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Abstract
We give dimension-free and data-dependent bounds for linear multi-task learning where a common
linear operator is chosen to preprocess data for a vector of task specific linear-thresholding classi-
fiers. The complexity penalty of multi-task learning is bounded by a simple expression involving
the margins of the task-specific classifiers, the Hilbert-Schmidt norm of the selected preprocessor
and the Hilbert-Schmidt norm of the covariance operator forthe total mixture of all task distri-
butions, or, alternatively, the Frobenius norm of the totalGramian matrix for the data-dependent
version. The results can be compared to state-of-the-art results on linear single-task learning.
Keywords: learning to learn, transfer learning, multi-task learning

1. Introduction

Simultaneous learning of different tasks under some common constraint, often calledmulti-task
learning, has been tested in practice with good results under a variety of differentcircumstances
(see Baxter 1998, Caruana 1998, Thrun 1998, Ando and Zhang 2005). The technique has been
analyzed theoretically and in some generality by Baxter (2000) and Ando and Zhang (2005). The
latter reference appears to be the first to use Rademacher averages in this context. The purpose of
this paper is to improve some of these theoretical results in a special case of practical importance,
when input data are represented in a linear, potentially infinite dimensional space, and the common
constraint is a linear preprocessor.

Finite systems provide simple examples illustrating the potential advantages of multi-task learn-
ing. Consider agnostic learning with an input spaceX and a finite setF of hypothesesf : X →{0,1}.
For a hypothesisf ∈ F let er( f ) be the expected error and er̂( f ) the empirical error on a training
sampleS of sizen (drawn iid from the underlying task distribution) respectively. Combining Ho-
effding’s inequality with a union bound one shows (see e.g. Anthony and Bartlett 1999), that with
probability greater than 1−δ we have for everyf ∈ F the error bound

er( f )≤ êr( f )+
1√
2n

√

ln |F |+ ln(1/δ). (1)

Suppose now that there are a setY , a finite but large setG of preprocessorsg : X → Y , and another
setH of classifiersh : Y →{0,1}with

∣

∣H
∣

∣�|F |. For a cleverly chosen preprocessorg∈G it will
likely be the case that we find someh∈H such thath◦g has the same or even a smaller empirical
error than the bestf ∈ F . But this will lead to an improvement of the bound above (replacing|F |
by
∣

∣H
∣

∣) only if we chooseg before seeing the data, otherwise we incur a large estimation penalty
for the selection ofg (replacing|F | by

∣

∣H ◦G
∣

∣).
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The situation is improved if we have a set ofm different learning tasks with corresponding task
distributions and samplesS1, ...,Sm, each of sizen and drawn iid from the corresponding distribu-
tions. We now consider solutionsh1 ◦g, ... hm◦g for each of them tasks where the preprocessing
mapg∈ G is constrained to be the same for all tasksand only thehl ∈ H specialize to each taskl
at hand. Again Hoeffding’s inequality and a union bound imply that with probability greater 1− δ
we have for all(h1, ...,hm) ∈H m and everyg∈ G

1
m

m

∑
l=1

erl (hl ◦g)≤ 1
m

m

∑
l=1

êrl (hl ◦g)+
1√
2n

√

ln
∣

∣H
∣

∣+
ln |G |+ ln(1/δ)

m
. (2)

Here erl ( f ) and êrl ( f ) denote the expected error in taskl and the empirical error on training sample
Sl respectively. The left hand side above is an average of the expected errors, so that the guarantee
implied by the bound is a little weaker than the usual PAC guarantees (but see Ben-David, 2003, for
bounds on the individual errors). The first term on the right is the average empirical error, which
a multi-task learning algorithm seeks to minimize. We can take it as an operational definition of
task-relatedness relative to(H ,G) that we are able to obtain a very small value for this term. The
remaining term, which bounds the estimation error, now exhibits the advantage of multi-task learn-
ing: Sharing the preprocessor implies sharing its cost of estimation, and the entropy contribution
arising from the selection ofg∈ G decreases with the number of learning tasks. Since by assump-
tion

∣

∣H
∣

∣� |F |, the estimation error in the multi-task bound (2) can become much smaller than in
the single task case (1) if the numbermof tasks becomes large.

The choice of the preprocessorg∈G can also be viewed as the selection of the hypothesis space
H ◦g. This leads to an alternative formulation of multi-task learning, where the commonobject is
a hypothesis space chosen from a class of hypothesis spaces (in this case

{

H ◦g : g∈ G
}

), and the
classifiers for the individual tasks are all chosen from the selected hypothesis space. Here we prefer
the functional formulation of selecting a preprocessor instead of a hypothesis space, because it is
more intuitive and sufficient in the situations which we consider.

The arguments leading to (2) can be refined and extended to certain infinite classes to give
general bounds for multi-task learning (Baxter 2000, Ando and Zhang 2005). In this paper we
concentrate on the case where the input spaceX is a subset of the unit ball in a Hilbert spaceH, the
classG of preprocessors is a setA of bounded symmetric linear operators onH, and the classH is
the set of classifiershv obtained by 0-thresholding linear functionalsv in H with ‖v‖ ≤ B, that is

hv(x) = sign(〈x,v〉) andhν ◦T (x) = sign(〈Tx,v〉) ,x∈ H,T ∈ A , ‖v‖ ≤ B.

The learner now searches for a multi-classifierhv◦T = (hν1 ◦T, ...,hνm ◦T) where the preprocessing
operatorT ∈A is the same for all tasks and only the vectorsvl specialize to each taskl at hand. The
desired multi-classifierhv ◦T should have a small value of the average error

er(hv ◦T) =
1
m

m

∑
l=1

erl (hvl ◦T) =
1
m

m

∑
l=1

Pr
{

sign
(〈

TXl ,vl
〉)

6= Yl
}

,

whereXl andYl are the random variables modeling input-values and labels for thel -th task. To
guide this search we look for bounds on er(hv ◦T) in terms of the total observed data for all tasks,
valid uniformly for allv =

(

v1, ...,vm
)

with
∥

∥vl
∥

∥≤ B and allT ∈ A . We will prove the following :
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Theorem 1 Let δ ∈ (0,1). With probability greater than1− δ it holds for all v =
(

v1, ...,vm
)

∈ H
with

∥

∥vl
∥

∥≤ 1 and all bounded symmetric operators T on H with‖T‖HS≥ 1, and for all γ ∈ (0,1)
that

er(hv ◦T)≤ êrγ (v◦T)+
8‖T‖HS

γ
√

n

√

‖C‖HS+
1
m

+

√

ln 4‖T‖HS
δγ

2nm
.

