10)

= ∑
jk∈E i

c-yi, jk + ∑
jk∈E i

[c+ − (c- +c+)yi, jk]y
′
i, jk,
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whereyi, jk indicates the presence of edgejk in examplei andE i is the set of edges in examplei.
The loss-augmented matching problem can then be written as an LP similar to Eq. (6) (without the
constant term∑ jk c-yi, jk):

max
0≤zi≤1

∑
jk∈E i

zi, jk[w⊤f(xi, jk)+c+ − (c- +c+)yi, jk]

s.t. ∑
j∈V s

i

zi, jk ≤ 1, ∀k∈ V t
i ; ∑

k∈V t
i

zi, jk ≤ 1, ∀ j ∈ V s
i ,

wheref(xi, jk) is the vector of features of the edgejk in examplei andV s
i andV t

i are the nodes in
examplei. As before, the continuous variableszi, jk correspond to the binary valuesy′i, jk.

Generally, suppose we can express the prediction problem as an LP:

max
y′i∈Y i

w⊤f i(y′i) = max
zi∈Z i

w⊤Fizi ,

where
Z i = {zi : A izi ≤ bi , 0≤ zi ≤ 1}, (11)

for appropriately definedFi ,A i andbi . Then we have a similar LP for the loss-augmented inference
for each examplei:

max
y′i∈Y i

w⊤f i(y′i)+ ℓi(y′i) = di +max
zi∈Z i

(F⊤
i w+ci)

⊤zi , (12)

for appropriately defineddi andci . For the matching case,di = ∑ jk c-yi, jk is the constant term,Fi is
a matrix that has a column of featuresf(xi, jk) for each edgejk in examplei, andci is the vector of
the loss termsc+−(c- +c+)yi, jk. Letz= {z1, . . . ,zm} andZ = Z1× . . .×Zm. With these definitions,
we have the following saddle-point problem:

min
w∈W

max
z∈Z

∑
i

(
w⊤Fizi +c⊤i zi −w⊤f i(yi)

)
. (13)

where we have omitted the constant term∑i di . The only difference between this formulation and
our initial formulation in Eq. (8) is that we have created a concise continuous optimization problem
by replacing the discretey′i ’s with continuouszi ’s.

When the prediction problem is intractable (for example, in general Markovnetworks or tripar-
tite matchings), we can use a convex relaxation (for example, a linear or semidefinite program) to
upper bound maxy′i∈Y i

w⊤f i(y′i) and obtain an approximate maximum-margin formulation. This is
the approach taken in Taskar et al. (2004b) for general Markov networks using the LP in Eq. (1).

To solve (13), we could proceed by making use of Lagrangian duality. This approach, explored
in Taskar et al. (2004a, 2005a), yields a joint convex optimization problem.If the parameter space
W is described by linear and convex quadratic constraints, the result is a convex quadratic program
which can be solved using a generic QP solver.

We briefly outline this approach below, but in this paper, we take a different tack, solving the
problem in its natural saddle-point form. As we discuss in the following section, this approach
allows us to exploit the structure ofW andZ separately, allowing for efficient solutions for a wider
range of parameterizations and structures. It also opens up alternatives with respect to numerical
algorithms.
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Before moving on to solution of the saddle-point problem, we consider the joint convex form
when the feasible set has the form of (11) and the loss-augmented inference problem is a LP, as
in (12). Using commercial convex optimization solvers for this formulation will provide us with a
comparison point for our saddle-point solver. We now proceed to present this alternative form.

To transform the saddle-point form of (13) into a standard convex optimization form, we take
the dual of the individual loss-augmented LPs (12):

max
zi∈Z i

(F⊤
i w+ci)

⊤zi = min
(λi ,µi)∈Λi(w)

b⊤
i λi +1⊤µi (14)

whereΛi(w)= {(λi ,µi)≥ 0 : F⊤
i w+ci ≤A⊤

i λi +µi} defines the feasible space for the dual variables
λi andµi . Substituting back in equation (13) and writingλ = (λ1, . . . ,λm), µ = (µ1, . . . ,µm), we
obtain (omitting the constant∑i di):

min
w∈W ,(λ,µ)≥0

∑
i

(
b⊤

i λi +1⊤µi −w⊤f i(yi)
)

(15)

s.t. F⊤
i w+ci ≤ A⊤

i λi +µi i = 1, . . . ,m.

If W is defined by linear and convex quadratic constraints, the above optimizationproblem can be
solved using standard commercial solvers. The number of variables and constraints in this problem
is linear in the number of the parametersand the training data (for example nodes and edges).

4. Saddle-Point Problems and the Dual Extragradient Method

We begin by establishing some notation and definitions. Denote the objective ofthe saddle-point
problem in (13) by:

L (w,z) ≡ ∑
i

w⊤Fizi +c⊤i zi −w⊤f i(yi).

