
Journal of Machine Learning Research 7 (2006) 1107–1133 Submitted 11/05; Published 06/06

Step Size Adaptation in Reproducing Kernel Hilbert Space

S.V.N. Vishwanathan SVN.VISHWANATHAN @NICTA .COM.AU

Nicol N. Schraudolph NIC.SCHRAUDOLPH@NICTA .COM.AU

Alex J. Smola ALEX .SMOLA @NICTA .COM.AU

Statistical Machine Learning Program
National ICT Australia
Locked Bag 8001
Canberra ACT 2601, Australia

Research School of Information Sciences and Engineering
Australian National University
Canberra ACT 0200, Australia

Editor: Thorsten Joachims

Abstract
This paper presents an online support vector machine (SVM) that uses the stochastic meta-descent
(SMD) algorithm to adapt its step size automatically. We formulate the online learning problem as
a stochastic gradient descent in reproducing kernel Hilbert space (RKHS) and translate SMD to the
nonparametric setting, where its gradient trace parameteris no longer a coefficient vector but an
element of the RKHS. We derive efficient updates that allow usto perform the step size adaptation
in linear time. We apply the online SVM framework to a varietyof loss functions, and in particular
show how to handle structured output spaces and achieve efficient online multiclass classification.
Experiments show that our algorithm outperforms more primitive methods for setting the gradient
step size.

Keywords: online SVM, stochastic meta-descent, structured output spaces

1. Introduction

Stochastic (“online”) gradient methods incrementally update their hypothesis by descending a sto-
chastic approximation of the gradient computed from just the current observation. Although they
require more iterations to converge than traditional deterministic (“batch”) techniques, each iteration
is faster as there is no need to go through the entire training set to measure thecurrent gradient. For
large, redundant data sets, or continuing (potentially non-stationary) streams of data, stochastic
gradient thus outperforms classical optimization methods. Much work in this area centers on the
key issue of choosing an appropriate time-dependent gradient step sizeηt .

Though support vector machines (SVMs) were originally conceived asbatch techniques with
time complexity quadratic to cubic in the training set size, recent years have seen the development
of online variants (Herbster, 2001; Kivinen et al., 2004; Crammer et al., 2004; Weston et al., 2005;
Kim et al., 2005) which overcome this limitation. To date, online kernel methods based on stochastic
gradient descent (Kivinen et al., 2004; Kim et al., 2005) have either held ηt constant, or let it decay
according to some fixed schedule. Here we adopt the more sophisticated approach ofstochastic

c©2006 S. V. N. Vishwanathan, Nicol N. Schraudolph, and Alex J.Smola.

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

meta-descent(SMD): performing a simultaneous stochastic gradient descent on the stepsize itself.
Translating this into the kernel framework yields a fast online optimization methodfor SVMs.

Outline. In Section 2 we review gradient-based step size adaptation algorithms so as tomotivate
our subsequent derivation of SMD. We briefly survey kernel-basedonline methods in Section 3,
then present the online SVM algorithm with a systematic, unified view of variousloss functions
(including losses on structured label domains) in Section 4. Section 5 then introduces online SVMD,
our novel application of SMD to the online SVM. Here we also derive linear-time incremental
updates and standard SVM extensions for SVMD, and discuss issues ofbuffer management and
time complexity. Experiments comparing SVMD to the online SVM are then presentedin Section 6,
followed by a discussion.

2. Stochastic Meta-Descent

The SMD algorithm (Schraudolph, 1999, 2002) for gradient step size adaptation can considerably
accelerate the convergence of stochastic gradient descent; its applications to date include indepen-
dent component analysis (Schraudolph and Giannakopoulos, 2000),nonlinear principal component
analysis in computational fluid dynamics (Milano, 2002), visual tracking of articulated objects (Bray
et al., 2005, 2006), policy gradient reinforcement learning (Schraudolph et al., 2006), and training
of conditional random fields (Vishwanathan et al., 2006).

2.1 Gradient-Based Step Size Adaptation

Let V be a vector space,θ ∈V a parameter vector, andJ : V → R the objective function which we
would like to optimize. We assume thatJ is twice differentiable almost1 everywhere. Denote by
Jt :V→R the stochastic approximation of the objective function at timet. Our goal is to findθ such
thatEt [Jt(θ)] is minimized. An adaptive version of stochastic gradient descent works bysetting

θt+1 = θt −ηt ·gt , where gt = ∂θt Jt(θt), (1)

using∂θt as a shorthand for∂∂θ

∣

∣

∣

θ=θt

. Unlike conventional gradient descent algorithms whereηt is

scalar, hereηt ∈ R
n
+, and · denotes component-wise (Hadamard) multiplication. In other words,

each coordinate ofθ has its own positive step size that serves as a diagonal conditioner. Sincewe
need to choose suitable values we shall adaptη by a simultaneous meta-level gradient descent.

A straightforward implementation of this idea is thedelta-deltaalgorithm (Sutton, 1981; Jacobs,
1988), which updatesη via

ηt+1 = ηt −µ∂ηt Jt+1(θt+1)

= ηt −µ∂θt+1Jt+1(θt+1) ·∂ηt θt+1

= ηt +µgt+1 ·gt , (2)

whereµ∈R is a scalar meta-step size. In a nutshell, step sizes are decreased where anegative auto-
correlation of the gradient indicates oscillation about a local minimum, and increased otherwise.
Unfortunately such a simplistic approach has several problems:

1. Since gradient descent implements a discrete approximation to an infinitesimal (differential) process in any case, we
can in practice ignore non-differentiability ofJ on a set of measure zero, as long as our implementation of the gradient
function returns a subgradient at those points.

1108

STEP SIZE ADAPTATION IN RKHS

t0

(a)

(b)t0(c)

(d)

θt

ηt

θt

ηt

Figure 1: Dependence of a parameterθ on its step sizeη at timet0. (a) Future parameter values
depend on the current step size; the dependence diminishes over time due tothe ongoing
adaptation ofη. (b) Standard step size adaptation methods capture only the immediate
effect, even when (c) past gradients are exponentially smoothed. (d) SMD, by contrast,
iteratively models the dependence of the current parameter on an exponentially weighted
past history of step sizes, thereby capturing long-range effects. Figure adapted from Bray
et al. (2005).

Firstly, (2) allows step sizes to become negative. This can be avoided by updatingη multiplica-
tively, e.g.via exponentiated gradientdescent (Kivinen and Warmuth, 1997).

Secondly, delta-delta’s cure is worse than the disease: individual step sizes are meant to address
ill-conditioning, but (2) actually squares the condition number. The auto-correlation of the gradient
must therefore be normalized before it can be used. A popular (if extreme) form of normalization
is to consider only the sign of the auto-correlation. Such sign-based methods (Jacobs, 1988; Tol-
lenaere, 1990; Silva and Almeida, 1990; Riedmiller and Braun, 1993), however, do not cope well
with stochastic approximation of the gradient since the non-linear sign function does not commute
with the expectation operator (Almeida et al., 1999). More recent algorithms (Harmon and Baird,
1996; Almeida et al., 1999; Schraudolph, 1999, 2002) therefore use multiplicative (hence linear)
normalization factors to condition the step size update.

Finally, (2) fails to take into account that changes in step size not only affect the current, but
also future parameter updates (see Figure 1). In recognition of this shortcoming,gt in (2) is usually
replaced with an exponential running average of past gradients (Jacobs, 1988; Tollenaere, 1990;
Silva and Almeida, 1990; Riedmiller and Braun, 1993; Almeida et al., 1999). Although such ad-
hoc smoothing does improve performance, it does not properly capture long-term dependencies, the
average still being one of immediate, single-step effects (Figure 1c).

By contrast, Sutton (1992) modeled the long-term effect of step sizes on future parameter values
in a linear system by carrying the relevant partials forward in time, and found that the resulting step
size adaptation can outperform a less than perfectly matched Kalman filter. Stochastic meta-descent
(SMD) extends this approach to arbitrary twice-differentiable nonlinear systems, takes into account
the full Hessian instead of just the diagonal, and applies an exponential decay to the partials being
carried forward (Figure 1d).

