
Journal of Machine Learning Research 7 (2006) 1601–1626 Submitted 10/05; Published 7/06

Kernel-Based Learning of
Hierarchical Multilabel Classification Models∗

Juho Rousu JUHO.ROUSU@CS.HELSINKI .FI

Department of Computer Science
PO Box 68
FI-00014 University of Helsinki, Finland

Craig Saunders CJS@ECS.SOTON.AC.UK

Sandor Szedmak SS03V@ECS.SOTON.AC.UK

John Shawe-Taylor JST@ECS.SOTON.AC.UK

Electronics and Computer Science
University of Southampton
SO17 1BJ, United Kingdom

Editors: Kristin P. Bennett and Emilio Parrado-Hernández

Abstract
We present a kernel-based algorithm for hierarchical text classification where the documents are
allowed to belong to more than one category at a time. The classification model is a variant of the
Maximum Margin Markov Network framework, where the classification hierarchy is represented
as a Markov tree equipped with an exponential family defined on the edges. We present an effi-
cient optimization algorithm based on incremental conditional gradient ascent in single-example
subspaces spanned by the marginal dual variables. The optimization is facilitated with a dynamic
programming based algorithm that computes best update directions in the feasible set.

Experiments show that the algorithm can feasibly optimize training sets of thousands of exam-
ples and classification hierarchies consisting of hundredsof nodes. Training of the full hierarchical
model is as efficient as training independent SVM-light classifiers for each node. The algorithm’s
predictive accuracy was found to be competitive with other recently introduced hierarchical multi-
category or multilabel classification learning algorithms.

Keywords: kernel methods, hierarchical classification, text categorization, convex optimization,
structured outputs

1. Introduction

In many application fields, taxonomies and hierarchies are natural ways to organize and classify
objects, hence they are widely used for tasks such as text classification.In contrast, machine learn-
ing research has largely been focused on flat target prediction, where the output is a single binary
or multivalued scalar variable. Naively encoding a large hierarchy eitherinto a series of binary
problems or a single multiclass problem with many possible class values suffersfrom the fact that
dependencies between the classes cannot be represented well. For example, if a news article be-
longs to categoryMUSIC, it is very likely that the article belongs to categoryENTERTAINMENT.
The failure to represent these relationships leads to a steep decline of the predictive accuracy in the

∗. A preliminary version of this paper appeared in Proceedings of 19th ICML, Bonn, Germany, 2005.

c©2006 Juho Rousu, Craig Saunders, Sandor Szedmak and John Shawe-Taylor.

ROUSU, SAUNDERS, SZEDMAK AND SHAWE-TAYLOR

number of possible categories. In recent years, methods that utilize the hierarchy in learning the
classification have been proposed by several authors (Koller and Sahami, 1997; McCallum et al.,
1998; Dumais and Chen, 2000). Very recently, new hierarchical classification approaches utilizing
kernel methods have been introduced (Hofmann et al., 2003; Cai and Hofmann, 2004; Dekel et al.,
2004). The main idea behind these methods is to map the documents (or document–labeling pairs)
into a potentially high-dimensional feature space where linear maximum margin separation of the
documents becomes possible.

Most of the above mentioned methods assume that the object to be classified belongs to exactly
one (leaf) node in the hierarchy. In this paper we consider the more general case where a single
object can be classified into several categories in the hierarchy, to be specific, the multilabel is
a union of partial pathsin the hierarchy. For example, a news article about David and Victoria
Beckham could belong to partial pathsSPORT, FOOTBALL andENTERTAINMENT, MUSIC but might
not belong to any leaf categories such asCHAMPIONS LEAGUE. The problem of multiple partial
paths was also considered in Cesa-Bianchi et al. (2004).

Recently Taskar et al. (2003) introduced a maximum margin technique which optimized an
SVM-style objective function over structured outputs. This technique used a marginalization trick
to obtain a polynomial sized quadratic program using marginal dual variables. This was an im-
provement over the exponentially-sized problem resulting from the dualization of the primal margin
maximization problem, which only can be approximated with polynomial number of support vectors
using a working set method (Altun et al., 2003; Tsochantaridis et al., 2004).

Even using marginal variables, however, the problem becomes infeasiblefor even medium sized
data sets. Therefore, efficient optimization algorithms are needed. In this paper we present an algo-
rithm for working with the marginal variables that is in the spirit of Taskar et al. (2003), however
a reformulation of the objective allows a conditional-gradient method to be used which gains effi-
ciency and also enables us to work with a richer class of loss functions.

The structure of this article is the following. In Section 2 we present the classification frame-
work, review loss functions and derive a quadratic optimization problem for finding the maximum
margin model parameters. In Section 3 we present an efficient learning algorithm relying a decom-
position of the problem into single training example subproblems and conductingiterative condi-
tional gradient ascent in marginal dual variable subspaces corresponding to single training examples.
A dynamic programming algorithm is presented that used to efficiently find the best update direc-
tions. Extensions and variants are briefly discussed in Section 4. We compare the new algorithm
in Section 5 to flat and hierarchical SVM learning approaches and the hierarchical regularized least
squares algorithm recently proposed by Cesa-Bianchi et al. (2004).We conclude the article with
discussion in Section 6.

2. Maximum Margin Hierarchical Multilabel Classification

We consider data from a domainX × Y whereX is a set andY = Y1 × ·· · × Yk is a Cartesian
product of the setsY j = {+1,−1}, j = 1, . . . ,k. A vectory = (y1, . . . ,yk) ∈ Y is called themultilabel
and the componentsy j are called themicrolabels.

We assume that a training set{(xi ,yi)}
m
i=1 ⊂ X ×Y has been given, consisting of training ex-

amples(xi ,yi) of a training patternxi and multilabelyi . A pair (xi ,y) wherexi is a training pattern
andy ∈ Y is arbitrary, is called apseudo-example, to denote the fact that the pair may or may not
be generated by the distribution generating the training examples.

1602

HIERARCHICAL MULTILABEL CLASSIFICATION

A HUMAN NECESSITIES
A 01 AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; . . .

A 01 B SOIL WORKING IN AGRICULTURE OR FORESTRY
A 01 B 1/02 Spades; Shovels
A 01 B 9/00 Ploughs with rotary driven tools

D TEXTILES; PAPER
D 21 PAPER-MAKING; PRODUCTION OF CELLULOSE

D 21 F PAPER-MAKING MACHINES
D 21 F 1/00 Wet end of machines for making continuous webs of paper

E.C.1 Oxidoreductases
E.C.1.1. Acting on the CH-OH group of donors.

E.C.1.1.1 With NAD(+) or NADP(+) as acceptor.
E.C.1.1.1.1 Alcohol dehydrogenase.

E.C.6 Ligases
E.C.6.1 Forming carbon-oxygen bonds.

E.C.6.1.1 Ligases forming aminoacyl-tRNA and related compounds.
E.C.6.1.1.1 Tyrosine–tRNA ligase.

Figure 1: Examples of classification hierarchies: An excerpt from the WIPO patent classification
hierarchy (top) and an excerpt from the Enzyme Classification scheme (bottom).

As the model class we use the exponential family

P(y|x) =
1

Z(x,w) ∏
e∈E

exp
(

wT
e φe(x,ye)

)

=
1

Z(x,w)
exp
(

wTφ(x,y)
)

defined on the edges of a Markov treeT = (V,E), where nodej ∈V corresponds to thej ’th compo-
nent of the multilabel and the edgese= (j, j ′) ∈ E correspond to the classification hierarchy given
as input. Above,Z(x,w) = ∑y exp

(

wTφ(x,y)
)

is the normalizing factor also called the partition
function. Byye = (y j ,y j ′) we denote the restriction of the multilabely = (y1, . . . ,yk) to the edge
e= (j, j ′). By Ye = Y j ×Y j ′ we denote the set of labelings of an edgee= (j, j ′).

In this work, we assume that the Markov treeT is given a priori. This is a reasonable assumption,
as hand-made hierarchies and taxonomies are frequent in applications. The ability to learn the
structure from data is an important and challenging question, which is out ofscope of this article
(See Lafferty et al. (2004) for a study to that direction).

Figure 1 depicts examples of two hierarchical classification domains, patentclassification ac-
cording to the World International Patent Organization (WIPO) that is usedto classify patent texts,
and enzyme classification scheme (EC) used by biologists to classify amino acidsequences for
enzymatic proteins.

