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Abstract
Fast and frugal heuristics are well studied models of bounded rationality. Psychological research
has proposed the take-the-best heuristic as a successful strategy in decision making with limited
resources. Take-the-best searches for a sufficiently good ordering of cues (or features) in a task
where objects are to be compared lexicographically. We investigate the computational complex-
ity of finding optimal cue permutations for lexicographic strategies and prove that the problem is
NP-complete. It follows that no efficient (that is, polynomial-time) algorithm computes optimal
solutions, unless P= NP. We further analyze the complexity of approximating optimal cue permu-
tations for lexicographic strategies. We show that there isno efficient algorithm that approximates
the optimum to within any constant factor, unless P= NP.

The results have implications for the complexity of learning lexicographic strategies from ex-
amples. They show that learning them in polynomial time within the model of agnostic probably
approximately correct (PAC) learning is impossible, unless RP= NP. We further consider greedy
approaches for building lexicographic strategies and determine upper and lower bounds for the
performance ratio of simple algorithms. Moreover, we present a greedy algorithm that performs
provably better than take-the-best. Tight bounds on the sample complexity for learning lexico-
graphic strategies are also given in this article.
Keywords: bounded rationality, fast and frugal heuristic, PAC learning, NP-completeness, hard-
ness of approximation, greedy method

1. Introduction

In many circumstances the human mind has to make decisions when time is scarce and knowledge
is limited. Extensive reflections backed by deep reasoning are impossible in these situations. Cog-
nitive psychology categorizes human judgments made under such constraints as being boundedly
rational if they are “satisficing” (Simon, 1982) or, more generally, if they do not fall too far be-
hind the rational standards. The modeling of bounded rationality has been considered essential for
artificial intelligence. Russell and Wefald (1991), defining artificial intelligence as the problem of
designing systems that “do the right thing”, argue that intelligence seems linked with doing as well
as possible given what resources one has.
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A principal family of models for human reasoning that are studied within the context of bounded
rationality are the probabilistic mental models proposed by Gigerenzer et al. (1991). To these be-
longs a kind of simple algorithms termed “fast and frugal heuristics” that were the topic of major
research projects in psychology (Gigerenzer and Goldstein, 1996; Gigerenzer et al., 1999). Great
efforts have been put into testing these heuristics by empirical means in experiments with human
subjects on the one hand (Bröder, 2000; Br̈oder and Schiffer, 2003; Lee and Cummins, 2004; Newell
and Shanks, 2003; Newell et al., 2003; Slegers et al., 2000) or in simulations on computers on the
other (Br̈oder, 2002; Bullock and Todd, 1999; Hogarth and Karelaia, 2003; Nellen, 2003; Todd
and Dieckmann, 2005). (See also the discussion and controversies documented in the open peer
commentaries on Todd and Gigerenzer, 2000.) To a lesser extent, theoretical studies have been un-
dertaken with analytical methods (Bröder, 2002; Martignon and Hoffrage, 1999, 2002; Martignon
and Schmitt, 1999).

1.1 Take the Best

Among the fast and frugal heuristics there is an algorithm called “take-the-best”1 (TTB) that during
recent years has become one of the workhorses of research into models of bounded rationality.
This algorithm is considered a process model for human judgments based onone-reason decision
making. Which of the two cities has a larger population: (a) Düsseldorf, (b) Hamburg? This is the
task originally studied by Gigerenzer and Goldstein (1996) where German cities with a population
of more than 100,000 inhabitants have to be compared. The available information on each city
consists of the values of nine binary cues, or attributes, indicating presence or absence of a feature.
The cues being used are, for instance, whether the city is a state capital, whether it is indicated on
car license plates by a single letter, or whether it has a soccer team in the national league.

The judgment which city is larger is made on the basis of the two binary vectors,or cue profiles,
representing the two cities. TTB compares the cues one after the other and uses the first cue that
discriminates as the one reason to yield the final decision. In other words, TTB performs a lexico-
graphic strategy of comparison. For instance, if one city has a universityand the other does not it
would infer that the first city is larger than the second. If the cue values ofboth cities are equal, the
algorithm passes on to the next cue.

TTB examines the cues in a certain order. Gigerenzer and Goldstein (1996) introduced ecolog-
ical validity as a numerical measure for ranking the cues. (See Martignon and Hoffrage, 2002, for
further criteria to order cues.) The validity of a cue is a real number in the interval [0,1] that is com-
puted in terms of the known outcomes of paired comparisons. It is defined asthe number of pairs
the cue discriminates correctly (i.e., where it makes a correct inference) divided by the number of
pairs it discriminates (i.e., where it makes an inference, be it right or wrong). TTB always chooses a
cue with the highest validity, that is, it “takes the best” among those cues not yet considered. Table 1
gives an example showing cue profiles and validities for three cities. The data are extracted from
the appendix of Gigerenzer and Goldstein (1996). The ordering defined by the population size of
the cities is given by

{〈 Düsseldorf , Essen〉,〈 Düsseldorf , Hamburg〉,〈 Essen , Hamburg〉},

1. “Take-the-best” is a shortening of “take the best, ignore the rest” (Gigerenzer and Goldstein, 1996).
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Soccer Team State Capital License Plate

Hamburg 1 1 0

Essen 0 0 1

Düsseldorf 0 1 1

Validity 1 1/2 0

Table 1: Part of the German cities task of Gigerenzer and Goldstein (1996). Shown are cue profiles
and validities. Validities are computed from the cues of the three cities as givenhere. The
original data has different validities but yields the same ranking for the cues. The meaning
of the cues and the way how to calculate validities are explained in the text.

where a pair〈a,b〉 indicates thata has less inhabitants thanb. As an example for calculating the
validity, the state-capital cue distinguishes the first and the third pair but is correct only on the latter.
Hence, its validity has value 1/2.

The order in which the cues are ranked is crucial for success or failure of TTB. In the example
of Düsseldorf and Hamburg, the car-license-plate cue would yield that Düsseldorf (represented by
the letter “D”) is larger than Hamburg (represented by the two letters “HH”),whereas the soccer-
team cue would favor Hamburg, which is correct. Thus, how successful a lexicographic strategy
is in a comparison task consisting of a partial ordering of cue profiles depends on how well the
cue ranking minimizes the number of incorrect comparisons. Specifically, theaccuracy of TTB
relies on the degree of optimality achieved by the ranking according to decreasing cue validities.
For TTB and the German cities task, computer simulations have shown that TTB discriminates at
least as accurate as other models (Gigerenzer and Goldstein, 1996; Gigerenzer et al., 1999; Todd
and Dieckmann, 2005). TTB made as many correct inferences as standard algorithms proposed by
cognitive psychology and even outperformed some of them.2

1.2 Accuracy and Complexity

Partial results concerning the accuracy of TTB compared to the accuracy of other strategies have
been obtained analytically by Martignon and Hoffrage (2002). The intention of this article is to sub-
ject the problem of finding optimal cue orderings to a rigorous theoretical analysis. A conceivable
approach would be to reveal conditions under which TTB performs betteror worse. However, the
analysis of TTB per se is not a major topic of this work. Instead, we take a different and more gen-
eral road by employing methods from the theory of computational complexity (Garey and Johnson,
1979).

Obviously, TTB is an algorithm that runs in polynomial time. Given a list of ordered pairs,
it computes all cue validities in a number of computing steps that is linear in the size of the list,

2. Gigerenzer and Goldstein (1996) introduced TTB with an additional feature, the recognition principle. The recog-
nition cue indicates whether the city is recognized or not. A city that is recognized is preferred to an unrecognized
one. The recognition cue is always queried first and, hence, not relevant for the problem of finding optimal cue
permutations considered here.
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assuming random access to the values of the cues. This observation directs our attention to studying
the computational complexity of the problem of finding optimal cue permutations. Is there really
an efficient algorithm that solves this problem? We define the decision problem LEXICOGRAPHIC

STRATEGY as the task of determining whether for a given partial ordering, represented as a list
of pairs of cue profiles, and a given threshold there exists a cue permutation such that the number
of incorrect comparisons made by the lexicographic strategy does not exceed this threshold. As a
fundamental result we prove that LEXICOGRAPHICSTRATEGY is NP-complete. It follows that TTB
is not an algorithm for computing optimal cue permutations and, even more, thatno polynomial-
time algorithm exists for solving this task, unless the complexity classes P and NP are equal.

The fact that finding optimal cue permutations turns out to be practically intractable, however,
does not exclude the possibility that the optimum can be efficiently approximated. The second main
topic of this article is an optimization problem called MINIMUM INCORRECT LEXICOGRAPHIC

STRATEGY denoting the task of minimizing the number of incorrect inferences for the lexicographic
strategy on a given list of pairs. Many computational problems are known tobe NP-complete but
have efficient approximation algorithms that are good in the sense that their solutions are never more
than some constant factor away from the optimum. Problems in this class, which isdenoted APX,
are generally considered to be approximable well and efficiently (Ausiello et al., 1999). As the
second major result of this article we show that, unless P= NP, no polynomial-time approximation
algorithm exists that computes solutions for MINIMUM INCORRECTLEXICOGRAPHICSTRATEGY

that are only a constant factor worse than the optimum, unless P= NP. In other words, the approx-
imating factor, also called performance ratio, must grow with the size of the problem.