Here êrγ (v◦T) is a margin-based empirical error estimate, bounded by the relative number of
examples

(

Xl
i ,Y

l
i

)

in the total training sample for all tasksl , whereYl
i

〈

TXl
i ,v

l
〉

< γ (see section 4).
The quantity‖T‖HS is theHilbert-Schmidt normof T, defined for symmetricT by

‖T‖HS =
(

∑λ2
i

)1/2
,

whereλi is the sequence of eigenvalues ofT (counting multiplicities, see section 2).
C is the total covariance operatorcorresponding to the mixture of all the task-input-distributions

in H. Since data are constrained to the unit ball inH we always have‖C‖HS≤ 1 (see section 3).

The above theorem is the simplest, but not the tightest or most general formof our results. For
example the factor 8 on the right hand side can be decreased to be arbitrarily close to 2, thereby
incurring only a logarithmic penalty in the last term.

A special case results from restricting the set of candidate preprocessors toPd, the set of orthog-
onal projections inH with d-dimensional range. In this case learning amounts to the selection of a
d-dimensional subspaceM of H and of anm-tuple of vectorsvl in M (components ofvl orthogonal
to M are irrelevant to the projected data). All operatorsT ∈ Pd satisfy‖T‖HS=

√
d, which can then

be substituted in the above bound. Identifying such a projection with the structural parameterΘ, this
corresponds to the case considered by Ando and Zhang (2005), where a practical algorithm for this
type of multi-task learning is presented. The identity‖Θ‖HS=

√
d then expresses the regularization

condition mentioned in (Ando, Zhang 2005).
The bound in the above theorem is dimension free, it does not require the data distribution inH

to be confined to a finite dimensional subspace. Almost to the contrary: Suppose that the input data
are distributed uniformly onM∩S1 whereM is ak-dimensional subspace inH andS1 is the sphere
consisting of vectors with unit norm inH. ThenC has thek-fold eigenvalue 1/k, the remaining
eigenvalues being zero. Therefore‖C‖HS = 1/

√
k, so part of the bound above decreases to zero

as the dimensionality of the data-distribution increases, in contrast to the bound in (Ando, Zhang,
2005), which increases linearly ink. The fact that our bounds are dimension free allows their
general use for multi-task learning in kernel-induced Hilbert spaces (see Cristianini and Shawe-
Taylor 2000).

If we compare the second term on the right hand side to the estimation error bound in (2), we
can recognize a certain similarity: Loosely speaking we can identify‖T‖2HS/m with the cost of
estimating the operatorT, and‖T‖2HS‖C‖HS with the cost of finding the linear classifiersv1, ...,vm.
The order of dependence on the number of tasksm is the same in Theorem 1 as in (2).

In the limit m→ ∞ it is preferable to use a different bound (see Theorems 13 and 15), atthe
expense of slower convergence inm. The main inequality of the theorem then becomes

er(hv ◦T)≤ êrγ (v◦T)+
2
∥

∥T2
∥

∥

1/2
HS

(1− ε)2 γ
√

n

(

‖C‖2HS+
3
m

)1/4

+

√

√

√

√
ln ‖T

2‖1/2
HS

δγε2

2nm
. (3)
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for some very smallε > 0 to be fixed in advance. IfT is an orthogonal projection withd-dimensional

range then
∥

∥T2
∥

∥

1/2
HS = d1/4, so for a large number of tasksm the bound on the estimation error

becomes approximately
2d1/4‖C‖1/2

HS

γ
√

n
.

One of the best dimension-free bounds for linear single-task learning (see e.g. Bartlett and Mendel-
son 2002, or Lemma 11 below) would give 2/(γ

√
n) for this term, if all data are constrained to

unit vectors. We therefore expect superior estimation for multi-task learning of d-dimensional pro-
jections with largem, wheneverd1/4‖C‖1/2

HS � 1. If we again assume the data-distribution to be
uniform onM∩S1 with M ak-dimensional subspace, this is the case wheneverd� k, that is, qual-
itatively speaking, whenever the dimension of the utilizable part of the data is considerably smaller
than the dimension of the total data distribution.

The results stated above give some insights, but they have the practical disadvantage of being
unobservable, because they depend on the properties of the covariance operatorC, which in turn
depends on an unknown data distribution. One way to solve this problem is using the fact that the
finite-sample approximations to the covariance operator have good concentration properties (see
Theorem 8 below). The corresponding result is:

Theorem 2 With probability greater than1− δ in the sampleX it holds for all v1, ...,vm∈ H with
‖vl‖ ≤ 1 and all bounded symmetric operators T on H with‖T‖HS≥ 1, and for allγ ∈ (0,1) that

er(hv ◦T)≤ êrγ (v◦T)+
8‖T‖HS

γ
√

n

√

1
mn

∥

∥Ĉ(X)
∥

∥

Fr +
1
m

+

√

9ln 8‖T‖HS
δγ

2nm
.

where the
∥

∥Ĉ(X)
∥

∥

Fr is the Frobenius norm of the gramian.

By definition

∥

∥Ĉ(X)
∥

∥

Fr =

(

∑
l ,r,i, j

〈

Xl
i ,X

r
j

〉2
)1/2

.

HereXl
i is the random variable describing thei-th data point in the sample corresponding to the

l -th task. The corresponding labelYl
i enters only in the empirical margin error. The quantity

(mn)−1∥
∥Ĉ(X)

∥

∥

Fr can be regarded as an approximation to‖C‖HS, valid with high probability, so
that Theorem 2 is a sample based version of Theorem 1.

In section 2 we introduce the necessary terminology and results on Hilbert-Schmidt operators
and in section 3 the covariance operator of random elements in a Hilbert space. Section 4 gives a
formal definition of multi-task systems and a general PAC bound in terms of Rademacher complex-
ities. For the readers benefit a proof of this bound is given in an appendix, where we follow the path
prepared by Kolchinskii and Panchenko (2002 ) and Bartlett and Mendelson (2002 ). In section 5
we study the Rademacher complexities of linear multi-task systems. In section 6 wegive bounds for
non-interacting systems, which are essentially equivalent to single-task learning, and derive bounds
for proper, interacting multi-task learning, including the above mentioned results. We conclude with
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L INEAR MULTI -TASK LEARNING

the construction of an example to demonstrate the advantages of multi-task learning. The appendix
contains missing proofs and a convenient reference-table to the notation and definitions introduced
in the paper.

2. Hilbert-Schmidt Operators

For a fixed real, separable Hilbert spaceH, with inner product〈., .〉 and norm‖.‖, we define a second
real, separable Hilbert space consisting ofHilbert-Schmidt operators. With HSwe denote the real
vector space of operatorsT on H satisfying∑∞

i=1‖Tei‖2≤ ∞ for every orthonormal basis(ei)
∞
i=1 of

H. EveryT ∈ HS is bounded. ForS,T ∈ HSand an orthonormal basis(ei) the series∑i 〈Sei ,Tei〉
is absolutely summable and independent of the chosen basis. The number〈S,T〉HS = ∑〈Sei ,Tei〉
defines an inner product onHS, making it into a Hilbert space. We denote the corresponding norm
with ‖.‖HS in contrast to the usual operator norm‖.‖∞. See Reed and Simon (1980) for background
on functional analysis). We useHS∗ to denote the set of symmetric Hilbert-Schmidt operators. For
every member ofHS∗ there is a complete orthonormal basis of eigenvectors, and forT ∈ HS∗ the
norm‖T‖HS is just the`2-norm of its sequence of eigenvalues. WithHS+ we denote the members
of HS∗ with only nonnegative eigenvalues.

