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Abstract
We introduce a computational design for pattern detection based on a tree-structured network of
support vector machines (SVMs). An SVM is associated with each cell in a recursive partitioning
of the space of patterns (hypotheses) into increasingly finer subsets. The hierarchy is traversed
coarse-to-fine and each chain of positive responses from the root to a leaf constitutes a detection.
Our objective is to design and build a network which balances overall error and computation.

Initially, SVMs are constructed for each cell with no constraints. This “free network” is then
perturbed, cell by cell, into another network, which is “graded” in two ways: first, the number
of support vectors of each SVM is reduced (by clustering) in order to adjust to a pre-determined,
increasing function of cell depth; second, the decision boundaries are shifted to preserve all positive
responses from the original set of training data. The limits on the numbers of clusters (virtual
support vectors) result from minimizing the mean computational cost of collecting all detections
subject to a bound on the expected number of false positives.

When applied to detecting faces in cluttered scenes, the patterns correspond to poses and the
free network is already faster and more accurate than applying a single pose-specific SVM many
times. The graded network promotes very rapid processing of background regions while maintain-
ing the discriminatory power of the free network.
Keywords: statistical learning, hierarchy of classifiers, coarse-to-fine computation, support vector
machines, face detection

1. Introduction

Our objective is to design and build a “pattern detection” system based on a tree-structured network
of increasingly complex support vector machines (SVMs) (Boser et al., 1992; Osuna et al., 1997).
The methodology is general, and could be applied to any classification task in machine learning in
which there are natural groupings among the patterns (classes, hypotheses). The application which
motivates this work is to detect and localize all occurrences in a scene of some particular object
category based on a single, grey-level image. The particular example of detecting faces against
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cluttered backgrounds provides a running illustration of the ideas where the groupings are based on
pose continuity.

Our optimization framework is motivated by natural trade-offs among invariance, selectivity
(background rejection rate) and the cost of processing the data in order to determine all detected
patterns. In particular, it is motivated by the amount of computation involved when a single SVM,
dedicated to a reference pattern (e.g., faces with a nearly fixed position, scale and tilt), is applied
to many data transformations (e.g., translations, scalings and rotations). This is illustrated for face
detection in Fig 1; a graded network of SVMs achieves approximately the same accuracy as a
pattern-specific SVM but with order 100 to 1000 times fewer kernel evaluations, resulting from the
network architecture as well as the reduced number of support vectors.

To design and construct such a graded network, we begin with a hierarchical representation of
the space of patterns (e.g., poses of a face) in the form of a sequence of nested partitions, one for
each level in a binary tree (Fleuret and Geman, 2001; Fleuret, 1999; Sahbi et al., 2002; Jung, 2001;
Blanchard and Geman, 2005; Amit et al., 2004; Gangaputra and Geman, 2006a). Each cell - distin-
guished subset of patterns - encodes a simpler, sub-classification task and is assigned a binary clas-
sifier. The leaf cells represent the resolution at which we desire to “detect” the true pattern(s). There
is also a “background class,” for example, a complex and heterogeneous set of non-distinguished
patterns, which is statistically dominant (i.e., usually true). A pattern is “detected” if the classifier
for every cell which covers it responds positively.

Initially, SVMs are constructed for each cell in the standard way (Boser et al., 1992) based on
a kernel and training data – positive examples (from a given cell) and negative examples (“back-
ground”). This is the “free network,” or “f-network” { ft}, where t denotes a node in the tree hierar-
chy. The “graded network,” or “g-network” {gt}, is indexed by the same hierarchy, but the number
of intervening terms in each gt is fixed in advance (by clustering those in ft as in Schölkopf et al.,
1998), and grows with the level of t. (From here on, the vectors appearing gt will be referred to
as “support vectors” even though, technically, they are constructed from the actual support vectors
appearing in ft .) Moreover, the decision boundaries are shifted to preserve all positive responses
from the original set of training data; consequently, the false negative (missed detection) rate of gt

is at most that of ft and any pattern detected by the f-network is also detected by the g-network. But
the g-network will be far more efficient.

The limits on the numbers of support vectors result from solving a constrained optimization
problem. We minimize the mean computation necessary to collect all detections subject to a con-
straint on the rate of false detections. (In the application to face detection, a false detection refers to
finding a face amidst clutter.) Mean computation is driven by the background distribution. This also
involves a model for how the selectivity of an SVM depends on complexity, which is assumed pro-
portional to the number of support vectors, and invariance, referring to the “scope” of the underlying
cell in the hierarchy.

In the free network, the complexity of each SVM decision function depends in the usual way
on the underlying probability distribution of the training data. For instance, the decision function
for a linearly separable training set might be expressed with only two support vectors, whereas
the SVMs induced from complex tasks in object recognition usually involve many support vectors
(Osuna et al., 1997). For the f-network, the complexity generally decreases as a function of depth
due to the progressive simplification of the underlying tasks. This is illustrated in Fig 2 (left) for
face detection; the classifiers ft were each trained on 8000 positive examples and 50,000 negative
examples. Put differently, complexity increases with invariance.
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Figure 1: Comparison between a single SVM (top row) dedicated to a nearly fixed pose and our
designed network (bottom row) which investigates many poses simultaneously. The sizes
of the three images are, left to right, 520× 739, 462× 294 and 662× 874 pixels. The
network achieves approximately the same accuracy as the pose-specific SVM but with
order 100-1000 times fewer kernel evaluations. Some statistics comparing efficiency are
given in Table 1.

Consider an SVM f in the f-network with N support vectors and dedicated to a particular hy-
pothesis cell; this network is slow, but has high selectivity and few false negatives. The correspond-
ing SVM g has a specified number n of support vectors with n ≤ N. It is intuitively apparent that
g is less selective; this is the price for maintaining the false negative rate and reducing the number
of kernel evaluations. In particular, if n is very small, g will have low selectivity (cf. Fig 2 (right)).
In general, of course, with no constraints, the fraction of support vectors provides a rough measure
of the difficulty of the problem; here, however, we are artificially reducing the number of support
vectors, thereby limiting the selectivity of the classifiers in the g-network.

Building expensive classifiers at the upper levels (n ≈ N) leads to intensive early processing,
even when classifying simple background patterns (e.g., flat areas in images), so the overall mean
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Figures ”Mona Lisa” ”Singers” ”Star Trek”
1 SVM f-net g-net 1 SVM f-net g-net 1 SVM f-net g-net

# Subimages Processed 2 . 105 2 . 103 2 . 103 5 . 104 8 . 102 8 . 102 2 . 105 4 . 103 4 . 103

# Kernel Evaluations 5 . 107 107 3 . 104 2 . 107 7 . 106 104 8 . 107 2 . 107 5 . 104

Processing Time (s) 172.45 28.82 0.53 55.87 17.83 0.26 270.1 48.92 0.87
# Raw Detections 3 3 4 12 14 15 19 20 20

Table 1: Comparisons among i) a single SVM dedicated to a small set of hypotheses (in this case a
constrained pose domain), ii) the f-network and iii) our designed g-network, for the images
in Fig 1. For the single SVM, the position of the face is restricted to a 2× 2 window, its
scale to the range [10,12] pixels and its orientation to [−50,+50]; the original image is
downscaled 14 times by a factor of 0.83 and for each scale the SVM is applied to the
image data around each non-overlapping 2×2 block. In the case of the f and g-networks,
we use the coarse-to-fine hierarchy and the search strategy presented here.
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Figure 2: Left: The average number of support vectors for each level in an f-network built for face
detection. The number of support vectors is decreasing due to progressive simplification
of the original problem. Right: False alarm rate as a function of the number of support
vectors using two SVM classifiers in the g-network with different pose constraints.

cost is also very large (cf. Fig 3, top rows). As an alternative to building the g-network, suppose we
simply replace the SVMs in the upper levels of f-network with very simple classifiers (e.g., linear
SVMs); then many background patterns will reach the lower levels, resulting in an overall loss of
efficiency (cf. Fig 3, middle rows).

We focus in between these extremes and build {gt} to achieve a certain trade-off between cost
and selectivity (cf. Fig 3, bottom rows). Of course, we cannot explore all possible designs so a
model-based approach is necessary: The false alarm rate of each SVM is assumed to vary with
complexity and invariance in a certain way. This functional dependence is consistent with the one
proposed in Blanchard and Geman (2005), where the computational cost of a classifier is modeled
as the product of an increasing function of scope and an increasing function of selectivity.

