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Abstract
We develop a new component analysis framework, the Noisy-Or Component Analyzer (NOCA),
that targets high-dimensional binary data. NOCA is a probabilistic latent variable model that as-
sumes the expression of observed high-dimensional binary data is driven by a small number of
hidden binary sources combined via noisy-or units. The component analysis procedure is equiva-
lent to learning of NOCA parameters. Since the classical EM formulation of the NOCA learning
problem is intractable, we develop its variational approximation. We test the NOCA framework
on two problems: (1) a synthetic image-decomposition problem and (2) a co-citation data analy-
sis problem for thousands of CiteSeer documents. We demonstrate good performance of the new
model on both problems. In addition, we contrast the model to two mixture-based latent-factor
models: the probabilistic latent semantic analysis (PLSA) and latent Dirichlet allocation (LDA).
Differing assumptions underlying these models cause them to discover different types of structure
in co-citation data, thus illustrating the benefit of NOCA in building our understanding of high-
dimensional data sets.

Keywords: component analysis, vector quantization, variational learning, link analysis

1. Introduction

Latent variable (or latent factor) models (MacKay, 1995; Bishop, 1999a) provide an elegant frame-
work for modeling dependencies in high-dimensional data. Suppose that two observed random vari-
ables xi,x j are marginally dependent. A latent variable model explains their dependency by positing
the presence of a hidden variable s representing their common cause. Examples of latent factor mod-
els include probabilistic principal component analysis (Tipping and Bishop, 1997; Bishop, 1999b),
mixtures of factor analyzers (Attias, 1999), multinomial PCA (or aspect) models (Buntine, 2002;
Hofmann, 1999a; Blei et al., 2003), the multiple cause model (Ghahramani and Jordan, 1995; Ross
and Zemel, 2002) and independent component analysis frameworks (Attias, 1999; Miskin, 2000).
The models are most often used for component analysis, where we want to identify a small number
of underlying components (factors, sources, or signals) whose effects combine to form the observed
data. Once a model is learned, it can be used to make inferences on hidden factors, such as to
identify the document topics in the aspect model (Hofmann, 1999a; Blei et al., 2003) or regulatory
signals in the microarray DNA data (Lu et al., 2004). In addition to their role in understanding the
structure of high-dimensional data, latent factor models can be applied in dimensionality reduction,
where the hidden factor values are a low-dimensional representation of the data sample.
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Factor and principal component analysis methods (Bartholomew and Knott, 1999; Jolliffe,
1986) and other component analysis frameworks (Attias, 1999) are traditionally applied to high-
dimensional continuous-valued data. More recently, multinomial mixture models (Hofmann, 1999a;
Blei et al., 2003) were shown to handle many-valued discrete variables successfully. However,
component analysis methods specifically tailored to binary data remain scarce. In this work, we
investigate a latent factor model designed for analysis of high-dimensional binary data. The depen-
dencies between observables are represented using a small number of hidden binary factors whose
effects are combined through noisy-or units. We therefore refer to the model as to “noisy-or com-
ponent analyzer” (NOCA). Binary variables can, for instance, represent failures or congestions in
transportation networks, spread of disease in epidemiology, or the presence of a link in a citation
graph.

The principal limitation of latent factor models is the complexity of their learning (or parameter
estimation), as the standard EM formulation becomes exponential in the number of hidden factors.
To address the problem, we adopt a variational inference algorithm for bipartite noisy-or (B2NO)
networks (Jaakkola and Jordan, 1999) and derive the corresponding learning algorithm for the model
with hidden sources.

Two aspects of the new method are evaluated: (1) the quality of the approximate learning al-
gorithm and (2) the adequacy of the model for real-world data. We use two different data sets to
evaluate NOCA and its learning algorithm: a synthetic image-decomposition problem and a co-
citation data analysis problem. The knowledge of the underlying model and hidden factors in the
first problem (image data) enables us to assess the performance of the learning algorithm and its
ability to recover the model. We judge the quality of the recovery both qualitatively and quantita-
tively in terms of the likelihood of test data and data reconstruction error. Running-time analysis
verifies the expected polynomial scale-up.

The second evaluation problem is an application of NOCA to link and citation analysis. Citation
data from over 6000 CiteSeer documents were extracted and analyzed with NOCA. To measure
how well NOCA’s hidden sources capture the co-citation relationships, we use a cosine-distance
based metric and an inspection by a human judge. Perplexity of the testing set is used to gauge
the predictive power of the learned model. NOCA results are compared to mixture-based latent
variable models, represented by probabilistic latent semantic analysis (Hofmann, 1999a; Cohn and
Chang, 2000) and its Bayesian extension—latent Dirichlet allocation (Blei et al., 2003). The mixture
models view a document differently from NOCA. In consequence, each model class sees different
facets of the data structure. NOCA’s benefit is in the discovery of publication subcommunities in
the data that the mixture models tend to overlook.

2. Noisy-OR Component Analysis

Technically, the noisy-or component analysis (NOCA) is a latent variable model with binary vari-
ables defined by a bipartite belief network structure in Figure 1.

The nodes in the top layer represent a vector of latent factors s = {s1,s2, . . . ,sK} (“sources”)
with binary values {0,1} and the nodes in the bottom layer an observable vector of binary features
x = {x1,x2, . . . ,xD}. The connections between the two layers represent dependencies among the
observables: the nodes coupled by a latent factor can exhibit a local dependency pattern. Parameter-
izing the bottom-layer nodes with noisy-or units reduces the model’s parameter space to KD+K +D
free parameters:
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s1 s2 . . . sK

x1 x2 . . . xD

π1 π2 . . . πK

p

N

Notation:
D – observable dimensionality
K – latent dimensionality, D > K
N – number of data points
x – observables, indexed by j: x j

s – latent sources, indexed by i: si

Parameters (square nodes):
p – loading matrix (with leak terms)
{πi} – source priors

Figure 1: The NOCA model in plate notation. Shaded nodes correspond to observables. (In the
entire text, boldface letters will denote vectors or matrices.)

• a set of K prior probabilities πi parameterizing the (Bernoulli) prior distributions P(si) for
every hidden factor si;

• a set of DK parameters p = {pi j}
i=1,...,K
j=1,...,D of the noisy-or conditional probability tables, one

for each pair of hidden factor i and observed component j.