We use two simple maps fromH or H2 to HS to relate the geometries of objects inH to the
geometry inHS.

Definition 3 Let x,y∈ H. We define two operators Qx and Gx,y on H by

Qxz = 〈z,x〉x,∀z∈ H

Gx,yz = 〈x,z〉y, ∀z∈ H.

We will frequently use parts of the following lemma, the proof of which is very easy.

Lemma 4 Let x,y,x′,y′ ∈ H and T∈ HS. Then
(i) Qx ∈ HS+ and‖Qx‖HS = ‖x‖2 .

(ii) 〈Qx,Qy〉HS = 〈x,y〉2 .

(iii) 〈T,Qx〉HS = 〈Tx,x〉.
(iv) 〈T∗T,Qv〉HS = ‖Tv‖2 .

(v) QyQx = 〈x,y〉Gx,y.

(vi) Gx,y ∈ HS and‖Gx,y‖HS = ‖x‖‖y‖.
(vii)

〈

Gx,y,Gx′,y′
〉

HS = 〈x,x′〉〈y,y′〉
(viii) 〈T,Gx,y〉HS = 〈Tx,y〉.
(ix) For α ∈ R, Qαx = α2Qx.

Proof For x = 0 (iii) is obvious. Forx 6= 0 choose an orthonormal basis(ei)
∞
1 , so thate1 = x/‖x‖.

Thene1 is the only nonzero eigenvector ofQx with eigenvalue‖x‖2 > 0. Also

〈T,Qx〉HS = ∑
i

〈Tei ,Qxei〉= 〈Tx,Qxx〉/‖x‖2 = 〈Tx,x〉 ,

which gives (iii). (ii), (i) and (iv) follow from substitution ofQy, Qx andT∗T respectively forT.
(v) follows directly from the definition when applied to anyz∈ H. Let (ek)

∞
k=1 be any orthonormal
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basis. Thenx = ∑k 〈x,ek〉ek, so by boundedness ofT

〈Tx,y〉 =

〈

T ∑
k

〈x,ek〉ek,y

〉

= ∑
k

〈Tek,〈x,ek〉y〉= ∑
k

〈Tek,Gx,yek〉

= 〈T,Gx,y〉HS,

which is (viii). Similarly

〈

Gx,y,Gx′,y′
〉

HS = ∑
k

〈

〈x,ek〉y,
〈

x′,ek
〉

y′
〉

=
〈

y,y′
〉

∑
k

〈x,ek〉
〈

x′,ek
〉

=
〈

x,x′
〉〈

y,y′
〉

,

which gives (vii) and (vi). (ix) is obvious.

The following application of Lemma 4 is the key to our main results.

Lemma 5 Let T∈ HS and w1, ...,wm and v1, ...,vm vectors in H with‖vi‖ ≤ B. Then

m

∑
l=1

〈Twl ,vl 〉 ≤ B‖T‖HS

(

∑
l ,r

|〈wl ,wr〉|
)1/2

and
m

∑
l=1

〈Twl ,vl 〉 ≤ Bm1/2‖T∗T‖1/2
HS

(

∑
l ,r

〈wl ,wr〉2
)1/4

Proof Without loss of generality assumeB = 1. Using Lemma 4 (viii), Schwarz’ inequality inHS
and Lemma 4 (vii) we have

m

∑
l=1

〈Twl ,vl 〉 =

〈

T,
m

∑
l=1

Gwl ,vl

〉

HS

≤ ‖T‖HS

∥

∥

∥

∥

∥

m

∑
l=1

Gwl ,vl

∥

∥

∥

∥

∥

HS

= ‖T‖HS

(

m

∑
l ,r

〈wl ,wr〉〈vl ,vr〉
)1/2

≤ ‖T‖HS

(

m

∑
l ,r

|〈wl ,wr〉|
)1/2

.

This proves the first inequality. Also, using Schwarz’ inequality inH andR
m, Lemma 4 (iv) and

Schwarz’ inequality inHS

m

∑
l=1

〈Twl ,vl 〉 ≤
(

m

∑
l=1

‖vl‖2
)1/2( m

∑
l=1

‖Twl‖2
)1/2

≤
√

m

〈

T∗T,
m

∑
l=1

Qwl

〉1/2

HS

≤
√

m‖T∗T‖1/2
HS

∥

∥

∥

∥

∥

m

∑
l=1

Qwl

∥

∥

∥

∥

∥

1/2

HS

=
√

m‖T∗T‖1/2
HS

(

∑
l ,r

〈wl ,wr〉2
)1/4
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The set ofd-dimensional, orthogonal projections inH is denoted withPd. We havePd ⊂ HS∗

and ifP∈ Pd then‖P‖HS =
√

d andP2 = P.
An operatorT is calledtrace-classif ∑∞

i=1〈Tei ,ei〉 is an absolutely convergent series for every
orthonormal basis(ei)

∞
i=1 of H. In this case the numbertr (T) = ∑∞

i=1〈Tei ,ei〉 is called thetraceof
T and it is independent of the chosen basis.

If A ⊂ HS∗ is a set of symmetric and bounded operators inH we use the notation

‖A‖HS = sup{‖T‖HS : T ∈ A} andA2 =
{

T2 : T ∈ A
}

.

3. Vector- and Operator-Valued Random Variables

Let (Ω,Σ,µ) be a probability space with expectationE [F ] =
R

Ω Fdµ for a random variableF : Ω→
Ṙ. Let X be a random variable with values inH, such thatE [‖X‖] < ∞. The linear functional
v∈ H 7→ E [〈X,v〉] is bounded byE [‖X‖] and thus defines (by the Riesz Lemma) a unique vector
E [X] ∈ H such thatE [〈X,v〉] = 〈E [X] ,v〉 ,∀v∈ H, with ‖E [X]‖ ≤ E [‖X‖].

We now look at the random variableQX, with values inHS. Suppose thatE
[

‖X‖2
]

< ∞.

Passing to the spaceHS of Hilbert-Schmidt operators the above construction can be carried out

again: By Lemma 4 (i)E [‖QX‖HS] = E
[

‖X‖2
]

< ∞, so there is a unique operatorE [QX] ∈ HS

such thatE [〈QX,T〉HS] = 〈E [QX] ,T〉HS,∀T ∈ HS.

Definition 6 The operator E[QX] is called the covariance operator of X.

Lemma 7 The covariance operator E[QX] ∈ HS+ has the following properties.
(i) ‖E [QX]‖HS≤ E [‖QX‖HS].
(ii) 〈E [QX]y,z〉= E [〈y,X〉〈z,X〉] ,∀y,z∈ H.