Finally, from the perspective of computer vision, especially image interpretation, the interest of
this paper is the proposed architecture for aggregating binary classfiers such as SVMs for organized
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Maximum Level Reached 1 2 3 4 5 6

# Samples 1697 56 4 1 0 2
(f-network)
# Samples 936 555 135 17 54 63
(heuristic)
# Samples 1402 336 2 0 3 17
(g-network)

# Kernel Evaluations 2−10 10−102 102−103 103−104 104−105 105−106

# Samples 0 0 0 1697 58 5
(f-network)
# Samples 936 755 67 2 0 0
(heuristic)
# Samples 1402 340 18 0 0 0
(g-network)

Figure 3: In order to illustrate varying trade-offs among cost, selectivity and invariance, and to
demonstrate the utility of a principled, global analysis, we classified 1760 subimages of
size 64× 64 extracted from the image shown above using three different types of SVM
hierarchies of depth six. In each case, the hierarchy was traversed coarse-to-fine. For
each hierarchy type and each subimage, the upper table shows the distribution of the
deepest level visited and the lower table shows the distribution of cost in terms of the
total number of kernel evaluations. In both tables: Top row: The unconstrained SVM
hierarchy (“f-network”) with a Gaussian kernel at all levels; the SVMs near the top are
very expensive (about 1400 support vectors at the root; see Fig 2) resulting in high overall
cost. Middle row: An ad hoc solution: the same f-network, except with linear SVMs
(which can be assumed to have only two support vectors) at the upper three levels in order
to reduce computation; many images reach deep levels. Bottom row: The constrained
SVM hierarchy (“g-network”), globally designed to balance error and computation; the
number of (virtual) support vectors grows with depth.
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scene parsing. For some problems, dedicating a single classifier to each hypothesis, or a cascade
(linear chain) of classifiers to a small subset of hypotheses (see Section 2), and then training with
existing methodology (even off-the-shelf software) might suffice, in fact provide state-of-the-art
performance. This seems to the case for example with frontal face detection as long as large training
sets are available, at least thousands of faces and sometimes billions of negative examples, for
learning long, powerful cascades. However, those approaches are either very costly (see above)
or may not scale to more ambitious problems involving limited data, or more complex and varied
interpretations, because they rely too heavily on brute-force learning and lack the structure necessary
to hardwire efficiency by simultaneously exploring multiple hypotheses.

We believe that hierarchies of classifiers provide such a structure. In the case of SVMs, which
may require extensive computation, we demonstrate that building such a hierarchy with a global
design which accounts for both cost and error is superior to either a single classifier applied a great
many times (a form of template-matching) or a hierarchy of classifiers constructed independently,
node-by-node, without regard to overall performance. We suspect that the same demonstration
could be carried out with other “base classifiers” as long as there is a natural method for adjusting
the amount of computation; in fact, the global optimization framework could be applied to improve
other parsing strategies, such as cascades.

The remaining sections are organized as follows: A review of coarse-to-fine object detection,
including related work on cascades, is presented in Section 2. In Section 3, we discuss hierarchical
representation and search in general terms; decomposing the pose space provides a running exam-
ple of the ideas and sets the stage for our main application - face detection. The f-network and
g-network are defined in Section 4, again in general terms and the statistical framework and op-
timization problem are laid out in Section 5. This is followed in Section 6 by a new formulation
of the “reduced set” method (Burges, 1996; Schölkopf et al., 1998), which is used to construct an
SVM of specified complexity. These ideas are illustrated for a pose hierarchy in Section 7, includ-
ing a specific instance of the model for chain probabilities and the corresponding minimization of
cost subject to a constraint on false alarms. Experiments are provided in Section 8, where the g-
network is applied to detect faces in standard test data, allowing us to compare our results with other
methods. Finally, some conclusions are drawn in Section 9.

2. Coarse-to-Fine Object Detection

Our work is motivated by difficulties encountered in inducing semantic descriptions of natural
scenes from image data. This is often computationally intensive due to the large amount of data
to be processed with high precision. Object detection is such an example and has been widely
investigated in computer vision; see for instance Osuna et al. (1997); Fleuret and Geman (2001);
Kanade (1977); Schneiderman and Kanade (2000); Sung (1996); Viola and Jones (2001) for work
on face detection. Nonetheless, there is as yet no system which matches human accuracy; moreover,
the precision which is achieved often comes at the expense of run-time performance or a reliance
on massive training sets.

One approach to computational efficiency is coarse-to-fine processing, which has been applied
to many problems in computer vision, including object detection (Fleuret and Geman, 2001; Viola
and Jones, 2001; Geman et al., 1995; Baker and Nayar, 1996; Amit and Geman, 1999; Rowley,
1999; Heisele et al., 2001), matching (Borgefors, 1988; Huttenlocher and Rucklidge, 1993; Gee
and Haynor, 1996), optical flow (Battiti and Koch, 1991), tracking (Sobottka and Pittas, 1996) and
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Figure 4: Left: Detections using our system. Right: The darkness of a pixel is proportional to the
amount of local processing necessary to collect all detections.

other tasks such as compression, registration, noise reduction and estimating motion and binocular
disparity. In the case of object detection, one strategy is to focus rapidly on areas of interest by
finding characteristics which are common to many instantiations; in particular, background regions
are quickly rejected as candidates for further processing (see Fig 4).

In the context of finding faces in cluttered scenes, Fleuret and Geman (2001) developed a fast,
coarse-to-fine detector based on simple edge configurations and a hierarchical decomposition of the
space of poses (location, scale and tilt). (Similar, tree-structured recognition strategies appear in
Geman et al. (1995); Baker and Nayar (1996).) One constructs a family of classifiers, one for each
cell in a recursive partitioning of the pose space and trained on a sub-population of faces meeting the
pose constraints. A face is declared with pose in a leaf cell if all the classifiers along the chain from
root to leaf respond positively. In general, simple and uniform structures in the scene are quickly
rejected as face locations (i.e., very few classifiers are executed before all possible complete chains
are eliminated) whereas more complex regions, for instance textured areas and face-like structures,
require deeper penetration into the hierarchy. Consequently, the overall cost to process a scene
is dramatically lower than looping over many individual poses, a form of template- matching (cf.
Fig 1).

Work on cascades (Viola and Jones, 2001; Elad et al., 2002; Eveland et al., 2005; Keren et al.,
2001; Socolinsky et al., 2003; Romdhani et al., 2001; Kienzle et al., 2004; Wu et al., 2005) is also
motivated by an early rejection principle to exploit skewed priors (i.e., background domination).
In that work, as in ours, the time required to classify a pattern (e.g., an input subimage) depends
on the resemblance between that pattern and the objects of interest. For example, Viola and Jones
(2001) developed an accurate, real-time face detection algorithm in the form of a cascade of boosted
classifiers and computationally efficient feature detection. Other variations, such as those in Wu
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et al. (2005); Romdhani et al. (2001) for face detection, and the cascade of inner products in Keren
et al. (2001) for object identification, employ very simple linear classifiers. In nearly all cases the
individual node learning problems are treated heuristically; an exception is Wu et al. (2005), where,
for each node, the classifiers are designed to solve a (local) optimization problem constrained by
desired (local) error rates.

There are several important differences between our work and cascades. Cascades are coarse-
to-fine in the sense of background filtering whereas our approach is coarse-to-fine both in the sense
of hierarchical pruning of the background class and representation of the space of hypotheses. In
particular, cascades operate in a more or less brute-force fashion because every pose (e.g., position,
scale and tilt) must be examined separately. In comparing the two strategies, especially our work
with cascades of SVMs for face detection as in Kienzle et al. (2004); Romdhani et al. (2001), there is
then a trade-off between very fast early rejection of individual hypotheses (cascades) and somewhat
slower rejection of collections of hypotheses (tree-structured pruning).

No systematic comparison with cascades has been attempted. Moving beyond an empirical
study would require a model for how cost scales with other factors, such as scope and selectivity.
One such model was proposed in Blanchard and Geman (2005), in which the computational cost
C( f ) of a binary classifier f dedicated to a set A of hypotheses (against a universal “background”
alternative) is expressed as

C( f ) = Γ(|A|)×Ψ(1−δ)

where δ is false positive rate of the classifier f (so 1−δ is what we have called the selectivity) and
Γ and Ψ are increasing functions with Γ subadditive and Ψ convex. (Some empirical justification
for this model can be found in Blanchard and Geman (2005).) One can then compare the cost of
testing a “small” set A of hypotheses (e.g., all poses over a small range of locations, scales and tilts,
as in cascades) versus a “large” set B ⊃ A (e.g., many poses simultaneously, as here). Under this
cost model, and equalizing the selectivity, the subadditivity of Γ would render the test dedicated to
B cheaper than doing the test dedicated to A approximately |A||B| times, even ignoring the inevitable
reduction in selectivity due to repeated tests.

More importantly, perhaps, it is not clear that cascades will scale to more ambitious problems
involving many classes and instantiations since repeatedly testing a coarse set of hypotheses will
lack selectivity and repeatedly testing a narrow one will require a great many implementations.

Finally, to our knowledge, the work presented in this paper is the first to consider a global
construction of the system in an optimization framework. In particular, no global criteria appear in
either Fleuret and Geman (2001) or Viola and Jones (2001); in the former, the edge-based classifiers
are of roughly constant complexity whereas in the latter the complexity of the classifiers along the
cascade is not explicitly controlled.

3. Hierarchical Representation and Search

Let Λ denote a set of “patterns” or “hypotheses” of interest. Our objective is to determine which,
if any, of the hypotheses λ ∈ Λ is true, the alternative being a statistically dominant “background”
hypothesis {0}, meaning that most of the time 0 is the true explanation. Let Y denote the true state;
Y = 0 denotes the background state. Instead of searching separately for each λ ∈ Λ, consider a
coarse-to-fine search strategy in which we first try to exploit common properties (“shared features”)
of all hypotheses to “test” simultaneously for all λ ∈ Λ, that is, test the compound hypothesis H :
Y ∈ Λ against the alternative H0 : Y = 0. If the test is negative, we stop and declare background; if
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the test is positive, we separately test two disjoint subsets of Λ against H0; and so forth in a nested
fashion.

