Journal of Machine Learning Research 7 (2006) 1107-1133 Submitted 11/05; Published 06/06

Step Size Adaptation in Reproducing Kernel Hilbert Space

S.V.N. Vishwanathan SVN.VISHWANATHAN @NICTA.COM.AU
Nicol N. Schraudolph NIC.SCHRAUDOLPH@NICTA.COM.AU
Alex J. Smola ALEX.SMOLA @NICTA.COM.AU

Statistical Machine Learning Program
National ICT Australia

Locked Bag 8001

Canberra ACT 2601, Australia

Research School of Information Sciences and Engineering
Australian National University
Canberra ACT 0200, Australia

Editor: Thorsten Joachims

Abstract

This paper presents an online support vector machine (S¥a)uses the stochastic meta-descent
(SMD) algorithm to adapt its step size automatically. Warfalate the online learning problem as
a stochastic gradient descent in reproducing kernel Hikparce (RKHS) and translate SMD to the
nonparametric setting, where its gradient trace paraneteo longer a coefficient vector but an
element of the RKHS. We derive efficient updates that allowoyserform the step size adaptation
in linear time. We apply the online SVM framework to a variefyfoss functions, and in particular
show how to handle structured output spaces and achievieeffanline multiclass classification.
Experiments show that our algorithm outperforms more pgimimethods for setting the gradient
step size.

Keywords: online SVM, stochastic meta-descent, structured outpatesp

1. Introduction

Stochastic (“online”) gradient methods incrementally update their hypothgsiedzending a sto-
chastic approximation of the gradient computed from just the currentdigm. Although they
require more iterations to converge than traditional deterministic (“batcHihtgques, each iteration
is faster as there is no need to go through the entire training set to meascouerdrd gradient. For
large, redundant data sets, or continuing (potentially non-stationaggnssr of data, stochastic
gradient thus outperforms classical optimization methods. Much work in teé& @nters on the
key issue of choosing an appropriate time-dependent gradient step size

Though support vector machines (SVMs) were originally conceivelgbssh techniques with
time complexity quadratic to cubic in the training set size, recent years hanelse development
of online variants (Herbster, 2001; Kivinen et al., 2004; Crammer et@D42Weston et al., 2005;
Kim et al., 2005) which overcome this limitation. To date, online kernel methoskstban stochastic
gradient descent (Kivinen et al., 2004; Kim et al., 2005) have eithdrfjeconstant, or let it decay
according to some fixed schedule. Here we adopt the more sophisticatexhelp ofstochastic

(©2006 S. V. N. Vishwanathan, Nicol N. Schraudolph, and AleRrola.

VISHWANATHAN, SCHRAUDOLPH AND SMOLA

meta-descerSMD): performing a simultaneous stochastic gradient descent on theiztejself.
Translating this into the kernel framework yields a fast online optimization mdtrdévVMs.

Outline. In Section 2 we review gradient-based step size adaptation algorithms sonatitate
our subsequent derivation of SMD. We briefly survey kernel-basgithie methods in Section 3,
then present the online SVM algorithm with a systematic, unified view of vatimssfunctions
(including losses on structured label domains) in Section 4. Section 5 theduo#s online SVMD,
our novel application of SMD to the online SVM. Here we also derive lirizae incremental
updates and standard SVM extensions for SVMD, and discuss issuesfef management and
time complexity. Experiments comparing SVMD to the online SVM are then presengattion 6,
followed by a discussion.

2. Stochastic Meta-Descent

The SMD algorithm (Schraudolph, 1999, 2002) for gradient step slaptation can considerably
accelerate the convergence of stochastic gradient descent; its appidatidate include indepen-
dent component analysis (Schraudolph and Giannakopoulos, 2@bear principal component
analysis in computational fluid dynamics (Milano, 2002), visual trackingtafdlated objects (Bray

et al., 2005, 2006), policy gradient reinforcement learning (Schuighdet al., 2006), and training
of conditional random fields (Vishwanathan et al., 2006).

2.1 Gradient-Based Step Size Adaptation

LetV be a vector spacé, € V a parameter vector, aild V — R the objective function which we
would like to optimize. We assume thais twice differentiable almosteverywhere. Denote by
J :V — R the stochastic approximation of the objective function at tim@ur goal is to find? such
thatE:[J(0)] is minimized. An adaptive version of stochastic gradient descent workstting

0111 =60y — 1 - g, Where g =0g,%(6), (1)

usingdg, as a shorthand fob%‘e o Unlike conventional gradient descent algorithms whgres
=0t

scalar, herey € R, and- denotes component-wise (Hadamard) multiplication. In other words,
each coordinate @@ has its own positive step size that serves as a diagonal conditioner. v&nce
need to choose suitable values we shall adgpy a simultaneous meta-level gradient descent.

A straightforward implementation of this idea is tihelta-deltaalgorithm (Sutton, 1981; Jacobs,
1988), which updates via

M1 ="Mt — K0 J11(6rv1)
=1t — Mg, h+1(0t11) - 0 Ot 11
=1+ HGt+1- G, (2)
wherep € R is a scalar meta-step size. In a nutshell, step sizes are decreased whgat\ae auto-

correlation of the gradient indicates oscillation about a local minimum, andased=otherwise.
Unfortunately such a simplistic approach has several problems:

1. Since gradient descent implements a discrete approximation to an Bifiratédifferential) process in any case, we
can in practice ignore non-differentiability dPon a set of measure zero, as long as our implementation of the gradient
function returns a subgradient at those points.

1108

STEP SIZE ADAPTATION IN RKHS

(d) (a)

(© to to (b)

Figure 1: Dependence of a paramelenn its step size) at timety. (a) Future parameter values
depend on the current step size; the dependence diminishes over timetidei@ngoing
adaptation ofy. (b) Standard step size adaptation methods capture only the immediate
effect, even when (c) past gradients are exponentially smoothed MD) By contrast,
iteratively models the dependence of the current parameter on an etiadigeveighted
past history of step sizes, thereby capturing long-range effectsteFigiapted from Bray
et al. (2005).

Firstly, (2) allows step sizes to become negative. This can be avoideddayingrn multiplica-
tively, e.g.via exponentiated gradiemtescent (Kivinen and Warmuth, 1997).

Secondly, delta-delta’s cure is worse than the disease: individualizespese meant to address
ill-conditioning, but (2) actually squares the condition number. The auteledion of the gradient
must therefore be normalized before it can be used. A popular (if extriemma of normalization
is to consider only the sign of the auto-correlation. Such sign-based nsefbacbbs, 1988; Tol-
lenaere, 1990; Silva and Almeida, 1990; Riedmiller and Braun, 1993)eVvenvdo not cope well
with stochastic approximation of the gradient since the non-linear sign fundties not commute
with the expectation operator (Almeida et al., 1999). More recent algorithlasr{on and Baird,
1996; Almeida et al., 1999; Schraudolph, 1999, 2002) therefore use tuaitiye (hence linear)
normalization factors to condition the step size update.

Finally, (2) fails to take into account that changes in step size not onlgtafie current, but
also future parameter updates (see Figure 1). In recognition of thikshing,g; in (2) is usually
replaced with an exponential running average of past gradientsbglat®88; Tollenaere, 1990;
Silva and Almeida, 1990; Riedmiller and Braun, 1993; Almeida et al., 1999).0A8h such ad-
hoc smoothing does improve performance, it does not properly caphgedom dependencies, the
average still being one of immediate, single-step effects (Figure 1c).

By contrast, Sutton (1992) modeled the long-term effect of step sizadune fparameter values
in a linear system by carrying the relevant partials forward in time, anddfthet the resulting step
size adaptation can outperform a less than perfectly matched Kalman filtehaStic meta-descent
(SMD) extends this approach to arbitrary twice-differentiable nonlingstess, takes into account
the full Hessian instead of just the diagonal, and applies an exponentay tlethe partials being
carried forward (Figure 1d).