(iii) tr (E [QX]) = E
[

‖X‖2
]

.

(iv) For H-valued independent X1 and X2 with E
[

‖Xi‖2
]

≤ ∞ we have

〈E [QX1] ,E [QX2]〉HS = E
[

〈X1,X2〉2
]

.

(v) Under the same hypotheses, if E[X2] = 0 then

E [QX1+X2] = E [QX1]+E [QX2]

Proof (i) follows directly from the construction, (iv) from the identity
〈E [QX1] ,E [QX2]〉HS = E

[

〈QX1,QX2〉HS

]

. Let y,z∈ H. Then using 4 (viii) we get

〈E [QX]y,z〉 = 〈E [QX] ,Gy,z〉HS = E
[

〈QX,Gy,z〉HS

]

= E [〈QXy,z〉]
= E [〈y,X〉〈z,X〉]

and hence (ii). We have with orthonormal basis(ek)
∞
k=1 and using (ii)

tr (E [QX]) = ∑
k

〈E [QX]ek,ek〉= ∑
k

E [〈ek,X〉〈ek,X〉] = E
[

‖X‖2
]

,
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which gives (iii). Substitution of an eigenvectorv for bothyandz in (ii) shows that the corresponding
eigenvalue must be nonnegative, soE [QX] ∈ HS+.

Finally (v) holds because for anyy,z∈ H we have, using independence and the mean-zero
condition forX2, that

〈E [QX1+X2]y,z〉
= E [〈y,X1 +X2〉〈X1 +X2,z〉]
= E [〈y,X1〉〈X1,z〉]+E [〈y,X2〉〈X2,z〉]+E [〈y,X1〉〈X2,z〉]+E [〈y,X2〉〈X1,z〉]
= 〈(E [QX1]+E [QX2])y,z〉+ 〈y,E [X1]〉〈E [X2] ,z〉+ 〈y,E [X2]〉〈E [X1] ,z〉
= 〈(E [QX1]+E [QX2])y,z〉

Property (ii) above is sometimes taken as the defining property of the covariance operator (see
Baxendale 1976).

If X is distributed uniformly onM∩S1, whereM is ak-dimensional subspace andS1 the unit

sphere inH, thenE
[

〈X,y〉2
]

= 〈E [QX]y,y〉 is zero if and only ify∈M⊥, so the range ofE [QX] is M,

so there are exactlyk-eigenvectors corresponding to non-zero eigenvalues ofE [QX]. By symmetry
these eigenvalues must all be equal, and by (iii) above they sum up to 1, soE [QX] has thek-fold
eigenvalue 1/k, with zero as the only other eigenvalue. It follows that‖E [QX]‖HS = 1/

√
k. We

have given this derivation to illustrate the tendency of the Hilbert-Schmidt norm of the covariance
operator of a distribution concentrated on unit vectors to decrease with theeffective dimensionality
of the distribution. This idea is relevant to the interpretation of our results.

The fact thatHS is a separable Hilbertspace just asH allows to define an operatorE [T] when-
everT is a random variable with values inHSandE [‖T‖HS] < ∞. Also any result valid inH has
a corresponding analogue valid inHS. We quote a corresponding operator-version of a Theorem
of Cristianini and Shawe-Taylor (2004) on the concentration of independent vector-valued random
variables.

Theorem 8 Suppose that T1, ...,Tm are independent random variables in H with‖Ti‖ ≤ 1. Then for
all δ > 0 with probability greater thanδ we have

∥

∥

∥

∥

∥

1
m

m

∑
i=1

E [Ti ]−
1
m

m

∑
i=1

Ti

∥

∥

∥

∥

∥

HS

≤ 2√
m

(

1+

√

ln(1/δ)

2

)

.

Apply this withTi = QXi where theXi are iidH-valued with‖Xi‖ ≤ 1. The theorem then shows
that the covariance operatorE [QX] can be approximated inHS-norm with high probability by the
empirical estimates(1/m)∑i QXi . The quantity

∥

∥

∥

∥

∥

∑
i

QXi

∥

∥

∥

∥

∥

HS

=

(

∑
i, j

〈

Xi ,Xj
〉2

)1/2

is the Frobenius norm of the Gramian (or kernel-) matrixĈ(X)i j =
〈

Xi ,Xj
〉

, denoted
∥

∥Ĉ(X)
∥

∥

Fr . An
immediate corollary to the above is, that(1/m)

∥

∥Ĉ(X)
∥

∥

Fr is with high probability a good approxi-
mation of‖E [QX]‖HS. In the proof of Theorem 2 we will not need this fact however.
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4. Multi-Task Problems and General Bounds

For our discussion of multi-task learning we concentrate on binary labeled data. Let(Ω,Σ,µ) be a
probability space. We assume that there is amulti-task problemmodeled bym independent random
variablesZl =

(

Xl ,Yl
)

: Ω→ X×{−1,1}, where

• l ∈ {1, ...,m} identifies one of them learning tasks,

• Xl models the input data of thel -th task, distributed in a setX , called theinput space.

• Yl ∈ {−1,1}models the output-, or label-data of thel -th task.

• For eachl ∈{1, ...,m} there is ann-tuple of independent random variables
(

Zl
i

)n
i=1 =

(

Xl
i ,Y

l
i

)n
i=1,

where eachZl
i is identically distributed toZl .

The random variableZ =
(

Zl
i

)(n,m)

(i,l)=(1,1)
is called thetraining sampleor training data. We also

write X =
(

Xl
i

)(n,m)

(i,l)=(1,1)
. We use the superscriptl to identify learning tasks running from 1 tom,

the subscripti to identify data points in the sample, running from 1 ton. We will use the notations

x =
(

xl
i

)(n,m)

(i,l)=(1,1)
for generic members of(X n)m andz =

(

zl
i

)(n,m)

(i,l)=(1,1)
= (x,y) =

(

xl
i ,y

l
i

)(n,m)

(i,l)=(1,1)
for

generic members of((X×{−1,1})n)
m.

A multiclassifieris a maph : X →{−1,1}m. We writeh =
(

h1, ...,hm
)

and interprethl (x) as the
label assigned to the vectorx when the task is known to bel . The average error of a multiclassifier
h is the quantity

er(h) =
1
m

m

∑
l=1

Pr
{

hl
(

Xl
)

6= Yl
}

,

which is just the misclassification probability averaged over all tasks. Typically a classifier is chosen
from some candidate set minimizing some error estimate based on the training dataZ. Here we
consider zero-threshold classifiershf which arise as follows:

Suppose thatF is a class of vector valued functionsf : X →R
m with f =

(

f 1, ..., f m
)

. A function
f ∈ F defines a multi-classifierhf =

(

h1
f , ...,h

m
f

)

throughhl
f (x) =sign

(

f l (x)
)

. To give uniform error
bounds for such classifiers in terms of empirical estimates, we define forγ > 0 the margin functions

φγ (t) =







1 if t ≤ 0
1− t/γ if 0 < t < γ

0 if γ≤ t
,

and forf ∈ F the random variable

êrγ (f) =
1

mn

m

∑
l=1

n

∑
i=1

φγ

(

Yl
i f l
(

Xl
i

))

,

called theempiricalγ-margin errorof f. The following Theorem gives a bound on er(hf) in terms
of êrγ (f), valid with high probability uniformly inf ∈ F andγ.
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Theorem 9 Let ε,δ ∈ (0,1)
(i) With probability greater than1−δ it holds for all f ∈ F and all γ ∈ (0,1) that

er(hf)≤ êrγ (f)+
1

γ(1− ε)
E
[

R̂ m
n (F )(X)

]

+

√

ln(1/(δγε))
2nm

.

