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Abstract

The goal of active learning is to determine the locationsaifitng input points so that the general-
ization error is minimized. We discuss the problem of adiéaning in linear regression scenarios.
Traditional active learning methods using least-squazaming often assume that the model used
for learning is correctly specified. In many practical siio@s, however, this assumption may not
be fulfilled. Recently, active learning methods using “intpace”-weighted least-squares learning
have been proposed, which are shown to be robust againgteniisation of models. In this paper,
we propose a new active learning method also using the wedbast-squares learning, which we
call ALICE (Active Learning using the Importance-weighted leastasgs learning based on Con-
ditional Expectation of the generalization error). An imamt difference from existing methods is
that we predict theonditionalexpectation of the generalization error given traininguinpoints,
while existing methods predict tHell expectation of the generalization error. Due to this dif-
ference, the training input design can be fine-tuned depgrah the realization of training input
points. Theoretically, we prove that the proposed actiaenimg criterion is a more accurate pre-
dictor of thesingle-trial generalization error than the existing criterion. Numargtudies with toy
and benchmark data sets show that the proposed method asigaorably to existing methods.
Keywords: Active Learning, Conditional Expectation of GeneralipatiError, Misspecification
of Models, Importance-Weighted Least-Squares Learninga@ate Shift.

1. Introduction

In a standard setting of supervised learning, the training input pointsravedpd from the envi-
ronment (Vapnik, 1998). On the other hand, there are cases whdoe#t®n of the training input
points can be designed by users (Fedorov, 1972; Pukelsheim, 1898¢h situations, it is expected
that the accuracy of learned results can be improved by appropriat@bgicly the location of the
training input points, e.g., by densely allocating the training input points in tliens with high un-
certainty.Active learning(MacKay, 1992; Cohn et al., 1996; Fukumizu, 2000)—also referredto
experimental desigim statistics (Kiefer, 1959; Fedorov, 1972; Pukelsheim, 1993)—is thielgmo
of optimizing location of training input points so that the generalization error isnized.

The generalization error can be decomposed intbifiandvarianceterms. In active learning
research, it is often assumed that the model used for learning is cospetified (Fedorov, 1972;
Cohn et al., 1996; Fukumizu, 2000), i.e., the learning target functioneanressed by the model.
Then, under a mild condition, the ordinary least-squares (OLS) learmghdsythat the bias term
vanishes and only the variance term remains. Based on this fact, a tradititina learning method
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with OLS tries to determine the location of the training input points so that the aritaim is
minimized (Fedorov, 1972). In practice, however, the correctnesgahtidel may not be fulfilled.

Active learning is a situation under tleevariate shift(Shimodaira, 2000), where the training
input distribution is different from the test input distribution. When the maseld for learning is
correctly specified, the covariate shift does not matter because OLS isndtiised under a mild
condition. However, OLS is no longer unbiased even asymptotically for ed#fsgd models, and
therefore we have to explicitly deal with the bias term if OLS is used.

Under the covariate shift, it is known that a form of weighted least-sguaaning (WLS)
is shown to be asymptotically unbiased even for misspecified models (Shimad2zd@ Wiens,
2000). The key idea of this WLS is the use of the ratio of density functiotessbind training input
points: the goodness-of-fit of the training input points is adjusted to thiteatest input points by
the density ratio, which is similar tonportance sampling

In this paper, we propose a variance-only active learning method uslrfg, Which can be
regarded as an extension of the traditional variance-only active Iganm@thod using OLS. The
proposed method can be theoretically justified for the approximately correelsyand thus is
robustagainst the misspecification of models.

Conditional Expectation of Generalization Error: A variance-only active learning method us-
ing WLS has also been proposed by Wiens (2000), which can also beticadly justified for ap-
proximately correct models. The important difference is how the genetializarror is predicted:
we predict theconditionalexpectation of the generalization error given training input points, while
in Wiens (2000), théull expectation of the generalization error is predicted. In order to explain this
difference in more detail, we first note that the generalization error of th8 ¥stimator depends
on the training input density since WLS explicitly uses it. Therefore, wherS\MélLused in active
learning, the generalization error is predicted as a function of the trainmg otensity, and the
training input density is optimized so that the predicted generalization error isinéed.

The parameters in the model are learned using the training examples, whiikta training
input points drawn from the user-designed distribution and correspgnaisy output values. This
means that the generalization error is a random variable which depetids lmeation of the train-
ing input points and noise contained in the training output values. We ideally twgoredict the
single-trial generalization error, i.e., the generalization error for a single realizatitiredraining
examples at hand. From this viewpoint, we do not want to average owdridem variables, but we
want to plug the realization of the random variables into the generalizationamd evaluate the
realized value of the generalization error. However, we may not be ableotd taking the expec-
tation over the training output noise since the training output noise is indloieeds contrast, the
location of the training input points are accessible by nature. Motivatedfaitt, in this paper, we
predict the generalization erranithout taking the expectation over the training input points. That
is, we predict theonditionalexpectation of the generalization error given training input points. On
the other hand, in Wiens (2000), the generalization error is predictednrs tef the expectation
overboththe training input points and the training output noise.

A possible advantage of the conditional-expectation approach is scheligatioatrated in
Figure 1. For illustration purposes, we consider the case of sampling valyaining example. The
solid curves in the left graph (Figure 1-(a)) dep@, (€/x), the generalization error for a training
input densityp, as a function of the training output noisgiven a training input point. The three
solid curves correspond to the cases where the realizations of the traipingointx areay, ap,
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(a) (b)

Figure 1: Schematic illustration of conditional expectation and full expectatiche generaliza-
tion error. (a) and (b) correspond to the generalization erropf@nd py, respectively.

andag, respectively. The value of the generalization error for the demsiti the full-expectation
approach is depicted by the dash-dotted line, where the generalizatioriseexpected over both
the training output noise and the training input points (i.e., the mean of the three solid curves).
The values of the generalization error in the conditional-expectation apiprare depicted by the
dotted lines, where the generalization errors are expected only oveaitiiedgroutput noise, given
X=ay,a,as, respectively (i.e., the mean of each solid curve). The right graphré&iygb)) depicts
the generalization errors for the training input dengigyn the same manner.

