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Abstract

While classical kernel-based learning algorithms are basaisingle kernel, in practice it is often
desirable to use multiple kernels. Lanckriet et al. (20@H)sidered conic combinations of kernel
matrices for classification, leading to a convex quadrlyicnstrained quadratic program. We
show that it can be rewritten as a semi-infinite linear progtiaat can be efficiently solved by recy-
cling the standard SVM implementations. Moreover, we galies the formulation and our method
to a larger class of problems, including regression andateres classification. Experimental re-
sults show that the proposed algorithm works for hundredghods of examples or hundreds of
kernels to be combined, and helps for automatic model sefeétnproving the interpretability of
the learning result. In a second part we discuss generatlspemechanism for SVMs, especially
when used witlsparsefeature maps as appear for string kernels, allowing us it ératring kernel
SVM on a 10 million real-world splice data set from compudatl! biology. We integrated multi-
ple kernel learning in our machine learning toolBHOGUN for which the source code is publicly
available ahtt p: // ww. f nl . t uebi ngen. npg. de/ raet sch/ proj ect s/ shogun.

Keywords: multiple kernel learning, string kernels, large scale mjtation, support vector ma-
chines, support vector regression, column generationi-isdimite linear programming

1. Introduction
Kernel based methods such as support vector machines (SVMs) o be powerful for a

wide range of different data analysis problems. They employ a so-cadlekfunctionk (x;,X;)
which intuitively computes the similarity between two examptesindxj. The result of SVM

©2006 Soren Sonnenburg, Gunnar Réatsch, Christin SchafeBammthard Scholkopf.


http://www.fml.tuebingen.mpg.de/raetsch/projects/shogun

SONNENBURG, RATSCH, SCHAFER AND SCHOLKOPF

learning is arx-weighted linear combination of kernels with a bkas

f(x) :sign(iaiyik(xi,x)+b>, 1)

where thex;, i =1,...,N are labeled training exampleg € {+1}).

Recent developments in the literature on SVMs and other kernel methodshiave the need
to consider multiple kernels. This provides flexibility and reflects the fact tfcal learning
problems often involve multiple, heterogeneous data sources. Furtheamave shall see below, it
leads to an elegant method to interpret the results, which can lead to a dedpestanding of the
application.

While this so-called “multiple kernel learning” (MKL) problem can in principle #olved via
cross-validation, several recent papers have focused on marierfinethods for multiple kernel
learning (Chapelle et al., 2002; Bennett et al., 2002; Grandvalet and,003; Ong et al., 2003;
Bach et al., 2004; Lanckriet et al., 2004; Bi et al., 2004).

One of the problems with kernel methods compared to other techniques is ¢hagsthiting
decision function/ (1) is hard to interpret and, hence, is difficult to usederao extract relevant
knowledge about the problem at hand. One can approach this prolylesonisidering convex
combinations oK kernels, i.e.

K
k(Xi,Xj) :kzlﬁkkk(xi,xj) (2)

with B, > 0 ands K, B = 1, where each kerndd, uses only a distinct set of features. For ap-
propriately designed sub-kernetg, the optimized combination coefficients can then be used to
understand which features of the examples are of importance for disctiomn# one is able to
obtain an accurate classification bgmarseweightingpx, then one can quite easily interpret the re-
sulting decision function. This is an important property missing in curremetdrased algorithms.
Note that this is in contrast to the kernel mixture framework of Bennett e2@02) and Bi et al.
(2004) where each kernahd each example are assigned an independent weight and therefore do
not offer an easy way to interpret the decision function. We will illustratetti@considered MKL
formulation provides useful insights and at the same time is very efficient.

We consider the framework proposed by Lanckriet et al. (2004), wtgsults in a convex op-
timization problem - a quadratically-constrained quadratic program (QCIP# problem is more
challenging than the standard SVM QP, but it can in principle be solved hgrgkepurpose opti-
mization toolboxes. Since the use of such algorithms will only be feasible fdt proalems with
few data points and kernels, Bach et al. (2004) suggested an algoribed lon sequential mini-
mization optimization (SMO Platt, 1999). While the kernel learning problem iseqnvis also
non-smooth, making the direct application of simple local descent algoriththsasuSMO infeasi-
ble. Bach et al. (2004) therefore considered a smoothed version pfabkem to which SMO can
be applied.

In the first part of the paper we follow a different direction: We refolatel the binary clas-
sification MKL problem [(Lanckriet et al., 2004) assami-infinite linear programwhich can be
efficiently solved using an off-the-shelf LP solver and a standard SVMementation (cf. Sec-
tion/2.1 for details). In a second step, we show how easily the MKL formulaimhthe algorithm
is generalized to a much larger class of convex loss functions (cf. S&8pnOur proposedrap-
per methodworks for any kernel and many loss functions: In order to obtain aniefi MKL
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algorithm for a new loss function, it now suffices to have an LP solvetla@dorresponding single
kernel algorithm (which is assumed to be efficient). Using this generatiigpwe were able to
solve MKL problems with up to 30,000 examples and 20 kernels within reakotiate’

We also consider ehunkingalgorithm that can be considerably more efficient, since it optimizes
the SVM a multipliers and the kernel coefficienfsat the same time. However, for large scale
problems it needs to compute and cache Khkernels separately, instead of only one kernel as
in the single kernel algorithm. This becomes particularly important when thelsasizeN is
large. If, on the other hand, the number of kerr€ls large, then the amount of memory available
for caching is drastically reduced and, hence, kernel caching isfieatiee anymore. (The same
statements also apply to the SMO-like MKL algorithm proposed in Bach et @4§20

Since kernel caching cannot help to solve large scale MKL problemspughs for ways to
avoid kernel caching. This is of course not always possible, butriticdy is for the class of
kernels where the feature map(x) can be explicitly computed and computations wdttx) can
be implemented efficiently. In Section 3.1.1 we describe several stringl&ehae are frequently
used in biological sequence analysis and exhibit this property. Herégdhee space can be very
high dimensional, bub(x) is typically very sparse. In Section 3.1.2 we discuss several methods for
efficiently dealing with high dimensional sparse vectors, which not only istefest for MKL but
also for speeding up ordinary SVM classifiers. Finally, we suggest a roatilifin of the previously
proposed chunking algorithm that exploits these properties (Section.3ritBe experimental part
we show that the resulting algorithm is more than 70 times faster than the plaikichatgorithm
(for 50,000 examples), even though large kernel caches were édsd,. we were able to solve
MKL problems with up to one million examples and 20 kernels and a 10 million redivgplice
site classification problem from computational biology. We conclude therggp#ustrating the
usefulness of our algorithms in several examples relating to the interpretdti@sults and to
automatic model selection. Moreover, we provide an extensive benchstaiik comparing the
effect of different improvements on the running time of the algorithms.

We have implemented all algorithms discussed in this work in C++ with interfackktlab
Octave R andPython The source code is freely available at

http://ww. fri.tuebi ngen. npg. de/ raet sch/ proj ect s/ shogun.

The examples used to generate the figures are implementdthitab using the Matlab inter-
face of theSHOGUN toolbox. They can be found together with the data sets used in this paper at
http://ww. fm.tuebi ngen. npg. de/ raet sch/ proj ects/|smkl .

2. A General and Efficient Multiple Kernel Learning Algorithm

In this section we first derive our MKL formulation for the binary classtiima case and then show
how it can be extended to general cost functions. In the last subsediarll propose algorithms
for solving the resulting semi-infinite linear programs (SILPS).

2.1 Multiple Kernel Learning for Classification Using SILP

In the multiple kernel learning problem for binary classification one is gNetata pointyx;, ;)
(vi € {£1}), wherex; is translated vi& mappingsby(x) — RPx k=1,... K, from the input intdK

1. The results are not shown.
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feature space&Ps(xi),..., Pk (X)) whereDy denotes the dimensionality of theth feature space.
Then one solves the following optimization problem (Bach et al., 2004), whkielquivalent to the
linear SVM forK = 1?

