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Abstract

We present a kernel-based algorithm for hierarchical tkadsification where the documents are
allowed to belong to more than one category at a time. Theifileetion model is a variant of the
Maximum Margin Markov Network framework, where the classifion hierarchy is represented
as a Markov tree equipped with an exponential family definedhe edges. We present an effi-
cient optimization algorithm based on incremental condgi gradient ascent in single-example
subspaces spanned by the marginal dual variables. Theipagtiom is facilitated with a dynamic
programming based algorithm that computes best updatetiding in the feasible set.
Experiments show that the algorithm can feasibly optimiasing sets of thousands of exam-
ples and classification hierarchies consisting of hundoédsdes. Training of the full hierarchical
model is as efficient as training independent SVM-light siffers for each node. The algorithm’s
predictive accuracy was found to be competitive with otleeently introduced hierarchical multi-
category or multilabel classification learning algorithms
Keywords: kernel methods, hierarchical classification, text categtion, convex optimization,
structured outputs

1. Introduction

In many application fields, taxonomies and hierarchies are natural waygdaipe and classify
objects, hence they are widely used for tasks such as text classifidaticontrast, machine learn-
ing research has largely been focused on flat target predictiongwihenutput is a single binary
or multivalued scalar variable. Naively encoding a large hierarchy eitttera series of binary
problems or a single multiclass problem with many possible class values duffiershe fact that
dependencies between the classes cannot be represented well.afmieexf a news article be-
longs to categoryusic, it is very likely that the article belongs to categGENTERTAINMENT.
The failure to represent these relationships leads to a steep decline oéthetipe accuracy in the
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number of possible categories. In recent years, methods that utilize tlaechigin learning the
classification have been proposed by several authors (Koller aratratl®97; McCallum et al.,
1998; Dumais and Chen, 2000). Very recently, new hierarchicalifizg®n approaches utilizing
kernel methods have been introduced (Hofmann et al., 2003; Cai aingiaidn, 2004; Dekel et al.,
2004). The main idea behind these methods is to map the documents (or dodabedimig pairs)

into a potentially high-dimensional feature space where linear maximum mayganatien of the

documents becomes possible.

Most of the above mentioned methods assume that the object to be clasdifiegstie exactly
one (leaf) node in the hierarchy. In this paper we consider the morealerase where a single
object can be classified into several categories in the hierarchy, todoifispthe multilabel is
a union of partial pathsn the hierarchy. For example, a news article about David and Victoria
Beckham could belong to partial patbBORT FOOTBALL andENTERTAINMENT, MUSIC but might
not belong to any leaf categories such@sAMPIONS LEAGUE The problem of multiple partial
paths was also considered in Cesa-Bianchi et al. (2004).

Recently Taskar et al. (2003) introduced a maximum margin technique wpidmiped an
SVM-style objective function over structured outputs. This techniqud asmarginalization trick
to obtain a polynomial sized quadratic program using marginal dual vasiaflhis was an im-
provement over the exponentially-sized problem resulting from the dtializaf the primal margin
maximization problem, which only can be approximated with polynomial numbeppistivectors
using a working set method (Altun et al., 2003; Tsochantaridis et al., 2004)

Even using marginal variables, however, the problem becomes infetsieleen medium sized
data sets. Therefore, efficient optimization algorithms are needed. Ireihés e present an algo-
rithm for working with the marginal variables that is in the spirit of Taskarle(2003), however
a reformulation of the objective allows a conditional-gradient method to bet wh&ch gains effi-
ciency and also enables us to work with a richer class of loss functions.

The structure of this article is the following. In Section 2 we present theifitzgson frame-
work, review loss functions and derive a quadratic optimization problerfirfding the maximum
margin model parameters. In Section 3 we present an efficient learningtlaig relying a decom-
position of the problem into single training example subproblems and condutgiagve condi-
tional gradient ascent in marginal dual variable subspaces congisygdo single training examples.
A dynamic programming algorithm is presented that used to efficiently find thteulpelate direc-
tions. Extensions and variants are briefly discussed in Section 4. We potganew algorithm
in Section 5 to flat and hierarchical SVM learning approaches and thartigcal regularized least
squares algorithm recently proposed by Cesa-Bianchi et al. (2@9d)conclude the article with
discussion in Section 6.

2. Maximum Margin Hierarchical Multilabel Classification

We consider data from a domam x & wherex is a set andy = 97 x --- x 9% is a Cartesian
product of the setg; = {+1,—1},j =1,... k. Avectory = (y1,...,Yk) € 7 is called themultilabel
and the componentg are called thenicrolabels

We assume that a training sflxi,yi)}"; C x x 9 has been given, consisting of training ex-
amples(x;,y;) of a training patterx; and multilabely;. A pair (xi,y) wherex; is a training pattern
andy € o is arbitrary, is called @seudo-examp]eo denote the fact that the pair may or may not
be generated by the distribution generating the training examples.
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A HUMAN NECESSITIES
A 01 AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY,; ...
A 01 B SOIL WORKING IN AGRICULTURE OR FORESTRY
A 01 B 1/02 Spades; Shovels
A 01 B 9/00 Ploughs with rotary driven tools
D TEXTILES; PAPER
D 21 PAPER-MAKING; PRODUCTION OF CELLULOSE
D 21 F PAPER-MAKING MACHINES
D 21 F 1/00 Wet end of machines for making continuous webs pépa

E.C.1 Oxidoreductases
E.C.1.1. Acting on the CH-OH group of donors.
E.C.1.1.1 With NAD(+) or NADP(+) as acceptor.
E.C.1.1.1.1 Alcohol dehydrogenase.
E.C.6 Ligases
E.C.6.1 Forming carbon-oxygen bonds.
E.C.6.1.1 Ligases forming aminoacyl-tRNA and related coumgls.
E.C.6.1.1.1 Tyrosine—tRNA ligase.

Figure 1: Examples of classification hierarchies: An excerpt from theQWatent classification
hierarchy (top) and an excerpt from the Enzyme Classification scheotteih.

As the model class we use the exponential family

P(ylx) =

defined on the edges of a Markov tree= (V,E), where nodg €V corresponds to thgth compo-
nent of the multilabel and the edges- (j, j’) € E correspond to the classification hierarchy given
as input. AboveZ(x,w) =y, exp(wT(p(x,y)) is the normalizing factor also called the partition
function. Byye = (yj,Yj/) we denote the restriction of the multilabgel= (y1,...,yk) to the edge
e=(j,}). By 2%e= 9 x 7 we denote the set of labelings of an edge (j, j').

In this work, we assume that the Markov tfeés given a priori. This is a reasonable assumption,
as hand-made hierarchies and taxonomies are frequent in applicatitvesability to learn the
structure from data is an important and challenging question, which is adgopfe of this article
(See Lafferty et al. (2004) for a study to that direction).

Figure 1 depicts examples of two hierarchical classification domains, peéssification ac-
cording to the World International Patent Organization (WIPO) that is tsethssify patent texts,
and enzyme classification scheme (EC) used by biologists to classify aminceapiences for
enzymatic proteins.