In the full-expectation framework, the density is judged to be better tham, regardless of the
realization of the training input point since the dash-dotted line in the leftgisajower than that
in the right graph (see Figure 1 again). However, as the solid cureeg phis often worse thamy
in single trials. On the other hand, in the conditional-expectation framewaglgdbdness of the
density is adaptively judged depending on the realizations of the trainingpoptx. For example,
Py is judged to be better tham, if ap andbs are realized, op, is judged to be better thapy, if as
andb; are realized. That is, the conditional-expectation framework may yield a lobtiece of the
training input density (and the training input points) than the full-expectateméwork.

The above discussion illustrates a conceptual advantage of the conditimegtation ap-
proach. Theoretically, we prove that the proposed active learningrioritalerived in the
conditional-expectation framework is a better predictor of the single-tria¢igdization error than
the full-expectation active learning criterion proposed by Wiens (2000 substantiates the ad-
vantage of the conditional-expectation approach. Experimental resutsiwgdport this claim: the
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proposed method compares favorably to Wiens’s method in the simulations wahddyenchmark
data sets.

Bias-and-Variance Approach for Misspecified Models: Kanamori and Shimodaira (2003) also
proposed an active learning algorithm using WLS. This method is not \e&rianly, but it takes both
the bias and the variance into account by gathering training input points istages. In the first
stage, a certain number of training examples are randomly gathered framvinenment, and the
generalization error (i.e., the sum of the bias and variance) is predictesirnythe gathered training
examples. Then in the second stage, the training input density for the reghaiiining examples
is optimized based on the generalization error prediction. Theoretically, thatage method is
shown to asymptotically give the optimal training input density not only for @xprately correct
models, but also for totally misspecified models. Although this property is solidayt not be
practically valuable since learning with totally misspecified models may not wollkoeeause of
the model error. A drawback of this method is that it requires some randastigcted training
examples in the first stage, so we are not allowed to optimally design all the grépint locations
by ourselves. Our experiments show that the proposed method works thettethe two-stage
method of Kanamori and Shimodaira (2003).

Batch Selection of Training Input Points:  Active learning in the machine learning community is
often thought of as beingsequentiaprocess: selecting one or a few training input points, observing
corresponding training output values, training the model using the gdtlraining examples, and
iterating this process. An alternative approach istthtehapproach, where all training input points
are gathered in the beginning.

If the environment is non-stationary, i.e., the learning target function digfiting the sequential
approach would be necessary. On the other hand, under the stagonapnment, i.e., the learning
target function is fixed, the batch approach gives the globally optimal splatid the sequential
approach can be regarded as a greedy approximation to it. In this papeonsider the stationary
case, so the batch approach is desirable.

In correctly specified linear regression, the expected generalizationdoes not depend on
the learning target function under a mild condition. Therefore, the globptiynal solution can be
obtained in principle. However, in misspecified linear regression whichisaiss in this paper,
the expected generalization error depends on the unknown learniegftamgtion. In this scenario,
the sequential approach would be natural: estimating the unknown learmgaj tanction and
optimizing location of the training input points are carried out alternately. Ootther hand, in this
paper, we do not estimate the learning target function, but we approxingaggeteralization error
by the quantity which doesot depend on the learning target function. This makes it possible to
take the batch approach of determining all the training input points at onclvamee.

A general criticism of the batch approach is that except for some spesiat where the global
optimal solution can be obtained analytically (Fedorov, 1972; Sugiyama gaw& 2001), the
batch approach usually requires the simultaneous optimization of all training @aints, which
is computationally very demanding. On the other hand, the sequential appsoeomputationally
efficient since only one or a few training input points are optimized in eacatioer (Cohn et al.,
1996; Fukumizu, 2000; Sugiyama and Ogawa, 2000). In this paperyeid the computational
difficulty of the batch approach not by resorting to the sequential apprdmut by optimizing the
training input distribution, rather than directly optimizing the training input pointsgedves. This
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Figure 2: Regression problem.

seems to be a popular approach in batch active learning research (2@ Kanamori and
Shimodaira, 2003).

Organization: The rest of this paper is organized as follows. We derive a new actwailg
method in Section 2, and we discuss relations between the proposed matibe aristing meth-
ods in Section 3. We report numerical results using toy and benchmarlsetstan Section 4.
Finally, we state conclusions and future prospects in Section 5.

2. Derivation of New Active Learning Method

In this section, we formulate the active learning problem in regressioragosnand derive a new
active learning method.

2.1 Problem Formulation

Let us discuss the regression problem of learning a real-valued fanktio defined orRY from
training examples (see Figure 2). Training examples are given as

{06,) [ yi = (%) +&Hlg,

where{g; }{ , are i.i.d. noise with mean zero and unknown varianéWe suppose that the training
input points{x; }"_, are independently drawn from a user-defined distribution with depsky.

Let f(x) be a learned function obtained from the training examples ;) i 1. We evaluate
the goodness of the learned functiﬁ(x) by the expected squared test error over test input points,
to which refer as thgeneralization error When the test input points are drawn independently from

a distribution with densitg(x), the generalization errd@®’ is expressed as

6= [ (f09— 109) ax (1)

We suppose thai(x) is known (or its reasonable estimate is available). This seems to be a com-
mon assumption in active learning literature (e.g., Fukumizu, 2000; Wien$§; Xahamori and
Shimodaira, 2003). If a large numberwilabeled samplésare easily gathered, a reasonably good

1. Unlabeled samples are input points without output values. We assatnartlabeled samples are independently
drawn from the distribution with density(x).
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estimate ofq(x) may be obtained by some standard density estimation method. Therefore, the
assumption thag(x) is known or its reasonable estimate is available may not be so restrictive.