2.2 SMD Algorithm

SMD employs two modifications to address the problems described abovgustsastep sizes in
log-space, and optimizes over an exponentially decaying trace of gtadiEmus log; is updated

1109

VISHWANATHAN, SCHRAUDOLPH AND SMOLA

as follows:
t .
logmty1 = logmn — HZ}Nalogn{,iJ(@tH)
=

t .
= logn: — Wdg,,,I(Or+1) '_%)\Ialogrh,iavrl
i=

= lognt — Ugt+1 - Vi1, (3)

where the vectop € V characterizes the long-term dependence of the system parameteré on the
past step sizes over a time scale governed by the decay factor(.

Note that virtually the same derivation holds if — as will be the case in Section &-wish to
adapt only a single, scalar step sigefor all system parameters; the only change necessary is to
replace the Hadamard product in (3) with an inner product.

Element-wise exponentiation of (3) yields the desired multiplicative update

Th+1 = 1) - €XP(—HGt+1- V1)
R max(%, 1- g1 vei), (4)
where the approximation eliminates an expensive exponentiation operateacfostep size update.
The particular bi-linearization we use! ~ max(%, 1+u),

e matches the exponential in value and first derivative :at0, and thus becomes accurate in
the limit of smally;
e ensures that all elements gfremain strictly positive; and

e improves robustness by reducing the effect of outlierss> 0 leads to linedr rather than
exponential growth in step sizes, while for O they are at most cut in half.

The choice of% as the lower bound stems from the fact that a gradient descent conyeny a
minimum of a differentiable function can overshoot that minimum by at mosttarfattwo, since
otherwise it would by definition be divergent. A reduction by at rré)in step size thus suffices to
maintain stability from one iteration to the next.

To compute the gradient traaeefficiently, we expand,. 1 in terms of its recursive definition

(2):

t .
Vty1 .=)\Ia| i 9t 1 (5)
i;) ogmn +
o to
=Y NOogn_i0t— > NOiogn_i (Mt - gt)
i; ogmr i;') 0gm

t .
AN Mg — T [aatgt %)\Iamgm—i 9t]
i=
Here we have usedjogr, 8: = 0, and approximated

t
)\ial logn ~ 0 (6)
i; 0g 7

1,2 ; 1.
2. A quadratic approximation with similar properties wouldddex { A u+11 itu> .1’
5 otherwise.

1110

STEP SIZE ADAPTATION IN RKHS

which amounts to stating that the step size adaptation (in log space) must bélibriequ at the
time scale determined by. Noting thatdg,g: is the HessiarH; of J(6;), we arrive at the simple
iterative update

Vi1 = Aoy — - (ge + ANHiwy). (7)

Since the initial parametef do not depend on any step sizes= 0.

2.3 Efficiency and Conditioning

Although the Hessiaiil of a system witin parameters ha®(n?) entries, efficient indirect meth-
ods from algorithmic differentiation are available to compute its product withriitrary vector
within the same time as 2—3 gradient evaluations (Pearlmutter, 1994; Grie2@0(K). For non-
convex systems (where positive semi-definiteness of the Hessian ¢@ngoaranteed) SMD uses
an extended Gauss-Newton approximatiodbfor which a similar but even faster technique exists
(Schraudolph, 2002). An iteration of SMD — comprising (1), (4), ang—thus consumes less
than 3 times as many floating-point operations as simple gradient descent.

Iterating (7) while holding? andn constant would drivey towards the fixpoint

v — —[AH + (1-\)diag1/n)] g, (8)

which is a Levenberg-Marquardt gradient step with a trust regionittiondd byn and scaled by
1/(1—A). ForA = 1 this reduces to a Newton (resp. Gauss-Newton) step, which cosvengely
but may become unstable in regions of low curvature. In practice, we faidtMD performs best
whenA is pushed as close to 1 as possible without losing stability.

Note that in this regime, the - v term in (4) is approximately affine invariant, with the inverse
curvature matrix in (8) compensating for the scale of the gradient autetation. This means
that the meta-step sizeis relatively problem-independent; in experiments we typically use values
within an order of magnitude @f= 0.1. Likewise, well-adapted step sizeg g ~ H ~1g) will con-
dition the update not only & (1) but also ofv (7). Thus SMD maintains an adaptive conditioning
of all its updates, provided it is given reasonable initial step siges begin with.

3. Survey of Online Kernel Methods

The perceptronalgorithm (Rosenblatt, 1958) is arguably one of the simplest online learniog alg
rithms. Given a set of labeled instandgs:1,y1), (2,Y2) ... (m,Ym)} C X x 9 wherex C RY and

yi € {1} the algorithm starts with an initial weight vectér= 0. It then predicts the label of a
new instancer to bey'= sign((@,x)). If § differs from the true labe} then the vecto#é is updated
asf = 0 +yx. This is repeated until all points are well classified. The following resulnidg the
number of mistakes made by the perceptron algorithm (Freund and S¢H&88s Theorem 1):

Theorem 1 Let{(x1,y1),(x2,Y2),...(xm,Ym)} be a sequence of labeled examples Witf|| < R.
Let @ be any vector with|@|| = 1 and lety > 0. Define the deviation of each example as

di - maX(OaV—Yi <0,£I)i>), (9)

and let D= ,/¥;d?. Then the number of mistakes of the perceptron algorithm on this segisence
bounded by ®P)2.

1111

VISHWANATHAN, SCHRAUDOLPH AND SMOLA

This generalizes the original result (Block, 1962; Novikoff, 1962; 8ky and Papert, 1969) for
the case when the points are strictly separaibde,when there exists & such that/|¢|| = 1 and
Yi (0, i) > yforall (xi,y;).

The so-calledkernel trickhas recently gained popularity in machine learning (Sabpf and
Smola, 2002). As long as all operations of an algorithm can be expresgehner products, the
kernel trick can used tlift the algorithm to a higher-dimensiorfalature spaceThe inner product
in the feature space produced by the mappmgec — # is represented by kernel Kz, z') =
(@(x),®(x")),,. We can now drop the condition C RY but instead require that be areproducing
kernel Hilbert spacédRKHS).

To kernelize the perceptron algorithm, we first gst& map the data into feature space, and
observe that the weight vector can be expressél-as ., yj@(x;), wherey is the set of indices
where mistakes occurred. We can now comgétei) = ¥ i, ¥j (®(x)), ®(xi)) = T i, Yik(xj, i),
replacing explicit computation af with kernel evaluations.

The main drawback of the perceptron algorithm is that it does not maximize thginet
separation between the members of different classes. Friel3 et al) @@®@ss this issue with
their closely relatetternel adatron(KA). The KA algorithm uses a weight vectér= S a;y;@(x;).
Initially all a; are set to 1. For a new instan¢e,y) we computez = 1—-y5;a;yiK(zxi,x), and
update the correspondingasa := o +nzif a +nz > 0; otherwise we sett = 0.2 FrieR et al.
(1998) show that if the data is separable, this algorithm converges to thmoraxmargin solution
in a finite number of iterations, and that the error rate decreases exjaiyenith the number of
iterations.

To address the case where the data is not separable in feature spaoel, &d Schapire (1999)
work with a kernelized perceptron but use the online-to-batch convepsimcedure of Helmbold
and Warmuth (1995) to derive theioted perceptrormlgorithm. Essentially, every weight vector
generated by the kernel perceptron is retained, and the decision rutesi®gty vote amongst the
predictions generated by these weight vectors. They prove the follownistgke bound:

Theorem 2 (Freund and Schapire, 1999, Corollary 1) Létx1,y1),(x2,Y2),...(xmYm)} be a
sequence of training samples af@m 1,Ym+1) @ test sample, all taken i.i.d. at random. Let
R=max<j<m+1||xil||- For||@]| = 1andy > 0, let

mil
Doy = \/Zl (max(0,y—vy; (0, xi))?. (10)

Then the probability (under resampling) that the voted perceptron algoridbes not predictpy, 1
on test sampler,, 1 after one pass through the sequence of training samples is at most

R+Dgy\ 2
E| inf <+9V> (11)
[16]|=1,y>0 Y

whereEE denotes the expectation under resampling.

m+1

Another online algorithm which aims to maximize the margin of separation betwessesl#s
LASVM (Bordes et al., 2005). This follows a line bidget(kernel Perceptron) algorithms which
sport a removal step (Crammer et al., 2004; Weston et al., 2005). BLi&fByM tries to solve the

3. In the interest of a clear exposition we ignore difitset bhere.

1112

STEP SIZE ADAPTATION IN RKHS

SVM quadratic programming (QP) problem in an online manner. If the newniostaiolates the
KKT conditions then it is added to the so-callective setluring thePROCESSstep. AREPROCESS
step is run to identify points in the active set whose coefficients are coretrat either their upper
or lower bound; such points are then discarded from the active sedeBet al. (2005) have shown
that in the limit LASVM solves the SVM QP problem, although no rates of corarerg or mistake
bounds have been proven.

