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Abstract

We present a simple and scalable algorithm for maximum-maasgtimation of structured output
models, including an important class of Markov networks emhbinatorial models. We formulate
the estimation problem as a convex-concave saddle-poaiitigmn that allows us to use simple
projection methods based on the dual extragradient atgor{fNesterov, 2003). The projection
step can be solved using dynamic programming or combirgtalgorithms for min-cost convex
flow, depending on the structure of the problem. We show thiatapproach provides a memory-
efficient alternative to formulations based on reductiana guadratic program (QP). We analyze
the convergence of the method and present experiments ovetydalifferent structured prediction
tasks: 3D image segmentation and word alignment, illusgyahe favorable scaling properties of
our algorithm?

Keywords: Markov networks, large-margin methods, structured pteic extragradient, Breg-
man projections

1. Introduction

Structured prediction problems are classification or regression problewisich the output vari-
ables (the class labels or regression responses) are interdepérttesg.dependencies may reflect
sequential, spatial, recursive or combinatorial structure in the problemaidoand capturing these
dependencies is often as important for the purposes of prediction asinggnput-output depen-
dencies. In addition to modeling output correlations, we may wish to incagpbead constraints
between variables. For example, we may seek a model that maps descppairs of structured
objects (shapes, strings, trees, etc.) into alignments of those objectslif®eakmples of such
problems include bipartite matchings in alignment of 2D shapes (Belongie et @2) aAd word
alignment of sentences from a source language to a target languagehimenanslation (Ma-
tusov et al., 2004) or non-bipartite matchings of residues in disulfide ctinite prediction for
proteins (Baldi et al., 2005). In these examples, the output variableslepcesence of edges in the
matching and may obey hard one-to-one matching constraints. The pregiaildam in such situ-

1. Preliminary versions of some of this work appeared in the procegdinydvances in Neural Information Processing
Systems 19, 2006 and Empirical Methods in Natural Language Pinge&605.
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ations is often solved via efficient combinatorial optimization such as finding tkk@mmean weight
matching, where the model provides the appropriate edge weights.

Thus in this paper we define the temtmuctured output modelery broadly, as a compact scor-
ing scheme over a (possibly very large) set of combinatorial structumegs anethod for finding
the highest scoring structure. For example, when a probabilistic grapmiciel is used to capture
dependencies in a structured output model, the scoring scheme is speeifeethctorized proba-
bility distribution for the output variables conditional on the input variabled,the search involves
some form of generalized Viterbi algorithm. More broadly, in models basembmbinatorial prob-
lems, the scoring scheme is usually a simple sum of weights associated withs/egtices, or
other components of a structure; these weights are often represemadagetric functions of the
inputs. Given training data consisting of instances labeled by desiredwsdoutputs and a set
of features that parameterize the scoring function, the (discriminative)itegproblem is to find
parameters such that the highest scoring outputs are as close as pogsibldesired outputs.

In the case of structured prediction based on graphical models, whiohngrasses most work to
date on structured prediction, two major approaches to discriminative lgaraie been explored:
(1) maximum conditional likelihood (Lafferty et al., 2001, 2004) and (2) imasn margin (Collins,
2002; Altun et al., 2003; Taskar et al., 2004b). Both approachesiapeevcomputationally for re-
stricted classes of graphical models. In the broader context of thentyraper, however, only the
maximum-margin approach appears to be viable. In particular, it has beam shat maximum-
margin estimation can be formulated as a tractable convex problem — a polyrsingigjuadratic
program (QP) — in several cases of interest (Taskar et al., 20088a, such results are not avail-
able for conditional likelihood. Moreover, it is possible to find interestingfamilies of graphical
models for which maximum-margin methods are provably tractable whereas libediesed meth-
ods are not. For example, for the Markov random fields that arise intodggmentation problems
in vision (Kumar and Hebert, 2004; Anguelov et al., 2005) the task of fqttie most likely as-
signment reduces to a min-cut problem. In these prediction tasks, theprobfading the highest
scoring structure is tractable, while computing the partition function is #P-coeplessentially,
maximume-likelihood estimation requires the partition function, while maximum-margin estimatio
does not, and thus remains tractable. Polynomial-time sampling algorithms faxapating the
partition function for some models do exist (Jerrum and Sinclair, 1998Jdue high-degree poly-
nomial complexity and have not yet been shown to be effective for conditiixelihood estimation.

While the reduction to a tractable convex program such as a QP is a signgdfieprforward, it
is unfortunately not the case that off-the-shelf QP solvers necespasilide practical solutions to
structured prediction problems. Indeed, despite the reduction to a polyinrumider of variables,
off-the-shelf QP solvers tend to scale poorly with problem and training kesige for these models.
The number of variables is still large and the memory needed to maintain semrdnformation
(for example, the inverse Hessian) is a serious practical bottleneck.

To solve the largest-scale machine learning problems, researchersfteavéound it expedient
to consider simple gradient-based algorithms, in which each individual spe&p in terms of
computation and memory (Platt, 1999; LeCun et al., 1998). Examples of thisaagbpin the struc-
tured prediction setting include the Structured Sequential Minimal Optimizatiomitiligo( Taskar
et al., 2004b; Taskar, 2004) and the Structured Exponentiated Gradiigmithm (Bartlett et al.,
2005). These algorithms are first-order methods for solving QPs arrsingléw-treewidth Markov
random fields and other decomposable models. In these restricted settisgsnbnods can be
used to solve significantly larger problems than can be solved with offitbké-QP solvers. These
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methods are, however, limited in scope in that they rely on dynamic programmaugrtpute es-
sential quantities such as gradients. They do not extend to models whenaidyprogramming is
not applicable, for example, to problems such as matchings and min-cutthektioe of work in
learning structured prediction models aims to approximate the arising QPs waanhgenera-
tion (Altun et al., 2003; Tsochantaridis et al., 2004). This approach egjyires finding the highest
scoring structure in the inner loop and incrementally solving a growing QBrestraints are added.

In this paper, we present a solution methodology for structured predittairencompasses a
broad range of combinatorial optimization problems, including matchings, miraadtsther net-
work flow problems. There are two key aspects to our methodology. Tétedithat we take a
novel approach to the formulation of structured prediction problems, fating them as saddle-
point problems. This allows us to exploit recent developments in the optimizaticatlite, where
simple gradient-based methods have been developed for solving saduignpblems (Nesterov,
2003). Moreover, we show that the key computational step in these metlzodsrtain projection
operation—inherits the favorable computational complexity of the underlyjrignization prob-
lem. This important result makes our approach viable computationally. Inlartiéor decompos-
able graphical models, the projection step is solvable via dynamic programiangatchings and
min-cuts, projection involves a min-cost quadratic flow computation, a profdemhich efficient,
highly-specialized algorithms are available.

The paper is organized as follows. In Section 2 we present an oveofignuctured prediction,
focusing on three classes of tractable optimization problems. Section 3 Bbante formulate the
maximum-margin estimation problem for these models as a saddle-point probl&mction 4 we
discuss the dual extragradient method for solving saddle-point prolaledrshow how it specializes
to our setting. We derive a memory-efficient version of the algorithm tleatires storage propor-
tional to the number of parameters in the model and is independent of the nafrib@mples in
Section 5. In Section 6 we illustrate the effectiveness of our approativawery different large-
scale structured prediction tasks: 3D image segmentation and word alignmmerttiral language
translation. Finally, Section 7 presents our conclusions.

