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Abstract

In regression, the desired estimateypf is not always given by a conditional mean, although
this is most common. Sometimes one wants to obtain a goothastithat satisfies the property
that a proportiong, of y|x, will be below the estimate. Far= 0.5 this is an estimate of the
median What might be called median regression, is subsumed undéeetimquantile regression
We present a nonparametric version of a quantile estimatuich can be obtained by solving a
simple quadratic programming problem and provide unifoonvergence statements and bounds
on the quantile property of our estimator. Experimentalitsshow the feasibility of the approach
and competitiveness of our method with existing ones. Weudis several types of extensions
including an approach to solve tiy@antile crossingroblems, as well as a method to incorporate
prior qualitative knowledge such as monotonicity constsai

Keywords: support vector machines, kernel methods, quantile estmatonparametric tech-
nigues, estimation with constraints

1. Introduction

Regression estimation is typically concerned with finding a real-valued funétisuch that its
valuesf (x) correspond to the conditional meanygfor closely related quantities. Many methods
have been developed for this purpose, e.g. least mean square (Elyf83sion, robust regression
(Huber, 1981), oe-insensitive regression (Vapnik, 1995; Vapnik et al., 1997). Repaldvariants
include Wahba (1990), penalized by a Reproducing Kernel Hilbert&(RKHS) norm, and Hoerl
and Kennard (1970), regularized via ridge regression.

1.1 Motivation

While these estimates of the mean serve their purpose, there exists a largé preblems where
we are more interested in estimating a quantile. That is, we might wish to knowfettares of
the the distribution of the random variabyle:
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e A device manufacturer may wish to know what are the 10% and 90% quardilesoime
feature of the production process, so as to tailor the process to co¥enBthe devices
produced.

e For risk management and regulatory reporting purposes, a bank mayomestimate a lower
bound on the changes in the value of its portfolio which will hold with high pbitig.

e A pediatrician requires a growth chart for children given their age artigps even med-
ical background, to help determine whether medical interventions ar@edge.g. while
monitoring the progress of a premature infant.

These problems are addressed by a technique called Quantile Reg(€sR)ar Quantile Estima-
tion championed by Koenker (see Koenker, 2005, for a descriptiactipal guide, and extensive
list of references). These methods have been deployed in economsddica sciences, ecology,
etc. The purpose of our paper is:

e To bring the technique of quantile regression to the attention of the machinaigaommu-
nity and show its relation to-Support Vector Regression (Sikopf et al., 2000).

e To demonstrate a nonparametric version of QR which outperforms thentyreailable
nonlinear QR regression formations (Koenker, 2005). See Sectiandetails.

e To derive small sample size results for the algorithms. Most statements in théicgthtis
literature for QR methods are of asymptotic nature (Koenker, 2005). E@lgiriccess results
permit us to define two quality criteria and show tail bounds for both of themadrittite-
sample-size case.

e To extend the technique to permit commonly desired constraints to be inceghofs exam-
ples we show how to enforce non-crossing constraints and a monotoraagyraint. These
constraints allow us to incorporate prior knowlege on the data.

1.2 Notation and Basic Definitions

In the following we denote by , 9 the domains ok andy respectivelyX = {xy, ..., Xm} denotes the
training set with corresponding targéts= {yi,...,ym}, both drawn independently and identically
distributed (iid) from some distributiop(x,y). With some abuse of notationalso denotes the
vector of ally; in matrix and vector expressions, whenever the distinction is obvious.

Unless specified otherwisg denotes a Reproducing Kernel Hilbert Space (RKHSX ok is
the corresponding kernel function, akdc R™ ™M is the kernel matrix obtained vi&; = k(x;, ;). 6
denotes a vector ifeature spacand(x) is the corresponding feature mapyofThat is,k(x,X') =
(@(x),@(X)). Finally,a € R™is the vector of Lagrange multipliers.

Definition 1 (Quantile) Denote by y= R a random variable and let € (0,1). Then the-quantile
of y, denoted by4ls given by the infimum over p for whietn{y < p} = 1. Likewise, the conditional
quantile i (x) for a pair of random variablegx,y) € x x R is defined as the function px — R
for which pointwise gis the infimum over p for whicBr{y < p|x} = 1.
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1.3 Examples

To illustrate regression analyses with conditional quantile functions, wedadwo simple exam-
ples here.

1.3.1 ARTIFICIAL DATA

The above definition of conditional quantiles may be best illustrated by a sighepe. Consider
a situation where the relationship betweesndy is represented as

y(x) = f(x) +&, where€ ~ & (0,0(x)?). (1)

Here, note that, the amount of nofses a function ofx. Sincef is symmetric with mean and median
0 we haveuys(x) = f(x). Moreover, we can compute thieth quantiles by solving Riy < p|x} =

T explicitly. Sinceg is normally distributed, we know that theth quantile of§ is given by
a(x)®~1(1), where® is the cumulative distribution function of the normal distribution with unit
variance. This means that

() = F(x) + ()& 1(1).

Figure 1 shows the case whetés uniformly drawn from[—1,1] andy is obtained based on
(1) with f(x) = singx) anda(x) = 0.1expg1—Xx). The black circles are 500 data examples and the
five curves ara = 0.10,0.25,0.50,0.75 and 090 conditional quantile functions. The probability
densitie(y|x= —0.5) andp(y|x = +-0.5) are superimposed. Theth conditional quantile function
is obtained by connecting theth quantile of the conditional distributiop(y|x) for all x € x. We
see thatt = 0.5 case provides the central tendency of the data distributiortan@®.1 and 09
cases track the lower and upper envelope of the data points, respeciikie error bars of many
regression estimates can be viewed as crude quantile regressionsileQegression on the other
hand tries to estimate such quantities directly.

1.3.2 REAL DATA

The next example is based on actual measurements of bone density (BND9lescents. The
data was originally reported in Bachrach et al. (1999) and is also ambilyzéastie et al. (2001).
Figure 2 (a) shows a regression analysis with conditional mean and figimeshows that with
a set of conditional quantiles for the variable BMD. The response in the&akaxis is relative
change in spinal BMD and the covariate in the horizontal axis is the age efdilescents. The
conditional mean analysis (a) provides only the central tendency of thditmmal distribution,
while apparently the entire distribution of BMD changes according to age cdhditional quantile
analysis (b) gives us more detailed description of these changes. &apkx we can see that the
variance of the BMD changes with the age (heteroscedastic) and thatrttitianal distribution is
slightly positively skewed.

2. Quantile Estimation

Given the definition ofi(x) and knowledge of support vector machines we might be tempted to
use version of the-insensitive tube regression to estimptéx). More specifically one might try to

1. The data is also available from the website http://www-stat.stanford.eduBEdearn.
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Figure 1: lllustration of conditional quantile functions of a simple artificialtegsin (1) with
f(x) = sindx) ando(x) = 0.1exp1— x). The black circles are 500 data examples and
the five curves are= 0.10,0.25,0.50,0.75 and 090 conditional quantile functions. The
probability densitiep(y|x = —0.5) and p(y|x = +0.5) are superimposed. In this paper,
we are concerned with the problem of estimating these conditional quantitédng
from training data.

estimate quantiles nonparametrically using an extension efthiek, as outlined in Sablkopf et al.
(2000). However this approach carries the disadvantage of requising estimate both an upper
and lower quantilsimultaneously While this can be achieved by quadratic programming, in doing
SO we estimate “too many” parameters simultaneously. More to the point, if we aresitete in
finding an upper bound opwhich holds with 095 probability we may not want to use information
about the M5 probability bound in the estimation. Following Vapnik’s paradigm of estimatithg o
the relevant parameters directly (Vapnik, 1982) we attack the problerstimating each quantile
separately. For completeness and comparison, we provide a detailegptilmsof a symmetric
guantile regression in Appendix A.

2.1 Loss Function

The basic strategy behind quantile estimation arises from the observatiomnivaizing the/;1-loss
function for a location estimator yields the median. Observe that to minifijizgy; — p| by choice

of 4, an equal number of ternys— L have to lie on either side of zero in order for the derivative wrt.
pto vanish. Koenker and Bassett (1978) generalizes this idea to obtajreas®n estimate for any
quantile by tilting the loss function in a suitable fashion. More specifically oneshaw that the
following “pinball” loss leads to estimates of thequantile:

Lemma 2 (Quantile Estimator) LetY = {y1,...,ym} C Rand lett € (0,1) then the minimizeru
of ¥, It (yi — W) with respect to p satisfies:

2. Sclolkopf et al. (2000) does, in fact, suggests that a choice of diffengper bounds on the dual problem would lead
to estimators which weigh errors for positive and negative excessetitlg, that is, which would lead to quantile
regression estimators.
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Figure 2: Anillustration of (a) conditional mean analysis and (b) conditiqnahtile analysis for a
data set on bone mineral density (BMD) in adolescents. In (a) the coralititaan curve
is estimated by regression spline with least square criterion. In (b) the minescare the
estimated conditional quantile curves at ordets@2,...,0.9. The set of conditional
guantile curves provides more informative description of the relationshipgwariables
such as non-constant variance or non-normality of the noise (elistripdtion. In this
paper, we are concerned with the problem of estimating these conditicanatilgs.

[x(8)

{ﬁ if£>0 2) .

(T—1)8 if&<0

0

Figure 3: Pinball loss function for quantile estimation.

1. The number of terms, mwith y < |4 is bounded from above kayn.
2. The number of terms, mwith y > | is bounded from above K —1)m.