In the following, we discuss the problem of optimizing the training input densiky so that
the generalization error is minimized.

2.2 Approximately Correct Linear Regression
We learn the target functiofi(x) by the following linear regression model:
b

ﬂwzgﬁmm, 2

where{®;(x)}P_, are fixed linearly independent functidrendd = (d1,0,...,0p) " are parameters
to be learned (by a variant of least-squares, see Section 2.4 for detail).

Suppose the regression model (2) does not exactly include the learrgagftanctionf (x), but
it approximatelyincludes it, i.e., for a scaldysuch thatd| is small, f (x) is expressed as

f(x) = g(x) +ar(x), ()

whereg(x) is the optimal approximation tb(x) by the model (2):

b
9% = 3 a0i(x)

|
a* = (a3,03,...,a;) " is the unknown optimal parameter defined by

2
a*:argamin/ <iai¢i(x)—f(x)> q(x)dx

or(x) in Eq.(3) is the residual, which is orthogonal{i; (x) le underq(x) (see Figure 3):

/r(x)q)i(x)q(x)dx: 0 fori=12...,h 4)

The functiorr (X) governs the nature of the model error, &nd the possible magnitude of this error.
In order to separate these two factors, we further impose the followingat@ation condition on

r(x):
/ r2(x)q(x)dx = 1. 5)

Note that we are essentially estimating the projectjoq), rather than the true target functidx).

2. Note that we do not impose any restrictions on the choice of basis foactitherefore, Eq.(2) includes a variety
of models such as polynomial models, trigonometric polynomial model$,Gaussian kernel models with fixed
centers.
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or(z) . /(@)
] > g(x)

span({; () }i_1)

Figure 3: Orthogonal decomposition bfx).

2.3 Bias/Variance Decomposition of Generalization Error

As described in Section 1, we evaluate the generalization error in termsefpketation over only
the training output noisés; }i_;, not over the training input points }i._;.

Let E;) denote the expectation over the nofsg}{L ;. Then, the generalization error expected
over the training output noise can be decomposed into the (squsgsd@rm B, thevarianceterm
V, and the model errdE:

E G =B+V+C,
{ei}

where

C= [ (903~ F(x))*d(x)dx (6)

SinceC is constant which depends neither pgx) nor {x }!'_;, we subtrac€ from G’ and define it
by G.
G=G-C.

2.4 Importance-Weighted Least-Squares Learning
Let X be thedesign matrixi.e., X is then x b matrix with the(i, j)-th element

A standard way to learn the parameters in the regression model (2) asdimary least-squares
(OLS) learningi.e., parameter vectar is determined as follows.

do = argmin ; ) — Vi ? , (7)
ol o0

where the subscripO’ indicates the ordinary Lo is analytically given by

do = Loy,
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where

Lo= (X"X)"1XT,
y = (ylayZ, cee ayn)T'

When the training input points }!; are drawn frong(x), OLS is asymptotically unbiased even for
misspecified models. However, the current situation is undesdhariate shiff{Shimodaira, 2000),
where the training input densify(x) is generally different from the test input densif{x). Under
the covariate shift, OLS is no longer unbiased even asymptotically for mi§spenodels. On the
other hand, it is known that the followingeighted least-squares (WLS) learnisgasymptotically
unbiased (Shimodaira, 2000).

aw = argamin li gi);:)) (fA(Xi) _ Yi) 2] , (8)

where the subscrip¥¥’ indicates the weighted LS. Asymptotic unbiasednesspfvould be intu-
itively understood by the following identity, which resembles ith@ortance sampling

J (60— 100) amax= [ (o9~ 100)” % ppax

In the following, we assume thaix) andq(x) are strictly positive for alk.
Let D be the diagonal matrix with thieth diagonal element

a(xi)

p(xi)’

Thendyy is analytically given by
aw = Lwy, 9)

where
Lw = (X"TDX)"IX'D.

2.5 Active Learning Based on Importance-Weighted Least-Squas Learning

Let Gy, Bw andWy be G, B andV for the learned function obtained by WLS, respectively. Uet
be theb-dimensional square matrix with tte j)-th element

Uis = [ 8108, 00a(x)dlx
Then we have the following lemma (Proofs of all lemmas are provided in ajppend

Lemma 1 For the approximately correct model (3), we have

Bw = Op(8°n 1), (10)
My = otr(ULwLy) = Op(n1).
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Input: A finite setP of strictly positive probability densitie

U7

CalculateJ.

For eachp € P
Create training input point&i(p) i, following p(x).
Calculatelyy.
Calculatel(p).

End

Choosep that minimizes).

Putx = xP fori=1,2,....n.

Observe the training output valuég }i! ; at {x }{ ;.
Calculateayy by Eq.(9).

Output: Ow

Figure 4: Proposed ALICE algorithm.

Note that the asymptotic order in the above lemma is in probability since randaabbesr
{xi}i_, are included. This lemma implies thatif= 0p(1),

E Gw = o?tr(ULwLy) +op(n™?). (11)
{&i}

Motivated by Eq.(11), we propose determining the training input demsgikyas follows: For a
setP of strictly positive probability densities,

p* = argmind(p),
pe?P

where

J=tr(ULwLy,). (12)
Practically, we may prepare a finite gBtof strictly positive probability densities and choose the
one that minimized from the set?. A pseudo code of the proposed active learning algorithm is

described in Figure 4, which we c#8lLICE (Active Learning using the Importance-weighted least-
squares learning based on Conditional Expectation of the generalizatiop &lote that the value

of J depends not only op(x), but also on the realization of the training input poi(méo) iy

3. Relation to Existing Methods

In this section, we qualitatively compare the proposed active learning mefttoexisting methods.