(ii) With probability greater than1−δ it holds for all f ∈ F and all γ ∈ (0,1) that

er(hf)≤ êrγ (f)+
1

γ(1− ε)
R̂ m

n (F )(X)+

√

9ln(2/(δγε))
2nm

.

HereR̂ m
n (F ) is theempirical Rademacher complexityin the sense of the following

Definition 10 Let
{

σl
i : l ∈ {1, ...,m} , i ∈ {1, ...,n}

}

be a collection of independent random vari-
ables, distributed uniformly in{−1,1}. The empirical Rademacher complexity of a classF of
functionsf : X → R

m is the functionR̂ m
n (F ) defined on(X n)m by

R̂ m
n (F )(x) = Eσ

[

sup
f∈F

2
mn

m

∑
l=1

n

∑
i=1

σl
i f l
(

xl
i

)

]

.

For the readers convenience we give a proof of Theorem 9 in the appendix.
The bounds in the Theorem each involve three terms. The last one expresses the dependence

of the estimation error on the confidence parameterδ and a model-selection penalty ln(1/(γε))
for the choice of the marginγ. Note that it generally decreases as 1/

√
nm. This is not an a priori

advantage of multi-task learning, but a trivial consequence of the fact that we estimate an average
of m probabilities (in contrast to Ben David, 2003, where bounds are valid foreach individual task
- of course under more restrictive assumptions). The 1/

√
nmdecay however implies that even for

moderate values ofm andn the parameterε in Theorem 9 can be chosen very small, so that the
factor 1/(1− ε) in the second term on the right of the two bounds is very close to unity.

The second term involves the complexity of the function classF , either as measured in terms of
the distribution of the random variableX or in terms of the observed sample. Since the distribution
of X is unobservable in practice, the bound (i) is primarily of theoretical importance, while (ii) can
be used to drive an algorithm which selects the multi-classifierhf∗ , where(f∗,γ) ∈ F × (0,1) are
chosen to minimize the right side of the bound with givenδ, ε. It is questionable if minimizing
upper bounds is a good strategy, but it can serve as a motivating guideline.

Of key importance in the analysis of these algorithms is the empirical Rademachercomplexity
R̂ m

n (F )(X), as observed on the sampleX, and its expectation, measuring respectively the sample-
and distribution-dependent complexities of the function classF . Bounds on these quantities can be
substituted in Theorem 9 to give corresponding error bounds.

5. The Rademacher Complexity of Linear Multi-Task Learning

We will now concentrate on multi-task learning in the linear case, when the data live in a real,
separable Hilbert spaceH, by means of some kernel-induced embedding (see Cristianini and Shawe-
Taylor 2000), the details of which will not concern us at this point. We therefore takeH as input
spaceX , so that the random variablesXl take values inH for all l ∈ {1, ...,m}, and we generally
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require
∥

∥Xl
∥

∥ ≤ 1. The case
∥

∥Xl
∥

∥ = 1 where the data are constrained to the unit sphere inH is of
particular interest, corresponding to a class of radial basis function kernels.

We writeCl for the covariance operatorE [QXl ] andC for the total covariance operatorC =
(1/m)∑l C

l , corresponding to a uniform mixture of distributions. By Lemma 7 we have
∥

∥Cl
∥

∥

HS≤
tr
(

Cl
)

= E
[

∥

∥Xl
∥

∥

2
]

≤ 1.

Let B > 0, letT be a fixed symmetric, bounded linear operator onH with ‖T‖∞ ≤ 1, and letA
be a set of symmetric, bounded linear operatorsT on H, all satisfying‖T‖∞ ≤ 1. We will consider
the vector-valued function classes

FB = {x∈ H 7→ (v1, ...,vm)(x) := (〈x,v1〉 , ...,〈x,vm〉) : ‖vi‖ ≤ B}
FB◦T = {x∈ H 7→ (v1, ...,vm)◦T (x) := (〈Tx,v1〉 , ...,〈Tx,vm〉) : ‖vi‖ ≤ B}
FB◦A = {x∈ H 7→ (v1, ...,vm)◦T (x) : ‖vi‖ ≤ B,T ∈ A} .

The algorithms which choose fromFB and FB ◦T are essentially trivial extensions of linear
single-task learning, where the tasks do not interact in the selection of the individual classifiersvi ,
which are chosen independently. In the case ofFB◦T the preprocessing operatorT is chosen before
seeing the training data. Since‖T‖∞ ≤ 1 we haveFB ◦T ⊆ FB, so that we can expect a reduced
complexity forFB◦T and the key question becomes if the choice ofT (possibly based on experience
with other data) was lucky enough to allow for a sufficiently low empirical error.

The non-interacting classesFB andFB◦T are important for comparison toFB◦A which repre-
sents proper multi-task learning. Here the preprocessing operatorT is selected fromA in response
to the data. The constraint thatT be the same for all tasks forces an interaction of tasks in the choice
of T and(v1, ...,vm), deliberately aiming for a low empirical error. At the same time we also have
FB◦A ⊆ FB, so that again a reduced complexity is to be expected, giving a smaller contribution to
the estimation error. The promise of multi-task learning is based on the combinationof these two
ideas: Aiming for a low empirical error, using a function class of reduced complexity.

We first look at the complexity of the function classFB. The proof of the following lemma is
essentially the same as the proof of Lemma 22 in Bartlett and Mendelson (2002).

Lemma 11 We have

R̂ m
n (FB)(x) ≤ 2B

nm

m

∑
l=1

(

n

∑
i=1

∥

∥xl
i

∥

∥

2

)1/2

E
[

R̂ m
n (FB)(X)

]

≤ 2B√
n

1
m

m

∑
l=1

(

E
[

∥

∥Xl
∥

∥

2
])1/2

=
2B√

n
1
m

m

∑
l=1

tr
(

Cl
)1/2
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Proof Using Schwarz’ and Jensen’s inequality and the independence of theσl
i we get

R̂ m
n (FB)(x) = Eσ

[

sup
v1,...,vm,‖vl‖≤B

2
nm

m

∑
l=1

〈

n

∑
i=1

σl
i x

l
i ,vl

〉]

≤ BEσ

[

2
nm

m

∑
l=1

∥

∥

∥

∥

∥

n

∑
i=1

σl
i x

l
i

∥

∥

∥

∥

∥

]

≤ 2B
nm

m

∑
l=1



Eσ





∥

∥

∥

∥

∥

n

∑
i=1

σl
i x

l
i

∥

∥

∥

∥

∥

2








1/2

=
2B
nm

m

∑
l=1

(

n

∑
i=1

∥

∥xl
i

∥

∥

2

)1/2

.