L (w,z) is bilinear inw andz, with gradient given by:∇wL (w,z) = ∑i Fizi − f i(yi) and∇ziL (w,z) =
F⊤

i w+ci .
We can view this problem as a zero-sum game between two players,w andz. Consider a simple

iterative improvement method based on gradient projections:

wt+1 = πW (wt −η∇wL (wt ,zt)); zt+1
i = πZ i (z

t
i +η∇ziL (w

t ,zt)), (16)

whereη is a step size andπV (v) = argminv′∈V ||v− v′||2 denotes the Euclidean projection of a
vectorv onto a convex setV . In this simple iteration, each player makes a small best-response
improvement without taking into account the effect of the change on the opponent’s strategy. This
usually leads to oscillations, and indeed, this method is generally not guaranteed to converge for
bilinear objectives for any step size (Korpelevich, 1976; He and Liao, 2002). One way forward is
to attempt to average the points(wt ,zt) to reduce oscillation. We pursue a different approach that
is based on the dual extragradient method of Nesterov (2003). In our previous work (Taskar et al.,
2006), we used a related method, the extragradient method due to Korpelevich (1976). The dual
extragradient is, however, a more flexible and general method, in terms ofthe types of projections
and feasible sets that can be used, allowing a broader range of structured problems and parameter
regularization schemes. Before we present the algorithm, we introduce some notation which will be
useful for its description.
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Let us combinew and z into a single vector,u = (w,z), and define the joint feasible space
U =W ×Z . Note thatU is convex since it is a direct product of convex sets.

We denote the (affine) gradient operator on this joint space as



∇wL (w,z)
−∇z1L (w,z)

...
−∇zmL (w,z)


 =




0 F1 · · · Fm

−F⊤
1

... 0
−F⊤

m




︸ ︷︷ ︸




w
z1
...

zm




︸ ︷︷ ︸

−




∑i f i(yi)
c1
...

cm




︸ ︷︷ ︸

= Fu−a.

F u a

4.1 Dual Extragradient

We first present the dual extragradient algorithm of Nesterov (2003)using the Euclidean geometry
induced by the standard 2-norm, and consider a non-Euclidean setup in Sec. 4.2.

As shown in Fig. 2, the dual extragradient algorithm proceeds using very simple gradient and
projection calculations.

Initialize: Choosêu ∈ U , sets−1 = 0.
Iterationt, 0≤ t ≤ τ:

v = πU (û+ηst−1);

ut = πU (v−η(Fv−a)); (17)

st = st−1− (Fut −a).

Output: ūτ = 1
τ+1 ∑τ

t=0ut .

Figure 2: Euclidean dual extragradient.

To relate this generic algorithm to our setting, recall thatu is composed of subvectorsw and
z; this induces a commensurate decomposition of thev and s vectors into subvectors. To refer
to these subvectors we will abuse notation and use the symbolsw and zi as indices. Thus, we
write v = (vw,vz1, . . . ,vzm), and similarly foru ands. Using this notation, the generic algorithm
in Eq. (17) expands into the following dual extragradient algorithm for structured prediction (where
the brackets represent gradient vectors):

vw = πW (ûw +ηst−1
w ); vzi = πZ i (ûzi +ηst−1

zi
), ∀i;

ut
w = πW (vw −η

[

∑
i

Fivzi − f i(yi)

]
); ut

zi
= πZ i (vzi +η

[
F⊤

i vw +ci

]
), ∀i;

st
w = st−1

w −

[

∑
i

Fiut
zi
− f i(yi)

]
; st

zi
= st−1

zi
+

[
F⊤

i ut
w +ci

]
, ∀i.

In the convergence analysis of dual extragradient (Nesterov, 2003), the stepsizeη is set to the
inverse of the Lipschitz constant (with respect to the 2-norm) of the gradient operator:

1/η = L ≡ max
u,u′∈U

||F(u−u′)||2
||u−u′||2

≤ ||F||2,
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where||F||2 is the largest singular value of the matrixF. In practice, various simple heuristics can be
considered for setting the stepsize, including search procedures based on optimizing the gap merit
function (see, e.g., He and Liao, 2002).

4.1.1 CONVERGENCE

One measure of quality of a saddle-point solution is via the gap function:

G (w,z) =

[
max
z′∈Z
L (w,z′)−L ∗

]
+

[
L ∗− min

w′∈W
L (w′,z)

]
, (18)

where the optimal loss is denotedL ∗ = minw′∈W maxz∈Z L (w,z). For non-optimal points(w,z),
the gapG (w,z) is positive and serves as a useful merit function, a measure of accuracy of a solution
found by the extragradient algorithm. At an optimum we have

G (w∗,z∗) = max
z′∈Z
L (w∗,z′)− min

w′∈W
L (w′,z∗) = 0.

Define the Euclidean divergence function as

d(v,v′) =
1
2
||v−v′||22,

and define a restricted gap function parameterized by positive divergence radiiDw andDz

GDw,Dz(w,z) = max
z′∈Z

[
L (w,z′) : d(ẑ,z′) ≤ Dz

]
− min

w′∈W

[
L (w′,z) : d(ŵ,w′) ≤ Dw

]
,

where the point̂u = (ûw, ûz) ∈ U is an arbitrary point that can be thought of as the “center” ofU .
Assuming there exists a solutionw∗,z∗ such thatd(ŵ,w∗) ≤ Dw andd(ẑ,z∗) ≤ Dz, this restricted
gap function coincides with the unrestricted function defined in Eq. (18). The choice of the center
point û should reflect an expectation of where the “average” solution lies, as willbe evident from the
convergence guarantees presented below. For example, we can takeûw = 0 and letûzi correspond
to the encoding of the targetyi .