As an extension of TTB we consider an algorithm for finding cue orderings that was called
“TTB by Conditional Validity” in the context of bounded rationaility. This algorithm is based on
the greedy method, a principle widely used in algorithm design. The greedy algorithm runs in
polynomial time and we derive tight bounds for it, showing that it approximatesthe optimum with
a performance ratio proportional to the number of cues. An important consequence of this result
is a guarantee that for those instances which have a solution that discriminates all pairs correctly,
the greedy algorithm always finds a permutation attaining this minimum. We are not aware that
this quality has been established for any of the previously studied heuristicsfor paired comparison.
Moreover, we show that TTB does not have this property, concluding that the greedy method of
constructing cue permutations performs provably better than TTB.

While the results mentioned so far deal with lexicographic strategies based oncue permutations,
we further consider the possibility to build them by also inverting cues. We present an algorithm
that greedily constructs cue inversions that are always correct on a number of pairs that is at least
half the optimum. In other words, this algorithm is a constant factor approximation algorithm for
the problem of maximizing the number of correct inferences. Interestingly,this algorithm does not
even need to permute any cues to approximate to within a constant factor the optimum taken even
over all inversions and permutations.

1.3 Learning

LEXICOGRAPHIC STRATEGY is a decision problem that requires to minimize a disagreement.
Given a set of pairs, the question is whether a cue permutation can be found that keeps the number of
incorrect comparisons, or disagreements, of the lexicographic strategybelow some prescribed value.
Minimizing disagreement problems play a major role in the context of a computational model of
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learning known as agnostic probably approximately correct (PAC) learning (see, e.g., Anthony and
Bartlett, 1999). This model assumes that a learner receives a set of examples, the sample, drawn ac-
cording to some unknown probability distribution. The learner is required to output a function from
a so-called hypothesis class on the condition that, with high probability, the computed hypothesis
is, with respect to the distribution, close to an optimal hypothesis within the class.A fundamen-
tal result is concerned with the question whether agnostic PAC learning with agiven hypothesis
class can be done efficiently, in particular, if there exists an algorithm that needs only a polynomial
number of computation steps to find good hypotheses. The result states thatno such learner can
exist if the minimizing disagreement problem for the hypothesis class is NP-complete, given that
the complexity classes RP and NP are different (see, e.g., Höffgen et al., 1995; Kearns et al., 1994).

The results in this paper have immediate consequences for the question whether lexicographic
strategies can be learned. Adopting the framework of agnostic PAC learning, we assume that pairs
of cue profiles are drawn randomly according to some unknown distribution. The task of the learner
is to find a cue permutation that, with high probability, is close to an optimal one, where closeness
means that the probability of differing inferences is small. This setting seems slightly different from
the original PAC model as in the latter the sample consists of labeled examples, whereas the lexico-
graphic strategy has to be learned from pairs. However, relevant in both cases is that a hypothesis can
be correct or incorrect on a given example. Therefore, applying theabove-mentioned result about
agnostic PAC learning and assuming that RP6= NP, by showing that LEXICOGRAPHICSTRATEGY

is NP-complete we may conclude that efficient learning of lexicographic strategies is impossible.
Moreover, this evidence of impossibility is reinforced by our proving that the optimization problem
M INIMUM INCORRECTLEXICOGRAPHICSTRATEGY cannot be approximated in polynomial time
to within any constant factor.

A further question that models of learning are involved in is the characterization of the ability
to generalize, that is, to find a good hypothesis from only a small number of examples. A principal
result in agnostic PAC learning has established a combinatorial parameter ofa hypothesis class, its
Vapnik-Chervonenkis (VC) dimension, as the relevant measure for this sample complexity (Vapnik
and Chervonenkis, 1971). In particular, to come close to the minimal generalization error it is
necessary and sufficient to draw a number of examples that is proportional to the VC dimension
of the hypothesis class (see, e.g., Anthony and Bartlett, 1999). In this article we determine the
VC dimension of the class of lexicographic strategies exactly. In detail, we show that the class of
lexicographic strategies obtained by cue permutations and inversions has aVC dimension equal to
the number of cues. As a consequence, the number of cues provides a tight bound on the sample
complexity for learning lexicographic strategies.

1.4 Related Work

Research that approaches the investigation of simple heuristics for intelligent systems via the anal-
ysis of computational complexity traces back to Simon and Kadane (1975, 1976). They provided
sufficient conditions under which so-called satisficing search strategiescan be proved to be opti-
mal. Their line of study was resumed by Greiner and Orponen (1996) who obtained estimates for
the sample complexity of such strategies. Regarding the issue of ordering, Greiner (1999) raised a
question relevant for inductive logic programming that is similar to the problems studied here. He
asked whether it is possible to efficiently revise rule-based programs by rearranging the ordering of
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the rules. His results include NP-completeness and nonapproximability statements for various types
of logical theories.

Rivest (1987) introduced decision lists as a formalism for the representation of Boolean func-
tions. The procedure for computing the output value of a decision list is similarto a lexicographic
strategy in that both mechanisms are based on one-reason decision making. In fact, we shall show
below that lexicographic strategies are a special case of so-called 2-decision lists. It will also fol-
low from this result that the two function classes do not coincide. Thus, analgorithm that learns
2-decision lists does not necessarily learn lexicographic strategies. On the other hand, an algorithm
that finds optimal cue permutations might not be good in constructing 2-decision lists.

Ordering problems have also been studied by Cohen et al. (1999). Theyconsidered the problem
of putting a set of objects in a total order that maximally agrees with a specified preference function.
They proved this problem to be NP-complete. We shall show later that the problem of finding
cue permutations for the lexicographic strategy can be formulated as such an ordering problem.
However, we shall also argue that the two problems are different, since the cue permutation problem
requires the total order to be implemented as a lexicographic strategy and notevery total order can
be represented this way.

1.5 Outline

We introduce lexicographic strategies in Section 2 and provide there further definitions and proper-
ties. We then draw comparisons with decision lists and discuss the relationship of the problem of
finding optimal cue permutations with the ordering problem studied by Cohen etal. (1999).

Section 3 establishes the NP-completeness of the problem LEXICOGRAPHIC STRATEGY. Ad-
ditionally, we consider the complexity of this problem when the instances meet certain conditions.
We obtain that the problem remains NP-complete under constraints that require the cue profiles to
be sparse, impose a bound on the number of pairs, or suppose the pairs tosatisfy some simple prop-
erties of orderings. In particular, we show NP-completeness to hold wheneach cue profile contains
no more than one 0. In contrast, if the latter condition is met and the pairs are from some partial
order, the problem can be solved in linear time.

The optimization problem MINIMUM INCORRECTLEXICOGRAPHICSTRATEGY is considered
in Section 4. As the main result we show that this problem cannot be approximated in polynomial
time to within any constant factor, unless P= NP. It further emerges, that this result holds even
when the instances satisfy some, albeit not all, of the restrictions considered in Section 3.

Section 5 introduces the greedy algorithm for constructing cue permutations. We tightly deter-
mine the performance ratio of this algorithm, showing that it is proportional to thenumber of cues.
The result implies that the greedy method always finds a correct cue permutation if one exists. In
contrast, we show that this does not hold for TTB. Restrictions under which the lower bound for the
greedy method is still valid are also determined in this section.

In Section 6 we introduce the operation of inverting cues as a means for constructing lexico-
graphic strategies. We show that a greedy method approximates the maximum number of correct
inferences to within a constant factor.

The sample complexity for learning is studied in Section 7. We determine the numberof cues
as the exact value for the VC dimension of the class of lexicographic strategies obtained from cue
permutations and inversions. Section 8 summarizes seven major open questions arising from this
article and Section 9 concludes with final remarks.
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We assume that the reader is acquainted with the theory of NP-completeness as propounded, for
instance, by Garey and Johnson (1979). Familiarity with the theory of computational complexity
for approximation problems is not required as we shall explicate the necessary details.

Bibliographic Note. The main result of Section 3 (Theorem 3) was mentioned by Martignon and
Schmitt (1999), but its proof has been available only in an unpublished manuscript (Schmitt and
Martignon, 1999). Parts of Sections 4 and 5 appear in a contribution to a conference (Schmitt and
Martignon, 2006).

2. Lexicographic Strategies

In the following, we introduce lexicographic strategies and the computationalproblem that we study
in this article. After giving formal definitions in Section 2.1, we compare in Section 2.2 lexico-
graphic strategies with a related formalism known as decision lists. The optimization problem for
lexicographic strategies bears some resemblance to ranking problems that have been studied earlier.
In Section 2.3, we discuss the relationship between them and demonstrate thatthey are different
problems.