2.2 SMD Algorithm

SMD employs two modifications to address the problems described above: it adjusts step sizes in
log-space, and optimizes over an exponentially decaying trace of gradients. Thus logη is updated

1109

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

as follows:

logηt+1 = logηt −µ
t

∑
i=0

λi∂logηt−i J(θt+1)

= logηt −µ∂θt+1J(θt+1) ·
t

∑
i=0

λi∂logηt−i θt+1

= logηt −µgt+1 ·vt+1, (3)

where the vectorv ∈V characterizes the long-term dependence of the system parameters on their
past step sizes over a time scale governed by the decay factor 0≤λ≤1.

Note that virtually the same derivation holds if — as will be the case in Section 5 — we wish to
adapt only a single, scalar step sizeηt for all system parameters; the only change necessary is to
replace the Hadamard product in (3) with an inner product.

Element-wise exponentiation of (3) yields the desired multiplicative update

ηt+1 = ηt ·exp(−µgt+1 ·vt+1)

≈ ηt ·max(1
2,1−µgt+1 ·vt+1), (4)

where the approximation eliminates an expensive exponentiation operation for each step size update.
The particular bi-linearization we use,eu≈max(1

2,1+u),

• matches the exponential in value and first derivative atu = 0, and thus becomes accurate in
the limit of smallµ;

• ensures that all elements ofη remain strictly positive; and

• improves robustness by reducing the effect of outliers:u≫ 0 leads to linear2 rather than
exponential growth in step sizes, while foru≪ 0 they are at most cut in half.

The choice of12 as the lower bound stems from the fact that a gradient descent converging on a
minimum of a differentiable function can overshoot that minimum by at most a factor of two, since
otherwise it would by definition be divergent. A reduction by at most1

2 in step size thus suffices to
maintain stability from one iteration to the next.

To compute the gradient tracev efficiently, we expandθt+1 in terms of its recursive definition
(1):

vt+1 :=
t

∑
i=0

λi∂logηt−iθt+1 (5)

=
t

∑
i=0

λi∂logηt−iθt −
t

∑
i=0

λi∂logηt−i (ηt ·gt)

≈ λvt −ηt ·gt −ηt ·

[

∂θt gt

t

∑
i=0

λi∂logηt−i θt

]

Here we have used∂logηt θt = 0, and approximated

t

∑
i=1

λi∂logηt−i logηt ≈ 0 (6)

2. A quadratic approximation with similar properties would beeu ≈

{ 1
2 u2 +u+1 if u >−1;

1
2 otherwise.

1110

STEP SIZE ADAPTATION IN RKHS

which amounts to stating that the step size adaptation (in log space) must be in equilibrium at the
time scale determined byλ. Noting that∂θt gt is the HessianHt of Jt(θt), we arrive at the simple
iterative update

vt+1 = λvt −ηt · (gt +λHtvt). (7)

Since the initial parametersθ0 do not depend on any step sizes,v0 = 0.

2.3 Efficiency and Conditioning

Although the HessianH of a system withn parameters hasO(n2) entries, efficient indirect meth-
ods from algorithmic differentiation are available to compute its product with an arbitrary vector
within the same time as 2–3 gradient evaluations (Pearlmutter, 1994; Griewank,2000). For non-
convex systems (where positive semi-definiteness of the Hessian cannotbe guaranteed) SMD uses
an extended Gauss-Newton approximation ofH for which a similar but even faster technique exists
(Schraudolph, 2002). An iteration of SMD — comprising (1), (4), and (7) — thus consumes less
than 3 times as many floating-point operations as simple gradient descent.

Iterating (7) while holdingθ andη constant would drivev towards the fixpoint

v→−[λH +(1−λ)diag(1/η)]−1g, (8)

which is a Levenberg-Marquardt gradient step with a trust region conditioned byη and scaled by
1/(1−λ). Forλ = 1 this reduces to a Newton (resp. Gauss-Newton) step, which converges rapidly
but may become unstable in regions of low curvature. In practice, we find that SMD performs best
whenλ is pushed as close to 1 as possible without losing stability.

Note that in this regime, theg ·v term in (4) is approximately affine invariant, with the inverse
curvature matrix in (8) compensating for the scale of the gradient auto-correlation. This means
that the meta-step sizeµ is relatively problem-independent; in experiments we typically use values
within an order of magnitude ofµ= 0.1. Likewise, well-adapted step sizes (η ·g≈H−1g) will con-
dition the update not only ofθ (1) but also ofv (7). Thus SMD maintains an adaptive conditioning
of all its updates, provided it is given reasonable initial step sizesη0 to begin with.

3. Survey of Online Kernel Methods

Theperceptronalgorithm (Rosenblatt, 1958) is arguably one of the simplest online learning algo-
rithms. Given a set of labeled instances{(x1,y1),(x2,y2) . . .(xm,ym)} ⊂ X ×Y whereX ⊆R

d and
yi ∈ {±1} the algorithm starts with an initial weight vectorθ = 0. It then predicts the label of a
new instancex to beŷ = sign(〈θ,x〉). If ŷ differs from the true labely then the vectorθ is updated
asθ = θ +yx. This is repeated until all points are well classified. The following result bounds the
number of mistakes made by the perceptron algorithm (Freund and Schapire, 1999, Theorem 1):

Theorem 1 Let{(x1,y1),(x2,y2), . . .(xm,ym)} be a sequence of labeled examples with||xi || ≤ R.
Letθ be any vector with||θ||= 1 and letγ > 0. Define the deviation of each example as

di = max(0,γ−yi 〈θ,xi〉), (9)

and let D=
√

∑i d
2
i . Then the number of mistakes of the perceptron algorithm on this sequenceis

bounded by(R+D
γ)2.

1111

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

This generalizes the original result (Block, 1962; Novikoff, 1962; Minsky and Papert, 1969) for
the case when the points are strictly separable,i.e., when there exists aθ such that||θ|| = 1 and
yi 〈θ,xi〉 ≥ γ for all (xi ,yi).

The so-calledkernel trickhas recently gained popularity in machine learning (Schölkopf and
Smola, 2002). As long as all operations of an algorithm can be expressedwith inner products, the
kernel trick can used tolift the algorithm to a higher-dimensionalfeature space: The inner product
in the feature space produced by the mappingφ : X → H is represented by akernel k(x,x′) =
〈φ(x),φ(x′)〉H . We can now drop the conditionX ⊆R

d but instead require thatH be areproducing
kernel Hilbert space(RKHS).

To kernelize the perceptron algorithm, we first useφ to map the data into feature space, and
observe that the weight vector can be expressed asθ = ∑ j∈J y jφ(x j), whereJ is the set of indices
where mistakes occurred. We can now compute〈θ,xi〉= ∑ j∈J y j

〈

φ(x j),φ(xi)
〉

= ∑ j∈J y jk(x j ,xi),
replacing explicit computation ofφ with kernel evaluations.

The main drawback of the perceptron algorithm is that it does not maximize the margin of
separation between the members of different classes. Frieß et al. (1998) address this issue with
their closely relatedkernel adatron(KA). The KA algorithm uses a weight vectorθ = ∑i αiyiφ(xi).
Initially all αi are set to 1. For a new instance(x,y) we computez = 1− y∑i αiyiK(xi ,x), and
update the correspondingα asα := α + ηz if α + ηz > 0; otherwise we setα = 0.3 Frieß et al.
(1998) show that if the data is separable, this algorithm converges to the maximum margin solution
in a finite number of iterations, and that the error rate decreases exponentially with the number of
iterations.

To address the case where the data is not separable in feature space, Freund and Schapire (1999)
work with a kernelized perceptron but use the online-to-batch conversion procedure of Helmbold
and Warmuth (1995) to derive theirvoted perceptronalgorithm. Essentially, every weight vector
generated by the kernel perceptron is retained, and the decision rule is amajority vote amongst the
predictions generated by these weight vectors. They prove the followingmistake bound:

Theorem 2 (Freund and Schapire, 1999, Corollary 1) Let{(x1,y1),(x2,y2), . . .(xm,ym)} be a
sequence of training samples and(xm+1,ym+1) a test sample, all taken i.i.d. at random. Let
R= max1≤i≤m+1 ||xi ||. For ||θ||= 1 andγ > 0, let

Dθ,γ =

√

m+1

∑
i=1

(max(0,γ−yi 〈θ,xi〉)2. (10)

Then the probability (under resampling) that the voted perceptron algorithm does not predict ym+1

on test samplexm+1 after one pass through the sequence of training samples is at most

2
m+1

E

[

inf
||θ||=1;γ>0

(

R+Dθ,γ

γ

)2
]

,

(11)

whereE denotes the expectation under resampling.