The tests are constructed to be very conservative in the sense that each false negative error rate
is very small, that is, given that Y ∈ A, we are very unlikely to declare background if A ⊂ Λ is the
subset of hypotheses tested at a given stage. The price for this small false negative error is of course
a non-negligible false positive error, particularly for testing “large” subsets A. However, this proce-
dure is highly efficient, particularly under the background hypothesis. This “divide-and-conquer”
search strategy has been extensively examined, both algorithmically (see for example Fleuret and
Geman, 2001; Amit et al., 2004; Gangaputra and Geman, 2006a) and mathematically (Blanchard
and Geman, 2005; Fleuret, 1999; Jung, 2001).

Note: There is an alternate formulation in which Y is directly modeled as a subset of Λ with Y = /0
corresponding to the background state. In this case, at each node of the hierarchy, we are testing a
hypothesis of the form H : Y ∩A 6= /0 vs the alternative Y ∩A = /0. In practice, the two formulations
are essentially equivalent; for instance, in face detection, we can either “decompose” a set of “ref-
erence” poses which can represent at most one face and then execute the hierarchical search over
subimages or collect all poses into one hierarchy with virtual tests near the root; see Section 7.1.
We shall adopt the simpler formulation in which Y ∈ Λ∪{0}.

Of course in practice we do all the splitting and construct all the “tests” in advance. (It should be
emphasized that we are not constructing a decision tree; in particular, we are recursively partitioning
the space of interpretations not features and, when the hierarchy is processed, a data point can travel
down many branches and arrive at none of the leaves.) Then, on line, we need only execute the tests
in the resulting hierarchy coarse-to-fine. Moreover, the tests are simply standard classifiers induced
from training data - examples of Y ∈ A for various subsets of A and examples of Y = 0. In particular,
in the case of object detection, the classifiers are constructed from the usual types of image features,
such as averages, edges and wavelets (Sahbi et al., 2002).

The nested partitions are naturally identified with a tree T . There is a subset Λt for each node
t of T , including the root (Λroot = Λ) and each leaf t ∈ ∂T . We will write t = (l,k) to denote the
k’th node of T at depth or level l. For example, in the case of a binary tree T with L levels, we then
have:







Λ1,1 = Λ
Λl,k = Λl+1,2k−1 ∪ Λl+1,2k

Λl+1,2k−1 ∩ Λl+1,2k = /0
l ∈ {1, ...,L−1} , k ∈

{

1, ...,2l−1
}

.

The hierarchy can be manually constructed (as here, copying the one in Fleuret and Geman, 2001)
or, ideally, learned.

Notice that the leaf cells Λt , t ∈ ∂T , needn’t correspond to individual hypotheses. Instead, they
represent the finest “resolution” at which we wish to estimate Y . More careful disambiguation
among candidate hypotheses may require more intense processing, perhaps involving online opti-
mization. It then makes sense to modify our definition of Y to reflect this possible coarsening of the
original classification problem: the possible “class” values are then {0,1, ...,2L−1}, corresponding
to “background” ({0}) and the 2L−1 “fine” cells at the leaves of the hierarchy.

Example: The Hierarchy for Face Detection. Here, the pose of an object refers to parameters
characterizing its geometric appearance in the image. Since we are searching for instances of a
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{

(p,φ,s) ∈ R
4 : p ∈ [−8,+8]2,φ ∈ [−200,+200],s ∈ [10,20]

}

{

(p,φ,s) ∈ R
4 : p ∈ [−1,+1]2,φ ∈ [00,+200],s ∈ [15,20]

}

Figure 5: An illustration of the pose hierarchy showing a sample of faces at the root cell and at one
of the leaves.

one object class – faces – the family of hypotheses of interest is a set of poses Λ. Specifically, we
focus attention on the position, tilt and scale of a face, denoted θ = (p,φ,s), where p is the midpoint
between the eyes, s is the distance between the eyes and φ is the angle with the line orthogonal to
the segment joining the eyes. We then define

Λ =
{

(p,φ,s) ∈ R
4 : p ∈ [−8,+8]2,φ ∈ [−200,+200],s ∈ [10,20]

}

.

Thus, we regard Λ as a “reference set” of poses in the sense of possible instantiations of a single
face within a given 64×64 image assuming that the position is restricted to a subwindow (e.g., an
16× 16 centered in the subimage) and the scale to the stated range. The “background hypothesis”
is “no face” (with pose in Λ). The leaves of T do not correspond to individual poses θ ∈ Λ; for
instance, the final resolution on position is a 2× 2 window. Hence, each “object hypothesis” is a
small collection of fine poses.

The specific hierarchy used in our experiments is illustrated in Fig (5). It has six levels (L = 6),
corresponding to three quaternary splits in location (four 8× 8 blocks, etc.) and one binary split
both on tilt and scale. Therefore, writing νl for the number of cells in T at depth l: ν1 = 1, ν2 = 41,
ν3 = 42 = 16, ν4 = 43 = 64, ν5 = 2 43 = 128 and ν6 = 22 43 = 256.

This is the same, manually-designed, pose hierarchy that was used in Fleuret and Geman (2001).
The partitioning based on individual components, as well as the splitting order, is entirely ad hoc.
The important issue of how to automatically design or learn the “divide-and-conquer” architecture
is not considered here. Very recent work on this topic appears in Fan (2006) and Gangaputra and
Geman (2006a).

Search Strategy:
Consider coarse-to-fine search in more detail. Let Xt be the test or classifier associated with

node t, with Xt = 1 signaling the acceptance of Ht : Y ∈ Λt and Xt = 0 signaling the acceptance
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of H0 : Y = 0. Also, let ω ∈ Ω represent the underlying data or “pattern” upon which the tests are
based; hence the true class of ω is Y (ω) and Xt : Ω−→ {0,1}.

The result of coarse-to-fine search applied to ω is a subset D(ω) ⊂ Λ of “detections”, possibly
empty, defined to be all λ∈Λ for which Xt(ω) = 1 for every test which “covers” λ, that is, for which
λ ∈ Λt . Equivalently, D is the union over all Λt , t ∈ ∂T such that Xt = 1 and the test corresponding
to every ancestor of t ∈ ∂T is positive, that is, all “complete chains of ones” (cf. Fig 6, B).

Both breadth-first and depth-first coarse-to-fine search lead to the same set D. Breadth-first
search is illustrated in Fig (6, C): Perform X1,1; if X1,1 = 0, stop and declare D = /0; if X1,1 = 1,
perform both X2,1 and X2,2 and stop only if both are negative; etc. Depth-first search explores the
sub-hierarchy rooted at a node t before exploring the brother of t. In other words, if Xt = 1, we visit
recursively the sub-hierarchies rooted at t; if Xt = 0 we “cancel” all the tests in this sub-hierarchy.
In both cases, a test is performed if and only if all its ancestors are performed and are positive.
(These strategies are not the same if our objective is only to determine whether or not D = /0; see
the analysis in Jung (2001).)

Notice that D = /0 if and only if there is a “null covering” of the hierarchy in the sense of a
collection of negative responses whose corresponding cells cover all hypotheses in Λ. The search
is terminated upon finding such a null covering. Thus, for example, if X1,1 = 0, the search is ter-
minated as there cannot be a complete chain of ones; similarly, if X2,1 = 0 and X3,3 = X3,4 = 0, the
search is terminated.

(A) (B) (C)

θ3 θ4

Figure 6: A hierarchy with fifteen tests. (A) The response to an input image were all the tests
to be performed; the positive tests are shown in black and negative tests in white. (B)
There are two complete chains of ones; in the case of object detection, the detected pose
is the average over those in the two corresponding leaves. (C) The breadth-first search
strategy with the executed tests are shown in color; notice that only seven of the tests
would actually be performed.

Example: The Search Strategy for Face Detection. Images ω are encoded using a vector of
wavelet coefficients; in the remainder of this paper we will write x to denote this vector of coeffi-
cients computed on a given 64×64 subimage. If D(x) 6= /0, the estimated pose of the face detected
in ω is obtained by averaging over the “pose prototypes” of each leaf cell represented in D, where
the pose prototype of Λt is the midpoint (cf. Fig 6, B).

A scene is processed by visiting non-overlapping 16× 16 blocks, processing the surrounding
image data to extract the features (wavelet coefficients) and classifying these features using the
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Figure 7: Multi-scale search. The original image (on the left) is downscaled three times. For each
scale, the base face detector visits each non-overlapping 16×16 block, and searches the
surrounding image data for all faces with position in the block, scale anywhere in the
range [10,20] and in-plane orientation in the range [−20o,+20o].

search strategy described earlier in this section. This process makes it possible to detect all faces
whose scale s lies in the interval [10,20] and whose tilt belongs to [−20o,+20o]. Faces at scales
[20,160] are detected by repeated down-sampling (by a factor of 2) of the original image, once for
scales [20,40], twice for [40,80] and thrice for [80,160](cf. Fig 7). Hence, due to high invariance to
scale in the base detector, only four scales need to be investigated altogether.