2.1 Loss Functions for Hierarchical Multilabel Classification

There are many ways to define loss functions for multilabel classification setting, and it depends
on the application which loss function is the most suitable. A few general guidelines can be set,

1603

ROUSU, SAUNDERS, SZEDMAK AND SHAWE-TAYLOR

though. The loss function between two multilabel vectorsy andu should obviously fulfill some
basic conditions:ℓ(u,y) = 0 if and only ifu = y, ℓ(u,y) is maximum whenu j 6= y j for every 1≤ j ≤
k, andℓ should be monotonically non-decreasing with respect to the sets of incorrect microlabels.
These conditions are satisfied by, for example,zero-one lossℓ0/1(y,u) = [y 6= u]. However, it gives
loss of 1 if the complete hierarchy is not labeled correctly, even if only a single microlabel was
predicted incorrectly.

In multilabel classification, we would like the loss to increase smoothly so that we can make a
difference between ’nearly correct’ and ’clearly incorrect’ multilabel predictions.Symmetric differ-
ence loss

ℓ∆(y,u) = ∑
j

[y j 6= u j],

has this property and is an obvious first choice as the loss function in structured classification tasks.
However, the classification hierarchy is not reflected in any way in the loss. For uni-category
hierarchical classification (Hofmann et al., 2003; Cai and Hofmann, 2004; Dekel et al., 2004),
where exactly one of the microlabels has value 1, Dekel et al. (2004) useas a loss function the
length of the path(i1, · · · , ik) between the the true and predicted nodes with positive microlabels
ℓPATH(y,u) = |path(i : yi = 1, j : u j = 1)|. Cai and Hofmann (2004) defined a weighted version of
the loss that can take into account factors such as subscription loads of nodes.

In the union of partial paths model, where essentially we need to compare a predicted tree
to the true one the concept of a path distance is not very natural. We would like to account for the
incorrectly predicted subtrees—in the spirit ofℓ∆—but taking the hierarchy into account. Predicting
the parent microlabel correctly is more important than predicting the child correctly, as the child
may deal with some detailed concept that the user may not be interested in; forexample whether
a document was aboutCHAMPIONS LEAGUE football or not may not relevant to a person that is
interested inFOOTBALL in general. Also, for the learners point of view, if the parent class was
already predicted incorrectly, we don’t want to penalize the mistake in the child. A loss function
that has these properties was given by Cesa-Bianchi et al. (2004). It penalizes the first mistake along
a path from root to a node

ℓH(y,u) = ∑
j

c j [y j 6= u j & yh = uh∀h∈ anc(j)],

whereanc(j) denotes the set of ancestors of nodej. The coefficients 0≤ c j ≤ 1 are used for down-
scaling the loss when going deeper in the tree. These can be chosen in manyways. One can divide
the maximum loss among the subtrees met along the path. This is done by defining

croot = 1,c j = cpa(j)/|sibl(j)|,

where we denoted bypa(j) the immediate parent and bysibl(j) the set of siblings of nodej (in-
cluding j itself). Another possibility is to scale the loss by the proportion of the hierarchy that is in
the subtreeT(j) rooted byj, that is, to define

c j = |T(j)|/|T(root)|.

In our experiments we use both the sibling and subtree scaling to re-weight prediction errors on
individual nodes, these are referred to asℓ-sibl andℓ-subtreerespectively. If we just use a uniform
weighting (c j = 1) in conjunction with the hierarchical loss above this is denoted asℓ-uni f .

1604

HIERARCHICAL MULTILABEL CLASSIFICATION

Using ℓH for learning a model has the drawback that it does not decompose very well: the
labelings of the complete path are needed to compute the loss. Therefore, in this paper we consider
a simplified version ofℓH , namely

ℓH̃(y,u) = ∑
j

c j [y j 6= u j & ypa(j) = upa(j)],

that penalizes a mistake in a child only if the label of the parent was correct. This choice leads the
loss function to capture some of the hierarchical dependencies (betweenthe parent and the child)
but allows us define the loss in terms of edges, which is crucial for the efficiency of our learning
algorithm.

Using the above, the per-microlabel loss is divided among the edges adjacent to the node. This
is achieved by defining anedge-lossℓe(ye,ue) = ℓ j(y j ,u j)/N (j)+ ℓ j ′(y j ′ ,u j ′)/N (j ′) for eache=
(j, j ′), whereℓ j is the term regarding microlabelj, ye = (y j ,y j ′) is a labeling of the edgee and
N (j) denotes the neighbors of nodej in the hierarchy (i.e. the children of a nodes and it’s parent).
Intuitively, the edges adjacent to nodej ’share the blame’ of the microlabel lossℓ j . The multilabel
loss (ℓ∆ or ℓH̃) is then written as a sum over the edges:ℓ(y,u) = ∑e∈E ℓe(ye,ue).

The above described loss functions do not represent an exhaustivelist of the possible ones.
With probabilistic models, it is common to employ KL-divergence or negative log likelihood as
the loss function (Lafferty et al., 2004). In the max-margin learning framework these types of loss
functions are not applicable, as they require estimating the underlying probability distribution, e.g.
to compute the log-partition function. As our central theme is efficient computation of structured
prediction models, we concentrate on the above simpler formulations of loss functions.

2.2 Feature Representations for Structured Inputs

When handling input data that already comes in vector form, there is no obligation to introduce a
special kernel function. The inner product of the inputsK(x,z) = xTz, also called the ’linear kernel’,
can be used. However, when using structured data such as sequences, trees or graphs, one needs to
convert the structured representation to a vector form. Feature representation for structured input
data have been considered in many works already (c.f. Gartner (2003)), we will concentrate to the
important case of hierarchical classification of text or, in general, sequence data.

For sequences the most common feature representation is to count or check the existence of sub-
sequence occurrences, when the subsequences are taken from a fixed index setU . Different choices
for the index set and accounting for occurrences give rise to a family offeature representations
and kernels. Below we review the main forms of representation for sequences and the computation
kernels for such representations.

Word spectrum (Bag-of-words) kernels. In the most widely used feature representation for
strings in a natural language, informally calledbag-of-words(BoW), the index set is taken as the set
of words in the language, possibly excluding some frequently occurring stop words (Salton, 1989).
The representation was brought to SVM learning by Joachims (1998).

In the case of a strings containing English text, for each English wordu, we define the feature
value

φu(s) = |{ j|sj . . .sj+|u|−1 = u}|,

as the number of timesu occurs in some positionj of s. For the example texts = ’The cat
was chased by the fat dog’ the BoW will contain the following non-zero entries:φthe(s) = 2,

1605

ROUSU, SAUNDERS, SZEDMAK AND SHAWE-TAYLOR

φdog(s) = 1, φwas(s) = 1, φchased(s) = 1, φby(s) = 1, φfat(s) = 1, φcat = 1. These occurrence
counts can also be weighted, for example by scaling by the inverse document frequency as is done
in TFIDF weighting (c.f. Salton (1989)):

φu(s) = |{ j|sj . . .sj+|u|−1 = u}|× log2N/Nu,

whereNu is the number of documents whereu occurs andN is the total number of documents in the
collection.

Although the dimension of the feature space may be high, computation of the BoWkernel can
be efficiently implemented by scanning the two strings, constructing listsL(s) andL(t) of pairs
(u,cu) of word u and occurrence countcu ordered in the lexicographical order of the substringsu,
and finally traversing the two lists to compute the dot product.

Substring spectrum kernels. For strings that do not encompass a crisply defined word-structure,
for example, biological sequences, a different approach is more suitable. Given an alphabetΣ, a
simple choice is to takeU = Σp, the set of strings of lengthp. In some cases, using a range of
substring lengthsq≤ l ≤ p may be more appropriate than picking a single length. We can define

U = Σq∪Σq+1 · · ·∪Σp for some 1≤ q≤ p.

The most efficient approaches, working inO(p(|s|+ |t|)) time, to compute substring spectrum
kernels are based on suffix trees (Leslie et al., 2002; Vishwanathan and Smola, 2002), although
dynamic programming and approaches based on thetrie data structure also can be used Shawe-
Taylor and Cristianini (2004).

The substring kernels can be generalized in many ways, for example

• Gapped substring spectrum kernelsallow gaps in the subsequence occurrences.Gap-weighting
can be used to down-weight substring occurrences that contain many orlong gaps (Lodhi
et al., 2002; Rousu and Shawe-Taylor, 2005).

• Word or syllable alphabetscan be used in place of characters (Saunders et al., 2002; Cancedda
et al., 2003).

2.3 Feature Representations for Hierarchical Outputs

When the input features are used in hierarchical classification, they need to be associated with
the labelings of the hierarchy. In our setting, this is done via constructing a joint feature map
φ : X ×Y 7→ Fxy. There are important design choices to be made in how the hierarchical structure
should reflect in the feature representation.

There are two general types of features that can be distinguished:

Global featuresare given by the feature mapφx : X 7→ Fx. They are not tied to a particular vertex
or edge but represent the structured object as a whole. For example, the bag-of-words or the
substring spectrum of a document is not tied to a single class of documents in ahierarchy, but
a given word can relate to different classes with different importances.