• a set of D parameters p0 j representing “other causes.” These can be incorporated into p by
positing a latent factor s0 with p(s0 = 1) = 1, where notationally convenient.

The NOCA model resembles the QMR-DT model (Shwe et al., 1991) in the structure and type
of nodes used. However, it is from the outset assumed to be fully connected. The model is simplified
during learning by setting the weight of most connections to zero.1 NOCA makes no assumption as
to the interpretation of random variables. For example, although features might correspond to words
when analyzing text documents; citation indicator variables will be used when analyzing references
among scholarly articles.

2.1 The Joint Distribution over Observables

The joint probability of an observation vector P(x) exemplifies and subsumes the probabilistic
queries we need to evaluate. Given the bipartite model, P(x) is obtained as

P(x) = ∑
{s}

(

d

∏
j=1

P(x j|s)

)(

K

∏
i=1

P(si)

)

, (1)

where {s} denotes the sum over all configurations of s, and P(si) is the prior probability of a hid-
den factor si. Given a vector of hidden binary factors s, the conditional probability p(x j|s) for an

1. This is in contrast with the structure-learning algorithm proposed by Kearns and Mansour (1998). Their algorithm is
exponential in the maximum number of hidden factors contributing to any observable variable. Therefore, they limit
the in-degree of the bottom layer nodes to obtain a polynomial algorithm. Our algorithm does not make any such
structural assumption.
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observable random component x j ∈ {0,1} is obtained through the noisy-or model:

P(x j|s) =

[

1− (1− p0 j)
K

∏
i=1

(1− pi j)
si

]x j
[

(1− p0 j)
K

∏
i=1

(1− pi j)
si

](1−x j)

, (2)

where p0 j is the leak probability that models “all other” causes.
Equation 2 can be reparameterized with θi j =− log(1− pi j) to obtain:

P(x j|s) = exp

[

x j log

(

1− exp

{

−θ0 j−
k

∑
i=1

θi jsi

})

+(1− x j)

(

−θ0 j−
K

∑
i=1

θi jsi

)]

. (3)

This reparameterization will prove useful in the following description of the variational lower
bound.

2.2 The Factorized Variational Bound

The bottleneck in computing the joint probability over observables, P(x) in Equation 1, is the sum
that ranges over all possible latent factor configurations. However, it is easy to see that if P(x j|s)
for both x j = 0 and x j = 1 could be expressed in a factored form as:

P(x j|s) =
K

∏
i=1

h(x j|si), such that ∀i, j : h(x j|si)≥ 0, (4)

then the full joint P(x,s) and the joint over the observables P(x) would decompose:

P(x,s) =
d

∏
j=1

P(x j|s)
K

∏
i=1

P(si) =
K

∏
i=1

(

P(si)
d

∏
j=1

h(x j|si)

)

,

P(x) = ∑
{s}

K

∏
i=1

(

P(si)
d

∏
j=1

h(x j|si)

)

=
K

∏
i=1

(

∑
{si}

P(si)

[

d

∏
j=1

h(x j|si)

])

.

Such decomposition would imply that the summation in Equation 1 can be performed efficiently.
Note that the condition of Equation 4 is sufficient to ensure tractability of other inference queries,
such as the posterior of a hidden factor si:

P(si|x) ∝ P(si)
d

∏
j=1

h(x j|si). (5)

However, while Equation 3 defining P(x j|s) decomposes for x j = 0, it does not factorize for
x j = 1. Thus, in general, it is impossible to compute P(x) efficiently. We approximate P(x j|s) for
x j = 1 with a factored variational lower bound (Jaakkola and Jordan, 1999):

P(x j = 1|s)≥ (6)

P̃(x j|s) =
K

∏
i=1

exp

{

q j(i)si

[

log(1− e
−θ0 j−

θi j
q j(i) )− log(1− e−θ0 j)

]

+q j(i) log(1− e−θ0 j)

}

,
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where q js represent sets of variational parameters defining a multinomial distribution. Each com-
ponent q j(i) of the distribution can be viewed as a responsibility of a latent factor si for observing
x j = 1. If we denote the complex expression inside the product on the right-hand side of Equation 6
by h(x j|si), we have the sought-after decomposition.

Incorporating the variational bound into the first, nondecomposing term in Equation 3, we can
obtain approximations P̃(x|s,Θ,q) ≤ P(x|s,Θ), P̃(x,s|Θ,q) ≤ P(x,s|Θ) and P̃(x|Θ,q) ≤ P(x|Θ)
that factorize along latent factors si.

3. The Variational Learning Algorithm

The key step of component analysis corresponds to the learning of the latent factor model from
data. The problem of learning of bipartite noisy-or networks has been addressed only in the fully
observable setting; that is, when both the sources and observations are known. The learning methods
take advantage of the decomposition of the model created by the introduction of special hidden
variables (Heckerman, 1993; Vomlel, 2003; Diez and Gallan, 2003). The EM algorithm is then used
to estimate the parameters of the modified network, which translate directly into the parameters of
the original model. However, to our knowledge, no learning algorithm for B2NO networks has been
derived for the case of unobservable source layer.

In this section, we motivate and detail the derivation of the variational learning algorithm, fol-
lowing the EM-framework. We identify the crucial hurdles in deriving an efficient algorithm and
show how the variational approximation overcomes them.

3.1 Classical EM Formulation

Let D = {x1,x2, · · ·xN} be a set of N i.i.d. vectors of observable variables. Our objective is to find
parameters Θ that maximize the likelihood of the data, P(D|Θ). The standard approach to learn the
parameters of the model in the presence of hidden variables is the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977). EM computes the parameters iteratively by taking the following
parameter update step:

Θ∗ = argmax
Θ

N

∑
n=1

〈logP(xn,sn|Θ)〉P(sn|xn,Θ′) ,

where Θ′ denotes previous-step parameters.
The main problem in applying the EM to the noisy-or model is that the joint distribution over

every “completed” sample P(xn,sn|Θ) does not decompose along hidden factors si and thus its ex-
pectation 〈logP(xn,sn|Θ)〉P(sn|xn,Θ′) requires iteration over all possible latent factor configurations.
This is infeasible since the configuration space grows exponentially in the number of factors. Note
that even if we could solve the inference query P(sn|xn,Θ′) efficiently, we still cannot push the
expectations inward over the nonlinearities—we also need to decompose the term inside the expec-
tation.