Alternatively, we can think of an extended hierarchy over all possible poses, with initial branch-
ing into disjoint 16×16 blocks and disjoint scale ranges, and with virtual tests in the first two layers
which are passed by all inputs. Given color or motion information (Sahbi and Boujemaa, 2000), it
might be possible to design a test which handles a set of poses larger than Λ; however, our test at
the root (accounting simultaneously for all poses in Λ) is already quite coarse.

4. Two SVM Hierarchies

Suppose we have a training set T = {(ω1,y1), ...,(ωn,yn)}. In the case of object detection, each
ω is some 64× 64 subimage taken, for example, from the Web, and either belongs to the “object
examples” L (subimages ω for which Y (ω) 6= 0) or “background examples” B (subimages for which
Y (ω) = 0).

All tests Xt , t ∈ T , are based on SVMs. We build one hierarchy, the free network or f-network for
short, with no constraints, that is, in the usual way from the training data once a kernel and any other
parameters are specified (Boser et al., 1992). The other hierarchy, the graded network or g-network,
is designed to meet certain error and complexity specifications.
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4.1 The f-network

Let ft be an SVM dedicated to separating examples of Y ∈ Λt from examples of Y = 0. (In our ap-
plication to face detection, we train ft based on face images ω with pose in Λt .) The corresponding
test is simply 1{ ft>0}. We refer to { ft , t ∈ T} as the f-network. In practice, the number of support
vectors decreases with the depth in the hierarchy since the classification tasks are increasingly sim-
plified; see Fig 2, left. We assume the false negative rate of ft is very small for each t; in other
words, ft(ω) > 0 for nearly all patterns ω for which Y (ω) ∈ Λt . Finally, denote the corresponding
data-dependent set of detections of the f-network by D f .

4.2 The g-network

The g-network is based on the same hierarchy {Λt} as the f-network. However, for each cell Λt ,
a simplified SVM decision function gt is built by reducing the complexity of the corresponding
classifier ft . The set of hypotheses detected by the g-network is denoted by Dg. The targeted
complexity of gt is determined by solving a constrained minimization problem (cf. Section 5).

We want gt to be both efficient and respect the constraint of a negligible false negative rate.
As a result, for nodes t near the root of T the false positive rate of gt will be higher than that of
the corresponding ft since low cost comes at the expense of a weakened background filter. Put
differently, we are willing to sacrifice selectivity for efficiency, but not at the expense of missing
(many) instances of our targeted hypotheses. Thus, for both networks, a positive test by no means
signals the presence of a targeted hypothesis, especially for the very computationally efficient tests
in the g-network near the top of the hierarchy.

Instead of imposing an absolute constraint on the false negative error, we impose one relative to
the f-network, referred to as the conservation hypothesis: For each t ∈ T and ω ∈Ω:

ft(ω) > 0⇒ gt(ω) > 0.

This implies that an hypothesis detected by the f-network is also detected by the g-network, namely

D f (ω)⊂ Dg(ω), ∀ω ∈Ω.

Consider two classifiers gt and gs in the g-network and suppose node s is deeper than node t.
With the same number of support vectors, gt will generally produce more false alarms than gs since
more invariance is expected of gt (cf. Fig 2, right). In constructing the g-network, all classifiers
at the same level will have the same number of support vectors and are then expected to have
approximately the same false alarm rate (cf. Fig 8).

In the following sections, we will introduce a model which accounts for both the overall mean
cost and the false alarm rate. This model is inspired by the trade-offs among selectivity, cost and
invariance discussed above. The proposed analysis is performed under the assumption that there
exists a convex function which models the false alarm rate as a function of the number of support
vectors and the degree of “pose invariance”.

5. Designing the g-network

Let P be a probability distribution on Ω. Write Ω = L ∪B , where L denotes the set of all possi-
ble patterns for which Y (ω) > 0, that is, Y ∈ {1, ...,2L−1}, hence a targeted pattern, and B = L c
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Figure 8: For the root cell, a particular cell in the fifth level and three particular pose cells in the
sixth level of the g-network, we built SVMs with varying numbers of (virtual) support
vectors. All curves show false alarm rates with respect to the number of (virtual) support
vectors. For the sixth level, and in the regime of fewer than 10 (virtual) support vectors,
the false alarm rates show considerable variation, but have the same order of magnitude.
These experiments were run on background patterns taken from 200 images including
highly textured areas (flowers, houses, trees, etc.)

contains all the background patterns. Define P0(.) = P(.|Y = 0) and P1(.) = P(.|Y > 0), the con-
ditional probability distributions on background and object patterns, respectively. Throughout this
paper, we assume that P(Y = 0) >> P(Y > 0), which means that the presence of the targeted pattern
is considered to be a rare event in data sampled under P.

Face Detection Example (cont): We might take P to be the empirical distribution on a huge set
of 64× 64 subimages taken from the Web. Notice that, given a subimage selected at random, the
probability to have a face present with location near the center is very small.

Relative to the problem of deciding Y = 0 vs Y 6= 0, that is, deciding between “background”
and “object” (some hypothesis in Λ), the two error rates for the f-network are P0 (D f 6= /0), the false
positive rate, and P1 (D f = /0), the false negative rate. The total error rate is, P0 (D f 6= /0)P(Y = 0) +
P1 (D f = /0) P(Y > 0). Clearly this total error is largely dominated by the false alarm rate.

Recall that for each node t ∈ T there is a subset Λt of hypotheses and an SVM classifier gt with
nt support vectors. The corresponding test for checking Y ∈ Λt against the background alternative
is 1{gt>0}. Our objective is to provide an optimization framework for specifying {nt}.

5.1 Statistical Model

We now introduce a statistical model for the behavior of the g-network. Consider the event that a
background pattern traverses the hierarchy up to node t, namely the event

T

s∈At
{gs > 0}, where

At denotes the set of ancestors of t – the nodes from the parent of t to the root, inclusive. We will
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assume that the probability of this event under P0, namely

P0(gs > 0,s ∈ At), (1)

depends only on the level of t in the hierarchy (and not on the particular set At) as well as on the
numbers n1, ...,nl−1 of support vectors at levels one through l − 1, where t is at level l. These
assumptions are reasonable and roughly satisfied in practice; see Sahbi (2003).

The probability in (1) that a background pattern reaches depth l, that is, there is a chain of
positive responses of length l− 1, is then denoted by δ(l− 1;n), where n denotes the sequence
(n1, ...,nL). Naturally, we assume that δ(l;n) is decreasing in l. In addition, it is natural to assume
that δ(l;n) is a decreasing function of each n j,1 ≤ j ≤ l. In Section 7 we will present an example
of a two-dimensional parametric family of such models.

There is an equivalent, and useful, reformulation of these joint statistics in terms of conditional
false alarm rates (or conditional selectivity). One specifies a model by prescribing the quantities

P0(groot > 0), P0(gt > 0|gs > 0,s ∈ At) (2)

for all nodes t with 2 ≤ l(t) ≤ L. Clearly, the probabilities in (1) determine those in (2) and vice-
versa.

Note: We are not specifying a probability distribution on the entire family of variables {gt , t ∈ T},
equivalently, on all labeled trees. However, it can be shown that any (decreasing) sequence of
positive numbers p1, ..., pL for the chain probabilities is “consistent” in the sense of providing a well-
defined distribution on traces, the labeled subtrees that can result from coarse-to-fine processing,
which necessarily are labeled “1” at all internal nodes; see Gangaputra and Geman (2006b).

In order to achieve efficient computation (at the expense of extra false alarms relative to the
f-network), we choose n = (n1, ...,nL) to solve a constrained minimization problem based on the
mean total computation in evaluating the g-network and a bound on the expected number of detected
background patterns:

min
n

C (n1, ...,nL)

s.t. E0 (|Dg|) ≤ µ
(3)

where E0 refers to expectation with respect to the probability measure P0. We first compute this ex-
pected cost, then consider the constraint in more detail and finally turn to the problem of choosing
the model.

Note: In our formulation, we are assuming that overall average computation is well-approximated
by estimating total computation under the background probability by itself rather than with respect
to a mixture model which accounts for object instances. In other words, we are assuming that
background processing accounts for most of the work. Of course, in reality, this is not strictly
the case, especially at the lower levels of the hierarchy, at which point evidence has accrued for
the presence of objects and the conditional likelihoods of object and background are no longer
extremely skewed in favor of the latter. However, computing under a mixture model would severely
complicate the analysis. Moreover, since extensive computation is rarely performed, we believe our
approximation is valid; whereas an expanded analysis might somewhat change the design of the
lower levels, it would not appreciably reduce overall cost.
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5.2 Cost of the g-network

Let ct indicate the cost of performing gt and assume

ct = a nt +b.

Here a represents the cost of kernel evaluation and b represents the cost of “preprocessing” – mainly
extracting features from a pattern ω (e.g., computing wavelet coefficients in a subimage). We will
also assume that all SVMs at the same level of the hierarchy have the same number of support
vectors, and hence approximately the same cost.