2. Structured Output Models

We begin by discussing three special cases of the general framevabikdlpresent subsequently:
(1) tree-structured Markov networks, (2) Markov networks with submerdpotentials, and (3)
a bipartite matching model. Despite significant differences in the formal spe@iin of these
models, they share the property that in all cases the problem of findindghestscoring output
can be formulated as a linear program (LP).

2.1 Tree-Structured Markov Networks

For simplicity of notation, we focus on tree networks, noting in passing thagxtension to hy-
pertrees is straightforward. Givévariablesy = {yi,...,yn}, with discrete domaing; € Dj =
{ag,... ,a‘@j‘}, we define a joint distribution over = D3 x ... x Dy via

P(y) D [T @0y [ @x(yi>w;

jev jKeE

where(v ={1,...,N},£ C{jk:j <k, je ¥, ,ke v})isanundirected graph, and whekg(y;), j €
v} are the node potentials agjx(y;,Y«), jk € £ } are the edge potentials. We can find the most
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likely assignment, argmg®(y), using the Viterbi dynamic programming algorithm for trees. We
can also find it using a standard linear programming formulation as followsn¥déeluce variables
Zjo to denote indicators (y; = a) for all variablesj € 7 and their valuest € »;. Similarly, we
introduce variablegjp to denote indicators(y; = a,ykx = B) for all edgesjk € £ and the values
of their nodesp € 9,3 € Dx. We can formulate the problem of finding the maximal probability
configuration as follows:

max 3 > Zaloggi(a) + 5> 3 Zkaplog@i(ap) (1)
JEV AED)] JKEE aepj,Beny
st Z Zin=1Vjev; Z Zyap =1 VikeZ; 2
aED; aeD;j,Beny
> Zkap=24p, VIKEE,BED ) Zikap=2Zja, VIKE E,a € Dj, 3)
AED BeDk

where (2) expresses normalization constraints and (3) captures ni@agina constraints. This LP
has integral optimal solutions# is a forest (Chekuri et al., 2001; Wainwright et al., 2002; Chekuri
et al., 2005). In networks of general topology, however, the optimiaitisa can be fractional
(as expected, since the problem is NP-hard). Other important excepaarise found, however,
specifically by focusing on constraints on the potentials rather than cimtstoa the topology. We
discuss one such example in the following section.

2.2 Markov Networks with Submodular Potentials

We consider a special class of Markov networks, common in vision applsiiowhich inference
reduces to a tractable min-cut problem (Greig et al., 1989; KolmogorovZabéh, 2004). We
assume that (1) all variables are binazy, (= {0,1}), and (2) all edge potentials are “regular” (i.e.,
submodular):

log ik (0,0) +log@jk(1,1) > log@ik(1,0) +log @ik (0, 1), Vike . (4)

Such potentials prefer assignments where connected nodes have thialsalnthat is)y; = y«.
This notion of regularity can be extended to potentials over more than twdiesiéKolmogorov
and Zabih, 2004). These assumptions ensure that the LP in Eq. (1) tegsalnoptimal solu-
tions (Chekuri et al., 2001; Kolmogorov and Wainwright, 2005; Chelktiral., 2005). Similar
kinds of networks (defined also for non-binary variables and nanvjse potentials) were called
“associative Markov networks” by Taskar et al. (2004a) and Atmuet al. (2005), who used them
for object segmentation and hypertext classification.

In figure-ground segmentation (see Fig. 1a), the node potentials captaiesvidence about
the label of a pixel or range scan point. Edges usually connect npagig in an image, and serve
to correlate their labels. Assuming that such correlations tend pobigive(connected nodes tend
to have the same label) leads us to consider simplified edge potentials of thefdymyx) =
exp{—sj1(y; # Yk) }, wheresj is a nonnegative penalty for assignipgandyy different labels.
Note that such potentials are regulasjf > 0. Expressing node potentials @gy;) = exp{sjy;}.
we haveP(y) O exp{zjeq/ Si¥j — 3 jkex SikL(Yj # Yk) }- Under this restriction on the potentials, we
can obtain the following (simpler) LP:

max Sjzj — SikZj 5

0<z<1 z 17 Z ik&ik )
jev jKEE

st Zj — % < Zik, &—2Zj <Zjk, VIKEE,
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Figure 1: Structured prediction applications: (a) 3D figure-groundnsedation; (b) Word align-
ment in machine translation.

where the continuous variablescorrespond to a relaxation of the binary variablgsand the con-
straints encodejx = 1(z; # z). To see this, note that the constraints can be equivalently expressed
as|zj — z| < zjx. Becausesj is positive,zjx = |z — zj| at the maximum, which is equivalent to
1(z; # z) if the zj,z variables are binary. An integral optimal solution always exists, since the
constraint matrix is totally unimodular (Schrijver, 2003).

We can parameterize the node and edge potentials in terms of user-priatiegs<; andxx
associated with the nodes and edges. In particular, in 3D rangexgataght involve spin-image
features or spatial occupancy histograms of a ppimthile xjx might include the distance between
points j andk, the dot-product of their normals, etc. The simplest model of dependgadinear
combination of featuress; = WIfn(Xj) andsjx = wgfe(xjk), wherew,, andw, are node and edge
parameters, anigd andf. are node and edge feature mappings, of dimerdj@ndde, respectively.

To ensure non-negativity afx, we assume that the edge featukeare nonnegative and we impose
the restrictionwe > 0. This constraint is incorporated into the learning formulation we present
below. We assume that the feature mappihgee provided by the user and our goal is to estimate
parametersv from labeled data. We abbreviate the score assigned to a lalyelargan inputx as

WX, Y) = 3 YjWa fa(Xj) = 3 jker YikWe fe(Xjk), Whereyjc = 1(yj # Yi).

2.3 Matchings

Consider modeling the task of word alignment of parallel bilingual senteitégslb) as a maxi-
mum weight bipartite matching problem in a graph, where the netesSU vt correspond to
the words in the “source” sentent® ®) and the “target” sentende’!) and the edges = {jk: j €
V'S k€ '} correspond to possible alignments between the words. For simplicity, assatneach
word aligns to one or zero words in the other sentence. The edge vegighpresents the degree
to which wordj in one sentence can translate into the wondthe other sentence. Our objective is
to find an alignment that maximizes the sum of edge scores. We represettrengasing a set of
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binary variableyjx that are set to 1 if worgl is assigned to wor# in the other sentence, and 0 oth-
erwise. The score of an assignment is the sum of edge s@¥@S+ 3 ke SikYjk- The maximum
weight bipartite matching problem, argmax s(y), can be found by solving the following LP:

max SikZi 6
0<z21 jkgz ik4jk ( )
st. > zZk<1, Vke pt Y zZk<1, Viewvs.

jevs ket

where again the continuous variablgg correspond to the relaxation of the binary variabgs
As in the min-cut problem, this LP is guaranteed to have integral solutionsijos@ring function
s(y) (Schrijver, 2003).

