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Abstract

Fast and frugal heuristics are well studied models of bodmdgonality. Psychological research
has proposed the take-the-best heuristic as a succegsitalgst in decision making with limited
resources. Take-the-best searches for a sufficiently goaeting of cues (or features) in a task
where objects are to be compared lexicographically. Westiyate the computational complex-
ity of finding optimal cue permutations for lexicographicaségies and prove that the problem is
NP-complete. It follows that no efficient (that is, polyn@aitime) algorithm computes optimal
solutions, unless B NP. We further analyze the complexity of approximating wyati cue permu-
tations for lexicographic strategies. We show that thermigfficient algorithm that approximates
the optimum to within any constant factor, unless RP.

The results have implications for the complexity of leagniexicographic strategies from ex-
amples. They show that learning them in polynomial time inithe model of agnostic probably
approximately correct (PAC) learning is impossible, uslB®= NP. We further consider greedy
approaches for building lexicographic strategies andrdete upper and lower bounds for the
performance ratio of simple algorithms. Moreover, we pnésegreedy algorithm that performs
provably better than take-the-best. Tight bounds on thepkaeomplexity for learning lexico-
graphic strategies are also given in this article.

Keywords: bounded rationality, fast and frugal heuristic, PAC leagpiNP-completeness, hard-
ness of approximation, greedy method

1. Introduction

In many circumstances the human mind has to make decisions when time is schkematedge
is limited. Extensive reflections backed by deep reasoning are impossibksi $ituations. Cog-
nitive psychology categorizes human judgments made under such cassaigineing boundedly
rational if they are “satisficing” (Simon, 1982) or, more generally, if theyndt fall too far be-
hind the rational standards. The modeling of bounded rationality has lbesidered essential for
artificial intelligence. Russell and Wefald (1991), defining artificial intetice as the problem of
designing systems that “do the right thing”, argue that intelligence seemsl linikie doing as well
as possible given what resources one has.
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A principal family of models for human reasoning that are studied within theegoof bounded
rationality are the probabilistic mental models proposed by Gigerenzer a98ll). To these be-
longs a kind of simple algorithms termed “fast and frugal heuristics” thaewms topic of major
research projects in psychology (Gigerenzer and Goldstein, 1996rébiger et al., 1999). Great
efforts have been put into testing these heuristics by empirical means iriregpés with human
subjects on the one hand ®fer, 2000; Boder and Schiffer, 2003; Lee and Cummins, 2004; Newell
and Shanks, 2003; Newell et al., 2003; Slegers et al., 2000) or in sirndaiio computers on the
other (Bibder, 2002; Bullock and Todd, 1999; Hogarth and Karelaia, 2008eNe2003; Todd
and Dieckmann, 2005). (See also the discussion and controversiasieioied in the open peer
commentaries on Todd and Gigerenzer, 2000.) To a lesser extent, thel@sttdies have been un-
dertaken with analytical methods @ter, 2002; Martignon and Hoffrage, 1999, 2002; Martignon
and Schmitt, 1999).

1.1 Take the Best

Among the fast and frugal heuristics there is an algorithm called “takésisel (TTB) that during
recent years has become one of the workhorses of research intdsnebdmunded rationality.
This algorithm is considered a process model for human judgments basetarason decision
making. Which of the two cities has a larger population: (&s&eldorf, (b) Hamburg? This is the
task originally studied by Gigerenzer and Goldstein (1996) where Gerities with a population
of more than 100,000 inhabitants have to be compared. The available infannoatieach city
consists of the values of nine binary cues, or attributes, indicating presembsence of a feature.
The cues being used are, for instance, whether the city is a state capi#hewh is indicated on
car license plates by a single letter, or whether it has a soccer team in theahbague.

The judgment which city is larger is made on the basis of the two binary veotarae profiles,
representing the two cities. TTB compares the cues one after the othesemdhe first cue that
discriminates as the one reason to yield the final decision. In other wof@sp&rforms a lexico-
graphic strategy of comparison. For instance, if one city has a univensitythe other does not it
would infer that the first city is larger than the second. If the cue valubesibf cities are equal, the
algorithm passes on to the next cue.

TTB examines the cues in a certain order. Gigerenzer and Goldstein) (b@@6luced ecolog-
ical validity as a humerical measure for ranking the cues. (See Martigmbiaffrage, 2002, for
further criteria to order cues.) The validity of a cue is a real number in thevait®, 1] that is com-
puted in terms of the known outcomes of paired comparisons. It is definthe asimber of pairs
the cue discriminates correctly (i.e., where it makes a correct inferendd@d by the number of
pairs it discriminates (i.e., where it makes an inference, be it right or WrdnigB always chooses a
cue with the highest validity, that is, it “takes the best” among those cueshobgsidered. Table 1
gives an example showing cue profiles and validities for three cities. Theada extracted from
the appendix of Gigerenzer and Goldstein (1996). The ordering defineéhe population size of
the cities is given by

{( Dusseldorf, Essep ( Dusseldorf, Hamburg, { Essen, Hamburg},

1. “Take-the-best” is a shortening of “take the best, ignore the rest’ef@izer and Goldstein, 1996).
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Soccer Team State Capital License Plate
Hamburg 1 1 0
Essen 0 0 1
Dusseldorf 0 1 1
Validity 1 1/2 0

Table 1: Part of the German cities task of Gigerenzer and Goldstein (1986yvn are cue profiles
and validities. Validities are computed from the cues of the three cities aslgirenThe
original data has different validities but yields the same ranking for the. cllge meaning
of the cues and the way how to calculate validities are explained in the text.

where a pair{a,b) indicates that has less inhabitants tham As an example for calculating the
validity, the state-capital cue distinguishes the first and the third pair butrisat@nly on the latter.
Hence, its validity has value/2.

The order in which the cues are ranked is crucial for success ordafuf TB. In the example
of Dusseldorf and Hamburg, the car-license-plate cue would yield thasé&dorf (represented by
the letter “D”) is larger than Hamburg (represented by the two letters “Hilereas the soccer-
team cue would favor Hamburg, which is correct. Thus, how sucdegdéxicographic strategy
is in a comparison task consisting of a partial ordering of cue profilesndispen how well the
cue ranking minimizes the number of incorrect comparisons. Specificallyaateracy of TTB
relies on the degree of optimality achieved by the ranking according toaoegecue validities.
For TTB and the German cities task, computer simulations have shown that i@idnates at
least as accurate as other models (Gigerenzer and Goldstein, 1996 r@gyeet al., 1999; Todd
and Dieckmann, 2005). TTB made as many correct inferences as staaigarithms proposed by
cognitive psychology and even outperformed some of them.

1.2 Accuracy and Complexity

Partial results concerning the accuracy of TTB compared to the agcafaxther strategies have
been obtained analytically by Martignon and Hoffrage (2002). The inteiwfithis article is to sub-
ject the problem of finding optimal cue orderings to a rigorous theoretiwysis. A conceivable
approach would be to reveal conditions under which TTB performs batteorse. However, the
analysis of TTB per se is hot a major topic of this work. Instead, we takdexeiift and more gen-
eral road by employing methods from the theory of computational complexéyefzand Johnson,
1979).

Obviously, TTB is an algorithm that runs in polynomial time. Given a list of cedepairs,
it computes all cue validities in a number of computing steps that is linear in the fsike bst,

2. Gigerenzer and Goldstein (1996) introduced TTB with an addition&lifeathe recognition principle. The recog-
nition cue indicates whether the city is recognized or not. A city that is recedngpreferred to an unrecognized
one. The recognition cue is always queried first and, hence, noargléor the problem of finding optimal cue
permutations considered here.
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assuming random access to the values of the cues. This observatids direattention to studying
the computational complexity of the problem of finding optimal cue permutatianthere really
an efficient algorithm that solves this problem? We define the decision prdbICOGRAPHIC
STRATEGY as the task of determining whether for a given partial ordering, reptedeas a list
of pairs of cue profiles, and a given threshold there exists a cue peionusach that the number
of incorrect comparisons made by the lexicographic strategy does oe¢@shis threshold. As a
fundamental result we prove thaEkKICOGRAPHICSTRATEGY is NP-complete. It follows that TTB
is not an algorithm for computing optimal cue permutations and, even morendhatlynomial-
time algorithm exists for solving this task, unless the complexity classes P anceNgual.