Recall that νl is the number of nodes in T at level l; for example, for a binary tree, νl = 2l−1.
The global cost is then:

Cost = ∑
t

1{gt is performed} ct

=
L

∑
l=1

νl

∑
k=1

1{gl,k is performed} cl,k

(4)

since gt is performed in the coarse-to-fine strategy if and only if gs > 0 ∀s ∈ At , we have, from
equation (4), with δ(0;n) = 1,

C (n1, ...,nL) = E0 (Cost)

=
L

∑
l=1

νl

∑
k=1

P0 ({gl,k is performed}) cl,k

=
L

∑
l=1

νl

∑
k=1

δ(l−1;n) cl,k

=
L

∑
l=1

νl δ(l−1;n) cl

= a
L

∑
l=1

νl δ(l−1;n) nl +b
L

∑
l=1

νl δ(l−1;n).

The first term is the SVM cost and the second term is the total preprocessing cost. In the
application to face detection we shall assume the preprocessing cost – the computation of Haar
wavelet coefficients for a given subimage – is small compared with kernel evaluations, and set a = 1
and b = 0. Hence,

C (n1, ...,nL) = n1 +
L

∑
l=2

νl nl δ(l−1;n).

5.3 Penalty for False Detections

Recall that Dg(ω) – the set of detections – is the union of the sets Λt over all terminal nodes t for
which there is a complete chain of positive responses from the root to t. For simplicity, we assume
that |Λt | is the same for all terminal nodes t. Hence |Dg| is proportional to the total number of
complete chains:

|Dg| ∝ ∑
t∈∂T

1{gt>0} ∏
s∈At

1{gs>0}.
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It follows that

E0|Dg| ∝ E0 ∑
t∈∂T

1{gt>0} ∏
s∈At

1{gs>0}

= ∑
t∈∂T

δ(L;n)

= νLδ(L;n)

By the Markov inequality,

P0(Dg 6= /0) = P0(|Dg| ≥ 1)≤ E0|Dg|.

Hence bounding the mean size of Dg also yields the same bound on the false positive probability.
However, we cannot calculate P0(|Dg| ≥ 1) based only on our model {δ(l;n)}l since this would re-
quire computing the probability of a union of events and hence a model for the dependency structure
among chains.

Finally, since we are going to use the SVMs in the f-network to build those in the g-network,
the number of support vectors nl for each SVM in the g-network at level l is bounded by the corre-
sponding number, Nl , for the f-network. (Here, for simplicity, we assume that Nt is roughly constant
in each level; otherwise we take the minimum over the level.)

Summarizing, our constrained optimization problem (3) becomes

min
n1,...,nL

n1 +
L

∑
l=2

νl nl δ(l−1;n) s.t.

{

νLδ(L;n) ≤ µ
0 < nl ≤ Nl .

(5)

5.4 Choice of Model

In practice, one usually stipulates a parametric family of statistical models (in our case the chain
probabilities) and estimates the parameters from data. Let {δ(l;n,β)},β ∈ B} denote such a family
where β denotes a parameter vector, and let n∗ = n∗(β) denote the solution of (5) for model β. We
propose to choose β by comparing population and empirical statistics. For example, we might select
the model for which the chain probabilities best match the corresponding relative frequencies when
the g-network is constructed with n∗(β) and run on sample background data. Or, we might simply
compare predicted and observed numbers of background detections:

β∗ .
= argmin

β∈B
|E0 (|Dg|;n∗(β))− µ̂0(n∗(β))|

where µ̂0(n∗(β)) is the average number of detections observed with the g-network constructed from
n∗(β). In Section 7 we provide a concrete example of this model estimation procedure.

6. Building the g-network

Since the construction is node-by-node, we can assume throughout this section that t is fixed and
that Λ = Λt and f = ft are given, where f is an SVM with N f support vectors. Our objective is to
build an SVM g = gt with two properties:

• g is to have Ng < N f support vectors, where Ng = n∗l(t) and n∗ = (n∗1, ...,n
∗
L) is the optimal

design resulting from the upcoming reformulation (8) of (5) which incorporates our model
for {δ(l : n)}; and
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• The “conservation hypothesis” is satisfied; roughly speaking this means that detections under
f are preserved under g.

Let x(ω) ∈ R
q be the feature vector; for simplicity, we suppress the dependence on ω. The

SVM f is constructed as usual based on a kernel K which implicitly defines a mapping Φ from
the input space R

q into a high-dimensional Hilbert space H with inner product denoted by 〈 〉.
Support vector training (Boser et al., 1992) builds a maximum margin hyperplane (w f ,b f ) in H .
Re-ordering the training set as necessary, let

{

Φ(v(1)), ...,Φ(v(N f ))
}

and {α1, ...,αN f } denote, re-
spectively, the support vectors and the training parameters. The normal w f of the hyperplane is

w f = ∑N f

i=1 αi y(i) Φ(v(i)).

The decision function in R
q is non-linear:

f (x) = 〈w f ,Φ(x)〉 + b f =
N f

∑
i=1

αi y(i) K(v(i),x) + b f .

The parameters {αi} and b f can be adjusted to ensure that ‖w f ‖
2 = 1.

The objective now is to determine (wg,bg), where

g(x) = 〈wg,Φ(x)〉 + bg =
Ng

∑
k=1

γk K(z(k),x) + bg.

Here Z =
{

z(1), ...,z(Ng)
}

is the reduced set of support vectors (cf. Fig 9, right), γ =
{

γ1, ...,γNg

}

the
underlying weights, and the labels y(k) have been absorbed into γ.
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6.1 Determining wg: Reduced Set Technique

The method we use is a modification of the reduced set technique (RST) (Burges, 1996; Burges and
Schölkopf, 1997). Choose the new normal vector to satisfy:

w∗g = arg min
wg:‖wg‖=1

〈wg−w f ,wg−w f 〉.

Using the kernel trick, and since wg = ∑Ng

k=1 γk Φ(z(k)), the new optimization problem becomes:

min
Z,γ ∑

k,l

γkγl K(z(k),z(l)) + ∑
i, j

αiα j y(i) y( j) K(v(i),v( j))−2∑
k,i

γkαi y(i) K(z(k),v(i)). (6)

For some kernels (for instance the Gaussian), the function to be minimized is not convex; con-
sequently, with standard optimization techniques such as conjugate gradient, the normal vector
resulting from the final solution (Z,γ) is a poor approximation to w f (cf. Fig 9, left). This prob-
lem was analyzed in Sahbi (2003), where it is shown that, in the context of face detection, a good
initialization of the minimization process can be obtained as follows: First cluster the initial set of
support vectors {Φ(v(1)), ...,Φ(v(N f ))}, resulting in Ng centroids, each of which then represents a
dense distribution of the original support vectors. Next, each centroid, which is expressed as a linear
combination of original support vectors, is replaced by one support vector which best approximates
this linear combination. Finally, this new reduced set is used to initialize the search in (6) in order to
improve the final solution. Details may be found in Sahbi (2003) and the whole process is illustrated
in Section 7.

6.2 Determining bg: Conservation Hypothesis

Regardless of how bg is selected, g is clearly less powerful than f . However, in the hierarchical
framework, particularly near the root, the two types of mistakes (namely not detecting patterns in
Λ and detecting background) are not equally problematic. Once a distinguished pattern is rejected
from the hierarchy it is lost forever. Hence we prefer to severely limit the number of missed de-
tections at the expense of additional false positives; hopefully these background patterns will be
filtered out before reaching the leaves.

We make the assumption that the classifiers in the f-network have a very low false negative
rate. Ideally, we would choose bg such that g(x(ω)) > 0 for every ω ∈ Ω for which f (x(ω)) > 0.
However, this results in an unacceptably high false positive rate. Alternatively, we seek to minimize

P0 ( g ≥ 0 | f < 0 )

subject to
P1 ( g < 0 | f ≥ 0 )≤ ε.

Since we do not know the joint law of ( f ,g) under either P0 or P1, these probabilities are estimated
empirically: for each bg calculate the conditional relative frequencies using the training data and
then choose the optimal bg based on these estimates.

7. Application to Face Detection

We apply the general construction of the previous sections to a particular two-class problem – face
detection – which has been widely investigated, especially in the last ten years. Existing methods
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include artificial neural networks (Schneiderman and Kanade, 2000; Sung, 1996; Rowley et al.,
1998; Féraud et al., 2001; Garcia and Delakis, 2004), networks of linear units (Yang et al., 2000),
support vector machines (Osuna et al., 1997; Evgeniou et al., 2000; Heisele et al., 2001; Romdhani
et al., 2001; Kienzle et al., 2004), Bayesian inference (Cootes et al., 2000), deformable templates
(Miao et al., 1999), graph-matching (Leung et al., 1995), skin color learning (Hsu et al., 2001; Sahbi
and Boujemaa, 2000), and more rapid techniques such as boosting a cascade of classifiers (Viola
and Jones, 2001; Li and Zhang, 2004; Wu et al., 2005; Socolinsky et al., 2003; Elad et al., 2002)
and hierarchical coarse-to-fine processing (Fleuret and Geman, 2001).

The face hierarchy was described in Section 3. We now introduce a specific model for (1), the
probability of a chain under the background hypothesis, and finally the solution to the resulting
instance of the constrained optimization problem expressed in (8) below. The probability model
links the cost of the SVMs to their underlying level of invariance and selectivity. Afterwords, in
Section 8, we illustrate the performance of the designed g-network in terms of speed and error on
both simple and challenging face databases including the CMU and the MIT datasets.