Local features, are given by a feature mapφx
j : X 7→ Fx j tied to a particular vertexj or edge of the

structure. For example, given a structured representation of a scientificarticle, we can make a
difference between elements occurring within the title, abstract, article body and references,
and construct local feature maps for each of the components.

1606

HIERARCHICAL MULTILABEL CLASSIFICATION

Given the input features, there are two basic ways by which the joint feature vector can be con-
structed:

Orthogonal feature representation is defined asφ(x,y) = (φe(x,ye))e∈E , so that there is a block
for each edge (or vertex), which, in turn, is divided into blocks for a specific edge-labeling
pairs(e,ue), i.e.φe(x,ye) = (φue

e (x,ye))ue∈Ye
.

The vectorφu
e should incorporate both thex-features relevant to the edge and encode the

dependency on the labeling of the edge. A simple choice is to define

φue
e (x,ye) = [ue = ye]

(

φx(x)T ,φx
e(x)T)T

that incorporates both the global and local features if the edge is labeledye = ue, and a zero
vector otherwise. Intuitively, the features are turned ’on’ only for the particular labeling of
the edge that is consistent withy.

Additive feature representation is defined as

φ(x,y) = ∑
e∈E

∑
ue∈Ye

[ye = ue]φue
e (x),

whereφue
e contains features specific to the pair(e,ue).

The orthogonal and additive feature representations differ from each other in several respects. In
the orthogonal representation, global features get weighted in a context-dependent manner: some
features may be more important in labeling one edge than another. Thus, the global features will be
’localized’ by the learning algorithm. The size of the feature vectors grow linearly in the number of
edges, which requires careful implementation if solving the primal optimization problem (1) instead
of the dual. The kernel induced by the above feature map decomposes as

K(x,y;x′,y′) = ∑
e∈E

φe(x,ye)
Tφe(x

′,y′e) = ∑
e∈E

Ke(x,ye;x′,y′e),

which means that there is no crosstalk between the edges:

φe(x,ye)
Tφe′(x,ye′) = 0

if e 6= e′, hence the name ’orthogonal’. The number of terms in the sum when calculating the kernel
obviously scales linearly in the number of edges.

The dimension of the feature vector using the additive feature representation is independent of
the size of the hierarchy, thus optimization in primal representation (1) is more feasible for large
structures. Second, as there are no feature weights depending on a particular part of the structure,
the existence of local features is mandatory, otherwise the output structure is not reflected in the
feature vector. Third, the kernel

K(x,y;x′,y′) =

(

∑
e

φe(x,y)

)T(

∑
e

φe(x
′,y′)

)

= ∑
e,e′

φe(x,ye)
Tφe′(x,y′e′) = ∑

e,e′
Kee′(x,ye;x′,y′e′)

1607

ROUSU, SAUNDERS, SZEDMAK AND SHAWE-TAYLOR

induced by this representation typically has non-zero blocksKee′ 6= 0, representing cross-talk
between edges. There are two consequences of this fact. First, the kernel does not exhibit the
sparsity that is implied by the hierarchy, thus it creates the possibility of overfitting. Second, the
complexity of the kernel will grow quadratically in the size of the hierarchy rather than linearly as
is the case with orthogonal features. This is another reason why a primal optimization approach for
this representation might be more justified than a dual approach.

In the sequel, we describe a method that relies on the orthogonal feature representation which
will give us a dual formulation with complexity growing linearly in the number of edges inE. The
kernel defined by the feature vectors, denoted by

Kx(x,x′) = φx(x)Tφx(x′),

is referred to asx-kernel whileK(x,y;x,y′) is referred to as thejoint kernel.

2.4 Maximum Margin Learning

Typically in learning probabilistic models, one aims to learn maximum likelihood parameters, which
in the exponential CRF amounts to solving

argmaxw log

(

m

∏
i=1

P(yi |xi ;w)

)

= argmaxw
m

∑
i=1

[

wTφ(xi ,yi)− logZ(xi ,w)
]

.

This estimation problem is hampered by the need to compute the (logarithm of the) partition func-
tion Z. For a general graph this problem is hard to solve. Approximation methods for its compu-
tation is a subject of active research (c.f. Wainwright and Jordan 2003). Also, in the absence of
regularization the max-likelihood model is likely to suffer from overfitting

An alternative formulation (c.f Altun et al. 2003; Taskar et al. 2003), inspired by support vector
machines, is to estimate parameters that in some sense maximize the ratio

P(yi |xi ;w)

P(y|xi ;w)

between the probability of the correct labelingyi and the worst competing labelingy. With the
exponential family, the problem translates to the problem of maximizing the minimum linear margin

wTφ(xi ,yi)−wTφ(xi ,y)

in the log-space.
Furthermore, we would like the marginγ to scale as a function of the loss so that grossly incor-

rect pseudo-examples are pushed farther from the correct labeling than only slightly incorrect ones.
Using the canonical hyperplane representation (c.f. Cristianini and Shawe-Taylor (2000)) this can
be stated as the following minimization problem:

min
w

1
2
||w||2

s.t. wT∆φ(xi ,y) ≥ ℓ(yi ,y),∀i,y

1608

HIERARCHICAL MULTILABEL CLASSIFICATION

where∆φ(xi ,y) = φ(xi ,yi)−φ(xi ,y). As with SVMs, a model satisfying margin constraints exactly
rarely exists, hence it is necessary to add slack variablesξi to allow examples to deviate from the
margin boundary. Altogether, this results in the following optimization problem

min
w

1
2
||w||2 +C

m

∑
i=1

ξi

s.t. wT∆φ(xi ,y) ≥ ℓ(yi ,y)−ξi ,∀i,y. (1)

This optimization problem suffers from the possible high-dimensionality of the feature vectors, for
example with string kernels, and from the exponential-sized constraint set(in the length of the
multilabel vector). A dual problem

max
α≥0

αTℓ−
1
2

αTKα, s.t.∑
y

α(i,y) ≤C,∀i, (2)

whereK = ∆ΦT∆Φ is thejoint kernel matrix forpseudo-examples(xi ,y) andℓ = (ℓ(yi ,y))i,y is the
loss vector, allows us to circumvent the problem with feature vectors. However, in the dual problem
there are exponentially many dual variablesα(i,y), one for each pseudo-example.

There are a few basic routes by which the exponential complexity can be circumvented:

• Dual working set methods where the constraint set is grown incrementally by adding the worst
margin violator

argmini,ywT∆φ(xi ,y)− ℓ(yi ,y)

to the dual problem. One can guarantee an approximate solution with a polynomial number
of support vectors by this approach (Altun et al., 2003; Tsochantaridiset al., 2004).

• Primal methods where the solution above inference problem is integrated to theprimal opti-
mization problem, rather than writing down the exponential-sized constraint set (Taskar et al.,
2004).

• Marginal dual methods, where the problem is translated to a polynomial-sizedform via con-
sidering the marginals of the dual variables (Taskar et al., 2003).

The methodology presented in this article belongs to the third category.

2.5 Marginalized Dual Problem

The feasible set of the dual problem (2) is a Cartesian product

A = A1×·· ·×Am (3)

of identical closed polytopes

A i = {αi ∈ R
|Y | | αi ≥ 0, ||αi ||1 ≤C}, (4)

with a vertex setV i = {0,Ce1, . . . ,Ce|Y |} ⊂ R
|Y | consisting of the zero vector and the unit vectors

of R
|Y |, scaled byC. The vertex set ofA is the Cartesian productV1×·· ·×Vm.

1609

ROUSU, SAUNDERS, SZEDMAK AND SHAWE-TAYLOR

The dimension of the setA , dA = m|Y | is exponential in the length of the multilabel vectors.
This means that optimizing directly over the the setA is not feasible. Fortunately by utilizing the
structure ofT, the setA can be mapped to a setM of polynomial dimension, called the marginal
polytope ofH, where optimization becomes more feasible (Taskar et al., 2003).

For an edgee∈ E of the Markov treeT, and an associated labelingye, the marginal ofα(i,y)
for the pair(e,ye) is given by

µe(i,ye) = ∑
{u∈Y i}

[ye = ue]α(i,u) (5)

where the sum picks up those dual variablesα(i,y) that have equal valueue = ye on the edgee.
Single node marginalsµj(i,y j) are defined analogously.

For the hierarchyT, the vector containing the edge marginals of the examplexi , the marginal
dual vector, is given by

µi = (µe(i,ue))e∈E,ue∈Ye
.