The fact that finding optimal cue permutations turns out to be practically tatvl; however,
does not exclude the possibility that the optimum can be efficiently approxinmiBbedsecond main
topic of this article is an optimization problem calleditMMuM INCORRECTLEXICOGRAPHIC
STRATEGY denoting the task of minimizing the number of incorrect inferences for thedgriphic
strategy on a given list of pairs. Many computational problems are knowe t8P-complete but
have efficient approximation algorithms that are good in the sense thatdhgioss are never more
than some constant factor away from the optimum. Problems in this class, widehated APX,
are generally considered to be approximable well and efficiently (Ausiel#. €1999). As the
second major result of this article we show that, unlessNfP, no polynomial-time approximation
algorithm exists that computes solutions forlWNMUM INCORRECTLEXICOGRAPHIC STRATEGY
that are only a constant factor worse than the optimum, unlesslP. In other words, the approx-
imating factor, also called performance ratio, must grow with the size of th#eo

As an extension of TTB we consider an algorithm for finding cue orderthgt was called
“TTB by Conditional Validity” in the context of bounded rationaility. This algbm is based on
the greedy method, a principle widely used in algorithm design. The grdgdyitam runs in
polynomial time and we derive tight bounds for it, showing that it approximfesptimum with
a performance ratio proportional to the number of cues. An importanegomesice of this result
is a guarantee that for those instances which have a solution that discrsnétigb@irs correctly,
the greedy algorithm always finds a permutation attaining this minimum. We arevao¢ éhat
this quality has been established for any of the previously studied heuftstigaired comparison.
Moreover, we show that TTB does not have this property, concludiagthie greedy method of
constructing cue permutations performs provably better than TTB.

While the results mentioned so far deal with lexicographic strategies baseek @ermutations,
we further consider the possibility to build them by also inverting cues. Weeptean algorithm
that greedily constructs cue inversions that are always correct omaer of pairs that is at least
half the optimum. In other words, this algorithm is a constant factor approximatgorithm for
the problem of maximizing the number of correct inferences. Interestitigéyalgorithm does not
even need to permute any cues to approximate to within a constant factortitnermgaken even
over all inversions and permutations.

1.3 Learning

LEXICOGRAPHIC STRATEGY is a decision problem that requires to minimize a disagreement.
Given a set of pairs, the question is whether a cue permutation can libtf@atikeeps the number of
incorrect comparisons, or disagreements, of the lexicographic stita¢émy some prescribed value.
Minimizing disagreement problems play a major role in the context of a computhtiwdel of
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learning known as agnostic probably approximately correct (PAC)ileg(see, e.g., Anthony and
Bartlett, 1999). This model assumes that a learner receives a sengplesathe sample, drawn ac-
cording to some unknown probability distribution. The learner is requiredtjoud a function from

a so-called hypothesis class on the condition that, with high probability, theutethpypothesis
is, with respect to the distribution, close to an optimal hypothesis within the chagsndamen-
tal result is concerned with the question whether agnostic PAC learning wgivea hypothesis
class can be done efficiently, in particular, if there exists an algorithm geatsonly a polynomial
number of computation steps to find good hypotheses. The result state® thath learner can
exist if the minimizing disagreement problem for the hypothesis class is NPletanpiven that
the complexity classes RP and NP are different (see, edffgéh et al., 1995; Kearns et al., 1994).

The results in this paper have immediate consequences for the questiormibritographic
strategies can be learned. Adopting the framework of agnostic PAC Igaméassume that pairs
of cue profiles are drawn randomly according to some unknown distribufioatask of the learner
is to find a cue permutation that, with high probability, is close to an optimal oneevdh@seness
means that the probability of differing inferences is small. This setting seerhflglififferent from
the original PAC model as in the latter the sample consists of labeled examplrgastthe lexico-
graphic strategy has to be learned from pairs. However, relevanttircbees is that a hypothesis can
be correct or incorrect on a given example. Therefore, applyingloge-mentioned result about
agnostic PAC learning and assuming that:RRP, by showing that EXICOGRAPHIC STRATEGY
is NP-complete we may conclude that efficient learning of lexicographitegies is impossible.
Moreover, this evidence of impossibility is reinforced by our proving thatdptimization problem
MINIMUM INCORRECTLEXICOGRAPHIC STRATEGY cannot be approximated in polynomial time
to within any constant factor.

A further question that models of learning are involved in is the charactienizaf the ability
to generalize, that is, to find a good hypothesis from only a small numbemaiges. A principal
result in agnostic PAC learning has established a combinatorial parametéypbthesis class, its
Vapnik-Chervonenkis (VC) dimension, as the relevant measure forahiple complexity (Vapnik
and Chervonenkis, 1971). In particular, to come close to the minimal dexadi@n error it is
necessary and sufficient to draw a number of examples that is pro@irtiothe VC dimension
of the hypothesis class (see, e.g., Anthony and Bartlett, 1999). In thifeamé determine the
VC dimension of the class of lexicographic strategies exactly. In detail, o giat the class of
lexicographic strategies obtained by cue permutations and inversionsviaslianension equal to
the number of cues. As a consequence, the number of cues providés laotimmd on the sample
complexity for learning lexicographic strategies.

1.4 Related Work

Research that approaches the investigation of simple heuristics for inteBiggams via the anal-
ysis of computational complexity traces back to Simon and Kadane (1976).19fey provided

sufficient conditions under which so-called satisficing search strategie®e proved to be opti-
mal. Their line of study was resumed by Greiner and Orponen (1996) btained estimates for
the sample complexity of such strategies. Regarding the issue of orderigige(1999) raised a
guestion relevant for inductive logic programming that is similar to the probleénasesl here. He

asked whether it is possible to efficiently revise rule-based progranesalbsanging the ordering of
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the rules. His results include NP-completeness and nonapproximability stasdiorararious types
of logical theories.

Rivest (1987) introduced decision lists as a formalism for the reprasanta Boolean func-
tions. The procedure for computing the output value of a decision list is sitnitexicographic
strategy in that both mechanisms are based on one-reason decision maKkaw, We shall show
below that lexicographic strategies are a special case of so-calleciedelists. It will also fol-
low from this result that the two function classes do not coincide. Thuglgorithm that learns
2-decision lists does not necessarily learn lexicographic strategies e@thigr hand, an algorithm
that finds optimal cue permutations might not be good in constructing 2-de tisi®.

Ordering problems have also been studied by Cohen et al. (1999).cbheidered the problem
of putting a set of objects in a total order that maximally agrees with a speciiéelence function.
They proved this problem to be NP-complete. We shall show later that theeproof finding
cue permutations for the lexicographic strategy can be formulated as sumtdering problem.
However, we shall also argue that the two problems are different, sia@ithpermutation problem
requires the total order to be implemented as a lexicographic strategy aedemptotal order can
be represented this way.

1.5 Outline

We introduce lexicographic strategies in Section 2 and provide there rfuitfiaitions and proper-
ties. We then draw comparisons with decision lists and discuss the relatiorighg groblem of
finding optimal cue permutations with the ordering problem studied by Colan(@999).

Section 3 establishes the NP-completeness of the problExncloGRAPHIC STRATEGY. Ad-
ditionally, we consider the complexity of this problem when the instances meatrceonditions.
We obtain that the problem remains NP-complete under constraints thateréygliicue profiles to
be sparse, impose a bound on the number of pairs, or suppose the gatisfipsome simple prop-
erties of orderings. In particular, we show NP-completeness to hold edeimcue profile contains
no more than one 0. In contrast, if the latter condition is met and the pairscanesitsme partial
order, the problem can be solved in linear time.

The optimization problem MiIMUM INCORRECTLEXICOGRAPHIC STRATEGY is considered
in Section 4. As the main result we show that this problem cannot be apptexinmapolynomial
time to within any constant factor, unless=PNP. It further emerges, that this result holds even
when the instances satisfy some, albeit not all, of the restrictions corgideection 3.

Section 5 introduces the greedy algorithm for constructing cue permutatdmsightly deter-
mine the performance ratio of this algorithm, showing that it is proportional tadingber of cues.
The result implies that the greedy method always finds a correct cue faionuf one exists. In
contrast, we show that this does not hold for TTB. Restrictions undetvwhéelower bound for the
greedy method is still valid are also determined in this section.

In Section 6 we introduce the operation of inverting cues as a means fstrgciing lexico-
graphic strategies. We show that a greedy method approximates the maximmiyarof correct
inferences to within a constant factor.

The sample complexity for learning is studied in Section 7. We determine the nwihbees
as the exact value for the VC dimension of the class of lexicographic seategtained from cue
permutations and inversions. Section 8 summarizes seven major open cquasisary from this
article and Section 9 concludes with final remarks.
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We assume that the reader is acquainted with the theory of NP-completsmeepaunded, for
instance, by Garey and Johnson (1979). Familiarity with the theory of catigoal complexity
for approximation problems is not required as we shall explicate the reeyetstails.