7.1 Chain Model

Our model family is {δ(l;n,β),β ∈ B}, where δ(l;n,β) is the probability of a chain of “ones” of
depth l−1. These probabilities are determined by the conditional probabilities in (2). Denote these
by

δ(1;n,β) = P0(groot > 0)

and
δ(l | 1, ..., l−1;n,β) = P0(gt > 0|gs > 0,s ∈ At).

Specifically, we take:

δ(1;n,β) = 1
β1n1

β1 > 0

δ(l | 1, ..., l−1;n,β) =
β1n1 + ...+βl−1nl−1

β1n1 + ...+βl−1nl−1 +βlnl
, β1, ...,βl > 0.

Loosely speaking, the coefficients β = {β j j = 1, ...,L} are inversely proportional to the degree
of “pose invariance” expected from the SVMs at different levels. At the upper, highly invariant,
levels l of the g-network, minimizing computation yields relatively small values of βl and vice-versa
at the lower, pose-dedicated, levels. The motivation for this functional form is that the conditional
false alarm rate δ(l | 1, ..., l− 1;n,β) should be increasing as the number of support vectors in
the upstream levels 1, ..., l− 1 increases. Indeed, when gs > 0 for all nodes s upstream of node
t, and when these SVMs have a large number of support vectors and hence are very selective, the
background patterns reaching node t resemble faces very closely and are likely to be accepted by the
test at t. Of course, fixing the numbers of support vectors upstream, the conditional selectivity (that
is, one minus the false positive error rate) at level l grows with nl . Notice also that the model does
not anticipate exponential decay, corresponding to independent tests (under P0) along the branches
of the hierarchy.

Using the marginal and the conditional probabilities expressed above, the probability δ(l;n,β)
to have a chain of ones from the root cell to any particular cell at level l is easily computed:

δ(l;n,β) =
1

β1n1

β1 n1

β1 n1 +β2 n2
...

β1 n1 + ...+βl−1nl−1

β1n1 + ...+βlnl
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=

(

l

∑
j=1

β jn j

)−1

. (7)

Clearly, for any n and β, these probabilities decrease as l increases.

7.2 The Optimization Problem

Using (7), the constrained minimization problem (5) becomes:

min
n1,...,nL



n1 +
L

∑
l=2

(

l−1

∑
i=1

βini

)−1

νl nl





s.t.











νL

(

L

∑
i=1

βini

)−1

≤ µ

0 < nl ≤ Nl .

(8)

This problem is solved in two steps:

• Step I: Start with the solution for a binary network (i.e., νl+1 = 2νl). This solution is provided
in Appendix A.

• Step II: Pass to a dyadic network using the solution to the binary network, as shown in Sahbi
(2003, p. 127).

7.3 Model Selection

We use a simple function with two degrees of freedom to characterize the growth of β1, ...,βL:

βl = Ψ−1
1 exp{Ψ2(l−1)} (9)

where Ψ = (Ψ1,Ψ2) are positive. Here Ψ1 represents the degree of pose invariance at the root cell
and Ψ2 is the rate of the decrease of this invariance. Let n∗(Ψ) denote the solution to (8) for β given
by (9) and suppose we restrict Ψ ∈ Q, a discrete set. (In our experiments, |Q|= 100 corresponding
to ten choices for each parameter Ψ1 and Ψ2, namely Ψ1 ranges from 0.0125 to 0.2 and Ψ2 ranges
from 0.1 to 1.0, both in equal steps.) In other words, n∗(Ψ) are the optimal numbers of support
vectors found when minimizing total computation (8) under the false positive constraint for a given
fixed β = {β1, ...,βL} determined by (9). Then Ψ∗ is selected to minimize the discrepancy between
the model and empirical conditional false positive rates:

min
Ψ∈Q

L

∑
l=1

∣

∣

∣
δ(l | 1, ..., l−1;n∗(Ψ),Ψ)− δ̂(l | 1, ..., l−1;n∗(Ψ))

∣

∣

∣
(10)

where δ̂(l | 1, ..., l−1;n∗(Ψ)) is the underlying empirical probability of observing gt > 0 given that
gs > 0 for all ancestors s of t, averaged over all nodes t at level l, when the g-network is built with
n∗(Ψ) support vectors.

In practice, it takes 3 days (on a 1-Ghz pentium-III) to implement this design, which includes
building the f-network (SVM training), solving the minimization problem (8) for different instances
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Algorithm: Design of the g-network.

- Build the f-network using standard SVM training and learning set L ∪B
- for (Ψ1,Ψ2) ∈ Q do

- βl ← Ψ−1
1 exp{Ψ2(l−1)}, l = 1, ...,L

- Compute n∗(Ψ) using (8).
- Build the g-network using the reduced set method and the specified

costs n∗(β).
- Compute the model and empirical conditional probabilities

δ(l | 1, ..., l−1;n∗(Ψ),Ψ) and δ̂(l | 1, ..., l−1;n∗(Ψ)).
end
- Ψ∗ ← (10)
- The specification for the g-network is n∗(Ψ∗)

of Ψ = (Ψ1,Ψ2) and applying the reduced set technique (6) for each sequence of costs n∗(Ψ) in
order to build the g-network.

When solving the constrained minimization problem (8) (cf. Appendix A), we find the optimal
numbers n∗1, ...,n

∗
6 of support vectors, rounded to the nearest even integer, are given by:

n∗ = {2, 2, 2, 4, 8, 22} ,

(cf. table 2), corresponding to Ψ∗ = ((Ψ−1
1 )∗,Ψ∗2) = (7.27,0.55), resulting in

β∗ = {7.27, 25.21, 87.39, 302.95, 525.09, 910.11}. For example, we estimate

P0(groot > 0) =
1

2×7.27
= 0.069

the false positive rate at the root.
The empirical conditional false alarms were estimated on background patterns taken from 200

images including highly textured areas (flowers, houses, trees, etc.). The conditional false positive
rates for the model and the empirical results are quite similar, so that the cost in the objective
function (8) approximates effectively the observed cost. In fact, when evaluating the objective
function in (8), the average cost was 3.379 kernel evaluations per pattern whereas in practice this
average cost was 3.196 per pattern taken from scenes including highly textured areas.

Again, the coefficients β∗l and the complexity n∗l of the SVM classifiers are increasing as we go
down the hierarchy, which demonstrates that the best architecture of the g-network is low-to-high
in complexity.

7.4 Features and Parameters

Many factors intervene in fitting our cost/error model to real observations (the conditional false
alarms), including the size of the training sets and the choice of features, kernels and other parame-
ters, such as the bound on the expected number of false alarms. Obviously the nature of the resulting
g-network can be sensitive to variations of these factors. We have only used wavelet features, the
Gaussian kernel, selecting the parameters by cross-validation, and the very small ORL database.

Whereas we have not done systematic experiments to analyze sensitivity, it is reasonable to sup-
pose that having more data or more powerful features would increase performance. For instance,
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Ψ1 Ψ2 L1 error Number of support vectors per level

Ψ2 = .70 0.980 1.03 1.08 1.42 1.87 4.98 16.375
Ψ1 = .2000 Ψ2 = .55 0.809 1.49 2.35 3.69 4.99 11.64 32.12

Ψ2 = .30 1.207 2.70 8.13 17.45 24.36 42.89 93.50
Ψ2 = .70 1.129 1.00 1.08 1.46 1.98 5.40 18.12

Ψ1 = .1875 Ψ2 = .55 0.750 1.39 2.20 3.46 4.68 10.91 30.12
Ψ2 = .30 1.367 2.53 7.62 16.36 22.83 40.20 87.62
Ψ2 = .70 0.995 1.00 1.18 1.70 2.46 7.20 25.50

Ψ1 = .1750 Ψ2 = .55 0.766 1.30 2.05 3.23 4.37 10.19 28.12
Ψ2 = .30 1.401 2.36 7.12 15.27 21.32 37.56 81.87
Ψ2 = .70 0.981 1.00 1.29 2.00 3.13 9.84 37.00

Ψ1 = .1625 Ψ2 = .55 0.752 1.21 1.91 3.00 4.06 9.46 26.12
Ψ2 = .30 1.428 2.19 6.61 14.18 19.80 34.86 76.00
Ψ2 = .70 0.839 1.00 1.41 2.38 4.03 13.74 55.12

Ψ1 = .1500 Ψ2 = .55 0.605 1.11 1.76 2.77 3.75 8.74 24.12
Ψ2 = .30 1.339 2.02 6.10 13.09 18.27 32.17 70.12
Ψ2 = .70 1.137 1.00 1.56 2.87 5.30 19.72 85.12

Ψ1=.1375 Ψ2=.55 0.557 1.02 1.61 2.54 3.43 8.01 22.12
Ψ2 = .30 1.580 1.85 5.59 11.99 16.74 29.47 64.25
Ψ2 = .70 1.230 1.00 1.75 3.53 7.16 29.29 137.12

Ψ1 = .1250 Ψ2 = .55 0.808 1.00 1.71 2.89 4.21 10.56 30.62
Ψ2 = .30 1.441 1.69 5.08 10.91 15.23 26.83 58.50
Ψ2 = .70 NS - - - - - -

Ψ1 = .1000 Ψ2 = .55 0.958 1.00 2.21 4.69 8.60 27.23 93.37
Ψ2 = .30 0.687 1.35 4.06 8.72 12.18 21.44 46.75
Ψ2 = .70 NS - - - - - -