3.2 Variational EM

The idea of variational methods is to approximate the likelihood terms with their imprecise, but
structurally more convenient surrogates. In summary, an additional set of free variational parame-
ters q (Section 2.2) is introduced that offers the flexibility to perform more efficient calculations of
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the joint and posterior distributions within the EM algorithm. In particular, we replace the true con-
ditional probabilities P(xn|sn,Θ) that do not factorize with their factored lower-bound variational
approximation P̃(xn|sn,Θ,qn) as described in Section 2.2. As a consequence, the approximate pos-
terior P̃(sn|xn,Θ,qn) also factorizes, which simplifies the expectation step of the algorithm. The
new EM algorithm iteration becomes:

Θ∗ = argmax
Θ

N

∑
n=1

〈

log P̃(xn,sn|Θ,qn)
〉

P̃(sn|xn,Θ′,qn′ )
,

where Θ′ and qn′ denote previous-step model and variational parameters.
In ML learning, we maximize logP(D|Θ) with respect to Θ. In NOCA, we maximize a lower

bound on logP(D|Θ) instead, to ease the computational complexity brought by hidden variables.
First, let us simplify the expectation distribution—the hidden source posterior:

logP(D|Θ) = log
N

∏
n=1

P(xn|Θ)

=
N

∑
n=1

log

[

∑
{sn}

P(xn,sn|Θ)

]

=
N

∑
n=1

log

[

∑
{sn}

P(xn,sn|Θ,qn)
Q(sn)

Q(sn)

]

≥
N

∑
n=1

[

∑
{sn}

〈logP(xn,sn|Θ)〉Q(sn)−〈logQ(sn)〉Q(sn)

]

.

This lower bound follows from Jensen’s inequality for any arbitrary distribution over the hidden
sources Q(H) = ∏N

n=1 Q(sn) (Jordan et al., 1999; Saul et al., 1996; Ghahramani and Jordan, 1997).
However, even with a decomposable Q, we cannot take expectations of logP(xn,sn|Θ) easily, be-
cause the noisy-or distribution is not in the exponential family and the si’s reside inside nonlineari-
ties. We apply Equation 6 to obtain a further lower bound:

logP(D|Θ) ≥
N

∑
n=1

[

∑
{sn}

〈logP(xn,sn|Θ)〉Q(sn)−〈logQ(sn)〉Q(sn)

]

≥
N

∑
n=1

[

∑
{sn}

〈

log P̃(xn,sn|Θ,qn)
〉

Q(sn)
−〈logQ(sn)〉Q(sn)

]

=
N

∑
n=1

[

∑
{sn}

〈

log P̃(xn|sn,Θ,qn)P(sn|Θ)
〉

Q(sn)
−〈logQ(sn)〉Q(sn)

]

=
N

∑
n=1

Fn(xn,Q(sn))

= F (D,Q(H)),

where qn are parameters of the lower bound approximation described in Section 2.2.
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The variational EM that optimizes the bound also proceeds, like standard EM, in two steps. The
E-step computes the expectation distribution Q(sn). We could in principle choose any distribution
Q, but it is desirable to choose one that makes the variational bound as tight as possible. The
variational bound of logP(D|Θ) is the tightest at Q(sn) = P(sn|xn,Θ). Since that ideal posterior
is intractable, we define Q(sn) to be the tractable posterior probability P̃(sn|xn,Θ′,qn), where Θ′

are fixed previous step parameters and qn are tuned to obtain the best approximation to the true
posterior. (Alternatively, we could separately and explicitly optimize Q to maximize F (D,Q(H)).)

The new qn s are obtained that maximize P̃(xn|sn,Θ′,qn) by an iterative procedure described in
Figure 2. These iterative updates essentially form an embedded EM loop and are derived in Jaakkola
et al. (1996). The subsequent computation of P̃(sn|xn,Θ′,qn) decomposes along the hidden factors
and can be performed in linear time according to Equation 5. Obtaining the posteriors on hidden
sources concludes the E-step.

The M-step optimizes F (D,Q(H)) with respect to Θ. Given the decomposable Q(sn),
Fn(xn,Q(sn)) can be rewritten as:

Fn(xn,Q(sn)) =
〈

log P̃(xn|sn,qn,Θ)
〉

Q(sn)
−〈Q(sn)〉Q(sn)

=

[

K

∑
i=1

〈sn
i 〉Q(sn

i )
log

πi

(1−πi)
+ log(1−πi)

]

+

[

d

∑
j=1

(

K

∑
i=1

−〈sn
i 〉Q(sn

i )
θi j(1− xn

j)

)

−θ0 j(1− xn
j)

]

(7)

+
d

∑
j=1

K

∑
i=1

[

〈sn
i 〉Q(sn

i )
qn

j(i)x
n
j log

(

1− e
−θ0 j−

θi j
qn

j (i)

)

+
(

1−〈sn
i 〉Q(sn

i )

)

qn
j(i)x

n
j log(1− e−θ0 j)

]

− 〈Q(sn)〉Q(sn) .

The last term is the entropy of the variational distribution, it does not depend on Θ and can be
ignored in further M-step derivations.

For the rest of the paper all expectations are over Q(sn)—the variational posterior on hidden
factors based on previous-step parameters. The simplified notation leaves the dependence on x and q
implicit, but also expresses the intuition that by replacing the posterior by a variational distribution,
we effectively “disconnected” the model.

Since logP(xn,sn|Θ), the term inside expectation, is approximated using the same transforma-
tion of P(x|s) as the posterior distribution over the hidden sources, the q computed in the E-step
can be reused in the M-step. The parameter updates for M-step can be derived straightforwardly by
setting

∂
∂θi j

F (D,Q(H)) = 0
∂

∂θ0 j
F (D,Q(H)) = 0.

Unfortunately, no closed form solutions for these tasks exist. We update the parameters Θ
simultaneously by setting them to the numerical solutions of the above equations and iterate the
updates until convergence. The numerical solutions are obtained by bisection search (Figure 3).
The parameters are set to random non-zero values in the first EM iteration. We note that the depen-
dencies among parameters are relatively sparse and optimizations typically converge in very few
optimization steps. The complete parameter update formulas we derived and use in our procedure
are summarized in Figure 2.
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Updates of variational parameters qn
j(i). Iterate until fixpoint:

qn
j(i)← 〈s

n
i 〉Q(sn)

qn
j(i)

log(1− e−θ0 j)

[

log(1−An(i, j))−
θi j

qn
j(i)

An(i, j)
1−An(i, j)

− log(1− e−θ0 j)

]

subject to condition ∑K
i=1 qn

j(i) = 1 ensured through normalization. An(i, j) = e
−θ0 j−

θi j
qn

j (i) .