2.1 Loss Functions for Hierarchical Multilabel Classification

There are many ways to define loss functions for multilabel classification sedinuit depends
on the application which loss function is the most suitable. A few general ljuedecan be set,
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though. The loss function between two multilabel vectpi@ndu should obviously fulfill some
basic conditions{(u,y) = 0if and only ifu =y, £(u,y) is maximum whem; #y; for every 1< j <
k, and/ should be monotonically non-decreasing with respect to the sets of intarierolabels.
These conditions are satisfied by, for examptp-one losgg (y,u) = [y # u]. However, it gives
loss of 1 if the complete hierarchy is not labeled correctly, even if only desimicrolabel was
predicted incorrectly.

In multilabel classification, we would like the loss to increase smoothly so thabwenake a
difference between 'nearly correct’ and 'clearly incorrect’ multilab&dictions.Symmetric differ-
ence loss

ea(y,u) =3 [yj # ujl,

]

has this property and is an obvious first choice as the loss function inwstdalassification tasks.
However, the classification hierarchy is not reflected in any way in the |6%8 uni-category
hierarchical classification (Hofmann et al., 2003; Cai and Hofmann42D@kel et al., 2004),
where exactly one of the microlabels has value 1, Dekel et al. (20043siseloss function the
length of the patHii,---,ix) between the the true and predicted nodes with positive microlabels
lpaTH(Y,u) = |path(i : y; = 1, ] : uj = 1)|. Cai and Hofmann (2004) defined a weighted version of
the loss that can take into account factors such as subscription loaddesf.n

In the union of partial paths model, where essentially we need to comparedected tree
to the true one the concept of a path distance is not very natural. We woeallthléccount for the
incorrectly predicted subtrees—in the spirit/gf—but taking the hierarchy into account. Predicting
the parent microlabel correctly is more important than predicting the chilécityr as the child
may deal with some detailed concept that the user may not be interested @xafople whether
a document was abo@HAMPIONS LEAGUE football or not may not relevant to a person that is
interested iNFOOTBALL in general. Also, for the learners point of view, if the parent class was
already predicted incorrectly, we don’t want to penalize the mistake in ittt o& loss function
that has these properties was given by Cesa-Bianchi et al. (20@4nadlizes the first mistake along
a path from root to a node

bu(y,u) = Cjlyj # Uj & Yn=unvh e angj)],
J

whereand j) denotes the set of ancestors of ngd&he coefficients &< ¢; < 1 are used for down-
scaling the loss when going deeper in the tree. These can be chosen ivmanyOne can divide
the maximum loss among the subtrees met along the path. This is done by defining

Croot = 1,Cj = Cpa(j)/ISibI(])I,

where we denoted bpa(j) the immediate parent and Isybl(j) the set of siblings of nod¢ (in-
cluding j itself). Another possibility is to scale the loss by the proportion of the hieyaitwdt is in
the subtred (j) rooted byj, that is, to define

¢j =[T(J)I/[T(root)].

In our experiments we use both the sibling and subtree scaling to re-weggtit{ion errors on
individual nodes, these are referred to/asbl and/-subtreerespectively. If we just use a uniform
weighting €; = 1) in conjunction with the hierarchical loss above this is denoteduas f.

1604
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Using ¢y for learning a model has the drawback that it does not decompose &y the
labelings of the complete path are needed to compute the loss. Therefois paghkr we consider
a simplified version ofy, namely

Ca(y,u) = Cjlyj # Uj & Ypaj) = Upa(j)];
J

that penalizes a mistake in a child only if the label of the parent was corrbig.clioice leads the
loss function to capture some of the hierarchical dependencies (bethee@arent and the child)
but allows us define the loss in terms of edges, which is crucial for theegitig of our learning
algorithm.

Using the above, the per-microlabel loss is divided among the edges ridiatlee node. This
is achieved by defining aadge-losde(Ye, Ue) = € (Yj,Uj)/A (j) + €5 (yj,uj) /A (') for eache =
(j,J"), wheret; is the term regarding microlabg| ye = (y;,yj) is a labeling of the edge and
A (]) denotes the neighbors of noglén the hierarchy (i.e. the children of a nodes and it's parent).
Intuitively, the edges adjacent to nogléshare the blame’ of the microlabel loés The multilabel
loss {a or /) is then written as a sum over the edgé¥, U) = 5 ecg Le(Ye, Ue).

The above described loss functions do not represent an exhalistioé the possible ones.
With probabilistic models, it is common to employ KL-divergence or negative loglitikod as
the loss function (Lafferty et al., 2004). In the max-margin learning fraomkuhese types of loss
functions are not applicable, as they require estimating the underlyinglpiiby distribution, e.g.
to compute the log-partition function. As our central theme is efficient computafistructured
prediction models, we concentrate on the above simpler formulations of losdis.

2.2 Feature Representations for Structured Inputs

When handling input data that already comes in vector form, there is no tifiga introduce a
special kernel function. The inner product of the ingitg, z) = x" z, also called the 'linear kernel’,
can be used. However, when using structured data such as sesjueses or graphs, one needs to
convert the structured representation to a vector form. Feature egpaéien for structured input
data have been considered in many works already (c.f. Gartner {20@8vill concentrate to the
important case of hierarchical classification of text or, in general esegpidata.

For sequences the most common feature representation is to countlotrahegistence of sub-
sequence occurrences, when the subsequences are taken fxrethindiex set). Different choices
for the index set and accounting for occurrences give rise to a famifgatfire representations
and kernels. Below we review the main forms of representation for segaemd the computation
kernels for such representations.

Word spectrum (Bag-of-words) kernels. In the most widely used feature representation for
strings in a natural language, informally callegiy-of-worddBoW), the index set is taken as the set
of words in the language, possibly excluding some frequently occurtapveords (Salton, 1989).
The representation was brought to SVM learning by Joachims (1998).

In the case of a stringcontaining English text, for each English wasgwe define the feature
value

Qu(s) = [{ilsj - Sjrju-1 = Ul
as the number of times occurs in some position) of s. For the example text = 'The cat
was chased by the fat dog’the BoW will contain the following non-zero entrieg;,e (S) = 2,
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(pdog(s) =1, (pwas(s) =1, (pchased(s) =1, (Pby(S) =1, (Pfat(S) =1, Qcat = 1. These occurrence
counts can also be weighted, for example by scaling by the inverse dotfremurency as is done
in TFIDF weighting (c.f. Salton (1989)):

Qu(s) = Kilsj .- Sjtju—1 = U} x 10g;N/Nu,

whereN, is the number of documents whareccurs andN is the total number of documents in the
collection.

Although the dimension of the feature space may be high, computation of thekBoWl can
be efficiently implemented by scanning the two strings, constructingligsandL(t) of pairs
(u,cy) of word u and occurrence couut, ordered in the lexicographical order of the substrings
and finally traversing the two lists to compute the dot product.

Substring spectrum kernels. For strings that do not encompass a crisply defined word-structure,
for example, biological sequences, a different approach is more kuit@iven an alphabef, a
simple choice is to takbl = ZP, the set of strings of length. In some cases, using a range of
substring lengthg < | < p may be more appropriate than picking a single length. We can define

U=39Uu5%1...UzP for some 1< q < p.

The most efficient approaches, working@ip(|s| + [t|)) time, to compute substring spectrum
kernels are based on suffix trees (Leslie et al., 2002; Vishwanatrdh®Smola, 2002), although
dynamic programming and approaches based onrialata structure also can be used Shawe-
Taylor and Cristianini (2004).