The ballseptronis another variant of the perceptron algorithm which takes the margin ef sep
aration between classes into account (Shalev-Shwartz and Sing8jj, 20@ontrast to the classic
perceptron, the ballseptron updates its weight vector even for welfadasmstances if they are
close to the decision boundary. More precisely, if a B, r) of radiusr around the instance
x intersects the decision boundary, the worst-violating poir ia used as a pseudo-instance for
updating the weight vector. Shalev-Shwartz and Singer (2005) shadvepipaopriate choice af
yields essentially the same bound as Theorem 1 above; this bound cantbaadjfurther when
the number of margin errors is strictly positive.

Another notable effort to derive a margin-based online learning algorigh®.MA |, the ap-
proximate large margin algorithmv.r.t. normp (Gentile, 2001). Following Gentile and Littlestone
(1999), the notion of a margin is extendedgaorms: Letz’ = x/||x||p, and||0||q < 1, where
%4‘% = 1. Then thep-margin of (x,y) w.r.t. 8 is defined agj; (6,x’). Like other perceptron-
inspired algorithms, ALMA, does not perform an update if the current weight vector classifies the
current instance with a largg-margin. If a margin violation occurs, however, the algorithm per-
forms ap-norm perceptron update, then projects the obtathemitheg-norm unit ball to maintain
the constraint|@||q < 1. ALMA , is one of the few percpetron-derived online algorithms we know
of which modify their learning rate: Itp-norm perceptron update step scales with the number of
corrections which have occurred so far. ALMA&an be kernelized only fqo = 2.

Many large-margin algorithms (Li and Long, 2002; Crammer and Sing@3;28erbster, 2001)
are based on the same general principle: They explicitly maximize the marginpaiade their
weights only when a margin violation occurs. These violating instances agddsnto the ker-
nel expansion with a suitable coefficient. To avoid potential over-fittingraddce computational
complexity, these algorithms either implement a removal step or work with a fixedsffer. The
online SVM (Kivinen et al., 2004) is one such algorithm.

4. Online SVM

We now present the online SVMiKkaNORMA) algorithm (Kivinen et al., 2004) from a loss func-
tion and regularization point of view, with additions and modifications for logrstizession, nov-
elty detection, multiclass classification, and graph-structured label domdiissséts the scene for
our application of SMD to the online SVM in Section 5. While many of the loss funstidis-
cussed below have been proposed before, we present them harermreon, unifying framework
that cleanly separates the roles of loss function and optimization algorithm.

4.1 Optimization Problem

Let x be the space of observations, andhe space of labels. We usg | to denote the size af .
Given a sequencf(xi,Y;)|xi € x,y; € 7 } of examples and a loss functibnx x o x # — R, our

1113

VISHWANATHAN, SCHRAUDOLPH AND SMOLA

‘] I l m|7>/|7 I 2 I H 12

wheres is a reproducing kernel Hilbert space (RKHS) of functionswor o . Its defining kernel
is denoted by : (x x)2 — R, which satisfieg f,k((x,y),)),, = f(z,y) forall f € 7. In a de-
parture from tradition, but keeping in line with Altun et al. (2004); Tsodhgdis et al. (2004); Cai
and Hofmann (2004), we let our kernel depend on the labels as wek ab#ervations. Finally, we
make the assumption thiabnly depends ori via its evaluations af (x;,y;) and that is piecewise
differentiable.

By the reproducing property of we can compute derivatives of the evaluation functional. That
is,
Sincel depends orf only via its evaluations we can see t@at(x,y, f) € #, and more specifically

ol (x,y, f) € spaf k((x,¥),-) whereye o }. (14)

Let (x¢,y:) denote the example presented to the online algorithm at time instandsing the
stochastic approximation df f) at timet:

c
() :=1(zt, %1, f)+§||f||§{ (15)
and setting

O =0t X (fy) = 0¢l (e, 1, ft) +Cf, (16)

we obtain the following online learning algorithm:

Algorithm 1 Online learning (adaptive step size)

1. Initialize fg=0

2. Repeat
(a) Draw data samplex:, ;)
(b) Adapt step sizq;
(c) Updatefii1 — fi —neor

Practical considerations are how to implement steps 2(b) and 2(c) etffjcigve will discuss
2(c) below. Step 2(b), which primarily distinguishes the present papar the previous work of
Kivinen et al. (2004), is discussed in Section 5.

Observe that, so far, our discussion of the online update algorithm iséndept of the partic-
ular loss function used. In other words, to apply our method to a new setgngjmply need to
compute the corresponding loss function and its gradient. We discussumarggamples of loss
functions and their gradients in the next section.

1114

STEP SIZE ADAPTATION IN RKHS

4.2 Loss Functions

A multitude of loss functions are commonly used to derive seemingly differemtek methods.
This often blurs the similarities as well as subtle differences between thesedseth this section,
we discuss some commonly used loss functions and put them in perspa@ivieegin with loss
functions on unstructured output domains, then proceed to to casee teetabel space” is
structured. Since our online update depends on it, we will state the grafli@htoss functions we
present below, and give its kernel expansion coefficients. Forisedinear loss functions, we
employ one-sided derivatives at the points where they are not diffabée—cf. Footnote 1.

4.2.1 LOSSFUNCTIONS ONUNSTRUCTUREDOUTPUT DOMAINS

Binary Classification uses the hinge or soft margin loss (Bennett and Mangasarian, 19a62sCo
and Vapnik, 1995)

I(z,y, f) = max0,1-yf(z)) (17)
where# is defined orx alone. We have
if yf >1
oil(w.y 1= | O YH@ =1 (18)
—yk(z,) otherwise

Multiclass Classification employs a definition of the margin arising from log-likelihood ratios
(Crammer and Singer, 2000). This leads to

(@,) = max0, 1+ maxi(@.9) ~ (z.y)) (19)
oy) {0 1@V = 1 @y) 20)
Y U= k(@ y),) — K(,y), -) otherwise

Here we defineg* to be the maximizer of the max, operation. If severa}* exist we pick one of
them arbitrarily,e.g.by dictionary order.

Logistic Regressionworks by minimizing the negative log-likelihood. This loss function is used
in Gaussian process classification (MacKay, 1998). For binary clzetsiin this yields

[(x,y, f)=log(1+exp(—yf(x))) (21)

! (22)

Ol(@y. 1) = —yKa.) ey @)

Again the RKHS# is defined onx only.

Multiclass Logistic Regressionworks similarly to the example above. The only difference is that
the log-likelihood arises from a conditionally multinomial model (MacKay, 1998)is means that

(@,y, 1) = —f(2,y) +log § expf(=,9) (23)
yey
ol (z,y, f) = > ki(=,9),-)[p(¥, f) —Byyl, (24)
yey i)

where we used p(y|x, f) = (25)

Syer €9

1115

VISHWANATHAN, SCHRAUDOLPH AND SMOLA

Novelty Detection uses a trimmed version of the log-likelihood as a loss function. In practice this
means that labels are ignored and the one-class margin needs to ex&a¢dlkopf et al., 2001).
This leads to

(@,y, f) = max(0,1— f(x)) (26)
~foif f(x) > 1
Orl(@y 1) = {—k(m,-) otherwise @7

4.2.2 LOSSFUNCTIONS ONSTRUCTUREDLABEL DOMAINS

In many applications the output domain has an inherent structure. For Eatimgument cat-
egorization deals with the problem of assigning a set of documents to a pet-defined topic
hierarchies or taxonomies. Consider a typical taxonomy shown in Figuhechvs based on a sub-
set of the open directory projedit(p: / / www. dnoz. or g/). If a document describing CDROMs
is classified under hard disk drives (‘HDD’), intuitively the loss shouddsinaller than when the
same document is classified under ‘Cables’. Roughly speaking, theofgheloss function should
depend on the length of the shortest path connecting the actual label teetheted label.e., the
loss function should respect the structure of the output space (Treacidds et al., 2004).