3.1 Active Learning with OLS

Let Go, Bo andVp be G, B andV for the learned function obtained by OLS, respectivelyd # 0
in Eq.(3), i.e., the model is correctly specifi@} vanishes under a mild condition (Fedorov, 1972)
and we have

{E} Go = Vo = 6?tr(ULoLy).

€
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Based on the above expression, the training input depsityis determined as follows (Fe-
dorov, 1972; Cohn et al., 1996; Fukumizu, 2000).

po = argmindo(p),
pe?P

where
Jo =tr(ULoLY). (13)

Comparison with J:  We investigate the validity afo for approximately correct models based on
the following lemma.

Lemma 2 For the approximately correct model (3), we have

Bo = 0(&%),

The above lemma implies thatdf= op(n~2),

E Go = 0'2Jo + op(n‘l).
{&}

Therefore, ifd = op(n*%), the use oflp can be still justified. On the other hand, the proposed
J is valid whend = o0p(1). This implies that) has a wider range of applications thag. As
experimentally shown in Section 4, this difference is highly significant intc

3.2 Active Learning with WLS: Variance-Only Approach

For the importance-weighted least-squares learning (8), Kanamoritant&aira (2003) proved
that the generalization error expected over training input pdixtg’ ; and training output noise
{&i}]; is asymptotically expressed as

E E Gw= ~tr(U-H)+ o(n3), (14)
{xi}{&} n

whereE y, is the expectation over training input poir{tg }{ ; andH is theb-dimensional square
matrix defined by
H =S+0°T.

SandT are theb-dimensional square matrices with tfiej)-th elements

2
= [ 1008 (9(3r 92T (15)
T PNURPN: (5
T = [ 61000500 T e
(16)

3. p(x) is not explicitly used in OLS. Therefore, we do not have to optimize the trgiimput densityp(x), but we can
directly optimize training input pointéx; }/_,. However, to be consistent with the WLS-based methods, we optimize
p(x) in this paper. This also helps to avoid the simultaneous optimizationngfut points which is computationally
very demanding in general.
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Note that%tr(U ~1S) corresponds to the squared bias WISQH(U ~1T) corresponds to the variance.
Eq.(14) suggests that(d —'H) may be used as an active learning criterion. HoweMeincludes
the inaccessible quantitiés(x) ando?, so t{U ~*H) can not be directly calculated.

To cope with this problem, Wiens (2000) proposeaghoring S (the bias term), which yields

o2
E E Gw~ —tr(U1T).
{x}{&i} n

Note thatT is accessible under the current setting. Based on this approximation,ithiegriaput
densityp(x) is determined as follows.

Py = argmindw(p),

pe?
where

v = %tr(U -11). (17)

Comparison with J: A notable feature oy is that the optimal training input densipyj, (X) can
be obtained analytically (Wiens, 2000):

P (X) = : (18)

where

A(x) = q(x) ( 5> ui,j1¢i<x>¢j<x>> .
J=

i,]=1

This may be confirmed by the fact thi} can be expressed as

Jw(p) = % (/ﬁ(x)dx)2 <1+/de> .

On the other hand, we do not yet have an analytic form of a minimizer forritezion J.
It seems that in Wiens (2000), ignorifghas not been well justified. Here, we investigate the
validity based on the following corollary immediately obtained from Eqgs.(14)(&6j

Corollary 1 For the approximately correct model (3), we have

E E Gw=0%dw+ 0(62n*1+ n*%),
{xi}{&}

whereg?Jy = O(n™1).

4. In the original paper, discussion is restricted to the cases where thtedimpain is bounded argix) is uniform over
the domain. However, it may be easily extended to an arbitrary strictlgn@og(x). For this reason, we deal with
the extended version here.
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This corollary implies that i = 0(1),

E E Gw=0"dw+o(n?),
{x} {&i}
by which the use oy can be justified asymptotically. Since the order is the same as that of the
proposed criterion) andJy may be comparable in the robustness against the misspecification of
models.
Now the following lemma reveals a more direct relation betw&andJy .

Lemma 3 J and Jy satisfy
3
J=Jdw+Op(n~2). (29)

This lemma implies thal is asymptotically equivalent tdy. However, they are still different
in the order oin2. In the following, we show that this difference is important.

In the active learning context, we are interested in accurately predictirgjripke-trial gener-
alization errorGyy, which depends on the realization of the training examples. Let us measure th
goodness of a generalization error prediﬁdvy

{E}(é —Gw)?. (20)

Then we have the following lemma.
Lemma 4 Suppos® = op(n‘flt). If terms of g(n~3) are ignored, we have

E (6w —Gw)? > E (02— Gw)?.
{ei} {&i}

This lemma states that und@e= op(n‘%), 02J is asymptotically a more accurate estimator of
the single-trial generalization err@y thana?Jy in the sense of Eq.(20).

In Section 4, we experimentally evaluate the difference betweerdJy.

3.3 Active Learning with WLS: Bias-and-Variance Approach

Another idea of approximatinlg in Eq.(14) is a two-stage sampling scheme propdbgdanamori
and Shimodaira (2003): the training examples sampled in the first stageearéonstimatingd
and in the second stage, the distribution of the remaining training input poinggimsized based
on the estimateti. We explain the details of the algorithm below.

First, ¢ (< n) training input points{X }/_, are created independently following the test input
distribution with densityg(x), and corresponding training output valugs}!_, are observed. Let
D andQ be the/-dimensional diagonal matrices with théh diagonal elements

a)
p(X%)’
Q.= F—X(X' X)X 3,

Dij =

5. In the original paper, the method is derived within a slightly differetiirggeof estimating the conditional probability
of the output valuey given an input poink for regular statistical models. Here, we focus on the cases where the
conditional distirbution is Gaussian and the statistical model is linear, by whé&ketting becomes comparable to
that of the current paper.
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where|[-]; denotes thé-th element of a vectorX is the design matrix fof%}’_,, i.e., the/ x b
matrix with the(i, j)-th element

Xi.j = (%),
and
V=Y2....%) "
Then an approximatiod of the unknown matrisH in Eq.(14) is given by

H = %XTDQ X.