The substring kernels can be generalized in many ways, for example

e Gapped substring spectrum kernalw gaps in the subsequence occurrenGamp-weighting
can be used to down-weight substring occurrences that contain mdaggogaps (Lodhi
et al., 2002; Rousu and Shawe-Taylor, 2005).

e Word or syllable alphabetsan be used in place of characters (Saunders et al., 2002; Cancedda
etal., 2003).

2.3 Feature Representations for Hierarchical Outputs

When the input features are used in hierarchical classification, they toelee associated with
the labelings of the hierarchy. In our setting, this is done via constructingnafgature map
@: X X7 — Fxy. There are important design choices to be made in how the hierarchiazlséru
should reflect in the feature representation.

There are two general types of features that can be distinguished:

Global featuresare given by the feature map : x — #4. They are not tied to a particular vertex
or edge but represent the structured object as a whole. For examgplydkof-words or the
substring spectrum of a document is not tied to a single class of documerigiaechy, but
a given word can relate to different classes with different importances.

Local features are given by a feature mag X — 7y tied to a particular vertex or edge of the
structure. For example, given a structured representation of a sciantiifie, we can make a
difference between elements occurring within the title, abstract, article bulyederences,
and construct local feature maps for each of the components.
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Given the input features, there are two basic ways by which the jointréeactor can be con-
structed:

Orthogonal feature representation is defined ag(Xx,y) = (Ps(X, Ye))ecg » SO that there is a block
for each edge (or vertex), which, in turn, is divided into blocks for ecHfir edge-labeling
pairs(e, ue), i-. @s(X,Ye) = (@5°(X, Ye))y co.-

The vectorgy should incorporate both thefeatures relevant to the edge and encode the
dependency on the labeling of the edge. A simple choice is to define

(X, Ye) = [Ue = Vel (00T, (X)) "

that incorporates both the global and local features if the edge is lajetedl, and a zero
vector otherwise. Intuitively, the features are turned 'on’ only for thdipular labeling of
the edge that is consistent wigh

Additive feature representationis defined as

00Y)= 3 T o= U,

Ue€Te
wheregge contains features specific to the pggrue).

The orthogonal and additive feature representations differ frorh etier in several respects. In
the orthogonal representation, global features get weighted in a talgpgndent manner: some
features may be more important in labeling one edge than another. Thulglihkfgatures will be
'localized’ by the learning algorithm. The size of the feature vectors grogaliy in the number of
edges, which requires careful implementation if solving the primal optimizatmioigam (1) instead
of the dual. The kernel induced by the above feature map decomposes as

K(va;xlvy/) = Z(pe(xaye)-r(pe(x/7y/e) = ;Ke(xvye; ley/e)7
ec ec
which means that there is no crosstalk between the edges:

@e(X,Ye) T @y (X, yer) =0

if e £ €, hence the name 'orthogonal’. The number of terms in the sum when calgula¢itkernel
obviously scales linearly in the number of edges.

The dimension of the feature vector using the additive feature représerigindependent of
the size of the hierarchy, thus optimization in primal representation (1) is reasble for large
structures. Second, as there are no feature weights depending ditalaapart of the structure,
the existence of local features is mandatory, otherwise the output sterustapt reflected in the
feature vector. Third, the kernel

KOxyXy) = (;cpe<x,y>)T(gcpe<x’,y’>)

= e%cpe(x,ye)Tcpg(x,y;«) = ; Kea (X, Ye; X', Ye)
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induced by this representation typically has non-zero bldCks # 0, representing cross-talk
between edges. There are two consequences of this fact. First, thed Bees not exhibit the
sparsity that is implied by the hierarchy, thus it creates the possibility of timgfi Second, the
complexity of the kernel will grow quadratically in the size of the hierarctipgathan linearly as
is the case with orthogonal features. This is another reason why a piaization approach for
this representation might be more justified than a dual approach.

In the sequel, we describe a method that relies on the orthogonal feefuesentation which
will give us a dual formulation with complexity growing linearly in the number ojeslinE. The
kernel defined by the feature vectors, denoted by

KX(x,x') = ¢(x) "¢ (x),
is referred to ag-kernel whileK (x,y;x,y’) is referred to as thpint kernel

2.4 Maximum Margin Learning

Typically in learning probabilistic models, one aims to learn maximum likelihood paeamevhich
in the exponential CRF amounts to solving

argmay, log ([ml P(yi|x; ;w)) = argmay, i (W @(xi,yi) —logZ(xi,w)].

This estimation problem is hampered by the need to compute the (logarithm ofttigpp func-
tion Z. For a general graph this problem is hard to solve. Approximation metlodts fcompu-
tation is a subject of active research (c.f. Wainwright and Jordan)208I80, in the absence of
regularization the max-likelihood model is likely to suffer from overfitting

An alternative formulation (c.f Altun et al. 2003; Taskar et al. 2003), imespby support vector
machines, is to estimate parameters that in some sense maximize the ratio

P(yi|xi;w)
P(y[xi;w)

between the probability of the correct labeliggand the worst competing labeling With the
exponential family, the problem translates to the problem of maximizing the minimuar limargin

wT@(xi,yi) —w' o(xi,y)

in the log-space.

Furthermore, we would like the margyto scale as a function of the loss so that grossly incor-
rect pseudo-examples are pushed farther from the correct labedingtity slightly incorrect ones.
Using the canonical hyperplane representation (c.f. Cristianini and&haylor (2000)) this can
be stated as the following minimization problem:

. 1 2
min  Slwl
S.t. WTNP(th) ZE(YHY)NHY
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whereAp(X,y) = @(Xi,Y;) — @(Xi,y). As with SVMs, a model satisfying margin constraints exactly
rarely exists, hence it is necessary to add slack varidplasallow examples to deviate from the
margin boundary. Altogether, this results in the following optimization problem

1, m
min 2 |wl] +Ci;E|
st wWIApX,Y) > £yiy) — &, Vi, Y. 1)

This optimization problem suffers from the possible high-dimensionality oféh&ufe vectors, for
example with string kernels, and from the exponential-sized constrairfinseite length of the
multilabel vector). A dual problem

1
T —Za' S ai,y) <C,vi
r&aoxa 14 50 Ka,st%a(l,y)_c,w, 2)

whereK = ADTAD is thejoint kernel matrix forpseudo-examplgs;,y) and/ = (£(yi,y))iy is the
loss vector, allows us to circumvent the problem with feature vectors. t#awie the dual problem
there are exponentially many dual variabdes,y), one for each pseudo-example.

There are a few basic routes by which the exponential complexity candusroiented:

e Dual working set methods where the constraint set is grown incremenyadigding the worst
margin violator

argmin ,w' Ag(xi,y) — £(Yi,y)

to the dual problem. One can guarantee an approximate solution with a polymamiber
of support vectors by this approach (Altun et al., 2003; Tsochantagidik, 2004).

e Primal methods where the solution above inference problem is integratedpartied opti-
mization problem, rather than writing down the exponential-sized constraiffieskar et al.,
2004).

e Marginal dual methods, where the problem is translated to a polynomialfsized/ia con-
sidering the marginals of the dual variables (Taskar et al., 2003).