For word alignment, the scorsg can be defined in terms of the word pgrand input features
associated witlxjc. We can include the identity of the two words, the relative position in the re-
spective sentences, the part-of-speech tags, the string similarity {émtidg cognates), etc. We let
sik =W ' f(xjk) for a user-provided feature mappihgnd abbreviatev" f(x,y) = 3 j W ' f(Xjk).

2.4 General Structure

More generally, we consider prediction problems in which the ixpeitx is an arbitrary structured
object and the output is a vector of values: (yi,...,y.,) encoding, for example, a matching or a
cut in the graph. We assume that the lengttand the structure encoded pydepend determinis-
tically on the inputx. In our word alignment example, the output space is defined by the length of
the two sentences. Denote the output space for a given xngsi (X) and the entire output space
asy = Uxex 9 (X).

Consider the class of structured prediction modeldefined by the linear family:

h(x) = argmaxw f(x,y), (7)
yey (X)

wheref(x,y) is a vector of function$ : x x 9 — IR". This formulation is very general. Indeed,
it is too general for our purposes—for maffyy ) pairs, finding the optimay is intractable. We
specialize to the class of models in which the optimization problem in Eq. (7) caoed in poly-
nomial time via convex optimization; this is still a very large class of models. Beyanexamples
discussed here, it includes weighted context-free grammars and d@epyngrammars (Manning
and Sclitze, 1999) and string edit distance models for sequence alignment ([2tddin1998).

3. Large Margin Estimation

We assume a set of training instan&es {(xi,yi) }i",, where each instance consists of a structured
objectx; (such as a graph) and a target solutigr(such as a matching). Consider learning the
parametersv in the conditional likelihood setting. We can defiRg(y | x) = Tl(x) exp{w'f(x,y)},
whereZy (X) = Yyey (x) exp{w'f(x,y’)}, and maximize the conditional log-likelihoggj log Py (Yi |

X;), perhaps with additional regularization of the parameterés we have noted earlier, however,
the problem of computing the partition functidg (x) is computationally intractable for many of the
problems we are interested in. In particular, it is #P-complete for matchingssnduts (Valiant,
1979; Jerrum and Sinclair, 1993).
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We thus retreat from conditional likelihood and consider the max-margmnutation developed
in several recent papers (Collins, 2002; Altun et al., 2003; Taskar,&004b). In this formulation,
we seek to find parametenssuch that:
yi = argmaw ' f(x;, ), vi,
S
wherey; = 9 (X;). The solution spaceg; depends on the structured objgctfor example, the space
of possible matchings depends on the precise set of nodes and edgegiiarth.
As in univariate prediction, we measure the error of prediction using aflmssion £(y;,V!).
To obtain a convex formulation, we upper bound the 1635, hw(x;)) using the hinge function:
maxey, (W' fi(y)) +4i(yf) —w ' fi(yi)], wheredi(yf) = £(yi, i), andfi(y) = f(xi,y/). Minimizing
this upper bound will force the true structyreto be optimal with respect to for each instance
min 5 maxw ! fi(yi) +6(y)] —w 'fi(yi), (8)
wew T Yi€Di
wherew is the set of allowed parametess We assume that the parameter spaceas a convex
set, typically a norm balfw : ||w||, <y} with p= 1,2 and a regularization parametern the case
thatw = {w: ||w||2 <y}, this formulation is equivalent to the standard large margin formulation
using slack variableg and slack penaltg (cf. Taskar et al., 2004b), for some suitable value€ of
depending ory. The correspondence can be seen as followsv16E) be a solution to the optimiza-
tion problem with slack penalt@ and defing/(C) = ||w*(C)||. Thenw* is also a solution to Eq. (8).
Conversely, we can invert the mappiy(@) to find those values & (possibly non-unique) that give
rise to the same solution as Eqg. (8) for a spegifitn the case of submodular potentials, there are
additional linear constraints on the edge potentials. In the setting of Eqvés3imply constrain
We > 0. For general submodular potentials, we can parameterize the log ofgagetkntial using
four sets of edge parametevgyno, Weo1, We10, We11, as follows: logpj(a, B) = W;Bf(xjk). Assum-
ing, as before, that the edge features are nonnegative, the regafahig/potentials can be enforced
via a linear constraintvegg + We11 > We10 + Weo1, Where the inequality should be interpreted com-
ponentwise.
The key to solving Eq. (8) efficiently is tHess-augmented inference problem
max[w " fi (yi) + 4 (y})]- ©)
This optimization problem has precisely the same form as the prediction preliiese parameters
we are trying to learn—mgix.,, w ' fi(y/)—but with an additional term corresponding to the loss
function. Tractability of the loss-augmented inference thus dependshobo the tractability of
maXy o, wfi(y]), but also on the form of the loss terfify/). A natural choice in this regard is the
Hamming distance, which simply counts the number of variables in which a caedidationy;
differs from the target outpy. In general, we need only assume that the loss function decomposes
over the variables ify;.
In particular, for word alignment, we use weighted Hamming distance, whightsthe number
of variables in which a candidate matchijgliffers from the target alignmest, with different cost
for false positivegc’) and false negative®"):

lyny) =y [CYiik(1=Y )+ ¥ k(1= Vi k)] (10)
JKEE;
= > ikt Y [ —(C+C)il¥ K
JKEE; JKEE;
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wherey; jx indicates the presence of edgein examplei andz; is the set of edges in example
The loss-augmented matching problem can then be written as an LP similar ®) Bgitfiout the
constant terny ;i C'j jk):

max 5z kw f(xijk) +¢ (¢ +C")yijl

0<z<1

JKEE;
s.t. Z Z ik <1, vk e ’Vit; Z Z k<1, Vje ’Vis,
jevs ke

wheref(x; jk) is the vector of features of the edglein examplei and#;® and 7! are the nodes in
examplei. As before, the continuous variablgg correspond to the binary valugf-rsjk.
Generally, suppose we can express the prediction problem as an LP:

maxw' f;(y/) = maxw'F;z,
y,'€9”| Zic Zj
where
zi={z:Aizy<b;, 0<z7 <1}, (11)

for appropriately define#;, Aj andb;. Then we have a similar LP for the loss-augmented inference
for each examplée
maxw ' fi(y}) +4i(y)) = di + maxF/ w+¢) z, (12)
yiey Zi€Zi
for appropriately defined; andc;. For the matching casd, = ¥ j C'Yi jk is the constant ternf; is
a matrix that has a column of featurs; jx) for each edggk in examplei, andg; is the vector of
the loss terms™ — (¢ +C")yi jk. Letz={z1,...,Zn} andz = z1 x ... x Zm. With these definitions,
we have the following saddle-point problem:

min max (WTFiZi +¢'zi—w'fi (yi)). (13)

wew €z T

where we have omitted the constant teynu;. The only difference between this formulation and
our initial formulation in Eqg. (8) is that we have created a concise continystirsiaation problem
by replacing the discretg’s with continuousz;’s.

When the prediction problem is intractable (for example, in general Mankbworks or tripar-
tite matchings), we can use a convex relaxation (for example, a linear orefamt& program) to
upper bound max.,, w'fi(y]) and obtain an approximate maximum-margin formulation. This is
the approach taken in Taskar et al. (2004b) for general Markovanksnusing the LP in Eq. (1).