By Theorem 2 of Nesterov (2003), afterτ iterations, the gap of(w̄τ, z̄τ) = ūτ is upper bounded
by:

GDw,Dz(w̄
τ, z̄τ) ≤

(Dw +Dz)L
τ+1

. (19)

This implies thatO (1
ε ) steps are required to achieve a desired accuracy of solutionε as measured by

the gap function. Note that the exponentiated gradient algorithm (Bartlett etal., 2005) has the same
O (1

ε ) convergence rate. This sublinear convergence rate is slow compared tointerior point methods,
which enjoy superlinear convergence (Boyd and Vandenberghe, 2004). However, the simplicity
of each iteration, the locality of key operations (projections), and the linearmemory requirements
make this a practical algorithm when the desired accuracyε is not too small, and, in particular, these
properties align well with the desiderata of large-scale machine learning algorithms. We illustrate
these properties experimentally in Section 6.
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j

s t

k

Figure 3: Euclidean projection onto the matching polytope using min-cost quadratic flow. Source
s is connected to all the “source” nodes and targett connected to all the “target” nodes,
using edges of capacity 1 and cost 0. The original edgesjk have a quadratic cost1

2(z′jk −

zjk)
2 and capacity 1.

4.1.2 PROJECTIONS

The efficiency of the algorithm hinges on the computational complexity of the Euclidean projection
onto the feasible setsW andZ i . In the case ofW , projections are cheap when we have a 2-norm
ball {w : ||w||2 ≤ γ}: πW (w) = γw/max(γ, ||w||2). Additional non-negativity constraints on the
parameters (e.g.,we ≥ 0) can also be easily incorporated by clipping negative values. Projections
onto the 1-norm ball are not expensive either (Boyd and Vandenberghe, 2004), but may be better
handled by the non-Euclidean setup we discuss below.

We turn to the consideration of the projections ontoZ i . The complexity of these projections
is the key issue determining the viability of the extragradient approach for our class of problems.
In fact, for both alignment and matchings these projections turn out to reduce to classical network
flow problems for which efficient solutions exist. In case of alignment,Z i is the convex hull of the
bipartite matching polytope and the projections ontoZ i reduce to the much-studied minimum cost
quadratic flow problem (Bertsekas, 1998). In particular, the projectionproblemz = πZ i (z

′
i) can be

computed by solving

min
0≤zi≤1

∑
jk∈E i

1
2
(z′i, jk −zi, jk)

2

s.t. ∑
j∈V s

i

zi, jk ≤ 1, ∀ j ∈ V t
i ; ∑

k∈V t
i

zi, jk ≤ 1, ∀k∈ V s
i .

We use a standard reduction of bipartite matching to min-cost flow (see Fig. 3)by introducing a
source nodesconnected to all the words in the “source” sentence,V s

i , and a target nodet connected
to all the words in the “target” sentence,V t

i , using edges of capacity 1 and cost 0. The original
edgesjk have a quadratic cost1

2(z′i, jk − zi, jk)
2 and capacity 1. Since the edge capacities are 1, the

flow conservation constraints at each original node ensure that the (possibly fractional) degree of
each node in a valid flow is at most 1. Now the minimum cost flow from the sources to the targett
computes projection ofz′i ontoZ i .
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The reduction of the min-cut polytope projection to a convex network flow problem is more
complicated; we present this reduction in Appendix A. Algorithms for solving convex network
flow problems (see, for example, Bertsekas et al., 1997) are nearly as efficient as those for solving
linear min-cost flow problems, bipartite matchings and min-cuts. In case of word alignment, the
running time scales with the cube of the sentence length. We use standard, publicly-available code
for solving this problem (Guerriero and Tseng, 2002).2

4.2 Non-Euclidean Dual Extragradient

Euclidean projections may not be easy to compute for many structured prediction problems or pa-
rameter spaces. The non-Euclidean version of the algorithm of Nesterov(2003) affords flexibility
to use other types of (Bregman) projections. The basic idea is as follows. Let d(u,u′) denote a
suitable divergence function (see below for a definition) and define a proximal step operator:

Tη(u,s) ≡ argmax
u′∈U

[s⊤(u′−u)−
1
η

d(u,u′)].

Intuitively, the operator tries to make a large step fromu in the direction ofs but not too large as
measured byd(·, ·). Then the only change to the algorithm is to switch from using a Euclidean
projection of a gradient stepπU (u + 1

ηs) to a proximal step in a direction of the gradientTη(u,s)
(see Fig. 4):

Initialize: Choosêu ∈ Ũ , sets−1 = 0.
Iterationt, 0≤ t ≤ τ:

vw = Tη(ûw,st−1
w ); vzi = Tη(ûzi ,s

t−1
zi

), ∀i;

ut
w = Tη(vw,−

[

∑
i

Fivzi − f i(yi)

]
); ut

zi
= Tη(vzi ,

[
F⊤

i vw +ci

]
), ∀i;

st
w = st−1

w −

[

∑
i

Fiut
zi
− f i(yi)

]
; st

zi
= st−1

zi
+

[
F⊤

i ut
w +ci

]
, ∀i.

Output: ūτ = 1
τ+1 ∑τ

t=0ut .

Figure 4: Non-Euclidean dual extragradient.

To define the range of possible divergence functions and to state convergence properties of the
algorithm, we will need some more definitions. We follow the development of Nesterov (2003).
Given a norm|| · ||W onW and norms|| · ||Z i onZ i , we combine them into a norm onU as

||u|| = max(||w||W , ||z1||
Z1, . . . , ||zm||

Zm).