3. For m— oo, the fractionm—n;, converges ta if Pr(y) does not contain discrete components.

Proof Assume that we are at an optimal solution. Then, increasing the minipnkaedu changes
the objective by(1—m,)(1—1) —m,T] 8 Likewise, decreasing the minimizgrby du changes

the objective by—m_(1—1)+ (1—m_)t]d). Requiring that both terms are nonnegative at opti-
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mality in conjunction with the fact thatn_ + m; < m proves the first two claims. To see the last
claim, simply note that the evegt=y; for i # j has probability measure zero for distributions not
containing discrete components. Taking the limit- c shows the claim. [ |

The idea is to use the same loss function for functidr{g), rather than just constants in order
to obtain quantile estimates conditional enKoenker (2005) uses this approach to obtain linear
estimates and certain nonlinear spline models. In the following we will use Ikeiorethe same
purpose.

2.2 Optimization Problem

Based orl{(§) we define the expected quantile risk as

R[f] = Epxy) [le(y—f(x))]. (3

By the same reasoning as in Lemma 2 it follows that farx — R the minimizer ofR[f] is
the quantilep;(x). Sincep(x,y) is unknown and we only havk,Y at our disposal we resort to
minimizing the empirical risk plus a regularizer:

A
Reeg| ] ZI —f(x)) E|]g||§[ wheref =g+bandb e R, (4)

Here||-||,, is RKHS norm and we requirg € #. Notice that we do not regularize the constant
offset,b, in the optimization problem. This ensures that the minimizer of (4) will satisfy thetije

property:

Lemma 3 (Empirical Conditional Quantile Estimator) Assuming that f contains a scalar un-
regularized term, the minimizer of (4) satisfies:

1. The number of terms_nwith y; < f(x) is bounded from above kyn.
2. The number of terms_nwith y; > f(X;) is bounded from above ki — 1)m

3. If (x,y) is drawn iid from a distributionPr(x,y), with Pr(y|x) continuous and the expecta-
tion of the modulus of absolute continuity of its density satisfling .o E [€(d)] = 0. With
probability 1, asymptotically;T- equalst.

Proof For the two claims, denote by the minimum ofR.gg[ f] with f* = g* 4-b*. ThenReg(g* + b]
has to be minimal fob = b*. With respect td, however, minimizingR.eg amounts to finding the
quantile in terms of; — g(X;). Application of Lemma 2 proves the first two parts of the claim.
For the second part, an analogous reasoning t@lsopf et al. (2000, Proposition 1) applies.
In a nutshell, one uses the fact that the measure odtheighborhood off (x) converges to 0 for
0 — 0. Moreover, for kernel functions the entropy numbers are well \mthéWilliamson et al.,
2001). The application of the union bound over a cover of such funci@sses completes the
proof. Details are omitted, as the proof is identical to that oftapf et al. (2000). |

Later, in Section 4 we discuss finite sample size results regarding the genrzerofm—n; — T and
related quantities. These statements will make use of scale sensitive lossrfsn8efore we do
that, let us consider the practical problem of minimizing the regularized riskifunal.
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2.3 Dual Optimization Problem

Here we compute the dual optimization problem to (4) for efficient numericdeimgntation. Us-
ing the connection between RKHS and feature spaces we fisije= (@(x),w) + b and we obtain
the following equivalent to minimizin@eg| f].

m

o 1

minimize CY t& + (1-1)& + = ||w||? (5a)
whE" = 2

subjectto yi — (@(x), w) —b < & and (@(x;),w) + b—y; < & whereg;,&' >0  (5b)

Here we used := 1/(Am). The dual of this problem can be computed straightforwardly using
Lagrange multipliers. The dual constraints gopand&* can be combined into one variable. This
yields the following dual optimization problem

. 1 . . -
minimize éO(TKO( —a'y subjecttoC(t—1) <a;<Ctforall1<i<mandi'a=0. (6)

We recoverf via the familiar kernel expansion

w= Zaicp(xi) or equivalentlyf (x) = Zaik(xi,x) +b. (7)
| |
Note that the constardi is the dual variable to the constraibta = 0. Alternatively, b can be
obtained by using the fact th&tx) =y; for a; ¢ {C(t — 1),Ct}. The latter holds as a consequence
of the KKT-conditions on the primal optimization problem of minimiziRgyg| f].

Note that the optimization problem is very similar to that okaBV regression estimator (Vap-
nik et al., 1997). The key difference between the two estimation problems is th&VR we have
an additionak||a||1 penalty in the objective function. This ensures that observations withtaewa
from the estimate, i.e. witty; — f(X)| < € do not appear in the support vector expansion. Moreover
the upper and lower constraints on the Lagrange multiptiergre matched. This means that we
balance excess in both directions. The latter is useful for a regresstiomagor. In our case, how-
ever, we obtain an estimate which penalizes loss unevenly, dependingetimend(x) exceedy or
vice versa. This is exactly what we want from a quantile estimator: by thiseduwre errors in one
direction have a larger influence than those in the converse directior Vgaids to the shifted esti-
mate we expect from QR. A practical advantage of (6) is that it can beddlivectly with standard
guadratic programming code rather than using pivoting, as is needed inr8yfiglssion (Vapnik
etal., 1997).

A practical estimate does require a procedure for setting the regularipatiameter. Figure 4
shows how QR responds to changing the regularization parameter. Adldstienates in Figure 4
attempt to compute the median, subject to different smoothness constrairite.thl all satisfy
the quantile property having half the points on either side of the regressiore estimates appear
track the observations better. This issue is addressed in Section 5 wheremypute quantile
regression estimates on a range of data sets.

3. Extensions and Modifications

Our optimization framework lends itself naturally to a series of extensions addioations of the
regularized risk minimization framework for quantile regression. In the failgwe discuss some
extensions and modifications.
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Figure 4: The data set measures acceleration in the head of a crastnesy d. time in tests of
motorcycle crashes. Three regularized versions of the median riegressimate (=
0.5). While all three variants satisfy the quantile property, the degree of thmess is
controlled by the regularization constant All three estimates compare favorably to a
similar graph of nonlinear QR estimates reported by Koenker (2005).
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3.1 Non-Crossing Constraints

When we want to estimate several conditional quantiles (e.g.0.1,0.2,...,0.9), two or more
estimated conditional quantile functions can cross or overlap. This emsbagaphenomenon
called quantile crossing®ccurs because each conditional quantile function is independently es-
timated (Koenker, 2005; He, 1997). Figure 5(a) shows BMD data ptedein 1.3.2 and =
0.1,0,2,...,0.9 conditional quantile functions estimated by the kernel-based estimator debscrib
in the previous section. Both of the input and the output variables areastiined in[0,1]. We

note quantile crossings at several places, especially at the outsidetddittieg data rangex(< 0

and 1< X). In this subsection, we address this problem by introduaimg-crossing constraints
Figure 5(b) shows a family of conditional quantile functions estimated with tinecnassing con-
straints.

Suppose that we want to estimateonditional quantiles at @ 11 < To < ... <Tp < 1. We
enforcenon-crossingconstraints ak points{x; }'j:1 in the input domainx. Let us write the model
for the tp-th conditional quantile function a,(x) = (@(x),wnh) + by forh=1,2,....n. In # the
non-crossing constraints are represented as linear constraints

{(@(Xj),0n) +bn < {(@(Xj),ns1) +bnig, foralll<h<n-1,1<j<I. (8)

Solving (5) or (6) for 1< h < nwith non-crossing constraints (8) allows us to estinmatenditional
quantile functions not crossing bapointsx,...,x € x. The primal optimization problem is given

by

n

minimize CY théni+ (1—Th)&; + HWhH2 (9a)
Wh,bn, Eh. hZ { Zl " I }
subject toy; — (@(Xi),Wh) — b = &ni — & wheregy;, & > 0,
forall1<h<n 1<i<m (9b)
{{9(xj), 0n+1) +bnia} — {{@(x)),0n) +bn} >0,
foralll<h<n-1,1<j<lI. (9¢)

Using Lagrange multipliers, we can obtain the dual optimization problem:

n

minimize [%ahTKathaﬁK(eh_l—eh) +%(9h_1—6h)TK_(9h_1—8h) —apy] (10a)

RLI N e
subjectto C(th—1) < ap <Crtp, forall1<h<n1<i<m, (10b)
Bhj >0, forall1<h<n1<j<I, 1T0(h:0, forall1<h<n, (10c)

where6y; is the Lagrange multiplier of (9c) forall£ h<n, 1< j <lI, K is mx | matrix with its
(i, j)-th entryk(x;,X;), Kis| x| matrix with its (1, j2)-th entryk(x;1,Xj2) andy, is |-vector with its
j-th entry6y; for all 1 < h < n. For notational convenience we defg = 6,j =0forall 1< j <I.
The model for conditional quantite,-th quantile function is now represented as

m

|
fh(X):.Z(Xm X, %) Z (Bnh—1i — Bni)K(X,X;j) + bn. (12)

3. A part of the contents in this subsection was presented by one of thmsa(itakeuchi and Furuhashi, 2004).
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In section 5.2.1 we empirically investigate the effect of non-crossing @nttron the generaliza-
tion performances.

It is worth noting that, after enforcing the non-crossing constraints, tlaatije property as in
Lemma 3 may not be guaranteed. This is because the method both tries to optimtiwedgoantile
property and the non-crossing property (in relation to other quantileshcé] the final outcome
may not empirically satisfy the quantile property. Yet, the non-crossingti@nts are very nice
because they ensure the semantics of the quantile definition: lower quargilshewld not cross
the higher quantile level.

training data training data
0.1 quantile . 0.1 quantile
08 | 0.2 quantile —— 08 | et 0.2 quantile —— |
: 0.3 quantile —— : 0.3 quantile ——
=l 0.4 quantile =l 0.4 quantile
& 0.5 quantile —— X 0.5 quantile
T 06 - 0.6 quantile —— T 06 - 0.6 quantile
3 % 0.7 quantile —— 3 % 0.7 quantile
§ .+ 08quantile —— § .+ 0.8quantile
2 o04fFf o
) [a)
= =
o < o
02 F =
0 L L L L L L O L L L L L L
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
age (standardized) age (standardized)
(a) Withoutnon-crossingconstraints (b) Witmon-crossingonstraints

Figure 5: An example ofjuantile crossingroblem in BMD data set presented in Section 1. Both
of the input and the output variable are standardiz€,ifj. In (a) the set of conditional
quantiles at 0,0.2,...,0.9 are estimated by the kernel-based estimator presented in the
previous section. Quantile crossings are found at several poinegialip at the outside
of the training data rangex & 0 and 1< x). The plotted curves in (b) are the conditional
guantile functions obtained withon-crossingonstraints explained in Section 3.1. There
are noquantile crossingeven at the outside of the training data range.