To solve (13), we could proceed by making use of Lagrangian dualitg. dpproach, explored
in Taskar et al. (2004a, 2005a), yields a joint convex optimization problietne parameter space
7 is described by linear and convex quadratic constraints, the result ivexcquadratic program
which can be solved using a generic QP solver.

We briefly outline this approach below, but in this paper, we take a diffeéaah, solving the
problem in its natural saddle-point form. As we discuss in the following sectitis approach
allows us to exploit the structure ef andz separatelyallowing for efficient solutions for a wider
range of parameterizations and structures. It also opens up altesnaitierespect to numerical
algorithms.
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Before moving on to solution of the saddle-point problem, we consider thegonvex form
when the feasible set has the form of (11) and the loss-augmentednicdéepeoblem is a LP, as
in (12). Using commercial convex optimization solvers for this formulation witMite us with a
comparison point for our saddle-point solver. We now proceed teptekis alternative form.

To transform the saddle-point form of (13) into a standard convex ogiiniz form, we take
the dual of the individual loss-augmented LPs (12):

maxF/w+¢c)'z= min b'A+1"y (14)
Z€z;i (N k) ENi (W)

where/(w) = {(Ai, 1) >0 : F'w+c <A+ } defines the feasible space for the dual variables
Ai and;. Substituting back in equation (13) and writing= (A1,...,Am), L= (M1,--.,Hm), We
obtain (omitting the constar; d;):

min )3 (b?m 1w (yi)> (15)

wew , (A,W)>0 T

st. F'w+c <A'A+u i=1....m

If 9 is defined by linear and convex quadratic constraints, the above optimipatiblem can be
solved using standard commercial solvers. The number of variableasttaints in this problem
is linear in the number of the parametargd the training data (for example nodes and edges).

4. Saddle-Point Problems and the Dual Extragradient Method

We begin by establishing some notation and definitions. Denote the objectikie saddle-point
problem in (13) by:
L(wW,2) = ZWTFizi +¢'z —w'fi(yi).
|

£(w, z) is bilinear inw andz, with gradient given byDyw £ (w,z) = 5 Fizi —fi(y;) andd £ (w,2) =
FiTW+Ci.

We can view this problem as a zero-sum game between two playargjz. Consider a simple
iterative improvement method based on gradient projections:

WL =TT, (W= nOwe (WhZ2)) 24 = TL, (2 4 00y (W 2)), (16)

wheren is a step size andll, (v) = argmin,,, ||V —V'||2 denotes the Euclidean projection of a
vectorv onto a convex set. In this simple iteration, each player makes a small best-response
improvement without taking into account the effect of the change on thenami’s strategy. This
usually leads to oscillations, and indeed, this method is generally not gusdateonverge for
bilinear objectives for any step size (Korpelevich, 1976; He and Li@622 One way forward is

to attempt to average the poirts',z') to reduce oscillation. We pursue a different approach that
is based on the dual extragradient method of Nesterov (2003). Inreuiops work (Taskar et al.,
2006), we used a related method, the extragradient method due to Kichgl£976). The dual
extragradient is, however, a more flexible and general method, in terthe tfpes of projections
and feasible sets that can be used, allowing a broader range of sttuprablems and parameter
regularization schemes. Before we present the algorithm, we introdoeersmtation which will be
useful for its description.
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Let us combinen andz into a single vectoruy = (w,z), and define the joint feasible space
u =w x z. Note thatu is convex since it is a direct product of convex sets.
We denote the (affine) gradient operator on this joint space as

OwL (w,2) 0 Fi---Fnm w Sifi(yi)
—0z,£(w,2) —F/ Z1 C1
: = : - . =Fu—-a
: : 0 : :
—0z,,£ (W, 2) —F Zm Cm
~~ N——
F u a

4.1 Dual Extragradient

We first present the dual extragradient algorithm of Nesterov (20§18 the Euclidean geometry
induced by the standard 2-norm, and consider a non-Euclidean setap.id.3.

As shown in Fig. 2, the dual extragradient algorithm proceeds usingsiemple gradient and
projection calculations.

Initialize: Choosdl € u, sets 1 =0.
lterationt, 0 <t <T:

v = Th(G+nst);
u = Th(v—n(Fv-a)); (17)
d = &1 (Fut-a).

—

Output: U = -1 5T ut.

Figure 2: Euclidean dual extragradient.

To relate this generic algorithm to our setting, recall thas composed of subvectors and
Z; this induces a commensurate decomposition of\ttend s vectors into subvectors. To refer
to these subvectors we will abuse notation and use the symabalsd z; as indices. Thus, we
write V = (Vw, Vz,...,Vz,), and similarly foru ands. Using this notation, the generic algorithm
in Eqg. (17) expands into the following dual extragradient algorithm farcstrred prediction (where
the brackets represent gradient vectors):

Vw = T[w (0w+ nﬁv_l); Vz = -r[Zi(GZi +r]5tzi_1)’ Vi;
uy = TG, (Vw—1 [Z Fivy —fi(Yi)] ); uy, =T, (v +n [FiTVWJFCi} ): Vi
%—%tlzmg4w4: $ =4+ Rl o). vi

In the convergence analysis of dual extragradient (Nesterov,) 20@8stepsizq is set to the
inverse of the Lipschitz constant (with respect to the 2-norm) of the gradpeerator:

1/n =L = max IFU=Wl

<||F
B2 g, =P

1636



STRUCTUREDPREDICTION, DUAL EXTRAGRADIENT AND BREGMAN PROJECTIONS

where||F||2 is the largest singular value of the matFixIn practice, various simple heuristics can be
considered for setting the stepsize, including search procedures dasgptimizing the gap merit
function (see, e.g., He and Liao, 2002).

4.1.1 ®ONVERGENCE

One measure of quality of a saddle-point solution is via the gap function:

G (w,z) = [maxc (w,z)— "
Zez

+{£* = min £(W,2)|, (18)

wew

where the optimal loss is denoted = min,,,, Maxc £ (W, z). For non-optimal pointgw, z),
the gapg (w, z) is positive and serves as a useful merit function, a measure of agafrasolution
found by the extragradient algorithm. At an optimum we have

G (W*,Z") = maxc (w*,Z') — min £(W,z*) =0.
Zez wew

Define the Euclidean divergence function as
1
d(v,v) = S[lv-V'[}3,
2
and define a restricted gap function parameterized by positive divexgadiiD,, andD,

GDw.0,(W,2) = max[£(w,Z) :d(2,7) <D,| — min [£(W,2) : d(W,w') < Dy,
Zez wew

where the pointi = (0w, 0;) € « is an arbitrary point that can be thought of as the “center;of
Assuming there exists a solutievi, z* such thad(Ww,w*) < D,, andd(2,z") < Dy, this restricted
gap function coincides with the unrestricted function defined in Eq. (18 choice of the center
point( should reflect an expectation of where the “average” solution lies, abewiiVident from the
convergence guarantees presented below. For example, we canytake and letl, correspond
to the encoding of the targgt.