The methodology presented in this article belongs to the third category.

2.5 Marginalized Dual Problem

The feasible set of the dual problem (2) is a Cartesian product
4=41X X An 3)
of identical closed polytopes
4 = {a; e R? | & > 0, [|ai||; <C}, (4)

with a vertex set; = {0,Cey,...,Cey |} C RI”| consisting of the zero vector and the unit vectors
of RI”I, scaled byC. The vertex set of is the Cartesian produgty x - - - X V.
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The dimension of the set, d; = m|7| is exponential in the length of the multilabel vectors.
This means that optimizing directly over the the geis not feasible. Fortunately by utilizing the
structure ofT, the seta can be mapped to a sef of polynomial dimension, called the marginal
polytope ofH, where optimization becomes more feasible (Taskar et al., 2003).

For an edges € E of the Markov treeT, and an associated labeligg, the marginal ofx(i,y)
for the pair(e,ye) is given by

He(i,Ye) = > [Ye=uUela(i,u) (5)
{uen}

where the sum picks up those dual variati€s y) that have equal valuee = ye on the edgee.
Single node marginals;(i,y;) are defined analogously.

For the hierarchyl', the vector containing the edge marginals of the examplthe marginal
dual vector, is given by

M = (Ue(ivue))eeaueeye'

The marginal vector of the whole training set is the concatenation of the frghaple marginal
dual vectorgi = (1) ;. The vector has dimensiah, = MY qg |Ye| = O(ME|max|9e|). Thus
the dimension is linear in the number of the examples, edges and the maximunaliggyrdirset of
labelings of a single edge.

The indicator functions in (5) can be collectively represented by the théxntr Mg (e, ue;y) =
[ue = Ye|, and the relationship between a dual vector alpha and the correspondigigahgectoru
is given by the linear maMg - a; = iy andp = (Mg - ai)imzl. The image of the set;, defined by

M = {W| Ja; € 2; : Mea; = 1}

is called themarginal polytopeof a; onT.
The following properties of the sat; are immediate: Le#z; be the polytope of (4) and let;
be the corresponding marginal polytope. Then

¢ the vertex set ofi; is the image of the vertex set af:
Vi = {H| F0i € Vi : Mea; = 1}

e As an image of a convex polytopg under the linear maplg, 44, is a convex polytope.

These properties underlie the efficient solution of the dual problem oménginal polytope.

The exponential size of the dual problem (2) can be tackled via the redatpibetween its
feasible sea = 43 x --- x 4y, and the marginal polytoped; of eacha;.

Given a decomposable loss function

£(yi,y) EEge (i,Ye)

the linear part of the objective satisfies

ZZaly (i,y) :ZZGIY e(i,Ye)
yey
N ZlegEueeyeyye Ue EEI Ue ZleglzUeED’e I ue €EI UE)

T T
= W bG=n e,
S
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wherele = (€)% = (fe(i,Ue))i"1 eck ueen, IS the marginal loss vector.
Given an orthogonal feature representation inducing a decomposatviel K(x,y;x',y") =
Y eck Ke(X, Ye; X', V), the quadratic part of the objective becomes

aKa = 3 5 % ali.y)Ke(i.yel',ye)a(i',y')

e LI'yy

= 333 Kelibueihue) 5 5 aliy)ali’y)
€ i1 Uell Y:Ye=Uey"yg=u;

= ZZ Z Ue(i,Ue)Ke(iaUe;i,au;)UE(iaU:e)
€ 1,I" Ug,Ug

= HTKELL

whereKg = diag(Ke, e € E) is a block diagonal matrix with edge-specific kernel blokks

The objective should be maximized with respectutwhilst ensuring that there exist € 4
satisfyingMa; = ; for all i, so that the marginal dual solution represents a feasible solution of the
original dual. By the properties outlined above, the feasible set of theimadimpd problem is the
marginal dual polytope, or to be exact the Cartesian product of the raaitytopes of single
examples (which are in fact equal):

M =My X X Mm

In summary, the marginalized optimization problem can be stated in implicit form as

max ' (g — }UTKEU
HEM 2
This problem is a quadratic programme with a linear number of variables in thbenof training
examples and in the number of edges.

For optimization algorithms, an explicit characterization of the feasible setjisresl. Char-
acterizing the polytopes in terms of linear constraints defining the faces of the polytope, is for
general graphs infeasible. Singly-connected graphs such as tee@s exception: for such graphs
the marginal polytope is exactly reproduced by the box constraints

> He(i,Ue) <C,Vi,e€E e >0 (6)
Ue

and the local consistency constraints

> Wi (Yo Yi) = Hi(,Y5) D (50 Yi) = Hi(i, i) (7)
Yk Yi

In this case the size of the resulting constraint set is linear in the numberticksghe graph. Thus
for small hierarchies graphs it can be written down explicitly and the reswptignization problem
has linear size in both the number of examples and the size of the graphthEhaysproach can in
principle be made to work, although not with off-the-shelf QP solversgsetions 3 and 5).

For hierarchies, the consistency constraints (7), can be equivalesfthyed in terms of the
edges: it suffices to pair up each edge with its parent which results in tloé sdge paire, =
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{(e,€) e ExEle=(],i),€ =(i,])}. By introduction of these marginal consistency constraints
the optimization problem gets the form

1
maxy wile— = K 8
egEUe e ZeZEue eMe (8)

1>0

s.tz He(i,Ye) <C,Vi,e€ E,
Ye

;ue(i,(%y)) = ;w(h(y’)/)), vi,y, (e,€) € Ey,

9

While the above formulation is closely related to that described in Taskar @0413), there are

a few differences to be pointed out. Firstly, as we assign the loss to the edper than the
microlabels, we are able to use richer loss functions than the sifaplé&econdly, single-node
marginal dual variables—thg’s in (7)—become redundant when the constraints are given in terms
of the edges. Thirdly, we have utilized the fact that in our feature reptason the 'cross-edge’
values/Ap,(X, ye)TAcpe,(x’,yg,), wheree # €, do not contribute to the kernel, hence we have a block-
diagonal kerneKg = diag(Kel,...,Ke‘E‘),KE(i,e, Ue; |, Ve) = Ke(i,Ue; j,Ve) With the number of
non-zero entries thus scaling linearly rather than quadratically in the nuphieeiges. Finally, we
write the box constraint (6) as an inequality as we want the algorithm to bécaiblzctivate training
examples (see Section 3.2).

Like that of Taskar et al. (2003), our approach can be generalizedrdree structures. How-
ever, for a general graph, the feasible region in (8) will only approterttzat of (2), which will give
rise to a approximate solution to the primal. To arrive at an exact solutiorstandd construct the
junction tree for the graph and to write down the corresponding constfairitse junction tree. As
a caveat, one should note that for dense graphs, the junction tree megnibieantly larger than
the size of the original structure. Also, in tractable time, finding the maximum likedimoultilabel
can only be approximated.

3. Efficient Optimization of the Marginalized Dual Problem

While the above quadratic program is polynomial-sized—and consideratdifes than that de-
scribed in Taskar et al. (2003)—it is still easily too large in practice to fit in nna@mory or to
solve by off-the-shelf QP solvers. To arrive at a more tractable pmobbee notice from (3) and
(4) that the constraint set decomposes by the examples: to satisfy a simgterstraint (6) or a
marginal consistency constraint (7) one only needs to change the mahgah@ariables of a single
example. Moreover, the structure of the feasible set only depends @dtfeeseE, not on the
training example in question: we hawe = --- = 4.