Bibliographic Note. The main result of Section 3 (Theorem 3) was mentioned by Martignon and
Schmitt (1999), but its proof has been available only in an unpublished soapu(Schmitt and
Martignon, 1999). Parts of Sections 4 and 5 appear in a contribution tofareace (Schmitt and
Martignon, 2006).

2. Lexicographic Strategies

In the following, we introduce lexicographic strategies and the computatiwoblem that we study
in this article. After giving formal definitions in Section 2.1, we compare in Sac#@ lexico-
graphic strategies with a related formalism known as decision lists. The optimizatblem for
lexicographic strategies bears some resemblance to ranking problemav@digen studied earlier.
In Section 2.3, we discuss the relationship between them and demonstrategethate different
problems.

2.1 Definitions

A lexicographic strategis a method for comparing elements of aB€t {0, 1}" of Boolean vectors.
Each component,1..,n of these vectors is referred to asw@e Given two elementa, b € B, where
a=(a,...,an) andb= (by,...,by), the lexicographic strategy searches for the smallest cue index
i € {1,...,n} such thatay andb; are different. The strategy then outputs one &f " or “ >"
according to whetheg; < b; or & > b; assuming the usual order<01 of the truth values. If no
such cue exists, the strategy returns ™. Formally, let diff :Bx B — {1,...,n+ 1} be the function
where diffa, b) is the smallest cue index on whiehandb are different, on+ 1 if they are equal,
that is,

diff(a,b) = min{{i:a #b}U{n+1}}.

Then, the functiors: BxB — {“ <”,“ =",“ >"} computed by the lexicographic strategy is
* <" ifdiff (a,b) < nandagif(ap) < baifr(ab),
S(ab) = “ > if diff (a,b) < nandayt(ap) > Baif ()

otherwise.

Consideringa andb as binary encodings of natural numbe®&, b) is nothing else than the result
of the comparison of these two numbers.

Lexicographic strategies may take into account that the cues come in artteates different
from1,...,n. Letm: {1,...,n} — {1,...,n} be a permutation of the cues. It gives rise to a map-
ping Tt: {0,1}" — {0,1}" that permutes the components of Boolean vectorsifay,...,a,) =

(@n(1);---»anm)). As TUis uniquely defined givent, we simplify the notation and write alsu
for . Thelexicographic strategy under cue permutatiorpasses through the cues in the order
m(1),...,7(n), that is, it computes the functid®: Bx B — {* <”,“ =",“ > "} defined as

Su(@b) = Sm(a),n(b)).
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The problem we study is that of finding a cue permutation that minimizes the nwhlmorrect
comparisons in a given list of element pairs using the lexicographic strafagynstance of this
problem consists of a sBtof elements and a set of palts_ B x B. Each paira,b) € L represents
an inequalitya < b. Given a cue permutatiom we say that the lexicographic strategy undarfers
the pair(a, b) correctlyif Sy(a,b) € {“ <”,“ ="}, otherwise the inference is incorrect. The task is
to find a permutatiom such that the number of incorrect inferences insing Sy is minimal, that

is, a permutatiomt that minimizes

INCORRECTm L) = |{(ab)eL:S(ab)=">"}

We recall some definitions about orders on sets. A_SetB x B is apartial order if it is reflexive
(thatis,(a,a) € L for everya € B), antisymmetric (that isia,b) € L and(b,a) € L impliesa = b),
and transitive (that is(a,b) € L and(b,c) € L implies (a,c) € L). Further,L is atotal order if it
is a partial order and satisfiéa,b) € L or (b,a) € L for everya,b € B. Finally, L is irreflexiveif
(a,a) ¢ L for everya € B.

Given some cue permutatian consider a relation that is satisfied by a p@b) if and only
if Sy(a,b) € {* <”,* ="}. Clearly, this relation defines a total order on any Bet {0,1}".
A question that arises immediately is whether every total order has some ouetaton that
represents this order using the lexicographic strategy. It is easy toagahithis not the case.

Proposition 1 For every set BC {0,1}" and every cue permutation, the lexicographic strategy
under cue permutation defines a total order on B. On the other hand, there are sets{B,1}"
with a total order that cannot be represented by any cue permutation.

Proof It is evident that the relatiofi(a,b) : Sy(a,b) € {* <”,“ ="}} is a total order. As a coun-
terexample, consider a #with {(0,...,0),(1,...,1)} C B. Clearly, under every cue permutation,
(0,...,0) is less thar(1,...,1). Thus, the reverse ordering of these two elements cannot be repre-
sented by the lexicographic strategy. |

Obviously, the lexicographic strategy applied to a gaim@) is always correct, independently
of the cue permutation. Therefore, the identical pairt glose no obstacle for the minimization
problem. Also possible were an alternative setting wHarb) is interpreted as a strict inequality.
We admit identical pairs, however, to keep the definition more generallamdlato represent some
“natural” relations such as partial or total orders or arbitrary subsetsdf Nevertheless, all results
presented in the following remain valid if the pairs are assumed to represenirequalities.

2.2 Lexicographic Strategies and Decision Lists

Decision lists are computing formalisms that operate quite similar to lexicographtegigrs. A
decision listrepresents a Boolean functidn {0,1}" — {0, 1} and is given by a list of pairs

(ml7rl)7' M (m£7ré)7

where eachm is a Boolean monomial, that is, a conjunction of Boolean variables with or without
negations (Rivest, 1987). Further, eachs 0 or 1, andry is the constant function 1. The Boolean
function computed by the decision list is defined as follows: Given sam€0,1}", the output
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value isrj wherei is the smallest index such thag evaluates to 1 o A k-decision list is a
decision list where every monomial has size at nkost

In the problem of minimizing the number of incorrect comparisons the releyaestion is
whether the output of the lexicographic strategy is correct, and not whietis particularly one of
“ <t =" 0r" >". In other words, we are interested in a binary and not a ternary clzetiin.
Thus, we may consider the lexicographic strat8gy a Boolean functiofh mapping a set of pairs
to {0,1}, where for everya,b) € L we have

f(a,b)=1 ifandonlyif Sab)e{*<"*“="}.

Seen in this light, lexicographic strategies exhibit a similarity to decision lists. dltening state-
ment, which is easy to derive, makes this relationship precise.

Proposition 2 Let f:{0,1}?" — {0,1} be a Boolean function with variables,x. ., x, and 4, . ..., yn.
Then f is computed by the lexicographic strategy if and only if f is compytéuel2-decision list

(leb 0)7 ()_(1y17 1)7 RS (Xnyna 0)7 ()_(nYm 1)7 (17 1)

Proof Leta,b e {0,1}". Clearly, ifa= b, all monomials of the decision list evaluate to 0, except
for the constant function 1. H# b, leti = diff (a,b). In the case thad; < b;, the monomiaky; is
the first one that evaluates to 1, and the output of the decision list is 1. Simifasy> by, this is
first detected by the monomisly,, and the decision list yields O. |

The proposition shows that the lexicographic strategy has a uniquectdr@ation as a 2-
decision list. Thus, finding a cue permutation for the lexicographic strategyats to constructing
a 2-decision list with some restrictions concerning the structure of the mononhalpattern of
the output values, and the length of the list. It is also obvious from Propogtithowever, that
2-decision lists compute a much richer class of Boolean functions than leajitig strategies
do. We conclude that cue permutations are not necessarily found Ugorgtans for constructing
2-decision lists. Further, an optimal cue permutation might not be an optimadigiain list.

2.3 Ranking Problems

The problem of minimizing the number of incorrect comparisons in a list of @aingbits some
similarity with an optimization problem that occurs in the context of ordering lprob and was
studied by Cohen et al. (1999). In this problem, which we here call rgniiablem, one receives
a setX, a collection of functionsy,...,Ry mappingX x X to the real interval0, 1], and rational
numbersny,...,wy € [0,1] whose sum is equal to 1. A solution of the problem is a total opdsfr
X that maximally agrees with the so-called preference function PREE X — [0,1]. The closer
the value of PRER, b) is to 1, the morea is to be ranked above. The preference function is
defined as

PRERab) = iwiRi(a, b)

The agreement of the total ordewith the preference function PREF is quantified by the value of

PREHa, b) 1)
{(ab):p@>p(b)}
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and a desired total orderis one that maximizes this value.

It is not hard to see that the instances of the cue permutation problemrticallpainstances of
the above problem. Specifically, introduce for each faib) a functionR,y, : Bx B — {0, 1} that
outputs 1 or(b,a), and 0 otherwise. Further, let, 1, = 1/[L|. Then, a total ordep that maximizes
the value of the expression (1) is one that minimizes the number of incorfetnaes irL.