We denote the dual ofU (the vector space of linear functions onU ) asU ∗. The norm|| · || on the
spaceU induces the dual norm|| · ||∗ for all s∈ U ∗:

||s||∗ ≡ max
u∈U ,||u||≤1

s⊤u.

2. Available from http://www.math.washington.edu/∼tseng/netflowgnl/.
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The Lipschitz constant with respect to this norm (used to setη = 1/L) is

L ≡ max
u,u′∈U

||F(u−u′)||∗
||u−u′||

.

The dual extragradient algorithm adjusts to the geometry induced by the norm by making use
of Bregman divergences. We assume a strongly convex functionh(u):

h(αu+(1−α)u′) ≤ αh(u)+(1−α)h(u′)−α(1−α)
σ
2
||u−u′||2, ∀u,u′,α ∈ [0,1],

for someσ > 0, the convexity parameter ofh(·). This function is constructed from strongly convex
functions on each of the spacesW andZ i by a simple sum:h(u) = h(w)+ ∑i h(zi). Its conjugate
is defined as:

h∗(s) ≡ max
u∈U

[s⊤u−h(u)].

Sinceh(·) is strongly convex,h∗(u) is well-defined and differentiable at anys∈ U ∗. We define

Ũ ≡ {∇h∗(s) : s∈ U ∗}.

We further assume thath(·) is differentiable at anyu ∈ Ũ ; since it is also strongly convex, for any
two pointsu ∈ Ũ andu′ ∈ U we have

h(u′) ≥ h(u)+∇h(u)⊤(u′−u)+
σ
2
||u′−u||2,

and we can define the Bregman divergence:

d(u,u′) = h(u′)−h(u)−∇h(u)⊤(u′−u).

Note that when|| · || is the 2-norm, we can useh(u) = 1
2||u||

2
2, which has convexity parameterσ = 1,

and induces the usual squared Euclidean distanced(u,u′) = 1
2||u−u′||22. When|| · || is the 1-norm,

we can use the negative entropyh(u) = −H(u) (say ifU is a simplex), which also hasσ = 1 and
recovers the Kullback-Leibler divergenced(u,u′) = KL(u′||u).

With these definitions, the convergence bound in Eq. (19) applies to the non-Euclidean setup,
but now the divergence radii are measured using Bregman divergence and the Lipschitz constant is
computed with respect to a different norm.

EXAMPLE 1: L1 REGULARIZATION

SupposeW = {w : ||w||1 ≤ γ}. We can transform this constraint set into a simplex constraint by the
following variable transformation. Letw = w+−w−, v0 = 1−||w||1/γ, andv ≡ (v0,w+/γ,w−/γ).
ThenV = {v : v ≥ 0;1⊤v = 1} corresponds toW . We defineh(v) as the negative entropy ofv:

h(v) = ∑
d

vd logvd.

The resulting conjugate function and its gradient are given by

h∗(s) = log∑
d

esd ;
∂h∗(s)

∂sd
=

esd

∑d esd
.
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Hence, the gradient space ofh∗(s) is the interior of the simplex,̃V = {v : v > 0;1⊤v = 1}. The
corresponding Bregman divergence is the standard Kullback-Leibler divergence

d(v,v′) = ∑
d

v′d log
v′d
vd

, ∀v ∈ Ṽ ,v′ ∈ V ,

and the Bregman proximal step or projection,ṽ = Tη(v,s) = argmaxv′∈v[s
⊤v′− 1

ηd(v,v′)] is given
by a multiplicative update:

ṽd =
vdeηsd

∑d vdeηsd
.

Note that we cannot chooseûv = (1,0,0) as the center of̃V —given that the updates are multi-
plicative the algorithm will not make any progress in this case. In fact, this choice is precluded by

the constraint that̂uv ∈ Ṽ , not justûv ∈ V . A reasonable choice is to setûv to be the center of the
simplexV , ûvd = 1

|V |
= 1

2|W |+1.

EXAMPLE 2: TREE-STRUCTURED MARGINALS

Consider the case in which each examplei corresponds to a tree-structured Markov network, andZ i

is defined by the normalization and marginalization constraints in Eq. (2) and Eq. (3) respectively.
These constraints define the space of valid marginals. For simplicity of notation, we assume that
we are dealing with a single examplei and drop the explicit indexi. Let us use a more suggestive
notation for the components ofz: zj(α) = zjα andzjk(α,β) = zjkαβ. We can construct a natural joint
probability distribution via

Pz(y) = ∏
jk∈E

zjk(y j ,yk) ∏
j∈V

(zj(y j))
1−q j ,

whereq j is the number of neighbors of nodej. Now z defines a point on the simplex of joint
distributions overY , which has dimension|Y |. One natural measure of complexity in this enlarged
space is the 1-norm. We defineh(z) as the negative entropy of the distribution represented byz:

h(z) = ∑
jk∈E

∑
α∈D j ,β∈D k

zjk(α,β) logzjk(α,β)+(1−q j) ∑
j∈V

∑
α∈D j

zj(α) logzj(α).