‘ Computers ’

‘Hardware’ ‘ Software ’

‘Storage’ ‘Cables’ ‘ Freeware ’ ‘Shareware’

‘ Opensource ’

HDD CDROM

Figure 2: A taxonomy based on the open directory project.

To formalize our intuition, we need to introduce some notation. A weighted dgaphV,E) is
defined by a set of nod&sand edge& CV xV, such that, each edge, v;) € E is assigned a non-
negative weightw(v;,v;) € R™. A path fromvy €V tov, €V is a sequence of nodesvs . .. v, such
that(vi,vi+1) € E. The weight of a path is the sum of the weights on the edges. For an uedirec
graph,(vi,vj) € E = (vj,Vi) € EAW(V;, V) = W(Vj, V).

1116

STEP SIZE ADAPTATION IN RKHS

A graph is said to be connected if every pair of nodes in the graph areected by a path. In
the sequel we will deal exclusively with connected graphs, anddét;, vj) denote the weight of
the shortestife., minimum weight) path fronv; to v;. If the output labels are nodes in a graph
the following loss function takes the structure®fnto account:

I(2,y, f) = max{0, fyg@e(%w +f(z,9)] - f(z,y)}- (28)

This loss requires that the output labglsvhich are “far away” from the actual labgl(on the
graph) must be classified with a larger margin while nearby labels are al@Amziclassified with
a smaller margin. More general notions of distance, including kernels omaithes of the graph,
can also be used here instead of the shortest/hath y).

Analogous to (24), by defining' to be the maximizer of the max, operation we can write the
gradient of the loss as:

0if f(a,y) > A(y,y*) + f(x,y)

. (29)
k((x,y*),:) —k((z,y),) otherwise

ofl(z,y, f) = {
The multiclass loss (19) is a special case of graph-based loss (28jdepa simple two-level
tree in which each label is a child of the root node, and every edge haigatvof%. In this graph,
any two labely # Y will have A(y, ¥) = 1, and thus (28) reduces to (19). We will employ a similar but
multi-level tree-structured loss in our experiments on hierarchical dodura&gorization (Section
6.4).

4.2.3 LOSSFUNCTION SUMMARY AND EXPANSION COEFFICIENTS

Note that the gradient always has the form

Ol (e, 1, ft) =2 (G, k().) (30)

where¢ denotes thexpansion coefficient(s} more than one in the multiclass and structured label
domain cases — arising from the derivative of the loss at time

Table 1 summarizes the tasks, loss functions, and expansion coefficieritawe considered
above. Similar derivations can be found tinsensitive regression, Huber’s robust regression, or
LMS problems.

4.3 Coefficient Updates

Since the online update in step 2(c) of Algorithm 1 is not particularly useftdilipert space, we
now rephrase it in terms of kernel function expansions. This exterdds@nplements the reasoning
of Kivinen et al. (2004) as applied to the various loss functions of theique section. From (15)
it follows thatg, = d¢l (¢, i, ft) + cf; and consequently

ferr = fe—ne [0l (2, W, ft) +Ch]
= (1—nc©) ft — N0+l (21, W, fr)- (31)
Using the initializationf; = 0 this implies that
t

fra(r) = leutiyk((ici,Y)a')- (32)
=1y

1117

VISHWANATHAN, SCHRAUDOLPH AND SMOLA

task \ loss function| (x, yt, ft) \ expansion coefficient(s§;

Novelty 0 if fi(xe) >1
0,1 f =

Detection max(o, (@) & {—1 otherwise

Binary

Jo ifyfi(z) > 1
Classification max(0,1 -y fi(21)) & = {

—Yy; otherwise

Multiclass max0,1— fi(x,v) & =0if fi(xe,yt) > 1+ fi(a,y")
Classification +r3;axft(a:t,)7)] &y = —1,&y- = 1 otherwise

Y#W
Graph-Struct. max{0, — f (x,%t) + & =0if fi(x, i) > AW, YY) + (e, Y)

Label Domains rj;éax[A(yt,Y/) + f(z,9)]} | &y = —1.&,y =1 otherwise
Y#%

Binary Logistic
Regression

—W

Y fe () - Nt
log(1+ e %h(@)) & 1+ eth@)

Multiclass Log- | |o eft@9) _ £ (2 — —
istic Regression gyezy @) ty = PUylt, fe) — yy

Table 1: Loss functions and gradient expansion coefficients.

With some abuse of notation we will use the same expression for the casesavtie defined on
x rather thanx x o . In this setting we replace (32) by the sum ovenly (with corresponding
coefficientsayj). Whenever necessary we will uge to refer to the entire coefficient vector (or
matrix) anday; (or aijy) will refer to the specific coefficients. Observe that we can write

t

gt() = leytiyk((wiaY)7‘)7 (33)
i=1y
where ~ == [Cat{l } . (34)
&
We can now rewrite the update equation (31) using only the expansidiictrgt as

(I-niC)ow1 } [o1]
- = - . 35
Ot |: _r]tEtT O nt')’t ()

Note that conceptuallg grows indefinitely as it acquires an additional row with each new data
sample. Practical implementations will of course retain only a buffer of pastples with nonzero
coefficients (see Section 5.5).

5. Online SVMD

We now show how the SMD framework described in Section 2 can be usathfi the step size
for online SVMs. The updates given in Section 4 remain as before, theddfdyence being that
the step sizg); is adapted before its value is used to update

1118

STEP SIZE ADAPTATION IN RKHS

5.1 Scalar Representation

Since we are dealing with an optimization in a RKHS only scalar variants arépm$3 he scalar
equivalent of (4) is

Nt+1 =Nt max(%a 1— (g1, V1)), (36)
wherep is the meta-step size described in Section 2. The updatei$arow given by
Vir1 = AVt —Ne(G +AHiw), (37)

whereH; is the Hessian of the objective function. Note that nElwis an operator in Hilbert space.
For X (f) as defined in (15), this operator has a form that permits efficient computaftiél; v :

For piecewise linear loss functions, such as (18), (20), and (27haweH; = cI, wherel is
the identity operator, and obtain the simple update

Vir1 = (L —=1tC)AV, — Ne G- (38)

For other losses, note thiabnly depends ori via its evaluations afx,y). This means thak;
differs fromcI only by a low-rank object. In particular, for logistic regression (22) \&eeh

H;—cI = p($t)k($t,')®k(ﬂ3t7')7 (39)

wherep(z;) ;= etf@) /(14 etft(=))2 and® denotes the outer product between functionssin
obeying(u®v)w=u(v,w) for u,v,w € # . Likewise, for multiclass logistic regression (24) we have

Hi—cI = % p(x, Y. 9 k((z,y),") @k((2,9),-), (40)
yyey
where p(x,Y,¥) := dygp(¥lxt, ft) — p(¥lz, fr) plylet, fi). (41)

5.2 Expansion in Hilbert Space

The above discussion implies thatan be expressed as a linear combination of kernel functions,
and consequently is also a member of the RKHS define#(by). Thusv cannot be updated
explicitly, as is done in the normal SMD algorithm (Section 2). Instead we write

Via(e) = _ZZ&iyk((wi,y),-) (42)
=1y

and update the coefficients This is sufficient for our purpose because we only need to be able
to compute the inner products, v),, in order to update). Below, we first discuss the case when
H = cI and then extend the discussion to handle the off diagonal entries.

Diagonal Hessian. Analogous to the update aawe can determine the updates@wia

B = [(1_nt8))\6t71] — Nt "t (43)

Although (43) suffices in principle to implement the overall algorithm, a naivdémpntation of
the inner productg,) in (36) takesO(t?) time, rendering it impractical. We show in Section 5.3
how we can exploit the incremental nature of the updates to compute this irotkrcpin linear
time.