3.2 Monotonicity and Growth Curves

Consider the situation of a health statistics office which wants to producelgoonwes. That is, it
wants to generate estimatesydbeing the height of a child given paramet&rsuch as age, ethnic
background, gender, parent’s height, etc. Such curves can théosssess whether a child’s growth
is abnormal.

A naive approach is to apply QR directly to the problem of estimatjrgNote, however, that
we have additional information about the biological process at hand:eihbtof every individual
child is amonotonically increasinfunction of age. Without observing large amounts of data, there
is no guarantee that the estimates), will also be monotonic functions of age. Figure 6 is an
example of quantile regression with monotonicity constraints. The data seersftakn Mammen
et al. (2001). Fuel efficiency (in miles per gallon) is studied as a functi@mgine output.
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Figure 6: Example plots from quantile regression with and without monotonicrgtcaints. The
thin line represents the nonparametric quantile regression without monotooacity
straints whereas the thick line represents the nonparamtric quantile regnegh mono-
tonicity constraints.

To address this problem we adopt an approach similar to (Vapnik et al7, Bfiola and
Schblkopf, 1998) and impose constraints on the derivative$ directly. While this only ensures
that f is monotonic on the observed datawe could always add more locatioxsfor the express
purpose of enforcing monotonicity.

Formally, we require that for a differential operaf@rsuch aP = axage the estimat® f (x) > 0
for all x € X. Using the linearity of inner products we have

Df(x) =D ((@(x), W) +b) = (DE(x), W) = (W(x),w) where(x) := D(x). (12)

Note that accordingly inner products betwefeandg can be obtained viap(x), ®(x')) = D1k(x,x)
and ((x), (X)) = D1D2k(x,X), whereD; andD, denote the action dD on the first and second
argument ok respectively. Consequently the optimization problem (5) acquires an additiet of
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constraints and we need to solve

1
minimize C TE. (1-10)& + S lw||?
wh 2

SUbJeCttOYi—<(P(X|) w) —b <&, (@(x),w)+b—y <&,
(W(x),w) >0, &,& >0.

Since the additional constraint does not depend dris easy to see that the quantile property still
holds. The dual optimization problem yields

-
. 1[a K DiK][a T

mlryrglze > [ B } [ DK DiD,K } [ B } —a'y (13a)

subject toC(T—1) < a;j <Ctand 0< i forall 1 <i < mandi'a = 0. (13b)

HereD:K is a shorthand for the matrix of entri@gk(x,x;) andD2K,D;1D,K are defined analo-
gously. Herev = 3 ai@(x;) + Biy(x ) or equivalentlyf (x) = 3 aik(x;, X) + BiD1k(xi, x) + b.

Example Assume thai € R" and thatx; is the coordinate with respect to which we wish to
enforce monotonicity. Moreover, assume that we use a Gaussian RB&, keat is

K(x.X) :exp<—zi2 Hx—x’”z). (14)

In this caseD; = 01 with respect toc andD, = 01 with respect to¢. Consequently we have

/
1—X1

D1k(x,X) = Lk(x,X): Dak(x,X) = k(x,X) (15a)

12
D1Dok(x,X) = [ —2—(’::‘1)] K(x,%). (15b)
Plugging the values of (15) into (13) yields the quadratic program. Notetlaédothk(x,x') and
D1k(x,X) in (15a), are used in the function expansion.

If x; were drawn from a discrete (yet ordered) domain we could refdacB, with a finite
difference operator. This is still a linear operationkoand consequently the optimization problem
remains unchanged besides a different functional fornDfx:

An alternative to the above approach is not to modify the optimization problé¢to basure the
constraints by modifying the function in the hypothesis space which is much sitopfaplement
asin Le etal. (2006).

3.3 Other Function Classes

Semiparametric Estimates RKHS expansions may not be the only function classes desired for
guantile regression. For instance, in the social sciences a semiparamatatnray be more de-
sirable, as it allows for interpretation of the linear coefficients (Gu andb&ah993; Smola et al.,
1999; Bickel et al., 1994). In this case we add a set of parametric fursci@and solve

minimize;ih(yi —f(x))+ —\|g||}[ wheref (x X) + ZB. b. (16)
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For instance, the function clads could be linear coordinate functions, that f§(x) = x;. The
main difference to (6) is that the resulting optimization problem exhibits a latgaber of equality
constraint. We obtain (6) with the additional constraints

3

a;fi(xj) =0foralli. (17)
1

J

Linear Programming Regularization Convex function classes with penalties can be obtained
by imposing arj|a||; penalty instead of th¢g||§{ penalty in the optimization problem. The advan-
tage of this setting is that minimizing

n

minimize % iilr(yi —f(%))+A il |aj| wheref (x) = Zlai fi(x) +b. (18)

is alinear programwhich can be solved efficiently by existing codes for large scale problertise
context of (18) the function§ constitute the generators of the convex function class. This approach
is similar to Koenker et al. (1994) and Bosch et al. (1995). The formeuds; regularization of
expansion coefficients whereas the latter discuss an explicit secosdsondothing spline method

for the purpose of quantile regression. Most of the discussion in tisepreaper can be adapted to
this case without much modification. For details on how to achieve this seégkSphand Smola
(2002). Note that smoothing splines are a special instance of kerreash€ms where one assumes
explicit knowledge of the basis functions.

Relevance Vector Regularization and Sparse Coding Finally, for sparse expansions one can
use more aggressive penalties on linear function expansions than theseng(18). For instance,
we could use a staged regularization as in the RVM (Tipping, 2001), whgtadratic penalty on
each coefficient is exerted with a secondary regularization on the péisalfy This corresponds to
a Student-t penalty oa.

Likewise we could use a mix between &nand/y regularizer as used in Fung et al. (2002)
and apply successive linear approximation. In short, there exists anlangieer of regularizers, and
(non)parametric families which can be used. In this sense the RKHS paraaiba is but one
possible choice. Even so, we show in Section 5 that QR using the RKH®ypgisdds excellent
performance in experiments.

Neural Networks, Generalized Models Our method does not depend on the how the function
class is represented (not only the Kernelized version), in fact, onaisariNeural Networks or
Generalized Models for estimation as long as the loss function is kept the Jdmsds the main
reason why this paper is call®bn-parametric quantile estimation

4. Theoretical Analysis

In this section we state some performance bounds for our estimator.

4.1 Performance Indicators

We first need to discuss how to evaluate the performance of the esfimatsus the true conditional
quantilep (x). Two criteria are important for a good quantile estiméftor
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e f: needs to satisfy the quantile property as well as possible. That is, welvednt
Pripriy< ()} -1/ =€} <. (19)

In other words, we want that the probability thet f;(x) does not deviate from by more

thane with high probability, when viewed over all drawX,Y) of training data. Note how-
ever, that (19) does not imply having a conditional quantile estimator at alins@nce, the
constant function based on the unconditional quantile estimator with respégberforms

extremely well under this criterion. Hence we need a second quantity tesasse closely
fr(X) trackspy ().

e Sincel itself is not available, we take recourse to (3) and the factjih#& the minimizer
of the expected risR[f]. While this will not allow us to comparg; and f; directly, we can
at least compare it by assessing how close to the minifRLiif] the estimatdr[f;] is. Here
f7 is the minimizer ofR[f] with respect to the chosen function class. Hence we will strive to
bound

PU{RIf] R > &} <& (20)

These statements will be given in terms of the Rademacher complexity of thigofuistass of
the estimator as well as some properties of the loss function used in selece itedfimique itself
is standard and we believe that the bounds can be tightened consideyahkly ise oflocalized
Rademacher averages (Mendelson, 2003), or similar tools for empirma¢gses. However, for
the sake of simplicity, we use the tools from Bartlett and Mendelson (2082heskey point of the
derivation is to describe a new setting rather than a new technique.

4.2 BoundingR([f;]

Definition 4 (Rademacher Complexity) Let X := {x1,...,Xm} be drawn iid from x) and let ¥
be a class of functions mapping frqiX) to R. Leto; be independent uniforfit1}-valued random
variables. Then the Rademacher complexityand its empirical varianik,, are defined as follows:

- 2 n ~
Rm(F ) == Eo{sup — Zoif(xi)‘ ‘X} and®m(¥ ) := Ex [Km(f)] . (21)
feg IM
Conveniently, if®d is a Lipschitz continuous function with Lipschitz constantone can show
(Bartlett and Mendelson, 2002) that

Rn(Po F) < 2LRm(F ) wheredo 7 :={glg=@o f andf € 7 }. (22)

An analogous result exists for empirical quantities bouncﬁmgqbo F)< 2L9€m(9r ). The combi-
nation of (22) with Bartlett and Mendelson (2002, Theorem 8) yields:

Theorem 5 (Concentration for Lipschitz Continuous Functions) For any Lipschitz continuous
function ® with Lipschitz constant L and a function clags of real-valued functions or and
probability measure oxx the following bound holds with probability— o for all draws of X from
X:

8log2/d

< 2LRm(F )+ : (23)

su
P m

fer

E(9(f(9)]— 13 (1)
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We can immediately specialize the theorem to the following statement about thelG3R f

Theorem 6 Denote by f the minimizer of the R] with respect to fc¢ #. Moreover assume that
all f € ¥ are uniformly bounded by some constant B. With the conditions listed aboeayo
sample size m an@l< d < 1, every quantile regression estimateshtisfies with probability at least
(1-9)