Another online algorithm which aims to maximize the margin of separation between classes is
LASVM (Bordes et al., 2005). This follows a line ofbudget(kernel Perceptron) algorithms which
sport a removal step (Crammer et al., 2004; Weston et al., 2005). Briefly,LASVM tries to solve the

3. In the interest of a clear exposition we ignore theoffset bhere.

1112

STEP SIZE ADAPTATION IN RKHS

SVM quadratic programming (QP) problem in an online manner. If the new instance violates the
KKT conditions then it is added to the so-calledactive setduring thePROCESSstep. AREPROCESS

step is run to identify points in the active set whose coefficients are constrained at either their upper
or lower bound; such points are then discarded from the active set. Bordes et al. (2005) have shown
that in the limit LASVM solves the SVM QP problem, although no rates of convergence or mistake
bounds have been proven.

The ballseptronis another variant of the perceptron algorithm which takes the margin of sep-
aration between classes into account (Shalev-Shwartz and Singer, 2005). In contrast to the classic
perceptron, the ballseptron updates its weight vector even for well-classified instances if they are
close to the decision boundary. More precisely, if a ballB(x, r) of radiusr around the instance
x intersects the decision boundary, the worst-violating point inB is used as a pseudo-instance for
updating the weight vector. Shalev-Shwartz and Singer (2005) show that appropriate choice ofr
yields essentially the same bound as Theorem 1 above; this bound can be tightened further when
the number of margin errors is strictly positive.

Another notable effort to derive a margin-based online learning algorithmis ALMA p, theap-
proximate large margin algorithmw.r.t. normp (Gentile, 2001). Following Gentile and Littlestone
(1999), the notion of a margin is extended top-norms: Letx′ = x/||x||p, and||θ||q ≤ 1, where
1
p + 1

q = 1. Then thep-margin of (x,y) w.r.t. θ is defined asyi 〈θ,x′〉. Like other perceptron-
inspired algorithms, ALMAp does not perform an update if the current weight vector classifies the
current instance with a largep-margin. If a margin violation occurs, however, the algorithm per-
forms ap-norm perceptron update, then projects the obtainedθ to theq-norm unit ball to maintain
the constraint||θ||q≤ 1. ALMA p is one of the few percpetron-derived online algorithms we know
of which modify their learning rate: Itsp-norm perceptron update step scales with the number of
corrections which have occurred so far. ALMAp can be kernelized only forp = 2.

Many large-margin algorithms (Li and Long, 2002; Crammer and Singer, 2003; Herbster, 2001)
are based on the same general principle: They explicitly maximize the margin andupdate their
weights only when a margin violation occurs. These violating instances are inserted into the ker-
nel expansion with a suitable coefficient. To avoid potential over-fitting andreduce computational
complexity, these algorithms either implement a removal step or work with a fixed-size buffer. The
online SVM (Kivinen et al., 2004) is one such algorithm.

4. Online SVM

We now present the online SVM (akaNORMA) algorithm (Kivinen et al., 2004) from a loss func-
tion and regularization point of view, with additions and modifications for logisticregression, nov-
elty detection, multiclass classification, and graph-structured label domains. This sets the scene for
our application of SMD to the online SVM in Section 5. While many of the loss functions dis-
cussed below have been proposed before, we present them here in acommon, unifying framework
that cleanly separates the roles of loss function and optimization algorithm.

4.1 Optimization Problem

Let X be the space of observations, andY the space of labels. We use|Y | to denote the size ofY .
Given a sequence{(xi ,yi)|xi ∈ X ,yi ∈ Y } of examples and a loss functionl : X ×Y ×H →R, our

1113

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

goal is to minimize the regularized risk

J(f) =
1
m

m

∑
i=1

l(xi ,yi , f)+
c
2
‖ f‖2H , (12)

whereH is a reproducing kernel Hilbert space (RKHS) of functions onX ×Y . Its defining kernel
is denoted byk : (X ×Y)2→ R, which satisfies〈 f ,k((x,y), ·)〉H = f (x,y) for all f ∈ H . In a de-
parture from tradition, but keeping in line with Altun et al. (2004); Tsochantaridis et al. (2004); Cai
and Hofmann (2004), we let our kernel depend on the labels as well as the observations. Finally, we
make the assumption thatl only depends onf via its evaluations atf (xi ,yi) and thatl is piecewise
differentiable.

By the reproducing property ofH we can compute derivatives of the evaluation functional. That
is,

∂ f f (x,y) = ∂ f 〈 f ,k((x,y), ·)〉H = k((x,y), ·). (13)

Sincel depends onf only via its evaluations we can see that∂ f l(x,y, f)∈ H , and more specifically

∂ f l(x,y, f) ∈ span{k((x, ỹ), ·) whereỹ∈ Y }. (14)

Let (xt ,yt) denote the example presented to the online algorithm at time instancet. Using the
stochastic approximation ofJ(f) at timet:

Jt(f) := l(xt ,yt , f)+
c
2
‖ f‖2H (15)

and setting

gt := ∂ f Jt(ft) = ∂ f l(xt ,yt , ft)+c ft , (16)

we obtain the following online learning algorithm:

Algorithm 1 Online learning (adaptive step size)

1. Initialize f0 = 0
2. Repeat

(a) Draw data sample(xt ,yt)
(b) Adapt step sizeηt

(c) Updateft+1← ft −ηtgt

Practical considerations are how to implement steps 2(b) and 2(c) efficiently. We will discuss
2(c) below. Step 2(b), which primarily distinguishes the present paper from the previous work of
Kivinen et al. (2004), is discussed in Section 5.

Observe that, so far, our discussion of the online update algorithm is independent of the partic-
ular loss function used. In other words, to apply our method to a new setting we simply need to
compute the corresponding loss function and its gradient. We discuss particular examples of loss
functions and their gradients in the next section.

1114

STEP SIZE ADAPTATION IN RKHS

4.2 Loss Functions

A multitude of loss functions are commonly used to derive seemingly different kernel methods.
This often blurs the similarities as well as subtle differences between these methods. In this section,
we discuss some commonly used loss functions and put them in perspective.We begin with loss
functions on unstructured output domains, then proceed to to cases where the label spaceY is
structured. Since our online update depends on it, we will state the gradientof all loss functions we
present below, and give its kernel expansion coefficients. For piecewise linear loss functions, we
employ one-sided derivatives at the points where they are not differentiable —cf. Footnote 1.

4.2.1 LOSSFUNCTIONS ONUNSTRUCTUREDOUTPUT DOMAINS

Binary Classification uses the hinge or soft margin loss (Bennett and Mangasarian, 1992; Cortes
and Vapnik, 1995)

l(x,y, f) = max(0,1−y f(x)) (17)

whereH is defined onX alone. We have

∂ f l(x,y, f) =

{

0 if y f(x)≥ 1

−yk(x, ·) otherwise
(18)

Multiclass Classification employs a definition of the margin arising from log-likelihood ratios
(Crammer and Singer, 2000). This leads to

l(x,y, f) = max(0,1+max
ỹ6=y

f (x, ỹ)− f (x,y)) (19)

(20)
∂ f l(x,y, f) =

{

0 if f (x,y)≥ 1+ f (x,y∗)

k((x,y∗), ·)−k((x,y), ·) otherwise

Here we definedy∗ to be the maximizer of the maxỹ6=y operation. If severaly∗ exist we pick one of
them arbitrarily,e.g.by dictionary order.

Logistic Regression works by minimizing the negative log-likelihood. This loss function is used
in Gaussian process classification (MacKay, 1998). For binary classification this yields

l(x,y, f) = log(1+exp(−y f(x))) (21)

∂ f l(x,y, f) =−yk(x, ·)
1

1+exp(y f(x))
(22)

Again the RKHSH is defined onX only.