However, the kernel matrix only decomposes by the edges as most paramwiples have
non-positive kernel value between them. Thus there does not seenatstizghtforward way to
decompose the quadratic programme.

A decomposition becomes possible when considering gradient-baseshebes. Let us con-
sider optimizing the dual variables = (He(i,Ye))eck y.co, Of €Xamplex; where(; denotes the cor-
responding loss vector ard; = (Ke(i, Ue, j,ve)eeaue’vee%) denotes the block of kernel values be-
tween examplesand j, and byK;. = (Kj;) the columns of the kernel matrikg referring

) je{1,...m}
to exampld.
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Obtaining the gradient for thg-subspace requires computing the corresponding part of the
gradient of the objective function in (8) which & = ¢ — Ki.p where i = ({e(i,Ue))ece yco,
is the corresponding loss vector far However, when updating; only, evaluating the change
in objective and updating the gradient can be done more che@dgly= —K;AW andAobj =
o' Ay — 1/2Au KAy Thus local optimization in a subspace of a single training example can be
done without consulting the other training examples. On the other hand, wetdeant to spend
too much time in optimizing a single example: When the dual variables of the othmptesare
non-optimal, so is the initial gradiegt. Thus the optimum we would arrive at would not be the
global optimum of the quadratic objective. It makes more sense to optimizeaatigs more or
less in tandem so that the full gradient approaches its optimum as quickbssibie.

Before presenting the pseudocode of our method some notations haventoodeiced. The
function f() denotes the objective function amdstands for the set of the feasible solutions in (8).
The feasibility domain fog; when all other components jnare fixed is denoted by;.

In our approach, we have chosen to conduct a few optimization stepadbrtraining example
using a conditional gradient ascent (see Algorithm 2) before moving timetoext example. The
iteration limit for each example is set by using the Karush-Kuhn-Tuckel{(K&onditions as a
guideline (see Section 3.2).

The pseudocode of our algorithm is given in Algorithm 1. It takes as itimutraining data, the
edge set of the hierarchy, the loss vedter (4 )", and the constraints defining the feasible region.
The algorithm chooses a chunk of examples as the working set, computesnkéfor each; and
makes an optimization pass over the chunk. After one pass, the gradieks, atal the duality gap
are computed and a new chunk is picked. The process is iterated untildhty diap gets below
given threshold.

Note in particular, that the joint kernel is not explicitly computed, althougluetiamg the gra-
dient requires computing the produ€tu. However, we are able to take advantage of the special
structure of the feature vectors, repeating the same feature vectorarediftontexts, see the defi-
nition of the edge marginal dual variables (5) and the explanation afteriladte the computation
using the x-kernekK*(i, j) = Ap(x;) "Ap(x;) and the dual variables only.

3.1 Conditional Subspace Gradient Ascent

The optimization algorithm used for a single example is a variant of conditioadlent ascent (or
descent) algorithms (Bertsekas, 1999). The algorithms in this family solvastramed quadratic
problem by iteratively stepping to the best feasible direction with respecetoutrent gradient. It
exploits the fact ify* is an optimum solution of a maximization problem with objective function
f above the feasibility domaim; then it has to satisfy the first order optimality condition, i.e., the
inequality

Of(l)(l—H) >0 9)

has to hold for any feasiblg chosen frony.

The pseudocode of our variant CSGA is given in Algorithm 2. The algoritikes as input the
current dual variables, gradient, constraints and the kernel blo¢kdaexample;, and an iteration
limit. It outputs new values for the dual variablgsand the change in objective value. As discussed
above, the iteration limit is set very tight so that only a few iterations will be tyigicanducted.
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Algorithm 1 Maximum margin optimization algorithm for the H-Vhierarchical classification
model.
H-M3(S,E, 4, 7)
Require: Training dateS= ((x,Yi)){",, edge seE of the hierarchy, a loss vectér and the feasi-
bility domain 7 .
Ensure: Dual variable vectop and objective valud ().
1. Initializeg=1/¢, & = ¢,dg= 0 andOBJ= 0.
2: while dg > dgmin & iter < maxiter do

3:  [WSFreq = UpdateWorkingSet( g, §);

4:  Compute x-kernel valuds x s with respect to the working set;
5. for i e WSdo

6: Compute joint kernel blocK;; and subspace gradiegt

7: [y, Aobj] = CSGAY, g, Kii, 7i, Freg);

8: endfor

9:  Compute gradier, slackst and duality gaug;
10: end while

First we need to find a feasibj& which maximizes the first order feasibility condition (9) at a
fixed ;. It gives a direction potentially increasing the value of objective funcfioifthen we have
to choose a step lengththat gives the optimal feasible solution as a stationary point along the line
segmenty (1) = 4 + AW, T € (0,1], whereAp = p* — ;, starting on the known feasible solutipn

The stationary point is found by solving the equation

& w0 - 17200 K ()] =0, (10)

expressing the optimality condition with respectttolf t > 1, the stationary point is infeasible
and the feasible maximum is obtainedtat 1. In our experience, the time taken to compute the
stationary point was typically significantly smaller than time taken to fihddepending on the
dataset characteristics and the actual algorithm (see Section 3.3) thadedt® find;".

3.2 Working Set Maintenance

We wish to maintain the working set so that the most promising examples to be didateon-
tained there at all times to minimize the amount of computation used for unsudagssétes. Our
working set update is based on the Karush-Kuhn-Tucker(KKT) itimmd which at the optimum
hold for all x;:

1. (C— ey, keli,Ye))& =0, and

2. a(i,y)(w'e(x,y) — £(yi,y) + &) =0.

The first condition states that, at optimum, only examples that saturate the h&txaiot can have
positive slack, and consequently a pseudo-example that has a negatgia. The second condition
states that pseudo-examples with non-zero dual variables are thobaxtbhdahe minimum margin,
that is, need the full slack;. Consequently, if all pseudo-examplesxphave positive margin, all
dual variables satisfg(i,y) = 0. This observation leads to the following heuristics for the working
set update:
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Algorithm 2 Conditional subspace gradient ascent optimization step.
CSGAW;, g, Kii, Fi, maxiter)
Require: Initial dual variable vectoy, gradientg;, constraints of the feasible region, a joint
kernel blockK; for the subspace, and an iteration linmaxites.
Ensure: New values for dual variablgs and change in objectiv&ob j.
1. Aobj=0;iter =0;
2: while iter < maxiterdo
3: % find highest feasible point givem

4 W =argmax., g'v;
5 Ap=pr -
6. =g AW r = AUTK; A % taken from the solution of (10)
7:  T=min(qg/r,1); % clip to remain feasible
8: if t<0then
9 break; % no progress, stop
10: else

11: K = W + TAY % update
12: g =g — KAy,
13: Aobj=Aobj+1q—T1%r/2;

14:  endif
15; iter =iter+1;
16: end while

o Non-saturatedye,, Ke(i,Ye) < C) examples are given priority as they certainly will need to
be updated to reach the optimum.

e Saturated example§ ¢, He(i,ye) = C) are added if there are not enough non-saturated ones.
The rationale is that the even though an example is saturated, the indivigaialatiable
values may still be suboptimal being equal to 0.

e Inactive § ey, He(i,Ye) = 0) non-violators §; = 0) are removed from the working set, as they
do not constrain the objective.