2.1 Definitions

A lexicographic strategyis a method for comparing elements of a setB⊆{0,1}n of Boolean vectors.
Each component 1, . . . ,n of these vectors is referred to as acue. Given two elementsa,b∈ B, where
a = (a1, . . . ,an) andb = (b1, . . . ,bn), the lexicographic strategy searches for the smallest cue index
i ∈ {1, . . . ,n} such thatai andbi are different. The strategy then outputs one of “< ” or “ > ”
according to whetherai < bi or ai > bi assuming the usual order 0< 1 of the truth values. If no
such cue exists, the strategy returns “= ”. Formally, let diff : B×B→{1, . . . ,n+1} be the function
where diff(a,b) is the smallest cue index on whicha andb are different, orn+1 if they are equal,
that is,

diff(a,b) = min{{i : ai 6= bi}∪{n+1}}.

Then, the functionS: B×B→{“ < ” , “ = ” , “ > ”} computed by the lexicographic strategy is

S(a,b) =







“ < ” if diff (a,b) ≤ n andadiff(a,b) < bdiff(a,b),
“ > ” if diff (a,b) ≤ n andadiff(a,b) > bdiff(a,b),
“ = ” otherwise.

Consideringa andb as binary encodings of natural numbers,S(a,b) is nothing else than the result
of the comparison of these two numbers.

Lexicographic strategies may take into account that the cues come in an order that is different
from 1, . . . ,n. Let π : {1, . . . ,n} → {1, . . . ,n} be a permutation of the cues. It gives rise to a map-
ping π : {0,1}n → {0,1}n that permutes the components of Boolean vectors byπ(a1, . . . ,an) =
(aπ(1), . . . ,aπ(n)). As π is uniquely defined givenπ, we simplify the notation and write alsoπ
for π. The lexicographic strategy under cue permutationπ passes through the cues in the order
π(1), . . . ,π(n), that is, it computes the functionSπ : B×B→{“ < ” , “ = ” , “ > ”} defined as

Sπ(a,b) = S(π(a),π(b)).
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The problem we study is that of finding a cue permutation that minimizes the numberof incorrect
comparisons in a given list of element pairs using the lexicographic strategy. An instance of this
problem consists of a setB of elements and a set of pairsL ⊆ B×B. Each pair〈a,b〉 ∈ L represents
an inequalitya≤ b. Given a cue permutationπ, we say that the lexicographic strategy underπ infers
the pair〈a,b〉 correctly if Sπ(a,b) ∈ {“ < ” , “ = ”}, otherwise the inference is incorrect. The task is
to find a permutationπ such that the number of incorrect inferences inL usingSπ is minimal, that
is, a permutationπ that minimizes

INCORRECT(π,L) = |{〈a,b〉 ∈ L : Sπ(a,b) = “ > ”}|.

We recall some definitions about orders on sets. A setL ⊆ B×B is apartial order if it is reflexive
(that is,〈a,a〉 ∈ L for everya∈ B), antisymmetric (that is,〈a,b〉 ∈ L and〈b,a〉 ∈ L impliesa = b),
and transitive (that is,〈a,b〉 ∈ L and〈b,c〉 ∈ L implies 〈a,c〉 ∈ L). Further,L is a total order if it
is a partial order and satisfies〈a,b〉 ∈ L or 〈b,a〉 ∈ L for everya,b∈ B. Finally, L is irreflexive if
〈a,a〉 6∈ L for everya∈ B.

Given some cue permutationπ, consider a relation that is satisfied by a pair〈a,b〉 if and only
if Sπ(a,b) ∈ {“ < ” , “ = ”}. Clearly, this relation defines a total order on any setB ⊆ {0,1}n.
A question that arises immediately is whether every total order has some cue permutation that
represents this order using the lexicographic strategy. It is easy to see that this is not the case.

Proposition 1 For every set B⊆ {0,1}n and every cue permutationπ, the lexicographic strategy
under cue permutationπ defines a total order on B. On the other hand, there are sets B⊆ {0,1}n

with a total order that cannot be represented by any cue permutation.

Proof It is evident that the relation{(a,b) : Sπ(a,b) ∈ {“ < ” , “ = ”}} is a total order. As a coun-
terexample, consider a setB with {(0, . . . ,0),(1, . . . ,1)} ⊆ B. Clearly, under every cue permutation,
(0, . . . ,0) is less than(1, . . . ,1). Thus, the reverse ordering of these two elements cannot be repre-
sented by the lexicographic strategy.

Obviously, the lexicographic strategy applied to a pair〈a,a〉 is always correct, independently
of the cue permutation. Therefore, the identical pairs ofL pose no obstacle for the minimization
problem. Also possible were an alternative setting where〈a,b〉 is interpreted as a strict inequality.
We admit identical pairs, however, to keep the definition more general and allow L to represent some
“natural” relations such as partial or total orders or arbitrary subsets thereof. Nevertheless, all results
presented in the following remain valid if the pairs are assumed to represent strict inequalities.

2.2 Lexicographic Strategies and Decision Lists

Decision lists are computing formalisms that operate quite similar to lexicographic strategies. A
decision listrepresents a Boolean functionf : {0,1}n →{0,1} and is given by a list of pairs

(m1, r1), . . . ,(m`, r`),

where eachmi is a Boolean monomial, that is, a conjunction of Boolean variables with or without
negations (Rivest, 1987). Further, eachr i is 0 or 1, andm` is the constant function 1. The Boolean
function computed by the decision list is defined as follows: Given somea ∈ {0,1}n, the output
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value isr i where i is the smallest index such thatmi evaluates to 1 ona. A k-decision list is a
decision list where every monomial has size at mostk.

In the problem of minimizing the number of incorrect comparisons the relevantquestion is
whether the output of the lexicographic strategy is correct, and not whether it is particularly one of
“ < ”, “ = ”, or “ > ”. In other words, we are interested in a binary and not a ternary classification.
Thus, we may consider the lexicographic strategySas a Boolean functionf mapping a setL of pairs
to {0,1}, where for every〈a,b〉 ∈ L we have

f (a,b) = 1 if and only if S(a,b) ∈ {“ < ” , “ = ”}.

Seen in this light, lexicographic strategies exhibit a similarity to decision lists. The following state-
ment, which is easy to derive, makes this relationship precise.

Proposition 2 Let f : {0,1}2n→{0,1} be a Boolean function with variables x1, . . . ,xn and y1, . . . ,yn.
Then f is computed by the lexicographic strategy if and only if f is computed by the2-decision list

(x1y1,0),(x1y1,1), . . . ,(xnyn,0),(xnyn,1),(1,1).

Proof Let a,b∈ {0,1}n. Clearly, if a = b, all monomials of the decision list evaluate to 0, except
for the constant function 1. Ifa 6= b, let i = diff(a,b). In the case thatai < bi , the monomialxiyi is
the first one that evaluates to 1, and the output of the decision list is 1. Similarly, if ai > bi , this is
first detected by the monomialxiyi , and the decision list yields 0.

The proposition shows that the lexicographic strategy has a unique characterization as a 2-
decision list. Thus, finding a cue permutation for the lexicographic strategy amounts to constructing
a 2-decision list with some restrictions concerning the structure of the monomials, the pattern of
the output values, and the length of the list. It is also obvious from Proposition 2, however, that
2-decision lists compute a much richer class of Boolean functions than lexicographic strategies
do. We conclude that cue permutations are not necessarily found using algorithms for constructing
2-decision lists. Further, an optimal cue permutation might not be an optimal 2-decision list.

2.3 Ranking Problems

The problem of minimizing the number of incorrect comparisons in a list of pairsexhibits some
similarity with an optimization problem that occurs in the context of ordering problems and was
studied by Cohen et al. (1999). In this problem, which we here call ranking problem, one receives
a setX, a collection of functionsR1, . . . ,RN mappingX×X to the real interval[0,1], and rational
numbersw1, . . . ,wN ∈ [0,1] whose sum is equal to 1. A solution of the problem is a total orderρ of
X that maximally agrees with the so-called preference function PREF :X×X → [0,1]. The closer
the value of PREF(a,b) is to 1, the morea is to be ranked aboveb. The preference function is
defined as

PREF(a,b) =
N

∑
i=1

wiRi(a,b)

The agreement of the total orderρ with the preference function PREF is quantified by the value of

∑
{(a,b):ρ(a)>ρ(b)}

PREF(a,b) (1)
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and a desired total orderρ is one that maximizes this value.
It is not hard to see that the instances of the cue permutation problem are particular instances of

the above problem. Specifically, introduce for each pair〈a,b〉 a functionR〈a,b〉 : B×B→{0,1} that
outputs 1 on(b,a), and 0 otherwise. Further, letw〈a,b〉 = 1/|L|. Then, a total orderρ that maximizes
the value of the expression (1) is one that minimizes the number of incorrect inferences inL.

Cohen et al. (1999) have shown that the ranking problem is NP-complete.The question is,
therefore, whether this hardness result has any implications on the complexity of finding a cue
permutation that minimizes the number of incorrect inferences. However, theranking problem is
different from the cue permutation problem not only in that its instances aremore general. The two
problems also disagree in the type of solutions that are sought. While the ranking problem accepts
any total order that maximizes the agreement with the preference function, the cue permutation
problem requires that the total order can be implemented by a lexicographic strategy. Proposition 1
demonstrates, though, that not every total order can be represented as a cue permutation. Thus, the
space taken by the solutions of the cue permutation problem is narrower thanthe solution space for
the ranking problem described above. Moreover, we show in Section 3 that the cue permutation
problem remains NP-complete even when the instances are known to have a total order. In contrast,
imposing this restriction on the ranking problem results in a problem that is trivially solvable.