R[] — RIf{] < 2max.&m(7 ) + (4+ LB)4/ 'Ogri/é where L= {1,1-1}. (24)
Proof We use the standard bounding trick that

R[fe] — R[] < |R[fr] — Remp[ f1]| + Remp[ ] — R[f{] (25)
< fseufp\R[f] — Rempl f]| + Rempl ;] — R[f{] (26)

where (25) follows fromRemp[fr] < Remp[f{]. The first term can be bounded directly by The-
orem 5. For the second part we use Hoeffding’s bound (Hoeffdifé3) which states that the

deviation between a bounded random variable and its expectation is libby % with

probabilityd. Applying a union bound argument for the two terms with probabiliti@s32andd/3
yields the confidence-dependent term. Finally, using the factthatLipschitz continuous with
L = max(t,1— 1) completes the proof. [ |

Example Assume that/ is an RKHS with radial basis function kernefor which k(x,x) = 1.
Moreover assume that for afl € # we have||f||,, <C. In this case it follows from Mendel-
son (2003) thatk(¥ ) < % This means that the bounds of Theorem 6 translate into a rate of
convergence of

R[fy] - R[f;] = O(m"2). 27)

This is as good as it gets for nonlocalized estimates. Since we do not &pgict vanish except for
pathological applications where quantile regression is inappropriateigthzises where we have
a deterministic dependency betweeandx), the use of localized estimates (Bartlett et al., 2002)
provides only limited returns. We believe, however, that the constants iroteds could benefit
from considerable improvement.

4.3 Bounds on the Quantile Property

The theorem of the previous section gave us some idea about how famtipdesaverage quantile
loss is from its true value undgr. We now proceed to stating bounds to which dedgkesatisfies
the quantile property, i.e. (19).

In this view (19) is concerned with the deviati®[X_« 0 (y— fi(X))] — 1. Unfortunately
X(—=,0© 7 is not scale dependent. In other words, small changég ) around the poiny = f(x)
can have large impact on (19). One solution for this problem is to use awmialtifiargine and
ramp functions/,r; as defined in (28) and Figure 7. These functions are Lipschitz consnuou
with constant = 1/¢. This leads to:
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Figure 7: Ramp functions bracketing the characteristic functiomVia X > ¢ -

Theorem 7 Under the assumptions of Theorem 6 the expected quantile is boundedobisitity
1-— & each from above and below by

;i;ra()/i — (%) ~A<E [X(-w0 (y— fi(¥)] <

where the statistical confidence term is giverioy %Km(f )+

Proof The claim follows directly from Theorem 5 and the Lipschitz continuityrpfandr; .
Note thatr, andr; minorize and majoriz& _. g, which bounds the expectations. Next use a
Rademacher bound on the class of loss functions induceq by andr; o # and note that
the ramp loss has Lipschitz constant 1/¢. Finally apply the union bound on upper and lower
deviations. [ |

Note that Theorem 7 allows for some flexibility: we can decide to use a veryereative bound
in terms ofe, i.e. a large value of to reap the benefits of having a ramp function with srhall
This leads to a lower bound on the Rademacher average of the induatidrfuclass. Likewise, a
smalle amounts to a potentially tight approximation of the empirical quantile, while riskinggloo
statistical confidence terms.

5. Experiments

The present section mirrors the theoretical analysis of the previousrsectio

5.1 Experiments with Standard Nonparametric Quantile Regression

We check the performance of various quntile estimators with respect to tedacr

e Expected risk with respect to tifeloss function. Since computing the true conditional quan-
tile is impossible and all approximations of the latter rely on intermediate density estimatio
this is the only objective criterion we could find. We denote this loss measymalzell loss
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e Simultaneously we need to ensure that the estimate satisfies the quantile pribyaeriy,
we want to ensure that the estimator we obtained does indeed producersdpioewhich
exceedy with probability close ta. The quantile property was measuredragnp loss*

5.1.1 MoDELS

We compare the following four models:

e An unconditional quantile estimator. Given the simplicity of the function classstamts!)
this model should tend to underperform all other estimates in terms of minimizingrthe e
pirical risk. By the same token, it should perform best in terms of prasgithe quantile
property. This appears ascond.

e Linear QR as described in Koenker and Bassett (1978). This usesaa lineegularized
model to minimizel;. In experiments, we used th@ routine available in th&® package
calledquant r eg. This appears ds near .

e Nonparametric QR as described by Koenker et al. (1994). This ugdsa model for each
coordinate individually, with linear effect. The fitting routine used wass, also available
in quantreg.® The regularization parameter in this model was chosen by 10-fold cross-
validation within the training sample. This appears gss.

e Nonparametric quantile regression as described in Section 2. We usedi@ai®BF ker-
nels with automatic kernel widthuf) and regularization@) adjustment by 10-fold cross-
validation within training samplé.This appears aspqr .

As we increase the complexity of the function class (from constant to lineasrtparametric)
we expect that (subject to good capacity control) the expected risk wilkdse. Simultaneously we
expect that the quantile property becomes less and less maintained, astienfalass grows. This
is exactly what one would expect from Theorems 6 and 7. As the expesrsieow, performance of
thenpgr method is comparable or significantly better than other models. In particulasémes
the quantile property well.

Notes on Gaussian RBF kernel parameter selection trick The parameteo in the Gaussian
kernel could be chosen by the following trick. We fist subsample the tranhétag (if the training

data set is not large, use the whole training data), then compute the disetmeeb the points

and find the distances at 0.9 and 0.1 quantile of all the distances, the evbstance of these
two distances is set to be the initiay. This is to guarantee that the kernel parameter is neither
too big or too small. Other values ofto be selected in the experiments (via cross-validation) are
[10~%0y,...,00,...,10%00,10%0). In general, depending on the problems, one may set the search
space to be finer (the distance between two consecutive items in the list is $miatlearser (the
distance between two consecutive items in the list is larger), or even a higllier for maximum

item in the list, and a smaller value for minimum item in the list, etc.

4. In the experiments we set= 0 in (28) for simplicity. Thus, it might be appropriate to call itstep losgather than
ramp loss. However, we keep to use the term “ramp loss” throughouytdlisr.

5. See http://cran.r-project.org/.

6. Additional code containing bugfixes and other operations necessagrry out our experiments is available at
http://users.rsise.anu.edu.atimsears.

7. Code will be available as part of the CREST toolbox for researchoges
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5.1.2 DaTA SETS

We chose 20 regression data sets from the following R packatksnch, quantreg, alr3and
MASS. The first library contains data sets from the UCI repository. The lasitere made available

as illustrations for regression textbooks. The data sets are all docunamtedailable irR. Data

sets were chosen not to have any missing variables, to have suitable datatggd to be of a size
where all models would run on thefrin most cases either there was an obvious variable of interest,
which was selected as tlyevariable, or else we chose a continuous variable arbitrarily. The sample
sizes vary fronm = 38 (CobarOre) ton = 1375 (heights), and the number of regressors vary from
d =1 (5 sets) andl = 12 (BostonHousing). Some of the data sets contain categorical variables.
We omitted variables which were effectively record identifiers, or obWopsoduced very small
groupings of records. Finally, wetandardizedall data sets coordinatwise to have zero mean and
unit variance before running the algorithms. This had a side benefittbhguhe pinball loss on
similar scale for comparison purposes.

Data Set Sample Size No. Regressors (x) Y Var. | Dropped Vars.
caution 100 2 y -
ftcollinssnow 93 1 Late YR1
highway 39 11 Rate -
heights 1375 1 Dheight -
sniffer 125 4 Y -
showgeese 45 4 photo -
ufc 372 4 Height -
birthwt 189 7 bwt ftv, low
crabs 200 6 CwW index
GAGurine 314 1 GAG -
geyser 299 1 waiting -
gilgais 365 8 e80 -
topo 52 2 z -
BostonHousing 506 13 medv -
CobarOre 38 2 z -
engel 235 1 y -
mcycle 133 1 accel -
BigMac2003 69 9 BigMac City
UN3 125 6 Purban Locality
cpus 209 7 estperf name

Table 1: Data Set facts

8. The last requirement, usimgss proved to be challenging. The underlying spline routines do not allowpdtion
beyond the previously seen range of a coordinate, only permitting in&tigqm This does not prevent fitting, but
does randomly prevent forecasting on unseen examples, whichantasf pur performance metric.
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5.1.3 RESULTS

We tested the performance of thanodels. For each model we used 10-fold cross-validation to
assess the confidence of our results. As mentioned above, a redidarzarameter imgss and

w? andC in npqr were automatically chosen by 10-fold cross-validatiéthin the training sample,
i.e. we usedestedcross-validation. To compare across all four models we measuregbimdtall
lossandramp loss The 20 data sets and three different quantile levels {0.1,0.5,0.9}) yield

60 trials for each model. The full results are shown in Appendix B. In sumyma conclude as
follows:

¢ In terms ofpinball loss the performance of ourpgr were comparable or better than other
three models.

npgr performed significantly better than other three models in 14 of the 60 trials, ndske
performed significantly better than other three models in only one of the 60. tlialthe
rest of 45 trials, no single model performed significantly better then the soth&ll these
statements are based on the two-sided paired-santptt with significance level.05. We
got similar but a bit less conservative results by (nonparametric) Wilceigmed rank test.

Figure 8 depicts the comparisonrafqr performance with each ohcond, | i near andr gss
models. Each of three plots contain 60 points corresponding to 60 trialsféBedifts times
20 data sets). The vertical axis indicates the log pinball lossespfir and the horizontal
axis indicates those of the alternative. The points under (over) the 4Ballige means that
thenpgr was better (worse) than the alternative. Circles (squares) indicateptpatwas
significantly better (worse) than the alternative at 0.05 significance levehired-sample
t-test, while triangles indicate no significant difference.