Cohen et al. (1999) have shown that the ranking problem is NP-complédte.question is,
therefore, whether this hardness result has any implications on the cdtpmiefinding a cue
permutation that minimizes the number of incorrect inferences. Howeverattkéng problem is
different from the cue permutation problem not only in that its instancesiare general. The two
problems also disagree in the type of solutions that are sought. While thagarkblem accepts
any total order that maximizes the agreement with the preference functmmuthpermutation
problem requires that the total order can be implemented by a lexicogrategstrProposition 1
demonstrates, though, that not every total order can be represesrdezlia permutation. Thus, the
space taken by the solutions of the cue permutation problem is narrowahthaolution space for
the ranking problem described above. Moreover, we show in Sectioat3hé cue permutation
problem remains NP-complete even when the instances are known to haakcader. In contrast,
imposing this restriction on the ranking problem results in a problem that isllyigisivable.

A further difference emerges if one considers the problem of appraixigheptimal solutions as
we do in Section 4. Then the cue permutation problem is a minimization problem witariking
problem is a maximization problem. Among the complexity classes of approximatidrhepns
several examples are known where the minimization and the maximization problendifferent
degrees of approximability (see, e.g., Amaldi and Kann, 1995, 1998hsdcmiently, despite the
apparent similarity of the cue permutation problem and the ranking problenepthplexities of
the two problems are obviously not related.

3. Complexity of Finding Optimal Cue Permutations

We consider the complexity of the problem to minimize the number of incorreaeinées under
the lexicographic strategy. To show that it is computationally intractable, meufate this search
problem as a decision problem. The decision problem has as input aleaof vectors, an order-
ing defined on this set in terms of a list of vector pairs, and a bound gsvamatural number. The
guestion is to decide whether the cues can be permuted such that the nuinberreftt inferences
made by the lexicographic strategy when applied with this cue permutation to tbegats is not
larger than the given bound. We call this decision probleaXICOGRAPHIC STRATEGY.

LEXICOGRAPHIC STRATEGY
Instance: AseBC {0,1}", asetL C B x B, and a natural numbér

Question: Is there a permutation of the cueBdafuch that the number of incorrect
inferences irL under the lexicographic strategy is at mkat

Clearly, any polynomial-time algorithm for finding a permutation with a minimal numiben-o
correct inferences can be turned into a polynomial-time algorithm that sblEgsCOGRAPHIC
STRATEGY. However, we show that this problem is NP-hard. HenceAfi®P, no polynomial-time
algorithm for the decision problem and, a fortiori, for the search prolaeists. The NP-hardness
proof provides a polynomial-time reduction from a problem dealing with ggagid known as
VERTEX COVER (Garey and Johnson, 1979).

64



LEARNING LEXICOGRAPHIC STRATEGIES

VERTEX COVER
Instance: An undirected gragh = (V,E), whereV is the set of vertices anl C
V x V is the set of edges, and a natural number

Question: Is there a vertex cover of cardinaktyr less forG, that is, a subsat’ CV
with |V’| <k such that for each edgfu,v} € E at least one ofi andv
belongs tov’?

Theorem 3 LEXICOGRAPHIC STRATEGY is NP-complete.

Proof Obviously, a nondeterministic algorithm can generate a permutation of theandeserify
in polynomial time whether the number of incorrect inferences is at kdBhus, the problem is a
member of NP. To establish its NP-hardness, we construct a reductarMeE®TEX COVER. Let
1; (1;,;) denote then-bit vector with a 1 in every position except for positiofpositionsi and )
where it has a 0. Further, 1 is timebit vector with a 1 everywhere. Given the gra@h= (V,E),
where the set of vertices 6= {v1,...,v,}, we define a seB of Boolean vectors witim+ 1 cues,
that isB C {0,1}"*1, in three steps:

1. Let(1,0) € B.
2. Fori=1,...,n,let(1,1) € B.
3. Forevery{v,v;} €E, let(1,1) €B.

The sell C B x B of pairs that represents the element ordering is defined such that thenefemne
step 1 is less than each element constructed in step 2, and each elemegfanisiatep 3 is less
than the element from step 1. Formally,

L = {((1,0),(%,1):i=1,...,n} U {((1i;,1),(1,0)) : {vi,v;} € E}. (2)

Finally, we let the numbek in the instance of EXICOGRAPHIC STRATEGY be the same as in the
instance of \ERTEX COVER. Clearly, the reduction is computable in polynomial time.

We establish the correctness of the reduction by proving that the @dyals a vertex cover of
cardinality at mosk if and only if the associated instance oEXICOGRAPHIC STRATEGY has a
cue permutation that results in no more ttkancorrect inferences. For simplicity, let us call a pair
from the first and second set on the right-hand side of equation (2texvyeair and an edge pair,
respectively.

(=) Assume tha6 has a vertex covar’ of cardinality at mosk and, without loss of generality,
let its cardinality be exactll, so thatv’ = {vi,,...,v; }. Further, leV \V' = {v;,,,,...,V;,}. Define
the permutation of the cues as

i1, 0k, N+ L ki1, ..., in.

We claim that this cue ranking causes no more thacorrect inferences ih. Consider an arbitrary
edge pair((1;j,1),(1,0)). AsV'is a vertex cover, at least oneiofnd j occurs iniy,...,ik. This
implies that the first cue that distinguishes this pair will have value(@in 1) and value 1 ir(1,0).
Thus, the result of the lexicographic comparison is correct. Next(¥0),(1,1)) be a vertex
pair withv; € V'. In this case, cue+ 1 distinguishes this pair with the correct outcome. Finally,
each vertex paif(1,0), (1;,1)) with v; € V' is distinguished by cuewith a result different from
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the ordering given by.. In summary, the only incorrect comparisons arise from vertex pairs with
vi € V'. AsV' has cardinalityk, we thus have no more th&rincorrect inferences.

(<) Now, lettbe a permutation of the cues that produces at thastorrect inferences ih.
Define the seV’ of vertices as follows:

1. For every incorrect vertex pajf1,0), (1;,1)), letv; € V'.
2. For every incorrect edge pdifl; j,1),(1,0)), let one ofv;,vj e V'.

Clearly,V’ has cardinality at modt. It remains to show that’ is a vertex cover. For the sake of a
contradiction, assume that there is an edde,isay{v;, vj }, not covered. This means that neither of
v;,vj isinV’, implying that we have correct comparisons for the vertex pairs carnetipg tov; and

vj and for the edge pair corresponding{ta, vj}. The fact that the edge pair is inferred correctly
implies thatrtmust rank cué or j before cuen+ 1. But then we have that at least one of the vertex
pairs forv; andv; results in an incorrect comparison. This contradicts the assertion madie thiad
both vertex pairs have correct comparisons. We concludé&/thata vertex cover. |

The reduction constructed in the previous proof has some propertiesvéhakploit in the
following statement to establish the NP-completeness of restricted versidtsxoEOGRAPHIC
STRATEGY. First, it shows that the s& can be sparse in a certain sense, that is, has elements that
exhibit only very constrained bit patterns. Moreover, the NP-completeinglsls even wheh is
not much larger thaB. Finally, the problem remains intractable eveh dloes not contain identical
pairs or has some properties of a partial or total order.

Corollary 4 LEXICOGRAPHICSTRATEGY is NP-complete even when the instances satisfy any (or
all) of the following constraints:

1. Each element of B contains at most g0

2. The cardinality of L is linearly bounded from above by the cardinality oftt is,
o(|B|).

L|is

3. Lis irreflexive.
4. L is a subset of some partial order.

5. L is a subset of some total order.

Proof We show that all constraints are satisfied by the instances defined in tneioedfor the
proof of Theorem 3. That the first condition holds is obvious from thindion of B. Further,

the instances of EXICOGRAPHIC STRATEGY in this reduction all satisfyB| = |[E| +n+ 1 and

IL| = n-+|E|. Thus,|B| = |L| — 1 and the second constraint is met. Moreo\edoes not contain
any pair(a,a) which implies that the third constraint holds. We establish the fourth condition by
checking that. does not violate any of the requirements for a partial order: Clearly) @a€b
does not have botte,b) and(b,a) in L, and there are no three paifs b), (b,c), (c,a) in L. Fi-
nally, it is easy to see thatis consistent with the total order resulting from the following ascending
arrangement oB: We begin with the elementd, j, 1), where{v;,v;} € E, in lexicographic order,
followed by the elementl,0), and complete this sequence at the end by the elenignts, for
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i =1,...,n, again in lexicographic order. Thus, we have an ordering where amglements oB
are comparable, implying that also the last constraint is satisfied. [ |

The first constraint of Corollary 4 gives rise to the question whether tblelgm is still NP-
complete if each element & has no more than one 0. The following two results treat this issue.
First, we show that the problem in general remains NP-complete under shigtien. To estab-
lish this we provide a reduction from the NP-complete problere®B8ACK ARC SET (Garey and
Johnson, 1979).