Multiclass Logistic Regression works similarly to the example above. The only difference is that
the log-likelihood arises from a conditionally multinomial model (MacKay, 1998). This means that

l(x,y, f) =− f (x,y)+ log ∑
ỹ∈Y

exp f (x, ỹ) (23)

∂ f l(x,y, f) = ∑
ỹ∈Y

k((x, ỹ), ·)[p(ỹ|x, f)−δy,ỹ], (24)

where we used p(y|x, f) =
ef (x,y)

∑ỹ∈Y ef (x,ỹ)
. (25)

1115

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

Novelty Detection uses a trimmed version of the log-likelihood as a loss function. In practice this
means that labels are ignored and the one-class margin needs to exceed 1 (Scḧolkopf et al., 2001).
This leads to

l(x,y, f) = max(0,1− f (x)) (26)

∂ f l(x,y, f) =

{

0 if f (x)≥ 1

−k(x, ·) otherwise
(27)

4.2.2 LOSSFUNCTIONS ONSTRUCTUREDLABEL DOMAINS

In many applications the output domain has an inherent structure. For example, document cat-
egorization deals with the problem of assigning a set of documents to a set ofpre-defined topic
hierarchies or taxonomies. Consider a typical taxonomy shown in Figure 2 which is based on a sub-
set of the open directory project (http://www.dmoz.org/). If a document describing CDROMs
is classified under hard disk drives (‘HDD’), intuitively the loss should be smaller than when the
same document is classified under ‘Cables’. Roughly speaking, the valueof the loss function should
depend on the length of the shortest path connecting the actual label to the predicted labeli.e., the
loss function should respect the structure of the output space (Tsochantaridis et al., 2004).C o m p u t e r s

H a r d w a r e S o f t w a r e
S t o r a g e C a b l e s

H D D C D R O M
F r e e w a r e S h a r e w a r eO p e n s o u r c e

Figure 2: A taxonomy based on the open directory project.

To formalize our intuition, we need to introduce some notation. A weighted graphG= (V,E) is
defined by a set of nodesV and edgesE⊆V×V, such that, each edge(vi ,v j)∈E is assigned a non-
negative weightw(vi ,v j) ∈R

+. A path fromv1 ∈V to vn ∈V is a sequence of nodesv1v2 . . .vn such
that(vi ,vi+1) ∈ E. The weight of a path is the sum of the weights on the edges. For an undirected
graph,(vi ,v j) ∈ E =⇒ (v j ,vi) ∈ E∧w(vi ,v j) = w(v j ,vi).

1116

STEP SIZE ADAPTATION IN RKHS

A graph is said to be connected if every pair of nodes in the graph are connected by a path. In
the sequel we will deal exclusively with connected graphs, and let∆G(vi ,v j) denote the weight of
the shortest (i.e., minimum weight) path fromvi to v j . If the output labels are nodes in a graphG,
the following loss function takes the structure ofG into account:

l(x,y, f) = max{0,max
ỹ6=y

[∆G(ỹ,y)+ f (x, ỹ)]− f (x,y)}. (28)

This loss requires that the output labels ˜y which are “far away” from the actual labely (on the
graph) must be classified with a larger margin while nearby labels are allowedto be classified with
a smaller margin. More general notions of distance, including kernels on thenodes of the graph,
can also be used here instead of the shortest path∆G(ỹ,y).

Analogous to (24), by definingy∗ to be the maximizer of the maxỹ6=y operation we can write the
gradient of the loss as:

∂ f l(x,y, f) =

{

0 if f (x,y)≥ ∆(y,y∗)+ f (x,y∗)

k((x,y∗), ·)−k((x,y), ·) otherwise
(29)

The multiclass loss (19) is a special case of graph-based loss (28): consider a simple two-level
tree in which each label is a child of the root node, and every edge has a weight of 1

2. In this graph,
any two labelsy 6= ỹwill have∆(y, ỹ) = 1, and thus (28) reduces to (19). We will employ a similar but
multi-level tree-structured loss in our experiments on hierarchical document categorization (Section
6.4).

4.2.3 LOSSFUNCTION SUMMARY AND EXPANSION COEFFICIENTS

Note that the gradient always has the form

∂ f l(xt ,yt , ft) =: 〈ξt ,k((xt , ·), ·)〉 (30)

whereξ denotes theexpansion coefficient(s)— more than one in the multiclass and structured label
domain cases — arising from the derivative of the loss at timet.

Table 1 summarizes the tasks, loss functions, and expansion coefficients we have considered
above. Similar derivations can be found forε-insensitive regression, Huber’s robust regression, or
LMS problems.

4.3 Coefficient Updates

Since the online update in step 2(c) of Algorithm 1 is not particularly useful inHilbert space, we
now rephrase it in terms of kernel function expansions. This extends and complements the reasoning
of Kivinen et al. (2004) as applied to the various loss functions of the previous section. From (15)
it follows thatgt = ∂ f l(xt ,yt , ft)+c ft and consequently

ft+1 = ft −ηt [∂ f l(xt ,yt , ft)+c ft]

= (1−ηtc) ft −ηt∂ f l(xt ,yt , ft). (31)

Using the initializationf1 = 0 this implies that

ft+1(·) =
t

∑
i=1

∑
y

αtiyk((xi ,y), ·). (32)

1117

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

task loss function l(xt ,yt , ft) expansion coefficient(s)ξt

Novelty
Detection

max(0,1− ft(xt)) ξt =

{

0 if ft(xt)≥ 1

−1 otherwise

Binary
Classification

max(0,1−yt ft(xt)) ξt =

{

0 if yt ft(xt)≥ 1

−yt otherwise

Multiclass max[0,1− ft(xt ,yt) ξt = 0 if ft(xt ,yt)≥ 1+ ft(xt ,y∗)

Classification +max
ỹ6=yt

ft(xt , ỹ)] ξt,yt =−1,ξt,y∗ = 1 otherwise

Graph-Struct. max{0,− f (xt ,yt)+ ξt = 0 if ft(xt ,yt)≥ ∆(yt ,y∗)+ ft(xt ,y∗)

Label Domains max
ỹ6=yt

[∆(yt , ỹ)+ f (xt , ỹ)]} ξt,yt =−1,ξt,y∗ = 1 otherwise

Binary Logistic
Regression

log
(

1+e−yt ft(xt)
)

ξt =
−yt

1+eyt ft(xt))

Multiclass Log-
istic Regression

log ∑
ỹ∈Y

eft(xt ,ỹ)− ft(xt ,yt) ξt,y = p(y|xt , ft)−δy,yt

Table 1: Loss functions and gradient expansion coefficients.

With some abuse of notation we will use the same expression for the cases whereH is defined on
X rather thanX ×Y . In this setting we replace (32) by the sum overi only (with corresponding
coefficientsαti). Whenever necessary we will useαt to refer to the entire coefficient vector (or
matrix) andαti (or αtiy) will refer to the specific coefficients. Observe that we can write

gt(·) =
t

∑
i=1

∑
y

γtiyk((xi ,y), ·), (33)

where γt :=

[

cαt−1

ξ⊤t

]

. (34)

We can now rewrite the update equation (31) using only the expansion coefficients as

αt =

[

(1−ηtc)αt−1

−ηtξ
⊤
t

]

=

[

αt−1

0

]

−ηtγt . (35)

Note that conceptuallyα grows indefinitely as it acquires an additional row with each new data
sample. Practical implementations will of course retain only a buffer of past examples with nonzero
coefficients (see Section 5.5).

5. Online SVMD

We now show how the SMD framework described in Section 2 can be used to adapt the step size
for online SVMs. The updates given in Section 4 remain as before, the onlydifference being that
the step sizeηt is adapted before its value is used to updateα.

1118

STEP SIZE ADAPTATION IN RKHS

5.1 Scalar Representation

Since we are dealing with an optimization in a RKHS only scalar variants are possible.4 The scalar
equivalent of (4) is

ηt+1 = ηt max(1
2,1−µ〈gt+1,vt+1〉), (36)

whereµ is the meta-step size described in Section 2. The update forv is now given by

vt+1 = λvt −ηt(gt +λHtvt), (37)

whereHt is the Hessian of the objective function. Note that nowHt is an operator in Hilbert space.
ForJt(f) as defined in (15), this operator has a form that permits efficient computation of Htvt :

For piecewise linear loss functions, such as (18), (20), and (27), wehaveHt = cI, whereI is
the identity operator, and obtain the simple update

vt+1 = (1−ηtc)λvt −ηtgt . (38)

For other losses, note thatl only depends onf via its evaluations at(x,y). This means thatHt

differs fromcI only by a low-rank object. In particular, for logistic regression (22) we have

Ht−cI = ρ(xt)k(xt , ·)⊗k(xt , ·), (39)

whereρ(xt) := eyt ft(xt)/(1+ eyt ft(xt))2, and⊗ denotes the outer product between functions inH ,
obeying(u⊗v)w= u〈v,w〉 for u,v,w∈H . Likewise, for multiclass logistic regression (24) we have

Ht−cI = ∑
y,ỹ∈Y

ρ(xt ,y, ỹ)k((xt ,y), ·)⊗k((xt , ỹ), ·), (40)

where ρ(xt ,y, ỹ) := δy,ỹ p(ỹ|xt , ft) − p(ỹ|xt , ft) p(y|xt , ft). (41)

5.2 Expansion in Hilbert Space

The above discussion implies thatv can be expressed as a linear combination of kernel functions,
and consequently is also a member of the RKHS defined byk(·, ·). Thusv cannot be updated
explicitly, as is done in the normal SMD algorithm (Section 2). Instead we write

vt+1(·) =
t

∑
i=1

∑
y

βtiyk((xi ,y), ·) (42)

and update the coefficientsβ. This is sufficient for our purpose because we only need to be able
to compute the inner products〈g,v〉H in order to updateη. Below, we first discuss the case when
H = cI and then extend the discussion to handle the off diagonal entries.