The resultingd(z,z′) is the Kullback-Leibler divergence KL(Pz′ ||Pz). The corresponding Breg-
man step or projection operator,z̃ = Tη(z,s) = argmaxz′∈Z [s

⊤z′− 1
ηKL(Pz′ ||Pz)] is given by a mul-

tiplicative update on the space of distributions:

P̃z(y) =
1
Z

Pz(y)eη[∑ jk sjk(y j ,yk)+∑ j sj (y j )] =
1
Z ∏

jk

zjk(y j ,yk)e
ηsjk(y j ,yk) ∏

j
(zj(y j))

1−q j eηsj (y j ),

where we use the same indexing for the dual space vectorsas forz andZ is a normalization constant.
Hence, to obtain the projectionz̃, we compute the node and edge marginals of the distributionP̃z(y)
via the standard sum-product dynamic programming algorithm using the node and edge potentials
defined above. Note that the form of the multiplicative update of the projectionresembles that of
exponentiated gradient. As in the example above, we cannot letûz be a corner (or any boundary
point) of the simplex sincẽZ does not include it. A reasonable choice forûz would be either the
center of the simplex or a point near the target structure but in the interior ofthe simplex.
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5. Memory-Efficient Formulation

Consider the memory requirements of the algorithm. The algorithm maintains the vector sτ as well
as the running average,̄uτ, a total dimensionality of|W |+ |Z |. Note, however, that these vectors
are related very simply by:

sτ = −
τ

∑
t=0

(Fut −a) = −(τ+1)(Fūτ −a).

So it suffices to only maintain the running averageūτ and reconstructs as needed.
In problems in which the number of examples,m, is large we can take advantage of the fact

that the memory needed to store the target structureyi is often much smaller than the corresponding
vectorzi . For example, for word alignment, we needO (|V s

i | log|V t
i |) bits to encode a matchingyi

by using roughly logV t
i bits per node inV s

i to identify its match. By contrast, we need|V s
i ||V

t
i |

floating numbers to maintainzi . The situation is worse in context-free parsing, where a parse tree
yi requires space linear in the sentence length and logarithmic in grammar size, while |Z i | is the
product of the grammar size and the cube of the sentence length.

Note that fromūτ = (ūτ
w, ūτ

z), we only care about̄uτ
w, the parameters of the model, while the

other component,̄uτ
z, maintains the state of the algorithm. Fortunately, we can eliminate the need

to storeūz by maintaining it implicitly, at the cost of storing a vector of size|W |. This allows us to
essentially have the same small memory footprint of online-type learning methods, where a single
example is processed at a time and only a vector of parameters is maintained. Inparticular, instead
of maintaining the entire vector̄ut and reconstructingst from ūt , we can instead store onlȳut

w and
st
w between iterations, since

st
zi

= (t +1)(F⊤
i ūt

w +ci).

The diagram in Fig. 5 illustrates the process and the algorithm is summarized in Fig. 6. We
use two “temporary” variablesvw and rw of size |W | to maintain intermediate quantities. The
additional vectorqw shown in Fig. 5 is introduced only to allow the diagram to be drawn in a
simplified manner; it can be eliminated by usingsw to accumulate the gradients as shown in Fig. 6.
The total amount of memory needed is thus four times the number of parameters plus memory for
a single example(vzi ,uzi ). We assume that we do not need to storeûzi explicitly but can construct
it efficiently from (xi ,yi).

Note that in case the dimensionality of the parameter space is much larger than thedimen-
sionality of Z , we can use a similar trick to only store variables of the size ofz. In fact, if
W = {w : ||w||2 ≤ γ} and we use Euclidean projections ontoW , we can exploit kernels to de-
fine infinite-dimensional feature spaces and derive a kernelized version of the algorithm.

6. Experiments

In this section we describe experiments focusing on two of the structured models we described
earlier: bipartite matchings for word alignments and restricted potential Markov nets for 3D seg-
mentation.3 We compared three algorithms: the dual extragradient (dual-ex ), the averaged pro-
jected gradient (proj-grad ) defined in Eq. (16), and the averaged perceptron (Collins, 2002). For

3. Software implementing our dual extragradient algorithm can be foundat
http://www.cs.berkeley.edu/ ∼slacoste/research/dualex .

1642



STRUCTUREDPREDICTION, DUAL EXTRAGRADIENT AND BREGMAN PROJECTIONS

Figure 5: Dependency diagram for memory-efficient dual extragradient. The dotted box represents
the computations of an iteration of the algorithm. Onlyūt

w andst
w are kept between itera-

tions. Each example is processed one by one and the intermediate results areaccumulated
asrw = rw −Fivzi + f i(yi) andqw = qw −Fiuzi + f i(yi). Details shown in Fig. 6, except
that intermediate variablesuw andqw are only used here for pictorial clarity.

Initialize: Choosêu ∈ Ũ , sw = 0, ūw = 0, η = 1/L.
Iterationt, 0≤ t ≤ τ:

vw = Tη(ûw,sw); rw = 0.
Examplei, 1≤ i ≤ m:

vzi = Tη(ûzi , t(F
⊤
i ūw +ci)); rw = rw −Fivzi + f i(yi);

uzi = Tη(vzi ,F
⊤
i vw +ci); sw = sw −Fiuzi + f i(yi).

ūw =
tūw+Tη(vw,rw)

t+1 .
Outputw = ūw.

Figure 6: Memory-efficient dual extragradient.

dual-ex and proj-grad , we used Euclidean projections, which can be formulated as min-cost
quadratic flow problems. We usedw = 0 andzi corresponding toyi as the centroid̂u in dual-ex
and as the starting point ofproj-grad .