AlthoughU ~1is accessible in the current setting, Kanamori and Shimodaira (2003 )eplsced it

. -1
by a consistent estimat¢ ~, where

~ 1~T~
Uu=-X X.
l

Based on the above approximations, the training input depsityis determined as follows:

Pow = argmindow(p),
peP

where 1
Jow = ~tr( A). (1)

Note that the subscripOW’ indicates the combination of the ordinary LS and weighted LS (see
below for details).

After determining the optimal density,,,, the remainingh — ¢ training input points{x.
are created independently following,, (x), and corresponding training output valu{gq; i 1 are
observed. Then the learned parameigy is obtained using (%, Vi) }5 1 and{(x, i)} ! as

Gow = argmm[Z( (%) y.) +le))2 (fox) i)zl. 22)

Note thatlow depends on the realization {f; }, 1» butis independent of the realization{o{}{‘;f

Comparison with J:  Kanamori and Shimodaira (2003) proved thatfet o(n), limp . ¢ = o,
andd = O(1),

E E Gw= }Jow+o(n_1),

{xi}{&i} n
by which the use ofow can be justified. The order &frequired above is weaker than that required
in J. Therefore Jow may have a wider range of applications thhnHowever, this property may
not be practically valuable since learning with totally misspecified modelsgi-e.Q(1)) may not
work well because of the model error.

Due to the two-stage sampling scheme, the above method has several sseskn€irst/
training input points should be gathered followig() in the first stage, which implies that users
are only allowed to optimize the location of- ¢ remaining training input points. This may be
critical when the total numbaris not so large. Second, the performance depends on the choice of
¢, so it has to be appropriately determined. Usfng O(nl/z) is recommended in Kanamori and
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Shimodaira (2003), but the exact choicesieems still open. Thirdloy is an estimator oGy, but
the finally obtained parameter by this algorithm is d@t butdow. Therefore, this difference can
degrade the performanée.

In Section 4, we experimentally compalandJow.

4. Numerical Examples

In this section, we quantitatively compare the proposed and existing activérlg methods through
numerical experiments.

4.1 Toy Data Set

We first illustrate how the proposed and existing methods behave undaetraltEm setting.

Setting: Let the input dimension bé = 1 and the learning target function be
f(X) = 1—x+x2+8r(x),

where

r(x) = \;632 with z= XB.Z‘Z.
Let the number of training examples to gathembe 100 and{g; }{' ; be i.i.d. Gaussian noise with
mean zero and standard deviatioB.0Let the test input density(x) be the Gaussian density with
mean 02 and standard deviation4) which is assumed to be known in this illustrative simulation.
See the bottom graph of Figure 5 for the profileg@f). Let the number of basis functions be= 3
and the basis functions be

(23)

di(x)=x"1 fori=1,2,....b.

Note that for these basis functions, the residual funat{ehin Eq.(23) fulfills Eqs.(4) and (5). Let
us consider the following three cases.

5= 0,0.005,0.05, (24)

which correspond tocorrectly specifiet] “approximately corre¢t and “misspecifieticases, re-
spectively. See the top graph of Figure 5 for the profile$(aj with differentd.
As a set of training input densitie®, we use the Gaussian densities with meznedd standard
deviation 04c, where
c=0.8,09,1.0,...,25.

See the bottom graph of Figure 5 again for the profilep(aj with differentc.
In this experiment, we compare the performance of the following methods:

(ALICE): cis determined so thakgiven by Eq.(12) is minimized. WLS given by Eq.(8) is used
for estimating the parameters.

6. Itis possible to resolve this problem by not us{rﬁ'@i,yi)}f:l gathered in the first stage for estimating the parameter
(cf. Eg.(22)). However, this may yield further degradation of thdgrerance because onty— ¢ training examples
are used for learning.
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Learning target function f(x)

46=0 7’
= = = 5=0.005

-1.5 -1 -0.5 0 0.5 1 15 2

Figure 5: Learning target function and input density functions.

(W): cis determined so thaky given by Eq.(17) is minimized. WLS is used for estimating the
parameters.

(W*): pjy(x) given by Eq.(18) is used as the training input density. The profilggdk) under the
current setting is illustrated in the bottom graph of Figure 5, showingdf&t) is similar to
the Gaussian density with= 1.3. WLS is used for estimating the parameters.

(OW): First, ¢ training input points are created following the test input dengity), and corre-
sponding training output values are observed. Based oA ttaning examplesg is deter-
mined so thafow given by Eq.(21) is minimized. Them— ¢ remaining training input points
are created following the determined input density. The combination of OHS\&E given
by Eq.(22) is used for estimating the parameters. We seb5, which we experimentally
confirmed to be a reasonable choice in this illustrative simulation.

(O): cis determined so thalp given by Eq.(13) is minimized. OLS given by Eq.(7) is used for
estimating the parameters.

(Passive): Following the test input density(x), training input points{x; }/., are created. OLS is
used for estimating the parameters.

For (W*), we generate the random number followipjg(x) by the rejection method (see e.g.,
Knuth, 1998). We run this simulation 1000 times for e&dh Eq.(24).

Accuracy of Generalization Error Prediction: First, we evaluate the accuracy &fdw, Jow,
andJo as predictors of the generalization error. Note thandJy are predictors oGy . Jow is also
derived as a predictor dby, but the finally obtained generalization error by (OWGEsw, which
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Figure 6: The means and (asymmetric) standard deviatio@of, Jv, Gow, Jow, Go, andJo
over 1000 runs as functions of The dashed curves show the means of the generalization
error that corresponding active learning criteria are trying to predict.
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is the generalization errd@s for the learned function obtained by the combination of OLS and WLS
(see EQ.(22)). Therefordgy should be evaluated as a predictoiGaj. Jo is a predictor ofe.