MKL Primal for Classification

_ 1/ K 2 N
min 2<kZlIIWk||2> +Ci;Ei (3)

wrt.  wgeRPEeRN beR,

K

S.t. & > 0 andy; <Z<Wk,¢k(xi)>—|—b> >1-¢, vi=1,...,N
k=1

Note that the problem’s solution can be writtenvags= Bcwj with Bx > 0, vk =1,...,K and
zEﬂ Bk =1 (Bach et al., 2004). Note that therefore thenorm of B is constrained to one, while
one is penalizing thé-norm ofwy in each block separately. The idea is th&tnorm constrained
or penalized variables tend to have sparse optimal solutions, ¥ghilerm penalized variables do
not (e.g. Réatsch, 2001, Chapter 5.2). Thus the above optimization praoffiiers the possibility to
find sparse solutions on the block level with non-sparse solutions withidadlksh

Bach et al. (2004) derived the dual for problem (3). Taking theibjenm (Dg ), squaring the
constraints on gamma, multiplying the constraints}b;nd finally substitutingy2 — Y leads to the
to the followingequivalentmultiple kernel learning dual:

MKL Dual for Classification

N
min  y— 'Zlai
i=

wrt.  yeR,aeRN

N
st. 0<a<l1C, Zlaiyi =0

N
z a;yiyjke(xi,xj) <y, vk=1,...,K

whereky (i, X;j) = (P (i), Px(Xj)). Note that we have one quadratic constraint per ke@eéh( <

y). In the case oK = 1, the above problem reduces to the original SVM dual. We will now move
the term— YN ; aj, into the constraints op This can be equivalently done by addings . ; a; to
both sides of the constraints and substituirgy N ; a; — v:

2. We assume tKy) =1,k=1,...,K and setj in Bach et al.|(2004) to one.
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MKL Dual * for Classification
min Y 4)
wrt.  yeR,aeRN
N
st. 0<a<1C, Zlcxiyi =0

N N
Z a;yiyiKk(Xi, Xj) — Zaiﬁy, vk=1,...,K

=:5(a)
In order to solve (4), one may solve the following saddle point problem: minimize

K
L=yt 3 B(S@) -y ©)
=1

w.rt.a € RN ye R (with 0 < a < Clandy;ajy = 0), and maximize it w.r.3 € RX, where0 < p.
Setting the derivative w.r.t. tg to zero, one obtains the constraifif_; Bx = 1 and [(5) simplifies
to: £ = S(a,B) := TK_; BkS(a). While oneminimizesthe objective w.r.ta, at the same time one
maximizesv.r.t. the kernel weighting. This leads to a

Min-Max Problem
K
maxmin BkS(a (6)
x| k; (o)
wrt.  aeRN BeRK
N K
s.t. OgagC,OgB,zlaiyi:OandZBkzl
i= k=1

This problem is very similar to Equation (9) in Bi et al. (2004) when “compdsitaels,” i.e. linear
combinations of kernels are considered. There the first ter@(@f) has been moved into the
constraint, still3 including theyX_, By = 1 is missing?

Assumen* were the optimal solution, thedf := S(a*, 3) would be minimal and, hencga, 3) >
0* for all a (subject to the above constraints). Hence, finding a saddle-poin} & €guivalent to
solving the following semi-infinite linear program:

Semi-Infinite Linear Program (SILP)

max 0 (7)
wrt.  0eR,BeRK
st. 0<pB, ZBK =1and % BkS(a) >0 (8)
=

for all a € RN with 0 < o < Cland Y viai =0
|

3. In|Bi et al. (2004) it is argued that the approximation quality of coritpd®rnels is inferior to mixtures of kernels
where a weight is assigned per examai®l kernel as in Bennett et al. (2002). For that reason and as no efficien
methods were available to solve the composite kernel problem, they oméjdeved mixtures of kernels and in the
experimental validation used a uniform weighting in the composite kerpalrerent. Also they did not consider to
use composite kernels as a method to interpret the resulting classifieoketllat classification accuracy instead.
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Note that this is a linear program, 8sand 3 are only linearly constrained. However there are
infinitely many constraints: one for eache RN satisfying 0< a < C and zi’\‘zlaiyi = 0. Both
problems|(6) and (7) have the same solution. To illustrate that, corfsiddixed and we minimize

a in (6). Leta* be the solution that minimizes|(6). Then we can increase the val@éno(7) as
long as none of the infinitely mamy-constraints (8) is violated, i.e. up o= ZE:1 BkS(a*). On the
other hand as we increa8dor a fixeda the maximizing is found. We will discuss in Section 2.3
how to solve such semi-infinite linear programs.

2.2 Multiple Kernel Learning with General Cost Functions

In this section we consider a more general class of MKL problems, wherésajiven ararbitrary
strictly convex and differentiable loss function, for which we derive its IMBILP formulation.
We will then investigate in this general MKL SILP using different loss funtdian particular the
soft-margin loss, the-insensitive loss and the quadratic loss.

We define the MKL primal formulation for a strictly convex and differentiablesléunction
L(f(x),y) as:

MKL Primal for Generic Loss Functions

2 N
min 3 (Z HWk!) +_;L(f(><i),yi) (9)

Wt W= (wy,...,wk) € RPL x ... x RPx

(Pk(Xi),Wk) +b, Vi=1,...,N

Mx

st f(x)=

k=1

In analogy to Bach et al. (2004) we treat problem (9) as a second code program (SOCP)
leading to the following dual (see Appendix A for the derivation):

MKL Dual * for Generic Loss Functions

min vy (20)

wrt.  yeR,acRY
N

s.t. a;=0 and
o

N

1 ,ZGICDK X|

2

ZL Yai,yi),Yi +ZalL’la.,y|><v,Vk 1,...,K

HereL'~! denotes the inverse of the derivativeldf (x),y) w.r.t. the predictiorf (x). To derive the
SILP formulation we follow the same recipe as in Section 2.1: deriving thedmagan leads to a
max-min problem formulation to be eventually reformulated as a SILP:
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SILP for Generic Loss Functions

max © (11)

wrt.  B8eR,BeRK

K K N
st. 0<B, Y B=1 and 3 BS(a)>6, Vac RN, Zlai =0,
k=1 k=1 i=

where

N 2

i;qu)k(Xi)

We assumed thaf(x,y) is strictly convex and differentiable i Unfortunately, the soft margin and
e-insensitive loss do not have these properties. We therefore cottsiheiseparately in the sequel.

N N
S(@) == 3 LU Yo+ 3 el Ha) +

2

Soft Margin Loss We use the following loss in order to approximate the soft margin loss:

Lo(X,y) = g log(1+exp(a(1—xy))).

It is easy to verify that
Jlim Lo(x,y) = C(1=Xy)+-

Moreover,Ls is strictly convex and differentiable far < «. Using this loss and assumirnge
{#£1}, we obtain (cf. Appendix B.3):
N

S(a) = - iii ('09 (aiiyém ) +log (_O(i jicy>> +iiaiyi +% i;qu)k(Xi)

If 0 — oo, then the first two terms vanish provided tha® < a; <0if yy=1and 0< a; < C if
yi = —1. Substitutingyj = —@;y;, we obtain

2

2

N

S(@ =36+

N

ZldiYi(Dk(Xi)

2 N
and Y ajy; =0,
2

with0< &; <C (i =1,...,N) which is the same as (7).

One-Class Soft Margin Loss The one-class SVM soft margin (e.g. Schoélkopf and Smola, 2002)
is very similar to the two-class case and leads to

N 2

S = 5 |3 @)

2

subjecttl0 < o < LlandyN,a=1.
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e-insensitive Loss Using the same technique for the epsilon insensitive lggsy) = C(1— [x—
y|)+, we obtain

N 2

Zl(a‘ — a7 ) P(xi)

N

- Z(Gi +ai)e— Y (o —ai)yi

2 1= 1=

P4

1
SK(C(,G*) = E

N
and Zl(on —ai)yi =0, with0< a,0* <CI1.
i=

It is easy to derive the dual problem for other loss functions such apidwratic loss or logistic
loss (see Appendix B.1 & B.2). Note that the dual SILP’s only differ in teérdtion of S, and the
domains of thex’s.

2.3 Algorithms to Solve SILPs

All semi-infinite linear programsonsidered in this work have the following structure:

max 6 (12)
wrt. 0eR,BeRK
K K
st.  0<B, z Bk=1 and Z BkSc(a) >0Bforalla e c.
=1 =1

They have to be optimized with respectffcand 6. The constraints depend on definition &f
and therefore on the choice of the cost function. Using Theorem 5 irtiRétsal. (2002) one can
show that the above SILP has a solution if the corresponding primal iskeasd bounded (see also
Hettich and Kortanek, 1993). Moreover, there is no duality gag, i co{[S;(a),..., S (o)] " |a €
¢} is a closed set. For all loss functions considered in this paper this condisatiséed.

We propose to use a technique callédlumn Generatiorio solve (12). The basic idea is to
compute the optimalf3,0) in (12) for a restricted subset of constraints. It is calledréstricted
master problemThen a second algorithm generates a new, yet unsatisfied consei@mhithed by
a. In the best case the other algorithm finds the constraint that maximizesrtbgaint violation
for the given intermediate solutidif8, 0), i.e.

ap = argminz BkSc(a). (13)

aec

If o satisfies the constraintk_; BkS(ag) > 6, then the solutior(, B) is optimal. Otherwise, the
constraint is added to the set of constraints and the iterations continue.

Algorithm/[1 is a special case of a set of SILP algorithms knowexa@hange methods hese
methods are known to converge (cf. Theorem 7.2 in Hettich and Kortdrg€id). However, no
convergence rates for such algorithm are kann.