¢ In terms oframp loss(quantile property), the performance of ouwrgr were comparable to
other three models for intermediate quantile<(0.5). All four models produced ramp losses
close to the desired quantile, although flexible nonparametric modetsandnpqr were
noisier in this regard. When= 0.5, the number off;(x) which exceed; did NOT deviate
significantly from the binomial distributioB( sample sizet) in all 20 data sets.

On the other hand, for extreme quantiles=0.1 and 09), rgss andnpgr showed a small
but significant bias towards the median in a few trials. We conjecture thatitissdrelated
to the problem oflata piling (Hall et al., 2005). See section 6 for the discussion.

Note that the quantile property, as such, is not informative measueofalitionalquantile
estimation. It merely measuraaconditionalquantile estimation performances. For example,
uncond, the constant function based on the unconditional quantile estimator witbctesp

Y (straightforwardly obtained by sortingy; } " ; without using{x; }" ; at all), performed best
under this criterion. It is clear that the less flexible model would have therlmpitntile
property, but it does not necessarily mean that those less flexible i@ntastter for conditional
guantile functions.

9. In the comparison betweepqgr andr gss, 48 trials were examined since in the other 12 triglss was unable to
produce estimates, due to its construction of the function system.
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Figure 8: Log-log plots of out-of-sample performances. The plots stpmw versus (auncond,
(b)I'i near and (c)r gss; combining the average pinball losses of all 60 trials (3 quantiles
times 20 data sets). The points under (over) the 45 degree line means thgqrtheas
better (worse) than the alternative. Circle (squares) indicatenflyat was significantly
better (worse) than the alternative at 0.05 significance level in pairagies-test, while
triangles indicate no significant difference.
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5.2 Experiments on Nonparametric Quantile Regression with AdditionalConstraints

We empirically investigate the performances of nonparametric quantile sagmesstimator with

the additional constraints described in section 3. Imposing constraints isant® introduce the

prior knowledge on the data set being analyzed. Although additionatreams always increase
training errors, we will see that these constraints can sometimes redueertest The full results
are shown in Appendix B.

5.2.1 NON-CROSSINGCONSTRAINTS

First we look at the effect of non-crossing constraints on the genatializperformances. We used
the same 20 data sets mentioned in the previous subsection. We denopgrtkdrained with
non-crossing constraints agncr oss andnpgr indicates standard one here. We made comparisons
betweempqr andnoncross with T € {0.1,0.5,0.9}. The results fononcr oss with T = 0.1 were
obtained by training a pair of non-crossing models with 0.1 and 02. The results witlt = 0.5
were obtained by training three non-crossing models with0.4, 0.5 and 06. The results with

T = 0.9 were obtained by training a pair of non-crossing models with 0.8 and 09. In this
experiment, we simply impose non-crossing constraints only at a single iast@be evaluated.
The kernel width and smoothing parameter were always set to be the debteas in the above
standarchpgr experiments. The confidences were assessed by 10-fold crosatiaalith the same
way as the previous section. The complete results are found in the tablepandip B. The
performances afpgr andnoncr oss are quite similar sincepqr itself could producelmostnon-
crossing estimates and the constraints only makmalladjustments only when there happen to be
the violations.

5.2.2 MONOTONICITY CONSTRAINTS

We compare two models:

e Nonparametric QR as described in Sectiom@&y( ).

e Nonparametric QR with monotonicity constraints as described in Sectiom&2nj.
We use two data sets:

e Thecarsdata set as described in Mammen et al. (2001). Fuel efficiency (in milegfen)
is studied as a function of engine output.

e The onionsdata set as described in Ruppert and Carroll (2003). log(Yield) isestuat a
function of density, we use only the measurements taken at Purnong gandin

We tested the performance of the two methods on 3 different quartite$@.1,0.5,0.9}). In the
experiments witttars, we noticed that the data is not truly monotonic. This is because, smaller en-
gines may correspond to cheap cars and thus may not be very efficienttdhic modelsrpgr m)

tend to do worse than standard modeigqf ) for lower quantiles. With higher quantilespgr m
tends to do better than the standapdjr . For theoni ons data set, as the data is truly monotonic,
thenpgr mdoes better than the standaljr in terms of the pinball loss.
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6. Discussion and Extensions

Frequently in the literature of regression, including quantile regressieneounter the term “ex-
ploratory data analysis”. This is meant to describe a phase before thieasssettled on a “model”,
after which some statistical tests are performed, justifying the choice of thelmQuiantile re-
gression, which allows the user to highlight many aspects of the distributimlésd a useful tool
for this type of analysis. We also note that no attempts at statistical modelingdeydomatic
parameter choice via cross-validation, were made to tune the results. Stothbere stays true to
that spirit, yet may provide useful estimates immediately.

In the Machine Learning literature the emphasis is more on short circuiting tdelimg pro-
cess. Here the two approaches are complementary. While not completellymeedéhe experience
of building the models in this paper shows how easy it is to estimate the quantitiésresirin QR,
with little of the angst of model selection, thanks to regularization. It is inteigstnconsider
whether kernel methods, with regularization, can blur the distinction betwealel building and
data exploration in statistics.

In summary, we have presented a Quadratic Programming method for estima#intles
which bests the state of the art in statistics. It is easy to implement, comes withnurdtor-
vergence results and experimental evidence for its soundness. Watedslnice non-crossing and
monotonicity constraints as extensions to avoid some undesirable behadorsércircumstances.

Overly Optimistic Estimates for Ramp Loss The experiments show us that the there is a bias
towards the median in terms of the ramp loss. For example, if we run a quantile testimii

T = 0.05, then we will not necessarily get the empirical quantile is also at 0.05 knat likely to be

at 0.08 or higher. Likewise, the empirical quantile will be 0.93 or lower if thigregor is run at 0.9.
This affects all estimators, using the pinball loss as the loss function, nabgikernel version.

This is because the algorithm tends to aggressively push a number of fpoiheskink in the
training set, these points may then be miscounted (see Lemma 3). The main behswhit is
that the extreme quantiles tend to be less smooth, the regularizer will theneddees sure we get
a simpler model by biasing towards the median (which is usually simpler). Howeuee test set
it is very unlikely to get the points lying exactly at the kink. Figure 9 shows esetlis a linear
relationship between the fraction of points at and below the kink (for lowntijea) and below the
kink (for higher quantiles) with the empirical ramp loss.

Accordingly, in order to get a better performance in terms of the ramp lasgjstestimate the
guantiles, and if they turn out to be too optimistic on the training set, we use a sligitty (for
T < 0.5) or higher (fort > 0.5) value oft until we have exactly the right quantity.

The fact that there is a number of points sitting exactly on the kink (quantitessign - this
paper), the edge of the tube-EVR - see Sablkopf et al., 2000), or the supporting hyperplane
(single-class problems and novelty detection - seeBopf et al., 1999) might affect the overall
accuracy control in the test set. This issue deserves further scrutiny.

Estimation with constraints We introduce non-crossing and monotonicity constraints in the con-
text of nonparametric quantile regression. However, as discussedrimmida et al. (2001), other
constraints can also be applied very similiarly to the constraints described pathes but might be

in different estimation contexts. Here are some variations (we just givetiding for the first two,

the rest can be applied in the same manner)
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Figure 9: lllustration of the relationship between quantile in training and ransp los

e Bivariate extreme-value distribution$lall and Tajvidi (2000) propose methods to estimate
the dependence function of a bivariate extreme-value distribution. Hugyre to estimate a
convexfunction f such thatf (0) = f(1) = 1 andf(x) > max(x,1—x) for x € [0,1]. We can
also apply this approach to our method as to the monotonicity constraint, alleeddo is
to ensurg@(0),w) +b = (@(1),w) + b= 1, (¢’ (x),w) > 0 and(¢(x),w) +b > max(x,1—X)
for x € [0,1].

e Positivity constraints The regression function is positive. In this case, we must ensure
(@(x),w) +b >0, Vx.

e Boundary conditionsThe regression function is defined[mb] and assumed to beat the
boundary point or b.

¢ Additive models with monotone componeilise regression functioh: R" — R is of additive
form f(xg,...,Xn) = f1(x1) +... + fa(Xn) where each additive componefpis monotonic.

e Observed deriativesAssume thatn samples are observed corresponding witregression
functions. Now, the constraint is thét coincides with the derivative ofj_; (same notation
with last point) (Cox, 1988).

Future Work  Quantile regression has been mainly used as a data analysis tool to assefs-th
ence of individual variables. This is an area where we expect thatamametric estimates will lead
to better performance.

Being able to estimate an upper bound on a random vangéblehich hold with probabilityt
is useful when it comes to determining the so-called Value at Risk of a portfidiide, however,
that in this situation we want to be able to estimate the regression quantile foeaédrgf different
portfolios. For example, an investor may try to optimize their portfolio allocation &imnmiae return
while keeping risk within a constant bound. Such uniform statements will fedter analysis if
we are to perform nonparametric estimates. We need more efficient optimiakgaithm for non-
crossing constraints since we have to work waitinm) dual variables. Simple SVM (Vishwanathan
et al., 2003) would be a promising candidate for this purpose.
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Appendix A. Nonparametric v-Support Vector Regression

In this section we explore an alternative to the quantile regression frak@naposed in Section 2.

It derives from Schlkopf et al. (2000). There the authors suggest a method for adaptimgds®s-
sion and classification estimates such that automatically only a quari#e beyond the desired
confidence region. In particular, f(y|x) can be modeled by additive noise of equal degree (i.e.
y = f(x) + & wheref is a random variable independentfSctilkopf et al. (2000) show that the
v-SV regression estimate does converge to a quantile estimate.

A.1 Heteroscedastic Regression

Whenever the above assumption pfy|x) is violatedv-SVR will not perform as desired. This
problem can be amended as follows: one needs to turn the ngéxginto a nonparametric estimate
itself. This means that we solve the following optimization problem.