Jensen’s inequality then gives the second conclusion

The first bound in the lemma is just the average of the bounds given by Bartlett and Mendelson in
on the empirical complexities for the various task-components of the sample. For inputs constrained
to the unit sphere inH, when

∥

∥Xl
∥

∥ = 1, both bounds become 2B/
√

n, which sets the mark for
comparison with the interacting caseFB ◦A . For motivation we next look at the caseFB ◦ T,
working with a fixed linear preprocessorT of operator norm bounded by 1. Using the above bound
we obtain

R̂ m
n (FB◦T)(x) = R̂ m

n (FB)(Tx)≤ 2B
nm

m

∑
l=1

(

n

∑
i=1

∥

∥Txl
i

∥

∥

2

)1/2

, (4)

which is always bounded byB/
√

n, because‖Tx‖ ≤ ‖x‖ ,∀x. Using Lemma 4 (iv) we can rewrite
the right side above as

2B√
n

1
m

m

∑
l=1

〈

T2,
1
n

n

∑
i=1

Qxl
i

〉1/2

HS

.

Taking the expectation and using the concavity of the root function gives,with two applications of
Jensen’s inequality and an application of Schwarz’ inequality (inHS),

E
[

R̂ m
n (FB◦T)(X)

]

≤ 2B√
n

∥

∥T2
∥

∥

1/2
HS ‖C‖

1/2
HS ,

which can be significantly smaller thanB/
√

n, for example ifT is a d-dimensional projection,
and the data-distribution is spread well over a much more thand-dimensional submanifold of the
unit ball in H, as explained in the introduction and section 3. If we substitute the bound above in
Theorem 9 we obtain an inequality which looks like (3) in the limitm→ ∞.

We now consider the case whereT is chosen from some setA of (symmetric, bounded) candi-
date operators on the basis of the same sampleX, simultaneous to the determination of the classifica-
tion vectorsv1, ...,vl . We give two bounds each for the Rademacher complexity and its expectation.
One is somewhat similar to other bounds for multi-task learning (e.g. (2)) and another one is tighter
in the limit when the number of tasksmgoes to infinity.
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Theorem 12 The following inequalities hold

R̂ m
n (FB◦A)(x) ≤ 2B‖A‖HS√

n

√

1
mn

∥

∥Ĉ(x)
∥

∥

Fr +
1
m

(5)

R̂ m
n (FB◦A)(x) ≤

2B
∥

∥A2
∥

∥

1/2
HS√

n

(

(

1
mn

∥

∥Ĉ(x)
∥

∥

Fr

)2

+
2
m

)1/4

(6)

E
[

R̂ m
n (FB◦A)(X)

]

≤ 2B‖A‖HS√
n

√

‖C‖HS+
1
m

(7)

E
[

R̂ m
n (FB◦A)(X)

]

≤
2B
∥

∥A2
∥

∥

1/2
HS√

n

(

‖C‖2HS+
3
m

)1/4

. (8)

Proof Fix x and define vectorswl = wl (σ) = ∑n
i=1 σl

i x
l
i depending on the Rademacher variablesσl

i .
Then by Lemma 5 and Jensen’s inequality

R̂ (FB◦A)(x) = Eσ

[

sup
T∈A

sup
v1,...,vm,‖vi‖≤B

2
nm

m

∑
l=1

〈Twl ,vl 〉
]

(9)

≤ 2B
nm
‖A‖HSEσ





(

∑
l ,r

|〈wl ,wr〉|
)1/2





≤ 2B
nm
‖A‖HS

(

∑
l ,r

Eσ [|〈wl ,wr〉|]
)1/2

.

Now we have

Eσ

[

‖wl‖2
]

=
n

∑
i=1

n

∑
j=1

Eσ

[

σl
i σ

l
j

]〈

xl
i ,x

l
j

〉

=
n

∑
i=1

∥

∥xl
i

∥

∥

2
. (10)

Also, for l 6= r, we get, using Jensen’s inequality and independence of the Rademachervariables,

(Eσ [|〈wl ,wr〉|])2 ≤ Eσ

[

〈wl ,wr〉2
]

(11)

=
n

∑
i=1

n

∑
j=1

n

∑
i′=1

n

∑
j ′=1

Eσ

[

σl
i σ

r
jσ

l
i′σ

r
j ′

]〈

xl
i ,x

r
j

〉〈

xl
i′ ,x

r
j ′

〉

=
n

∑
i. j=1

〈

xl
i ,x

r
j

〉2
.

Taking the square-root and inserting it together with (10) in (9) we obtain the following intermediate
bound

R̂ m
n (FB◦A)(x)≤ 2B‖A‖HS

nm





m

∑
l=1

n

∑
i=1

∥

∥xl
i

∥

∥

2
+ ∑

l 6=r

(

n

∑
i, j=1

〈

xl
i ,x

r
j

〉2
)1/2





1/2

(12)

By Jensen’s inequality we have

1
m2 ∑

l 6=r

(

n

∑
i, j=1

〈

xl
i ,x

r
j

〉2
)1/2

≤
(

1
m2

m

∑
l ,r=1

n

∑
i, j=1

〈

xl
i ,x

r
j

〉2
)1/2

=
1
m

∥

∥Ĉ(x)
∥

∥

Fr ,
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which together with (12) and
∥

∥xl
i

∥

∥≤ 1 implies (5).

To prove (6) first use the second part of Lemma 5 and Jensen’s inequality to get

R̂ (FB◦A)(x)≤
2B
∥

∥A2
∥

∥

1/2
HS

n
√

m

(

∑
l ,r

Eσ

[

〈wl ,wr〉2
]

)1/4

. (13)

Now we haveEσ

[

σl
i σl

jσl
i′σ

l
j ′

]

≤ δi j δi′ j ′ +δii ′δ j j ′ +δi j ′δ ji ′ so

Eσ

[

〈wl ,wl 〉2
]

≤
n

∑
i, j=1

(

∥

∥xl
i

∥

∥

2∥
∥xl

j

∥

∥

2
+2
〈

xl
i ,x

l
j

〉2
)

≤ 2

(

n

∑
i=1

∥

∥xl
i

∥

∥

2

)2

+
n

∑
i, j=1

〈

xl
i ,x

l
j

〉2
≤ 2n2 +

n

∑
i, j=1

〈

xl
i ,x

l
j

〉2
,

where we used
∥

∥xl
i

∥

∥≤ 1. Inserting this together with (11) in (13) gives

R̂ m
n (FB◦A)(x) ≤

2B
∥

∥A2
∥

∥

1/2
HS

n
√

m

(

∑
l ,r:l 6=r

Eσ

[

〈wl ,wr〉2
]

+
m

∑
l=1

Eσ

[

〈wl ,wl 〉2
]

)1/4

≤
2B
∥

∥A2
∥

∥

1/2
HS

n
√

m

(

m

∑
l ,r=1

n

∑
i, j=1

〈

xl
i ,x

r
j

〉2
+2mn2

)1/4

, (14)

which is (6).