Ψ1 = .0750 Ψ2 = .55 NS - - - - - -
Ψ2 = .30 1.242 1.01 3.05 6.55 9.14 16.11 35.12

Table 2: A sample of the simulation results. Shown, for selected values of (Ψ1, Ψ2), are the L1

error in (10) and also the numbers of support vectors which minimize cost. In practice
10× 10 possible values of Ψ1 and Ψ2 are considered (Ψ1 ∈ [0,0.2] and Ψ2 ∈ [0.1,1.0]).
(NS stands for “no solution”, L1 refers to the sum of absolute differences, and the bold line
is the optimal solution.)

with highly discriminating features, the separation between the positive and negative examples used
for training the f-network might be sufficient to allow even linear SVMs to produce accurate deci-
sion boundaries, in which case very few support vectors might be required in the f-network. The
leave-one-out error bound (see for instance Vapnik, 1998) would then suggest low error rates. Ac-
cordingly, in principle, the g-network could be designed with few (virtual) support vectors while
satisfying the false alarm bound in (3). The features we use – the Haar wavelet coefficients – are
generic and not especially powerful. The only other ones we tried were Daubechies wavelets, which
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were abandoned due to extensive computation; their performance is unknown. Similar arguments
apply to the choice of kernels and their parameters; for instance the scale of the Gaussian kernel
controls influences both the error rate and the number of support vectors in the f-network (and also
in the g-network.)

8. Experiments

All the training images of faces are based on the Olivetti database of 400 gray level pictures – ten
frontal images for each of forty individuals. The coordinates of the eyes and the mouth of each
picture were labeled manually. Most other methods (see below) use a far larger training set, in
fact, usually ten to one hundred times larger. In our view, the smaller the better in the sense that
the number of examples is a measure of performance along with speed and accuracy. Nonetheless,
this criterion is rarely taken into account in the literature on face detection (and more generally in
machine learning).

In order to sample the pose variation within Λt , for each face image in the original Olivetti
database, we synthesize 20 images of 64× 64 pixels with randomly chosen poses in Λt . Thus, a
set of 8,000 faces is synthesized for each pose cell in the hierarchy. Background information is
collected from a set of 1,000 images taken from 28 different topical databases (including auto-
racing, beaches, guitars, paintings, shirts, telephones, computers, animals, flowers, houses, tennis,
trees and watches), from which 50,000 subimages of 64×64 pixels are randomly extracted.

Given coarse-to-fine search, the “right” alternative hypothesis at a node is “path-dependent”.
That is, the appropriate “negative” examples to train against at a given node are those data points
which pass all the tests from the root to the parent of the node. As with cascades, this is what we
do in practice; more precisely, we merge a fixed collection of background images with a “path-
dependent” set (for details see Sahbi, 2003, chap. 4).

Each subimage, either a face or background, is encoded using the 16×16 low frequency coef-
ficients of the Haar wavelet transform computed efficiently using the integral image (Sahbi, 2003;
Viola and Jones, 2001). Thus, only the coefficients of the third layer of the wavelet transform are
used; see Chapter 2 of Sahbi (2003). The set of face and background patterns belonging to Λt are
used to train the underlying SVM ft in the f-network (using a Gaussian kernel).

8.1 Clustering Detections

Generally, a face will be detected at several poses; similarly, false positives will often be found in
small clusters. In fact, every method faces the problem of clustering detections in order to provide
a reasonable estimate of the “false alarm rate,” rendering comparisons somewhat difficult.

The search protocol was described in Section 7.1. It results in a set of detections Dg for each
non-overlapping 16×16 block in the original image and each such block in each of three downsam-
pled images (to detect larger faces). All these detections are initially collected. Evidently, there are
many instances of two “nearby” poses which cannot belong to two distinct, fully visible faces. Many
ad hoc methods have been designed to ameliorate this problem. We use one such method adapted to
our situation: For each hierarchy, we sum the responses of the SVMs at the leaves of each complete
chain (i.e., each detection in Dg) and remove all the detections from the aggregated list unless this
sum exceeds a learned threshold τ, in which case Dg is represented by a single “average” pose. In
other words, we declare that a block contains the location of a face if the aggregate SVM score of
the classifiers in the leaf-cells of complete chains is above τ. In this way, the false negative rate does
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not increase due to pruning and yet some false positives are removed. Incompatible detections can
and do remain.

Note: One can also implement a “voting” procedure to arbitrate among such remaining but incom-
patible detections. This will further reduce the false positive rate but at the expense of some missed
detections. We shall not report those results; additional details can be found in Sahbi (2003). Our
main intention is to illustrate the performance of the g-network on a real pattern recognition problem
rather than to provide a detailed study of face detection or to optimize our error rates.

8.2 Evaluation

We evaluated the g-network in term of precision and run-time in several large scale experiments
involving still images, video frames (TF1) and standard datasets of varying difficulty, including
the CMU+MIT image set; some of these are extremely challenging. All our experiments were run
under a 1-Ghz pentium-III mono-processor containing a 256 MB SDRM memory, which is today a
standard machine in digital image processing.

The Receiver Operator Characteristic (ROC) curve is a standard evaluation mechanism in ma-
chine perception, generated by varying some free parameter (e.g., a threshold) in order to investigate
the trade-off between false positives and false negatives. In our case, this parameter is the threshold
τ for the aggregate SVM score of complete chains discussed in previous section. Several points on
the ROC curve are given for the TF1 and CMU+MIT test sets whereas only a single point is reported
for easy databases (such as FERET).

8.2.1 FERET AND TF1 DATASETS

The FERET database (FA and FB combined) contains 3,280 images of single and frontal views of
faces. It is not very difficult: The detection rate is 98.8 % with 245 false alarms and examples are
shown in the top of Fig 10. The average run time on this set using a 1Ghz is 0.28 (s) for images of
size 256×384.

The TF1 corpus involves a News-video stream of 50 minutes broadcasted by the French TV
channel TF1 on May 5th, 2002. (It was used for a video segmentation and annotation project at
INRIA and is not publicly available.) We sample the video at one frame each 4(s), resulting into
750 good quality images containing 1077 faces. Some results are shown on the bottom of Fig 10
and the performance is described in Table 8.2.1 for three points on the ROC curve. The false alarm
rate is the total number of false detections divided by the total number of hierarchies traversed, that
is, the total number of 16×16 blocks visited in processing the entire database.

8.2.2 ARF DATABASE AND SENSITIVITY ANALYSIS

The full ARF database contains 4000 images on ten DVDs; eight of these DVDs – 3,200 images
with faces of 100 individuals against uniform backgrounds – are publicly available at
(http://rvl1.ecn.purdue.edu/∼aleix/aleix face DB.html). This dataset is still very challenging due
to large differences in expression and lighting, and especially to partial occlusions due to scarves,
sunglasses, etc. The g-network was run on this set; sample results are given in the rows 2-4 of
Fig 10. Among the 10 face images for a given person, two images show the person with sunglasses,
three with scarves and five with some variation in the facial expression and/or strong lighting ef-
fects. Our face detection rate is only 78.79 % with 3 false alarms. Among the missed faces, 32.12 %
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Figure 10: Sample detections on three databases: FERET (top), ARF (middle), TF1 (bottom).

are due to occlusion of the mouth, 56 % due to occlusion of the eyes (presence of sun glasses) and
11.88 % due to face shape variation and lighting effects.

8.2.3 CMU+MIT DATASET

The CMU subset contains frontal (upright and in-plane rotated) faces whereas the MIT subset con-
tains lower quality face images. Images with an in-plane rotation of more than 200 were removed,
as well as “half-profile” faces in which the nose covers one cheek. This results in a subset of 141
images from the CMU database and 23 images from the MIT test set. These 164 images contain
556 faces. A smaller subset was considered in Rowley et al. (1998) and in Viola and Jones (2001),
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Threshold # Missed Detection # False False alarm Average
faces rate alarms rate run-time

τ = 0 017 98.4 % 333 1/9,632 0.351(s)
τ = 1 109 89.8 % 143 1/22,430 0.357(s)
τ = 2 151 85.9 % 096 1/33,411 0.343(s)

Table 3: Performance on the TF1 database of 750 frames with 1077 faces. The three rows cor-
respond to three choices of the threshold for clustering detections. The false alarm rate
is given as the number of background pattern declared as faces over the total number of
background patterns. The average run-time is reported for this corpus on images of size
500×409.

namely 130 images containing 507 faces, although in the former study other subsets, some account-
ing for half-profiles, were also considered (see Table 4).

Sahbi & Geman Viola and Jones (2001) Rowley et al. (1998)

# of images 164 130 130
# of faces 556 507 507
False alarms 112 95 95
Detection rate 89.61 % 90.8 % 89.2 %
Time (384×288) 0.20(s) 1

3 ×0.20(s) 5×0.20(s)

Table 4: Comparison of our work with other methods which achieve high performance.