FEEDBACK ARC SET

Instance: A directed grapB = (V,E), whereV is the set of vertices anCV xV
is the set of arcs, and a natural numker

Question: Is there a subs&tC A with |A'| < k such that#\’ contains at least one arc
from every directed cycle iG?

Theorem 5 LEXICOGRAPHIC STRATEGY is NP-complete even when restricted to instances where
each element of B contains at most @ne

Proof Clearly, as IEXICOGRAPHIC STRATEGY is in NP, any subproblem of it is in NP as well.
We establish the NP-hardness of the problem by giving a reduction thadimepde rewriting of
FEEDBACK ARC SET. Given the graplG = (V,A) with V = {v,...,vs} and using the notation
from the proof of Theorem 3, we let

= {L:i=1,...,n},
L = {(Li,1j):(vV)) €A},

and definek to have the same value as in the instanceEEBACK ARC SET.

Obviously, A’ C A contains at least one arc from every directed cycl&iif and only if the
graphG' = (V,A\ A') is acyclic. FurtherG' is acyclic if and only ifV has a total ordering in
which v; is less tharv; for each(v;,vj) € A\ A'. Finally, the existence of such a total order-
ing is equivalent to the assertion thathas a cue permutation with no incorrect comparisons in
L' = {(4;,1j) : (vi,vj) € A\ A'}. With this chain of equivalences, the correctness of the reduction
follows from the fact thatlL’| = |L| — |A']. [

We may also add to the assumption of Theorem 5 the restrictionlLthistlinearly bounded in
|B|, so that the problem is still NP-complete. In this case, the NP-hardnesws$dilom the fact
that FEEDBACK ARC SET remains NP-hard for directed graphs in which the degree of the vertices
is bounded by some constant (Garey and Johnson, 1979). Howeweinclude the constraint that
L is a subset of some partial order, the complexity of the problem changstcdily, as we see in
the following statement.

Corollary 6 The problem of finding a cue permutation with a minimal number of incooem-

parisons under the lexicographic strategy is solvable in linear time for ingmmtere B contains
at most ond and L is a subset of some partial order.
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Proof As was argued in the proof of Theorem 5, the problem is the same as thlerprof finding

a total order that is consistent with the partial order giver.l§which is always possible). Such a
total order can be constructed by topological sorting. Algorithms for thitingpproblem exist that
runin linear time (see, e.g., Skiena, 1997). [ |

It is not difficult—and we leave it to the reader—to establish dual formulatodrnEheorem 5
and Corollary 6 where it is assumed that each elemeBtaaintains at most one 1.

4. Approximability of Optimal Cue Permutations

In the previous section, we have shown that there is no polynomial-time algoattitt computes
optimal cue permutations for the lexicographic strategy, unlesd\#P. While it follows that this
problem is as difficult as all other optimization problems that have an NP-ctempéeision prob-
lem, we cannot draw any conclusions for the case where we are intenestelutions that are not
equal to the optimum but somehow close to it. In fact, there is a large classmizgtion problems
that have NP-complete decision problems, but can be solved efficientlysbthon is required to
be only a constant factor worse than the optimal solution. This class ofepnslis denoted APX
(Ausiello et al., 1999).

In this section, we show that the problem of approximating the optimal cue petionuis
harder than any problem in the class APX. In particular, we prove thatAfNP, there is no
polynomial-time algorithm whose solutions yield a number of incorrect compariinat is by
at most a constant factor larger than the minimal number possible. Firstyéowee state the
problem as an optimization problem and introduce some definitions from thel@dqtyheory of
approximation problems (Ausiello et al., 1999).

MINIMUM INCORRECTLEXICOGRAPHIC STRATEGY

Instance: A seB C {0,1}" and a set. C Bx B.

Solution: A permutationt of the cues oB.

Measure: The number of incorrect inferencek for the lexicographic strategy under
cue permutatiomr, that is, INCORRECTT,L).

Given a real number > 0, an algorithm is said to approximateiMmMuUM INCORRECTLEX-
ICOGRAPHIC STRATEGY to within a factor ofr if for every instancgB, L) the algorithm returns a
permutationtsuch that

INCORRECTm L) < r-optlL),

where opfL) is the minimal number of incorrect comparisons achievable by any permutation.
The factorr is also known as the performance ratio of the algorithm. The following optimization
problem plays a crucial role in the derivation of the lower bound for thr@pmability of MiNI-

MUM INCORRECTLEXICOGRAPHIC STRATEGY.

MINIMUM HITTING SET

Instance: A collectior€ of subsets of a finite sét.

Solution: A hitting set foiC, that is, a subsdti’ C U such that)’ contains at least
one element from each subsetin

Measure: The cardinality of the hitting set, that|i$;
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Similarly as above, we say that an algorithm approximatesiMum HITTING SET to within
a factor ofr if for every instanceC the algorithm outputs a hitting set that satisfies

Ul < r-optC),

where optC) denotes the minimal cardinality of a hitting set for (For simplicity, we use ot)
to represent the value of an optimal solution in both problems. It shall befcten the context to
which problem it refers.)

MINIMUM HITTING SET is equivalent to a problem called IMiMuM SET COVER in the
sense that every polynomial-time algorithm that approximatesitidum HITTING SET to within
a certain factor can be turned into a polynomial-time algorithm that approximatesiMv SET
CoVER to within the same factor, and vice versa (Ausiello et al., 1980). Bellare €993) have
shown that MNIMuUM SET COVER cannot be approximated in polynomial time to within any con-
stant factor, unless 2 NP. Thus, if P2 NP, MINIMUM HITTING SET cannot be approximated in
polynomial time to within any constant factor as well. We make use of this fachwikeeestablish
the lower bound for the approximability of the optimal cue permutation.

Theorem 7 For every r, there is no polynomial-time algorithm that approxima¥siiMum IN-
CORRECTLEXICOGRAPHIC STRATEGY to within a factor of r, unles® = NP.

Proof We use the main ideas from the proof of Theorem 3 to establish an approxirpatigerving
reduction, or AP-reduction, from MIMUM HITTING SET to MINIMUM INCORRECTLEXICO-
GRAPHIC STRATEGY.® (See Ausiello et al., 1999, for a definition of the AP-reduction.) This
reduction entails that every polynomial-time algorithm that approximateaNWUM INCORRECT
LEXICOGRAPHIC STRATEGY to within some constant factor can be turned into a polynomial-time
algorithm that approximates MiMuM HITTING SET to within the same constant factor. Then the
statement follows from the equivalence offMMuM HITTING SETto MINIMUM SET COVER and
the lower bound on the approximability of the latter (Bellare et al., 1993).

We first define a functiorf that is computable in polynomial time and maps each instance of
MINIMUM HITTING SET to an instance of MN\IMUM INCORRECTLEXICOGRAPHIC STRATEGY.
Let 1 denote th@-bit vector with a 1 everywhere angl 1 ;, the vector with O in positiong, ..., i
and 1 elsewhere. Given the collectiGrof subsets of the sét = {u,...,un}, the functionf maps
Cto (B,L), whereB C {0,1}"*! is defined as follows:

1. Let(1,0) € B.

2. Fori=1,...,n,let(1,1) € B.

3. Forevery{u,...,u,} €C,let(1, ;1) €B.
Further, the selt is constructed as

L = {{((1,0),(4,1)):i=1,...,n} U {{((L,...i,»1),(1,0)) : {ui,...,u;,} € C}. (3)

3. A proof of Theorem 3 can be obtained by employing this reduction aslaction between decision problems,
from the NP-complete HTING SET to LEXICOGRAPHIC STRATEGY. However, the reduction used in the proof of
Theorem 3 is more powerful since Corollary 4 cannot be inferrechwlducing from HTTING SET.
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In the following, a pair from the first and second set on the right-harelafidquation (3) is referred
to as an element pair and a subset pair, respectively. Obviously, thigofuricis computable in
polynomial time. It has the following property.

Claim 1. Let f(C) = (B,L). If C has a hitting set of cardinality k or less therfCf) has a cue
permutationrmtwhereNCORRECT(m L) < k.

To prove this, assume without loss of generality tBdtas a hitting set)’ of cardinality exactlyk,
sayU’ = {uj,,...,u;, }, and letU \U’ = {uj,,,,...,uj,}. Then the cue permutation

jl?"'?jk7n+17jk+17"'7jn'

results in no more thak incorrect inferences i.. Indeed, consider an arbitrary subset pair
((Li,,.i,»1),(1,0)). To not be an error, one of,...,i; must occur in the hitting sejy, ..., jk.
Hence, the first cue that distinguishes this pair has value(@jn j,,1) and value 1 in(1,0), re-
sulting in a correct comparison. Further, {€1,0),(1;,1)) be an element pair with; ¢ U’. This
pair is distinguished correctly by cuer 1. Finally, each element paif1,0), (1;,1)) with u; e U’ is
distinguished by cuewith a result that disagrees with the ordering giverLbyrhus, only element
pairs withu; € U’ yield incorrect comparisons and subset pairs are inferred corrétéigce, the
number of incorrect inferences is not larger thidn.