Since it is often sufficient to obtain an approximate solution, we have to defsoétable con-
vergence criterion. Note that the problem is solved when all constraimtsagisfied. Hence, it is a

4.1t has been shown that solving semi-infinite problems like (7), usingethod related to boosting (e.g.
Meir and Réatsch, 2003) one requires at nibst o (log(M)/£?) iterations, wheré is the remaining constraint viola-
tion and the constants may depend on the kernels and the number oflesiiniRéatsch, 2001; Ratsch and Warmuth,
2005; Warmuth et al., 2006). At least for not too small values thiis technique produces reasonably fast good ap-
proximate solutions.

1538



LARGE SCALE MKL

natural choice to use the normalized maximal constraint violation as a cemeergriterion, i.e. the
K t t
algorithm stops iEykL > s}leL = ‘1— %‘ wheregykL is an accuracy paramete@ﬁt,et)
is the optimal solution at iteratian- 1 anda! corresponds to the newly found maximally violating
constraint of the next iteration.
In the following we will formulate algorithms that alternately optimize the parametensd(.

2.3.1 AWRAPPERALGORITHM

The wrapper algorithm (see Algorithm 1) divides the problem into an inméaa outer subproblem.
The solution is obtained by alternatively solving the outer problem using thétseof the inner
problem as input and vice versa until convergence. The outer loglittdas theestricted master
problemwhich determines the optimflfor a fixeda using an of-the-shelf linear optimizer. In the
inner loop one has to identify unsatisfied constraints, which, fortunatehs twt to be particularly
simple. Note that (13) is for all considered cases exactly the dual optimizatidem of the single
kernel case for fixe@. For instance for binary classification with soft-margin loss, (13) resitce
the standard SVM dual using the kerkeék;,x;) = 3 Bxkk(Xi, Xj):

N N
V= min aia;yiyjK(xi, Xj) — Zlo‘i
i=

aeRNm:l

N
s.t. 0<a<Cland Zlonyi =0.
i=

Hence, we can use a standard SVM implementation with a single kernel intotidentify the most
violated constraint < 0. Since there exists a large number of efficient algorithms to solve the single
kernel problems for all sorts of cost functions, we have therefaradan easy way to extend their
applicability to the problem of Multiple Kernel Learning. Also, if the kernels eomputed on-the-

fly within the SVM still only a single kernel cache is required. The wrapjgrithm is very easy to
implement, very generic and already reasonably fast for small to mediurprsizkems. However,
determininga up to a fixed high precision even for intermediate solutions, whikestill far away

from the global optimal is unnecessarily costly. Thus there is room for ingonent motivating the
next section.

2.3.2 A CHUNKING ALGORITHM FOR SIMULTANEOUS OPTIMIZATION OF O AND 3

The goal is to simultaneously optimizeand in SVM training. Usually it is infeasible to use stan-
dard optimization tools (e.g. MINOS, CPLEX, LOQO) for solving even$wM trainingproblems

on data sets containing more than a few thousand examples. So-called dsitmmpechniques as
chunking (e.g. used in Joachims, 1998) overcome this limitation by exploiting doga$gtructure

of the SVM problem. The key idea of decomposition is to freeze all but a smaaiber of opti-
mization variablesworking se} and to solve a sequence of constant-size problems (subproblems of
the SVM dual).

Here we would like to propose an extension of the chunking algorithm to optitinéz&ernel
weightsf3 and the example weights at the same time. The algorithm is motivated from an insuf-
ficiency of the wrapper algorithm described in the previous section: IBthare not optimal yet,
then the optimization of tha’s until optimality is not necessary and therefore inefficient. It would
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Algorithm 1 The MKL-wrapper algorithm optimizes a convex combinatiorkokernels and em-
ploys a linear programming solver to iteratively solve the semi-infinite linear optimizptiablem
(12). The accuracy parametiix . is a parameter of the algorithrB(a) and¢ are determined by
the cost function.

P=1,0= -0, Bl =% fork=1,....K

fort=1,2,...do

K
Computea! = argmlnz BLSk(a) by single kernel algorithm witk = > Bikk
=1

aec k=

S = z BiS., whereS, = Sc(at
=}

; < emkL then break

(B'1,81) = argmax6
wrt. BeRK,0 e R

st.  0<pB, ZBk—landZBkS<>eforr_1

end for

if |1—

be considerably faster if for any newly obtainedn the chunking iterations, we could efficiently
recompute the optimfd and then continue optimizing thes using the new kernel weighting.

Intermediate Recomputation of 3 Recomputing involves solving a linear program and the
problem grows with each additionatinduced constraint. Hence, after many iterations solving
the LP may become infeasible. Fortunately, there are two facts making it stdibpeis(a) only
a small number of the added constraints remain active and one may as welkraractive ones
— this prevents the LP from growing arbitrarily and (b) for Simplex-basBdptimizers such as
CPLEX there exists the so-calldwt-start featurevhich allows one to efficiently recompute the new
solution, if for instance only a few additional constraints are added.

The SVMi9t optimizer which we are going to modify, internally needs the output

N
z iyik(xi,x

for all training exampleg=1, ..., N in order to select the next variables for optimization (Joachims,
1999). However, if one changes the kernel weights, then the stpreadues become invalid and
need to be recomputed. In order to avoid the full recomputation one haditmadlly store &K x N
matrixgyi = zlj\l:lajyjkk(Xi ,Xj), i.e. the outputs for each kernel separately. Ifilsechange, theg;”
can be quite efficiently recomputed gy= 5 Bx0k;. We implemented the final chunking algorithm
for the MKL regression and classification case and display the latter in itigog.

2.3.3 DscussION

The Wrapper as well as the chunking algorithm have both their merits: Tia@pr algorithm
only relies on the repeated efficient computation of the single kernel solditiowhich typically
large scale algorithms exist. The chunking algorithm is faster, since it expieiistermediater’s

— however, it needs to compute and cacheKhkernels separately (particularly important when
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Algorithm 2 Outline of the MKL-chunking algorithm for the classification case (extenstn
SvMlight) that optimizesa and the kernel weightin@ simultaneously. The accuracy parameter
emkL and the subproblem siZ@ are assumed to be given to the algorithm. For simplicity we omit
the removal of inactive constraints. Also note that from one iteration to tkigtlme LP only differs
by one additional constraint. This can usually be exploited to save computindgdireelving the
LP.
Oki=0,G:=0,0i=0,Bt = % fork=1,....Kandi=1,...,N
fort=212...do
Check optimality conditions and stop if optimal
selléact Q suboptimal variablés . .., ig based or§ anda
a%=q
solve SVM dual with respect to the selected variables andtgod
Oki = ki + Z(?Zl(diq — O(?q'd)yiqkk(xiq,xi) forallk=1,...,Mandi=1,...,N
fork=1,...,Kdo
=32 Gralyr — 3, f
end for
S =3RS
if ’l— g" > EMKL
(B"1,6t+1) = argmax®

wrt.BcRK BeR
st 0<B, SkBv=1landyM BS >06forr=1,...,t

else
o+l — gt
end if
G = SkBL ok foralli=1,...,N
end for

N is large). If, on the other hand is large, then the amount of memory available for caching
is drastically reduced and, hence, kernel caching is not effectymare. The same statements
also apply to the SMO-like MKL algorithm proposed in Bach et al. (2004this case one is left
with the Wrapper algorithm, unless one is able to exploit properties of the ylartfgroblem or the
sub-kernels (see next section).

3. Sparse Feature Maps and Parallel Computations

In this section we discuss two strategies to accelerate SVM training. Firsbmsder the case
where the explicit mappin@ into the kernel feature space is known as well as sparse. For this case
we show that MKL training (and also SVM training in general) can be madstidedly faster, in
particular, wherN andK are large. In the second part we discuss a simple, yet efficient way to
parallelize MKL as well as SVM training.

3.1 Explicit Computations with Sparse Feature Maps

We assume that all sub-kernels are given as
Ki(X,X) = (®(x), Pk(X'))
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and the mapping®y are given explicitly k= 1,...,K). Moreover, we suppose that the mapped
examples®y(x) are very sparse. We start by giving examples of such kernels andsdiseo
kernels that are often used in biological sequence analysis (Section. 3ld.$ection 3.1.2 we
discuss several strategies for efficiently storing and computing with highhgimreal sparse vectors
(in particular for these two kernels). Finally in Section 3.1.3 we discuss hewam exploit these
properties to accelerate chunking algorithms, such as'8YMby a factor of up taQ (the chunking
subproblem size).

3.1.1 SRING KERNELS

The Spectrum Kernel The spectrum kernel (Leslie et al., 2002) implementsrigegam or bag-
of-words kernel (Joachims, 1998) as originally defined for text @laason in the context of bio-
logical sequence analysis. The idea is to count how oftgmeer (a contiguous string of lengt)

is contained in the sequenceandx’. Summing up the product of these counts for every possible
d-mer (note that there are exponentially many) gives rise to the kernel waiich formally is de-
fined as follows: Le& be an alphabet ande =9 ad-mer and #(x) the number of occurrences of
uin x. Then the spectrum kernel is defined as the inner productok’) = (P(x), P(x')), where
®(x) = (#u(X)),esa. Note that spectrum-like kernels cannot extract any positional informatan
the sequence which goes beyond dhmer length. It is well suited for describing the content of a
sequence but is less suitable for instance for analyzing signals where matifappear in a cer-
tain order or at specific positions. Also note that spectrum-like kernelsagable of dealing with
sequences with varying length.