Another heuristic technique to concentrate computational effort to most prgngigsamples is
to favor examples with a large duality gap

Nobj( &) = C& + W ai.

As feasible primal solutions always are least as large as feasible dutabss, the duality gap gives
an upper bound to the distance from the dual solution to the optimum. We usaahstgd; =

C& + W gi as a heuristic measure of the work needed for that particular examplegntorceach

the optimum. Examples are then chosen to the chunk to be updated with probabiitytpnal to

pi O A —minjAj. An example that is drawn more than once will be set a higher iteration limit for
the next optimization step.
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3.3 Finding Update Directions Efficiently

The optimization algorithm described above relies on efficient computatiopdzfte directionst’
in the single example subspaces, that is, to solve the constrained lineearprog

argmay.,. g v. (11)

A straightforward approach would be to use a linear programming solueh as the LIPSOL
interior point solver. However, a such black-box approach doesitilizte the special structure of
the problem in any way.

In order to solve this problem efficiently, we first notice two things:

1. A vertex of the feasible set is always among the optimal solutions.

2. Vertices correspond to consistent labelings of the hierarchy. Thise&eaeen from the fact that
at the vertex, for each edge(i,ye) = C for exactly oneye andp(i, ue) = O for ue # ye, and
that the marginal consistency constraints require that for two adjacges€d= (', j), e’ =
(J,J") we havepe (i,ye) = C = pe(i,Ya) With matching edge-labelingg, = (yj,y;) and
Ye = (Y5, Yj")-

Thus instead of solving (11) directly, we can search for the labsalingf the hierarchy corre-

sponding to an optimal vertex
vmuy.) of the feasible set:

argma., g’ u(y) (12)

This problem can be solved efficiently using a dynamic programming inferelgorithm, re-
viewed in the next section.

3.4 Solving the Inference Problem in Linear Time

When dealing with structured output models, one needs to solve the infguertdem

argmay., g H(y) (13)

to find a multilabely maximizing the inner product between some (gradient) velstand the
marginal dual variableg(y) corresponding tg. In our learning scheme this problem is found
in two situations,

e when predicting multilabels given a learned model, and
e to find update directions (12).

The algorithm described below can be used for both problems, the ontyityutaat changes is the
gradientg;.

Inference algorithms solving problems of the above form have been tudlilesl in the literature
of probabilistic models, under the names of belief propagation and gemerditributive law (Aji
and McEliece, 2000; Kschischang et al., 2001; Wainwright and Jo&Q08). It is known that, for
general graphs, solving (13) is not any easier than solving (11).eMexvfor a hierarchical model
dynamic programming can be used: starting from the leaves of the hieraectympute bottom-up
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for each subtree the optimal labeling of the subtree, conditioned on fixinigltleé of the subtree
root to+1 or—1.

We denote byl; = (Vj, E;) the subtree of rooted at nodg. We need to maintain two quantities
during the bottom-up pass:

e The best objective value that can be obtained for the exanipliae subtree rooted at nogle
when the labey; has been fixed. We denote this valuey(i, j).

e The best objective value that can be obtained for the subtree rootee egtee = (j, j’)
when the root node¢ is fixed toy;. We denote this value by, (i, e).

The two quantities are computed from the recurrences

S" (I J) _ zet(j,j')eEj Gyj (i7e)a if EJ 7& 07 and
Y 0, otherwise,

and
Gy, (i,€) = maxge(i, ;. yy We(i, 1, ¥y) + S, (i, )
]/

At the root node of the hierarchy, mg& (i, root) finally gives the optimum. The corresponding
vertexv(y,) is found in making a top-down pass over the hierarchy: one looks farddlesl for a
child of a node given the parent has been fixed. It should be notedlthatigh in principle the best
conditional labeling—how to label a subtree when the root is fixed to oneegbalssible labels—
could be computed already during the bottom-up pass, the two pass algorittere thie labeling
is worked out only after the label of the global root of the hierarchybeen found out, is much
easier to implement and works just as fast.

The dynamic programming scheme can be implemented in vectorized form st éxanaples
and all nodes on a level of the hierarchy are handled at the same timelithistng the need for
loops going over examples and nodes, which in MATLAB implementation are &vdided.

All in all, the above described inference algorithm works in linear time in the murabdual
variables, which can be seen from the fact that each example is pedamsse, each edge is visited
twice (once in the bottom-up pass, once in the top-down pass) and the matiape are taken
over the dual variables belonging to the current edge.

3.5 Computing Stationary Points in Linear Time

The conditional gradient ascent requires us to iteratively solve (1) fehich givest = Ap/ApK i AL
The potentially expensive part is evaluating the matrix-vector produsp = K u* — Kii 1y, which
trivially could take quadratic time in the number of variables. However, wekesap in mem-
ory the vectorK;; during the computation, thus it remains to compltgt*. Firstly, we no-
tice that for a normalized x-kernel, the entries of the joint kernel arengigesums of indicators
Kii (& Ug; €, ug) = 1 — [Yie = Ug] — [Yie = Ue| + [Ue = Ug]. Secondly, sincg" is an extreme point of
the feasible seit" (e, ue) = C for exactly one of the components € 9. By these facts and some
arithmetic manipulation we obtaik;* = [1—Vy;]C —y; - i* + W". Thus, instead of matrix-vector
product we only need to compute a single vector-vector product anah afsilnree vectors. Finally,
the update foK | is given as a convex combination of vectsrg®" = 1K u* + (1 —-1)Kil;. The
total number of operations to compute the stationary point remains linear inrtigenof variables.
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4. Extensions and Variants
There are several variations of the multilabel classification models dedafimye.

Slack variables were defined as non-negative and a single variable was allocated graplex
Allowing negative slack (c.f.Taskar et al. (2003); Tsochantaridis &f28I04)) results in the dual
equality constraing . Le(i,ye) = C instead of the box constraint. This results in non-sparse models
as training points are very likely to have non-zero slack.

Allotting a separate slack variable for each edge is a possibility when theatagarhe edges
can be considered less reliable than the data for others; in such casedlighle edge can consume
required slack without affecting the other edges. From an optimization pbiriew, edge-based
slack variables make the model decompose into separate edge-basediqyadgrams and may
allow larger models to be optimized.

Partial paths could be used as the basis of the classification model instead of the edges. F
each partial patlp = (ju,...,ja) one defines a feature vectey(i,y) = [yp = 15]®(x), where

Yp = (Yj1,---»Yjy) is the restriction of the multilabel to the partial path. As the number of par-
tial paths in the hierarchy equals the number of nodes, the resulting fastctkas are actually
smaller than the ones defined by edge-labelings. The marginalization of tred byothe partial
paths works in an analogous way to the edge-marginalization and the same afptimagorithms
can be used. The price of the more compact feature representation igcotheform of slightly
more complicated consistency constraints and inference: For consisteagyeeds to ensure that

if a partial pathp has non-zero path-margingj(i,yp), no prefixp’ of p has non-zero marginal

Hp (i,yp). Correspondingly, the inference algorithms need to make comparisonsdretwpartial
path and its prefixes.