4. The situation is different for reduced-rank expansions which ar@ypetrized by the reduced set vectors.

1119

VISHWANATHAN, SCHRAUDOLPH AND SMOLA

Non-diagonal Hessian.The only modification to (43) that we need to take into account is the
contribution of the off-diagonal entries df; to 3;. A close look at (39) and (40) reveals that the
low-rank modification tacI only happens in the subspace spanned(lo¥:,y),-) fory € 9. This
means that we can express

(Hi—ch)vi = 3 xuyk((w,9),), (44)
yer

allowing us to derive the analog of (43):

BI — |: (1_nt8))\/@tfl :| _nt<7t+)\xt) (45)

In the case of binary logistic regression we have
(Hi—cI)v = p(xe)vi(z)K(t,), (46)
and for multiclass logistic regression

(Hi—ch)v = 5 p(xt,y, 9 (@ y)k((@1,§),). (47)
y.yey

5.3 Linear-Time Incremental Updates

We now turn to computingg+1,Vt+1) in linear time by bringing it into an incremental form. For
ease of exposition we will consider the case whEke= cI; an extension to non-diagonal Hessians
is straightforward but tedious. We use the notati¢a, -) to denote the vector df(x:,y) foryc o .
Expandingg;. 1 into c fi 1 + &1 We can write

(Ot41,Ver1) = CThr1 + & Vi1 (®esn,), (48)
wherertt := (fi,). The function update (31) yields
The1 = (1—N0) (f, Vegn) — Neéy Vg (o,). (49)
Thev update (37) then gives us
(f, e1) = (L—neC)AT® — e (i, 01) (50)
and usingy = cf; + & again we have
(fr,00) = cl Rl + & fe(a,). (51)
Finally, the squared norm df can be maintained via:
Iferall® = (=0 fel]> = 201 - n0)& (e,) + né& k(@), (=,)& (52)

The above sequence (48)—(52) of equations, including the evaludtiba associated functionals,
can be performed i®(t) time, and thus allows us to efficiently compytg; 1, Vi +1)-

1120

STEP SIZE ADAPTATION IN RKHS

5.4 Extensions

We will now implement in the context of SVMD two important standard extensioribddlSVM
framework: offsets, and the specification of the fraction of points whickate the margin via
the so-called)-trick. Both of these extensions create new parameters, which we will aledbiy
stochastic gradient descent, again using SMD for step size adaptation.

5.4.1 HANDLING OFFSETS

In many situations, for instance in binary classification, it is advantageadzitan offseb € R/”'|
to the predictionf € #. While the update equations described above remain unchanged, tte offs
parameteb is now adapted as well:

bti1=Dby — Mot - ath<ft + bt) =by— Mot &t (53)

Applying the standard SMD equations (4) and (7) to the case at hangydegethe offset step sizes
Mo via

Mot+1 =Mo" ma-x(%u 1—Mo&tr1-vors1), (54)
wherely, is the meta-step size for adjusting, andwy, is adapted as
Vpt+1 = ApUbt — Nbyt - - (55)

Note that we can adjust the offset for each clasg imdividually.

5.4.2 THEV-TRICK

The so called-trick allows one to pre-specify the fraction<0v < 1, of points which violate the
margin. For instance, when performing novelty detection usingtnek, the loss function that is
commonly used is

[(x,y, f) = max0,e — f(x)) — ve. (56)

Here, the regularization parameter is fixeccat 1, but the margin is adapted with the additional
constraint > 0. This can easily be taken into account by adaptiimglog-space. Observe that

Ologek (ft) = €0 (ft) = —€(& +V), (57)
and therefore the updates focan now be written as
€11 = € €XP(—Net Ologe (fr)) (58)
= grexpNet& (& +V)). (59)
We now use SMD to adapt the margin step sjze
Net+1 = Net max(%v 1+ PeVe t& (& +V)), (60)
wherevg; is updated as
Vetr1 = AeVet +Net€ (&t +V) (L4 AeVey). (61)

This is a straightforward application of the SMD update equations (4) gntbfing into account
thate is adapted in log-space.

This completes our description of the online SVMD algorithm. Since it comprisgthar large
number of update equations, it is non-trivial to arrange them in an apaterder. Algorithm 2
shows the ordering which we have found most advantageous.

1121

VISHWANATHAN, SCHRAUDOLPH AND SMOLA

Algorithm 2 Online v-][SVMD

1. Initialize
2. Repeat

(a) data, prediction and loss:
i. draw data sampléx:, ;)
ii. calculate predictiorf;(x:)
iii. calculate losd (x,w, ft)
(b) obtain gradients:
i. calculatet; = 01l (xt, i, fr)
ii. (42) calculatev; ()
iii. (48) calculate(g:,w)
iv. (34) calculatey resp.+
(c) perform SMD:
i. (36) update step size(8)e,Nb, | N
ii. (46)/(47)if H non-diag.: computs
iii. (43)/(45) updatde, Vg, vp, | V resp.3
(d) maintain incrementals:
i. (51) calculate(fi,gr)
ii. (50) calculate(fr,vii1)
iii. (42) calculatevi 1 ()
iv. (49) updatert
v. (52) updats|f|?
(e) (35) update functiof resp.a

5.5 Time Complexity and Buffer Management

The time complexity of online SVMD is dominated by the cost of the kernel expassn steps
2(a)ii, 2(b)ii, and 2(d)iii of Algorithm 2, which grows linearly with the sizetbie expansion. Since
unlimited growth would be undesirable, we maintaiteast recently use@_RU) circular buffer
which stores only the lagb non-zero expansion coefficients; each kernel expansion then takes
O(w| 7 |) time.

The online SVM (NORMA) algorithm does not require steps 2(b)ii or #i(djut still has to
employ step 2(a)ii to make a prediction, so its asymptotic time complexi®(ig| > |) as well.
The two algorithms thus differ in time complexity only by a constant factor; intpraeve observe
online SVMD to be 3—4 times slower per iteration than NORMA.

Limiting the kernel expansion to the most recamon-zero terms makes sense because at each
iterationt the coefficientsy; with i <t are multiplied by a facto1 — n:c) < 1. After sufficiently
many iterationsy; will thus have shrunk to a small value whose contributionf {@;) becomes
negligible —and likewise foB;’s contribution tov(x:). If the loss function has a bounded gradient
(as in all cases of Table 1), then it can be shown that the truncationtbu®mtroduced decreases

1122

STEP SIZE ADAPTATION IN RKHS

1.0 T T T 100 - =5 ~| T T
0.9f, . AR
= online SVM RN ~
5 0.8¢ “ ... SVMD (A=0) | . ~
S 0.7 — SVMD]l o010 7
(NN} . N e ~
S 0.6F \ 19 i
S MQ(‘ —?erT T~ %
F L \ e ’ =]
o 0.5) Lo s _
S W L oy 2T E

= PG B . — online SVM

0.4r% 7% vy Aok,] ..+ SVMD (A=0)

o3 = ="' o, — SVMD

0 2 1 1 1 1 1 1

10° 10" 10 10° 10* 10° 10 10° 10° 10*

Iterations Iterations

Figure 3: v-SVM binary classification over a single run through the USPS data satei@average
error (left) and step size (right) for SVMD with= 0.95 (solid),A = 0 (dotted), and online
SVM with step size decay (62), using= 10 (dashed).

exponentially with the number of terms retained (Kivinen et al., 2004, Pii@osl), so good
solutions can be obtained with limited buffer siae

A good buffer management scheme has to deal with two conflicting demandsie Textent
that the data set is non-stationary, it is desirable to remove old items from fiee iouorder to
reduce the effect of obsolete data. The truncation error, on the atinel; s reduced by using as
large a buffer as possible. Although we employ a simple LRU circular btdfgood effect here,
smarter buffer management strategies which explicitly remove the least imippdiah based on
some well-defined criterion (Crammer et al., 2004; Weston et al., 2005;| Beké, 2006) could
also be adapted to work with our algorithm.