Diagonal Hessian.Analogous to the update onα we can determine the updates onβ via

βt =

[

(1−ηtc)λβt−1

0

]

−ηtγt . (43)

Although (43) suffices in principle to implement the overall algorithm, a naive implementation of
the inner product〈gt ,vt〉 in (36) takesO(t2) time, rendering it impractical. We show in Section 5.3
how we can exploit the incremental nature of the updates to compute this inner product in linear
time.

4. The situation is different for reduced-rank expansions which are parametrized by the reduced set vectors.

1119

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

Non-diagonal Hessian.The only modification to (43) that we need to take into account is the
contribution of the off-diagonal entries ofHt to βt . A close look at (39) and (40) reveals that the
low-rank modification tocI only happens in the subspace spanned byk((xt ,y), ·) for y∈ Y . This
means that we can express

(Ht−cI)vt = ∑
ỹ∈Y

χtyk((xt , ỹ), ·), (44)

allowing us to derive the analog of (43):

βt =

[

(1−ηtc)λβt−1

0

]

−ηt(γt +λχt). (45)

In the case of binary logistic regression we have

(Ht−cI)vt = ρ(xt)vt(xt)k(xt , ·), (46)

and for multiclass logistic regression

(Ht−cI)vt = ∑
y,ỹ∈Y

ρ(xt ,y, ỹ)vt(xt ,y)k((xt , ỹ), ·). (47)

5.3 Linear-Time Incremental Updates

We now turn to computing〈gt+1,vt+1〉 in linear time by bringing it into an incremental form. For
ease of exposition we will consider the case whereHt = cI; an extension to non-diagonal Hessians
is straightforward but tedious. We use the notationf (xt , ·) to denote the vector off (xt , ỹ) for ỹ∈ Y .
Expandinggt+1 into c ft+1 +ξt+1 we can write

〈gt+1,vt+1〉= cπt+1 +ξ⊤t+1vt+1(xt+1, ·), (48)

whereπt := 〈 ft ,vt〉. The function update (31) yields

πt+1 = (1−ηtc)〈 ft ,vt+1〉−ηtξ
⊤
t vt+1(xt , ·). (49)

Thev update (37) then gives us

〈 ft ,vt+1〉= (1−ηtc)λπt −ηt 〈 ft ,gt〉 , (50)

and usinggt = c ft +ξt again we have

〈 ft ,gt〉= c‖ ft‖
2 +ξ⊤t ft(xt , ·). (51)

Finally, the squared norm off can be maintained via:

‖ ft+1‖
2 = (1−ηtc)

2‖ ft‖
2− 2ηt(1−ηtc)ξ

⊤
t ft(xt , ·) + η2

t ξ⊤t k((xt , ·),(xt , ·))ξt . (52)

The above sequence (48)–(52) of equations, including the evaluation of the associated functionals,
can be performed inO(t) time, and thus allows us to efficiently compute〈gt+1,vt+1〉.

1120

STEP SIZE ADAPTATION IN RKHS

5.4 Extensions

We will now implement in the context of SVMD two important standard extensions tothe SVM
framework: offsets, and the specification of the fraction of points which violate the margin via
the so-calledν-trick. Both of these extensions create new parameters, which we will also tune by
stochastic gradient descent, again using SMD for step size adaptation.

5.4.1 HANDLING OFFSETS

In many situations, for instance in binary classification, it is advantageous toadd an offsetb ∈R
|Y |

to the predictionf ∈ H . While the update equations described above remain unchanged, the offset
parameterb is now adapted as well:

bt+1 = bt−ηb,t ·∂bJt(ft +bt) = bt−ηb,t ·ξt . (53)

Applying the standard SMD equations (4) and (7) to the case at hand, we update the offset step sizes
ηb via

ηb,t+1 = ηb,t ·max(1
2,1−µb ξt+1 ·vb,t+1), (54)

whereµb is the meta-step size for adjustingηb, andvb is adapted as

vb,t+1 = λbvb,t −ηb,t ·ξt . (55)

Note that we can adjust the offset for each class inY individually.

5.4.2 THE ν-TRICK

The so calledν-trick allows one to pre-specify the fraction, 0< ν < 1, of points which violate the
margin. For instance, when performing novelty detection using theν-trick, the loss function that is
commonly used is

l(x,y, f) = max(0,ε− f (x))−νε. (56)

Here, the regularization parameter is fixed atc = 1, but the margin is adapted with the additional
constraintε > 0. This can easily be taken into account by adaptingε in log-space. Observe that

∂logεJt(ft) = ε∂εJt(ft) =−ε(ξt +ν), (57)

and therefore the updates forε can now be written as

εt+1 = εt exp(−ηε,t ∂logεJt(ft)) (58)

= εt exp(ηε,tεt(ξt +ν)). (59)

We now use SMD to adapt the margin step sizeηε,t :

ηε,t+1 = ηε,t max(1
2,1+µεvε,tεt(ξt +ν)), (60)

wherevε,t is updated as

vε,t+1 = λεvε,t +ηε,tεt(ξt +ν)(1+λεvε,t). (61)

This is a straightforward application of the SMD update equations (4) and (7), taking into account
thatε is adapted in log-space.

This completes our description of the online SVMD algorithm. Since it comprises arather large
number of update equations, it is non-trivial to arrange them in an appropriate order. Algorithm 2
shows the ordering which we have found most advantageous.

1121

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

Algorithm 2 Online [ν-]SVMD

1. Initialize
2. Repeat

(a) data, prediction and loss:

i. draw data sample(xt ,yt)

ii. calculate predictionft(xt)

iii. calculate lossl(xt ,yt , ft)

(b) obtain gradients:

i. calculateξt = ∂ f l(xt ,yt , ft)

ii. (42) calculatevt(xt)

iii. (48) calculate〈gt ,vt〉

iv. (34) calculateg resp.γt

(c) perform SMD:

i. (36) update step size(s)[ηε,ηb,] η
ii. (46)/(47) if H non-diag.: computeχ

iii. (43)/(45) update[ε,vε,vb,] v resp.β

(d) maintain incrementals:

i. (51) calculate〈 ft ,gt〉

ii. (50) calculate〈 ft ,vt+1〉

iii. (42) calculatevt+1(xt)

iv. (49) updateπ
v. (52) update‖ f‖2

(e) (35) update functionf resp.α

5.5 Time Complexity and Buffer Management

The time complexity of online SVMD is dominated by the cost of the kernel expansions in steps
2(a)ii, 2(b)ii, and 2(d)iii of Algorithm 2, which grows linearly with the size ofthe expansion. Since
unlimited growth would be undesirable, we maintain aleast recently used(LRU) circular buffer
which stores only the lastω non-zero expansion coefficients; each kernel expansion then takes
O(ω|Y |) time.

The online SVM (NORMA) algorithm does not require steps 2(b)ii or 2(d)iii, but still has to
employ step 2(a)ii to make a prediction, so its asymptotic time complexity isO(ω|Y |) as well.
The two algorithms thus differ in time complexity only by a constant factor; in practice we observe
online SVMD to be 3–4 times slower per iteration than NORMA.