Updates of θi js. Find the root of ∂F /∂θi j = 0 numerically:

N

∑
n=1
〈sn

i 〉Q(sn)

[

−1+ xn
j

1
1−An(i, j)

]

= 0

Updates of θ0 js. Find the root of ∂F /∂θ0 j = 0 numerically:

N

∑
n=1

[

K

∑
i=1
〈sn

i 〉Q(sn)q
n
j(i)x

n
j

(

An(i, j)
1−An(i, j)

−
e−θ0 j

1− e−θ0 j

)

]

+

[

−(1− xn
j)+

K

∑
i=1

xn
jq

n
j(i)

e−θ0 j

1− e−θ0 j

]

= 0

Updates of πis: πi =
1
N

N

∑
n=1
〈sn

i 〉Q(sn)

Figure 2: A summary of iterative optimization steps for the variational learning method.
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Figure 3: M-step optimization is simply a bisection-search procedure. The curve is the partial
derivative of the objective function F w.r.t. θ11 plotted as a function of θ11. The little
stars on the curve represent iterations of the bisection algorithm. The advantages of the
bisection algorithm come from its simplicity: no derivatives that would be costly to com-
pute (we have to iterate through the data to compute F!) and good numerical stability.
The search typically converges in few (∼ 10) iterations.
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(a) (b)

Figure 4: Model reconstruction experiments. (a) Image patterns associated with hidden sources
used in the image decomposition problem. The ninth (bottom-right) pattern corresponds
to the leak. (b) Example images generated by the NOCA model with parameters corre-
sponding to patterns in panel (a).

3.3 Simplicity Bias

The empirical evaluation of the NOCA model revealed that the model is able to automatically shut
off “unused” noisy-or links between sources and observations. This suggests the presence of a
term encouraging sparse models in the functional F . Indeed, the term: −〈sn

i 〉Q(sn)θi j(1− xn
j) in

Equation 7 can be viewed as a regularization-like penalty2 assigned to large values of θi j if these are
not supported by data. A penalty proportional to θi j and the posterior of a hidden source is added
for each observable xn

j that is equal to 0. This has an appealing intuitive interpretation: it is unlikely
that the observation x j is 0, if the source is on ( 〈si〉 is high ) and the link between si and x j is strong
(θi j >> 0). Consequently, the link in between the source j and observation i is driven to zero if not
supported by the presence of positive observations. If all links between a source and observations
are driven to zero, the source is effectively disconnected and can be pruned from the network. We
demonstrate this effect in the experiments in Section 4.2.

4. Evaluation of NOCA

In this section, we will evaluate NOCA and its variational learning algorithm on a synthetic image
data set built using NOCA model. The advantage of using a synthetic data set is that the true model
as well as the instantiations of the hidden sources are known.

The image data sets used in the experiments are created by sampling from a NOCA model with
8 hidden sources. Each source is associated with an 8×8 image pattern. The patterns and examples
of the convoluted input images are shown in Figure 4, panels (a) and (b).

2. Standard regularization framework involves a data-independent term that penalizes for non-zero parameters. How-
ever, here the penalty term depends on data and is a property of the model.
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ŠINGLIAR AND HAUSKRECHT

(a) (b) (c)

Figure 5: Examples of models learned from 50, 200 and 1000 samples (panels a through c). The
differences among models illustrate the improvement in the model recovery with increas-
ing sample size. Although some source images are identified quite well with as few as
50 samples, the noise in other images is apparent. Models learned from 200 and 1000
samples are visibly improved.

4.1 Model Reconstruction

Our first objective is to assess the ability of the variational algorithm to learn the NOCA model
from observational data. In this experiment, we used data sets of size 50–5000 data points that were
generated randomly from the model. The data sets were given to the learning algorithm and the
learned models were compared to the original model.

Figure 5 visualizes the parameters of three models recovered by the learning algorithm for
varied sample sizes. It is apparent that the increase in the number of samples leads to improved
models that are closer to the original model. The model learned from 50 samples suffers from high
variance caused by the low number of training examples. Nevertheless, it is still able to capture
some of the original source patterns. Sample sizes of 200 and 1000 improve the pattern recovery.
By learning from 1000 samples, we were able to recover almost all sources used to generate data
with a relatively small distortion.

Figure 5 illustrates the dependency of the model quality on the sample size in qualitative terms.
To measure this dependency more rigorously we use the training/testing validation framework and
a metric based on the joint distribution of observable data. The NOCA model is always learned
from a training set. We use training sets of size 50,100,200,500,1000,2000,5000. The testing set
(sample size 2000) is viewed as a sample from the true multivariate distribution. We calculate its log-
likelihood with respect to the learned model. A better fit of the model will be reflected in improved
log-likelihood of the test sample with respect to this model. Figure 6 shows the log-likelihoods
for NOCA models averaged over 50 testing sets. The results demonstrate that an increased size of
training sets leads to a better log-likelihood of test data and hence a better approximation of the true
distribution.

4.2 Model Selection

In practice, the correct latent dimensionality is rarely known in advance. Model selection is typi-
cally addressed within the Bayesian framework. Marginal data likelihood (Cooper and Herskovits,
1992) or its approximations (such as the Laplace approximation) are typically used for this purpose.
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Figure 6: Average log-likelihoods of NOCA models on testing sets. The models are learned from
training sets of size 50, 100, 200, 500, 1000, 2000 and 5000. The averages are over 50
trials. One-standard-deviation error bars are shown. The increase in the log-likelihood
illustrates the improvement in the model recovery with an increasing sample size.

However, in presence of hidden variables it is intractable to compute the marginal likelihood. To ad-
dress the model selection problem in NOCA we rely on the Bayesian Information Criterion (BIC).
The BIC is a large-sample approximation to the integrated likelihood (Schwarz, 1978):

BIC(k) =− ln p(D|k, Θ̂k)+
1
2

ψk lnN

where Θ̂k is the ML estimate of NOCA parameters for the model with k hidden sources and ψk is
the number of free parameters in this model.