The marginal vector of the whole training set is the concatenation of the singleexample marginal
dual vectorsµ = (µi)

m
i=1 . The vector has dimensiondM = m∑e∈E |Ye| = O(m|E|maxe|Ye|). Thus

the dimension is linear in the number of the examples, edges and the maximum cardinality of set of
labelings of a single edge.

The indicator functions in (5) can be collectively represented by the the matrix ME, ME(e,ue;y)=
[ue = ye], and the relationship between a dual vector alpha and the corresponding marginal vectorµ
is given by the linear mapME ·αi = µi andµ= (ME ·αi)

m
i=1. The image of the setA i , defined by

M i = {µi | ∃αi ∈ A i : MEαi = µi}

is called themarginal polytopeof αi onT.
The following properties of the setM i are immediate: LetA i be the polytope of (4) and letM i

be the corresponding marginal polytope. Then

• the vertex set ofM i is the image of the vertex set ofA i :

Vµ,i = {µi | ∃αi ∈Vi : MEαi = µi}.

• As an image of a convex polytopeA i under the linear mapME,M i is a convex polytope.

These properties underlie the efficient solution of the dual problem on themarginal polytope.
The exponential size of the dual problem (2) can be tackled via the relationship between its

feasible setA = A1×·· ·×Am and the marginal polytopesM i of eachA i .
Given a decomposable loss function

ℓ(yi ,y) = ∑
e∈E

ℓe(i,ye)

the linear part of the objective satisfies
m

∑
i=1

∑
y∈Y

α(i,y)ℓ(i,y) =
m

∑
i=1

∑
y

α(i,y)∑
e

ℓe(i,ye)

=
m

∑
i=1

∑
e∈E

∑
ue∈Ye

∑
y:ye=ue

α(i,y)ℓe(i,ue) =
m

∑
i=1

∑
e∈E

∑
ue∈Ye

µe(i,ue)ℓe(i,ue)

=
m

∑
i=1

µT
i ℓi = µTℓE,

1610

HIERARCHICAL MULTILABEL CLASSIFICATION

whereℓE = (ℓi)
m
i=1 = (ℓe(i,ue))

m
i=1,e∈E,ue∈Ye

is the marginal loss vector.
Given an orthogonal feature representation inducing a decomposable kernel K(x,y;x′,y′) =

∑e∈E Ke(x,ye;x′,y′e), the quadratic part of the objective becomes

αKα = ∑
e

∑
i,i′

∑
y,y′

α(i,y)Ke(i,ye; i
′,y′e)α(i′,y′)

= ∑
e

∑
i,i′

∑
ue,u′

e

Ke(i,ue; i
′,u′

e) ∑
y:ye=ue

∑
y′:y′e=u′

e

α(i,y)α(i′,y′)

= ∑
e

∑
i,i′

∑
ue,u′

e

µe(i,ue)Ke(i,ue; i
′,u′

e)µe(i,u′
e)

= µTKEµ,

whereKE = diag(Ke,e∈ E) is a block diagonal matrix with edge-specific kernel blocksKe.
The objective should be maximized with respect toµ whilst ensuring that there existα ∈ A

satisfyingMαi = µi for all i, so that the marginal dual solution represents a feasible solution of the
original dual. By the properties outlined above, the feasible set of the marginalized problem is the
marginal dual polytope, or to be exact the Cartesian product of the marginal polytopes of single
examples (which are in fact equal):

M =M 1×·· ·×Mm

In summary, the marginalized optimization problem can be stated in implicit form as

max
µ∈M

µTℓE −
1
2

µTKEµ

This problem is a quadratic programme with a linear number of variables in the number of training
examples and in the number of edges.

For optimization algorithms, an explicit characterization of the feasible set is required. Char-
acterizing the polytopeM in terms of linear constraints defining the faces of the polytope, is for
general graphs infeasible. Singly-connected graphs such as trees are an exception: for such graphs
the marginal polytope is exactly reproduced by the box constraints

∑
ue

µe(i,ue) ≤C,∀i,e∈ E,µe ≥ 0 (6)

and the local consistency constraints

∑
yk

µk j(i,yk,y j) = µj(i,y j);∑
y j

µk j(i,yk,y j) = µk(i,yk). (7)

In this case the size of the resulting constraint set is linear in the number of vertices the graph. Thus
for small hierarchies graphs it can be written down explicitly and the resultingoptimization problem
has linear size in both the number of examples and the size of the graph. Thusthe approach can in
principle be made to work, although not with off-the-shelf QP solvers (seesections 3 and 5).

For hierarchies, the consistency constraints (7), can be equivalently defined in terms of the
edges: it suffices to pair up each edge with its parent which results in the set of edge pairsE2 =

1611

ROUSU, SAUNDERS, SZEDMAK AND SHAWE-TAYLOR

{(e,e′) ∈ E×E|e= (j ′, i),e′ = (i, j)}. By introduction of these marginal consistency constraints
the optimization problem gets the form

max
µ≥0

∑
e∈E

µT
e ℓe−

1
2 ∑

e∈E

µT
e Keµe (8)

s.t∑
ye

µe(i,ye) ≤C,∀i,e∈ E,

∑
y′

µe(i,(y
′,y)) = ∑

y′
µe′(i,(y,y

′)), ∀i,y,(e,e′) ∈ E2,

,

While the above formulation is closely related to that described in Taskar et al.(2003), there are
a few differences to be pointed out. Firstly, as we assign the loss to the edges rather than the
microlabels, we are able to use richer loss functions than the simpleℓ∆. Secondly, single-node
marginal dual variables—theµj ’s in (7)—become redundant when the constraints are given in terms
of the edges. Thirdly, we have utilized the fact that in our feature representation the ’cross-edge’
values∆φe(x,ye)

T∆φe′(x
′,y′e′), wheree 6= e′, do not contribute to the kernel, hence we have a block-

diagonal kernelKE = diag(Ke1, . . . ,Ke|E|),KE(i,e,ue; j,e,ve) = Ke(i,ue; j,ve) with the number of
non-zero entries thus scaling linearly rather than quadratically in the numberof edges. Finally, we
write the box constraint (6) as an inequality as we want the algorithm to be ableto inactivate training
examples (see Section 3.2).

Like that of Taskar et al. (2003), our approach can be generalized tonon-tree structures. How-
ever, for a general graph, the feasible region in (8) will only approximate that of (2), which will give
rise to a approximate solution to the primal. To arrive at an exact solution, oneshould construct the
junction tree for the graph and to write down the corresponding constraintsfor the junction tree. As
a caveat, one should note that for dense graphs, the junction tree may be significantly larger than
the size of the original structure. Also, in tractable time, finding the maximum likelihood multilabel
can only be approximated.

3. Efficient Optimization of the Marginalized Dual Problem

While the above quadratic program is polynomial-sized—and considerably smaller than that de-
scribed in Taskar et al. (2003)—it is still easily too large in practice to fit in mainmemory or to
solve by off-the-shelf QP solvers. To arrive at a more tractable problem, we notice from (3) and
(4) that the constraint set decomposes by the examples: to satisfy a single box constraint (6) or a
marginal consistency constraint (7) one only needs to change the marginal dual variables of a single
example. Moreover, the structure of the feasible set only depends on theedge setE, not on the
training example in question: we haveA1 = · · · = Am.

However, the kernel matrix only decomposes by the edges as most pairs ofexamples have
non-positive kernel value between them. Thus there does not seem to bea straightforward way to
decompose the quadratic programme.

A decomposition becomes possible when considering gradient-based approaches. Let us con-
sider optimizing the dual variablesµi = (µe(i,ye))e∈E,ye∈Ye

of examplexi whereℓi denotes the cor-
responding loss vector andK i j =

(

Ke(i,ue; j,ve)e∈E,ue,ve∈Ye

)

denotes the block of kernel values be-
tween examplesi and j, and byK i· = (K i j) j∈{1,...,m} the columns of the kernel matrixKE referring
to examplei.

1612

HIERARCHICAL MULTILABEL CLASSIFICATION

Obtaining the gradient for thexi-subspace requires computing the corresponding part of the
gradient of the objective function in (8) which isgi = ℓi − K i·µ where ℓi = (ℓe(i,ue))e∈E,ue∈Ye

is the corresponding loss vector forxi . However, when updatingµi only, evaluating the change
in objective and updating the gradient can be done more cheaply:∆gi = −K ii ∆µi and ∆ob j =
gT

i ∆µi −1/2∆µiK ii ∆µi . Thus local optimization in a subspace of a single training example can be
done without consulting the other training examples. On the other hand, we donot want to spend
too much time in optimizing a single example: When the dual variables of the other examples are
non-optimal, so is the initial gradientgi . Thus the optimum we would arrive at would not be the
global optimum of the quadratic objective. It makes more sense to optimize all examples more or
less in tandem so that the full gradient approaches its optimum as quickly as possible.