The spectrum kernel can be efficiently computedifd(|x| + |X'|)) using tries (Leslie et al.,
2002), whergx| denotes the length of sequenceAn easier way to compute the kernel for two
sequencex andx’ is to separately extract and sort tNed-mers in each sequence, which can be
done in a preprocessing step. Note that for instance bON#ers of lengthd < 16 can be efficiently
represented as a 32-bit integer value. Then one iterates ovefnadlrs of sequences and x’/
simultaneously and counts whidhmers appear in both sequences and sums up the product of their
counts. The computational complexity of the kernel computatian(ieg(|Z|)d(|x| + [X'|)).

The Weighted Degree Kernel The so-calledveighted degre@VD) kernel (Ratsch and Sonnenburg,
2004) efficiently computes similarities between sequences while taking posititsranation ofk-
mers into account. The main idea of the WD kernel is to count the (exacy@oences ok-mers

at corresponding positions in the two sequences to be comparedVDheernel of order ccom-
pares two sequencgsandx; of lengthL by summing all contributions d¢mer matches of lengths
ke {1,...,d}, weighted by coefficientBy:

L—k+1

k(xi,X ZBk Z (Uil (X)) = Uil (Xj)). (14)

Here,ui (X) is the string of lengtlk starting at positiot of the sequence and |-) is the indicator
function which evaluates to 1 when its argumentrige and to 0 otherwise. For the weighting
coefficients, Ratsch and Sonnenburg (2004) proposed tﬂkuséd kil ‘Matching substrings are

d+1)
thus rewarded with a score depending on the length of the suﬁétrmg

5. Note that although in our caBg, 1 < Bk, longer matches nevertheless contribute more strongly than shortertbise
is due to the fact that each long match also implies several short maacliisg to the value of (14). Exploiting this
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Note that the WD kernel can be understood as a Spectrum kernel thiedeaners starting at
different positions are treated independently of each Gthdioreover, it does not only consider
substrings of length exactlgl, but also all shorter matches. Hence, the feature space for each

position hasz‘kal |Z|k = \z||;|+7i11 — 1 dimensions and is additionally duplicatedimes (leading to

o(L|z|9) dimensions). However, the computational complexity of the WD kernel is in thrstw
caseo(dL) as can be directly seen from (14).

3.1.2 BFICIENT STORAGE OFSPARSEWEIGHTS

The considered string kernels correspond to a feature space thaedarge. For instance in the
case of the WD kernel on DNA sequences of length 100 itk 20, the corresponding feature
space is 18 dimensional. However, most dimensions in the feature space are notinseasly

a few of the many differenk-mers actually appear in the sequences. In this section we briefly
discuss three methods to efficiently deal with sparse vegtdfge assume that the elements of the
vectorv are indexed by some index set(for sequences, e.gi = 29) and that we only need three
operationscl ear, add andl ookup. The first operation sets the vectoto zero, theadd operation
increases the weight of a dimension for an elemeatu by some amount, i.e.v, = v, +a and

| ookup requests the valug,. The latter two operations need to be performed as quickly as possible
(whereas the performance of theokup operation is of higher importance).

Explicit Map  If the dimensionality of the feature space is small enough, then one mighteons
keeping the whole vectarin memory and to perform direct operations on its elements. Then each
read or write operation is(l)m This approach has expensive memory requirement(®)), but

is very fast and best suited for instance for the Spectrum kernel gh€eijuences witld < 14 and

on protein sequences with< 6.

Sorted Arrays More memory efficient but computationally more expensive are sorteysanfa
index-value pairgu,v,). Assuming thel indexes are given and sorted in advance, one can effi-
ciently change or look up a singlg for a corresponding by employing a binary search procedure
(o(log(L))). When givenL’ look up indexes at once, one may sort them in advance and then si-
multaneously traverse the two arrays in order to determine which elementr apiee first array
(i.e.o(L+L') operations — omitting the sorting of the second array — insteadlof(L)L’)). This
method is well suited for cases whdreandL’ are of comparable size, as for instance for compu-
tations of single Spectrum kernel elements (as proposed in Leslie et at), 20Q > L', then the
binary search procedure should be preferred.

Tries Another way of organizing the non-zero elementstaes (Fredkin, 1960): The idea is to
use a tree with at mo$X| siblings of depttd. The leaves store a single value: the elenvgnivhere
u e X% is ad-mer and the path to the leaf corresponda.to

knowledge allows for @ (L) reformulation of the kernel using “block-weights” as has been donetim&nburg et al.
(2005b).

6. It therefore is very position dependent and does not tolerate aiygmal “shift”. For that reason we proposed in
Ratsch et al. (2005) a WD kernefth shifts which tolerates a small number of shifts, that lies in between the WD
and the Spectrum kernel.

7. More precisely, it is lod, but for small enoughl (which we have to assume anyway) the computational effort is
exactly one memory access.
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To add or | ookup an element one only needsoperations to reach a leaf of the tree (and to
create necessary nodes on the way iradeh operation). Note that the worst-case computational
complexity of the operations is independent of the numbek-wfers/elements stored in the tree.

While tries are not faster thaorted arraysn | ookup and need considerably more storage (e.g.
for pointers to its parent and siblings), they are useful for the preljialiscussed WD kernel. Here
we not only have to lookup one substringe =9, but also all prefixes ofi. For sorted arraysthis
amounts tad separaté ookup operations, while for tries all prefixes afare already known when
the bottom of the tree is reached. In this case the trie has to store weights dteoioternal nodes.
This is illustrated for the WD kernel in Figure 1.

A

G

A
o
b b b

a1 2 a3

a1 + Q9

Figure 1: Three sequences AAA, AGA, GAA with weiglits, o, & a3 are added to the trie. The
figure displays the resulting weights at the nodes.

3.1.3 SPEEDINGUP SVM TRAINING

As it is not feasible to use standard optimization toolboxes for solving largle VM train-
ing problem, decomposition techniques are used in practice. Most chuakjogthms work by
first selectingQ variables (working setV C {1,...,N}, Q:= |W|) based on the current solution
and then solve the reduced problem with respect to the working set learialbhese two steps
are repeated until some optimality conditions are satisfied (see e.g. Joackig®)(1For se-
lecting the working set and checking the termination criteria in each iterationjettter g with

g = z,j\lzlajyjk(Xi,Xj), i=1,...,Nis usually needed. Computirggfrom scratch in every iter-
ation which would require (N?) kernel computations. To avoid recomputatiorgadne typically
starts withg = 0 and only computes updatesgbn the working setV

g — o+ Z\/(Gj —a%hyik(x,x)), Vi=1,...,N.
IG
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As a result the effort decreasesa@QN) kernel computations, which can be further speed up by
using kernel caching (e.g. Joachims, 1998). However kernel aadhinot efficient enough for
large scale probleﬂﬁs&nd thus most time is spend computing kernel rows for the updatg®iof
the working seWW. Note however that this update as well as computingQHesrnel rows can be
easily parallelized; cf. Section 4.2.1.

Exploiting K (i, Xj) = (®(xi), ®(xj)) andw = 3N ; ajyi®(x;) we can rewrite the update rule as

g — o'+ -Zv(aj — a9y (D(x), D(x))) = g + (W, D(x1)), (15)
j€

wherew = Yjew(aj— O(‘J?'d)yj(D(xj) is the normal (update) vector on the working set.

If the kernel feature map can be computed explicitly and is sparse (asséstbefore), then
computing the update in (15) can be accelerated. One only needs to comgsi®aew"’ (using
thecl ear andy qew |{®j(Xq) # 0}| add operations) and performing the scalar produet, ®(x;))
(using|{®;(xi) # 0}| | ookup operations).

Depending on the kernel, the way the sparse vectors are stored $Sectibar®in the sparse-
ness of the feature vectors, the speedup can be quite drastic. Focen&tathe WD kernel one
kernel computation requires(Ld) operationsl( is the length of the sequence). Hence, computing
(15) N times requires NQLd) operations. When using tries, then one ne®lsadd operations
(eacho(d)) andNL | ookup operations (eackr (d)). Therefore onlyo (QLd+ NLd) basic opera-
tions are needed in total. Whéhis large enough it leads to a speedup by a fact@.dfinally note
that kernel caching is no longer required andds small in practice (e.dQ = 42) the resulting trie
has rather few leaves and thus only needs little storage.

The pseudo-code of olif nadd SVM chunking algorithm is given in Algorithm 3.