The results are given in Table 4. The g-network achieves a detection rate of 89.61 % with 112
false alarms on the 164 images. These results are very comparable to those in Rowley et al. (1998);
Viola and Jones (2001): for 95 false alarms, the detection rate in Viola and Jones (2001) was 90.8 %
and in Rowley et al. (1998) it was 89.2 %. Put another way, we have an equivalent number of false
alarms with a larger test set but a slightly smaller detection rate; see Table 4. Our performance could
very likely be improved by utilizing a larger training set, exhibiting more variation than the Olivetti
set, as in Viola and Jones (2001); Rowley et al. (1998); Schneiderman and Kanade (2000), where
training sets of sizes 4916, 1048 and 991 images, respectively, are used.

Scenes are processed efficiently; see Fig 11. The run-time depends mainly on the size of the
image and its complexity (number of faces, presence of face-like structures, texture, etc). Our
system processes an image of 384×288 pixels (the dimensions reported in cited work) in 0.20(s);
this is an average obtained by measuring the total run time on a sample of twenty images of varying
sizes and computing the equivalent number of images (approximately 68) of size 384× 288. This
average is about three times slower than in Viola and Jones (2001), approximately five times faster
than the fast version in Rowley et al. (1998) and 200 times faster than in Schneiderman and Kanade
(2000). Notice that, for tilted faces, the fast version of Rowley’s detector spends 14(s) on images of
320×240 pixels.
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255×365, 0.14(s) 305×421, 0.26(s) 228×297, 0.14(s) 640×480, 0.50(s) 320×240, 0.16(s) 320×240, 0.12(s) 320×240, 0.16(s) 592×654, 0.54(s)

250×329, 0.14(s) 462×294, 0.27(s) 320×240, 0.16(s) 126×210, 0.07(s) 640×480, 0.41(s) 627×441, 0.60(s) 275×369, 0.22(s)

555×768, 0.57(s) 520×739, 0.53(s) 623×805, 0.79(s) 500×622, 0.57(s) 576×776, 0.50(s) 539×734, 0.79(s)

336×484, 0.30(s) 256×256, 0.70(s) 250×361, 0.16(s) 775×1024, 1.23(s) 340×350, 0.17(s)

469×375, 0.36(s) 628×454, 0.49(s) 271×300, 0.16(s) 367×364, 0.19(s) 259×324, 0.18(s) 271×403, 0.19(s)

660×656, 0.58(s) 352×352, 0.20(s) 490×338, 0.27(s) 233×174, 0.09(s) 628×454, 0.58(s) 601×444, 0.52(s)

Figure 11: Detections using the CMU+MIT test set. More results can be found on http://www-
rocq.inria.fr/who/Hichem.Sahbi/Web/face results/
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Threshold Detection # False False alarms
rate alarms rate

τ = 0 92.95 % 312 1/2,157
τ = 0.5 89.61 % 112 1/6,011
τ = 1 87.2 % 096 1/7,013
τ = 10 34.94 % 004 1/168,315

Table 5: Evaluation of our face detector on the CMU+MIT databases.

8.2.4 HALLUCINATIONS IN TEXTURE

Performance degrades somewhat on highly texture scenes. Some examples are provided in Fig 12.
Many features are detected, triggering false positives. However, there does not appear to an “explo-
sion” of hallucinated faces, at least not among the roughly 100 such scenes we processed, of which
only a few had order ten detections (two of these are shown in Fig 12).

9. Summary

We presented a general method for exploring a space of hypotheses based on a coarse-to-fine hier-
archy of SVM classifiers and applied it to the special case of detecting faces in cluttered images. As
opposed to a single SVM dedicated to a template, or even a hierarchical platform for coarse-to-fine
template-matching, but with no restrictions on the individual classifiers (the f-network), the pro-
posed framework (the g-network) allows one to achieve a desired balance between computation and
error. This is accomplished by controlling the number of support vectors for each SVM in the hier-
archy; we used the reduced set technique here, but other methods could be envisioned. The design
of the network is based on a model which accounts for cost, selectivity and invariance. Naturally,
this requires assumptions about the cost of an SVM and the probability that any given SVM will be
evaluated during the search.

We used one particular statistical model for the likelihood of a background pattern reaching a
given node in the hierarchy, and one type of error constraint, but many others could be considered. In
particular, the model we used is not realistic when the likelihood of an “object” hypothesis becomes
comparable with that of the “background” hypothesis. This is in fact the case at deep levels of the
hierarchy, at which point the conditional selectivity of the classifiers should ideally be calculated
with respect to both object and background probabilities. A more theoretical approach to these
issues, especially the cost/selectivity/invariance tradeoff, can be found in Blanchard and Geman
(2005), including conditions under which coarse-to-fine search is optimal.

Extensive experiments on face detection demonstrate the huge gain in efficiency relative to ei-
ther a dedicated SVM or an unrestricted hierarchy of SVMs, while at the same time maintaining
precision. Efficiency is due to both the coarse-to-fine nature of scene processing, rejecting most
background regions very quickly with highly invariant SVMs, and to the relatively low cost of most
of the SVMs which are ever evaluated.
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Figure 12: Left: Detections on highly textured scenes. (We thank Larry Jackal for the second (“face
in a tree”) image.) Right: The darkness of a pixel is proportional to the amount of local
processing necessary to collect all detections. The average number of kernel evaluations,
per block visited, are respectively 11, 6, 14 and 4.
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Appendix A.

In this appendix, we will show how an approximate solution of the constrained minimization prob-
lem (8) can be obtained for the case of a binary hierarchy (i.e., νl = 2l−1). An extension to any
arbitrary hierarchy can be found in Sahbi (2003).

Suppose β is fixed and consider the optimization problem in (8). Clearly, the unconstrained
problem is degenerate, minimized by choosing nl ≡ 0; indeed this minimizes cost. We start by
minimizing cost for a fixed value of nL and for real-valued nl , l = 1, ...,nL−1. In this case, the values
of n1,n2, ...,nL−1 which satisfy ∂C

∂nl
= 0, l = 1, ...,L−1, are given by:
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We have:
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The above two equations imply:
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Suppose n1 is known; we show by a recursion that the general term nl is given by (11):
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which proves (15). As for n1, using (12) for j = L−1,
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We can now rewrite (8) as:
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Using (11), this can be written entirely in terms of nL. We use a “generate-and-test” (brute-
force search) strategy: First, the parameter nL is varied from 1 to its upper bound NL (with some
quantization). Then, for each value of this parameter, we check the consistency of the candidate
solution, that is, whether the first constraint (on expected false alarms) is satisfied and whether each
nl is bounded Nl . The value nL minimizing the cost function is retained.
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Figure 13: The average cost C (n1, ...,nL) is an increasing function of nL.

For small values of nL, the objective function in (8) (the average cost) typically takes small
values (cf. Fig 13) and the upper bound constraints related to {nl} are generally satisfied, but the
mean false alarm constraint might not be satisfied. For large values of nL, the bounds on {nl} might
not be satisfied and the average cost increases, although the mean false alarm constraint is typically
satisfied.

Finally, we allow β to vary with Ψ according to (9). Notice that (8) might not have a solution
for any Ψ; obviously we only consider values for which the constraints are satisfied for some nL.

References

Y. Amit and D. Geman. A computational model for visual selection. Neural Computation., 11(7):
1691–1715, 1999.

2119



SAHBI AND GEMAN

Y. Amit, D. Geman, and X. Fan. A coarse-to-fine strategy for multi-class shape detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(12):1606–1621, 2004.

S. Baker and S. Nayar. Pattern rejection. In Proceedings of the Conference on Computer Vision and
Pattern Recognition, pages 544–549, 1996.

R. Battiti and C. Koch. Computing optical flow across multiple scales: a coarse-to-fine approach.
International Journal of Computer Vision, 6(2):133–145, 1991.

G. Blanchard and D. Geman. Sequential testing designs for pattern recognition. Annals of Statistics,
33:1155–1202, 2005.

G. Borgefors. Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 10:849–865, 1988.

B. E. Boser, I. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In
Proceedings of the Fifth Workshop on Computational Learning Theory., pages 144–152, 1992.

C. Burges and B. Schölkopf. Improving the accuracy and speed of support vector machines. In
Michael C. Mozer, Michael I. Jordan, and Thomas Petsche, editors, Proceedings of the Advances
in Neural Information Processing Systems, volume 9, pages 375–381. The MIT Press, 1997.

C.J.C. Burges. Simplified support vector decision rules. In Proceedings of the International Con-
ference on Machine Learning, pages 71–77, 1996.

T. Cootes, K. Walker, and C. Taylor. View-based active appearance models. In Proceedings of the
IEEE International Conference on Face and Gesture Recognition., pages 227–232, 2000.

M. Elad, Y. Hel-Or, and R. Keshet. Pattern detection using a maximal rejection classifier. Pattern
Recognition Letters, 23(12):1459–1471, 2002.

C.K. Eveland, D.A. Socolinsky, C.E. Priebe, and D.J. Marchette. A hierarchical methodology for
class detection problems with skewed priors. Journal of Classification, 22:17–48, 2005.

T. Evgeniou, M. Pontil, C. Papageorgiou, and T. Poggio. Image representations for object detection
using kernel classifiers. In Proceedings of the Asian Conference on Computer Vision, pages 687–
692, 2000.

X. Fan. Learning a hierarchy of classifiers for multi-class shape detection. PhD thesis, Johns
Hopkins University, Department of Electrical Engineering, 2006.
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