Non-hierarchical models can also be tackled with the above described framework, with a few
caveats. First, ensuring global consistency of the marginalized dual &sinvetved as local consis-
tency of edge-marginals does not guarantee existence of a dualearfaly) with those marginals.
If the graph is not too dense this problem can be circumvented by computintjighe tree of the
graph and making the clique tree locally consistent, and the conditional gtagitmization will
work unmodified. However, inference for general graphs is Nie-baboth computing predictions
of the model and finding the update directions in the optimization becomes leuelabschemes to
find approximate solutions exist, including loopy belief propagation, semiitkefielaxations and
tree-based approximations (Wainwright and Jordan (2003); Wainteigdl. (2003)). Depending
on the application, also considering the model in a decomposed form viatidefiof edge-slack
variables (see above) may be justified.

5. Experiments

We tested the presented learning approach on three datasets that les®eiated classification
hierarchy:

e REUTERS Corpus Volume 1, RCV1 (Lewis et al., 2004). 2500 documents wuged for
training and 5000 for testing. As the label hierarchy we used the 'CCahilfy of categories
(Corporate/Industrial news articles), which had a total of 34 nodgsnized in a tree with
maximum depth 3. The tree is quite unbalanced, half of the nodes residingtim Hieand
very few nodes in depth 3.
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¢ WIPO-alpha patent dataset (WIPO, 2001). The dataset consisted @B#?2 training and
358 testing document comprising the D section of the hierarchy. The nurhbedes in the
hierarchy was 188, with maximum depth 3.

e ENZYME classification dataset. The training data consisted of 7700 praginresces with
hierarchical classification given by the Enzyme Classification (EC) sysfém. hierarchy
consisted of 236 nodes organized into a tree of depth three. Test daisted of 1755
sequences.

In all datasets, the membership of examples in the nodes of the hierarchycist@udby binary
vectorsy € {+1,—1}. Multiple paths were actually present in one of the datasets, REUTERS,
approximately 8 percent of examples were classified into more than onecateg

The two first datasets were processed into bag-of-words représantgth TFIDF weighting.

No word stemming or stop-word removal was performed. For the ENZYMftesaces a length-4
subsequence kernel was used.

We compared the performance of the presented learning approacha-destoted byH-m3—
to three algorithmssvm denotes an SVM trained for each microlabel separatelgym denotes
the case where the SVM for a microlabel is trained only with examples for vthe&hancestor labels
are positive.

The svm and H-svM were run using the SVM-light package. After pre-computation of the
kernel these algorithms are as fast as one could expect, as they jugtisotying an SVM for each
node in the graph (with the full training set fewm and usually a much smaller subset fsvMm).

H-RLS is a batch version of the hierarchical least squares algorithm desaniligzsa-Bianchi
et al. (2004). It essentially solves for each nadeleast squares style problem = (I +SS +
xx")~1Sy;, where§ is a matrix consisting of all training examples for which the parent of node
was classified as positivg, is a microlabel vector for nodeof those examples arlds the identity
matrix. Predictions for a nodefor a new example is —1 if the parent of the node was classified
negatively and sigiwx) otherwise.

H-RLS requires a matrix inversion for each prediction of each example, at estdhalong a
path for which errors have not already been made. No optimization of tloeithlp was done,
except to use extension approaches to efficiently compute the matrix irff@rsach example an
inverted matrix needs to be extended by one row/column, so a straightébapatication of the
Sherman-Morrison formula to efficiently update the inverse can be used).

The H-RLS and H-m3 algorithms were implemented in MATLAB. The tests were run on a
high-end PC. FosvM,H-SvM and H-M3, the regularization parameter val@e= 1 was used in
all experiments.

Obtaining consistent labelings. As the learning algorithms compared here all decompose the
hierarchy for learning, the multilabel composed of naively combining the taiced predictions
may be inconsistent, that is, they may predict a document as part of the ohitdtoas part of the
parent. Forsvm andH-svM consistent labelings were produced by post-processing the predicted
labelings as follows: start at the root and traverse the tree in a breeasitfafhion. If the label
of a node is predicted as1 then all descendants of that node are also labeled negatively. This
post-processing turned out to be crucial to obtain good accuracywusly report results with
the postprocessed labelings. Note therLs performs essentially the same procedure (see above).
For H-m3 models, we computed by dynamic programming the consistent multilabel with maximum
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Figure 2: The objective function (% of optimum) afigllosses forH-M2 on training and test sets
(WIPO-alpha)

likelihood
u(x) = argmax.,, P(y|x) = argma>§WT(p(x,y),

whereot is the set of multilabels that correspond to unions of partial patfis ifihe algorithm is
otherwise the same as the one in 3.4, but the inconsistent edge-labelimgs &ieen into account
in the maximization.

Efficiency of optimization. To give an indication of the efficiency of the m3 algorithm, Figure

2 shows an example learning curve on WIPO-alpha dataset. The numibeslofariables for this
training set is just over one million with a joint kernel matrix with approx 5 billion iestr Note
that the solutions for this optimization are not sparse, typically less than 2%8& ofiarginal dual
variables are zero. Training and test losgg3 &re all close to their optima within 10 minutes of
starting the training, and the objective is within 2 percent of the optimum in 30 nsinute

To put these results in perspective, for the WIPO dataget(SVM-light) takes approximately
50 seconds per node, resulting in a total running time of about 2.5 hohic) makes it significantly
slower tharH-M3, in these tests. It is possible that using early stoppingfon the training time
could be pushed down to the leveliefm3, however, we have not explored this question. We also
suspect that early stopping fevm may be more costly than fer-m3, due to the fact that the latter
predicts whole labelings for the trees where the weight of a single micrabeiall, and in fact
the predicted multilabels may contain microlabels that are not locally optimal. In wtirels, the
inference procedure for multilabels may correct poor microlabel preditio
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Figure 3: Learning curves fan-m2 using LIPSOL and dynamic programming (DP) to compute
update directions (WIPO-alpha). Curves with iteration limits 1,10 and 50 angrsfor
DP. The LIPSOL curve is computed with iteration limit set to 1.

The running time ofH-RLS was slower than the other methods, however this could be due to
our unoptimized implementation. It is our expectation that it would be very clogeetime taken
by H-svMm if coded more efficiently.

Therefore, the methods presented in this paper are very competitiveafymputational ef-
ficiency point of view to other methods which do not operate in the largeratutput spaces of
H-M3.

Figure 3 shows on WIPO-alpha the efficiency of the dynamic programmify fR2sed com-
putation of update directions as compared to solving the update directions WEhAB's linear
interior point solver LIPSOL. The DP based updates result in an ofseagnitude faster optimiza-
tion than using LIPSOL.