Next, we define a polynomial-time computable functigihat maps each collectidhof subsets
of a finite sety and each cue permutatiorfor f(C) to a subset df). Given thatf (C) = (B,L), the
setg(C,m) C U is defined as follows:

1. For every element paif1,0), (1,1)) € L that is compared incorrectly hy, letu; € g(C, ).

2. For every subset paf(l;, _j,,1),(1,0)) € L that is compared incorrectly hy, let one of the
elementsy;,, ..., u, € g(C, ).

Clearly, the functiorg is computable in polynomial time. It satisfies the following condition.

Claim 2. Let f(C) = (B,L). If INCORRECT,L) < k then dC, ) is a hitting set of cardinality k
or less for C.

Obviously, if INCORRECTm L) < k theng(C, ) has cardinality at modt. To show that it is a
hitting set, assume the subget,,...,u;,} € Cis not hit byg(C, ). Then neither oti_, ..., u;, is in
g(C,m). Hence, we have correct comparisons for the element pairs condisgdou,, .. .,u;, and
for the subset pair correspondingf{ta,, ..., u;, }. As the subset pair is distinguished correctly, one
of the cuedy,...,i, must be ranked before cumet 1. But then at least one of the element pairs for
ui,,...,U;j, yields an incorrect comparison. This contradicts the assertion that theacisons for
these element pairs are all correct. Thy(&, 1) is a hitting set and the claim is established.
Assume now that there exists a polynomial-time algoriththat approximates MiIMUM IN-
CORRECTLEXICOGRAPHIC STRATEGY to within a factor ofr. Consider the algorithm that, for a
given instanc& of MINIMUM HITTING SET as input, calls algorithrA with input (B,L) = f(C),
and returngy(C, ) wherertis the output provided byx. Clearly, this new algorithm runs in poly-
nomial time. We show that it approximatesMiMuM HITTING SET to within a factor ofr. By the
assumed approximation property of algoritmve have

INCORRECTL) < r-opt(L).
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Together with Claim 2, this implies thgt{1t, C) is a hitting set folC satisfying
l9(C. M| < r-optL).

From Claim 1 we obtain opt) < opt(C) and, thus,
lg(C.m| < r-optC).

Thus, the proposed algorithm foriIMMuM HITTING SET violates the approximation lower bound
that holds for this problem under the assumpticA RP. This proves the statement of the theorem.
[ |

Similarly as in Corollary 4 we can state a stronger version of Theorem 7 #et tastrictions
into account that may hold for the instances ofNiUM INCORRECTLEXICOGRAPHIC STRAT-
EGY. The proof is obtained in the same way as the proof of Corollary 4 andiver bere.

Corollary 8 If P+ NP, then for every r there is no polynomial-time algorithm that approximates
MINIMUM INCORRECTLEXICOGRAPHIC STRATEGY to within a factor of r, even when the in-
stances satisfy any (or all) of the following constraints:

1. The cardinality of L is linearly bounded from above by the cardinality ofh8t is, |L| is
O(|Bl)-

2. Lis irreflexive.
3. L is a subset of some partial order.

4. L is a subset of some total order.

The reader may have noticed that the constraint of Corollary 4 that impobesnd on the
number of Os in the elements Bfis missing here. In fact, there is some evidence, that the construc-
tion of an approximation preserving reduction fromMNWMuM HITTING SET to this subproblem
of MINIMUM INCORRECTLEXICOGRAPHIC STRATEGY is difficult or even impossible. The case
where the number of Os is bounded by some constant corresponds tdgretdem of MNIMUM
HITTING SET where the cardinality of each subset is not larger than a constant. Bk tex
version of MNIMUM HITTING SET is known to be approximable to within some constant factor
(Bar-Yehuda and Even, 1981; Hochbaum, 1982). Of course, tluarapt relationship does not
prove anything about the complexity of approximating the subproblemiafituM INCORRECT
LEXICOGRAPHIC STRATEGY. However, it gives reason to the conjecture that this subproblem
might have a constant-factor approximation algorithm.

5. Greedy Approximation of Optimal Cue Permutations

The so-called greedy approach to the solution of a computation or apptaxirpaoblem is helpful
when it is not known which algorithm performs best. This simple heuristic gftewides satisfac-
tory solutions in many situations in practice. The algorithme&py CUE PERMUTATION that we
introduce here is based on the greedy method. The idea is to select tbadiestcording to which
single cue makes a minimum number of incorrect inferences (choosingrbitraidly if there are
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Algorithm 1 GREEDY CUE PERMUTATION
Input: asetBC {0,1}"andaset CBxB
Output: a cue permutation for n cues
l:={1,...,n};
fori=1,...,ndo
let j € | be a cue where INCORREGT, L) = minj¢, INCORRECT(j’,L);
(i) ;= j;
=1\ {j};
L:=L\{(ab):aj#bj}

end for.

two or more). After that the algorithm removes those pairs that are distireglits the selected
cue, which is reasonable as the distinctions drawn by this cue cannotlbeeuhy later cues. This
procedure is then repeated on the set of pairs left. The descriptior®eé B CUE PERMUTATION

is given as Algorithm 1. It employs an extension of the function INCORRERSt defined in
Section 2.1, applicable also to single cues, such that for aweesay

INCORRECTI,L) = [{(a,b)eL:a >h}|

It is evident that Algorithm 1 runs in polynomial time, but how good is it? Thetleas should
demand from a good heuristic is that, whenever a minimum of zero is attainabtelstsuch a
solution. This is indeed the case wittR6EDY CUE PERMUTATION as we show in the following
result. Moreover, a general performance ratio for the approximatitireafptimum is asserted here.

Theorem 9 The algorithmGREEDY CUE PERMUTATION approximatesVIINIMUM INCORRECT
LEXICOGRAPHIC STRATEGY to within a factor of n, where n is the number of cues. In particular,
it always finds a cue permutation with no incorrect inferences if one exists.

Proof We show by induction on that the permutation returned by the algorithm makes a number
of incorrect inferences no larger thanopt(L). If n= 1, the optimal cue permutation is definitely
found.

Letn> 1. Clearly, as the incorrect inferences of a cue cannot be revbysether cues, there
is a cuej with

INCORRECTj,L) < opt(L).

The algorithm selects such a cue in the first round of the loop. During Bteoféhe rounds, a
permutation ofn — 1 cues is constructed for the set of remaining pairs. jLbé the cue that is
chosen inthe firstround, = {1,...,j—1,j+1,...,n},andL’ = L\ {(a,b) : aj # b;}. Further, let
opt, (L") denote the minimum number of incorrect inferences taken over the permstafition
the setl’. Then, we observe that

opt(L) > opt(L’) = opt.(L).

The inequality is valid because bf> L. (Note that opfL’) refers to the minimum taken over the
permutations of all cues.) The equality holds as ¢u®es not distinguish any pair Id. By the
induction hypothesis, rounds 2 toof the loop determine a cue permutatianwith

INCORRECT(,L’) < (n—1)-opt,(L).
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(001,010)
(010, 100)
(010, 101)
(100, 111)

Figure 1: A set of lexicographically ordered pairs with nondecreasiggvalidities (11/2, and
2/3). The cue ordering of TTB (B, 2) causes an incorrect inference on the first pair. By
Theorem 9, REEDY CUE PERMUTATION finds the lexicographic ordering.

Thus, the number of incorrect inferences made by the permutatforally returned by the algo-
rithm satisfies

INCORRECT(,L) < INCORRECT(j,L)+ (n—1)-opt, (L"),
which is, by the inequalities derived above, not larger thalgpt (n— 1) -opt(L) as stated. W

The special property of @EDY CUE PERMUTATION that it always finds the minimum if this
has value zero is not owned by TTB as demonstrated by the following result.

Corollary 10 On inputs that have a cue ordering without incorrect comparisons wutheelexico-
graphic strategyGREEDY CUE PERMUTATION can be better than TTB.

Proof Figure 1 shows a set of four lexicographically ordered pairs. Adngrtb Theorem 9,
GREEDY CUE PERMUTATION comes up with the given permutation of the cues. The validities are
1,1/2,and 23. Thus, TTB ranks the cues as312 whereupon the first pair is inferred incorrecily.