A A m
minimize ;r\elr\2+§uez|rz+i;<zi+ai*>—vms (30a)
subject to (@u(x),81) +b—yi < e+ (@2(x),02) + & (30D)
yi— {(@u(%).81) —b < e+ (@2(x),82) + & (30c)
&5 >0 (30d)

Here@, ¢, are feature map$;, 6, are corresponding parametefsg;” are slack variables argje
are scalars. The key difference to the heteroscedastic estimation prdesembed in Sablkopf
et al. (2000) is that in the latter the authors assume that the specific forra nbibe ikknown In
(30) instead, we make no such assumption and instead we estifrases (@(x), 02) + €.

One may check that the dual of (30) is obtained by

C 1 1
minimize ﬁ1(0( —a*) Ky (o —a*) + %(a +a*) Ky (a+a*)+ (a—a*) Ty (31a)
subjecttol’ (a—a*) =0 (31b)
1" (a+a*)=Cnv (31c)
0<aj,07 <lforalll<i<m (31d)
HereKy, K, are kernel matrices whefﬁi]jl =ki(xj,x) andi denotes the vector of ones. Moreover,

we have the usual kernel expansion, this time for the regresgigrand the margir(x) via

f(x) = i(ai —a)ki(x,X) +bandg(x) = i(ai + o) ko (X, X) + €. (32)
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The scalarb ande can be computed conveniently as dual variables of (31) when solvingahlem
with an interior point code (see Salkopf and Smola, 2002, for more details).

A.2 Thev-Property

As in the parametric case also (30) hasvheroperty. However, it is worth noting that the solution
€(x) need not be positive throughout unless we change the optimization prebdgriy by impos-
ing a nonnegativity constraint an The following theorem makes this reasoning more precise:

Theorem 8 The minimizer of (30) satisfies
1. The fraction of points for whicly; — f(x)| < &(x) is bounded byl —v.
2. The fraction of constraints (30b) and (30c) with> 0 or & > 0is bounded from above by

3. If (x,y) is drawn iid from a distributionPr(x,y), with Pr(y|x) continuous and the expecta-
tion of the modulus of absolute continuity of its density satisflimg .o E [€(d)] = 0. With
probability 1, asymptotically, the fraction of points satisfyifyg— f ()| = €(x) converges to
0.

Moreover, imposing > 0 is equivalent to relaxing (31c) tb' (a — a*) < Cnw. If in addition Ky
has only nonnegative entries then atg&) > O for all x;.

Proof The proof is essentially similar to that of Lemma 3 and @kbpf et al. (2000). However
note that the flexibility ine and potentiak(x) < O lead to additional complications. However, if
both f andg(x) have well behaved entropy numbers, then disoe are well behaved.

To see the last set of claims note that the constfiding —a*) < Cnw is obtained again directly
from dualization via the conditioa > 0. Sincea;,a; > 0 for alli it follows thate(x) contains only
nonnegative coefficients, which proves the last part of the claim. |

Note that in principle we could enfor@gx;) > 0 for all ;. This way, however, we would lose the
v-property and add even more complication to the optimization problem. A third gigpange
multipliers would have to be added to the optimization problem.

A.3 An Example

The above derivation begs the question why one should not use (34adnsf (6) for the purpose
of quantile regression. After all, both estimators yield an estimate for the apddower quantiles.

Firstly, the combined approach is numerically more costly as it requires optinmzatey twice
the number of parameters, albeit at the distinct advantage of a sparsersolhereas (6) always
leads to a dense solution.

The key difference, however, is that (31) is prone to producing estimakesre the margin
g(x) < 0. While such a solution is clearly unreasonable, it occurs whenever thgmis rather
small and the overall tradeoff of simplevs. simplee yields an advantage by keepirigsimple.
With enough data this effect vanishes, however, it occurs quite frélgueven with supposedly
distant quantiles, as can be seen in Figure 10.

In addition, the latter suffers from the assumption that the error be symnilgtdcsiributed. In
other words, if we are just interested in obtaining th@30quantile estimate we end up estimating
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 08 1

Figure 10: lllustration of the heteroscedastic SVM regression on artitiei set generated from
(1) with f(x) = sintfx anda(x) = exp(sin 2x). On the leftA; = 1,A, = 10 andv = 0.2,
the algorithm successfully regresses the data. On the Ngki,1,A» = 0.1 andv = 0.2,
the algorithm fails to regress the datacdsecomes negative.

the Q05 quantile on the way. In addition to that, we make the assumption that the additseeis
symmetric.

We produced this derivation and experiments mainly to make the point that thévadaargin
approach of Sablkopf et al. (2000) is insufficient to address the problems posed bytidpieegres-
sion. We found empirically that it is much easier to adjust QR instead of the sy watiant.

In summary, the symmetric approach is probably useful only for paramsetimates where the
number of parameters is small and where the expansion coefficiente énatg(x) > 0 for all x.

Appendix B. Experimental Results

In this appendix, we show the detail results on the experiments.

B.1 Standard Nonparametric Quantile Regression

Here we assemble six tables to display the comparisons among four modelsq, | i near, r gss
andnpgr . Each table representinball lossor ramp lossfor each oft = 0.1, 0.5 and 09 cases.

1T=01|1t=05|1t=09
Pinball Loss| Table 2| Table 4| Table 6
Ramp Loss| Table 3| Table 5| Table 7

Tables 2, 4, and 6 show the average pinball loss for each data set. Afigure is preferred in
each case. The bold figures indicate the best (smallest) performareesirdles ¢’ indicate that
the difference from the second best model were statistically signific@ndatevel with two-sided
paired-samplé-test. NA denotes cases where rgss (Koenker et al., 1994) was uoghieduce
estimates, due to its construction of the function system.

Tables 3, 5 and 7, show the ramp loss, a measure for quantile propeagchntable a figure
close to the intended quantile (10, 50 or 90) is preferred. The figuresiimdrbrackets denote the
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p-values under the null-hypothesis that the ramp loss, i.e. the number obtetst (x,y) such that
y < fi(x), is a sample from binomial distributidB( sample sizer). The bold figures indicate the
best (closest to the intended quanti)eperformances. The bullets” indicate that the ramp loss
deviate significantly from binomial distributids( sample sizex).

B.2 Nonparametric Quantile Regression with Constraints

Next, we show the results on constrained nonparameteric quantile iegress

B.2.1 NON-CROSSINGCONSTRAINTS

Table 8 shows the average pinball loss comparison between the nonpéramentile regression
without (hpgr) and with fioncr 0ss) non-crossing constraints. The bold figures indicate the better
(smaller) performances The circles indicate that the difference were statistically significant at
0.05 level with two-sided paired-sampiléest.

Table 9 shows the ramp loss, a measure for quantile propentpgofandnoncr oss. The fig-
ures in round brackets denote gh@alues under the null-hypothesis that the ramp loss, i.e. the num-
ber of test point$x, y) such thay < f;(x), is a sample from binomial distributids( sample sizer).
The bold figures indicate the better (closeer to the intended quahtierformances. The bullets
"o’ indicate that the ramp loss deviated significantly from binomial distribuBosample sizex).

B.2.2 MONOTONICITY CONSTRAINTS

We tested on the cars and the onions data set for monotonicity with respeugite esize and
diameter respectively. Note that on the engines data set the monotonicityadmiris not perfectly
satisfied. Table 10 shows the average pinball loss comparison betwesonberametric quantile
regression withoutnpgr ) and with @pgr m monotonicity constraints. See above for the notation of
the table. Table 11 shows the ramp loss, a measure for quantile propenpgroindnpgrm See
above for the notation of the table.
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data set uncond linear rqss npqr
caution 11.09 + 0.95| 11.18 + 1.04 | 9.18 + 0.93 9.56 + 0.92
ftcollinssnow 16.28 + 1.18 | 1648 + 1.19 | 1568 + 133 | 16.24 + 1.17
highway 11.27 + 1.48 | 19.32 + 5.11 | 1951 + 444 | 08.34 + 1.18
heights 17.20 + 0.44 | 1528 + 0.39 | 15.27 + 0.40 | 15.26 + 0.39
sniffer 1392 + 099 | 6.78 + 0.68 | 544 + 0.58 548 + 0.64
snowgeese 874 + 144 | 479 + 089 | 4.85 + 0.90 5.03 + 0.87
ufc 17.06 + 0.72 | 10.02 + 0.42 | 10.11 + 0.44 9.70 + 0.42
birthwt 18.29 + 1.39 | 1844 + 1.24 | 1885 + 1.28 | 17.68 + 1.16
crabs 18.27 + 0.97 | 1.03 + 0.08 NA 0.91 + 0.07
GAGurine 1053 + 0.55| 839 + 041 | 579 + 043 6.00 + 0.63
geyser 17.15 + 052 | 11.50 + 0.49 | 11.10 + 0.49 | 10.91 + 0.49
gilgais 12.84 + 049 | 593 + 040 | 575 + 044 546 + 0.35
topo 2041 + 245 | 9.12 + 1.32| 8.15 + 1.30 6.03 + 0.91
BostonHousing|| 14.05 + 0.56 6.60 + 0.34 NA 05.10 £ 0.42
CobarOre 17.88 + 2.28 | 17.36 + 1.97 | 1471 + 220 | 13.80 + 2.70
engel 1192 + 0.65| 6.49 + 0.79 | 568 + 0.45 5,55 + 0.37
mcycle 19.99 + 0.86 | 17.87 + 0.98 | 10.98 + 0.66 | 07.39 + 0.90
BigMac2003 837 +£ 117 | 6.31 + 0.95 NA 6.13 £ 0.96
UN3 18.02 + 1.06 | 11.47 + 0.97 NA 11.47 + 1.02
cpus 525 + 069 | 1.74 +£ 034 | 0.77 + 0.18 0.67 £ 0.23
Table 2: Method Comparison: Pinball Loss¥00,t = 0.1)
data set uncond linear rqss npqr
caution 11.00 (0.59 12.00 (0.40)| 16.00 (0.04)| 12.00 (0.40)
ftcollinssnow 10.00 (0.9 11.10 (0.65)| 12.20 (0.44)| 12.20 (0.44)
highway 10.80 (0.70 | «20.00 (0.03)| ¢26.70 (0.00)| 20.00 (0.03)
heights 9.60 (0.66) 10.00 (0.92 10.00 (0.92 10.00 (0.92
sniffer 7.80 (0.57) 13.70 (0.15)| 12.00 (0.37 | ¢15.90 (0.02)
snowgeese 12.50 (0.32) 9.70 (0.99 9.70 (0.99 13.60 (0.32)
ufc 9.70 (0.92) 9.90 (0.99 11.80 (0.21)| 10.50 (0.68)
birthwt 10.00 (0.86 12.00 (0.27)| 12.60 (0.18)| 11.60 (0.38)
crabs 10.00 (0.89 12.00 (0.29) NA 13.30 (0.09)
GAGurine 10.40 (0.68) 9.90 (0.99 10.70 (0.55)| 12.10 (0.19)
geyser 9.70 (0.99 11.20 (0.48)| 10.70 (0.60)| 12.20 (0.21)
gilgais 9.50 (0.88) 10.40 (0.7) | «13.50 (0.03)| 12.40 (0.12)
topo 8.90 (0.89 13.40 (0.29)| 16.00 (0.14)| ¢19.40 (0.03)
BostonHousing|| 9.70 (0.89 11.50 (0.24) NA ¢ 15.00 (0.00)
CobarOre 8.50 (0.93 12.70 (0.35)| 16.10 (0.16)| 16.10 (0.16)
engel 10.20 (0.8) 9.40 (0.85) 10.20 (0.8) 12.20 (0.20)
mcycle 10.00 (0.92 11.50 (0.51)| 11.40 (0.51)| 12.00 (0.35)
BigMac2003 9.00 (0.92 | «18.00 (0.04) NA 14.30 (0.16)
UN3 9.50 (0.97) 12.00 (0.37) NA 10.30 (0.79
cpus 9.40 (0.995 12.20 (0.29)| e 15.30 (0.01)| ¢19.10 (0.00)