In Figure 6, the means and standard deviationsgf J, v, Gow, Jow, Go, andJo over 1000
runs are depicted as functions oby the solid curves. Here the upper and lower error bars are
calculated separately since the distribution is not symmetric. The dashex &lmaw the means of
the generalization error that corresponding active learning criteritrydng to predict. Note that
J, Jw, andJo are multiplied byo? = (0.3)2 so that comparison witsy and Go are clear. By
definition, Gy, Gow, andGp do not include the constaftdefined by Eq.(6). The values Gffor
d=0, 0.005, and M5 are 0, 2 x 10~°, and 232 x 1073, respectively.

These graphs show that whdr= 0 (“correctly specified), J andJdy give accurate predictions
of Gw. Note thatly does not depend on the training input poifits}! ; so it does not fluctuate
over 1000 runsJow is slightly biased toward the negative direction for sncaNVe conjecture that
this is caused by the small sample effect. However, the profiligfstill roughly approximates
that of Gow. Jo gives accurate predictions &s. Whend = 0.005 (“approximately corred), J,

Jw, andJow work similarly to the case with = 0, i.e.,J andJy are accurate andby is negatively
biased. On the other handy behaves slightly differently: it tends to be biased toward the negative
direction for largec. Finally, whend = 0.05 (“misspecified), J andJy still give accurate predic-
tions, although they slightly have a negative bias for smalby still roughly approximateSow,
while Jo gives totally different profile fronGo.

These results show that as approximations of the generalizationkamul,Jy are accurate and
robust against the misspecification of moddlsy is also reasonably accurate, although it tends to
be rather inaccurate for small Jo is accurate in the correctly specified case, but it becomes totally
inaccurate once the correctness of the model is violated.

Note that, by definitionJ, Jy andJo do not depend on the learning target function. Therefore,
in the simulation, they give the same values fodgll andJo depend on the realization ¢%; }{_; so
they may have a small fluctuation). On the other hand, the generalizationadrcourse, depends
on the learning target function even if the constaig not included, since the training output values
depend on it. Note that the bias depend$dout the variance does not. The simulation results show
that the profile of5o changes heavily as the degree of model misspecification increases.olhis w
be caused by the increase of the bias since OLS is not unbiased eveptaisyally. On the other
hand,Jo stays the same dsincreases. As a resullp becomes a very poor predictor for a large
0. In contrast, the profile dBy appears to be very stable against the chan@evhich is in good
agreement with the theoretical fact that WLS is asymptotically unbiased kFhauithis property)
andJy are more accurate thdp for misspecified models.

Obtained Generalization Error:  In Table 1, the mean and standard deviation of the generaliza-
tion error obtained by each method are described. The best method mparedsle ones by the
t-test(e.g., Henkel, 1979) at the significance level 5% are indicated with badfad-igure 7, the
box-plot expression of the obtained generalization error is depictet tNat the values described

in Figure 6 correspond t8 (the constant is not included), while the values in Table 1 and Figure 7
correspond t&’ which include<C (see Eq.(1)).

Whend = 0, (O) works significantly better than other methods. Actually, in this casejrica
input densities that approximately minimigy, Go, andGow were successfully found by (AL-
ICE), (W), (OW), and (O). This implies that the difference in the erroraissed not by the quality
of the active learning criteria, but by the difference between WLS an8:QULS generally has
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5=0  5=0005 &=0.05
(ALICE) | 208+£1.95 210+1.96 461212
(W) | 2404215 243+2.15 489+2.26
(W¥) | 2324202 2354202 484+2.14
(OW) | 3.09+£3.03 313+3.00 595+3.58
(O) | 1.31+170 253+223 124:67.4
(Passive)| 3.11+2.78 314+2.78 601+3.43

All values in the table are multiplied by 30

Table 1: The mean and standard deviation of the generalization error etbtajreach method for
the toy data set. Here we describe the vaRi¢hat includes the consta@t(see Eq.(6)).
The best method and comparable ones by the t-test at the significancé%e\ak in-
dicated with boldface. The value of (O) fér= 0.05 is extremely large but it is not a

0.014 0.014 0.014
0.012 0.012 0.012
0.011 0.011 0.011
- 95% T
0.008 T 0.008 T 0.008
00061 T 0006 __ g50p T 0.006 -
75%|
0.004 0.004 0.004 50%)
25%
75%| 75%| 1 1
-4 5% -
0.002 0.002 0.002
50%| 50%6)
25% 25%
o 5% T 0 7\7 7\7 5% o N n 7\7 | | | | | |
0 = 0 0
(ALICE) (W) (W) (ow) (0)  (Passive) (ALICE) (W) (W) (ow) (0)  (Passive) (ALICE) (W) (W) (ow) (0)  (Passive)

Figure 7: Box-plots of the generalization error obtained by each methdtiddoy data set. Here
we plot the valueG' that includes the constaft (see Eq.(6)). The value of (O) for
0 = 0.05 is not plotted because it is extremely large.
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larger variance than OLS (Shimodaira, 2000). Therefore, vde®, OLS would be more accurate
than WLS since both WLS and OLS are unbiased. Although (ALICE), (W);), and (OW) are
outperformed by (O), they still work better than (Passive). Note that@A&l) is significantly better
than (W), (W*), (OW), and (Passive) by the t-test. The box-plot shivat (ALICE) outperforms
(W), (W*), and (OW) particularly in upper quantiles.

Whend = 0.005, (ALICE) gives significantly smaller errors than other methods. Alhtie¢h-
ods except (O) work similarly to the case wiah-= 0, while (O) tends to perform poorly. This result
is surprising since the learning target functions wita- 0 andd = 0.005 are visually almost the
same, as illustrated in the top graph of Figure 5. Therefore, it intuitiveljseleat the result when
0 = 0.005 is not much different from the result wh&ga- 0. However, this slight difference appears
to make (O) unreliable.