Limiting the kernel expansion to the most recentω non-zero terms makes sense because at each
iterationt the coefficientsαi with i < t are multiplied by a factor(1−ηtc) < 1. After sufficiently
many iterationsαi will thus have shrunk to a small value whose contribution tof (xt) becomes
negligible — and likewise forβi ’s contribution tov(xt). If the loss function has a bounded gradient
(as in all cases of Table 1), then it can be shown that the truncation errorthus introduced decreases

1122

STEP SIZE ADAPTATION IN RKHS

001 101 201 301 401I t e r a t i o n s0 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91 . 0
A verageE rror MVSenilno

)0=λ(DMVS
DMVS

001 101 201 301 401I t e r a t i o n s
2−01

1−01

001

St epSi ze
MVSenilno
)0=λ(DMVS

DMVS

Figure 3: ν-SVM binary classification over a single run through the USPS data set. Current average
error (left) and step size (right) for SVMD withλ = 0.95 (solid),λ = 0 (dotted), and online
SVM with step size decay (62), usingτ = 10 (dashed).

exponentially with the number of terms retained (Kivinen et al., 2004, Proposition 1), so good
solutions can be obtained with limited buffer sizeω.

A good buffer management scheme has to deal with two conflicting demands: To the extent
that the data set is non-stationary, it is desirable to remove old items from the buffer in order to
reduce the effect of obsolete data. The truncation error, on the other hand, is reduced by using as
large a buffer as possible. Although we employ a simple LRU circular bufferto good effect here,
smarter buffer management strategies which explicitly remove the least important point based on
some well-defined criterion (Crammer et al., 2004; Weston et al., 2005; Dekel et al., 2006) could
also be adapted to work with our algorithm.

6. Experiments

We now evaluate the performance of SMD’s step size adaptation in RKHS by comparing the online
SVMD algorithm described in Section 5 above to step size adaptation based only on immediate,
single-step effects — obtained by settingλ = 0 in SVMD — and to the conventional online SVM
(akaNORMA) algorithm (Kivinen et al., 2004) with a scheduled step size decay of

ηt =
√

τ/(τ+ t) , (62)

whereτ is hand-tuned to obtain good performance. We do not use offsets here;where we employ
theν-trick (cf. Section 5.4.2), we always setηε,0 = 1, µε = µ, andλε = λ.

6.1 USPS Data Set

For our first set of experiments we use the well-known USPS data set (LeCun et al., 1989) with the
RBF kernel

k(x,x′) = exp

(

−||x−x′||2

2σ2

)

, (63)

1123

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

settingσ = 8 via cross-validation. We extend this kernel to the multiclass case via the delta kernel:

k((x,y),(x′,y′)) := k(x,x′)δyy′ . (64)

In the spirit of online learning, we train for just a single run through the data, so that no digit is
seen more than once by any algorithm. For a fair comparison, all algorithms started with the same
initial step sizeη0, and had the data presented in the same order. For implementation efficiency,we
only store the last 512 support vectors in a circular buffer.

6.1.1 BINARY CLASSIFICATION

Figure 3 shows our results for binary classification. Here, the data was split into two classes com-
prising the digits 0–4 and 5–9, respectively. We useν-SVM with ν = 0.05, η0 = 1, andµ = 1 and
plot current average error rate — that is, the total number of errors onthe training samples seen so
far divided by the iteration number — and step size. Observe that online SVMD (solid) is initially
slower to learn, but after about 20 iterations it overtakes the online SVM (dashed), and overall makes
only about half as many classification errors. The single-step version ofSVMD with λ = 0 (dotted)
has the fastest early convergence but is asymptotically inferior to SVMD proper, though still far
better than the online SVM with scheduled step size decay.

6.1.2 MULTICLASS CLASSIFICATION

Figure 4 shows our results for 10-way multiclass classification using soft margin loss withη0 = 0.1,
µ= 0.1, andc = 1/(500n), wheren is the number of training samples. Again online SVMD (solid)
makes only about half as many classification errors overall as the online SVM (dashed), with the
single-step (λ = 0) variant of SVMD (dotted) falling in between.

We found (by cross-validation) the online SVM with fixed decay schedule toperform best here
for η0 = 0.1. SVMD, on the other hand, is less dependent on a particular value ofη0 since it can
adaptively adjust its step size. In this experiment, for instance, SVMD raised η significantly above
its initial value of 0.1 — something that a predetermined decay schedule cannotdo. We generally
find the performance of online SVMD to be fairly independent of the initial step size.

6.2 Non-stationary USPS Counting Sequence

For our next set of experiments we rearrange the USPS data to create a highly non-stationary prob-
lem: we take 600 samples of each digit, then present them in the order corresponding to a 3-digit
decimal counter running twice from 000 through 999 (Figure 5). This creates pronounced non-
stationarities in the distribution of labels: ’0’ for instance is very frequent early in the sequence but
rare towards the end.

6.2.1 MULTICLASS CLASSIFICATION

Here we perform 10-way multiclass classification on the USPS counting sequence, usingν-SVMD
with soft margin loss,ν = 0.05, η0 = 1, andµ = 1. As Figure 6 shows,ν-SVMD (solid) makes
significantly fewer classification errors than the controls: Theaverageerror rate forν-SVMD over
its entire first (and only) pass through this sequence is less than 19% here. Online ν-SVM with
scheduled step size decay, on the other hand, has serious difficulty with the non-stationary nature
of our data and performs barely above change level (90% error rate); even the simple step size

1124

STEP SIZE ADAPTATION IN RKHS

001 101 201 301 401I t e r a t i o n s0 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91 . 0
A verageE rror MVSenilno

)0=λ(DMVS
DMVS

001 101 201 301 401I t e r a t i o n s
1−01

001

St epSi ze
MVSenilno
)0=λ(DMVS

DMVS

Figure 4: Online 10-way multiclass classification over a single run through theUSPS data set. Cur-
rent average error (left) and step size (right) for SVMD withλ = 0.99 (solid), λ = 0
(dotted), and online SVM with step size decay (62), usingτ = 100 (dashed).

adaptation obtained forλ = 0 clearly outperforms it. This is not surprising since a step size decay
schedule typically assumes stationarity. By contrast, the decay factor of SVMD can be adjusted
to match the time scale of non-stationarity; hereλ = 0.95 yielded the best performance. In other
experiments, we found (as one would expect)λ = 1 to work well for stationary data.

6.2.2 NOVELTY DETECTION

We also perform novelty detection with SVMD (µ = λ = 1) on the USPS counting sequence. Fig-
ure 7 (left) shows that though SVMD markedly reduces the initial step size, itdoes not anneal it
down to zero. Its ongoing reactivity is evidenced by the occurrence of spikes inηt that correspond
to identifiable events in our counting sequence. Specifically, major increases in ηt can be observed
after seeing the first non-zero digit att = 6, as the counter wraps from 19 to 20 att = 60 (and like-
wise att = 120,150,180), then att = 300,1200,1500 as the hundreds wrap from 099 to 100, 399
to 400, and 499 to 500, respectively, and finally att = 3000 as the entire sequence wraps around
from 999 to 000. Many more minor peaks and troughs occur in between, closely tracking the fractal
structure of our counting sequence.

. . .

Figure 5: To create a highly non-stationary problem, we rearranged 6000 USPS digits into a 3-digit
counting sequence, running twice from 000 to 999.

1125

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

001 101 201 301 401I t e r a t i o n s0 . 00 . 20 . 40 . 60 . 81 . 0
A verageE rror MVSenilno

)0=λ(DMVS
DMVS

001 101 201 301 401I t e r a t i o n s
2−01

1−01

001

St epSi ze
MVSenilno
)0=λ(DMVS

DMVS

Figure 6: Online 10-way multiclass classification over a single run through our USPS counting
sequence (Figure 5). Current average error (left) and step size (right) for ν-SVMD with
λ = 0.95 (solid), λ = 0 (dotted), and onlineν-SVM with step size decay (62), using
τ = 100 (dashed).

6.3 MNIST Data Set: Effect of Buffer Size

We now scale up our 10-way multiclass classification experiments to a much largerdata set: 60000
digits from MNIST. We illustrate the effect of the circular buffer size on classification accuracy,
usingλ = 1, µ = 0.01, and a polynomial kernel of degree 9. On a single run through the data, a
buffer size of 256 yields around 20% average error (Figure 7, right). This reduces to 3.9% average
error when the buffer size is increased to 4096; averaged over the last 4500 digits, the error rate is
as low as 2.9%. For comparison, batch SVM algorithms achieve (at far greater computational cost)
a generalization error rate of 1.4% on this data (Burges and Schölkopf, 1997; Scḧolkopf and Smola,
2002, p. 341).