6. Experiments

We now evaluate the performance of SMD’s step size adaptation in RKH8myaring the online
SVMD algorithm described in Section 5 above to step size adaptation baedroimmediate,
single-step effects — obtained by settihg= 0 in SYMD —and to the conventional online SVM
(akaNORMA) algorithm (Kivinen et al., 2004) with a scheduled step size detay o

Nt = v T/(T""t)v (62)

wheret is hand-tuned to obtain good performance. We do not use offsetswieeee we employ
thev-trick (cf. Section 5.4.2), we always sgfo = 1, e = l, andA; = A.

6.1 USPS Data Set

For our first set of experiments we use the well-known USPS data s€tifLet al., 1989) with the
RBF kernel
_ A2
k(z,x') = exp(HmZGZmH) : (63)

1123

VISHWANATHAN, SCHRAUDOLPH AND SMOLA

settingo = 8 via cross-validation. We extend this kernel to the multiclass case via the datia k

k((.y), (2,Y)) = k(z,2') &yy. (64)

In the spirit of online learning, we train for just a single run through the,datahat no digit is
seen more than once by any algorithm. For a fair comparison, all algorithrnedstéth the same
initial step sizeno, and had the data presented in the same order. For implementation effigiency,
only store the last 512 support vectors in a circular buffer.

6.1.1 BNARY CLASSIFICATION

Figure 3 shows our results for binary classification. Here, the datapliagngo two classes com-
prising the digits 0—4 and 5-9, respectively. We us&VM with v = 0.05,no =1, andu= 1 and
plot current average error rate —that is, the total number of erroteetraining samples seen so
far divided by the iteration number—and step size. Observe that onlinelsigilid) is initially
slower to learn, but after about 20 iterations it overtakes the online S\@&shgt), and overall makes
only about half as many classification errors. The single-step versiSWMID with A = 0 (dotted)
has the fastest early convergence but is asymptotically inferior to SVMPeapy though still far
better than the online SVM with scheduled step size decay.

6.1.2 MULTICLASS CLASSIFICATION

Figure 4 shows our results for 10-way multiclass classification using sofimlass withno = 0.1,
p= 0.1, andc = 1/(500n), wheren is the number of training samples. Again online SVMD (solid)
makes only about half as many classification errors overall as the onlive (8&%shed), with the
single-step X = 0) variant of SVMD (dotted) falling in between.

We found (by cross-validation) the online SVM with fixed decay schedutettorm best here
for no = 0.1. SVMD, on the other hand, is less dependent on a particular valgg sifice it can
adaptively adjust its step size. In this experiment, for instance, SVMDdgisggnificantly above
its initial value of 0.1 — something that a predetermined decay schedule camn®Ye generally
find the performance of online SVMD to be fairly independent of the initig) siee.

6.2 Non-stationary USPS Counting Sequence

For our next set of experiments we rearrange the USPS data to cragtdyarton-stationary prob-
lem: we take 600 samples of each digit, then present them in the orderpmrdésg to a 3-digit

decimal counter running twice from 000 through 999 (Figure 5). Thiatesepronounced non-
stationarities in the distribution of labels: '0’ for instance is very frequanlyen the sequence but
rare towards the end.

6.2.1 MULTICLASS CLASSIFICATION

Here we perform 10-way multiclass classification on the USPS countingsequusing-SVMD
with soft margin lossy = 0.05,ng = 1, andu = 1. As Figure 6 showsy-SVMD (solid) makes
significantly fewer classification errors than the controls: &lerageerror rate forv-SVMD over
its entire first (and only) pass through this sequence is less than 19% Qal@e v-SVM with
scheduled step size decay, on the other hand, has serious difficulty witioithstationary nature
of our data and performs barely above change level (90% error, &teh the simple step size

1124

STEP SIZE ADAPTATION IN RKHS

1.0 . . : 10° - . ;
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1 1 1 1 1
10° 10t 10° 10° 10* 10° 10 10? 10° 10*

Iterations Iterations

T

= online SVM 4
.. SVMD (A=0)
= SVMD 1

T

T

T

T

Step Size

T

Average Error

= online SVM ~
.. SVMD (\=0) Mo
— SVMD e

T

T

Figure 4: Online 10-way multiclass classification over a single run througb 8RS data set. Cur-
rent average error (left) and step size (right) for SVMD with= 0.99 (solid),A =0
(dotted), and online SVM with step size decay (62), usirg100 (dashed).

adaptation obtained fdr = 0 clearly outperforms it. This is not surprising since a step size decay
schedule typically assumes stationarity. By contrast, the decay factor dDS3an be adjusted

to match the time scale of non-stationarity; hare- 0.95 yielded the best performance. In other
experiments, we found (as one would expéct 1 to work well for stationary data.

6.2.2 NOVELTY DETECTION

We also perform novelty detection with SVMD £ A = 1) on the USPS counting sequence. Fig-
ure 7 (left) shows that though SVMD markedly reduces the initial step sizimeis not anneal it
down to zero. Its ongoing reactivity is evidenced by the occurrencpikés inn; that correspond

to identifiable events in our counting sequence. Specifically, major iné@agecan be observed
after seeing the first non-zero digittat 6, as the counter wraps from 19 to 2 at 60 (and like-
wise att = 120,150 180), then at = 300,120Q 1500 as the hundreds wrap from 099 to 100, 399
to 400, and 499 to 500, respectively, and finallyt at 3000 as the entire sequence wraps around
from 999 to 000. Many more minor peaks and troughs occur in betweesglghvacking the fractal
structure of our counting sequence.

000001002 997798999

Figure 5: To create a highly non-stationary problem, we rearrange@ 88@S digits into a 3-digit
counting sequence, running twice from 000 to 999.

1125

VISHWANATHAN, SCHRAUDOLPH AND SMOLA

10 - T T 100 N T T/ A T T
ALl b

0.8} "y = online SVM
o) .. SVMD (A=0) .
= — SVMD o 10 Al E
w 0.6 N Se
0] n ~
& S
a 0.41 k-‘f_l) 10_2 1
z = ouline SVM

0.2k .. SVMD (A=0)

‘ — SVMD
0.0 1 1 1
10° 10° 10 10° 10° 10*

Iterations Iterations

Figure 6: Online 10-way multiclass classification over a single run througHJ&PS counting
sequence (Figure 5). Current average error (left) and step &) (for v-SVMD with
A = 0.95 (solid), A = 0 (dotted), and onlin®-SVM with step size decay (62), using
T =100 (dashed).

6.3 MNIST Data Set: Effect of Buffer Size

We now scale up our 10-way multiclass classification experiments to a much diatgeset: 60000
digits from MNIST. We illustrate the effect of the circular buffer size orsslfication accuracy,
usingA =1, p= 0.01, and a polynomial kernel of degree 9. On a single run through the alata
buffer size of 256 yields around 20% average error (Figure 7, tidttls reduces to0.8% average
error when the buffer size is increased to 4096; averaged over thd5@@ digits, the error rate is
as low as 2.9%. For comparison, batch SVM algorithms achieve (at falegamputational cost)

a generalization error rate of4P6 on this data (Burges and Sitkopf, 1997; Schblkopf and Smola,
2002, p. 341).

6.4 WIPO-alpha Data Set: Tree-Structured Loss

For our experiments on document categorization we use the WIPO-alfshsedgublished in 2002
by the World Intellectual Property Organization (WIPOJhe data set consists of 75250 patents
which have been classified into 4656 categories according to a stangdandtay known anter-
national patent classificatioPC, htt p: // wwwv. wi po.int/classifications/en/). Each doc-
ument is assigned labels from a four-level hierarchy comprising sectitasses, sub-classes and
groups. A typical label might be ‘DO5C 1/00’ which would be read as Sedli@Textiles; Paper),
class 05 (Sewing; Embroidering; Tufting), sub-class C (Embroiderindting) and group 1/00
(apparatus, devices, or tools for hand embroidering).

The IPC defines an undirected taxonomy tree. A tree is a graph with naseydle., no paths
whose start and end vertices coincide — and one node designated @stti®de use/ = y to denote
thaty'is an ancestor of, i.e., the path fromy to the root containg.®

5. This data is now available on request from WIROL (: / / wwv. Wi po.int/).
6. Note that according to this definition, every node is an ancestor of itisisliis deliberate.