In addition for DP the effect of the iteration limit for optimization speed is depicgsdting the
iteration limit too low (1) or too high (50) slows down the optimization, for diffdresasons. A
too tight iteration limit makes the overhead in moving from one example to the oth@ndte the
running time. A too high iteration limit makes the the algorithm spend too much time optimizing
the dual variables of a single example. Unfortunately, it is not straigh#fiahto suggest a iteration
limit that would be universally the best, as the optimal value depends on treetata

Effect of choice of the loss function. In order to show the effect of training them? algorithm
using the different loss functions described in Section 2.1, we studiedettiermance of the al-
gorithm on Reuters and WIPO data sets. The results can be seen in Tallhe $VIPO dataset
gives an indication that using a hierarchical loss function during traireng €ither¢;;-sibl. or
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Test loss

lon N ¢ +scaling
Tr. loss % unif sibl.  subtree
I 27.1 0574 0.344 0.114 0.118
£5-unif 26.8 0590 0.338 0.118 0.122
£-sibl. 28.2 0.608 0.381 0.109 0.114
{q-subtree| 27.9 0.588 0.373 0.109 0.109

lon 9N ¢ +scaling
Tr. loss % unif sibl.  subtree
N 709 1.670 0.891 0.050 0.070
£5-unif. 70.1 1.721 0.888 0.052 0.074
Li-sibl. 64.8 1.729 0.927 0.048 0.071
{q-subtree| 65.0 1.709 0.919 0.048 0.072

Table 1: Prediction losses obtained using different training losses otefe(top) and WIPO-
alpha data (bottom). The logg, is given as a percentage, the other losses as averages
per-example.

{-subtree) may lead to a reducedlOloss on the test set. On Reuters dataset this effect is not
observed, however this is due to the fact that the label tree of the Reaterset is very shallow.

Comparison of predictive accuracies of different algorithms. In our final test we compare the
predictive accuracy afi-m® to other learning methods. Farm® we include the results for training
with /5 and/-subtredosses. For trainingvm andH-svM, these losses produce the same learned
model.

Table 2 depicts the different test losses, as well as the standard infonmettiieval statistics
precision (P), recall (R) and F1 statistel = 2PR/(P+ R)). Precision and recall were computed
over all microlabel predictions in the test set. & is expectedly inferior to the competing algo-
rithms with respect to most statistics, as it cannot utilize the dependenciesbetveemicrolabels
in any way. The two variants of-m3 are the most efficient in getting the complete tree correct as
shown by the lower zero-one loss. With respect to other statistics, thedtima methods are quite
evenly matched overall.

Finally, to highlight the differences between the predicted labelings, we gtmupevel-wise
precision and recall values, that is, the set of predictions containedtilhstances and microlabels
on a given level of the tree (Table 3). On all datasets, recall of all metlesghecially withsvm and
H-svM, diminishes when going farther from the roet.m? is the most efficient method in fighting
the recall decline, and is still able to obtain reasonable precision on REBHER WIPO-alpha,
especially when trained with the hierarchical loss.

The results on ENZYME data are generally not good for any of the metltwidss most prob-
ably due to the subsequence kernel used not being able to pick oubtigeEgsiences corresponding
to the active centers of the enzymes. Nevertheless, the effeemdfobtaining better recall in deep
nodes than the competition can be observed.
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REUTERS | /o1 2N P R F1
SVM 329|0.61| 946 | 58.4| 72.2
H-SVM 29.8| 0.57| 92.3| 63.4| 75.1
H-RLS 28.1| 055|915| 65.4| 76.3
H-M3-( 27.1|1 0.58| 91.0| 64.1| 75.2
H-M3-€,q 27.9| 0.59| 85.4| 68.3| 75.9

WIPO-alpha| f¢on | £a P R F1
SVM 87.2]1.84] 931|582 71.6
H-SVM 76.2 | 1.74| 90.3| 63.3 | 74.4
H-RLS 721 1.69| 88.5]| 66.4| 75.9
H-M3-¢p | 70.9| 1.67 | 90.3 | 65.3 | 75.8
H-m3-¢y | 65.0| 1.73| 84.1| 70.6 | 76.7

ENZYME lon 2N P R F1
SVM 99.7| 1.3 | 99.6| 41.1| 58.2
H-SVM 985| 1.2 | 98.9| 41.7| 58.7
H-RLS 956 | 2.0 | 51.9| 54.7 | 53.3
H-M3-( 95.7| 1.2 | 87.0| 49.8 | 63.3
H-M3—€,q 855| 25 | 445| 66.7| 53.4

Table 2: Prediction losség; and/,, precision, recall and F1 values obtained using different learn-
ing algorithms. All figures are given as percentages. Precision aatl aee computed in
terms of totals of microlabel predictions in the test set.

6. Conclusions and Future Work

In this paper we have proposed a new method for training variants of tkierien Margin Markov
Network framework for hierarchical multi-category text classification madels

Our method relies on a decomposition of the problem into single-example shlem®and
conditional gradient ascent for optimisation of the subproblems. The methtassvell to medium-
sized datasets with label matrix (exampbesmicrolabels) size upto hundreds of thousands, and
via kernelization, very large feature vectors for the examples can ltk Eseperimental results
on three classification tasks show that using the hierarchical structunelltfcategory labelings
leads to improved performance over the more traditional approach of coghidividual binary
classifiers.

Our future work includes generalization of the approach to genenphgtauctures and looking
for ways to scale up the method further.
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REUTERS Level O Level 1 Level 2 Level 3
SVM 92.4/89.4/90.9 96.8/38.7/55.3 98.1/49.3/65.6) 81.8/46.2/59.0
H-SVM 92.4/89.4/90.9 93.7/43.6/59.5 91.1/61.5/73,4 72.0/46.2/56,3
H-RLS 93.2/89.191.1 | 90.9/46.8/61.8 89.7/64.875.2 | 76.0/48.7/59.4
H-M3-0 94.1/83.0/88.2 87.3/48.9/62.7| 91.1/63.2/74.6) 79.4/69.2/73.9
H-M3-y 91.1/87.8/89.4 79.2/53.163.6 | 85.4/66.6/74.8 77.9/76.977.4

WIPO-alpha Level O Level 1 Level 2 Level 3
SVM 100/100/100 | 92.1/77.7/84.3| 84.4/42.5/56.5 82.1/12.8/22.1
H-SVM 100/100/100 | 92.1/77.7/84.3| 79.6/51.1/62.2| 77.0/24.3/36.9
H-RLS 100/100/100 | 91.3/79.1/84.8| 78.2/57.0/65.9 72.6/29.6/42.1
H-M3-0 100/100/100 | 90.8/80.2/85.2| 86.1/50.0/63.3| 72.1/31.0/43.4

H-M3-y 100/100/100 | 90.9/80.485.3 | 76.4/62.3%8.6 | 60.4/39.747.9

ENZYME Level O Level 1 Level 2 Level 3
SVM 100/100/100 | 84.3/4.9/9.3 100/0.4/0.8 100/0.3/0.6
H-SVM 100/100/100 | 84.3/4.9/9.3 | 72.3/1.9/3.7 | 67.5/1.5/2.9
H-RLS 100/97.4/98.7| 33.0/39.3/35.9 22.4/22.6/22.5 15.2/17.0/16.0
H-M3-0 100/100/100 | 61.2/30.8/41.0| 49.8/13.3/21.0| 52.9/4.7/8.6

H-M3-y 100/100/100 | 49.3/56.062.4 | 21.5/42.528.6 | 14.7/35.220.7

Table 3: Precision/Recall/F1 statistics for each level of the hierarchyifi@reht algorithms on
Reuters RCV1 (top), WIPO-alpha (middle), and ENZYME datasets (bottom).
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