Algorithm 3 OQutline of the chunking algorithm that exploits the fast computations of lingabco
nations of kernels (e.g. by tries).
{INITIALIZATION}
g=0,a0=0fori=1...,N
{LOOP UNTIL CONVERGENCE}
fort=1,2,...do
Check optimality conditions and stop if optimal
select working set W based granda, storea®? = o
solve reduced probleiV and updatex

clear w

W —w+ (aj — a®?)y;®(x;) for all j € W (usingadd)

updateg; = g; + (W, ®(x;)) foralli=1,...,N (usingl ookup)
end for

MKL Case As elaborated in Section 2.3.2 and Algorithm 2, for MKL one stdfesectors
Ok, k=1,...,K: one for each kernel in order to avoid full recomputatiof dfa kernel weigh3y
is updated. Thus to use the idea above in Algorithm 2 all one has to do is td<stamemal vectors

8. For instance when using a million examples one can only fit 268 rows i@B.1Moreover, caching 268 rows is
insufficient when for instance having many thousands of active Vagab
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(e.g. tries)
Wi = 3 (@ - yoe), k=1, K
j€

which are then used to update tie< N matrix g = g + (W)Y, @k (xi)) (for all k=1...K and
i =1...N) by whichdi = 3 Bkoki, (for alli = 1...N) is computed.

3.2 A Simple Parallel Chunking Algorithm

As still most time is spent in evaluatirgix) for all training examples further speedups are gained
when parallelizing the evaluation gfx). When using the i nadd algorithm, one first constructs
the trie (or any of the other possible more appropriate data structureshemgerforms parallel
| ookup operations using several CPUs (e.g. using shared memory or segpies ©f the data
structure on separate computing nodes). We have implemented this algorikch dra multiple
threads(using shared memory) and gain reasonable speedups (see next)sectio

Note that this part of the computations is almost ideal to distribute to many CPdg|yathe
updatedx (or w depending on the communication costs and size) have to be transfereg éadb
CPU computes a large chuhkc {1,...,N} of
h = (w,®(x)), Viel, vk=1,...,N, where(lyU---Uly) = (1,...,N)

which is transfered to a master node that finally compgtesg+ h, as illustrated in Algorithm 4.

4. Results and Discussion

In the following subsections we will first apply multiple kernel learning to klemge discovery
tasks, demonstrating that it can be used for automated model selection atetpeeinthe learned
model (Section 4.1), followed by a benchmark comparing the running time¥kfsSnd MKL
using any of the proposed algorithmic optimizations (Section 4.2).

4.1 MKL for Knowledge Discovery

In this section we will discuss toy examples for binary classification aneéssgm, showing that
MKL can recover information about the problem at hand, followed byief lbeview on problems
for which MKL has been successfully used.

4.1.1 Q.ASSIFICATION

The first example we deal with is a binary classification problem. The task isparate two
concentric classes shaped like the outline of stars. By varying the didiatween the boundary of
the stars we can control the separability of the problem. Starting with a nuawmed#e scenario with
zero distance, the data quickly becomes separable as the distance bibsvstms increases, and
the boundary needed for separation will gradually tend towards a cirtleigure! 2 three scatter
plots of data sets with varied separation distances are displayed.

We generate several training and test sets for a wide range of dis@@neeadius of the inner
star is fixed at 4, the outer stars radius is varied froni4.9.9). Each data set contains 2,000
observations (1,000 positive and 1,000 negative) using a moderatdenab@Gaussian noise with
zero mean and standard deviation 0.3). The MKL-SVM was trained foeréifit values of the
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Algorithm 4 Outline of the parallel chunking algorithm that exploits the fast computatiolhsezr
combinations of kernels.
{ Master node}
{INITIALIZATION}
g=0,a=0fori=1,...,N
{LOOP UNTIL CONVERGENCE}
fort=1,2,...do
Check optimality conditions and stop if optimal
select working set W based granda, storea®? = o
solve reduced probleiv and updatex
transfer to Slave nodest; — a9 for all j e W

fetch fromn Slave nodesh = (h®W, ... h("M)
updateg =g+ hjforalli=1,...,N
end for

signal convergence to slave nodes

{ Slave nodeg
{LOOP UNTIL CONVERGENCE}
while not convergedio
fetch from Master node; —a®'® for all j € W
clear w
W — W+ (aj — a®?)y;d(x;) for all j € W (usingadd)
nodek computeshi(k) = (W, D(X;))
foralli= (k—1)N,....kN —1 (usingl ookup)
transfer to masteh®)
end while

regularization paramet€&, where we setyk. = 10~2. For every value o€ we averaged the test
errors of all setups and choose the valu€dlhat led to the smallest overall err@@ & O.5)E

The choice of the kernel width of the Gaussian RBF (below, denoted Wy) RBrnel used
for classification is expected to depend on the separation distance of thindgeproblem: An
increased distance between the stars will correspond to a larger optimal kédth. This effect
should be visible in the results of the MKL, where we used MKL-SVMs with REBF kernels with
different widths (2 € {0.01,0.1,1,10,100}). In Figure 2 we show the obtained kernel weightings
for the five kernels and the test error (circled line) which quickly dropgeim as the problem
becomes separable. Every column shows one MKL-SVM weighting. Theses of the kernel
weightings reflect the development of the learning problem: as long asdb&epr is difficult the
best separation can be obtained when using the kernel with smallest witthowW width kernel
looses importance when the distance between the stars increases ankdargkwidths obtain a
larger weight in MKL. Increasing the distance between the stars, kewigdgreater widths are
used. Note that the RBF kernel with largest width was not appropriatéhaischever chosen. This
illustrates that MKL can indeed recover information about the structuresdetirning problem.

9. Note that we are aware of the fact that the test error might be slighdlgrastimated.
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Figure 2: A 2-class toy problem where the dark gray (or green) stasshlape is to be distinguished
from the light gray (or red) star inside of the dark gray star. The disthrtween the dark
star-like shape and the light star increases from the left to the right.

4.1.2 REGRESSION

We applied the newly derived MKL support vector regression formulatighe task of learning a
sine function using three RBF-kernels with different widths{2 {0.005,0.05,0.5,1,10}). To this
end, we generated several data sets with increasing frequency ofélveasre. The sample size was
chosen to be 1,000. Analogous to the procedure described aboveoasectine value of = 10,
minimizing the overall test error. In Figure 3 exemplarily three sine wavedepited, where the
frequency increases from left to right. For every frequency the coaabweights for each kernel
width are shown. One can see that MKL-SV regression switches to the wfidiie RBF-kernel
fitting the regression problem best.

In another regression experiment, we combined a linear function with twovwanes, one
of lower frequency and one of high frequency, iféx) = sin(ax) + sin(bx) 4+ cx. Furthermore we
increase the frequency of the higher frequency sine wave, i.e. wegledeavingb andc unchanged.
The MKL weighting should show a combination of different kernels. UsingR8F-kernels of
different width (see Figure/4) we trained a MKL-SVR and display the ledineights (a column
in the figure). Again the sample size is 1,000 and one valu€fer5 is chosen via a previous
experiment §uk. = 107°). The largest selected width (100) models the linear component (since
RBF kernels with large widths are effectively linear) and the medium widthcétdesponds to
the lower frequency sine. We varied the frequency of the high freryusime wave from low to
high (left to right in the figure). One observes that MKL determines amagjate combination of
kernels of low and high widths, while decreasing the RBF kernel width witreamed frequency.
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Figure 3: MKL-Support Vector Regression for the task of learning a siave (please see text for
details).

Additionally one can observe that MKL leads togparse solutions since rhtrst &ernel weights
in Figure 4 are depicted in blue, that is they are Zé€ro.

4.1.3 REAL WORLD APPLICATIONS IN BIOINFORMATICS

MKL has been successfully used on real-world data sets in the field of wWatignal biology
(Lanckriet et al., 2004; Sonnenburg et al., 2005a). It was shown toowepclassification perfor-
mance on the task of ribosomal and membrane protein prediction (Landkailet 2004), where a
weighting over different kernels each corresponding to a differemtiufe set was learned. In their
result, the included random channels obtained low kernel weights. Howay the data sets was
rather small£& 1,000 examples) the kernel matrices could be precomputed and simultanespisly k
in memory, which was not possible in Sonnenburg et al. (2005a), wiegrleca site recognition task
for the wormC. elegansvas considered. Here data is available in abundance (up to one million ex-
amples) and larger amounts are indeed needed to obtain state of the lést(®sunenburg et al.,
2005b)! On that data set we were able to solve the classification MKL SILRfer 1,000 000
examples an&k = 20 kernels, as well as fod = 10,000 examples an = 550 kernels, using the
| i nadd optimizations with the weighted degree kernel. As a result we a) were ablertotliea
weighting instead of choosing a heuristic and b) were able to use MKL as a tool fopieteng
the SVM classifier as in Sonnenburg et al. (2005a); Rétsch et al.)Y2005

As an example we learned the weighting of a WD kernel of degree 20, vduiohist of a
weighted sum of 20 sub-kernels each counting matckimgers, ford = 1,...,20. The learned

10. The training time for MKL-SVR in this setup but with 10,000 examples alasut 40 minutes, when kernel caches
of size 100MB are used.