A further difference emerges if one considers the problem of approximating optimal solutions as
we do in Section 4. Then the cue permutation problem is a minimization problem while the ranking
problem is a maximization problem. Among the complexity classes of approximation problems
several examples are known where the minimization and the maximization problem have different
degrees of approximability (see, e.g., Amaldi and Kann, 1995, 1998). Consequently, despite the
apparent similarity of the cue permutation problem and the ranking problem, thecomplexities of
the two problems are obviously not related.

3. Complexity of Finding Optimal Cue Permutations

We consider the complexity of the problem to minimize the number of incorrect inferences under
the lexicographic strategy. To show that it is computationally intractable, we formulate this search
problem as a decision problem. The decision problem has as input a set ofbinary vectors, an order-
ing defined on this set in terms of a list of vector pairs, and a bound given as a natural number. The
question is to decide whether the cues can be permuted such that the number ofincorrect inferences
made by the lexicographic strategy when applied with this cue permutation to the listof pairs is not
larger than the given bound. We call this decision problem LEXICOGRAPHICSTRATEGY.

LEXICOGRAPHICSTRATEGY

Instance: A setB⊆ {0,1}n, a setL ⊆ B×B, and a natural numberk.

Question: Is there a permutation of the cues ofB such that the number of incorrect
inferences inL under the lexicographic strategy is at mostk?

Clearly, any polynomial-time algorithm for finding a permutation with a minimal number of in-
correct inferences can be turned into a polynomial-time algorithm that solvesLEXICOGRAPHIC

STRATEGY. However, we show that this problem is NP-hard. Hence, if P6= NP, no polynomial-time
algorithm for the decision problem and, a fortiori, for the search problemexists. The NP-hardness
proof provides a polynomial-time reduction from a problem dealing with graphs and known as
VERTEX COVER (Garey and Johnson, 1979).
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VERTEX COVER

Instance: An undirected graphG = (V,E), whereV is the set of vertices andE ⊆
V ×V is the set of edges, and a natural numberk.

Question: Is there a vertex cover of cardinalityk or less forG, that is, a subsetV ′ ⊆V
with |V ′| ≤ k such that for each edge{u,v} ∈ E at least one ofu and v
belongs toV ′?

Theorem 3 LEXICOGRAPHICSTRATEGY is NP-complete.

Proof Obviously, a nondeterministic algorithm can generate a permutation of the cuesand verify
in polynomial time whether the number of incorrect inferences is at mostk. Thus, the problem is a
member of NP. To establish its NP-hardness, we construct a reduction from VERTEX COVER. Let
1i (1i, j ) denote then-bit vector with a 1 in every position except for positioni (positionsi and j)
where it has a 0. Further, 1 is then-bit vector with a 1 everywhere. Given the graphG = (V,E),
where the set of vertices isV = {v1, . . . ,vn}, we define a setB of Boolean vectors withn+1 cues,
that isB⊆ {0,1}n+1, in three steps:

1. Let(1,0) ∈ B.

2. Fori = 1, . . . ,n, let (1i ,1) ∈ B.

3. For every{vi ,v j} ∈ E, let (1i, j ,1) ∈ B.

The setL ⊆ B×B of pairs that represents the element ordering is defined such that the element from
step 1 is less than each element constructed in step 2, and each element arising from step 3 is less
than the element from step 1. Formally,

L = {〈(1,0),(1i ,1)〉 : i = 1, . . . ,n} ∪ {〈(1i, j ,1),(1,0)〉 : {vi ,v j} ∈ E}. (2)

Finally, we let the numberk in the instance of LEXICOGRAPHIC STRATEGY be the same as in the
instance of VERTEX COVER. Clearly, the reduction is computable in polynomial time.

We establish the correctness of the reduction by proving that the graphG has a vertex cover of
cardinality at mostk if and only if the associated instance of LEXICOGRAPHIC STRATEGY has a
cue permutation that results in no more thank incorrect inferences. For simplicity, let us call a pair
from the first and second set on the right-hand side of equation (2) a vertex pair and an edge pair,
respectively.

(⇒) Assume thatG has a vertex coverV ′ of cardinality at mostk and, without loss of generality,
let its cardinality be exactlyk, so thatV ′ = {vi1, . . . ,vik}. Further, letV \V ′ = {vik+1, . . . ,vin}. Define
the permutation of the cues as

i1, . . . , ik,n+1, ik+1, . . . , in.

We claim that this cue ranking causes no more thank incorrect inferences inL. Consider an arbitrary
edge pair〈(1i, j ,1),(1,0)〉. As V ′ is a vertex cover, at least one ofi and j occurs ini1, . . . , ik. This
implies that the first cue that distinguishes this pair will have value 0 in(1i, j ,1) and value 1 in(1,0).
Thus, the result of the lexicographic comparison is correct. Next, let〈(1,0),(1i ,1)〉 be a vertex
pair with vi 6∈ V ′. In this case, cuen+ 1 distinguishes this pair with the correct outcome. Finally,
each vertex pair〈(1,0),(1i ,1)〉 with vi ∈ V ′ is distinguished by cuei with a result different from
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the ordering given byL. In summary, the only incorrect comparisons arise from vertex pairs with
vi ∈V ′. AsV ′ has cardinalityk, we thus have no more thank incorrect inferences.

(⇐) Now, let π be a permutation of the cues that produces at mostk incorrect inferences inL.
Define the setV ′ of vertices as follows:

1. For every incorrect vertex pair〈(1,0),(1i ,1)〉, let vi ∈V ′.

2. For every incorrect edge pair〈(1i, j ,1),(1,0)〉, let one ofvi ,v j ∈V ′.

Clearly,V ′ has cardinality at mostk. It remains to show thatV ′ is a vertex cover. For the sake of a
contradiction, assume that there is an edge inE, say{vi ,v j}, not covered. This means that neither of
vi ,v j is inV ′, implying that we have correct comparisons for the vertex pairs corresponding tovi and
v j and for the edge pair corresponding to{vi ,v j}. The fact that the edge pair is inferred correctly
implies thatπ must rank cuei or j before cuen+1. But then we have that at least one of the vertex
pairs forvi andv j results in an incorrect comparison. This contradicts the assertion made above that
both vertex pairs have correct comparisons. We conclude thatV ′ is a vertex cover.

The reduction constructed in the previous proof has some properties thatwe exploit in the
following statement to establish the NP-completeness of restricted versions ofLEXICOGRAPHIC

STRATEGY. First, it shows that the setB can be sparse in a certain sense, that is, has elements that
exhibit only very constrained bit patterns. Moreover, the NP-completeness holds even whenL is
not much larger thanB. Finally, the problem remains intractable even ifL does not contain identical
pairs or has some properties of a partial or total order.

Corollary 4 LEXICOGRAPHICSTRATEGY is NP-complete even when the instances satisfy any (or
all) of the following constraints:

1. Each element of B contains at most two0s.

2. The cardinality of L is linearly bounded from above by the cardinality of B,that is, |L| is
O(|B|).

3. L is irreflexive.

4. L is a subset of some partial order.

5. L is a subset of some total order.

Proof We show that all constraints are satisfied by the instances defined in the reduction for the
proof of Theorem 3. That the first condition holds is obvious from the definition of B. Further,
the instances of LEXICOGRAPHIC STRATEGY in this reduction all satisfy|B| = |E|+ n+ 1 and
|L| = n+ |E|. Thus,|B| = |L|−1 and the second constraint is met. Moreover,L does not contain
any pair〈a,a〉 which implies that the third constraint holds. We establish the fourth condition by
checking thatL does not violate any of the requirements for a partial order: Clearly, each a 6= b
does not have both〈a,b〉 and〈b,a〉 in L, and there are no three pairs〈a,b〉,〈b,c〉,〈c,a〉 in L. Fi-
nally, it is easy to see thatL is consistent with the total order resulting from the following ascending
arrangement ofB: We begin with the elements(1i, j ,1), where{vi ,v j} ∈ E, in lexicographic order,
followed by the element(1,0), and complete this sequence at the end by the elements(1i ,1), for
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i = 1, . . . ,n, again in lexicographic order. Thus, we have an ordering where any two elements ofB
are comparable, implying that also the last constraint is satisfied.

The first constraint of Corollary 4 gives rise to the question whether the problem is still NP-
complete if each element ofB has no more than one 0. The following two results treat this issue.
First, we show that the problem in general remains NP-complete under this restriction. To estab-
lish this we provide a reduction from the NP-complete problem FEEDBACK ARC SET (Garey and
Johnson, 1979).

FEEDBACK ARC SET

Instance: A directed graphG = (V,E), whereV is the set of vertices andA⊆V ×V
is the set of arcs, and a natural numberk.

Question: Is there a subsetA′ ⊆ A with |A′| ≤ k such thatA′ contains at least one arc
from every directed cycle inG?