1126

STEP SIZE ADAPTATION IN RKHS

T T T 1.0 T T T
10° F E " buffer size 256
0.8} = buffer size 1024 R
B = puffer size 4096
& S 0.6l a
no v
o 10 " F E %
2 = 0.41 .
n >
< 0.2
10%F E
1 1 1 0.0 1 1 1 1
10° 10" 10 10° 10* 10° 10 10° 10° 10* 10°
Iterations lterations

Figure 7: Left: The step size for novelty detection with SVMD on the USPShiiog sequence
(Figure 5) closely follows the non-stationarity of the data. Right: Average ef SVMD
on the MNIST data set, for three different circular buffer sizes.

1.001 1
0.95 1
0.90 1
0.85T 1
0.80F 1
0.751 N 1

0.70f g 1.2

0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Iterations Iterations

Average Error
Average Loss

Figure 8: Average error (left) and loss (right) for SVMD over two masiseparated by vertical line)
through section D of the WIPO-alpha data set.

Following Cai and Hofmann (2004), we perform document categorizaperiments on the
WIPO-alpha data set, using a loss function that is a special case ofaph-gtructured loss (28).
Here the grapl® is the taxonomy tree with a weight éfon every edge, and the weighted distance
between nodes is defined as (Cai and Hofmann, 2004):

- 1 1
Ac(Y,Y) = z > + z 5| (65)
e Aty

A patent could have potentially many categories, but it has exactly one groategory. Fol-
lowing Cai and Hofmann (2004) we concentrate on predicting the primaegogy using the title

1127

VISHWANATHAN, SCHRAUDOLPH AND SMOLA

and claim contents. Furthermore, for the sake of reporting results, strict@urselves to Section
D from the data set. This section contains 1710 documents categorized intategories. Prepro-
cessing of the data consisted of document parsing, tokenization, andaemmalization in order to
produce a bag-of-words representation. The bag-of-words visct@rmalized to unit length. We
use a product kernel which is defined as

k((may)v(m/vy,)) = k(mvm/)K(yvy/)' (66)

For the document vectors we use a linear dot-product kernel

Kz, ') =z'a, (67)
while for the labels we use
Kyy) =3 1, (68)
zzy
Az=y

which counts the number of common ancestorg ahdy'. Like Cai and Hofmann (2004), we set
the regularizec to the reciprocal of the number of data points. We use a buffer of siz&, 1ifial
step sizanp = 1, meta-step sizg = 0.1, and decay parametkr= 0.999. In Figure 8 we plot the
current average error rate and graph-structured loss (28) ougrdeses through the data.

The WIPO-alpha data set is known to be difficult to learn (Cai and Hofm20d4; Tsochan-
taridis et al., 2004). Only 94 out of the 160 possible categories contamofomore examples
while as many as 34 categories have exactly one sample, which makes it éxthemefor an
online learning algorithm to predict well. Even the best offline algorithms haeported error rate
of 57.2% (Cai and Hofmann, 2004). SVMD performs competitively on this challendata set,
achieving an average error rate of around 75% over its first pasasgihtbe data, and 68% over its
second pass. It reduces the average loss to ara@2d¥er the first pass, and2B over both passes
(Figure 8). We found that further runs through the data set did not giaignificant increase in
accuracy or reduction of the loss.

7. Discussion

We presented online SVMD, an extension of the SMD step size adaptationdrtetiive kernel
framework. Using an incremental approach to reduce a i@t/ computation ta(t), we showed
how the SMD parameters can be updated efficiently even though they sime ie an RKHS. We
addressed the difficult cases of multiclass classification and logistic segmesvhere the Hessian
operator in RKHS includes non-diagonal terms. We also showed how S¥iiCbe adapted to
deal with structured output spaces. In experiments online SVMD outpesfb the conventional
online SVM (@ka NORMA) algorithm with scheduled step size decay for binary and multiclass
classification, especially on a non-stationary problem. In particular, glexaed convergence
to a good solution, which is one of the main aims of performing step size adapt#tioovelty
detection experiments we observe that SVMD is able to closely track thetatiorsirity in the data
and adapt the step sizes correspondingly. With a reasonable buf#es\$MD attains competitive
performance in a single pass through the MNIST data set. On a difficulingexat categorization
task using the WIPO-alpha data set, SVMD performed well compared to sheffieme algorithm.

1128

STEP SIZE ADAPTATION IN RKHS

Empirically we observe that in all our experiments the SVMD algorithm signifigapeeds up
the convergence of the conventional online SVM algorithm. It would beesterg to obtain worst
case loss bounds for SVMD akin to those of Kivinen et al. (2004). Thia teghnical challenge
here is that the SMD update consists of three interleaved updates, dgpoh@@pstraightforward
analysis using Bregman divergences (Gentile and Littlestone, 1999;rAaod Warmuth, 2001)
is infeasible. Established methods for proving worst case loss boulydsiréhe cancellation of
telescoped terms, which works only when the step gii® held constant. In the case of SVMD,
however, step sizes change from iteration to iteration. Even worse, figatelis governed by two
other feedback equations. A more sophisticated analysis, possibly inysleaond-order informa-
tion, will have to be developed to establish similar loss bounds for SVMD.

SMD is a generic method to hasten the convergence of stochastic gragieentl methods. In
combination with the kernel trick this provides a powerful learning tool. Okeenel algorithms
which rely on stochastic gradient descene-g, that of Kim et al. (2005) — could also be acceler-
ated with SMD; this is a focus of our ongoing work in this area.

Acknowledgments

We would like to thank Alexandros Karatzoglou and Chang Chui for thejp Wwéh early imple-

mentations, Lijuan Cai and Thomas Hofmann for making a pre-preprategsssion of the WIPO-
Alpha data set available to us, and the anonymous reviewers for ICMRSNiAnd JMLR for their
many helpful comments. National ICT Australia is funded by the Australiane@waent’'s De-
partment of Communications, Information Technology and the Arts and thgalias Research
Council through Backing Australia’s Ability and the ICT Center of Excellepcogram. This work
was supported by the IST Program of the European Community, undeasitalMNetwork of Ex-
cellence, 1IST-2002-506778.

References

L. B. Almeida, T. Langlois, J. D. Amaral, and A. Plakhov. Parameter atiaptén stochastic
optimization. In David Saad, edito@n-Line Learning in Neural Network&ublications of the
Newton Institute, chapter 6, pages 111-134. Cambridge Universitg,Frég9.

Y. Altun, A. J. Smola, and T. Hofmann. Exponential families for conditiorsaldom fields. In
Uncertainty in Artificial Intelligence (UAl)pages 2-9, 2004.

K. Azoury and M. K. Warmuth. Relative loss bounds for on-line densityresion with the ex-
ponential family of distributions.Machine Learning43(3):211-246, 2001. Special issue on
Theoretical Advances in On-line Learning, Game Theory and Boosting.

A. G. Barto and R. S. Sutton. Goal seeking components for adaptive ietatky An initial as-
sessment. Technical Report AFWAL-TR-81-1070, Air Force Wrightdgkhautical Laboratories,
Wright-Patterson AFB, Ohio 45433, USA, 1981.

K. P. Bennett and O. L. Mangasarian. Robust linear programming dis@iimmof two linearly
inseparable set©ptimization Methods and Softwark23-34, 1992.

1129

VISHWANATHAN, SCHRAUDOLPH AND SMOLA

H. D. Block. The perceptron: A model for brain functioningreviews of Modern Physic84:
123-135, 1962. Reprinted Meurocomputindpy Anderson and Rosenfeld.

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifvith online and active
learning.Journal of Machine Learning Researd1579-1619, September 2005.

M. Bray, E. Koller-Meier, P. Miller, N. N. Schraudolph, and L. Van Gool. Stochastic optimization
for high-dimensional tracking in dense range mafSsE Proceedings Vision, Image & Signal
Processing152(4):501-512, 2005.

M. Bray, E. Koller-Meier, N. N. Schraudolph, and L. Van Gool. Fastchastic optimization for
articulated structure trackingmage and Vision Computing4, in press 2006.