By Theorem 2 of Nesterov (2003), afteiterations, the gap afw',z") = u' is upper bounded
by:
(Dw + Dz)L

w', zh) <
Gp,.0,(W',Z") < 1

(19)
This implies thato (%) steps are required to achieve a desired accuracy of solutismeasured by
the gap function. Note that the exponentiated gradient algorithm (Bartkdtt 005) has the same
6] (%) convergence rate. This sublinear convergence rate is slow compangetior point methods,
which enjoy superlinear convergence (Boyd and Vandenbergltgl) 2MHowever, the simplicity
of each iteration, the locality of key operations (projections), and the limeanory requirements
make this a practical algorithm when the desired accugaeyot too small, and, in particular, these
properties align well with the desiderata of large-scale machine learningthaige. We illustrate
these properties experimentally in Section 6.

1637



TASKAR, LACOSTE-JULIEN AND JORDAN

7

o
hoedd
iy

|
\
’%

S
|
©

Figure 3: Euclidean projection onto the matching polytope using min-cosratimflow. Source
sis connected to all the “source” nodes and tatgednnected to all the “target” nodes,
using edges of capacity 1 and cost 0. The original edigémve a quadratic co%t(z’jk —

Zj)? and capacity 1.

4.1.2 ROJECTIONS

The efficiency of the algorithm hinges on the computational complexity of tlkeid&an projection
onto the feasible sets’ andz;. In the case ofw, projections are cheap when we have a 2-norm
ball {w: ||wl||]2 <vy}: TU, (w) = yw/max(y, ||w||2). Additional non-negativity constraints on the
parameters (e.gwe > 0) can also be easily incorporated by clipping negative values. Projsction
onto the 1-norm ball are not expensive either (Boyd and Vandehbe&904), but may be better
handled by the non-Euclidean setup we discuss below.

We turn to the consideration of the projections om0 The complexity of these projections
is the key issue determining the viability of the extragradient approach foclass of problems.
In fact, for both alignment and matchings these projections turn out to egdurassical network
flow problems for which efficient solutions exist. In case of alignmehis the convex hull of the
bipartite matching polytope and the projections ogtaeduce to the much-studied minimum cost
quadratic flow problem (Bertsekas, 1998). In particular, the projegtioblemz =TT, (/) can be
computed by solving

min- %(Zf.jk ~7,j)°

0=z<l W=,
s.t. z Z ik <1, Vje ‘Vit; Z Z ik <1, vk e ‘Vis.
jev® ket

We use a standard reduction of bipartite matching to min-cost flow (see Firy. Bfroducing a
source nods connected to all the words in the “source” senter¢g,and a target nodeconnected

to all the words in the “target” sentence!, using edges of capacity 1 and cost 0. The original
edgesjk have a quadratic co%t(zi’,jk — 7 j)? and capacity 1. Since the edge capacities are 1, the
flow conservation constraints at each original node ensure that tisiljpofractional) degree of
each node in a valid flow is at most 1. Now the minimum cost flow from the saicthe target
computes projection af onto z;.
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The reduction of the min-cut polytope projection to a convex network flasblem is more
complicated; we present this reduction in Appendix A. Algorithms for solviogvex network
flow problems (see, for example, Bertsekas et al., 1997) are nearfficdane as those for solving
linear min-cost flow problems, bipartite matchings and min-cuts. In case af algnment, the
running time scales with the cube of the sentence length. We use standaidypavailable code
for solving this problem (Guerriero and Tseng, 2002).

4.2 Non-Euclidean Dual Extragradient

Euclidean projections may not be easy to compute for many structured tiwegicoblems or pa-
rameter spaces. The non-Euclidean version of the algorithm of Neg068) affords flexibility
to use other types of (Bregman) projections. The basic idea is as folloetsd(l,u’) denote a
suitable divergence function (see below for a definition) and definexpal step operator:

1

Ty(u,s) = argmaxs’ (U —u) — =d(u,u’)].
uveu n

Intuitively, the operator tries to make a large step frorm the direction ofs but not too large as

measured byl(-,-). Then the only change to the algorithm is to switch from using a Euclidean

projection of a gradient stefl;; (u + %s) to a proximal step in a direction of the gradiéij{u, s)

(see Fig. 4):

Initialize: Choosdl € 7, sets™ = 0.
lterationt, 0<t <T:

Vy = Tn(OW,Sf,jl); Vz = Tﬂ(azi7§zrl)7 vi;
UEV = Tr] (VW,— [Z Fini _fi(yi)] ); utzi = Tﬂ (VZiv {FiTVWJ'_Ci} )’ vi;
=g [Zﬁu; —fi<yi>] ? %= [Fre] v

: 1
Output:u™ = =5 ¢ ou'.

Figure 4: Non-Euclidean dual extragradient.

To define the range of possible divergence functions and to statergenee properties of the
algorithm, we will need some more definitions. We follow the development of Kas{@003).
Given a norm|-||" onw and normg|-||? on z;, we combine them into a norm am as

[Jull = max(||wl|™,[|z2]|**, ... [|zm]|*").
We denote the dual oft (the vector space of linear functions en) as« *. The norm||-|| on the

spaceu induces the dual norm- ||, forall s€ u*:

Is|l,= max s'u.

ueu,|jul|<1

2. Available from http://www.math.washington.eduseng/netflowgnl/.
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The Lipschitz constant with respect to this norm (used tasetl/L) is

F 1
o IFu—w.
uweu |ju—u'||

The dual extragradient algorithm adjusts to the geometry induced by the lmpmaking use
of Bregman divergences. We assume a strongly convex funiation

h(au+ (1—a)u’) < ah(u) + (1—a)h(u’) —a(l—a)%”u—u’ﬂz, vu,u’,a € [0,1],

for someo > 0, the convexity parameter f-). This function is constructed from strongly convex
functions on each of the spaces andz; by a simple sumh(u) = h(w) + $;h(z). Its conjugate
is defined as:
h*(s) = max[s'u— h(u)].
ueu

Sinceh(-) is strongly convexh*(u) is well-defined and differentiable at asy: « *. We define
u = {0h*(s):se u*}.

We further assume thét-) is differentiable at any € a; since it is also strongly convex, for any
two pointsu € « andu’ € u we have

(W) 2 h(u) + On(u) " (W =)+ |’ ~ul 2,
and we can define the Bregman divergence:
d(u,u’) = h(u") —h(u) — Oh(u) " (U’ —u).

Note that when|-|| is the 2-norm, we can usgu) = 3||u||3, which has convexity parameter= 1,
and induces the usual squared Euclidean distdfieca’) = %Hu —U'||3. When|| - || is the 1-norm,
we can use the negative entropiu) = —H(u) (say if u is a simplex), which also has= 1 and
recovers the Kullback-Leibler divergendéu,u’) = KL (u'||u).

With these definitions, the convergence bound in Eq. (19) applies to th&ndidean setup,
but now the divergence radii are measured using Bregman divergemnktthe Lipschitz constant is
computed with respect to a different norm.

EXAMPLE 1: L1 REGULARIZATION

Supposew = {w: ||w||1 <y}. We can transform this constraint set into a simplex constraint by the
following variable transformation. Let =w"™ —w~, vo = 1—||w||1/Yy, andv = (vo,w" /y,w~ /y).
Thenv = {v:v>0;1"v =1} corresponds tav . We defineh(v) as the negative entropy of

h(v) = ZVd logvy.