Figure 7a shows the results of model selection experiments based on the BIC score. The results
are averages of BIC scores obtained by learning the model using 2000 images generated by sampling
from NOCA model with 8 hidden sources. In training on this data set, the number of assumed
hidden sources varied from 2 to 15. To assure fair comparison, the same training data was used for
all models in one train/test run. We see that the optimum BIC score is achieved at 8 sources which
corresponds to number of sources in the original model.

The BIC score penalizes models with larger number of parameters. The penalty opposes the
increase in the log-likelihood of training data we expect to see in more complex models with a larger
number of hidden sources. However, in Section 3.3 we have pointed out the existence of an inherent
“regularization” ability of NOCA, that is, its ability to shut down the influence of unnecessary
sources once the true dimensionality of the model is reached. In such a case we would expect the
log-likelihood of training data to level out for larger than the true number of sources. Figure 7b
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Figure 7: (a) The average BIC scores for the models with varied number of sources. (b) The av-
erage log-likelihood of data for model with varied number of sources. In both cases,
the true number of sources K is fixed at 8. Averages are calculated from 20 trials (one-
standard-deviation bars are shown). In each trial, the model was learned using 2000 data
points. The BIC reaches its optimal value at, and log-likelihood levels at 8 sources, which
corresponds to true number of sources.

illustrates this point by plotting the log-likelihood of data for models with different number of
sources. The setup of the experiment is the same as used in the BIC experiments. The log-likelihood
score increases for models with fewer than 8 sources. The log-likelihood for more than 8 sources
remains approximately the same. Visual inspection of the learned loading matrices reveals how this
happens: many sources are disconnected from the model when the model learns their corresponding
loading matrix rows to be identically 0. The models that were initialized with more than 8 sources
most often stabilized at 7-8 active (connected) sources. The fact that in some instances the number
of sources converged to 7 can be explained the ability of the leak factor to effectively model an
additional source.

4.3 Running-time Analysis

Precise time-complexity analysis of the NOCA learning algorithm is impossible since both the ex-
pectation and maximization steps involve iterative procedures whose convergence properties are not
well understood. Moreover, these are embedded in the EM loop itself and while eventual conver-
gence is assured, its rate is not. Therefore we evaluate the time complexity empirically, with respect
to N, the size of the training set and K, the number of latent sources.3 We have observed no de-
pendence between training set size, the assumed number of latent sources and the number of EM
iterations performed in experiments.

The running time of the learning algorithm for different training set sizes is shown in Figure 8(a).
A nearly straight line indicates that the complexity grows polynomially with the number of samples.

3. It follows from the form of the update equations that the algorithm is linear in D, the number of observable dimen-
sions.
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Figure 8: (a) Runtimes of NOCA as they scale with increasing size of the training set. K is fixed
at 8. (b) Scale-up with the number of assumed latent sources, the data set size is fixed at
2000.

In fact, we have observed that the time complexity scales approximately linearly with the number
of samples in the training set. The analysis of running times for different number of sources in
Figure 8(b) shows that these scale roughly linearly with the number of assumed latent sources. This
gives empirical support for the efficiency of the variational EM approximation as compared to the
exact EM algorithm.

4.4 Dimensionality Reduction and Data Compression with NOCA

Latent variable models are inherently well suited for dimensionality reduction. Lossy compression
of the data by the NOCA model can be achieved as follows. Given the learned NOCA model and
an observed test-set image, we compute the posterior of each hidden source and pick the value
with the higher posterior probability. The values of the hidden sources act as a low-dimensional
representation of the test data. The high-dimensional data can then be recovered by sampling the
observables given the stored values of sources and compared to the original test-set.

Figure 9(a) illustrates the data reconstruction error of the NOCA model learned for different
sample sizes. The data reconstruction error is defined as the proportion of feature values in which
the original data set differs from the reconstructed data. We measure data reconstruction error on
both the training and the testing data. The training set is the data used to learned the model, the
testing set is an additional sample from the model. The data reconstruction error for the training
set is smaller for very small sample sizes and stabilizes for sample sizes over 200. This can be
explained by “overfitting”—the use of free model parameters for memorization of training data—
for small sample sizes, and saturation of the model to its stochastic limit for larger sample sizes.
The data reconstruction error for test sets behaves inversely—it is worse from smaller training sets
and stabilizes for larger training sets as the learned model improves.
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Figure 9: (a) Average data reconstruction errors obtained for varied training sample sizes. (b) Av-
erage data reconstruction error plotted against the number of assumed latent sources. All
values are averaged over 50 runs.

Figure 9(b) shows the influence of the number of hidden sources on the data reconstruction error.
The data reconstruction error goes down with increasing K and flattens out as the learned models
use no more than the true number of sources (8), thanks to the effect described in Section 3.3.

A related dimensionality-reduction model tailored to binary data is offered by logistic PCA
(Schein et al., 2003). In this model, each component xn

j of a data point xn is assumed to be sampled
from a Bernoulli distribution whose parameter θn

j is determined by a logistic unit from the factors
v, latent coordinates u and the bias term ∆ j: θn

j = σ(v j.un
j + ∆ j). The crucial difference between

NOCA and logistic PCA is that the latent space in NOCA is discrete while in logistic PCA it is
continuous. As a result, logistic PCA uses a many-bit floating point representation to capture many
one-bit feature values. Figure 10 illustrates data reconstruction errors for the same experiments as
performed for NOCA in Figure 9. The results demonstrate better data reconstruction performance
of the logistic PCA model. This is expected since the complexity of NOCA’s latent space is much
smaller (finite as opposed to continuous). The differences in performance demonstrate the tradeoff
in between the complexity of the representation of the latent space and its accuracy. In particular,
NOCA uses 8 bits to represent each data point in the latent space while the logistic PCA uses a
vector of 8 floating point values per data point.

5. An Application of NOCA to Citation Analysis

The analysis of NOCA on image data sets confirms it can discover, fully unsupervised, the structure
of the hidden components reasonably well. But does the method apply to the real world? Do its
assumptions really fit the data it was designed for? To assess this aspect of NOCA we test it on
a citation analysis problem. We first discuss the data set and proceed to report the results of three
evaluation strategies: (1) evaluation by a human judge, (2) a cosine-distance based metric and (3)
perplexity of a testing set.