Theorem 5 LEXICOGRAPHICSTRATEGY is NP-complete even when restricted to instances where
each element of B contains at most one0.

Proof Clearly, as LEXICOGRAPHIC STRATEGY is in NP, any subproblem of it is in NP as well.
We establish the NP-hardness of the problem by giving a reduction that is asimple rewriting of
FEEDBACK ARC SET. Given the graphG = (V,A) with V = {v1, . . . ,vn} and using the notation
from the proof of Theorem 3, we let

B = {1i : i = 1, . . . ,n},

L = {〈1i ,1 j〉 : (vi ,v j) ∈ A},

and definek to have the same value as in the instance of FEEDBACK ARC SET.
Obviously,A′ ⊆ A contains at least one arc from every directed cycle inG if and only if the

graphG′ = (V,A\A′) is acyclic. Further,G′ is acyclic if and only ifV has a total ordering in
which vi is less thanv j for each(vi ,v j) ∈ A\ A′. Finally, the existence of such a total order-
ing is equivalent to the assertion thatB has a cue permutation with no incorrect comparisons in
L′ = {〈1i ,1 j〉 : (vi ,v j) ∈ A\A′}. With this chain of equivalences, the correctness of the reduction
follows from the fact that|L′| = |L|− |A′|.

We may also add to the assumption of Theorem 5 the restriction that|L| is linearly bounded in
|B|, so that the problem is still NP-complete. In this case, the NP-hardness follows from the fact
that FEEDBACK ARC SET remains NP-hard for directed graphs in which the degree of the vertices
is bounded by some constant (Garey and Johnson, 1979). However,if we include the constraint that
L is a subset of some partial order, the complexity of the problem changes drastically, as we see in
the following statement.

Corollary 6 The problem of finding a cue permutation with a minimal number of incorrect com-
parisons under the lexicographic strategy is solvable in linear time for instances where B contains
at most one0 and L is a subset of some partial order.
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Proof As was argued in the proof of Theorem 5, the problem is the same as the problem of finding
a total order that is consistent with the partial order given byL (which is always possible). Such a
total order can be constructed by topological sorting. Algorithms for this sorting problem exist that
run in linear time (see, e.g., Skiena, 1997).

It is not difficult—and we leave it to the reader—to establish dual formulationsof Theorem 5
and Corollary 6 where it is assumed that each element ofB contains at most one 1.

4. Approximability of Optimal Cue Permutations

In the previous section, we have shown that there is no polynomial-time algorithm that computes
optimal cue permutations for the lexicographic strategy, unless P= NP. While it follows that this
problem is as difficult as all other optimization problems that have an NP-complete decision prob-
lem, we cannot draw any conclusions for the case where we are interested in solutions that are not
equal to the optimum but somehow close to it. In fact, there is a large class of optimization problems
that have NP-complete decision problems, but can be solved efficiently if thesolution is required to
be only a constant factor worse than the optimal solution. This class of problems is denoted APX
(Ausiello et al., 1999).

In this section, we show that the problem of approximating the optimal cue permutation is
harder than any problem in the class APX. In particular, we prove that, if P6= NP, there is no
polynomial-time algorithm whose solutions yield a number of incorrect comparisons that is by
at most a constant factor larger than the minimal number possible. First, however, we state the
problem as an optimization problem and introduce some definitions from the complexity theory of
approximation problems (Ausiello et al., 1999).

M INIMUM INCORRECTLEXICOGRAPHICSTRATEGY

Instance: A setB⊆ {0,1}n and a setL ⊆ B×B.
Solution: A permutationπ of the cues ofB.
Measure: The number of incorrect inferences inL for the lexicographic strategy under

cue permutationπ, that is, INCORRECT(π,L).

Given a real numberr > 0, an algorithm is said to approximate MINIMUM INCORRECTLEX-
ICOGRAPHIC STRATEGY to within a factor ofr if for every instance(B,L) the algorithm returns a
permutationπ such that

INCORRECT(π,L) ≤ r ·opt(L),

where opt(L) is the minimal number of incorrect comparisons achievable onL by any permutation.
The factorr is also known as the performance ratio of the algorithm. The following optimization
problem plays a crucial role in the derivation of the lower bound for the approximability of MINI -
MUM INCORRECTLEXICOGRAPHICSTRATEGY.

M INIMUM HITTING SET

Instance: A collectionC of subsets of a finite setU .
Solution: A hitting set forC, that is, a subsetU ′ ⊆ U such thatU ′ contains at least

one element from each subset inC.
Measure: The cardinality of the hitting set, that is,|U ′|.
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Similarly as above, we say that an algorithm approximates MINIMUM HITTING SET to within
a factor ofr if for every instanceC the algorithm outputs a hitting setU ′ that satisfies

|U ′| ≤ r ·opt(C),

where opt(C) denotes the minimal cardinality of a hitting set forC. (For simplicity, we use opt(·)
to represent the value of an optimal solution in both problems. It shall be clear from the context to
which problem it refers.)

M INIMUM HITTING SET is equivalent to a problem called MINIMUM SET COVER in the
sense that every polynomial-time algorithm that approximates MINIMUM HITTING SET to within
a certain factor can be turned into a polynomial-time algorithm that approximates MINIMUM SET

COVER to within the same factor, and vice versa (Ausiello et al., 1980). Bellare et al.(1993) have
shown that MINIMUM SET COVER cannot be approximated in polynomial time to within any con-
stant factor, unless P= NP. Thus, if P6= NP, MINIMUM HITTING SET cannot be approximated in
polynomial time to within any constant factor as well. We make use of this fact when we establish
the lower bound for the approximability of the optimal cue permutation.

Theorem 7 For every r, there is no polynomial-time algorithm that approximatesM INIMUM IN-
CORRECTLEXICOGRAPHICSTRATEGY to within a factor of r, unlessP= NP.

Proof We use the main ideas from the proof of Theorem 3 to establish an approximation preserving
reduction, or AP-reduction, from MINIMUM HITTING SET to MINIMUM INCORRECT LEXICO-
GRAPHIC STRATEGY.3 (See Ausiello et al., 1999, for a definition of the AP-reduction.) This
reduction entails that every polynomial-time algorithm that approximates MINIMUM INCORRECT

LEXICOGRAPHIC STRATEGY to within some constant factor can be turned into a polynomial-time
algorithm that approximates MINIMUM HITTING SET to within the same constant factor. Then the
statement follows from the equivalence of MINIMUM HITTING SET to MINIMUM SET COVER and
the lower bound on the approximability of the latter (Bellare et al., 1993).

We first define a functionf that is computable in polynomial time and maps each instance of
M INIMUM HITTING SET to an instance of MINIMUM INCORRECTLEXICOGRAPHIC STRATEGY.
Let 1 denote then-bit vector with a 1 everywhere and 1i1,...,i` the vector with 0 in positionsi1, . . . , i`
and 1 elsewhere. Given the collectionC of subsets of the setU = {u1, . . . ,un}, the functionf maps
C to (B,L), whereB⊆ {0,1}n+1 is defined as follows:

1. Let(1,0) ∈ B.

2. Fori = 1, . . . ,n, let (1i ,1) ∈ B.

3. For every{ui1, . . . ,ui`} ∈C, let (1i1,...,i` ,1) ∈ B.

Further, the setL is constructed as

L = {〈(1,0),(1i ,1)〉 : i = 1, . . . ,n} ∪ {〈(1i1,...,i` ,1),(1,0)〉 : {ui1, . . . ,ui`} ∈C}. (3)

3. A proof of Theorem 3 can be obtained by employing this reduction as a reduction between decision problems,
from the NP-complete HITTING SET to LEXICOGRAPHIC STRATEGY. However, the reduction used in the proof of
Theorem 3 is more powerful since Corollary 4 cannot be inferred when reducing from HITTING SET.
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In the following, a pair from the first and second set on the right-hand side of equation (3) is referred
to as an element pair and a subset pair, respectively. Obviously, the function f is computable in
polynomial time. It has the following property.

Claim 1. Let f(C) = (B,L). If C has a hitting set of cardinality k or less then f(C) has a cue
permutationπ whereINCORRECT(π,L) ≤ k.

To prove this, assume without loss of generality thatC has a hitting setU ′ of cardinality exactlyk,
sayU ′ = {u j1, . . . ,u jk}, and letU \U ′ = {u jk+1, . . . ,u jn}. Then the cue permutation

j1, . . . , jk,n+1, jk+1, . . . , jn.

results in no more thank incorrect inferences inL. Indeed, consider an arbitrary subset pair
〈(1i1,...,i` ,1),(1,0)〉. To not be an error, one ofi1, . . . , i` must occur in the hitting setj1, . . . , jk.
Hence, the first cue that distinguishes this pair has value 0 in(1i1,...,i` ,1) and value 1 in(1,0), re-
sulting in a correct comparison. Further, let〈(1,0),(1i ,1)〉 be an element pair withui 6∈ U ′. This
pair is distinguished correctly by cuen+1. Finally, each element pair〈(1,0),(1i ,1)〉 with ui ∈U ′ is
distinguished by cuei with a result that disagrees with the ordering given byL. Thus, only element
pairs withui ∈ U ′ yield incorrect comparisons and subset pairs are inferred correctly.Hence, the
number of incorrect inferences is not larger than|U ′|.