Table 3: Method Comparison: Ramp Lossl00,1 =0.1)
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data set uncond linear rqss npqr
caution 38.13 + 3.44 | 3240 + 291 | 23.76 + 2.74 2256 + 2.68
ftcollinssnow 42.10 £ 2.95| 40.82 + 2.95| 44.07 + 3.24 39.08 + 3.09
highway 38.35 + 6.34 | 45.39 + 7.04 | 27.17 + 3.26 25.33 + 3.62
heights 40.08 + 0.81 | 3450 + 0.72 | 34.66 + 0.72 3453 + 0.72
sniffer 35.74 £ 3.13 | 12.78 + 1.11 | 1050 + 098 | 09.92 + 0.94
snowgeese 32.08 + 6.33 | 13.85 + 3.46 | 10.49 + 2.53 18.50 + 4.96
ufc 40.21 +£ 1.55| 23.20 + 0.95| 21.23 + 0.90 21.22 + 0.90
birthwt 41.05 + 2.14 | 38.15 + 1.96 | 37.55 + 2.08 3719 + 1.96
crabs 4152 £ 199 | 224 + 0.13 NA 214 + 0.12
GAGurine 40.75 + 1.81 | 27.87 + 1.46 | 16.02 + 1.20 1457 + 1.11
geyser 4157 £ 1.84 | 3250 + 1.23 | 31.03 + 1.36 30.75 £ 1.40
gilgais 42.10 + 151 | 16.12 + 1.01 | 11.72 + 0.69 12.40 + 0.66
topo 42.17 + 3.86 | 2651 + 2.71 | 1858 + 2.65 14.39 + 1.65
BostonHousing|| 35.57 = 1.60 | 17.50 + 0.95 NA 010.76 + 0.61
CobarOre 41.37 £ 4.97 | 4193 + 520 | 43.61 + 4.59 39.29 + 6.69
engel 35.75 £ 2.33 | 13.72 + 1.14 | 13.25 + 0.92 13.01 + 0.85
mcycle 38.38 + 3.04 | 37.88 £ 2.76 | 20.87 £ 1.52 | 017.06 + 1.42
BigMac2003 33.24 £ 512 | 21.75 + 2.85 NA 017.89 £ 3.05
UN3 40.79 £ 2.61 | 26.32 + 1.70 NA 23.96 + 1.84
cpus 23.00 + 3.30 573 + 1.04 245 + 0.61 01.06 + 0.17
Table 4: Method Comparison: Pinball Loss¥00,t = 0.5)
data set uncond linear rqss npqr
caution 52.00 (0.62)| 49.00 (0.92 | 51.00 (0.76 | 49.00 (0.92
ftcollinssnow 50.60 (0.84)| 49.70 (1.00 | 48.60 (0.84)| 51.40 (0.68)
highway 48.30 (1.00 | 44.20 (0.52)| 45.00 (0.75)| 41.70 (0.34)
heights 49.30 (0.63)| 50.10 (0.91) | 49.80 (0.91)| 50.30 (0.79)
sniffer 47.80 (0.72)| 51.00 (0.72 | 51.00 (0.72 | 51.30 (0.72)
snowgeese 48.10 (1.00)| 49.20 (1.00)| 51.70 (0.77)| 50.60 (0.77)
ufc 49.20 (0.80)| 50.00 (0.96 | 51.60 (0.50)| 50.60 (0.80)
birthwt 48.90 (0.77)| 50.00 (0.88 | 47.80 (0.56)| 50.30 (0.88)
crabs 49.50 (0.94)| 50.50 (0.83) NA 50.00 (0.99
GAGurine 49.20 (0.78)| 50.90 (0.69)| 51.40 (0.61)| 49.80 (0.9
geyser 48.60 (0.64)| 49.80 (1.00 | 49.50 (0.91)| 49.20 (0.82)
gilgais 48.70 (0.68)| 50.00 (0.92 | 49.70 (0.92)| 50.70 (0.75)
topo 47.70 (0.89 | 47.70 (0.89 | 47.70 (0.89 | 54.80 (0.49)
BostonHousing|| 49.70 (0.89 | 49.60 (0.89) NA 51.70 (0.40)
CobarOre 46.40 (0.87)| 44.50 (0.63)| 47.90 (0.87) | 59.40 (0.14)
engel 50.90 (0.70)| 49.70 (1.00)| 49.60 (1.00)| 50.00 (0.90
mcycle 49.10 (0.86 | 51.30 (0.73)| 51.40 (0.73)| 48.80 (0.86)
BigMac2003 49.30 (1.00)| 50.00 (0.8 NA 44.20 (0.34)
UN3 49.40 (1.00 | 50.60 (0.89 NA 48.60 (0.86)
cpus 49.20 (0.89)| 51.30 (0.68)| 49.70 (1.00 | 51.80 (0.58)

Table 5: Method Comparison: Ramp Lossl00, T = 0.5)
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data set uncond linear rqss npqr

caution 2335 + 319 | 1504 + 154 | 01319 + 157 15.16 + 1.76
ftcollinssnow 18.71 + 1.21 | 19.77 + 1.76 19.35 + 1.90 18.67 + 1.74
highway 25.67 + 3.71 | 28.49 + 6.75 25.34 + 6.09 14.48 + 3.53
heights 17.63 + 0.47 | 1547 + 0.39 15,50 + 0.39 15.47 + 0.39
sniffer 23.01 + 3.62| 587 + 043 5.88 & 0.44 | 05.25 + 0.40
snowgeese 26.94 + 693 | 7.97 + 2.67 8.09 + 3.52 794 + 261
ufc 18.05 + 0.96 | 10.94 + 0.45 10.84 + 0.56 10.15 + 0.53
birthwt 16.21 + 1.03 | 16.17 + 1.03 16.53 + 1.19 | 015.20 + 0.91
crabs 17.09 + 0.90 | 0.99 + 0.07 NA 1.02 + 0.08
GAGurine 20.86 + 0.67 | 15.22 + 0.83 10.51 + 1.17 10.13 + 1.05
geyser 1421 + 0.72 | 12.92 + 0.67 12.48 + 0.63 12.10 + 0.61
gilgais 18.83 + 0.72 | 6.74 + 0.49 5.06 + 0.37 551 + 0.37
topo 16.50 + 2.40 | 13.67 + 2.80 13.84 + 3.04 10.30 + 2.17
BostonHousing|| 22.68 + 1.28 | 11.67 + 0.95 NA 06.96 + 0.63
CobarOre 17.63 + 2.06 | 22.28 + 3.43 20.16 + 2.92 15.01 + 2.12
engel 2244 + 257 | 544 + 043 5.64 + 0.65 5.70 + 0.57
mcycle 1597 + 1.21 | 14.06 + 1.00 1058 + 0.89 | o7.02 + 0.56
BigMac2003 23.29 + 497 | 13.06 £ 2.20 NA 09.45 + 2.85
UN3 16.36 + 1.00 | 10.37 + 0.73 NA 08.81 + 0.61
cpus 2401 + 426 | 2.67 £ 0.26 1.78 £ 0.72 0.71 + 0.17