Before presenting the pseudocode of our method some notations have to beintroduced. The
function f () denotes the objective function andF stands for the set of the feasible solutions in (8).
The feasibility domain forµi when all other components inµ are fixed is denoted byF i .

In our approach, we have chosen to conduct a few optimization steps foreach training example
using a conditional gradient ascent (see Algorithm 2) before moving on tothe next example. The
iteration limit for each example is set by using the Karush-Kuhn-Tucker(KKT) conditions as a
guideline (see Section 3.2).

The pseudocode of our algorithm is given in Algorithm 1. It takes as inputthe training data, the
edge set of the hierarchy, the loss vectorℓ = (ℓi)

m
i=1 and the constraints defining the feasible region.

The algorithm chooses a chunk of examples as the working set, computes thekernel for eachxi and
makes an optimization pass over the chunk. After one pass, the gradient, slacks and the duality gap
are computed and a new chunk is picked. The process is iterated until the duality gap gets below
given threshold.

Note in particular, that the joint kernel is not explicitly computed, although evaluating the gra-
dient requires computing the productKEµ. However, we are able to take advantage of the special
structure of the feature vectors, repeating the same feature vector in different contexts, see the defi-
nition of the edge marginal dual variables (5) and the explanation after, to facilitate the computation
using the x-kernelKx(i, j) = ∆φ(xi)

T∆φ(x j) and the dual variables only.

3.1 Conditional Subspace Gradient Ascent

The optimization algorithm used for a single example is a variant of conditional gradient ascent (or
descent) algorithms (Bertsekas, 1999). The algorithms in this family solve a constrained quadratic
problem by iteratively stepping to the best feasible direction with respect to the current gradient. It
exploits the fact ifµ∗ is an optimum solution of a maximization problem with objective function
f above the feasibility domainF i then it has to satisfy the first order optimality condition, i.e., the
inequality

∇ f (µi)(µi −µ∗) ≥ 0 (9)

has to hold for any feasibleµi chosen fromF i .
The pseudocode of our variant CSGA is given in Algorithm 2. The algorithm takes as input the

current dual variables, gradient, constraints and the kernel block for the examplexi , and an iteration
limit. It outputs new values for the dual variablesµi and the change in objective value. As discussed
above, the iteration limit is set very tight so that only a few iterations will be typically conducted.

1613

ROUSU, SAUNDERS, SZEDMAK AND SHAWE-TAYLOR

Algorithm 1 Maximum margin optimization algorithm for the H-M3 hierarchical classification
model.
H-M3(S,E, ℓ,F)

Require: Training dataS= ((xi ,yi))
m
i=1, edge setE of the hierarchy, a loss vectorℓ, and the feasi-

bility domainF .
Ensure: Dual variable vectorµ and objective valuef (µ).

1: Initialize g = ℓ, ξ = ℓ,dg= ∞ andOBJ= 0.
2: while dg> dgmin & iter < max iter do
3: [WS,Freq] = UpdateWorkingSet(µ,g,ξ);
4: Compute x-kernel valuesKX,WSwith respect to the working set;
5: for i ∈WSdo
6: Compute joint kernel blockK ii and subspace gradientgi ;
7: [µi ,∆ob j] = CSGA(µi ,gi ,K ii ,F i ,Freqi);
8: end for
9: Compute gradientg, slacksξ and duality gapdg;

10: end while

First we need to find a feasibleµ∗ which maximizes the first order feasibility condition (9) at a
fixed µi . It gives a direction potentially increasing the value of objective functionf . Then we have
to choose a step length,τ that gives the optimal feasible solution as a stationary point along the line
segmentµi(τ) = µi +τ∆µ, τ ∈ (0,1], where∆µ= µ∗−µi , starting on the known feasible solutionµi .

The stationary point is found by solving the equation

d
dτ
[

ℓT
i µi(τ)−1/2µi(τ)

TK ii µi(τ)
]

= 0, (10)

expressing the optimality condition with respect toτ. If τ > 1, the stationary point is infeasible
and the feasible maximum is obtained atτ = 1. In our experience, the time taken to compute the
stationary point was typically significantly smaller than time taken to findµ∗i , depending on the
dataset characteristics and the actual algorithm (see Section 3.3) that wasused to findµ∗i .

3.2 Working Set Maintenance

We wish to maintain the working set so that the most promising examples to be updated are con-
tained there at all times to minimize the amount of computation used for unsuccessful updates. Our
working set update is based on the Karush-Kuhn-Tucker(KKT) conditions which at the optimum
hold for allxi :

1. (C−∑e,ye
µe(i,ye))ξi = 0, and

2. α(i,y)(wTφ(xi ,y)− ℓ(yi ,y)+ξi) = 0.

The first condition states that, at optimum, only examples that saturate the box constraint can have
positive slack, and consequently a pseudo-example that has a negativemargin. The second condition
states that pseudo-examples with non-zero dual variables are those thathave the minimum margin,
that is, need the full slackξi . Consequently, if all pseudo-examples ofxi have positive margin, all
dual variables satisfyα(i,y) = 0. This observation leads to the following heuristics for the working
set update:

1614

HIERARCHICAL MULTILABEL CLASSIFICATION

Algorithm 2 Conditional subspace gradient ascent optimization step.
CSGA(µi ,gi ,K ii ,F i ,maxiteri)

Require: Initial dual variable vectorµi , gradientgi , constraints of the feasible regionF i , a joint
kernel blockK ii for the subspace, and an iteration limitmaxiteri .

Ensure: New values for dual variablesµi and change in objective∆ob j.
1: ∆ob j = 0;iter = 0;
2: while iter < maxiterdo
3: % find highest feasible point givengi

4: µ∗ = argmaxv∈F i
gT

i v;
5: ∆µ= µ∗−µi ;
6: q = gT

i ∆µ, r = ∆µTK ii ∆µ; % taken from the solution of (10)
7: τ = min(q/r,1); % clip to remain feasible
8: if τ ≤ 0 then
9: break; % no progress, stop

10: else
11: µi = µi + τ∆µ; % update
12: gi = gi − τK ii ∆µ;
13: ∆ob j = ∆ob j+ τq− τ2r/2;
14: end if
15: iter = iter +1;
16: end while

• Non-saturated (∑e,ye
µe(i,ye) < C) examples are given priority as they certainly will need to

be updated to reach the optimum.

• Saturated examples (∑e,ye
µe(i,ye) = C) are added if there are not enough non-saturated ones.

The rationale is that the even though an example is saturated, the individual dual variable
values may still be suboptimal being equal to 0.

• Inactive (∑e,ye
µe(i,ye) = 0) non-violators (ξi = 0) are removed from the working set, as they

do not constrain the objective.

Another heuristic technique to concentrate computational effort to most promising examples is
to favor examples with a large duality gap

∆ob j(µ,ξ) = ∑
i

Cξi +µT
i gi .

As feasible primal solutions always are least as large as feasible dual solutions, the duality gap gives
an upper bound to the distance from the dual solution to the optimum. We use the quantity ∆i =
Cξi + µT

i gi as a heuristic measure of the work needed for that particular example in order to reach
the optimum. Examples are then chosen to the chunk to be updated with probability proportional to
pi ∝ ∆i −min j ∆ j . An example that is drawn more than once will be set a higher iteration limit for
the next optimization step.

1615

ROUSU, SAUNDERS, SZEDMAK AND SHAWE-TAYLOR

3.3 Finding Update Directions Efficiently

The optimization algorithm described above relies on efficient computation of update directionsµ∗i
in the single example subspaces, that is, to solve the constrained linear program

argmaxv∈F i
gT

i v. (11)

A straightforward approach would be to use a linear programming solver, such as the LIPSOL
interior point solver. However, a such black-box approach does notutilize the special structure of
the problem in any way.

In order to solve this problem efficiently, we first notice two things:

1. A vertex of the feasible set is always among the optimal solutions.

2. Vertices correspond to consistent labelings of the hierarchy. This can be seen from the fact that
at the vertex, for each edgeµe(i,ye) = C for exactly oneye andµe(i,ue) = 0 for ue 6= ye, and
that the marginal consistency constraints require that for two adjacent edgese′ = (j ′, j),e′′ =
(j, j ′′) we haveµe′(i,y′e) = C = µe′′(i,y′′e) with matching edge-labelingsy′e = (y j ′ ,y j) and
y′′e = (y j ,y j ′′).

Thus instead of solving (11) directly, we can search for the labelingy∗ of the hierarchy corre-
sponding to an optimal vertex
vmu(y∗) of the feasible set:

argmaxy∈Y gT
i µ(y) (12)

This problem can be solved efficiently using a dynamic programming inference algorithm, re-
viewed in the next section.