2202



NOISY-OR COMPONENT ANALYSIS

50 100 200 500 1000 2000 5000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Reconstruction error vs samples for logPCA

Training samples

R
ec

on
st

ru
ct

io
n 

er
ro

r

 

 
training
testing

2 4 6 8 10 12 14 16 18 20

0

0.05

0.1

0.15

0.2
Reconstruction error vs dimension for LogPCA

Dimension of latent space

R
ec

on
st

ru
ct

io
n 

er
ro

r

 

 
training
testing

(a) (b)

Figure 10: Reconstruction errors achieved by the logistic PCA, a) as they vary with training set size
(fixed size testset), and b) as they vary with the latent dimension of the model.

5.1 Citation Data

We acquired a data set of approximately 17.000 documents from the CiteSeer online service. These
are the HTML documents that place a scientific article within the lattice of citations; not to be mis-
taken for the actual text of the article. We chose forty authors active in these publication areas:
Introductions and tutorials, Markov chain Monte Carlo, Variational methods, Loopy belief prop-
agation and Kernels and support vector machines. Naturally, there are overlaps; for example, a
publication discussing approximate inference in Bayesian networks is likely to mention both loopy
belief propagation and MCMC techniques. This overlapping structure renders the task quite non-
trivial. In addition, it makes it difficult to come up with an unambiguous “gold standard” clustering.

We selected all papers in the data set citing any of the selected authors. The data set was
preprocessed into a binary matrix Mi j, where the element (i, j) is 1 if document i cites a paper
authored by author j and 0 otherwise. Zero rows, that is documents that cite none of the authors,
are discarded. There were 6592 non-zero rows in the matrix.

5.2 NOCA Formulation of Citation Analysis

The citation data set consists of N documents, each of which cites a number of authors. The in-
dividual authors publish on one or more topics. Our conjecture is that certain citation patterns are
indicative of paper topics. We wish to discover these topics and their associated authors, in a fully
unsupervised manner.

To analyze the data with NOCA, we assume that the topics are represented with the hidden
binary variables s1, . . .sK ∈ {0,1}. Intuitively, si = 1 in the unobserved event that the document
discusses topic i. The citation features correspond to the observed variables x1, . . .xD. The n-th
document in the corpus is thus represented by a D-dimensional binary vector xn. The event that
document n cites author j is captured by observing xn

j = 1. The “affinity” of author j and topic i
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Figure 11: PLSA (a) and LDA (b) graphical models.

is expressed by the weights pi j which parameterize the noisy-or CPD’s of the bottom layer nodes.
This defines a generative probabilistic model at the document feature level:

• For all i = 1, . . . ,K, sample si from Bernoulli(πi).

• For all j = 1, . . . ,D, sample x j from the noisy-or distribution p(x j|s).

5.3 Mixture Models

Latent variable models have demonstrated good results in text and document analysis. Most of these
are mixture models that view a document as a mixture of hidden topic factors. The topic factors
are identified with distributions over words. The key assumption of a mixture model is that the
occurrence of a specific word is determined by a single mixture component. These models share
the bag-of-words view of a document and provide a probabilistic model for each word occurrence.
NOCA offers a different view of a document: A document is a combination of non-competing
topics and each word is determined by a combination of topics. NOCA does not define a model for
generation of each single word, which makes it less suitable for applications such as text modeling,
but it fits more naturally the type of data encountered in link analysis.

In the following, we briefly review two mixture models applied frequently in text modeling:
PLSA and LDA. These state-of-the-art text models have also been recast for link analysis purposes
(Cohn and Hofmann, 2001; Cohn and Chang, 2000).

Probabilistic Latent Semantic Analysis (PLSA) Hofmann (1999a), whose graphical model is
shown in Figure 11(a), assumes that each document is represented by a convex combination (a
mixture) of topics and that the features of the document are generated by the following process:

1. pick a document d according to Multinomial P(d) (defined by a dummy indexing of the
documents in the data set),

2. sample a topic z according to Multinomial P(z|d),

3. generate a feature from P(x|z).

The joint probability P(d,x) factorizes as P(d)∑z P(z|d)P(x|z). Since the topic variable z is un-
known, the algorithm for learning PLSA derives from the EM framework.

2204



NOISY-OR COMPONENT ANALYSIS

Latent Dirichlet Allocation (LDA) Blei et al. (2003) adds Bayesian hyperparameters to the
PLSA model so that the mixture proportions themselves are a Dirichlet-distributed random vari-
ate (Figure 11). The following process is assumed to generate the documents:

1. sample a parameter θ from the exchangeable Dirichlet distribution Dir(α),

2. sample a topic from Multinomial P(z|θ),

3. generate a feature from P(x|z,β).

Both the parameter θ and the topic variable z are unobserved. The addition of the new hidden
parameters makes the exact inference for LDA intractable. To alleviate this problem Blei et al.
derive a variational inference algorithm which in turn allows them to develop an efficient variational
EM learning procedure.

The conceptual difference between NOCA on the one hand and PLSA or LDA on the other is
that NOCA views a document as a set of features, while the mixture methods regard it as a bag
of words. More importantly, NOCA makes a different assumption about the nature of the topic
factors. PLSA (Figure 11, left) and LDA (Figure 11, right) view the topic factors as points in
the vector space spanned by the orthogonal basis which is the vocabulary. Moreover, all these
points belong to a subspace of the (D− 1)-dimensional word simplex since they correspond to
normalized distributions. NOCA treats the topic as a separate type of entities that live in their own
K-dimensional space which projects non-linearly into the vocabulary space. As opposed to PLSA,
where one aspect is assumed to be responsible for the generation of a word, in NOCA, potentially
all of the topic factors contribute to the generation of a single word feature. Additionally, the added
freedom of the leak parameter allows NOCA to “put aside” the documents where no structure seems
to stand out. These do not have to be accounted for in the output components. Clearer clustering is
the outcome that we would expect from this organization.

5.4 Experiments

The evaluation of topic discovery in any of the frameworks relies on the identification of largest
elements of output vectors or matrices. Since the semantics of the numeric values differs in the
respective approaches, the only consistent way of comparing the outputs is by listing the most
prominent elements of each of the identified clusters. We achieve this goal for different models as
follows:

• Logistic PCA is parameterized by the loading matrix V and the constant bias vector ∆. We
interpret rows of V as the component vectors and list the authors corresponding to the largest
elements in each component vector.