In our experiments, we consider standardL2 regularization,{||w||2 ≤ γ}. A question which
arises in practice is how to choose the regularization parameterγ. The typical approach is to run the
algorithm for several values of the regularization parameter and pick the best model using a valida-
tion set. This can be quite expensive, though, and several recent papers have explored techniques
for obtaining the whole regularization path, either exactly (Hastie et al., 2004), or approximately us-
ing path following techniques (Rosset, 2004). Instead, we run the algorithm without regularization
(γ = ∞) and track its performance on the validation set, selecting the model with best performance.
For comparison, whenever feasible with the available memory, we used commercial software to
compute points on the regularization path. As we discuss below, the dual extragradient algorithm
approximately follows the regularization path in our experiments (in terms of the training objective
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and test error) in the beginning and the end of the range ofγ and often performs better in terms of
generalization error in the mid-range.

6.1 Object Segmentation

We tested our algorithm on a 3D scan segmentation problem using the class of Markov networks
with regular potentials that were described above. The dataset is a challenging collection of cluttered
scenes containing articulated wooden puppets (Anguelov et al., 2005). It contains eleven different
single-view scans of three puppets of varying sizes and positions, with clutter and occluding objects
such as rope, sticks and rings. Each scan consists of around 7,000 points. Our goal was to segment
the scenes into two classes—puppet andbackground. We use five of the scenes for our training
data, three for validation and three for testing. Sample scans from the training and test set can be
seen athttp://www.cs.berkeley.edu/˜taskar/3DSegment/ . We computed spin images of size 10× 5
bins at two different resolutions, then scaled the values and performed PCA to obtain 45 principal
components, which comprised our node features. We used the surface links output by the scanner as
edges between points and for each edge only used a single feature, setto a constant value of 1 for all
edges. This results in all edges having the same potential. The training data contains approximately
37,000 nodes and 88,000 edges. We used standard Hamming distance for our loss functionℓ(yi ,y′i).

We compared the performance of the dual extragradient algorithm along itsunregularized path
to solutions of the regularized problems for different settings of the norm.4 For dual extragradient,
the stepsize is set toη = 1/||F||2 ≈ 0.005. We also compared to a variant of the averaged perceptron
algorithm (Collins, 2002), where we use the batch updates to stabilize the algorithm, since we only
have five training examples. We set the learning rate to 0.0007 by trying several values and picking
the best value based on the validation data.

In Fig. 7(a) we track the hinge loss on the training data:

∑
i

max
y′i∈Y i

[w⊤f i(y′i)+ ℓi(y′i)]−w⊤f i(yi). (20)

The hinge loss of the regularization path (reg-path ) is the minimum loss for a given norm, and
hence is always lower than the hinge loss of the other algorithms. However,as the norm increases
and the model approaches the unregularized solution,dual-ex loss tends towards that ofreg-path .
Note thatproj-grad behaves quite erratically in the range of the norms shown. Fig. 7(b) shows
the growth of the norm as a function of iteration number fordual-ex andave-perc . The unreg-
ularized dual extragradient seems to explore the range of models (in terms on their norm) on the
regularization path more thoroughly than the averaged perceptron and eventually asymptotes to the
unregularized solution, whileproj-grad quickly achieves very large norm.

Fig. 7(c) and Fig. 7(d) show validation and test error for the three algorithms. The best valida-
tion and test error achieved by thedual-ex andave-perc algorithms as well asreg-path are fairly
close, however, this error level is reached at very different norms.Since the number of scenes in the
validation and test data is very small (three), because of variance, the best norm on validation is not
very close to the best norm on the test set. Selecting the best model on the validation set leads to
test errors of 3.4% for dual-ex , 3.5% for ave-perc , 3.6% for reg-path and 3.8% for proj-grad

4. We used CPLEX to solve the regularized problems and also to find the projections onto the min-cut polytope, since
the min-cost quadratic flow code we used (Guerriero and Tseng, 2002) does not support negative flows on edges,
which are needed in the formulation presented in Appendix A.
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Figure 7: Object segmentation results: (a) Training hinge loss for the regularization path
(reg-path ), the averaged projected gradient (proj-grad ), the averaged perceptron
(ave-perc ) and unregularized dual extragradient (dual-ex ) vs. the norm of the pa-
rameters. (b) Norm of the parameters vs. iteration number for the three algorithms.
(c) Validation error vs. the norm of the parameters. (d) Test error vs.the norm of the
parameters.

(proj-grad actually improves performance after the model norm is larger than 500, which is not
shown in the graphs).

6.2 Word Alignment

We also tested our algorithm on word-level alignment using a data set from the 2003 NAACL
set (Mihalcea and Pedersen, 2003), the English-French Hansards task. This corpus consists of
1.1M pairs of sentences, and comes with a validation set of 37 sentence pairs and a test set of 447
word-aligned sentences. The validation and test sentences have been hand-aligned (see Och and
Ney, 2003) and are marked with bothsureandpossiblealignments. Using these alignments, the
alignment error rate(AER) is calculated as:

AER(A,S,P) = 1−
|A∩S|+ |A∩P|

|A|+ |S|
,
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whereA is a set of proposed alignment pairs,S is the set of sure gold pairs, andP is the set of
possible gold pairs (whereS⊆ P).