Taking the expectation of (12), using Jensen’s inequality,
∥

∥Xl
∥

∥≤ 1 and independence ofXl and
Xr for l 6= r, and Jensen’s inequality again, we get

E
[

R̂ m
n (FB◦A)(X)

]

≤ 2B‖A‖HS

nm



nm+ ∑
l 6=r

(

E

[

n

∑
i, j=1

〈

Xl
i ,X

r
j

〉2
])1/2





1/2

=
2B‖A‖HS

nm



∑
l 6=r

(

E

[〈

n

∑
i=1

QXl
i
,

n

∑
j=1

QXr
j

〉

HS

])1/2

+nm





1/2

=
2B‖A‖HS√

n

(

1
m2 ∑

l 6=r

〈E [QXl ] ,E [QXr ]〉1/2
HS +

1
m

)1/2

≤ 2B‖A‖HS√
n





〈

1
m

m

∑
l=1

E [QXl ] ,
1
m

m

∑
r=1

E [QXr ]

〉1/2

HS

+
1
m





1/2

,
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which gives (7). In a similar way we obtain from (14)

E
[

R̂ m
n (FB◦A)(X)

]

≤
2B
∥

∥A2
∥

∥

1/2
HS

n
√

m

(

mn2 +
m

∑
l 6=r

n

∑
i, j=1

〈

E
[

QXl
i

]

,E
[

QXr
j

]〉

HS
+2mn2

)1/4

≤
2B
∥

∥A2
∥

∥

1/2
HS

n
√

m



m2n2

∥

∥

∥

∥

∥

E

[

1
mn

m

∑
l=1

n

∑
i=1

QXl
i

]∥

∥

∥

∥

∥

2

HS

+3mn2





1/4

,

which gives (8)

6. Bounds for Linear Multi-Task Learning

Inserting the bounds of Theorem 12 in Theorem 9 immediately gives

Theorem 13 Let A be a be set of bounded, symmetric operators in H andε,δ ∈ (0,1)
(i) With probability greater than1−δ it holds for allf = (v1, ...,vm)◦T ∈FB◦A and allγ∈ (0,1)

that

er(hf)≤ êrγ (f)+
1

γ(1− ε)
A+

√

ln(1/(δγε))
2nm

,

where A is either

A =
2B‖A‖HS√

n

√

‖C‖HS+
1
m

(15)

or

A =
2B
∥

∥A2
∥

∥

1/2
HS√

n

(

‖C‖2HS+
3
m

)1/4

. (16)

(ii) With probability greater than1− δ it holds for all f = (v1, ...,vm) ◦T ∈ FB ◦A and for all
γ ∈ (0,1) that

er(hf)≤ êrγ (f)+
1

γ(1− ε)
A(X)+

√

9ln(2/(δγε))
2nm

,

where the random variable A(X) is either

A(X) =
2B‖A‖HS√

n

√

1
mn

∥

∥Ĉ(x)
∥

∥

Fr +
1
m

or

A(X) =
2B
∥

∥A2
∥

∥

1/2
HS√

n

(

(

1
mn

∥

∥Ĉ(x)
∥

∥

Fr

)2

+
2
m

)1/4

.

We finally extend this result from uniformly bounded setsA of operators to the setHS∗ of all
symmetric Hilbert-Schmidt operators. This is done following the techniques described in (Anthony,
Bartlett, 1999), using the following lemma (a copy of Lemma 15.5 from this reference):
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Lemma 14 Suppose
{F (α1,α2,δ) : 0 < α1,α2,δ≤ 1}

is a set of events such that:
(i) For all 0 < α≤ 1 and0 < δ≤ 1,

Pr{F (α,α,δ)} ≤ δ.

(ii) For all 0 < α1≤ α≤ α2≤ 1and0 < δ1≤ δ≤ 1,

F (α1,α2,δ1)⊆ F (α,α,δ) .

Then for0 < a,δ < 1,

Pr





[

α∈(0,1]

F (αa,α,δα(1−a))



≤ δ.

Applications of this lemma follow a standard pattern, as explained in detail in (Anthony, Bartlett,
1999). Letε,δ,B be as in the previous theorem. Forα ∈ (0,1] set

A (α) = {T ∈ HS∗ : ‖T‖HS≤ 1/α}
and consider the events

F (α1,α2,δ) = {∃f ∈ FB◦A (α2) such that

er(hf) > êrγ (f)+
2B

α1γ(1− ε)
√

n

√

‖C‖HS+
1
m

+

√

ln(1/(δγε))
2nm

}

.

By the first conclusion of Theorem 13 the eventsF (α1,α2,δ) satisfy hypothesis (i) of Lemma 14,
and it is easy to see that (ii) also holds. If we seta = 1− ε and replaceα by 1/‖T‖HS, then the
conclusion of Lemma 14 reads as follows:

With probability greater 1− δ it holds for everyf = (v1, ...,vm) ◦T with (v1, ...,vm) ∈ FB and
T ∈ HS∗ with ‖T‖HS≥ 1 and allγ ∈ (0,1) that

er(hf)≤ êrγ (f)+
2B‖T‖HS

γ(1− ε)2√n

√

‖C‖HS+
1
m

+

√

√

√

√

ln
(

‖T‖HS
δγε2

)

2nm
.

Applying the same technique to the other conclusions of Theorem 13 gives the following result,
which we state in abbreviated fashion:

Theorem 15 Theorem 13 holds with the following modifications:

• The classFB ◦A is replaced by allf = (v1, ...,vm) ◦ T ∈ FB ◦HS∗ with ‖T‖HS ≥ 1 (or
∥

∥T2
∥

∥

HS≥ 1 ).

• ‖A‖HS (or
∥

∥A2
∥

∥

HS) is replaced by‖T‖HS (or
∥

∥T2
∥

∥

HS).

• (1− ε) and1/(δγε) are replaced by(1− ε)2 and‖T‖HS/
(

δγε2
)

(or
∥

∥T2
∥

∥

1/2
HS /

(

δγε2
)

) respectively.

The requirement‖T‖HS≥ 1 (or
∥

∥T2
∥

∥

HS≥ 1) is an artifact introduced by the stratification lemma
14. Settingε = 1/2 andB = 1 gives Theorem 1 and Theorem 2.
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7. An Example

We conclude with an example illustrating the behavior of our bounds when learning from noisy data.
We start with a fairly generic situation and subsequently introduce severalidealized assumptions.