• PLSA parameterization is not as in Figure 11(a), but instead the model is equivalently param-
eterized with P(z), P(d|z) and P(x|z) (Hofmann, 1999a). We list the authors x with the highest
P(x|z) for each aspect z. Also reported is P(z), to help assess the relative representation of the
aspects.

• LDA provides the matrix β and the Dirichlet hyperparameter α. The reported components
are the rows of β; the authors corresponding to the highest values in each row of β are listed.
The components that LDA recovers are very stable, which is characteristic of the Bayesian
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Community
Method intro MCMC var’l LBP Kernel
LogPCA 40.0 42.5 15.0 10.0 67.5
PLSA 67.5 57.5 50.0 32.5 75.0
LDA 80.0 95.0 62.5 5.0 87.5
NOCA 85.0 15.0 92.5 82.5 75.0

Table 1: Success rates in recovering subcommunities in the citation data. The numbers are percent-
ages averaged over 20 different random initializations.

approach taken in developing the model. Therefore we report results from 20 runs with dif-
ferent α (the initial exchangeable Dirichlet prior) instead, starting from α = 0.01 and ending
at α = 10.

• For NOCA, the output consists of the cluster priors πi, the loading matrix p and the “bias
vector” p0. The authors listed under each component are those who received the highest
weight in pi, the i-th row of the loading matrix p. Again we report the priors πi to compare
the relative size of the clusters. Note that the priors need not sum to one, since each of them
corresponds to a separate random variable.

5.4.1 QUALITATIVE EVALUATION

We ran all of the algorithms 20 times with different random initializations and visually judged the
results from displays such as that in Figure 13. If a particular topic factor appeared and was deter-
mined to be of good “cluster purity”, we assigned a score of 1 to the combination of community and
analysis technique. If the cluster was identifiable with a community, but judged to be of mediocre
purity, the score assigned was 1/2. Otherwise, the score assigned was 0. Whenever the community
was captured in more than one factor, only one was counted. The maximum score is 20 as there
were 20 experimental runs. The entries in Table 1 are the respective percentages.

The logistic PCA does not appear to be well suited for this task and is outperformed by the
other methods. PLSA finds on average 2 communities in each run. LDA discovers the MCMC topic
consistently, but fails to discover the LBP community. NOCA exhibits the opposite behavior: it
reliably discovers LBP but fails to find the MCMC community most of the time. The SVM/kernel
group and the variational methods community is consistently discovered by both NOCA and LDA,
as well as the authors of widely cited overview and tutorial articles.

The difference observed for the LBP and MCMC communities is striking and should be ex-
plained by pointing out the characteristics of the respective communities. The LDA model is able
to recover communities that have established their “market share” and have high enough prior prob-
ability that they are able to compete with the other groups for the direction that the topic simplex
takes in the “vocabulary” space. LDA thus has a difficult time finding small, emerging areas. On
the other hand, these nascent communities tend to be highly coherent, with a few pioneers that are
very likely to be cited for their seminal papers. Such structure favors the NOCA model, which has
a tendency to pick out tightly woven patterns and leave the more diffuse domains to be picked up

2206



NOISY-OR COMPONENT ANALYSIS

Source
1 2 3 4 5

Attias
Bishop

Buntine
Burges

Chickering
de Freitas

Dechter
Doucet 

Freeman
Frey   

Friedman
Geman

Ghahramani
Gordon
Hastie

Heckermann
Hinton
Horvitz

Jaakkola
Jain

Jordan
Kearns

Koller
Lauritzen
MacKay

Minka
Murphy

Neal
Pearl
Saul

Schollkopf
Schuurmans

Smola
Spiegelhalter

Tipping
Vapnik

Wainwright
Weiss

Welling
Yedidia

Source
1 2 3 4 5 6 7 8 9 10

Attias
Bishop

Buntine
Burges

Chickering
de Freitas

Dechter
Doucet

Freeman
Frey   

Friedman
Geman

Ghahramani
Gordon
Hastie

Heckermann
Hinton
Horvitz

Jaakkola
Jain

Jordan
Kearns

Koller
Lauritzen
MacKay

Minka
Murphy

Neal
Pearl
Saul

Schollkopf
Schuurmans

Smola
Spiegelhalter

Tipping
Vapnik

Wainwright
Weiss

Welling
Yedidia

Figure 12: A result of noisy-or component analysis on the citation data set. The columns visualize
the parameters of the noisy-or loading matrix after they are rescaled by the prior of the
source. Black fields correspond to 0s in the loading matrix, while white ones correspond
to 1s.
(a) With 5 components. The following components are discernible:
- The authors dominating the first component are: J. Pearl, M. Jordan, S. Lauritzen and
D. Spiegelhalter. Weaker ties are to W. Buntine, N. Friedman and D. Koller. This com-
ponent contains many respected authors of basic references and tutorials on Bayesian
belief networks.
- The second source was shut down in this run.
- C. Burges, B. Schölkopf, A. Smola and V. Vapnik form the core of the third component.
Without any doubt, this component represents the kernel and SVM research community.
- The authors prominent in the fourth factor are Z. Ghahramani, M. Jordan, G. Hinton,
R. Neal, L. Saul, C. Bishop and M. Tipping. This source captures the variational ap-
proximation community.
- The last component consists of the following authors: B. Frey, W. Freeman, K. Mur-
phy, S. Lauritzen, J. Pearl, Y. Weiss and J. Yedidia. All authors published extensively
on loopy belief propagation, using J. Pearl’s BP algorithm. The presence of an outlier in
this set, S. Lauritzen, can be attributed to the fact that he is among the most frequently
cited authors in the general context of Bayesian networks. We can conclude that our
algorithm found the LBP community.
(b) A run with 10 components illustrates the regularization behavior. Four out of ten
sources were completely or almost completely shut off.

2207
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Figure 13: Typical outputs from the link analysis algorithms:
a) Logistic PCA.
b) Probabilistic latent semantic analysis. Also reported is the prior of each aspect P(z =
i).
c) Noisy-or component analysis. The prior on a source P(si) is also shown.
d) Latent Dirichlet allocation with α = 1.
Below each component, our evaluation of whether the component represents any of the
the publication communities.

by the leak factor. Thus the broader MCMC community eluded the noisy-or analyzer, while it was
reliably captured by LDA; and the NOCA brought to light the LBP community.