Next, we consider lower bounds on the performance ratio REEDY CUE PERMUTATION.
We obtain bounds in terms afand|L|. It emerges in particular that the upper bound obtained in
Theorem 9 is optimal up to the factor 2.

Theorem 11 The performance ratio dBREEDY CUE PERMUTATION is at least
max{n/2,|L|/2}.

Proof We show how to construct for everyan instance on which REEDY CUE PERMUTATION
has the claimed performance ratio. IRt {a®,...,a b} C {0,1}" be the set whera® =
(0,...,0), b=(1,0,...,0,1), andal, fori = 1,...,n, is the vector with a 1 in positiohand 0
elsewhere. The s&tC B x B is defined as

L = {@",a?), (b,aV)}u{@’,a"):i=2,...,n—1}.

Figure 2 shows the sétfor the casen = 6. As can be seen, cue 1 is correct on all pairs,rcise
incorrect on two pairs, and every cyies {2,...,n—1} satisfies INCORRECT],L) = 1. Hence,
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000001, 000000
100001, 100000
010000, 000001
001000, 000001
000100, 000001
000010, 000001

o~~~ o~~~
o O O ===

N

Figure 2: A set of pairs providing a lower bound on the performance citeREeDY CUE PER-
MUTATION (Theorem 11).

GREEDY CUE PERMUTATION selects cue 1 as the first cue. As this cue does not distinguish any pair,
L is left unchanged. Then, one of the cugs.2 n—1 is selected as the second cue. After removal
of the pair distinguished by this cue, the remaining cues make the same indofeeences as
before. Thus, the algorithm keeps on choosing cues fdm.,n— 1} during rounds 2..,n—1
of the loop until cuen is selected in the last round. The resulting permutatidras cue 1 in its
first position, cues from2,...,n— 1} in positions 2...,n—1, and cuen in the last position. This
implies that INCORRECTT L) = L.

On the other hand, the optimal value is 2, which is attained by any permutatiohahatien
as the first cue. This yields a performance ratio f&REGDY CUE PERMUTATION of at leastL|/2.
The lower bound/2 is obtained by observing thgt| = n. [

We conclude this section by examining the performance REEY CUE PERMUTATION on
subproblems, that is, when the instances are not arbitrary but meehaatestraints. It plainly
arises from the proof of Theorem 11 that the lower bound holds umedérigtions of the instances
similar to those considered in Sections 3 and 4.

Corollary 12 The lower boundnax{n/2, |L|/2} for the performance ratio c6BREEDY CUE PER-
MUTATION holds even when the instances satisfy any (or all) of the following constraints:

1. Each element of B contains at most t4g0
2. The set L is smaller than the set B.

3. Lisirreflexive.

4. L is a subset of some partial order.

5. Lis a subset of some total order.

6. Lexicographic Strategies With Cue Inversion

While in the previous sections the problem was to optimize lexicographic strategipermuting
the cues, we now introduce an additional degree of freedom for buildikigographic strategies.
Here, the method of construction is allowed not only to permute but also tat ioves. Acue
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Algorithm 2 GREEDY CUE INVERSION
Input: asetBC {0,1}"andaset CBxB
Output: a cue inversiom for n cues
fori=1,...,ndo
if {(a,b)eL:a <b}| > |{(ab)eL:a >b}| then

q(i):=0
else
q(i):=1
end if
L:=L\{(ab):a #b}
end for.

inversionis a mapping : {1,...,n} — {0,1}, wheren is the number of cues. It uniquely defines a
functiong: {0,1}" — {0,1}" such that for evera € {0,1}",

N ' if q(i) =0,
qa) = {1_a otherwise.

In other words, a value af(i) = 1 indicates that theth position of every Boolean vectaris to be
inverted, whereas the cues wifi) = 0 are left unchanged ly. As the meaning is clear, we shall
useq also to denot@. Given a seB C {0,1}", thelexicographic strategy under cue inversiorsq
the functionS?:Bx B — {* <”,“ =",* > "} with

S'(a,b) = S(a(a),q(b)).

Combining permutation and inversion, we obtain lgsdcographic strategy under cue permutation
rtand cue inversion denoted bySt and defined as

Sab) = S(n(a(a)),m(q(b))).

In particular, we require that the cue inversion is applied before the patiornt

A simple greedy method for inverting the cues is described as Algorithm 2idelaas to pass
through the cues and to select either the cue or its inverse, dependingicim mvakes a larger
number of correct inferences. The pairs that are distinguished byuhiame then removed. It is
evident that @EeDY CUE INVERSION runs in polynomial time. We show that the cue inversion
returned by this algorithm yields a number of correct inferences thatiéast half the maximum
over all cue inversions and permutations.

Theorem 13 The algorithmGREEDY CUE INVERSION always returns a cue inversion ¢ such that
Stis correct on at least oL ) /2 pairs, where oft) is the maximum number of correct inferences
achievable by the lexicographic strategy under any cue permutation @nduwe inversion.

Proof LetL; be the set of pairs that the algorithm removes fiioiim roundi of the for-loop and
let L1 be the set of pairs that remains after completion of the last round. Cleasly,,Lni1 is
a partition ofL. Obviously, by the construction @f, S is correct on at least half of eadh, for
i=1,...,n. Further, itis correct on all df,,, 1, as this set consists solely of identical pairs. TI&is,
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correctly distinguishes at least half of all pairsLinSince optL) < |L|, it follows thatS™ is correct
on at least oft.) /2 pairs. [ |

One remarkable aspect of this algorithm is the fact that it retains the ofdlee cues, while
its performance guarantee is valid even over all cue permutations. It saefinst glance, that the
method of cue inversion leads much easier to a good performance gesttaamethe permutation
of the cues. However, the result of Theorem 13 cannot directly cadpaith those of the previous
sections, as these apply to the problem of minimizing the number of incorrecéndes, whereas
here we are concerned with the maximization of the number of correct mtiese A constant
performance ratio for the one problem does not necessarily imply a corpgegformance ratio
for the other, as can easily be seen. Assume, for instance, that the maxiomiber of correct
inferences idL| — 1. Then the algorithm that is correct on exacfli|/2] pairs has a constant
performance ratio for the maximization problem, while with regard to the minimizatiollgm its
performance ratio grows linearly ji|.

7. Sample Complexity for Learning Lexicographic Strategies

A central notion for characterizing the sample complexity of a learning proisiéme VC dimension
(Vapnik and Chervonenkis, 1971; Anthony and Bartlett, 1999). In dileviing, we calculate the
VC dimension of lexicographic strategies. The definition of the VC dimensigsren the notion
of shattering. A clas§ of Boolean functions is saith shattera setL C {0,1}" if ¥ induces every
dichotomy ofL, that is, if for every(Lo,L1) such that yNL; =0 andLoUL; = L, there is some
functionf € ¥ satisfyingf(Lo) C {0} andf(L1) C {1}. TheVapnik-Chervonenkis (VC) dimension
of a class¥ of Boolean functions is the cardinality of the largest set that is shatteregfd by

We recall from Section 2.2 that we identify the lexicographic strafegith a Boolean function
f:{0,1}>" — {0,1} such that for everya,b) € {0,1}°",

f(a,b)=1 ifandonlyif Sab)e{* <”,“="}.
In this sense, we can investigate the VC dimension of the function class
Sh = {Sﬂ: Ttis a permutation and an inversion oh cueg,

that is, we ask what is the largest cardinality of alsef pairs that is shattered by the lexicographic
strategy under all possible cue permutations and inversions.

It is evident from the definition that the VC dimension of a finite function classeannot be
larger than log¥ |. Since the number of permutations is equattand the number of inversions is
equal to 2, it follows that the VC dimension af}, is not larger tham+ nlogn. We show, however,
that this VC dimension is linear. Moreover, we provide the exact value.

Theorem 14 The VC dimension of the class of lexicographic strategies is equal to n.

Proof We first establism as upper bound. Given a cue inversignconsider the lexicographic

strategyS® € S, (that is, the strateg®, wherettis the identity function). We claim that every

a,b e {0,1}" satisfies
Sla,b)e{“<",“="}

if and only if 21 a1y —g) > —1. (4)

DH
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To show this, we consider the absolute value of first term on the left-hidedo$ the inequality,
wherei = 1, that is,
27(by —ay)]. (5)

If a3 # by, the value of (5) is 2 whereas the absolute value of the remaining sum is not larger than

2" — 2. Then, the inequality in (4) is satisfied if and onlygifa;) < g(b1). On the other hand, if

a; = by, the term (5) is equal to 0, and the validity of the equivalence (4) followisdhyction.
Obviously, by permuting the coefficients, every lexicographic strafgy.$, can be written as

an inequality such as in (4). Such inequalities are evaluated by Booleantlimeshold functions.