11. In Sectioh 4.2 we will use lBumansplice data set containing 15 million examples, and train WD kernel basiktl SV
classifiers on up to 10 million examples using the parallelizethdd algorithm.
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Figure 4: MKL support vector regression on a linear combination of thueetions: f(x) =
sin(ax) + sin(bx) + cx. MKL recovers that the original function is a combination of func-
tions of low and high complexity. For more details see text.
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Figure 5: The learned WD kernel weighting on a million of examples.

weighting is displayed in Figure 5 and shows a peak for 6-mers and 9&1Q-ihsh®uld be noted
that the obtained weighting in this experiment is only partially useful for ingdgpion. In the case
of splice site detection, it is unlikely thtmers of length 9 or 10 are playing the most important
role. More likely to be important are substrings of length up to six. We belieatdlle large weights
for the longesk-mers are an artifact which comes from the fact that we are combininglkasith
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quite different properties, i.e. the 9th and 10th kernel leads to a combaradlkmatrix that is most
diagonally dominant (since the sequences are only similar to themselved bubtiter sequences),
which we believe is the reason for having a large Wé@ht.

In the following example we consider one weight per position. In this casedimined ker-
nels are more similar to each other and we expect more interpretable resglise/ & shows an
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0.045 |- B

o

o)

Y
T

o}
o
@
o
T

o

o}

@
T

kernel weight
o
o
o

-50 —-40 —-30 -20 —-10 Exon +10 +20 +30 +40 +50
Start
position relative to the exon start

Figure 6: The figure shows an importance weighting for each position inf& €quence (around
a so called splice site). MKL was used to determine these weights, eachpmrding
to a sub-kernel which uses information at that position to discriminate splicefsi®a
non-splice sites. Different peaks correspond to different biologi¢altyvn signals (see
text for details). We used 65,000 examples for training with 54 sub-kernels

importance weighting for each position in a DNA sequence (around a sd ealéeptor splice site,
the start of an exon). We used MKL on 65,000 examples to compute thesei§Htsy each cor-
responding to a sub-kernel which uses information at that position tardisate true splice sites
from fake ones. We repeated that experiment on ten bootstrap rune data set. We can iden-
tify several interesting regions that we can match to current biologicatleage about splice site
recognition: a) The regior-50 nucleotides (nt) te-40nt, which corresponds to the donor splice
site of the previous exon (many introns@ elegansre very short, often only 50nt), b) the region
—25nt to—15nt that coincides with the location of the branch point, c) the intronic regjmsest
to the splice site with greatest weight&nt to —1nt; the weights for théG dimer are zero, since
it appears in splice sites and decoys) and d) the exonic region (Gr@at). Slightly surprising
are the high weights in the exonic region, which we suspect only model tfiplgtiencies. The

12. This problem might be partially alleviated by including the identity matrix in thavex combination. However as
2-norm soft margin SVMs can be implemented by adding a constant téatherdhl of the kernel (Cortes and Vapnik,
1995), this leads to an additional 2-norm penalization.
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decay of the weights seen fro#il5nt to+45nt might be explained by the fact that not all exons are
actually long enough. Furthermore, since the sequence ends in ouatcagéent, the decay after
+45ntis an edge effect as longer substrings cannot be matched.

4.2 Benchmarking the Algorithms

Experimental Setup To demonstrate the effect of the several proposed algorithmic optimiza-
tions, namely thé i nadd SVM training (Algorithm[3) and for MKL the SILP formulation with
and without thd i nadd extension for single, four and eight CPUs, we applied each of the algo-
rithms to ahumansplice site data s@ comparing it to the original WD formulation and the case
where the weighting coefficients were learned using multiple kernel learfihg splice data set
contains 159,771 true acceptor splice site sequences and 14,868,8%5,deading to a total of
15,028,326 sequences each 141 base pairs in length. It was geffieltateitig a procedure similar

to the one in Sonnenburg et al. (2005a) relegansvhich however contained “only” 1,026,036
examples. Note that the data set is very unbalanced .&4%8of the examples are negatively la-
beled. We are using this data set in all benchmark experiments and traikdd)@®¥Ms using

the SHOGUN machine learning toolbox which contains a modified version of $¥MJoachims,
1999) on 500, 1000, 5000, 10000, 30000, 50000, 100000, 200000, 500000, 1,000,000,
2,000 000, 5000,000 and 10000,000 randomly sub-sampled examples and measured the time
needed in SVM training. For classification performance evaluation weyalwase the same re-
maining 5,028,326 examples as a test data set. We set the degree paramhete2Gdor the WD
kernel and tad = 8 for the spectrum kernel fixing the SVMs regularization paramet€’ t05.
Thus in the MKL case als& = 20 sub-kernels were used. SV’s subproblem size (parameter
gpsi ze), convergence criterion (parametgrsi | on) and MKL convergence criterion were set to
Q=112 esym= 1072 andeyx. = 107>, respectively. A kernel cache of 1GB was used for all
kernels except the precomputed kernel and algorithms using tteeld-SMO extension for which

the kernel-cache was disabled. Later on we measure whether changiggatiratic subproblem
size Q influences SVM training time. Experiments were performed on a PC powsreazight
2.4GHz AMD Opteron(tm) processors running Linux. We measured thearngaiime for each of

the algorithms (single, quad or eight CPU version) and data set sizes.

4.2.1 BENCHMARKING SVM

The obtained training times for the different SVM algorithms are displayedbiteThand in Figure
7\ First, SVMs were trained using standard S@Mwith the Weighted Degree Kernel precomputed
(WDPr@, the standard WD kernelWD1) and the precomputedspecPripand standard spectrum
kernel (Sped. Then SVMs utilizing thd i nadd extensio were trained using the WOL(hWD)
and spectruml(inSpeg kernel. Finally SVMs were trained on four and eight CPUs using the
parallel version of the i nadd algorithm LinWD4, LinWD8). WD4 and WD8 demonstrate the
effect of a simple parallelization strategy where the computation of kel and updates on the
working set are parallelized, which works wlnykernel.

The training times obtained when precomputing the kernel matrix (which inclidetme
needed to precompute the full kernel matrix) is lower when no more tHz@0lexamples are used.

13. The splice data set can be downloaded fhoirp: // www. f i . t uebi ngen. npg. de/ raet sch/ proj ects/ | snkl .
14. More precisely théi nadd ando (L) block formulation of the WD kernel as proposed in Sonnenburg et @0512)
was used.
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Note that this is a direct cause of the relatively large subproblem@izell2. The picture is
different for, say,Q = 42 (data not shown) where th&DPretraining time is in all cases larger
than the times obtained using the original WD kernel demonstrating the eéfieetis of SVNP"'s
kernel cache. The overhead of constructing a tri€@cea 112 examples becomes even more visible:
only starting from 50,000 examplésnadd optimization becomes more efficient than the original
WD kernel algorithm as the kernel cache cannot hold all kernel eleraeyteore,@ Thus it would

be appropriate to lower the chunking siQes can be seen in Table 3.

Thel i nadd formulation outperforms the original WD kernel by a factor o® ®n a million
examples. The picture is similar for the spectrum kernel, here speeddiastaf 64 on 500000
examples are reached which stems from the fact that explicit maps (aridesoas in the WD
kernel case) as discussed in Section 3.1.2 could be used leadingb&w cost of o (1) and a
dramatically reduced map construction time. For that reason the paralleliz&tdrbenefits the
WD kernel more than the Spectrum kernel: on one million examples the paraltsiiassing 4
CPUs (8 CPUs) leads to a speedup of fact@b3542) for the WD kernel, but only .87 (197) for
the Spectrum kernel. Thus parallelization will help more if the kernel computegisiow. Training
with the original WD kernel with a sample size of0D0,000 takes about 28 hours, thenadd
version still requires 7 hours while with the 8 CPU parallel implementation onlyte®bours and
in conjunction with the i nadd optimization a single hour and 20 minutes are needed. Finally,
training on 10 million examples takes about 4 days. Note that this data set idyaR&&B in size.

Classification Performance Figure 8 and Table|2 show the classification performance in terms of
classification accuracy, area under the Receiver Operator ChisactdgROC) Curve (Metz, 1978;
Fawcett, 2003) and the area under the Precision Recall Curve (P& @ Davis and Goadrich
(2006)) of SVMs on the human splice data set for different data set sgiag the WD kernel.

Recall the definition of the ROC and PRC curves: The sensitivity (or reisalilefined as
the fraction of correctly classified positive examples among the total nunibgositive exam-
ples, i.e. it equals the true positive raft®R= TP/(TP+ FN). Analogously, the fractioff PR=
FP/(TN+ FP) of negative examples wrongly classified positive is called the false positiee
Plotting FPR against TPR results in the Receiver Operator Characteristie (ROC) Metz (1978);
Fawcett (2003). Plotting the true positive rate against the positive presliciue (also precision)
PPV=TP/(FP+TP),i.e.the fraction of correct positive predictions among all positively jsted
examples, one obtains the Precision Recall Curve (PRC) (see e.g. bdvioadrich (2006)). Note
that as this is a very unbalanced data set the accuracy and the are#&end®C curve are almost
meaningless, since both measures are independent of class ratios. Ereemsible auPRC, how-
ever, steadily increases as more training examples are used for ledrhirggone should train using
all available data to obtain state-of-the-art results.