Table 6: Method Comparison: Pinball Loss¥00,t = 0.9)

data set uncond linear rqss npqr

caution 90.00 (0.90 90.00 (0.90 89.00 (0.83)| 89.00 (0.83)
ftcollinssnow 90.30 (0.82 89.20 (0.91)| 88.30 (0.65)| 89.20 (0.91)
highway 89.20 (0.89 | ¢64.20 (0.00)| «61.70 (0.00)| e 70.00 (0.00)
heights 89.50 (0.58)| 90.00 (0.99 89.80 (0.85)| 90.10 (0.87)
sniffer 89.40 (0.97) 87.60 (0.53)| 86.80 (0.37)| 84.60 (0.09)
snowgeese 88.90 (0.995 85.00 (0.32)| 85.00 (0.32)| 83.90 (0.32)
ufc 89.80 (0.99 90.30 (0.79)| 88.50 (0.36)| 88.30 (0.28)
birthwt 88.70 (0.68)| 87.60 (0.38)| 88.00 (0.38)| 88.90 (0.689
crabs 89.00 (0.70 87.00 (0.20) NA 87.10 (0.20)
GAGurine 89.50 (0.82)| 89.80 (0.96 89.40 (0.82)| 87.80 (0.25)
geyser 88.50 (0.48)| 89.40 (0.74)| 90.40 (0.8)) 89.10 (0.60)
gilgais 89.10 (0.59 88.30 (0.30)| 87.10 (0.09)| e 83.90 (0.00)
topo 89.10 (0.89 87.10 (0.52)| 85.70 (0.52)| 77.70 (0.01)
BostonHousing|| 90.10 (0.89 88.80 (0.38) NA «80.30 (0.00)
CobarOre 89.10 (0.93 85.80 (0.66)| 79.10 (0.06)| 85.80 (0.66)
engel 88.90 (0.65)| 90.00 (0.89 89.10 (0.65)| 89.40 (0.81)
mcycle 88.60 (0.70)| 88.80 (0.70 87.70 (0.51)| 86.20 (0.23)
BigMac2003 89.30 (0.92 84.30 (0.16) NA e 77.70 (0.01)
UN3 88.00 (0.53 86.70 (0.24) NA 85.80 (0.15)
cpus 89.30 (0.87) 87.80 (0.40)| ¢82.60 (0.00)| e 82.10 (0.00)

Table 7: Method Comparison: Ramp Lossl00, T = 0.9)
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1=01 1=05 =09

data set npgr noncross npgr noncross npqr noncross

caution 9.56 + 0.92 9.55 + 0.92 2256 + 2.68 2251 + 2.68 1516 + 1.76 | 15.15 + 1.76
ftcollinssnow 16.24 + 1.17 | 16.24 + 1.17 39.08 + 3.09 38.81 + 3.09 18.67 + 1.74 | 18.67 + 1.74
highway 8.34 + 1.18 8.20 + 1.20 25.33 + 3.62 25.30 £ 3.57 1448 + 3.53 | 1441 + 3.53
heights 15.26 + 0.39 | 15.27 + 0.39 3453 + 0.72 3454 + 0.72 1547 + 0.39 | 1548 + 0.39
sniffer 5.48 + 0.64 543 + 0.64 9.92 + 0.94 9.91 + 0.94 5.25 + 0.40 519 + 0.40
snowgeese 5.03 + 0.87 5.03 + 0.87 18.50 + 4.96 18.59 + 4.98 794 + 2.61 7.88 + 2.62
ufc 9.70 + 0.42 9.70 + 0.39 21.22 + 0.90 21.23 £ 0.90 10.15 + 0.53 9.92 + 0.49
birthwt 17.68 + 1.16 | 17.69 + 1.16 37.19 + 1.96 37.21 +£ 1.96 1520 +£ 0.91 | 15.20 £ 0.91
crabs 091 + 0.07 0.91 + 0.07 2.14 + 0.12 2.14 + 0.12 1.02 £ 0.08 1.01 £ 0.08
GAGurine 6.00 + 0.63 599 + 0.63 1457 + 1.11 1457 + 1.11 10.13 +£ 1.05| 10.13 £ 1.05
geyser 1091 + 0.49 | 10.91 + 0.49 30.75 + 1.40 30.71 + 1.40 12.10 + 0.61 | 12.11 + 0.61
gilgais 546 + 0.35 546 + 0.35 12.40 + 0.66 12.37 + 0.66 551 + 0.37 551 + 0.37
topo 6.03 + 0.91 6.04 + 091 | 014.39 + 1.65 1554 + 1.62 10.30 £ 2.17 | 10.21 + 2.16
BostonHousing 5.10 + 0.42 5.04 + 0.42 10.76 + 0.61 10.73 + 0.61 6.96 + 0.63 | 06.85 + 0.62
CobarOre 13.80 + 2.70 | 13.66 + 2.63 39.29 + 6.69 40.00 £ 6.61 | 015.01 £ 212 | 15.13 + 2.12
engel 555 + 0.37 555 + 0.37 13.01 + 0.85 12.96 + 0.85 570 + 0.57 5.70 + 0.57
mcycle 7.39 £ 0.90 7.39 + 0.90 17.06 + 1.42 17.03 + 1.42 7.02 + 0.56 7.00 £ 0.55
BigMac2003 6.13 + 0.96 6.36 + 1.02 17.89 + 3.05| 017.72 + 3.05 9.45 + 2.85 9.48 + 2.84
UN3 1147 + 1.02 | 1152 + 1.04 23.96 + 1.84 23.81 + 1.81 8.81 + 0.61 8.82 + 0.61
cpus 00.67 £ 0.23 1.30 £ 0.18 01.06 £ 0.17 1.35 £+ 0.17 00.71 £ 0.17 0.87 + 0.18

Table 8: Pinball loss comparison between the nonparametric quantilesiegrasthout (npgr) and
with (noncross) non-crossing constraints.

=01 =05 =09

data set npgr noncross npgr noncross npgr noncross

caution 12.00 (0.40 12.00 (0.40 | 49.00 (0.92 | 49.00 (0.92 89.00 (0.83 89.00 (0.83
ftcollinssnow 12.20 (0.44 12.20 (0.44 | 51.40 (0.68 | 51.40 (0.68 89.20 (0.9) 89.20 (0.9)
highway ¢ 20.00 (0.03)| 13.30 (0.03 | 41.70 (0.34)| 45.00 (0.34 |  70.00 (0.00 | 56.70 (0.00)
heights 10.00 (0.92 9.90 (0.92)| 50.30 (0.79 | 50.30 (0.79 90.10 (0.87) 90.10 (0.87)
sniffer ¢ 15.90 (0.0 | 15.90 (0.02 | 51.30 (0.72 | 51.30 (0.72 84.60 (0.09) 85.40 (0.09
showgeese 13.60 (0.32 13.60 (0.32 | 50.60 (0.77) | 50.60 (0.7 83.90 (0.32 83.90 (0.32
ufc 10.50 (0.68 10.70 (0.68)| 50.60 (0.80 | 50.60 (0.80 88.30 (0.28 88.20 (0.28)
birthwt 11.60 (0.38) 10.00 (0.39 | 50.30 (0.88)| 50.20 (0.88 88.90 (0.69 88.90 (0.68
crabs 13.30 (0.09) 13.00 (0.09 | 50.00 (0.94 | 49.50 (0.94) 87.10 (0.20 87.00 (0.20)
GAGurine 12.10 (0.19) 11.60 (0.19 | 49.80 (0.96)| 49.90 (0.96 87.80 (0.25) 88.10 (0.25
geyser 12.20 (0.21) 12.10 (0.21) | 49.20 (0.82)| 49.60 (0.82 89.10 (0.60 89.00 (0.60)
gilgais 12.40 (0.12 12.40 (0.12 | 50.70 (0.79 | 50.80 (0.75)| e 83.90 (0.00)| e 84.20 (0.00
topo ¢ 19.40 (0.03 | 19.40 (0.03 | 54.80 (0.49 | 56.30 (0.49)| ¢ 77.70 (0.01) | «77.70 (0.0)
BostonHousing|| e 15.00 (0.00 | e 15.10 (0.00)| 51.70 (0.40)| 51.50 (0.40 | 80.30 (0.00)| 80.80 (0.00
CobarOre 16.10 (0.16 16.10 (0.16 | 59.40 (0.14) | 59.40 (0.14 85.80 (0.66 85.80 (0.66
engel 12.20 (0.20 12.20 (0.20 | 50.00 (0.90 | 50.10 (0.90) 89.40 (0.8)) 89.40 (0.8)
mcycle 12.00 (0.39 12.00 (0.35 | 48.80 (0.8 | 48.10 (0.86) 86.20 (0.23) 87.40 (0.23
BigMac2003 14.30 (0.16 16.00 (0.16)| 44.20 (0.349 | 43.70 (0.34)| e 77.70 (0.01)| 79.30 (0.0)
UN3 10.30 (0.79 10.30 (0.74 | 48.60 (0.86 | 47.80 (0.86) 85.80 (0.15) 86.70 (0.15
cpus ¢ 19.10 (0.00 | 20.60 (0.00)| 51.80 (0.58 | 46.90 (0.58)| 82.10 (0.00)| e 82.50 (0.00

Table 9: Ramp loss (quantile property) comparison between the nonp&aaguetntile regression

without (npgr) and with (noncross) non-crossing constraints.
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=01 =05 =09
data set npgr npgrm npqr npgrm npgr npgrm
cars 0.65 + 0.15| 0.66 + 0.16 | 1.59 + 0.32 | 1.61 +£ 0.23 | 0.79 + 0.16 | 0.77 + 0.16
onions 268 + 121 | 227 + 071 | 493 + 158 | 489 + 1.47| 1.86 + 0.73 | 1.84 + 0.37

Table 10: Pinball loss comparison between the nonparametric quantilssegrevithout (npqr)

and with (npgrm) monotonicity constraints.

=01 =05 1=09
data set npqr monotonic npgr monotonic npgr monotonic
cars 12.00 (0.24)| 11.00 (0.24 | 51.00 (0.88 | 51.00 (0.89 89.00 (0.82 89.00 (0.82
onions || 18.00 (0.00)| e 17.00 (0.00 | 48.00 (0.44 | 48.00 (0.44 | 86.00 (0.01) | 80.00 (0.00)

Table 11: Ramp loss (quantile property) comparison between the nongecagmantile regression

without (npgr) and with (npgrm) monotonicity constraints.
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