6.4 WIPO-alpha Data Set: Tree-Structured Loss

For our experiments on document categorization we use the WIPO-alpha data set published in 2002
by the World Intellectual Property Organization (WIPO).5 The data set consists of 75250 patents
which have been classified into 4656 categories according to a standard taxonomy known asinter-
national patent classification(IPC, http://www.wipo.int/classifications/en/). Each doc-
ument is assigned labels from a four-level hierarchy comprising sections, classes, sub-classes and
groups. A typical label might be ‘D05C 1/00’ which would be read as Section D (Textiles; Paper),
class 05 (Sewing; Embroidering; Tufting), sub-class C (Embroidering; Tufting) and group 1/00
(apparatus, devices, or tools for hand embroidering).

The IPC defines an undirected taxonomy tree. A tree is a graph with no cycles —i.e.,no paths
whose start and end vertices coincide — and one node designated as the root. We use ˜y� y to denote
that ỹ is an ancestor ofy, i.e., the path fromy to the root contains ˜y.6

5. This data is now available on request from WIPO (http://www.wipo.int/).
6. Note that according to this definition, every node is an ancestor of itself;this is deliberate.

1126

STEP SIZE ADAPTATION IN RKHS

001 101 201 301 401I t e r a t i o n s2−01

1−01

001

St epSi ze
001 101 201 301 401 501I t e r a t i o n s0 . 00 . 20 . 40 . 60 . 81 . 0

A verageE rror b u f f e r s i z e 2 5 6b u f f e r s i z e 1 0 2 4b u f f e r s i z e 4 0 9 6

Figure 7: Left: The step size for novelty detection with SVMD on the USPS counting sequence
(Figure 5) closely follows the non-stationarity of the data. Right: Average error of SVMD
on the MNIST data set, for three different circular buffer sizes.

Figure 8: Average error (left) and loss (right) for SVMD over two passes (separated by vertical line)
through section D of the WIPO-alpha data set.

Following Cai and Hofmann (2004), we perform document categorizationexperiments on the
WIPO-alpha data set, using a loss function that is a special case of our graph-structured loss (28).
Here the graphG is the taxonomy tree with a weight of1

2 on every edge, and the weighted distance
between nodes is defined as (Cai and Hofmann, 2004):

∆G(y, ỹ) :=





 ∑
z:z�y
∧z�ỹ

1
2






+





 ∑
z:z�ỹ
∧z�y

1
2






. (65)

A patent could have potentially many categories, but it has exactly one primary category. Fol-
lowing Cai and Hofmann (2004) we concentrate on predicting the primary category using the title

1127

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

and claim contents. Furthermore, for the sake of reporting results, we restrict ourselves to Section
D from the data set. This section contains 1710 documents categorized into 160 categories. Prepro-
cessing of the data consisted of document parsing, tokenization, and termnormalization in order to
produce a bag-of-words representation. The bag-of-words vector is normalized to unit length. We
use a product kernel which is defined as

k((x,y),(x′,y′)) := k(x,x′)κ(y,y′). (66)

For the document vectors we use a linear dot-product kernel

k(x,x′) := x⊤x′, (67)

while for the labels we use

κ(y,y′) := ∑
z:z�y
∧z�y′

1, (68)

which counts the number of common ancestors ofy andy′. Like Cai and Hofmann (2004), we set
the regularizerc to the reciprocal of the number of data points. We use a buffer of size 1024, initial
step sizeη0 = 1, meta-step sizeµ = 0.1, and decay parameterλ = 0.999. In Figure 8 we plot the
current average error rate and graph-structured loss (28) over two passes through the data.

The WIPO-alpha data set is known to be difficult to learn (Cai and Hofmann, 2004; Tsochan-
taridis et al., 2004). Only 94 out of the 160 possible categories contain four or more examples
while as many as 34 categories have exactly one sample, which makes it extremely hard for an
online learning algorithm to predict well. Even the best offline algorithms havea reported error rate
of 57.2% (Cai and Hofmann, 2004). SVMD performs competitively on this challenging data set,
achieving an average error rate of around 75% over its first pass through the data, and 68% over its
second pass. It reduces the average loss to around 1.32 over the first pass, and 1.28 over both passes
(Figure 8). We found that further runs through the data set did not yielda significant increase in
accuracy or reduction of the loss.

7. Discussion

We presented online SVMD, an extension of the SMD step size adaptation method to the kernel
framework. Using an incremental approach to reduce a naiveO(t2) computation toO(t), we showed
how the SMD parameters can be updated efficiently even though they now reside in an RKHS. We
addressed the difficult cases of multiclass classification and logistic regression, where the Hessian
operator in RKHS includes non-diagonal terms. We also showed how SVMDcan be adapted to
deal with structured output spaces. In experiments online SVMD outperformed the conventional
online SVM (aka NORMA) algorithm with scheduled step size decay for binary and multiclass
classification, especially on a non-stationary problem. In particular, it accelerated convergence
to a good solution, which is one of the main aims of performing step size adaptation. In novelty
detection experiments we observe that SVMD is able to closely track the non-stationarity in the data
and adapt the step sizes correspondingly. With a reasonable buffer size SVMD attains competitive
performance in a single pass through the MNIST data set. On a difficult document categorization
task using the WIPO-alpha data set, SVMD performed well compared to the best offline algorithm.

1128

STEP SIZE ADAPTATION IN RKHS

Empirically we observe that in all our experiments the SVMD algorithm significantly speeds up
the convergence of the conventional online SVM algorithm. It would be interesting to obtain worst
case loss bounds for SVMD akin to those of Kivinen et al. (2004). The main technical challenge
here is that the SMD update consists of three interleaved updates, and applying a straightforward
analysis using Bregman divergences (Gentile and Littlestone, 1999; Azoury and Warmuth, 2001)
is infeasible. Established methods for proving worst case loss bounds rely on the cancellation of
telescoped terms, which works only when the step sizeη is held constant. In the case of SVMD,
however, step sizes change from iteration to iteration. Even worse, their update is governed by two
other feedback equations. A more sophisticated analysis, possibly involving second-order informa-
tion, will have to be developed to establish similar loss bounds for SVMD.

SMD is a generic method to hasten the convergence of stochastic gradient descent methods. In
combination with the kernel trick this provides a powerful learning tool. Otherkernel algorithms
which rely on stochastic gradient descent —e.g., that of Kim et al. (2005) — could also be acceler-
ated with SMD; this is a focus of our ongoing work in this area.

Acknowledgments

We would like to thank Alexandros Karatzoglou and Chang Chui for their help with early imple-
mentations, Lijuan Cai and Thomas Hofmann for making a pre-preprocessed version of the WIPO-
Alpha data set available to us, and the anonymous reviewers for ICML, NIPS, and JMLR for their
many helpful comments. National ICT Australia is funded by the Australian Government’s De-
partment of Communications, Information Technology and the Arts and the Australian Research
Council through Backing Australia’s Ability and the ICT Center of Excellence program. This work
was supported by the IST Program of the European Community, under the Pascal Network of Ex-
cellence, IST-2002-506778.

References

L. B. Almeida, T. Langlois, J. D. Amaral, and A. Plakhov. Parameter adaptation in stochastic
optimization. In David Saad, editor,On-Line Learning in Neural Networks, Publications of the
Newton Institute, chapter 6, pages 111–134. Cambridge University Press, 1999.

Y. Altun, A. J. Smola, and T. Hofmann. Exponential families for conditional random fields. In
Uncertainty in Artificial Intelligence (UAI), pages 2–9, 2004.

K. Azoury and M. K. Warmuth. Relative loss bounds for on-line density estimation with the ex-
ponential family of distributions.Machine Learning, 43(3):211–246, 2001. Special issue on
Theoretical Advances in On-line Learning, Game Theory and Boosting.

A. G. Barto and R. S. Sutton. Goal seeking components for adaptive intelligence: An initial as-
sessment. Technical Report AFWAL-TR-81-1070, Air Force Wright Aeronautical Laboratories,
Wright-Patterson AFB, Ohio 45433, USA, 1981.

K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two linearly
inseparable sets.Optimization Methods and Software, 1:23–34, 1992.