We experimented with two different training settings. In the first one, we splitthe original test
set into 100 training examples and 347 test examples—this dataset is called the ‘Gold’ dataset. In
the second setting, we used GIZA++ (Och and Ney, 2003) to produce IBM Model 4 alignments for
the unlabeled sentence pairs. We took the intersection of the predictions of the English-to-French
and French-to-English Model 4 alignments on the first 5000 sentence pairs from the 1.1M sentences
in order to experiment with the scaling of our algorithm (training on 500, 1000and 5000 sentences).
The number of edges for 500, 1000 and 5000 sentences of GIZA++ were about 31,000, 99,000 and
555,000 respectively. We still tested on the 347 Gold test examples, and used the validation set
to select the stopping point. The stepsize for the dual extragradient algorithm was chosen to be
1/||F||2.

We used statistics computed on the 1.1M sentence pairs as the edge features for our model. A
detailed analysis of the constructed features and corresponding erroranalysis is presented in Taskar
et al. (2005b). Example features include: a measure of mutual information between the two words
computed from their co-occurrence in the aligned sentences (Dice coefficient); the difference be-
tween word positions; character-based similarity features designed to capture cognate (and exact
match) information; and identity of the top five most frequently occurring words. We used the
structured lossℓ(yi ,y′i) defined in Eq. (10) with(c+,c-) = (1,3) (where 3 was selected by testing
several values on the validation set). We obtained low recall when using equal cost for both type
of errors because the number of positive edges is significantly smaller thanthe number of negative
edges, and so it is safe (precision-wise) for the model to predict feweredges, hurting the recall.
Increasing the cost for false negatives solves this problem.

Fig. 8(a) and Fig. 8(e) compare the hinge loss of the regularization path withthe evolution of
the objective for the unregularized dual extragradient, averaged projected gradient and averaged
perceptron algorithms when trained on the Gold data set, 500 sentences and1000 sentences of the
GIZA++ output respectively.5 The dual extragradient path appears to follow the regularization path
closely for ||w|| ≤ 2 and||w|| ≥ 12. Fig. 8(b) compares the AER on the test set along the dual
extragradient path trained on the Gold dataset versus the regularization path AER. The results on
the validation set for each path are also shown. On the Gold data set, the minimumAER was
reached roughly after 200 iterations.

Interestingly, the unregularized dual extragradient path seems to give better performance on the
test set than that obtained by optimizing along the regularization path. The dominance of the dual
extragradient path over the regularization path is more salient in figure 8(f) for the case where both
are trained on 1000 sentences from the GIZA++ output. We conjecture that the dual extragradi-
ent method provides additional statistical regularization (compensating for the noisier labels of the
GIZA++ output) by enforcing local smoothness of the path in parameter space.

The averaged projected gradient performed much better for this task thansegmentation, getting
somewhat close to the dual extragradient path as is shown in Fig. 8(c). The online version of the
averaged perceptron algorithm varied significantly with the order of presentation of examples (up to
five points of difference in AER between two orders). To alleviate this, we randomize the order of
the points at each pass over the data. Fig. 8(d) shows that a typical run of averaged perceptron does
somewhat worse than dual extragradient. The variance of the averaged perceptron performance for

5. The regularization path is obtained by using the commercial optimization software Mosek with the QCQP formulation
of Eq. (15). We did not obtain the path in the case of 5000 sentences, as Mosek runs out of memory.
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Figure 8: Word alignment results: (a) Training hinge loss for the three different algorithms and the regularization path
on the Gold dataset. (b) AER for the unregularized dual extragradient (dual-ex ) and the regularization path
(reg-path ) on the 347 Gold sentences (test ) and the validation set (valid ) when trained on the 100 Gold
sentences; (c) Same setting as in (b), comparingdual-ex with the averaged projected-gradient (proj-grad );
(d) Same setting as in (b), comparingproj-grad with the averaged perceptron (ave-perc ); (e) Training
hinge loss fordual-ex andreg-path on 500 and 1000 GIZA++ labeled sentences. (f) AER fordual-ex
andreg-path tested on the Gold test set and trained on 1000 and 5000 GIZA++ sentences. The graph for
500 sentences is omitted for clarity.
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different datasets and learning rate choices was also significantly higherthan for dual extragradient,
which is more stable numerically. The online version of the averaged perceptron converged very
quickly to its minimum AER score; converging in as few as five iterations for the Gold training set.
Selecting the best model on the validation set leads to test errors of 5.6% for dual-ex , 5.6% for
reg-path , 5.8% for proj-grad and 6.1% for ave-perc on the Gold data training set.

The running time for 500 iterations of dual extragradient on a 3.4 Ghz IntelXeon CPU with
4G of memory was roughly 10 minutes, 30 minutes and 3 hours for 500, 1000 and 5000 sentences,
respectively, showing the favorable linear scaling of the algorithm (linearin the number of edges).
Note, by way of comparison, that Mosek ran out of memory for more than 1500 training sentences.

The framework we have presented here supports much richer models forword alignment; for
example, allowing finer-grained, feature-based fertility control (numberof aligned words for each
word) as well as inclusion of positive correlations between adjacent edges in alignments. These
extensions are developed in Lacoste-Julien et al. (2006).

7. Conclusions

We have presented a general and simple solution strategy for large-scalestructured prediction prob-
lems. Using a saddle-point formulation of the problem, we exploit the dual extragradient algorithm,
a simple gradient-based algorithm for saddle-point problems (Nesterov, 2003). The factoring of
the problem into optimization over the feasible parameter spaceW and feasible structured out-
put spaceZ allows easy integration of complex parameter constraints that arise in estimation of
restricted classes of Markov networks and other models.