Whend = 0.05, (ALICE) again works significantly better than others. (W) and (Viit) work
reasonably well. The box-plot shows that (ALICE) is better than (W)(&it) particularly in upper
guantiles. The performance of (OW) is slightly degraded, although it is stilebthan (Passive).
(O) gives extremely large errors.

The above results are summarized as follows. For all three case8,0.005,0.05), (ALICE),
(W), (W*), and (OW) work reasonably well and consistently outperfgPassive). Among them,
(ALICE) appears to be better than (W), (W*), and (OW) for all thresesa (O) works excellently in
the correctly specified case, although it tends to perform poorly onamthectness of the model is
violated. Therefore, (ALICE) is found to work well overall and is rebagainst the misspecification
of models for this toy data set.

4.2 Benchmark Data Sets

Here we use eight regression benchmark data sets provided by DER&&nussen et al., 1996):
Bank-8fm, Bank-8fh, Bank-8nm, Bank-8nh, Kin-8fm, Kin-8fh, Kim:&mdKin-8nh Each data set
includes 8192 samples, consisting of 8-dimensional input points and 1-slimmahoutput values.
For convenience, every attribute is normalized iiftd].

Suppose we are given all 818futpoints (i.e., unlabeled samples). Note that output values are
kept unknown at this point. From this pool of unlabeled samples, we elfbes300 input points
{xi}i._, for training and observe the corresponding output va{yes' ;. The task is to predict the
output values of all 8192 unlabeled samples.

In this experiment, the test input densifix) is unknown. So we estimate it using the uncorre-
lated multi-dimensional Gaussian density:

1 HX—ﬁMLEH2>
aXx)=—=——+ exP(‘i )
% (Z’WMLE)% 2VLe

wherefly, g andyu.e are the maximum likelihood estimates of the mean and standard deviation
obtained from all 8192 unlabeled samples. het 50 and the basis functions be Gaussian basis
functions with variance 1:

12
di(x) = exp(—M) fori=1,2,...,b,
where{ti}ib:1 are template points randomly chosen from the pool of unlabeled samples.
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Bank-8fm Bank-8fh Bank-8nm Bank-8nh
(ALICE) | 2.10+0.17 683+£0.44 1.11+0.09 4.194+0.29
(W) 2.26+021 7214052 12240.12 4404+0.38
(OW) | 2.31+0.25 739+0.63 125+0.15 452+0.39
(O) 1.914+0.16 620+£0.24 1.32+0.14 4.02+0.21
(Passive) 2.31+0.26 745+0.61 126+0.14 451+0.38
Kin-8fm Kin-8fh Kin-8nm Kin-8nh
(ALICE) | 1.62+058 350+0.63 3497+1.90 4721+1.97
(W) 1.704+0.62 364+0.73 36.60+-2.05 4915+2.88
(ow) 1.73+0.63 3.73+0.78 3729+294 4964+3.11
(O) 3.03+1.60 4854196 3865+3.09 4886+2.66
(Passive) 1.77+0.68 3.73+0.79 3738+3.05 4969+3.06

All values in the table are multiplied by 20

Table 2: The means and standard deviations of the test error for DE&¥&sdts. The best method
and comparable ones by the t-test at the significance level 5% are indigétdabldface.

1.1F - -
1.05F * :
0.95F
0.9 P
* © (ALICE)
-~ (W)
- (OW)
0.85+
Ko * % (O)
— (Passive)
| | | | | | | I
Bank-8fm Bank-8fh Bank-8nm Bank-8nh Kin—-8fm Kin-8fh Kin—-8nm Kin—-8nh

Figure 8: The means of the test error of (ALICE), (W), (OW), and i{@malized by the test error
of (Passive).
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We select the training input densip(x) from the set of uncorrelated multi-dimensional Gaus-
sian densities with medi, ¢ and standard deviatiatyw,g, where

c=0.7,0.75,0.8,...,2.4.

We again compare the active learning methods tested in Section 4.1. Howe\dw,not test (W*)
here because we could not efficiently generate random numbers faiigjtx) by the rejection
method. For (OW), we sét= 100 which we experimentally confirmed to be reasonable.

In this simulation, we can not create the training input points in an arbitraryidochecause
we only have 8192 samples in the pool. Here, we first create provisiopad points following
the determined training input density, and then choose the input points feopoti of unlabeled
samples that are closest to the provisional input points. In this simulationxpleetation over the
test input densitg(x) in the matrixU is calculated by the empirical average over all 8192 unlabeled
samples since the true test error is also calculated as such. For eacktgdaersin this simulation
100 times, by changing the template poi{lts;}’:l in each run.

The means and standard deviations of the test error over 100 runssarébéd in Table 2. This
shows that (ALICE) works very well for five out of eight data setsr #® other three data sets,
(O) works significantly better than other methods. (W) works well and is evaiye to (ALICE)
for two data sets, but is outperformed by (ALICE) for the other six data. s€OW) is overall
comparable to (Passive).

Figure 8 depicts the means of the test error of (ALICE), (W), (OW), @)hormalized by the
test error of (Passive): For each run, the test errors of (ALIQE), (OW), and (O) are divided by
the test error of (Passive), and then the values are averaged@ieurds. This graph shows that
(ALICE) is better than (W), (OW), and (Passive) for all eight data.s€®) works very well for
three data sets, but it is comparable or largely outperformed by (Ppfisitiee other five data sets.
(W) also works reasonably well, although it is outperformed by (ALICErall. (OW) is on par
with (Passive). Overall, (ALICE) is shown to be stable and works welttfie benchmark data sets.

We also carried out similar simulations for Gaussian basis functions with eari@h and 2.
The results had similar tendencies, i.e., (ALICE) is overall shown to be stalevorks well, so
we omit the detail.