In summary, NOCA discovers on average as many clusters as LDA, but the clusters are of
different nature. If one wishes to gain insight into this type of data, we advocate that both methods
be used, as they discover distinct kinds of patterns.
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5.4.2 THE COSINE METRIC

While we took great care to assure objective evaluation, the above approach is nevertheless open to
criticism on the grounds of “subjectivity.” We would like our recovered components to align with
a “gold standard,” a set of vectors defined by a human before he or she sees the result of the clus-
tering algorithm. Therefore we defined 0-1 vectors corresponding to the established communities
as we perceive them. For example, the vector corresponding to LBP community has 1s at positions
corresponding to names such as Freeman, Frey, Yedidia, etc. and 0s elsewhere.

A standard distance metric for vectors is their cosine distance. The similarity of two vectors x,y
is the cosine of their angle: cosα(x,y) = x·y

|x||y| . With the cosine metric, one can evaluate the simi-
larity of two vectors. However, how do we quantitatively evaluate a component set X as a whole?
Recovered components need to be matched to the original components as they can be permuted
without affecting the likelihood. To obtain a one-to-one match, each original component is paired
with exactly one found by NOCA, so that the weighted sum of cosine distances is minimized. The
weights ui are defined so that they are proportional to the prior probabilities of the latent components
and form a convex combination (sum to 1). The computation can be described by the formula

wcos(X ,Y ) = min
π,ρ

K

∑
i=1

uπ(i) cosα(xπ(i),yρ(i)),

where π and ρ are permutations of the sets X and Y , respectively, and the minimization ranges over
all possible permutations. Note that although this formula suggests evaluating exponentially many
permutations, it effectively calls for finding a maximal-weight matching in a bipartite graph and can
be computed efficiently. The resulting weighted cosine similarities are shown and commented in
Figure 14.

5.4.3 PERPLEXITY

While the cosine scoring metric provides useful insights, using a standard probabilistic measure
of model quality is in order to gauge how well the model estimates the joint density of the ob-
servable data. To assess this aspect of model recovery we rely on the cross-entropy of the “true”
distribution and the distribution that the model entails. The testing set is viewed as a sample from
the true multivariate distribution t and the cross entropy with the model distribution m is defined
by H(t,m) = −∑{x} t(x) logm(x). Since the data points in the test set are by assumption inde-
pendent and identically distributed, the cross entropy is approximately the average unconditional
log-probability of data points in the test set (Cover and Thomas, 1991). Perplexity of the model
m is defined as the quantity 2H(t,m) and can be intuitively interpreted as the amount of information
needed to predict the next data point. In short, the lower the cross-entropy is, the more precisely the
model has learned the distribution of observables from the training set.

In the perplexity evaluation of NOCA and LDA, we use the tractable lower bounds on the
document probabilities P(x) (Equation 6 in this paper and Equation 13 in Blei et al. (2003)). The
PLSA and logistic PCA models cannot be evaluated under the perplexity framework since they
do not define a probability distribution on the test set. PLSA does define a distribution on the
training set and the fold-in heuristic can be used (Hofmann, 1999b) so that it defines one on the
test set. However, this heuristic gives PLSA an optical advantage over other models, as it allows
it to refit the mixing proportions. As a baseline model, we will use a simple mixture of unigrams
model. As NOCA provides no word-level model, but only a document-level probability model, we
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Figure 14: Weighted cosine similarities. On the horizontal axis is L, the number of components
matched. The vertical axis shows the weighted cosine similarity. The left panel shows
NOCA doing a superior job identifying the first few components, but it is soon over-
taken by the mixture-based methods. The methods in the left panel operated with latent
dimensionality 5, equal to the number of human-judged clusters. On the right, the pic-
ture changes when the latent dimensionality is increased to 10. While the performance
of mixture-based methods deteriorates, NOCA’s performance improves. This illustrates
the difference in the assumptions about the data-generating process. The picture sug-
gests that the more sophisticated methods do a better job in comparison with the baseline
(a simple mixture of unigrams model) when the asumed latent dimensionality slightly
exceeds the true number of clusters in the data.

Cross-entropy
K NOCA LDA PLSA MixUnigrams
5 < 6.5±5.2 < 9.0±7.8 6.1±6.9 22.9±31.3
10 < 6.5±5.2 < 8.4±7.5 4.9±6.4 32.5±46.0

Table 2: Cross-entropies between the model distribution and the empirical distribution induced by
the test set. These numbers were obtained as mean and standard deviation on 20 train/test
splits.

must compare all models in terms of document perplexity, instead of the standard approach that
works at the level of words. Inspecting Table 2, we observe that the bound on perplexity of NOCA
is significantly lower than that of LDA. PLSA shows a cross-entropy virtually on the level with
NOCA, or slightly better. The cross-entropy of the baseline mixture-of-unigrams model is high,
which is attributable to the data sparsity issue. Importantly, note that the values shown for LDA and
NOCA are lower bounds, while the PLSA and MixUnigrams are exact.
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6. Summary and Conclusions

We have presented NOCA: a new latent-variable component analysis framework for high-dimensional
binary data. To learn the NOCA model we have devised and presented an EM-based variational
algorithm that overcomes the complexity limitation of exact learning methods. The proposed algo-
rithm makes no assumption about the structure of the underlying noisy-or network, the structure is
fully recovered during the learning process.

In addition to the component analysis task and related structure discovery problems, NOCA can
be also used as a dimensionality reduction (data compression) tool, as well as a probabilistic model
of high-dimensional binary data. We have tested these aspects of the model on a synthetic image
decomposition problem and on a citation analysis problem of CiteSeer documents. The model
and the algorithm showed favorable scale-up behavior and a very good model recovery and error
reconstruction performance.

The task of community discovery has a natural formulation as a NOCA learning problem. A data
set of scientific paper citations in the field of machine learning was analyzed using the setup. The
results, under several metrics, indicate that our algorithm performs on par with the current state-of-
the-art mixture methods, but due to different data-generating assumptions it tends to expose different
data structure. Such behavior is valuable as it enriches our insight into the intrinsic composition of
the data set.
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