Key to our approach is the recognition that the projection step in the extragradient algorithm can
be solved by network flow algorithms for matchings and min-cuts (and dynamic programming for
decomposable models). Network flow algorithms are among the most well-developed algorithms in
the field of combinatorial optimization, and yield stable, efficient algorithmic platforms.

One of the key bottlenecks of large learning problems is the memory requirement of the algo-
rithm. We have derived a version of the algorithm that only uses storage proportional to the number
of parameters in the model, and is independent of the number of examples. Wehave exhibited the
favorable scaling of this overall approach in two concrete, large-scalelearning problems. It is also
important to note that the general approach extends and adopts to a much broader class of problems
by allowing the use of Bregman projections suitable to particular problem classes.
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Appendix A. Min-Cut Polytope Projections

Consider projection for a single examplei:

min
z ∑

j∈V

1
2
(z′j −zj)

2 + ∑
jk∈E

1
2
(z′jk −zjk)

2 (21)

s.t. 0≤ zj ≤ 1, ∀ j ∈ V ; zj −zk ≤ zjk, zk−zj ≤ zjk, ∀ jk ∈ E .

Let h+
j (zj) = 1

2(z′j − zj)
2 if 0 ≤ zj , else∞. We introduce non-negative Lagrangian variables

λ jk,λk j for the two constraints for each edgejk andλ j0 for the constraintzj ≤ 1 each nodej.
The Lagrangian is given by:

L(z,λ) = ∑
j∈V

h+
j (zj)+ ∑

jk∈E

1
2
(z′jk −zjk)

2− ∑
j∈V

(1−zj)λ j0

− ∑
jk∈E

(zjk −zj +zk)λ jk − ∑
jk∈E

(zjk −zk +zj)λk j

Letting λ0 j = λ j0 +∑k: jk∈E (λ jk −λk j)+∑k:k j∈E (λ jk −λk j), note that

∑
j∈V

zjλ0 j = ∑
j∈V

zjλ j0 + ∑
jk∈E

(zj −zk)λ jk + ∑
jk∈E

(zk−zj)λk j.

So the Lagrangian becomes:

L(z,λ) = ∑
j∈V

[
h+

j (zj)+zjλ0 j −λ j0

]
+ ∑

jk∈E

[
1
2
(z′jk −zjk)

2−zjk(λ jk +λk j)

]
.

Now, minimizingL(z,λ) with respect toz, we have

min
z

L(z,λ) = ∑
jk∈E

q jk(λ jk +λk j)+ ∑
j∈V

[q0 j(λ0 j)−λ j0],

whereq jk(λ jk +λk j) = minzjk

[
1
2(z′jk −zjk)

2−zjk(λ jk +λk j)
]

andq0 j(λ0 j) = minzj [h
+
j (zj)+zjλ0 j ].

The minimizing values ofz are:

z∗j = argmin
zj

[
h+

j (zj)+zjλ0 j

]
=

{
0 λ0 j ≥ z′j ;
z′j −λ0 j λ0 j ≤ z′j ;

z∗jk = argmin
zjk

[
1
2
(z′jk −zjk)

2−zjk(λ jk +λk j)

]
= z′jk +λ jk +λk j.

Hence, we have:

q jk(λ jk +λk j) = −z′jk(λ jk +λk j)−
1
2
(λ jk +λk j)

2

q0 j(λ0 j) =

{
1
2z′j

2 λ0 j ≥ z′j ;
z′jλ0 j −

1
2λ2

0 j λ0 j ≤ z′j .
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The dual of the projection problem is thus:

max
λ

∑
j∈V

[q0 j(λ0 j)−λ j0]+ ∑
jk∈E

[
−z′jk(λ jk +λk j)−

1
2
(λ jk +λk j)

2
]

(22)

s.t. λ j0−λ0 j + ∑
jk∈E

(λ jk −λk j) = 0, ∀ j ∈ V ;

λ jk,λk j ≥ 0, ∀ jk ∈ E ; λ j0 ≥ 0, ∀ j ∈ V .

Interpretingλ jk as flow from nodej to nodek, andλk j as flow fromk to j andλ j0,λ0 j as flow
from and to a special node 0, we can identify the constraints of Eq. (22) as conservation of flow
constraints. The last transformation we need is to address the presence of cross-termsλ jkλk j in
the objective. Note that in the flow conservation constraints,λ jk, λk j always appear together as
λ jk −λk j. Since we are minimizing(λ jk + λk j)

2 subject to constraints onλ jk −λk j, at least one of
λ jk, λk j will be zero at the optimum and the cross-terms can be ignored. Note that allλ variables
are non-negative except forλ0 j ’s. Many standard flow packages support this problem form, but we
can also transform the problem to have all non-negative flows by introducing extra variables. The
final form has a convex quadratic cost for each edge:

min
λ

∑
j∈V

[−q0 j(λ0 j)+λ j0]+ ∑
jk∈E

[
z′jkλ jk +

1
2

λ2
jk

]
+ ∑

jk∈E

[
z′jkλk j +

1
2

λ2
k j

]
(23)

s.t. λ j0−λ0 j + ∑
jk∈E

(λ jk −λk j) = 0, ∀ j ∈ V ;

λ jk,λk j ≥ 0, ∀ jk ∈ E ; λ j0 ≥ 0, ∀ j ∈ V .
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