The resulting conjugate function and its gradient are given by

oh*(s) e

h*(s):logg_e‘%;
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Hence, the gradient space lof(s) is the interior of the simplequ/ ={v:v>0;1"v=1}. The
corresponding Bregman divergence is the standard Kullback-Leilvemence

\/ ~
V) = g\/dlogv—d, wev Vewv,
d

Ld(v,v)] is given

and the Bregman proximal step or projectiéin: T, (v,s) = argmax,,[s' V' — .

by a multiplicative update:
vde”Sd
Y aVaeNs

Vg =

Note that we cannot choo$g = (1,0,0) as the center oa—given that the updates are multi-
plicative the algorithm will not make any progress in this case. In fact, ttogehis precluded by

the constraint thal, ¢ ‘V not justhy € . A reasonable choice is to st to be the center of the

1
simplex?, Gy, = W= 2\w\+1

EXAMPLE 2: TREE-STRUCTURED MARGINALS

Consider the case in which each examperresponds to a tree-structured Markov network, and
is defined by the normalization and marginalization constraints in Eq. (2) an(BEgspectively.
These constraints define the space of valid marginals. For simplicity of ngtat@assume that
we are dealing with a single exampland drop the explicit indek Let us use a more suggestive
notation for the components af zj (a) = zjq andzjk(a, ) = Zjqp- We can construct a natural joint
probability distribution via

P(y) = [ zivi-vd [T @D,

jKeE jev

whereq; is the number of neighbors of node Now z defines a point on the simplex of joint
distributions ovep’, which has dimensiofy |. One natural measure of complexity in this enlarged
space is the 1-norm. We defihéz) as the negative entropy of the distribution represented by

h(z) = Z z Zjk(a,B)logzjk(a,B) + (1—q;j) z z zj(a)logzj(a).

JKEE aeDj,BeDy JEV aED;

The resultingd(z,Z’) is the Kullback-Leibler divergence KP,||P;). The corresponding Breg-
man step or projection operatdr= T, (z,s) = argmax,, [s' 7 — %KL (P,||P,)] is given by a mul-
tiplicative update on the space of distributions:

Ps(y) = %Pz(y)erl[ZJkslk(YJ SORPITIVN |—| Zik(Yj, yk) €5k i¥) |T| y-aiensiv),

where we use the same indexing for the dual space veatforz andZ is a normalization constant.
Hence, to obtain the projectidwe compute the node and edge marginals of the distrib&ion
via the standard sum-product dynamic programming algorithm using the nddedge potentials
defined above. Note that the form of the multiplicative update of the projecigembles that of
exponentiated gradient. As in the example above, we canndt le¢ a corner (or any boundary
point) of the simplex since does not include it. A reasonable choice fgrwould be either the
center of the simplex or a point near the target structure but in the interibe gimplex.
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5. Memory-Efficient Formulation

Consider the memory requirements of the algorithm. The algorithm maintains the seatowell
as the running averaga!, a total dimensionality ofw’ | 4 |z|. Note, however, that these vectors
are related very simply by:

s = —ti(Fut —a)=—(1+1)(Fu'—a).

So it suffices to only maintain the running averagend reconstruct as needed.

In problems in which the number of examples, is large we can take advantage of the fact
that the memory needed to store the target strugfliseoften much smaller than the corresponding
vectorz;. For example, for word alignment, we need|7:5|log|#/!|) bits to encode a matching
by using roughly log/! bits per node inV® to identify its match. By contrast, we ne¢d |||
floating numbers to maintai. The situation is worse in context-free parsing, where a parse tree
yi requires space linear in the sentence length and logarithmic in grammar silee| ayhis the
product of the grammar size and the cube of the sentence length.

Note that fromu® = (u,,ul), we only care about},, the parameters of the model, while the
other component)}, maintains the state of the algorithm. Fortunately, we can eliminate the need
to storeu, by maintaining it implicitly, at the cost of storing a vector of sjz€ |. This allows us to
essentially have the same small memory footprint of online-type learning metbdee a single
example is processed at a time and only a vector of parameters is maintaipadtidalar, instead
of maintaining the entire vectart and reconstructing from u', we can instead store only, and
s{,\, between iterations, since

S, = (t+1)(F Uy +ci).

The diagram in Fig. 5 illustrates the process and the algorithm is summarized. ié. Fife
use two “temporary” variables,, andr,, of size|# | to maintain intermediate quantities. The
additional vectorg,, shown in Fig. 5 is introduced only to allow the diagram to be drawn in a
simplified manner; it can be eliminated by usiggto accumulate the gradients as shown in Fig. 6.
The total amount of memory needed is thus four times the number of paramieteragmory for
a single examplév;,uz). We assume that we do not need to stiyeexplicitly but can construct
it efficiently from (xi, yi).

Note that in case the dimensionality of the parameter space is much larger thdimtre
sionality of z, we can use a similar trick to only store variables of the size.ofin fact, if
w ={w: ||w||> <y} and we use Euclidean projections omto, we can exploit kernels to de-
fine infinite-dimensional feature spaces and derive a kernelized restbe algorithm.

6. Experiments

In this section we describe experiments focusing on two of the structureeélsnag described
earlier: bipartite matchings for word alignments and restricted potential Markts for 3D seg-
mentationr® We compared three algorithms: the dual extragradiéwsl-€x ), the averaged pro-
jected gradientpfoj-grad ) defined in Eqg. (16), and the averaged perceptron (Collins, 2002). Fo

3. Software implementing our dual extragradient algorithm can be founaat
http://www.cs.berkeley.edu/ ~slacoste/research/dualex
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fiy —— > Ty
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Sw —Vw Uw ¢ ‘ASQV
N t—1
Sz, &——Vz, uZlX
- : Orw\ : Day
t—1
SZm' " szrg " uZmI

Figure 5: Dependency diagram for memory-efficient dual extragnadigne dotted box represents
the computations of an iteration of the algorithm. Oujyands, are kept between itera-
tions. Each example is processed one by one and the intermediate resattsuanellated
asry = rw — Fivy +fi(yi) andgw = qw — Fiuz +fi(yi). Details shown in Fig. 6, except
that intermediate variablag, andqy, are only used here for pictorial clarity.

Initialize: Choosel € 2, sy =0, Uy =0, = 1/L.
lterationt, 0 <t < T:
Examplei, 1<i<m
Vg, = Ty (O t(F Gy +Gi)); rw=rw—Fivg +fi(yi);
Uz = T (Vz, Fi Vi + G); Sw = Sw — Fiuz +fi(yi).
J o tl.TW-‘rTn(VW,I’W)

Outputw = uy,.

Figure 6: Memory-efficient dual extragradient.

dual-ex andproj-grad , we used Euclidean projections, which can be formulated as min-cost
guadratic flow problems. We used= 0 andz corresponding tg; as the centroidi in dual-ex
and as the starting point pfoj-grad

In our experiments, we consider standagdregularization,{||w||> < y}. A question which
arises in practice is how to choose the regularization parametdre typical approach is to run the
algorithm for several values of the regularization parameter and piclketsterindel using a valida-
tion set. This can be quite expensive, though, and several recesrsgagve explored techniques
for obtaining the whole regularization path, either exactly (Hastie et al.,)2004pproximately us-
ing path following techniques (Rosset, 2004). Instead, we run the algowithout regularization
(y = o) and track its performance on the validation set, selecting the model with résthpance.
For comparison, whenever feasible with the available memory, we used corahsmftware to
compute points on the regularization path. As we discuss below, the duafjedient algorithm
approximately follows the regularization path in our experiments (in terms ofah@rtg objective
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and test error) in the beginning and the end of the rangeaoid often performs better in terms of
generalization error in the mid-range.