3.4 Solving the Inference Problem in Linear Time

When dealing with structured output models, one needs to solve the inference problem

argmaxy∈Y gT
i µ(y) (13)

to find a multilabely maximizing the inner product between some (gradient) vectorh and the
marginal dual variablesµ(y) corresponding toy. In our learning scheme this problem is found
in two situations,

• when predicting multilabels given a learned model, and

• to find update directions (12).

The algorithm described below can be used for both problems, the only quantity that changes is the
gradientgi .

Inference algorithms solving problems of the above form have been well-studied in the literature
of probabilistic models, under the names of belief propagation and generalized distributive law (Aji
and McEliece, 2000; Kschischang et al., 2001; Wainwright and Jordan, 2003). It is known that, for
general graphs, solving (13) is not any easier than solving (11). However, for a hierarchical model
dynamic programming can be used: starting from the leaves of the hierarchywe compute bottom-up

1616

HIERARCHICAL MULTILABEL CLASSIFICATION

for each subtree the optimal labeling of the subtree, conditioned on fixing thelabel of the subtree
root to+1 or−1.

We denote byTj = (Vj ,E j) the subtree ofT rooted at nodej. We need to maintain two quantities
during the bottom-up pass:

• The best objective value that can be obtained for the examplei in the subtree rooted at nodej
when the labely j has been fixed. We denote this value bySy j (i, j).

• The best objective value that can be obtained for the subtree rooted by the edgee= (j, j ′)
when the root nodej is fixed toy j . We denote this value byGy j (i,e).

The two quantities are computed from the recurrences

Sy j (i, j) =

{

∑e=(j, j ′)∈E j
Gy j (i,e), if E j 6= /0,and

0, otherwise,

and
Gy j (i,e) = max

y j′
ge(i,y j ,y j ′)µe(i,y j ,y j ′)+Sy j′

(i, j ′)

At the root node of the hierarchy, maxySy(i, root) finally gives the optimum. The corresponding
vertexv(y∗) is found in making a top-down pass over the hierarchy: one looks for best label for a
child of a node given the parent has been fixed. It should be noted thatalthough in principle the best
conditional labeling—how to label a subtree when the root is fixed to one of the possible labels—
could be computed already during the bottom-up pass, the two pass algorithm, where the labeling
is worked out only after the label of the global root of the hierarchy hasbeen found out, is much
easier to implement and works just as fast.

The dynamic programming scheme can be implemented in vectorized form so that all examples
and all nodes on a level of the hierarchy are handled at the same time, thus eliminating the need for
loops going over examples and nodes, which in MATLAB implementation are to beavoided.

All in all, the above described inference algorithm works in linear time in the number of dual
variables, which can be seen from the fact that each example is processed once, each edge is visited
twice (once in the bottom-up pass, once in the top-down pass) and the max operations are taken
over the dual variables belonging to the current edge.

3.5 Computing Stationary Points in Linear Time

The conditional gradient ascent requires us to iteratively solve (10) for τ, which givesτ = ∆µ/∆µK ii ∆µ.
The potentially expensive part is evaluating the matrix-vector productK ii ∆µ= K ii µ∗−K ii µi , which
trivially could take quadratic time in the number of variables. However, we cankeep in mem-
ory the vectorK ii µi during the computation, thus it remains to computeK ii µ∗. Firstly, we no-
tice that for a normalized x-kernel, the entries of the joint kernel are given as sums of indicators
Kii (e,ue;e,u′

e) = 1− [yie = u′
e]− [y′ie = ue]+ [ue = u′

e]. Secondly, sinceµ∗ is an extreme point of
the feasible set,µ∗(e,ue) = C for exactly one of the componentsue ∈ Ye. By these facts and some
arithmetic manipulation we obtainK ii µ∗ = [1− yi]C− yi ·µ∗ + µ∗. Thus, instead of matrix-vector
product we only need to compute a single vector-vector product and a sum of three vectors. Finally,
the update forK ii µi is given as a convex combination of vectorsK ii µnew

i = τK ii µ∗+(1−τ)K ii µi . The
total number of operations to compute the stationary point remains linear in the number of variables.

1617

ROUSU, SAUNDERS, SZEDMAK AND SHAWE-TAYLOR

4. Extensions and Variants

There are several variations of the multilabel classification models described above.

Slack variables were defined as non-negative and a single variable was allocated per example.
Allowing negative slack (c.f.Taskar et al. (2003); Tsochantaridis et al.(2004)) results in the dual
equality constraint∑ye

µe(i,ye) = C instead of the box constraint. This results in non-sparse models
as training points are very likely to have non-zero slack.

Allotting a separate slack variable for each edge is a possibility when the data for some edges
can be considered less reliable than the data for others; in such case the unreliable edge can consume
required slack without affecting the other edges. From an optimization pointof view, edge-based
slack variables make the model decompose into separate edge-based quadratic programs and may
allow larger models to be optimized.

Partial paths could be used as the basis of the classification model instead of the edges. For
each partial pathp = (j1, . . . , jd) one defines a feature vectorφp(i,y) = [yp = 1|p|]φ(x), where
yp = (y j1, . . . ,y jd) is the restriction of the multilabel to the partial path. As the number of par-
tial paths in the hierarchy equals the number of nodes, the resulting featurevectors are actually
smaller than the ones defined by edge-labelings. The marginalization of the model by the partial
paths works in an analogous way to the edge-marginalization and the same optimization algorithms
can be used. The price of the more compact feature representation comesin the form of slightly
more complicated consistency constraints and inference: For consistencyone needs to ensure that
if a partial pathp has non-zero path-marginalµp(i,yp), no prefix p′ of p has non-zero marginal
µp′(i,yp). Correspondingly, the inference algorithms need to make comparisons between a partial
path and its prefixes.

Non-hierarchical models can also be tackled with the above described framework, with a few
caveats. First, ensuring global consistency of the marginalized dual is more involved as local consis-
tency of edge-marginals does not guarantee existence of a dual variable α(i,y) with those marginals.
If the graph is not too dense this problem can be circumvented by computing theclique tree of the
graph and making the clique tree locally consistent, and the conditional gradient optimization will
work unmodified. However, inference for general graphs is NP-hard so both computing predictions
of the model and finding the update directions in the optimization becomes hard. Several schemes to
find approximate solutions exist, including loopy belief propagation, semi-definite relaxations and
tree-based approximations (Wainwright and Jordan (2003); Wainwright et al. (2003)). Depending
on the application, also considering the model in a decomposed form via definition of edge-slack
variables (see above) may be justified.

5. Experiments

We tested the presented learning approach on three datasets that have anassociated classification
hierarchy:

• REUTERS Corpus Volume 1, RCV1 (Lewis et al., 2004). 2500 documents were used for
training and 5000 for testing. As the label hierarchy we used the ’CCAT’ family of categories
(Corporate/Industrial news articles), which had a total of 34 nodes, organized in a tree with
maximum depth 3. The tree is quite unbalanced, half of the nodes residing in depth 1, and
very few nodes in depth 3.

1618

HIERARCHICAL MULTILABEL CLASSIFICATION

• WIPO-alpha patent dataset (WIPO, 2001). The dataset consisted of the 1372 training and
358 testing document comprising the D section of the hierarchy. The number of nodes in the
hierarchy was 188, with maximum depth 3.

• ENZYME classification dataset. The training data consisted of 7700 protein sequences with
hierarchical classification given by the Enzyme Classification (EC) system.The hierarchy
consisted of 236 nodes organized into a tree of depth three. Test data consisted of 1755
sequences.

In all datasets, the membership of examples in the nodes of the hierarchy is indicated by binary
vectorsy ∈ {+1,−1}k. Multiple paths were actually present in one of the datasets, REUTERS,
approximately 8 percent of examples were classified into more than one category.

The two first datasets were processed into bag-of-words representation with TFIDF weighting.
No word stemming or stop-word removal was performed. For the ENZYME sequences a length-4
subsequence kernel was used.

We compared the performance of the presented learning approach—below denoted byH-M3—
to three algorithms:SVM denotes an SVM trained for each microlabel separately,H-SVM denotes
the case where the SVM for a microlabel is trained only with examples for whichthe ancestor labels
are positive.

The SVM and H-SVM were run using the SVM-light package. After pre-computation of the
kernel these algorithms are as fast as one could expect, as they just involve solving an SVM for each
node in the graph (with the full training set forSVM and usually a much smaller subset forH-SVM).