Varying SVM"9"ts qpsi ze parameter As discussed in Section 3.1.3 and Algorithm 3, using the
| i nadd algorithm for computing the output for all training examples w.r.t. to some workatgan

be speed up by a factor gf(i.e. the size of the quadratic subproblems, teroped ze in SYMIgt),
However, there is a trade-off in choosi@as solving larger quadratic subproblems is expensive
(quadratic to cubic effort). Table 3 shows the dependence of the compirtiagrom Q andN.

For example the gain in speed between choo§ing 12 andQ = 42 for 1 million of examples is
54% Sticking with a mid-rang&) (hereQ = 42) seems to be a good idea for this task. However,

15. When single precision 4-byte floating point numbers are usedincpalh kernel elements is possible when training
with up to 16384 examples
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Figure 7: Comparison of the running time of the different SVM training algorghusing the
weighted degree kernel. Note that as this is a log-log plot small appeariagcks are
large for largeN and that each slope corresponds to a different exponent. In the uppe
figure the Weighted Degree kernel training times are measured, the lowes ficgplays
Spectrum kernel training times.

a large variance can be observed, as the SVM training time depends te &xegd on whiclQ
variables are selected in each optimization step. For example on the ri€ladémansplice data
setQ = 141 was optimal for large sample sizes while a midra@Qge 71 lead to the overall best

1554



LARGE SCALE MKL

| N [ WDPre[ WD1| wD4| WD8] LinWD1 | LinWD4 | LinWD8 |

500 12 17 17 17 83 83 80

1,000 13 17 17 17 83 78 75
5,000 40 28 23 22 105 82 80
10,000 102 a7 31 30 134 90 87
30,000 636 195 92 90 266 139 116
50,000 - 441 197 196 389 179 139
100,000 - 1,794 708 557 740 294 212
200,000 - 5,153 1,915| 1,380 1,631 569 379
500,000 -| 31,320| 10,749| 7,588 7,757 2,498 1,544
1,000,000 - | 102,384 | 33,432| 23,127 26,190 8,053 4,835
2,000,000 - - - - - - 14,493
5,000,000 - - - - - - 95,518
10,000,000 - - - - - - | 353,227

] N [| SpecPrd  Spec| LinSpecl| LinSpec4| LinSpec8|

500 1 1 1 1 1
1,000 2 2 1 1 1
5,000 52 30 19 21 21

10,000 136 68 24 23 24
30,000 957 315 36 32 32
50,000 - 733 54 47 46
100,000 -| 3,127 107 75 74
200,000 - | 11,564 312 192 185
500,000 - | 91,075 1,420 809 728
1,000,000 - - 7,676 4,607 3,894

Table 1: (top) Speed Comparison of the original single CPU Weighted Degree Kerngithlgo
(WD1) in SVM'9" training, compared to the fout{D4)and eight WD8) CPUs par-
allelized version, the precomputed version (Pre) and thadd extension used in con-
junction with the original WD kernel for 1,4 and 8 CPUS{WD1, LinWD4, LinWDS8).
(bottom) Speed Comparison of the spectrum kernel with@mgg and withl i nadd (Lin-
Specl, LinSpec4, LinSpecBing 1,4 and 8 processor§gpecPrelenotes the precomputed
version. The first column shows the sample dizef the data set used in SVM training

while the following columns display the time (measured in seconds) needed iaithiadr
phase.

performance. Nevertheless, one observes the trend that for laagendr set sizes slightly larger
subproblems sizes decrease the SVM training time.
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Figure 8: Comparison of the classification performance of the WeighteteBégrnel based SVM
classifier for different training set sizes. The area under the Rec@perator Charac-
teristic (ROC) Curve, the area under the Precision Recall Curve (PR@keH as the
classification accuracy are displayed (in percent). Note that as this iy anealanced
data set, the accuracy and the area under the ROC curve are less rmugdmamthe area
under the PRC.

4.2.2 BENCHMARKING MKL

The WD kernel of degree 20 consist of a weighted sum of 20 subeleeach counting matchinly
mers, ford = 1,...,20. Using MKL we learned the weighting on the splice site recognition task for
one million examples as displayed in Figure 5 and discussed in Section 4.1u&irkgpon a speed
comparison we now show the obtained training times for the different MKLrikgons applied
to learning weightings of the WD kernel on the splice site classification taskdoTso, several
MKL-SVMs were trained using precomputed kernel matricBse(MKL), kernel matrices which
are computed on the fly employing kernel cachifgK @), MKL using thel i nadd extension
(LinMKL1) andl i nadd with its parallel implementation (LinMKL4 andLinMKL8 - on 4 and 8
CPUs). The results are displayed in Table 4 and in Figure 9. While predomgkernel matrices
seems beneficial, it cannot be applied to large scale cases>(.g.000 examples) due to the
0 (KN?) memory constraints of storing the kernel matr@@n-the-ﬂy-com utation of the kernel
matrices is computationally extremely demanding, but since kernel cachmagsed, it is still
possible on 50,000 examples in about 57 hours. Note that no WD-kgrefis optimizations are
involved here, so one expects a similar result for arbitrary kernels.

16. Algorithm 2.

17. Algorithm 2 with thd i nadd extensions including parallelization of Algorithim 4.

18. Using 20 kernels on 10,000 examples requires already 7.5G80,000 examples 67GB would be required (both
using single precision floats).

19. Each kernel has a cache of 1GB.
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] N [| Accuracy| auROC| auPRC]|

500 98.93| 75.61 3.97
1,000 98.93| 79.70 6.12
5,000 98.93| 90.38| 14.66

10,000 98.93| 92.79| 24.95
30,000 98.93| 94.73| 34.17
50,000 98.94| 95.48| 40.35
100,000 98.98| 96.13| 47.11
200,000 99.05| 96.58| 52.70
500,000 99.14| 96.93| 58.62
1,000,000 99.21| 97.20| 62.80
2,000,000 99.26| 97.36| 65.83
5,000,000 99.31| 97.52| 68.76
10,000,000 99.35| 97.64| 70.57

110,000,000 - | 9603 | 44.64" |

Table 2: Comparison of the classification performance of the WeighteceBégrnel based SVM
classifier for different training set sizes. The area under the RO& ¢atROQ, the area
under the Precision Recall CunauPRG as well as the classification accura@cturacy
are displayed (in percent). Larger values are better. A optimal classifield achieve
100% Note that as this is a very unbalanced data set the accuracy ancahenader
the ROC curve are almost meaningless. For comparison, the classificatformance
achieved using a 4th order Markov chain on 10 million examples (order 4cthvasen
based on model selection, where order 1 to 8 using several pseudtsaere tried) is
displayed in the last row (markedl.

Thel i nadd variants outperform the other algorithms by far (speedup factor 53 @98@xam-
ples) and are still applicable to data sets of size up to one million. Note that withoaitelization
MKL on one million examples would take more than a week, compared with 2.5 {2)idahe
guad-CPU (eight-CPU) version. The parallel versions outperformitigge processor version from
the start achieving a speedup for 10,000 examples of 2.27 (2.75), quéadhing a plateau at a
speedup factor of .28 (4.49) at a level of 5@00 examples and approaching a speedup factor of
3.28 (5.53) on 500,000 examples (efficiency: 82% (69%)). Note thatdtfermance gain using 8
CPUs is relatively small as e.g. solving the QP and constructing the tree ianadiefized.