6.1 Object Segmentation

We tested our algorithm on a 3D scan segmentation problem using the clasglaiMMhetworks
with regular potentials that were described above. The dataset is a ¢iadjeollection of cluttered
scenes containing articulated wooden puppets (Anguelov et al., 2Q@®ntains eleven different
single-view scans of three puppets of varying sizes and positions, witbrcund occluding objects
such as rope, sticks and rings. Each scan consists of argQ6@ @oints. Our goal was to segment
the scenes into two classepuppet and background. We use five of the scenes for our training
data, three for validation and three for testing. Sample scans from the ¢ranthtest set can be
seen attp://www.cs.berkeley.edu/ taskar/3DSegment/ . We computed spin images of size 4®
bins at two different resolutions, then scaled the values and perfor@addobtain 45 principal
components, which comprised our node features. We used the surfecediput by the scanner as
edges between points and for each edge only used a single feattioeg senstant value of 1 for all
edges. This results in all edges having the same potential. The training déame@pproximately
37,000 nodes and 8800 edges. We used standard Hamming distance for our loss furigtioy().

We compared the performance of the dual extragradient algorithm alongrégularized path
to solutions of the regularized problems for different settings of the oo dual extragradient,
the stepsize is set tp=1/||F||2 =~ 0.005. We also compared to a variant of the averaged perceptron
algorithm (Collins, 2002), where we use the batch updates to stabilize thélabgosince we only
have five training examples. We set the learning rate@0@ by trying several values and picking
the best value based on the validation data.

In Fig. 7(a) we track the hinge loss on the training data:

> maxw ' fi(yf) + & (y)] — wfi (yi). (20)

T Yi€%i
The hinge loss of the regularization pathgfpath ) is the minimum loss for a given norm, and
hence is always lower than the hinge loss of the other algorithms. Hoves/gre norm increases
and the model approaches the unregularized soluti@iex loss tends towards that mefy-path
Note thatproj-grad  behaves quite erratically in the range of the norms shown. Fig. 7(b) shows
the growth of the norm as a function of iteration numberdaal-ex andave-perc . The unreg-
ularized dual extragradient seems to explore the range of models (in terthgio norm) on the
regularization path more thoroughly than the averaged perceptron antlielly asymptotes to the
unregularized solution, whilgroj-grad  quickly achieves very large norm.

Fig. 7(c) and Fig. 7(d) show validation and test error for the three ilgos. The best valida-
tion and test error achieved by ttigal-ex andave-perc algorithms as well agg-path  are fairly
close, however, this error level is reached at very different no8imee the number of scenes in the
validation and test data is very small (three), because of variance,shedyen on validation is not
very close to the best norm on the test set. Selecting the best model oritlatima set leads to
test errors of 3% fordual-ex , 3.5% forave-perc , 3.6% forreg-path and 38% for proj-grad

4. We used CPLEX to solve the regularized problems and also to find tfecpons onto the min-cut polytope, since
the min-cost quadratic flow code we used (Guerriero and Tseng, 200@3 not support negative flows on edges,
which are needed in the formulation presented in Appendix A.
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Figure 7: Object segmentation results:

(reg-path ), the averaged projected gradiempto{-grad
(ave-perc ) and unregularized dual extragradiedugl-ex ) vs. the norm of the pa-
rameters. (b) Norm of the parameters vs. iteration number for the thregtlays.

(c) Validation error vs. the norm of the parameters. (d) Test erroithws.norm of the

parameters.

(proj-grad
shown in the graphs).

6.2 Word Alignment

(@) Training hinge loss for thelamgation path

), the averaged perceptron

actually improves performance after the model norm is larger than 500hwshiwot

We also tested our algorithm on word-level alignment using a data set frer@d83 NAACL

set (Mihalcea and Pedersen, 2003), the English-French Hansakds Tais corpus consists of
1.1M pairs of sentences, and comes with a validation set of 37 sentensapdia test set of 447
word-aligned sentences. The validation and test sentences have drebaligned (see Och and

Ney, 2003) and are marked with baglire and possiblealignments. Using these alignments, the
alignment error ratq AER) is calculated as:

AERA,SP)=1—
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whereA is a set of proposed alignment paiijs the set of sure gold pairs, afis the set of
possible gold pairs (whel@C P).

We experimented with two different training settings. In the first one, we t@ibriginal test
set into 100 training examples and 347 test examples—this dataset is call&bttedataset. In
the second setting, we used GIZA++ (Och and Ney, 2003) to produdeMBdel 4 alignments for
the unlabeled sentence pairs. We took the intersection of the predictions Bhilish-to-French
and French-to-English Model 4 alignments on the first 5000 sentencefpair the 1.1M sentences
in order to experiment with the scaling of our algorithm (training on 500, E0@D5000 sentences).
The number of edges for 500, 1000 and 5000 sentences of GIZAte-ab®ut 31,000, 99,000 and
555,000 respectively. We still tested on the 347 Gold test examples, addhesealidation set
to select the stopping point. The stepsize for the dual extragradienithlgovas chosen to be
1/|[F2.

We used statistics computed on the 1.1M sentence pairs as the edge featorgsniodel. A
detailed analysis of the constructed features and correspondingeselysis is presented in Taskar
et al. (2005b). Example features include: a measure of mutual informagiarebn the two words
computed from their co-occurrence in the aligned sentences (Diceaieeffj the difference be-
tween word positions; character-based similarity features designed tireamgnate (and exact
match) information; and identity of the top five most frequently occurring word/e used the
structured losg(y;,y;) defined in Eq. (10) with(c",c”) = (1,3) (where 3 was selected by testing
several values on the validation set). We obtained low recall when usirg egst for both type
of errors because the number of positive edges is significantly smallethtbarumber of negative
edges, and so it is safe (precision-wise) for the model to predict fedges, hurting the recall.
Increasing the cost for false negatives solves this problem.

Fig. 8(a) and Fig. 8(e) compare the hinge loss of the regularization pattheitevolution of
the objective for the unregularized dual extragradient, averaggdgbed gradient and averaged
perceptron algorithms when trained on the Gold data set, 500 sentenc&8Qihsentences of the
GIZA++ output respectively. The dual extragradient path appears to follow the regularization path
closely for||lw|| < 2 and||w|| > 12. Fig. 8(b) compares the AER on the test set along the dual
extragradient path trained on the Gold dataset versus the regularizatABR. The results on
the validation set for each path are also shown. On the Gold data set, the mifiEBRmvas
reached roughly after 200 iterations.