C. J. C. Burges and B. Sotkopf. Improving the accuracy and speed of support vector learning
machines. In M. C. Mozer, M. |. Jordan, and T. Petsche, edifaigances in Neural Information
Processing Systems @ages 375-381, Cambridge, MA, 1997. MIT Press.

L. Caiand T. Hofmann. Hierarchical document categorization with sdppotor machines. IRro-
ceedings of the Thirteenth ACM conference on Information and knowledgagementpages
78-87, New York, NY, USA, 2004. ACM Press.

C. Cortes and V. Vapnik. Support vector network&achine Learning20(3):273-297, 1995.

K. Crammer and Y. Singer. On the learnability and design of output codemdticlass prob-
lems. In N. Cesa-Bianchi and S. Goldman, edit®r®c. Annual Conf. Computational Learning
Theory pages 35-46, San Francisco, CA, 2000. Morgan Kaufmann Pulslisher

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclesisigms. Journal
of Machine Learning ResearcB:951-991, January 2003.

K. Crammer, J. Kandola, and Y. Singer. Online classification on a budgeSebastian Thrun,
Lawrence Saul, and Bernhard Stkopf, editors,Advances in Neural Information Processing
Systems lages 225-232, Cambridge, MA, 2004. MIT Press.

O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: A kéwaeeed perceptron on a fixed
budget. In Yair Weiss, Bernhard Silkopf, and John Platt, editor8dvances in Neural Informa-
tion Processing Systems,XBambridge, MA, 2006. MIT Press.

Y. Freund and R. E. Schapire. Large margin classification using thegteon algorithmMachine
Learning 37(3):277-296, 1999.

T.-T. Frie3, N. Cristianini, and C. Campbell. The kernel adatron algorithnfash and simple
learning procedure for support vector machines. In J. Shavlik, e@itoc. Intl. Conf. Machine
Learning pages 188-196. Morgan Kaufmann Publishers, 1998.

C. Gentile. A new approximate maximal margin classification algorithfournal of Machine
Learning ResearcR:213-242, December 2001.

C. Gentile and N. Littlestone. The robustness of the p-norm algorithm$2rda. Annual Conf.
Computational Learning Theorpages 1-11, Santa Cruz, California, United States, 1999. ACM
Press, New York, NY.

1130

STEP SIZE ADAPTATION IN RKHS

A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differeiutia
Frontiers in Applied Mathematics. SIAM, Philadelphia, 2000.

M. E. Harmon and L. C. Baird, Ill. Multi-player residual advantage mé&ag with general func-
tion approximation. Technical Report WL-TR-1065, Wright LaboratoL/AACF, Wright-
Patterson Air Force Base, OH 45433-7308, 199@&.t p: / / www. | eenon. conl paper s/ si m.
tech/ si mtech. pdf .

D. Helmbold and M. K. Warmuth. On weak learningournal of Computer and System Sciences
50(3):551-573, June 1995.

M. Herbster. Learning additive models online with fast evaluating kerrel®. P. Helmbold and
R. C. Williamson, editorsProc. Annual Conf. Computational Learning Theovglume 2111 of
Lecture Notes in Computer Scienpages 444-460. Springer, 2001.

R. A. Jacobs. Increased rates of convergence through learnegdaptationNeural Networks1:
295-307, 1988.

K. I. Kim, M. O. Franz, and B. Satikopf. Iterative kernel principal component analysis for image
modeling. IEEE Transactions on Pattern Analysis and Machine Intellige2d€9):1351-1366,
2005.

J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradiestaent for linear predictors.
Information and Computatiqri32(1):1-64, January 1997.

J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kern®@&E Transactions on
Signal Processings2(8), Aug 2004.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. HowardHWbbard, and L. J. Jackel.
Backpropagation applied to handwritten zip code recognitideural Computationl:541-551,
1989.

Y. Liand P. M. Long. The relaxed online maximum margin algoritiMachine Learning46(1-3):
361-387, 2002.

D. J. C. MacKay. Introduction to Gaussian processes. In C. M. Bisadipor, Neural Networks
and Machine Learningpages 133-165. Springer, Berlin, 1998.

M. Milano. Machine Learning Techniques for Flow Modeling and Cont@hD thesis, Eidgdis-
sische Technische Hochschule (ETHri¢h, Switzerland, 2002.

M. Minsky and S. PapertPerceptrons: An Introduction To Computational GeometiT Press,
Cambridge, MA, 1969.

A. B. J. Novikoff. On convergence proofs on perceptronsPioceedings of the Symposium on the
Mathematical Theory of Automateolume 12, pages 615-622. Polytechnic Institute of Brooklyn,
1962.

B. A. Pearlmutter. Fast exact multiplication by the Hessileural Computation6(1):147-160,
1994.

1131

VISHWANATHAN, SCHRAUDOLPH AND SMOLA

M. Riedmiller and H. Braun. A direct adaptive method for faster backapgagion learning: The
RPROP algorithm. IfProc. International Conference on Neural Netwqrgages 586-591, San
Francisco, CA, 1993. IEEE, New York.

F. Rosenblatt. The perceptron: A probabilistic model for information stoeagl organization in
the brain.Psychological Reviewb5(6):386—-408, 1958.

B. Scrolkopf and A. SmolalLearning with KernelsMIT Press, Cambridge, MA, 2002.

B. Sclholkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estim#ismgupport
of a high-dimensional distributioNeural Computation13(7):1443-1471, 2001.

N. N. Schraudolph. Fast curvature matrix-vector products for skooder gradient desceeural
Computation14(7):1723-1738, 2002.

N. N. Schraudolph. Local gain adaptation in stochastic gradient dedodProc. Intl. Conf. Artifi-
cial Neural Networkspages 569-574, Edinburgh, Scotland, 1999. IEE, London.

N. N. Schraudolph and X. Giannakopoulos. Online independent coemp@malysis with local
learning rate adaptation. In S. A. Solla, T. K. Leen, and K.-RlIbt, editors Neural Information
Processing Systemeolume 12, pages 789-795, Vancouver, Canada, 2000. MIT.Press

N. N. Schraudolph, J. Yu, and D. Aberdeen. Fast online policy gnadiéarning with SMD gain
vector adaptation. In Yair Weiss, Bernhard 8Skopf, and John Platt, editor8dvances in Neural
Information Processing Systems, T&ambridge, MA, 2006. MIT Press.

S. Shalev-Shwartz and Y. Singer. A new perspective on an old peooegdgorithm. In P. Auer and
R. Meir, editors,Proc. Annual Conf. Computational Learning Theompumber 3559 in Lecture
Notes in Artificial Intelligence, pages 264 — 279, Bertinoro, Italy, Jur@b2@pringer-Verlag.

F. M. Silva and L. B. Almeida. Acceleration techniques for the backprafiag algorithm. In
Luis B. Almeida and C. J. Wellekens, editofdeural Networks: Proc. EURASIP Workshop
volume 412 ofLecture Notes in Computer Scienpages 110-119. Springer Verlag, 1990.

R. S. Sutton. Adaptation of learning rate parameters, 1981. dRp: // www. cs. ual berta. ca/
~sutt on/ paper s/ sutton- 81. pdf . Appendix C of (Barto and Sutton, 1981).

R. S. Sutton. Gain adaptation beats least squaresProeceedings of the 7th Yale Workshop on
Adaptive and Learning Systenpgages 161-166, 1992. URittp://ww. cs. ual berta. ca/
~sutt on/ paper s/ sutton-92b. pdf .

T. Tollenaere. SuperSAB: Fast adaptive back propagation with goalthg properties.Neural
Networks 3:561-573, 1990.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Supportovanachine learning for
interdependent and structured output space®rdc. Intl. Conf. Machine LearningNew York,
NY, USA, 2004. ACM Press. ISBN 1-58113-828-5.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Mark Schmidt, and Kevurpy. Training condi-
tional random fields with stochastic gradient methodsProc. Intl. Conf. Machine Learningo
appear 2006.

1132

STEP SIZE ADAPTATION IN RKHS

J. Weston, A. Bordes, and L. Bottou. Online (and offline) on an evetetigdudget. IlProceedings
of International Workshop on Atrtificial Intelligence and Statisti2805.

1133