5. Conclusion

In the first part of the paper we have proposed a simple, yet effidigotidam to solve the multiple
kernel learning problem for a large class of loss functions. The @egbmethod is able to exploit
the existing single kernel algorithms, thereby extending their applicabilityxperéments we have
illustrated that MKL for classification and regression can be useful dtwraatic model selection
and for obtaining comprehensible information about the learning probldrarat. 1t would be of
interest to develop and evaluate MKL algorithms for unsupervised leasuoly as Kernel PCA
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Q

N 112 12 32 42 52 72
500 83 4 1 22 68 67
1,000 83 7 7 11 34 60
5,000 105 15 21 33 31 68
10,000 134 32 38 54 67 97
30,000 266 128 128 127 160 187
50,000 389 258 217 242 252 309
100,000 740 696 494 585 573 643
200,000 1,631| 1,875| 1,361| 1,320| 1,417| 1,610
500,000(| 7,757| 9,411| 6,558| 6,203| 6,583| 7,883
1,000,000 26,190 31,145| 20,831| 20,136| 21,591 | 24,043

Table 3: Influence on training time when varying the size of the quadratgramQ in SVM'iaht,
when using the i nadd formulation of the WD kernel. While training times do not vary
dramatically one still observes the tendency that with larger sample size aQaogeomes
optimal. TheQ = 112 column displays the same result as colunmWD1 in Table 1.
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Figure 9: Comparison of the running time of the different MKL algorithms wheed with the
weighted degree kernel. Note that as this is a log-log plot, small appeartagabs are
large for largelN and that each slope corresponds to a different exponent.

and one-class classification and to try different losses on the kernghtivegy 8 (such ad.,). In
the second part we proposed performance enhancements to makeckEeg®KL practical: the
SILP wrapper, SILP chunking and (for the special case of kernalsc#n be written as an inner
product of sparse feature vectors, e.g., string kerneld)ithedd algorithm, which also speeds up
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| N [ PreMKL| MKL [ LinMKL1 | LinMKL4 | LinMKL8 |

500 22 22 11 10 80
1,000 56 64 139 116 116
5,000 518 393 223 124 108

10,000 2,786 1,181 474 209 172
30,000 - | 25,227 1,853 648 462
50,000 - | 204,492 3,849 1292 857
100,000 - - 10,745 3,456 2,145
200,000 - - 34,933 10,677 6,540
500,000 - - 185,886 56,614 33,625
1,000,000 - - - 214,021 124,691

Table 4. Speed Comparison when determining the WD kernel weight by multgpleklearn-
ing using the chunking algorithm (MKL) and MKL in conjunction with the (pariied)
| i nadd algorithm using 1, 4, and 8 processotsnMKL1, LinMKL4, LinMKL8 ). The
first column shows the sample sikeof the data set used in SVM training while the fol-
lowing columns display the time (measured in seconds) needed in the trainisg pha

standalone SVM training. For the standalone SVM using the spectruml kegraehieved speedups
of factor 64 (for the weighted degree kernel, about 4). For MKL wieggha speedup of factor 53.
Finally we proposed a parallel version of thenadd algorithm running on a 8 CPU multiprocessor

system which lead tadditional speedups of factor up to 5.5 for MKL, and 5.4 for vanilla SVM
training.
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Appendix A. Derivation of the MKL Dual for Generic Loss Functio ns

We start from the MKL primal problem Equation| (9):

1/ K 2 NLf
<k21|’Wk’> +i; (f(xi), %)

min -
2
_ D; Dk
wrt.  w=(Wg,...,wg) ER"tx--- xR

K
S.t. f(xi) = z<q3k(Xi),Wk>—|—b, Vi=1,...,N
k=1
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Introducingu € R allows us to moves K ; |wy|| into the constraints and leads to the following
equivalent problem

1 N
min §u2+ziL(f(xi),yi)

wrt.  ueR, (wy,...,wk) e RPtx ... x RPx

K
S.t. f(xi) = Z<Cbk(xi),wk>+b, vVi=1,...,N
k=1
K
S i < v
k=1

Usingty € R, k=1,... K, it can be equivalently transformed into

o1, N
min  Su +i;L(f(xi),yi)
wrt.  ueR, teeRwceRP vk=1,....K
st f(x)= §<q>k(xi),wk>+b, Vi=1,...N
=1 )
[[wie|| < t, k;tkﬁ u.

Recall that the second-order cone of dimensiondliig defined as
Kp = {(x,¢) € R” xR, [[x[|l, < c}.

We can thus reformulate the original MKL primal problem (Equation (9))gitie followingequiv-
alentsecond-order cone program, as the norm constraimtas implicitly taken care of:

Conic Primal

. 1, XN
min  Su"+ Y L(f(xi),y)
22,
w.r.t. ueR, ty e R, (Wg,tk) € Xp,, Vk=1,...,K
K

st f(x)= Z(d)k(xi),wk>+b, Vi=1,...,N
K=1

We are now going to derive the conic dual following the recipe of Boyd\arlenberghe
(2004) (see p. 266). First we derive the conic Lagrangian and thieg the infimum w.r.t. the
primal variables in order to obtain the conic dual. We therefore introdugeange multipliers
a € RX ye R, y>0and(A, k) € X *p living on the self dual cone *p = %p. Then the conic
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Lagrangian is given as

1 N N
£(W,b,t,u, 0Ly A W) = §u2+_ZlL(f(xi),yi)—_Ziaif(xi)+

N K K
+Z Z ((Pk(xi), Wi} +b) +V<Ztk— ) Z (A Wie) + i) -
i=1 K=1 K= K=1

To obtain the dual, the derivatives of the Lagrangian w.r.t. the primal Vagal, b,t,u have to
vanish which leads to the following constraints

N N
Oow L = aiPy(X) — Ak = A= o D (X
Wy i; | ( |) i; I ( |)

N N
OpL = i;di = i;di =0

L = Y—Hk = V=
Oyl = Uu—y=y=u
Oty L = L'(F(xi),yi)—oi = f(x)=L"""(aiy).

In the equatiorn’ is the derivative of the loss function w.rt(x) andL'~! is the inverse of’ (w.r.t.
f(x)) for which to existL is required to be strictly convex and differentiable. We now plug in what
we have obtained above, which makes |« and all of the primal variables vanish. Thus the dual
function is

N
D(a,y) = _*VZ'FZL leyl Yi) — Za'l—lil(aiﬂi)

+Zla. <Dk (%), Wk)—zzl i (Dy(Xi),

= —fv2+ ZL (LY@, yi), i) — ZG il (ot yh).-

|
As constraints remainp> 0, due to the bia{izlai = 0 and the second-order cone constraints
N

i;O(i‘Dk(Xi)

I = <y, vk=1,..K.

2

This leads to:
max L2+ L(L'H (o, i), %) — S oL (o, i)
2 I; Iy Y1)y Yl I; | Iy Y1
wrt.  yeR, aeRM

N
s.t. y>0, ai=0
2,

N
_Zlai¢k(xi)

<y,Vk=1,....K
2
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Squaring the latter constraint, multiplying %yrelabeling%y2 — yand dropping thg > 0 constraint
as it is fulfilled implicitly, we obtain the MKL dual for arbitrary strictly convex lossctions.

Conic Dual

min Y- 3 LU e+ 3 )

=T
wrt.  yeR aeRY
N
s.t. a;=0

2,

1N ?

— aiP(xi)|| <y, vk=1,...,K.
2| 2

Finally adding the second term in the objecti¥g fo the constraint opand relabeling+T +— vy
leads to the reformulated dual Equation (10), the starting point from whiercan derive the SILP
formulation in analogy to the classification case.

Appendix B. Loss Functions

B.1 Quadratic Loss

For the quadratic loss cakéx,y) = C(x —y)? we obtain as the derivative (x,y) = 2C(x—Yy) =: z
andL'"Y(zy) = %z+yfor the inverse of the derivative. Recall the definition of

N 2

+% i;diq)k(xi)

N N
(@) = —_;L(L'fl(ﬂi,yi)vyi) +_Zlai|—/71(ai73/i)

2

Plugging inL,L’~1 leads to

N 2

i;(Jli‘Dk(Xi)

N 1 1
() = Zlial‘fﬂ/l Yi) +Zl 0(+y.) 2

2
|2+zl iyi +

2

G(Dk( i)

I
&~
m\4z

2

B.2 Logistic Loss
Very similar to the Hinge loss the derivation for the logistic lb$s,y) = log(1+e™Y) will be given
for completeness.
_ye—Xy ye(l—Xy)
1+e ™ 11elx)
The inverse function foy # 0 andy+ z+# 0 is given by
L' zy) = —ilg(—z>

ytz

Ll(xa y) =
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and finally we obtain

N N
(of (of (of 1

=Slog|l- -y —log| — + =
i; g( Yi+0(i> &Y g< Yi+ai) 2

B.3 Smooth Hinge Loss

N 2

i;Gi‘Dk(Xi)

2

Using the Hinge Losk(x,y) = $log(1+ €”3) with o > 0, y € R fixed, x € R one obtains as

derivative oy 1y
_ 1—xy 1—xy
L'(x,y) = ocYe __oe =z
0(1+ eo(1-xy)) 1+ eo(l—xy)
Note that withy fixed, z is bounded: G< abgz) < abgCy) and sigrly) = —sign(z) and therefore
> 0 forCy+z# 0. The inverse function is derived as

Cy+z
742819 = _cyg@lw)
Cy+7e™ = 2

S = _Cyz+z
o1-xy) = log(~g ")

1=xy = ilog(_Cy2+2>

X = - Slog- g ).y

L2y = (1= gloal—g )

DefineCy = 3 || 3, o P (X, H2 andC; = 3L, ais (1— 3100(— 5k ))

o

Using these ingredients it follows f&(a)

N

s@ = ~y(; (1 gloat- g %) w) +eave

i=
N

= — clylog<1+e ~(5 (-3 0ot~ Cyloicxi)))>>+Cz+Cl

N1 N q; 1 a;
= —) —lo +y —(1——=log(— +Cy.
=] g< CY+0‘> i;Yi < Y o« CM+Gi)> '
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