Interestingly, the unregularized dual extragradient path seems toefitez performance on the
test set than that obtained by optimizing along the regularization path. The aloeeiof the dual
extragradient path over the regularization path is more salient in figuréo8the case where both
are trained on 1000 sentences from the GIZA++ output. We conjectur¢hihaual extragradi-
ent method provides additional statistical regularization (compensatingeardiier labels of the
GIZA++ output) by enforcing local smoothness of the path in parameteespa

The averaged projected gradient performed much better for this taskegarentation, getting
somewhat close to the dual extragradient path as is shown in Fig. 8(e)orllime version of the
averaged perceptron algorithm varied significantly with the order oeptation of examples (up to
five points of difference in AER between two orders). To alleviate this,amelomize the order of
the points at each pass over the data. Fig. 8(d) shows that a typicdlauaraged perceptron does
somewhat worse than dual extragradient. The variance of the adgoageeptron performance for

5. The regularization path is obtained by using the commercial optimizatitwese Mosek with the QCQP formulation
of Eqg. (15). We did not obtain the path in the case of 5000 sentencespsekivuns out of memory.
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Figure 8: Word alignment results: (a) Training hinge loss for the three differigarshms and the regularization path
on the Gold dataset. (b) AER for the unregularized dual extragradiegitegx ) and the regularization path
(reg-path ) on the 347 Gold sentencess ) and the validation setdlid ) when trained on the 100 Gold

sentences; (c) Same setting as in (b), compatilagex with the averaged projected-gradieprof-grad

);

(d) Same setting as in (b), comparipgj-grad  with the averaged perceptroavé-perc ); (e) Training
hinge loss fordual-ex andreg-path on 500 and 1000 GIZA++ labeled sentences. (f) AERdimi-ex
andreg-path  tested on the Gold test set and trained on 1000 and 5000 GIZA++ sestéfee graph for

500 sentences is omitted for clarity.
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different datasets and learning rate choices was also significantly higivefor dual extragradient,
which is more stable numerically. The online version of the averaged pevoemnverged very
quickly to its minimum AER score; converging in as few as five iterations for thiel @aining set.
Selecting the best model on the validation set leads to test error$%f for dual-ex , 5.6% for
reg-path , 5.8% forproj-grad  and 61% forave-perc on the Gold data training set.

The running time for 500 iterations of dual extragradient on a 3.4 Ghz Xgeh CPU with
4G of memory was roughly 10 minutes, 30 minutes and 3 hours for 500, 1@DBAO0 sentences,
respectively, showing the favorable linear scaling of the algorithm (liimetire number of edges).
Note, by way of comparison, that Mosek ran out of memory for more th@0 iraining sentences.

The framework we have presented here supports much richer model®ifdralignment; for
example, allowing finer-grained, feature-based fertility control (nunolbatigned words for each
word) as well as inclusion of positive correlations between adjacergseiigalignments. These
extensions are developed in Lacoste-Julien et al. (2006).

7. Conclusions

We have presented a general and simple solution strategy for largesscaterred prediction prob-
lems. Using a saddle-point formulation of the problem, we exploit the duagredient algorithm,

a simple gradient-based algorithm for saddle-point problems (Nested68).2 The factoring of

the problem into optimization over the feasible parameter specand feasible structured out-
put spacez allows easy integration of complex parameter constraints that arise in estimétion o
restricted classes of Markov networks and other models.

Key to our approach is the recognition that the projection step in the extliegtalgorithm can
be solved by network flow algorithms for matchings and min-cuts (and dynamgzamming for
decomposable models). Network flow algorithms are among the most well-dededdgorithms in
the field of combinatorial optimization, and yield stable, efficient algorithmic plat$o

One of the key bottlenecks of large learning problems is the memory requitefie algo-
rithm. We have derived a version of the algorithm that only uses storageional to the number
of parameters in the model, and is independent of the number of exampldgaw/exhibited the
favorable scaling of this overall approach in two concrete, large-¢eataing problems. Itis also
important to note that the general approach extends and adopts to a madkixlass of problems
by allowing the use of Bregman projections suitable to particular problemesass
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Appendix A. Min-Cut Polytope Projections

Consider projection for a single exampie

min 3 é(zlj -7)°+ > é(zljk_zjk) (21)
jev jKeE
st. 0<z <1 VjeV; zj—z<Zk, Z&—-Z <Zk, VIKeEE.

Let hi (z) = %(zﬁ —7))?if 0 < zj, elsew. We introduce non-negative Lagrangian variables

Ajk,Akj for the two constraints for each edgeandA jo for the constraing; < 1 each nodg.
The Lagrangian is given by:

z h+ (zj) + z —Zjk)? — z (1-2zj)Ajo

jev jev
- > ij—Zj+Zk)?\jk = > (Zk—2Z+7Zj)A
jKeE JKEE

Letting Aogj = Ajo+ Yk jkez (Ajk — Akj) + Ykkjer (Ajk — Akj), note that

Y Zidoj= ) Zihjot+ D (Z—Z)Ak+ D (Z—7Z)A.

jev jev JKeE JKEE
So the Lagrangian becomes:
1
LzA) = [hf(zj)Jij)\oj—)\jO}sz {Z(Zﬁk—zjk)z—zjk(hjwﬂ\kj) :
jev JKEE

Now, minimizingL(z,A) with respect ta, we have

mZinL(Z,)\) = > dik(Ajk+Acj)+ > [0oj(Aoj) —Ajol,

JKEE jev

whereqjk (A jk +Akj) = ming, [%(z’jk — zjk)2 —Zik(N jk +)\kj)] andqoj (Aoj) = ming [hf(zj) +ZjAqj].
The minimizing values ot are:

z = argmln{hJ (ZJ)+ZJ)\OJ} {z’j—)\oj' )\0132'

Z

11
zj*k — argmln[z(z’jk—zjk)z—zjk()\ijr)\kj)]:z’jk+)\jk+)\kj.

ij
Hence, we have:
1 2
dik(Ajk+Akj) = — jk(?\jk+)\kj)—§(7\jk+’\kj)

377 Noi > Z;;
. . — ] =
i (Roj) { Z')\OJ A5, Aoj < 7.

1649

J



TASKAR, LACOSTE-JULIEN AND JORDAN

The dual of the projection problem is thus:

1
m}\ax Z [QOj(}\oj)—)\jo]—i—_z _lek()‘ik+)\ki)_é(}‘ik+)\kj)2 (22)
jev jKEE
st Ajo—Aoj + z (Ajk —Akj) =0, Vje v,
jKEE

)\jk,)\ijO, Vik e E; )\jozo, Viewv.

InterpretingA jx as flow from nodej to nodek, andAy; as flow fromk to j andAjo,Aoj as flow
from and to a special node 0, we can identify the constraints of Eq. 2paservation of flow
constraints. The last transformation we need is to address the predemrosssterms\ jAyj in

the objective. Note that in the flow conservation constraiRfg, Ax; always appear together as
Ajk — Akj. Since we are minimizing jx + Ax;j)? subject to constraints ol — Ayj, at least one of
Ajk, Akj will be zero at the optimum and the cross-terms can be ignored. Note thavadfiables

are non-negative except fap;'s. Many standard flow packages support this problem form, but we
can also transform the problem to have all non-negative flows by inthoglextra variables. The
final form has a convex quadratic cost for each edge:

1
]6'1/ jkE'E jkEZ
st. )\jo—)\0j+ z ()\,-k—)\k,-):o, Vjiewv;
jKeE

Aik,Akj >0, Vike £; Ajo>0, Vje V.
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