Next, we define a polynomial-time computable functiong that maps each collectionC of subsets
of a finite setU and each cue permutationπ for f (C) to a subset ofU . Given thatf (C) = (B,L), the
setg(C,π) ⊆U is defined as follows:

1. For every element pair〈(1,0),(1i ,1)〉 ∈ L that is compared incorrectly byπ, let ui ∈ g(C,π).

2. For every subset pair〈(1i1,...,i` ,1),(1,0)〉 ∈ L that is compared incorrectly byπ, let one of the
elementsui1, . . . ,ui` ∈ g(C,π).

Clearly, the functiong is computable in polynomial time. It satisfies the following condition.

Claim 2. Let f(C) = (B,L). If INCORRECT(π,L) ≤ k then g(C,π) is a hitting set of cardinality k
or less for C.

Obviously, if INCORRECT(π,L) ≤ k theng(C,π) has cardinality at mostk. To show that it is a
hitting set, assume the subset{ui1, . . . ,ui`} ∈C is not hit byg(C,π). Then neither ofui1, . . . ,ui` is in
g(C,π). Hence, we have correct comparisons for the element pairs corresponding toui1, . . . ,ui` and
for the subset pair corresponding to{ui1, . . . ,ui`}. As the subset pair is distinguished correctly, one
of the cuesi1, . . . , i` must be ranked before cuen+1. But then at least one of the element pairs for
ui1, . . . ,ui` yields an incorrect comparison. This contradicts the assertion that the comparisons for
these element pairs are all correct. Thus,g(C,π) is a hitting set and the claim is established.

Assume now that there exists a polynomial-time algorithmA that approximates MINIMUM IN-
CORRECTLEXICOGRAPHIC STRATEGY to within a factor ofr. Consider the algorithm that, for a
given instanceC of M INIMUM HITTING SET as input, calls algorithmA with input (B,L) = f (C),
and returnsg(C,π) whereπ is the output provided byA. Clearly, this new algorithm runs in poly-
nomial time. We show that it approximates MINIMUM HITTING SET to within a factor ofr. By the
assumed approximation property of algorithmA, we have

INCORRECT(π,L) ≤ r ·opt(L).
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Together with Claim 2, this implies thatg(π,C) is a hitting set forC satisfying

|g(C,π)| ≤ r ·opt(L).

From Claim 1 we obtain opt(L) ≤ opt(C) and, thus,

|g(C,π)| ≤ r ·opt(C).

Thus, the proposed algorithm for MINIMUM HITTING SET violates the approximation lower bound
that holds for this problem under the assumption P6= NP. This proves the statement of the theorem.

Similarly as in Corollary 4 we can state a stronger version of Theorem 7 that takes restrictions
into account that may hold for the instances of MINIMUM INCORRECTLEXICOGRAPHIC STRAT-
EGY. The proof is obtained in the same way as the proof of Corollary 4 and not given here.

Corollary 8 If P 6= NP, then for every r there is no polynomial-time algorithm that approximates
M INIMUM INCORRECT LEXICOGRAPHIC STRATEGY to within a factor of r, even when the in-
stances satisfy any (or all) of the following constraints:

1. The cardinality of L is linearly bounded from above by the cardinality of B,that is, |L| is
O(|B|).

2. L is irreflexive.

3. L is a subset of some partial order.

4. L is a subset of some total order.

The reader may have noticed that the constraint of Corollary 4 that imposesa bound on the
number of 0s in the elements ofB is missing here. In fact, there is some evidence, that the construc-
tion of an approximation preserving reduction from MINIMUM HITTING SET to this subproblem
of M INIMUM INCORRECTLEXICOGRAPHIC STRATEGY is difficult or even impossible. The case
where the number of 0s is bounded by some constant corresponds to the subproblem of MINIMUM

HITTING SET where the cardinality of each subset is not larger than a constant. This restricted
version of MINIMUM HITTING SET is known to be approximable to within some constant factor
(Bar-Yehuda and Even, 1981; Hochbaum, 1982). Of course, this apparent relationship does not
prove anything about the complexity of approximating the subproblem of MINIMUM INCORRECT

LEXICOGRAPHIC STRATEGY. However, it gives reason to the conjecture that this subproblem
might have a constant-factor approximation algorithm.

5. Greedy Approximation of Optimal Cue Permutations

The so-called greedy approach to the solution of a computation or approximation problem is helpful
when it is not known which algorithm performs best. This simple heuristic oftenprovides satisfac-
tory solutions in many situations in practice. The algorithm GREEDY CUE PERMUTATION that we
introduce here is based on the greedy method. The idea is to select the firstcue according to which
single cue makes a minimum number of incorrect inferences (choosing one arbitrarily if there are
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Algorithm 1 GREEDY CUE PERMUTATION

Input: a setB⊆ {0,1}n and a setL ⊆ B×B
Output: a cue permutationπ for n cues

I := {1, . . . ,n};
for i = 1, . . . ,n do

let j ∈ I be a cue where INCORRECT( j,L) = min j ′∈I INCORRECT( j ′,L);
π(i) := j;
I := I \{ j};
L := L\{〈a,b〉 : a j 6= b j}

end for.

two or more). After that the algorithm removes those pairs that are distinguished by the selected
cue, which is reasonable as the distinctions drawn by this cue cannot be undone by later cues. This
procedure is then repeated on the set of pairs left. The description of GREEDY CUE PERMUTATION

is given as Algorithm 1. It employs an extension of the function INCORRECT, first defined in
Section 2.1, applicable also to single cues, such that for a cuei we say

INCORRECT(i,L) = |{〈a,b〉 ∈ L : ai > bi}|.

It is evident that Algorithm 1 runs in polynomial time, but how good is it? The least one should
demand from a good heuristic is that, whenever a minimum of zero is attainable, itfinds such a
solution. This is indeed the case with GREEDY CUE PERMUTATION as we show in the following
result. Moreover, a general performance ratio for the approximation ofthe optimum is asserted here.

Theorem 9 The algorithmGREEDY CUE PERMUTATION approximatesM INIMUM INCORRECT

LEXICOGRAPHIC STRATEGY to within a factor of n, where n is the number of cues. In particular,
it always finds a cue permutation with no incorrect inferences if one exists.

Proof We show by induction onn that the permutation returned by the algorithm makes a number
of incorrect inferences no larger thann ·opt(L). If n = 1, the optimal cue permutation is definitely
found.

Let n > 1. Clearly, as the incorrect inferences of a cue cannot be reversedby other cues, there
is a cuej with

INCORRECT( j,L) ≤ opt(L).

The algorithm selects such a cue in the first round of the loop. During the rest of the rounds, a
permutation ofn− 1 cues is constructed for the set of remaining pairs. Letj be the cue that is
chosen in the first round,I ′ = {1, . . . , j −1, j +1, . . . ,n}, andL′ = L\{〈a,b〉 : a j 6= b j}. Further, let
optI ′(L

′) denote the minimum number of incorrect inferences taken over the permutations of I ′ on
the setL′. Then, we observe that

opt(L) ≥ opt(L′) = optI ′(L
′).

The inequality is valid because ofL ⊇ L′. (Note that opt(L′) refers to the minimum taken over the
permutations of all cues.) The equality holds as cuej does not distinguish any pair inL′. By the
induction hypothesis, rounds 2 ton of the loop determine a cue permutationπ′ with

INCORRECT(π′,L′) ≤ (n−1) ·optI ′(L
′).
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〈 001, 010〉
〈 010, 100〉
〈 010, 101〉
〈 100, 111〉

Figure 1: A set of lexicographically ordered pairs with nondecreasing cue validities (1,1/2, and
2/3). The cue ordering of TTB (1,3,2) causes an incorrect inference on the first pair. By
Theorem 9, GREEDY CUE PERMUTATION finds the lexicographic ordering.

Thus, the number of incorrect inferences made by the permutationπ finally returned by the algo-
rithm satisfies

INCORRECT(π,L) ≤ INCORRECT( j,L)+(n−1) ·optI ′(L
′),

which is, by the inequalities derived above, not larger than opt(L)+(n−1) ·opt(L) as stated.

The special property of GREEDY CUE PERMUTATION that it always finds the minimum if this
has value zero is not owned by TTB as demonstrated by the following result.

Corollary 10 On inputs that have a cue ordering without incorrect comparisons under the lexico-
graphic strategy,GREEDY CUE PERMUTATION can be better than TTB.

Proof Figure 1 shows a set of four lexicographically ordered pairs. According to Theorem 9,
GREEDY CUE PERMUTATION comes up with the given permutation of the cues. The validities are
1,1/2, and 2/3. Thus, TTB ranks the cues as 1,3,2 whereupon the first pair is inferred incorrectly.

Next, we consider lower bounds on the performance ratio of GREEDY CUE PERMUTATION.
We obtain bounds in terms ofn and|L|. It emerges in particular that the upper bound obtained in
Theorem 9 is optimal up to the factor 2.