1129

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

H. D. Block. The perceptron: A model for brain functioning.Reviews of Modern Physics, 34:
123–135, 1962. Reprinted inNeurocomputingby Anderson and Rosenfeld.

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and active
learning.Journal of Machine Learning Research, 6:1579–1619, September 2005.

M. Bray, E. Koller-Meier, P. M̈uller, N. N. Schraudolph, and L. Van Gool. Stochastic optimization
for high-dimensional tracking in dense range maps.IEE Proceedings Vision, Image & Signal
Processing, 152(4):501–512, 2005.

M. Bray, E. Koller-Meier, N. N. Schraudolph, and L. Van Gool. Fast stochastic optimization for
articulated structure tracking.Image and Vision Computing, 24, in press 2006.

C. J. C. Burges and B. Schölkopf. Improving the accuracy and speed of support vector learning
machines. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors,Advances in Neural Information
Processing Systems 9, pages 375–381, Cambridge, MA, 1997. MIT Press.

L. Cai and T. Hofmann. Hierarchical document categorization with support vector machines. InPro-
ceedings of the Thirteenth ACM conference on Information and knowledgemanagement, pages
78–87, New York, NY, USA, 2004. ACM Press.

C. Cortes and V. Vapnik. Support vector networks.Machine Learning, 20(3):273–297, 1995.

K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass prob-
lems. In N. Cesa-Bianchi and S. Goldman, editors,Proc. Annual Conf. Computational Learning
Theory, pages 35–46, San Francisco, CA, 2000. Morgan Kaufmann Publishers.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems. Journal
of Machine Learning Research, 3:951–991, January 2003.

K. Crammer, J. Kandola, and Y. Singer. Online classification on a budget. In Sebastian Thrun,
Lawrence Saul, and Bernhard Schölkopf, editors,Advances in Neural Information Processing
Systems 16, pages 225–232, Cambridge, MA, 2004. MIT Press.

O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: A kernel-based perceptron on a fixed
budget. In Yair Weiss, Bernhard Schölkopf, and John Platt, editors,Advances in Neural Informa-
tion Processing Systems 18, Cambridge, MA, 2006. MIT Press.

Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm.Machine
Learning, 37(3):277–296, 1999.

T.-T. Frieß, N. Cristianini, and C. Campbell. The kernel adatron algorithm: Afast and simple
learning procedure for support vector machines. In J. Shavlik, editor, Proc. Intl. Conf. Machine
Learning, pages 188–196. Morgan Kaufmann Publishers, 1998.

C. Gentile. A new approximate maximal margin classification algorithm.Journal of Machine
Learning Research, 2:213–242, December 2001.

C. Gentile and N. Littlestone. The robustness of the p-norm algorithms. InProc. Annual Conf.
Computational Learning Theory, pages 1–11, Santa Cruz, California, United States, 1999. ACM
Press, New York, NY.

1130

STEP SIZE ADAPTATION IN RKHS

A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.
Frontiers in Applied Mathematics. SIAM, Philadelphia, 2000.

M. E. Harmon and L. C. Baird, III. Multi-player residual advantage learning with general func-
tion approximation. Technical Report WL-TR-1065, Wright Laboratory, WL/AACF, Wright-
Patterson Air Force Base, OH 45433-7308, 1996.http://www.leemon.com/papers/sim
tech/sim tech.pdf.

D. Helmbold and M. K. Warmuth. On weak learning.Journal of Computer and System Sciences,
50(3):551–573, June 1995.

M. Herbster. Learning additive models online with fast evaluating kernels.In D. P. Helmbold and
R. C. Williamson, editors,Proc. Annual Conf. Computational Learning Theory, volume 2111 of
Lecture Notes in Computer Science, pages 444–460. Springer, 2001.

R. A. Jacobs. Increased rates of convergence through learning rate adaptation.Neural Networks, 1:
295–307, 1988.

K. I. Kim, M. O. Franz, and B. Scḧolkopf. Iterative kernel principal component analysis for image
modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9):1351–1366,
2005.

J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradientdescent for linear predictors.
Information and Computation, 132(1):1–64, January 1997.

J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels.IEEE Transactions on
Signal Processing, 52(8), Aug 2004.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. J. Jackel.
Backpropagation applied to handwritten zip code recognition.Neural Computation, 1:541–551,
1989.

Y. Li and P. M. Long. The relaxed online maximum margin algorithm.Machine Learning, 46(1–3):
361–387, 2002.

D. J. C. MacKay. Introduction to Gaussian processes. In C. M. Bishop, editor,Neural Networks
and Machine Learning, pages 133–165. Springer, Berlin, 1998.

M. Milano. Machine Learning Techniques for Flow Modeling and Control. PhD thesis, Eidgen̈os-
sische Technische Hochschule (ETH), Zürich, Switzerland, 2002.

M. Minsky and S. Papert.Perceptrons: An Introduction To Computational Geometry. MIT Press,
Cambridge, MA, 1969.

A. B. J. Novikoff. On convergence proofs on perceptrons. InProceedings of the Symposium on the
Mathematical Theory of Automata, volume 12, pages 615–622. Polytechnic Institute of Brooklyn,
1962.

B. A. Pearlmutter. Fast exact multiplication by the Hessian.Neural Computation, 6(1):147–160,
1994.

1131

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning: The
RPROP algorithm. InProc. International Conference on Neural Networks, pages 586–591, San
Francisco, CA, 1993. IEEE, New York.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in
the brain.Psychological Review, 65(6):386–408, 1958.

B. Scḧolkopf and A. Smola.Learning with Kernels. MIT Press, Cambridge, MA, 2002.

B. Scḧolkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimatingthe support
of a high-dimensional distribution.Neural Computation, 13(7):1443–1471, 2001.

N. N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.Neural
Computation, 14(7):1723–1738, 2002.

N. N. Schraudolph. Local gain adaptation in stochastic gradient descent. In Proc. Intl. Conf. Artifi-
cial Neural Networks, pages 569–574, Edinburgh, Scotland, 1999. IEE, London.

N. N. Schraudolph and X. Giannakopoulos. Online independent component analysis with local
learning rate adaptation. In S. A. Solla, T. K. Leen, and K.-R. Müller, editors,Neural Information
Processing Systems, volume 12, pages 789–795, Vancouver, Canada, 2000. MIT Press.

N. N. Schraudolph, J. Yu, and D. Aberdeen. Fast online policy gradient learning with SMD gain
vector adaptation. In Yair Weiss, Bernhard Schölkopf, and John Platt, editors,Advances in Neural
Information Processing Systems 18, Cambridge, MA, 2006. MIT Press.

S. Shalev-Shwartz and Y. Singer. A new perspective on an old perceptron algorithm. In P. Auer and
R. Meir, editors,Proc. Annual Conf. Computational Learning Theory, number 3559 in Lecture
Notes in Artificial Intelligence, pages 264 – 279, Bertinoro, Italy, June 2005. Springer-Verlag.

F. M. Silva and L. B. Almeida. Acceleration techniques for the backpropagation algorithm. In
Luı́s B. Almeida and C. J. Wellekens, editors,Neural Networks: Proc. EURASIP Workshop,
volume 412 ofLecture Notes in Computer Science, pages 110–119. Springer Verlag, 1990.

R. S. Sutton. Adaptation of learning rate parameters, 1981. URLhttp://www.cs.ualberta.ca/
∼sutton/papers/sutton-81.pdf. Appendix C of (Barto and Sutton, 1981).

R. S. Sutton. Gain adaptation beats least squares? InProceedings of the 7th Yale Workshop on
Adaptive and Learning Systems, pages 161–166, 1992. URLhttp://www.cs.ualberta.ca/
∼sutton/papers/sutton-92b.pdf.

T. Tollenaere. SuperSAB: Fast adaptive back propagation with good scaling properties.Neural
Networks, 3:561–573, 1990.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for
interdependent and structured output spaces. InProc. Intl. Conf. Machine Learning, New York,
NY, USA, 2004. ACM Press. ISBN 1-58113-828-5.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Mark Schmidt, and Kevin Murphy. Training condi-
tional random fields with stochastic gradient methods. InProc. Intl. Conf. Machine Learning, to
appear 2006.

1132

STEP SIZE ADAPTATION IN RKHS

J. Weston, A. Bordes, and L. Bottou. Online (and offline) on an even tighter budget. InProceedings
of International Workshop on Artificial Intelligence and Statistics, 2005.

1133