5. Conclusions

In this paper, we proposed a new active learning method based on theéamgsiveighted least-
squares learning. The numerical study showed that the proposed nvetinksl well overall and
compares favorably to existing WLS-based methods and the passivetestheme. Although the
proposed method is outperformed by the existing OLS-based method wherotte is correctly
specified, the existing OLS-based method tends to perform very pootly the correctness of
the model is violated. Therefore, the existing OLS-based method may netilele in practical
situations where the correctness of the model may not be fulfilled. On thehathd, the proposed
method is shown to be robust against the misspecification of models ancbtieardfable.

Our criterion is shown to be a variant of the criterion proposed by Wied8QR Indeed, we
showed that they are asymptotically equivalent. However, an importaatetiife is that we predict
the conditional expectation of the generalization error given training ippuits, while in Wiens
(2000), the full expectation of the generalization error is predicted. éseribed in Section 1,
the conditional-expectation approach conceptually gives a finer chbibe training input density
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than the full-expectation approach. Theoretically, we proved that thmopeal criterion is a better
estimate of the single-trial generalization error than Wiens'’s criterion (setof 3.2).

An advantage of Wiens'’s criterion is that the optimal training input densitybeanbtained
analytically, while we do not yet have such an analytic solution for the m@gariterion. In the
current paper, we resorted to a naive optimization scheme: prepariéeaséh of input densities
and choose the best one from the set. The performance of this ndir@zapion scheme depends
heavily on the choice of the set of densities. In practice, using a setuf demsities which consist
of the optimal density analytically found by Wiens’s criterion and its variantslevbe a reasonable
choice. Itis also important to devise a better optimization strategy for the gedpaxctive learning
criterion, which currently remains open.

In theory, we assumed that the test input density is known. However, thisiatde satisfied
in practice. In experiments with benchmark data sets, the test input densitieedimnknown and
is approximated by a Gaussian density. Although the simulation results shoatati¢tproposed
method consistently outperforms the passive learning scheme (givereledaamples), a more
detailed analysis should be carried out to see how approximating the testgmmity affects the
performance.

We discussed the active learning problemv@aklymisspecified models. A natural extension
of the proposed method is to be applicablettonglymisspecified models, as achieved in Kanamori
and Shimodaira (2003). However, when the model is totally misspecified, leaening with the
optimal training input points may not work well because of the model ermrsuch cases, it is
important to carry oumodel selection{Akaike, 1974; Schwarz, 1978; Rissanen, 1978; Vapnik,
1998). In most of the active learning research—including the currapémp the location of the
training input points are designed fosaglemodel at hand. That is, the model should have been
choserbeforeactive learning is carried out. However, in practice, we may want to stilechodel
as well as the location of the training input points. Devising a method for simuoltesheoptimizing
the model and the location of the training input points would therefore be a m@@rtant and
promising future direction. In Sugiyama and Ogawa (2003), a methaatiie learning with
model selectiomas been proposed for the trigonometric polynomial models. Howevemnis iaf
application is rather limited. We expect that the results given in this paperdasoiid basis for
further pursuing this challenging issue.
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Appendix A. Proof of Lemma 1

A simple calculation yields th& andV are expressed as
B=U(Ed—0a*), Ed—a*),
{&i} {&i}

V=FE@U(@- Ed),d— E 0).
{&i} {&i} {&i}

Let

By definition, it holds that

Then we have

E Ow—0" =Lw(zg+0%) —
{&i}

(1T =11y T *
= (X"DX) 21X D(Xa" +8z) —
=3(:XDX) 11X Dz.

By the law of large numbers (Rao, 1965), we have
1y T = (%
rI]mrgo[XDX.J_Ilm Z(— Xi) 9 (%)

/ (X)0j(x) p(x)dx
D P
= 0p(1)

Furthermore, by the central limit theorem (Rao, 1965), it holds for seffity largen,

n

1y D] — © (30 3%

_/ q—i p(x)dx-+ Op(n %)
= Op(n %),
where the last equality follows from Eq.(4). Therefore, we have

Bw=(U(E Ow—a"), E Ow—0a")
{&i} {&i}
It holds thatU = Op(1) and
Lwbwy = (AXTDX) * X TD?X(2XTDX)
= Op(nh).
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Then we have

W= E <U(aw— E aw),aw— E aw>
{&i} {&i} {&i}

= a%tr(ULwly)
= Op(n_l)7

which concludes the proof.

Appendix B. Proof of Lemma 2
It holds that

{E}ao—a* =Lo(zg+90z)—a*
&

-1 * *
= (AXTX) "X (Xo* +8z) —a
Iy Ty =11y T

By the law of large numbers, we have

D
= 0Op(1)
Furthermore, by the central limit theorem, it holds for sufficiently lamge
1 n
[iX'z)i= 0 2 FO4)0i(xe)

Therefore, we have

It holds thaty = Op(1) and

Then we have

= o%tr(ULoLY)
= Op(n71)7
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which concludes the proof. [ |

Appendix C. Proof of Lemma 3

The central limit theorem (see e.g., Rao, 1965) asserts that
Lwly = 2U-1TU 14 0p(n~2),

from which we have Eq.(19) |

Appendix D. Proof of Lemma 4
It holds that
{IEE}(O'ZM —Gw)? = {IE}(O'ZJ\N — 0204 02— Gy)?
= (0%Jy — 0%0)% + {IEE}(GZJ — Gw)?

+2 E (023w — 023)(0%) — Gy). (25)

{&}

Eq.(19) implies
(0% —023)2 = 0p(n~3).

Egs.(19) and (10) imply

2{1@}(02M —023)(0%J — Gw) = 2(c%3w — 62J)(02J — {E}GW)
= —2(0%w — 0%0)Bw

= 0p(82n3). (26)
If d= op(nfflt) and the term of ordes,(n—3) (i.e., EQ.(26)) is ignored in Eq.(25), we have

E (C)'ZJ\/\/—G\/\/)Z — (GZ\J\N—CZJ)Z—F{E}(O'ZJ—GW)Z

{&i}

> E (62— Gw)?,
{&}

which concludes the proof. |
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