H-RLS is a batch version of the hierarchical least squares algorithm describedin Cesa-Bianchi
et al. (2004). It essentially solves for each nodei a least squares style problemwi = (I + SiST

i +
xxT)−1Siyi , whereSi is a matrix consisting of all training examples for which the parent of nodei
was classified as positive,yi is a microlabel vector for nodei of those examples andI is the identity
matrix. Predictions for a nodei for a new examplex is −1 if the parent of the node was classified
negatively and sign(wT

i x) otherwise.
H-RLS requires a matrix inversion for each prediction of each example, at each node along a

path for which errors have not already been made. No optimization of the algorithm was done,
except to use extension approaches to efficiently compute the matrix inverse(for each example an
inverted matrix needs to be extended by one row/column, so a straightforward application of the
Sherman-Morrison formula to efficiently update the inverse can be used).

The H-RLS and H-M3 algorithms were implemented in MATLAB. The tests were run on a
high-end PC. ForSVM,H-SVM and H-M3, the regularization parameter valueC = 1 was used in
all experiments.

Obtaining consistent labelings. As the learning algorithms compared here all decompose the
hierarchy for learning, the multilabel composed of naively combining the microlabel predictions
may be inconsistent, that is, they may predict a document as part of the child but not as part of the
parent. ForSVM andH-SVM consistent labelings were produced by post-processing the predicted
labelings as follows: start at the root and traverse the tree in a breadth-first fashion. If the label
of a node is predicted as−1 then all descendants of that node are also labeled negatively. This
post-processing turned out to be crucial to obtain good accuracy, thuswe only report results with
the postprocessed labelings. Note thatH-RLS performs essentially the same procedure (see above).
For H-M3 models, we computed by dynamic programming the consistent multilabel with maximum

1619

ROUSU, SAUNDERS, SZEDMAK AND SHAWE-TAYLOR

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU time (seconds)

O
b

je
ct

iv
e

/ E
rr

o
r

(%
 o

f
m

ax
im

u
m

)

objective
tr.error
test.error

Figure 2: The objective function (% of optimum) andℓ∆ losses forH-M3 on training and test sets
(WIPO-alpha)

likelihood

u(x) = argmaxy∈YT
P(y|x) = argmaxywTφ(x,y),

whereYT is the set of multilabels that correspond to unions of partial paths inT. The algorithm is
otherwise the same as the one in 3.4, but the inconsistent edge-labelings arenot taken into account
in the maximization.

Efficiency of optimization. To give an indication of the efficiency of theH-M3 algorithm, Figure
2 shows an example learning curve on WIPO-alpha dataset. The number ofdual variables for this
training set is just over one million with a joint kernel matrix with approx 5 billion entries. Note
that the solutions for this optimization are not sparse, typically less than 25% ofthe marginal dual
variables are zero. Training and test losses (ℓ∆) are all close to their optima within 10 minutes of
starting the training, and the objective is within 2 percent of the optimum in 30 minutes.

To put these results in perspective, for the WIPO data setSVM (SVM-light) takes approximately
50 seconds per node, resulting in a total running time of about 2.5 hours, which makes it significantly
slower thanH-M3, in these tests. It is possible that using early stopping forSVM the training time
could be pushed down to the level ofH-M3, however, we have not explored this question. We also
suspect that early stopping forSVM may be more costly than forH-M3, due to the fact that the latter
predicts whole labelings for the trees where the weight of a single microlabelis small, and in fact
the predicted multilabels may contain microlabels that are not locally optimal. In otherwords, the
inference procedure for multilabels may correct poor microlabel predictions.

1620

HIERARCHICAL MULTILABEL CLASSIFICATION

100 1000 10000
4000

4500

5000

5500

6000

6500

7000

CPU time (seconds)

O
bj

ec
tiv

e

LIPSOL
DP−1
DP−50
DP−10

Figure 3: Learning curves forH-M3 using LIPSOL and dynamic programming (DP) to compute
update directions (WIPO-alpha). Curves with iteration limits 1,10 and 50 are shown for
DP. The LIPSOL curve is computed with iteration limit set to 1.

The running time ofH-RLS was slower than the other methods, however this could be due to
our unoptimized implementation. It is our expectation that it would be very close tothe time taken
by H-SVM if coded more efficiently.

Therefore, the methods presented in this paper are very competitive froma computational ef-
ficiency point of view to other methods which do not operate in the large feature/output spaces of
H-M3.

Figure 3 shows on WIPO-alpha the efficiency of the dynamic programming (DP) based com-
putation of update directions as compared to solving the update directions with MATLAB’s linear
interior point solver LIPSOL. The DP based updates result in an order of magnitude faster optimiza-
tion than using LIPSOL.

In addition for DP the effect of the iteration limit for optimization speed is depicted. Setting the
iteration limit too low (1) or too high (50) slows down the optimization, for different reasons. A
too tight iteration limit makes the overhead in moving from one example to the other dominate the
running time. A too high iteration limit makes the the algorithm spend too much time optimizing
the dual variables of a single example. Unfortunately, it is not straightforward to suggest a iteration
limit that would be universally the best, as the optimal value depends on the dataset.

Effect of choice of the loss function. In order to show the effect of training theH-M3 algorithm
using the different loss functions described in Section 2.1, we studied the performance of the al-
gorithm on Reuters and WIPO data sets. The results can be seen in Table 5.The WIPO dataset
gives an indication that using a hierarchical loss function during training (e.g. eitherℓH̃-sibl. or

1621

ROUSU, SAUNDERS, SZEDMAK AND SHAWE-TAYLOR

Test loss
ℓ0/1 ℓ∆ ℓH̃ +scaling

Tr. loss % unif sibl. subtree
ℓ∆ 27.1 0.574 0.344 0.114 0.118
ℓH̃ -unif 26.8 0.590 0.338 0.118 0.122
ℓH̃ -sibl. 28.2 0.608 0.381 0.109 0.114
ℓH̃ -subtree 27.9 0.588 0.373 0.109 0.109

ℓ0/1 ℓ∆ ℓH̃ +scaling
Tr. loss % unif sibl. subtree
ℓ∆ 70.9 1.670 0.891 0.050 0.070
ℓH̃ -unif. 70.1 1.721 0.888 0.052 0.074
ℓH̃ -sibl. 64.8 1.729 0.927 0.048 0.071
ℓH̃ -subtree 65.0 1.709 0.919 0.048 0.072

Table 1: Prediction losses obtained using different training losses on Reuter’s (top) and WIPO-
alpha data (bottom). The lossℓ0/1 is given as a percentage, the other losses as averages
per-example.

ℓH̃-subtree) may lead to a reduced 0/1 loss on the test set. On Reuters dataset this effect is not
observed, however this is due to the fact that the label tree of the Reutersdata set is very shallow.

Comparison of predictive accuracies of different algorithms. In our final test we compare the
predictive accuracy ofH-M3 to other learning methods. ForH-M3 we include the results for training
with ℓ∆ andℓH̃-subtreelosses. For trainingSVM andH-SVM, these losses produce the same learned
model.

Table 2 depicts the different test losses, as well as the standard information retrieval statistics
precision (P), recall (R) and F1 statistic (F1 = 2PR/(P+R)). Precision and recall were computed
over all microlabel predictions in the test set. FlatSVM is expectedly inferior to the competing algo-
rithms with respect to most statistics, as it cannot utilize the dependencies between the microlabels
in any way. The two variants ofH-M3 are the most efficient in getting the complete tree correct as
shown by the lower zero-one loss. With respect to other statistics, the hierarchical methods are quite
evenly matched overall.

Finally, to highlight the differences between the predicted labelings, we computed level-wise
precision and recall values, that is, the set of predictions contained all test instances and microlabels
on a given level of the tree (Table 3). On all datasets, recall of all methods, especially withSVM and
H-SVM, diminishes when going farther from the root.H-M3 is the most efficient method in fighting
the recall decline, and is still able to obtain reasonable precision on REUTERS and WIPO-alpha,
especially when trained with the hierarchical loss.

The results on ENZYME data are generally not good for any of the methods, this is most prob-
ably due to the subsequence kernel used not being able to pick out the subsequences corresponding
to the active centers of the enzymes. Nevertheless, the effect ofH-M3 obtaining better recall in deep
nodes than the competition can be observed.