Theorem 11 The performance ratio ofGREEDY CUE PERMUTATION is at least

max{n/2, |L|/2}.

Proof We show how to construct for everyn an instance on which GREEDY CUE PERMUTATION

has the claimed performance ratio. LetB = {a(0), . . . ,a(n),b} ⊆ {0,1}n be the set wherea(0) =
(0, . . . ,0), b = (1,0, . . . ,0,1), anda(i), for i = 1, . . . ,n, is the vector with a 1 in positioni and 0
elsewhere. The setL ⊆ B×B is defined as

L = {〈a(n),a(0)〉,〈b,a(1)〉}∪{〈a(i),a(n)〉 : i = 2, . . . ,n−1}.

Figure 2 shows the setL for the casen = 6. As can be seen, cue 1 is correct on all pairs, cuen is
incorrect on two pairs, and every cuej ∈ {2, . . . ,n−1} satisfies INCORRECT( j,L) = 1. Hence,
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〈 000001, 000000〉
〈 100001, 100000〉
〈 010000, 000001〉
〈 001000, 000001〉
〈 000100, 000001〉
〈 000010, 000001〉

Figure 2: A set of pairs providing a lower bound on the performance ratioof GREEDY CUE PER-
MUTATION (Theorem 11).

GREEDY CUE PERMUTATION selects cue 1 as the first cue. As this cue does not distinguish any pair,
L is left unchanged. Then, one of the cues 2, . . . ,n−1 is selected as the second cue. After removal
of the pair distinguished by this cue, the remaining cues make the same incorrect inferences as
before. Thus, the algorithm keeps on choosing cues from{2, . . . ,n−1} during rounds 2, . . . ,n−1
of the loop until cuen is selected in the last round. The resulting permutationπ has cue 1 in its
first position, cues from{2, . . . ,n−1} in positions 2, . . . ,n−1, and cuen in the last position. This
implies that INCORRECT(π,L) = |L|.

On the other hand, the optimal value is 2, which is attained by any permutation thathas cuen
as the first cue. This yields a performance ratio for GREEDY CUE PERMUTATION of at least|L|/2.
The lower boundn/2 is obtained by observing that|L| = n.

We conclude this section by examining the performance of GREEDY CUE PERMUTATION on
subproblems, that is, when the instances are not arbitrary but meet certain constraints. It plainly
arises from the proof of Theorem 11 that the lower bound holds under restrictions of the instances
similar to those considered in Sections 3 and 4.

Corollary 12 The lower boundmax{n/2, |L|/2} for the performance ratio ofGREEDY CUE PER-
MUTATION holds even when the instances satisfy any (or all) of the following constraints:

1. Each element of B contains at most two1s.

2. The set L is smaller than the set B.

3. L is irreflexive.

4. L is a subset of some partial order.

5. L is a subset of some total order.

6. Lexicographic Strategies With Cue Inversion

While in the previous sections the problem was to optimize lexicographic strategies by permuting
the cues, we now introduce an additional degree of freedom for buildinglexicographic strategies.
Here, the method of construction is allowed not only to permute but also to invert cues. Acue

74



LEARNING LEXICOGRAPHICSTRATEGIES

Algorithm 2 GREEDY CUE INVERSION

Input: a setB⊆ {0,1}n and a setL ⊆ B×B
Output: a cue inversionq for n cues

for i = 1, . . . ,n do
if |{〈a,b〉 ∈ L : ai < bi}| ≥ |{〈a,b〉 ∈ L : ai > bi}| then

q(i) := 0
else

q(i) := 1
end if
L := L\{〈a,b〉 : ai 6= bi}

end for.

inversionis a mappingq : {1, . . . ,n}→ {0,1}, wheren is the number of cues. It uniquely defines a
functionq : {0,1}n →{0,1}n such that for everya∈ {0,1}n,

q(ai) =

{

ai if q(i) = 0,
1−ai otherwise.

In other words, a value ofq(i) = 1 indicates that thei-th position of every Boolean vectora is to be
inverted, whereas the cues withq(i) = 0 are left unchanged byq. As the meaning is clear, we shall
useq also to denoteq. Given a setB⊆ {0,1}n, the lexicographic strategy under cue inversion qis
the functionSq : B×B→{“ < ” , “ = ” , “ > ”} with

Sq(a,b) = S(q(a),q(b)).

Combining permutation and inversion, we obtain thelexicographic strategy under cue permutation
π and cue inversion qdenoted bySq

π and defined as

Sq
π(a,b) = S(π(q(a)),π(q(b))).

In particular, we require that the cue inversion is applied before the permutation.
A simple greedy method for inverting the cues is described as Algorithm 2. Theidea is to pass

through the cues and to select either the cue or its inverse, depending on which makes a larger
number of correct inferences. The pairs that are distinguished by this cue are then removed. It is
evident that GREEDY CUE INVERSION runs in polynomial time. We show that the cue inversion
returned by this algorithm yields a number of correct inferences that is atleast half the maximum
over all cue inversions and permutations.

Theorem 13 The algorithmGREEDY CUE INVERSION always returns a cue inversion q such that
Sq is correct on at least opt(L)/2 pairs, where opt(L) is the maximum number of correct inferences
achievable by the lexicographic strategy under any cue permutation and any cue inversion.

Proof Let Li be the set of pairs that the algorithm removes fromL in round i of the for-loop and
let Ln+1 be the set of pairs that remains after completion of the last round. Clearly,L1, . . . ,Ln+1 is
a partition ofL. Obviously, by the construction ofq, Sq is correct on at least half of eachLi , for
i = 1, . . . ,n. Further, it is correct on all ofLn+1, as this set consists solely of identical pairs. Thus,Sq
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correctly distinguishes at least half of all pairs inL. Since opt(L) ≤ |L|, it follows thatSq is correct
on at least opt(L)/2 pairs.

One remarkable aspect of this algorithm is the fact that it retains the order of the cues, while
its performance guarantee is valid even over all cue permutations. It seems, at first glance, that the
method of cue inversion leads much easier to a good performance guarantee than the permutation
of the cues. However, the result of Theorem 13 cannot directly compared with those of the previous
sections, as these apply to the problem of minimizing the number of incorrect inferences, whereas
here we are concerned with the maximization of the number of correct inferences. A constant
performance ratio for the one problem does not necessarily imply a constant performance ratio
for the other, as can easily be seen. Assume, for instance, that the maximumnumber of correct
inferences is|L| − 1. Then the algorithm that is correct on exactlyd|L|/2e pairs has a constant
performance ratio for the maximization problem, while with regard to the minimization problem its
performance ratio grows linearly in|L|.

7. Sample Complexity for Learning Lexicographic Strategies

A central notion for characterizing the sample complexity of a learning problemis the VC dimension
(Vapnik and Chervonenkis, 1971; Anthony and Bartlett, 1999). In the following, we calculate the
VC dimension of lexicographic strategies. The definition of the VC dimension relies on the notion
of shattering. A classF of Boolean functions is saidto shattera setL ⊆ {0,1}n if F induces every
dichotomy ofL, that is, if for every(L0,L1) such thatL0∩L1 = /0 andL0∪L1 = L, there is some
function f ∈ F satisfying f (L0)⊆{0} and f (L1)⊆ {1}. TheVapnik-Chervonenkis (VC) dimension
of a classF of Boolean functions is the cardinality of the largest set that is shattered byF .

We recall from Section 2.2 that we identify the lexicographic strategySwith a Boolean function
f : {0,1}2n →{0,1} such that for every〈a,b〉 ∈ {0,1}2n,

f (a,b) = 1 if and only if S(a,b) ∈ {“ < ” , “ = ”}.

In this sense, we can investigate the VC dimension of the function class

Sn = {Sq
π : π is a permutation andq an inversion ofn cues},

that is, we ask what is the largest cardinality of a setL of pairs that is shattered by the lexicographic
strategy under all possible cue permutations and inversions.

It is evident from the definition that the VC dimension of a finite function classF cannot be
larger than log|F |. Since the number of permutations is equal ton! and the number of inversions is
equal to 2n, it follows that the VC dimension ofSn is not larger thann+nlogn. We show, however,
that this VC dimension is linear. Moreover, we provide the exact value.

Theorem 14 The VC dimension of the classSn of lexicographic strategies is equal to n.

Proof We first establishn as upper bound. Given a cue inversionq, consider the lexicographic
strategySq ∈ Sn (that is, the strategySq

π whereπ is the identity function). We claim that every
a,b∈ {0,1}n satisfies

Sq(a,b) ∈ {“ < ” , “ = ”}

if and only if
n

∑
i=1

(−1)q(i)2n+1−i(bi −ai) ≥ −1. (4)
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To show this, we consider the absolute value of first term on the left-hand side of the inequality,
wherei = 1, that is,

|2n(b1−a1)|. (5)

If a1 6= b1, the value of (5) is 2n, whereas the absolute value of the remaining sum is not larger than
2n−2. Then, the inequality in (4) is satisfied if and only ifq(a1) < q(b1). On the other hand, if
a1 = b1, the term (5) is equal to 0, and the validity of the equivalence (4) follows byinduction.