A Boolean linear threshold functiof : {0,1}" — {0,1} is a function for which there exist real

numbersw, ..., W, andt (the parameters of this function class ) such that for ezery0,1}",

f(zz=1 ifandonlyif wyz3+---+wWnz, >t.

It follows that everyS! € S, can be expressed as a Boolean linear threshold function with input
variables(y; —X1), ..., (Y — %) and a fixed parametér= —1.

Therefore, every sdt C {0,1}2" that can be shattered ¥ is also shattered by this class of
linear threshold functions. The class of linear threshold functiomsviariables withn parameters
(that is, wherd is fixed) is known to have VC dimension equaht¢see, e.g., Anthony and Bartlett,
1999). Thus, the VC dimension gf, does not exceend.

For deriving the lower bound, we show that thelset {0, 1}2” defined as

L = {(4;,1):i=1,...,n},

where 1 is the vector with a 1 in every position andhas a O in position and 1 elsewhere, is
shattered bys,.

Let (Lo,L1) be an arbitrary dichotomy df. Define the cue inversioq: {1,...,n} — {0,1}
such thay(i) = 0 if and only if (1;,1) € L;. Obviously then, the lexicographic strategy (without
permuting the cues) yields a correct comparison for every pdis jiwhile the pairs fromLg are
inferred incorrectly. Thus, the dichotontl,L;) is induced byS". |

The lower bound in the previous result was obtained by choosing a suitabliversion and
leaving the order of the cues unchanged. We can also obtain an almostldptigiabound when
the cues are not allowed to be inverted but only permuted. In factnthel)-element set

L = {(1,1):i=2....n}

can be shattered as follows. Given the dichotdinyL;), we define the permutatiansuch that for
i=2,...,n, 1(1) <m(i) if and only if (11,1;) € L1. Obviously, the dichotomyLo,L1) is induced
by S

Itis easy to see that there are valuea tr which this lower bound of — 1 cannot be improved.
Forn=1 2, and 3, the number of permutationsroélements is 12, and 6, respectively; to shatter
sets of these cardinalities, however, requireg 2nd 8 functions.

8. Open Questions

In the following we summarize the major open questions that arise from thishegikg that they
might provide fertile soil for future research. The main result of SectimtBe NP-completeness
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of the decision problem EXICOGRAPHIC STRATEGY. In that section, we have established further
that the problem remains NP-complete under several restrictions. Marenme of the subproblems
originating from such restrictions was shown to be efficiently solvablebdy, the restrictions
considered there may not be those that are “natural”, that is, met in @ratlttis therefore reason-
able to study more subproblems and to delineate the intractable ones fronthtaiibsan be solved
efficiently.

e What are natural restrictions foreElXICOGRAPHIC STRATEGY under which the problem is
NP-complete or efficiently solvable?

Of course, similar considerations are appropriate fonIMuM INCORRECTLEXICOGRAPHIC
STRATEGY. In Section 4 we obtained a lower bound for the performance ratio that igadtdl for
various subproblems. A promising task is, therefore, to find restrictidegamet in practice under
which the problem has a constant performance ratio.

e What are natural restrictions foriMiIMUM INCORRECTLEXICOGRAPHICSTRATEGY under
which the problem belongs to APX?

Work by Raz and Safra (1997) implies thattviMum HITTING SET cannot be approximated in
polynomial time to within some factor that grows logarithmically@, the number of subsets. The
reduction defined in the proof of Theorem 7 does not seem to allow toieRukofact.

e Does MNIMUM INCORRECTLEXICOGRAPHIC STRATEGY have a lower bound on the per-
formance ratio for polynomial-time algorithms that is not bounded by some gufista

The results in Sections 4 and 5 have left a gap. While we have shown thatdéenot be a
polynomial-time algorithm for NNIMUM INCORRECTLEXICOGRAPHIC STRATEGY with a per-
formance ratio bounded by some constant @ RP), the algorithm GeEeby CUE PERMUTATION
has a lower bound of mgx/2,|L|/2}.

e Are there polynomial-time algorithms for MIMUM INCORRECTLEXICOGRAPHIC STRAT-
EGY that have a better performance ratio thare&DY CUE PERMUTATION?

The algorithm REEDY CUE PERMUTATION is a simple and obvious heuristic that has not been
studied before in the context of lexicographic strategies. In Section Sawedrerived tight bounds
on the performance ratio of this algorithm. Various other procedures beee studied in the
literature and become known as fast and frugal heuristics, but noteergssto have been proven
about their performance ratio.

e Which are the performance ratios of other (fast and frugal) heuristidexicographic strate-
gies?

In Section 6 we have introduced cue inversion as an additional featuvdldddxicographic strate-
gies. The algorithm @eepy CUE INVERSION was shown to approximate the maximum number
of correct inferences to within a constant factor. While the problems of mimmihe number of
incorrect inferences and maximizing the number of correct inferengesige to equivalent deci-
sion problems, there might well be a difference with regard to the approximatablem. There
seems to be no immediate way to derive a lower bound for the maximization protoemafiower
bound for the minimization problem. Thus, similar questions as considereaetee raised for
the problem M\xiIMUM CORRECTLEXICOGRAPHIC STRATEGY which is defined analogously.
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¢ Which is the performance ratio of polynomial-time algorithms for approximatingMum
CORRECTLEXICOGRAPHIC STRATEGY?

While this question is meant to consider only cue permutations and not invefsioconstructing
lexicographic strategies, the objective of minimization is combined with both tleagarés in a
second approximation problem emerging from Section 6.

e Which is the performance ratio of polynomial-time algorithms for approximatimgiMum
INCORRECTLEXICOGRAPHIC STRATEGY UNDER CUE PERMUTATIONS AND CUE INVER
SIONS?

We can ask further what happens if the problems studied here areatize@in a certain way. One
obvious possibility of generalizing is to allow cues that have more than twos/dliuis evident that
the reductions provided in Sections 3 and 4 remain valid also in this multiple-vehsed In other
words, the problem with binary cues is a subproblem of the problem with multgdleed cues.
Hence, NP-completeness and the lower bound for the approximability holeédming lexico-
graphic strategies on multiple-valued cues, too. Moreover, we obseawththalgorithm GEEDY
CUE PERMUTATION and the proof of the upper bound on its performance ratio (Theorem 8pd
make use of the two-valuedness of the cues. Thus, this algorithm has ithectlapproximation
property for multiple-valued cues as well. One could also generalize ledpbig strategies to the
effect that more than two outcomes, correct or incorrect, of a lexipbigaomparison are possible.
The results of this article do not seem to yield a statement for such casateirage

9. Conclusions

Computational problems that arise in learning lexicographic strategies ftamges are the topic
of this article. In particular, we considered the model of agnostic PAC iteg@rriVe have intro-
duced the minimizing disagreement problerBXLCOGRAPHIC STRATEGY and shown that it is
NP-complete. Thus, it has become very unlikely that lexicographic strategie be efficiently
learned. This statement was strengthened by our proving that the optimigeatiem MNIMUM
INCORRECTLEXICOGRAPHIC STRATEGY cannot be approximated in polynomial time to within
any constant factor.

These results answer a question raised by psychological researchddéds of bounded ratio-
nality: How accurate are fast and frugal heuristics? We have showndHast, that is, polynomial-
time, algorithm can compute the optimum and, moreover, not even approximag#, itmder the
widely accepted assumption thatANP.

This answers also a second question concerning a specific fastugyad fieuristic: How ac-
curate is TTB? We have introduced a greedy algorithm that provablgnpesfbetter than TTB. In
particular, we have shown that the greedy method always finds acsotat®mns when they exist,
whereas this is not the case with TTB. Tight bounds for the factor with wihielgreedy method
approximates the optimum have also been obtained.

The lower bounds derived in this article have mostly been shown to holdfersabproblems
obtained from various restrictions. We interpret this as revealing to a leigted that lexicographic
strategies cannot be learned efficiently and that it might be very difficdibtosatisfactory algo-
rithms.

For the learning of lexicographic strategies using cue inversions wegnavieled a simple and
efficient algorithm that approximates the maximum number of correct infeseto within a con-
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stant factor. Thus, it seems that cue inversions lead much easier to gdochgnce bounds than
cue permutations. However, one cannot directly compare a bound fondRinization problem
with a bound for the minimization problem. This result should more be considaradtimulating
impetus for further research.

We have calculated the exact values of the VC dimension of lexicographiegis. This
result is one of the few examples where the VC dimension of a function ciaslsden determined
precisely.

While we have already presented in the previous section a couple of fopaalquestions for
theoretical investigation, a challenge to experimental research is alsolgivbis article: to study
the relevance of the greedy method as a model for bounded rationalitydhgiegy.
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