1622

HIERARCHICAL MULTILABEL CLASSIFICATION

REUTERS ℓ0/1 ℓ∆ P R F1
SVM 32.9 0.61 94.6 58.4 72.2

H-SVM 29.8 0.57 92.3 63.4 75.1
H-RLS 28.1 0.55 91.5 65.4 76.3

H-M3-ℓ∆ 27.1 0.58 91.0 64.1 75.2
H-M3-ℓH̃ 27.9 0.59 85.4 68.3 75.9

WIPO-alpha ℓ0/1 ℓ∆ P R F1
SVM 87.2 1.84 93.1 58.2 71.6

H-SVM 76.2 1.74 90.3 63.3 74.4
H-RLS 72.1 1.69 88.5 66.4 75.9

H-M3-ℓ∆ 70.9 1.67 90.3 65.3 75.8
H-M3-ℓH̃ 65.0 1.73 84.1 70.6 76.7

ENZYME ℓ0/1 ℓ∆ P R F1
SVM 99.7 1.3 99.6 41.1 58.2

H-SVM 98.5 1.2 98.9 41.7 58.7
H-RLS 95.6 2.0 51.9 54.7 53.3

H-M3-ℓ∆ 95.7 1.2 87.0 49.8 63.3
H-M3-ℓH̃ 85.5 2.5 44.5 66.7 53.4

Table 2: Prediction lossesℓ0/1 andℓ∆, precision, recall and F1 values obtained using different learn-
ing algorithms. All figures are given as percentages. Precision and recall are computed in
terms of totals of microlabel predictions in the test set.

6. Conclusions and Future Work

In this paper we have proposed a new method for training variants of the Maximum Margin Markov
Network framework for hierarchical multi-category text classification models.

Our method relies on a decomposition of the problem into single-example sub problems and
conditional gradient ascent for optimisation of the subproblems. The method scales well to medium-
sized datasets with label matrix (examples× microlabels) size upto hundreds of thousands, and
via kernelization, very large feature vectors for the examples can be used. Experimental results
on three classification tasks show that using the hierarchical structure ofmulti-category labelings
leads to improved performance over the more traditional approach of combining individual binary
classifiers.

Our future work includes generalization of the approach to general graph structures and looking
for ways to scale up the method further.

1623

ROUSU, SAUNDERS, SZEDMAK AND SHAWE-TAYLOR

REUTERS Level 0 Level 1 Level 2 Level 3
SVM 92.4/89.4/90.9 96.8/38.7/55.3 98.1/49.3/65.6 81.8/46.2/59.0

H-SVM 92.4/89.4/90.9 93.7/43.6/59.5 91.1/61.5/73,4 72.0/46.2/56,3
H-RLS 93.2/89.1/91.1 90.9/46.8/61.8 89.7/64.8/75.2 76.0/48.7/59.4

H-M3-ℓ∆ 94.1/83.0/88.2 87.3/48.9/62.7 91.1/63.2/74.6 79.4/69.2/73.9
H-M3-ℓH̃ 91.1/87.8/89.4 79.2/53.1/63.6 85.4/66.6/74.8 77.9/76.9/77.4

WIPO-alpha Level 0 Level 1 Level 2 Level 3
SVM 100/100/100 92.1/77.7/84.3 84.4/42.5/56.5 82.1/12.8/22.1

H-SVM 100/100/100 92.1/77.7/84.3 79.6/51.1/62.2 77.0/24.3/36.9
H-RLS 100/100/100 91.3/79.1/84.8 78.2/57.0/65.9 72.6/29.6/42.1

H-M3-ℓ∆ 100/100/100 90.8/80.2/85.2 86.1/50.0/63.3 72.1/31.0/43.4
H-M3-ℓH̃ 100/100/100 90.9/80.4/85.3 76.4/62.3/68.6 60.4/39.7/47.9

ENZYME Level 0 Level 1 Level 2 Level 3
SVM 100/100/100 84.3/4.9/9.3 100/0.4/0.8 100/0.3/0.6

H-SVM 100/100/100 84.3/4.9/9.3 72.3/1.9/3.7 67.5/1.5/2.9
H-RLS 100/97.4/98.7 33.0/39.3/35.9 22.4/22.6/22.5 15.2/17.0/16.0

H-M3-ℓ∆ 100/100/100 61.2/30.8/41.0 49.8/13.3/21.0 52.9/4.7/8.6
H-M3-ℓH̃ 100/100/100 49.3/56.0/52.4 21.5/42.5/28.6 14.7/35.2/20.7

Table 3: Precision/Recall/F1 statistics for each level of the hierarchy for different algorithms on
Reuters RCV1 (top), WIPO-alpha (middle), and ENZYME datasets (bottom).

Acknowledgments

The authors gratefully acknowledge the insightful comments by the anonymous referees. We also
wish to thank Esa Pitk̈anen for his help in preparing the datasets. This work was supported in part by
the IST Programme of the European Community, under the PASCAL Network ofExcellence, IST-
2002-506778. Juho Rousu has been supported by the European Union Marie Curie Fellowship grant
HPMF-CT-2002-02110 and the work was partly conducted when he wasvisiting Royal Holloway
University of London.

1624

HIERARCHICAL MULTILABEL CLASSIFICATION

References

S. M. Aji and R. McEliece. The generalized distributive law.IEEE Transactions on Information
Theory, 46(2):325–343, 2000.

Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden markov support vector machines. InInterna-
tional Conference of Machine Learning, 2003.

D. Bertsekas.Nonlinear Programming. Athena Scientific, 1999.

L. Cai and T. Hofmann. Hierarchical document categorization with support vector machines. In13
ACM CIKM, 2004.

N. Cancedda, E. Gaussier, C. Goutte, and J.-M. Renders. Word-sequence kernels.Journal of
Machine Learning Research, 3:1059–1082, 2003.

N. Cesa-Bianchi, C. Gentile, A. Tironi, and L. Zaniboni. Incremental algorithms for hierarchical
classification. InNeural Information Processing Systems, 2004.

N. Cristianini and J. Shawe-Taylor.An Introduction to Support Vector Machines. Cambridge Uni-
versity Press, 2000.

O. Dekel, J. Keshet, and Y. Singer. Large margin hierarchical classification. In ICML’04, pages
209–216, 2004.

S. T. Dumais and H. Chen. Hierarchical classification of web content. InSIGIR’00, pages 256–263,
2000.

T. Gartner. A survey of kernels for structured data.ACM SIGKDD Explorations, pages 49–58,
2003.

T. Hofmann, L. Cai., and M. Ciaramita. Learning with taxonomies: Classifying documents and
words. InNIPS Workshop on Syntax, Semantics, and Statistics, 2003.

T. Joachims. Text categorization with support vector machines: Learningwith many relevant fea-
tures. InProceedings of the European Conference on Machine Learning, pages 137 – 142, Berlin,
1998. Springer.

D. Koller and M. Sahami. Hierarchically classifying documents using very few words. InICML’97,
pages 170–178, 1997.

F. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm.IEEE
Transactions on Information Theory, 47:498–519, 2001.

J. Lafferty, X. Zhu, and Y. Liu. Kernel conditional random fields: representation and clique selec-
tion. In Proc. 21th International Conference on Machine Learning, pages 504–511, 2004.

C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for SVM protein
classification. InProceedings of the Pacific Symposium on Biocomputing, pages 564 – 575, 2002.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collection for text categoriza-
tion research.JMLR, 5:361–397, Apr 2004.

1625

ROUSU, SAUNDERS, SZEDMAK AND SHAWE-TAYLOR

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using
string kernels.Journal of Machine Learning Research, 2:419–444, February 2002.

A. McCallum, R. Rosenfeld, T. Mitchell, and A. Y. Ng. Improving text classification by shrinkage
in a hierarchy of classes. InICML’98, pages 359–367, 1998.

J. Rousu and J. Shawe-Taylor. Efficient computation of gapped substring kernels on large alphabets.
JMLR, 6:1323–1344, 2005.

G. Salton.Automatic Text Processing. Addison-Wesley, Massachusetts, 1989.

C. Saunders, H. Tschach, and J. Shawe-Taylor. Syllables and otherstring kernel extensions. In
ICML’02, pages 530–537, 2002.

J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis. Cambridge University
Press, 2004.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. InNeural Information Pro-
cessing Systems 2003, 2003.

B. Taskar, V. Chatalbashev, and D. Koller. Learning associative markov networks. InProc. 21th
International Conference on Machine Learning, pages 807–814, 2004.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y.n Altun. Support vector machine learning for
interdependent and structured output spaces. InProc. 21th International Conference on Machine
Learning, pages 823–830, 2004.

S. V. N. Vishwanathan and A. J. Smola. Fast kernels on strings and trees.
In Proceedings of Neural Information Processing Systems 2002, 2002. URL
http://users.rsise.anu.edu.au/ vishy/papers/VisSmo02.pdf.

M. Wainwright and M. Jordan. Graphical models, exponential families, and variational inference.
Technical Report 649, Department of Statistics, University of California, Berkeley, 2003.

M. Wainwright, T. Jaakkola, and A. Willsky. Tree-based reparameterization framework for analysis
of sum-product and related algorithms.IEEE Transactions on information theory, 49:1120–1146,
May 2003.

WIPO. World Intellectual Property Organization. http://www.wipo.int/classifications/en. 2001.

1626