Obviously, by permuting the coefficients, every lexicographic strategySq
π ∈ Sn can be written as

an inequality such as in (4). Such inequalities are evaluated by Boolean linear threshold functions.
A Boolean linear threshold functionf : {0,1}n → {0,1} is a function for which there exist real
numbersw1, . . . ,wn andt (the parameters of this function class ) such that for everyz∈ {0,1}n,

f (z) = 1 if and only if w1z1 + · · ·+wnzn ≥ t.

It follows that everySq
π ∈ Sn can be expressed as a Boolean linear threshold function with input

variables(y1−x1), . . . ,(yn−xn) and a fixed parametert = −1.
Therefore, every setL ⊆ {0,1}2n that can be shattered bySn is also shattered by this class of

linear threshold functions. The class of linear threshold functions inn variables withn parameters
(that is, wheret is fixed) is known to have VC dimension equal ton (see, e.g., Anthony and Bartlett,
1999). Thus, the VC dimension ofSn does not exceedn.

For deriving the lower bound, we show that the setL ⊆ {0,1}2n defined as

L = {〈1i ,1〉 : i = 1, . . . ,n},

where 1 is the vector with a 1 in every position and 1i has a 0 in positioni and 1 elsewhere, is
shattered bySn.

Let (L0,L1) be an arbitrary dichotomy ofL. Define the cue inversionq : {1, . . . ,n} → {0,1}
such thatq(i) = 0 if and only if 〈1i ,1〉 ∈ L1. Obviously then, the lexicographic strategySq (without
permuting the cues) yields a correct comparison for every pair inL1, while the pairs fromL0 are
inferred incorrectly. Thus, the dichotomy(L0,L1) is induced bySq.

The lower bound in the previous result was obtained by choosing a suitablecue inversion and
leaving the order of the cues unchanged. We can also obtain an almost optimal lower bound when
the cues are not allowed to be inverted but only permuted. In fact, the(n−1)-element set

L = {〈11,1i〉 : i = 2, . . . ,n}

can be shattered as follows. Given the dichotomy(L0,L1), we define the permutationπ such that for
i = 2, . . . ,n, π(1) < π(i) if and only if 〈11,1i〉 ∈ L1. Obviously, the dichotomy(L0,L1) is induced
by Sπ.

It is easy to see that there are values ofn for which this lower bound ofn−1 cannot be improved.
For n = 1,2, and 3, the number of permutations ofn elements is 1,2, and 6, respectively; to shatter
sets of these cardinalities, however, requires 2,4, and 8 functions.

8. Open Questions

In the following we summarize the major open questions that arise from this workhoping that they
might provide fertile soil for future research. The main result of Section 3is the NP-completeness
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of the decision problem LEXICOGRAPHIC STRATEGY. In that section, we have established further
that the problem remains NP-complete under several restrictions. Moreover, one of the subproblems
originating from such restrictions was shown to be efficiently solvable. Probably, the restrictions
considered there may not be those that are “natural”, that is, met in practice. It is therefore reason-
able to study more subproblems and to delineate the intractable ones from thosethat can be solved
efficiently.

• What are natural restrictions for LEXICOGRAPHIC STRATEGY under which the problem is
NP-complete or efficiently solvable?

Of course, similar considerations are appropriate for MINIMUM INCORRECT LEXICOGRAPHIC

STRATEGY. In Section 4 we obtained a lower bound for the performance ratio that is stillvalid for
various subproblems. A promising task is, therefore, to find restrictions relevant in practice under
which the problem has a constant performance ratio.

• What are natural restrictions for MINIMUM INCORRECTLEXICOGRAPHICSTRATEGY under
which the problem belongs to APX?

Work by Raz and Safra (1997) implies that MINIMUM HITTING SET cannot be approximated in
polynomial time to within some factor that grows logarithmically in|C|, the number of subsets. The
reduction defined in the proof of Theorem 7 does not seem to allow to exploit this fact.

• Does MINIMUM INCORRECTLEXICOGRAPHIC STRATEGY have a lower bound on the per-
formance ratio for polynomial-time algorithms that is not bounded by some constant?

The results in Sections 4 and 5 have left a gap. While we have shown that there cannot be a
polynomial-time algorithm for MINIMUM INCORRECTLEXICOGRAPHIC STRATEGY with a per-
formance ratio bounded by some constant (if P6= NP), the algorithm GREEDY CUE PERMUTATION

has a lower bound of max{n/2, |L|/2}.

• Are there polynomial-time algorithms for MINIMUM INCORRECTLEXICOGRAPHICSTRAT-
EGY that have a better performance ratio than GREEDY CUE PERMUTATION?

The algorithm GREEDY CUE PERMUTATION is a simple and obvious heuristic that has not been
studied before in the context of lexicographic strategies. In Section 5 we have derived tight bounds
on the performance ratio of this algorithm. Various other procedures havebeen studied in the
literature and become known as fast and frugal heuristics, but nothing seems to have been proven
about their performance ratio.

• Which are the performance ratios of other (fast and frugal) heuristics for lexicographic strate-
gies?

In Section 6 we have introduced cue inversion as an additional feature to build lexicographic strate-
gies. The algorithm GREEDY CUE INVERSION was shown to approximate the maximum number
of correct inferences to within a constant factor. While the problems of minimizing the number of
incorrect inferences and maximizing the number of correct inferences give rise to equivalent deci-
sion problems, there might well be a difference with regard to the approximation problem. There
seems to be no immediate way to derive a lower bound for the maximization problem from a lower
bound for the minimization problem. Thus, similar questions as considered herecan be raised for
the problem MAXIMUM CORRECTLEXICOGRAPHICSTRATEGY which is defined analogously.
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• Which is the performance ratio of polynomial-time algorithms for approximating MAXIMUM

CORRECTLEXICOGRAPHICSTRATEGY?

While this question is meant to consider only cue permutations and not inversions for constructing
lexicographic strategies, the objective of minimization is combined with both these features in a
second approximation problem emerging from Section 6.

• Which is the performance ratio of polynomial-time algorithms for approximating MINIMUM

INCORRECTLEXICOGRAPHIC STRATEGY UNDER CUE PERMUTATIONS AND CUE INVER-
SIONS?

We can ask further what happens if the problems studied here are generalized in a certain way. One
obvious possibility of generalizing is to allow cues that have more than two values. It is evident that
the reductions provided in Sections 3 and 4 remain valid also in this multiple-valuedcase. In other
words, the problem with binary cues is a subproblem of the problem with multiple-valued cues.
Hence, NP-completeness and the lower bound for the approximability hold for learning lexico-
graphic strategies on multiple-valued cues, too. Moreover, we observe that the algorithm GREEDY

CUE PERMUTATION and the proof of the upper bound on its performance ratio (Theorem 9) do not
make use of the two-valuedness of the cues. Thus, this algorithm has the claimed approximation
property for multiple-valued cues as well. One could also generalize lexicographic strategies to the
effect that more than two outcomes, correct or incorrect, of a lexicographic comparison are possible.
The results of this article do not seem to yield a statement for such cases in general.

9. Conclusions

Computational problems that arise in learning lexicographic strategies from examples are the topic
of this article. In particular, we considered the model of agnostic PAC learning. We have intro-
duced the minimizing disagreement problem LEXICOGRAPHIC STRATEGY and shown that it is
NP-complete. Thus, it has become very unlikely that lexicographic strategies can be efficiently
learned. This statement was strengthened by our proving that the optimizationproblem MINIMUM

INCORRECTLEXICOGRAPHIC STRATEGY cannot be approximated in polynomial time to within
any constant factor.

These results answer a question raised by psychological research intomodels of bounded ratio-
nality: How accurate are fast and frugal heuristics? We have shown that no fast, that is, polynomial-
time, algorithm can compute the optimum and, moreover, not even approximate it well, under the
widely accepted assumption that P6= NP.

This answers also a second question concerning a specific fast and frugal heuristic: How ac-
curate is TTB? We have introduced a greedy algorithm that provably performs better than TTB. In
particular, we have shown that the greedy method always finds accuratesolutions when they exist,
whereas this is not the case with TTB. Tight bounds for the factor with whichthe greedy method
approximates the optimum have also been obtained.

The lower bounds derived in this article have mostly been shown to hold evenfor subproblems
obtained from various restrictions. We interpret this as revealing to a high degree that lexicographic
strategies cannot be learned efficiently and that it might be very difficult tofind satisfactory algo-
rithms.

For the learning of lexicographic strategies using cue inversions we haveprovided a simple and
efficient algorithm that approximates the maximum number of correct inferences to within a con-
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stant factor. Thus, it seems that cue inversions lead much easier to good performance bounds than
cue permutations. However, one cannot directly compare a bound for themaximization problem
with a bound for the minimization problem. This result should more be consideredas a stimulating
impetus for further research.

We have calculated the exact values of the VC dimension of lexicographic strategies. This
result is one of the few examples where the VC dimension of a function class has been determined
precisely.

While we have already presented in the previous section a couple of formalopen questions for
theoretical investigation, a challenge to experimental research is also given by this article: to study
the relevance of the greedy method as a model for bounded rationality in psychology.
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