Suppose that
(

Xl ,Yl
)m

l=1 are random variables modelling a multi-task problem as above. In the
following let M be the smallest closed subspaceM ⊂ H such thatXl ∈M a.s..

We now mix the data variablesXl with noise, modeled by a random variableXN with values
in H, such that

∥

∥XN
∥

∥≤ 1 andE
[

XN
]

= 0. The mixture is controlled by a parameters∈ (0,1] and
replaces the original data-variablesXl with the contaminated random variableX̂l = sXl +(1−s)XN.
We now make the assumption that

• XN is independent ofXl andYl for all l .

Let us calls the signal amplitude and 1−s the noise amplitude. The cases= 1 corresponds to
the original multi-task problem. Decreasings, and adding more noise, clearly makes learning more
difficult up to the cases= 0 (which we exclude), where the data variables become independent of the
labels and learning becomes impossible. We will look at the behavior of both ofour bounds for non-
interacting (single-task) and interacting (multi-task) learners as we decrease the signal amplitudes.
The bounds which we use are implied by Lemma 11 and Theorem 9 for the non-interacting case
and Theorem 13 for the interacting case, and state that each of the following two statements holds
with probability at least 1−δ:

1. Non-interacting bound. ∀v ∈ F1, ∀γ,

er(hv)≤êrγ (v)+ 2
γ(1−ε)

√
n +
√

ln(1/(δγε))
2nm

2. Interacting bound. ∀v◦T ∈ F1◦A , ∀γ,

er(hv ◦T)≤êrγ (v◦T)+
2‖A‖HS

γ(1−ε)
√

n

√

‖C‖HS+ 1
m +

√

ln(1/(δγε))
2nm

The first damage done by decreasings is that the marginγ must be also decreased tosγ to obtain
a comparable empirical margin error for the mixed problem as for the originalproblem. Replacing
γ by γs is very crude and normally insufficient, because of interfering noise, but the replacement can
be justified if one is willing to accept the orthogonality assumption:

• XN ⊥M a.s.

The assumption that the noise to be mixed in is orthogonal to the signal is somewhat artificial.
We will later assume that the dimensiond of the signal spaceM is small and thatXN is distributed
homogeneously on a high-dimensional sphere. This implies weak orthogonality in the sense that
〈

Xl ,XN
〉2

is small with high probability, a statement which could also be used, but at the expense
of considerable complications. To immediately free us from consideration of the empirical term
(and only for this purpose), we make the orthogonality assumption. By projecting to M we can
then find for any sample

(

Xl
i ,Y

l
i

)

and any preprocessorT and any multi-classifying vectorv some
T ′ andv′ such that êrγs(v′) and êrγs(v′ ◦T ′) for the mixed sample

(

X̂l
i ,Y

l
i

)

are the same as er̂γ (v)
and êrγ (v◦T) for the original sample. We can therefore regard the empirical terms as equal in both
bounds and for all values ofs as long asA is stable under projection toM andγ is replaced byγs.
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This will cause a logarithmic penalty in the last term depending on the confidence parameterδ, but
we will neglect this entire term on the grounds of rapid decay with the product nm. The remaining
term, which depends onsand is different for both bounds, is then

2
γs(1− ε)

√
n

(17)

for the non-interacting and
2‖A‖HS

γs(1− ε)
√

n

√

‖Cs‖HS+
1
m

(18)

for the interacting case. HereCs = (1/m)∑l E
[

QsXl +(1−s)XN

]

is the total covariance operator for

the noisy mixture problem. By independence ofXN andXl and the mean-zero assumption forXN

we obtain from Lemma 4 and 7 that

Cs = (1/m)∑
l

(

s2E [QXl ]+ (1−s)2E [QXN ]
)

= s2C+(1−s)2E [QXN ] ,

whereC would be the total covariance operator for the original problem. To boundtheHS-norm of
this operator we now introduce a simplifying assumption of homogeneity for the noise distribution:

• XN is distributed uniformly on ak-dimensional unit-sphere centered at the origin.

This implies that‖E [QXN ]‖HS = 1/
√

k so that

‖Cs‖2HS≤ s2‖C‖HS+‖E [QXN ]‖HS≤ s2‖C‖HS+1/
√

k,

and substitution in (18) gives the new term

2‖A‖HS

γ(1− ε)
√

n

√

‖C‖HS+
1
s2

(

1√
k

+
1
m

)

(19)

for the interacting bound. The dependence on the inverse signal amplitudein the first factor has
disappeared, and ask andm increase, the bound for the noisy problem tends to the same limiting
value

2‖A‖HS‖C‖
1/2
HS

γ(1− ε)
√

n

as the bound for the original ’noise free’ problem, for any fixed positive value ofs. This contrasts
the behavior of all bounds which depend linearly on the dimension of the input space (such as in )
and diverge ask→ ∞.

The quotient of (19) to the non-interacting (17) is

‖A‖HS

√

s2‖C‖HS+
1√
k

+
1
m

,

and the interacting bound will be better than the non-interacting bound whenever this expression
is less than unity. This is more likely to happen when the signal amplitudes is small, and the
dimensionk of the noise distribution and the number of tasksmare large.
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An intuitive explanation of the fact, that for multi-task learning a large dimensionk of the
noise-distribution has a positive effect on the bound, is that for largek a sample of homogeneously
distributed random unit vectors is less likely to lie in a common low-dimensional subspace, a cir-
cumstance which could mislead the multi-task learner.

Of course there are many situations, when multi-task learning doesn’t giveany advantage over
single-task learning. To make a quantitative comparison we make more three more simplifying
assumptions on the data distribution of theXl :

• dim(M) = d < ∞

The signal spaceM is of course unknown to the learner, but we assume that

• we know its dimensiond.

Multi-task learning can then select from an economically chosen setA ⊂ HS∗ of preprocessors
such thatA contains the set ofd-dimensional projectionsPd and‖A‖HS =

√
d. We assume knowl-

edge ofd mainly for simplicity, without it we could invoke Theorem 15 instead of Theorem13
above, causing some complications, which we seek to avoid.

• The mixture of the distributions of theXl is homogeneous onS1∩M.

This implies‖C‖HS = 1/
√

d, and, with‖A‖HS =
√

d, the multi-task bound will improve over
the non-interacting bound if

√
ds2 +

d√
k

+
d
m

< 1.

From this condition we conclude with four cook-book-rules to decide whenit is worthwhile to go
through the computational trouble of multi-task learning instead of the simpler single-task learning.

1. The problem is very noisy (s is expected to be small)

2. The noise is high-dimensional (k is expected to be large)

3. There are many learning tasks (m is large)

4. We suspect that the relevant information for allm tasks lies in a low-dimensional (d is small)

If one believes these criteria to be met, then one can use an algorithm as the one developed in
(Ando, Zhang, 2005) to minimize the interacting bound above, withA = Pd.

Appendix

We give a proof of Theorem 9 for the readers convenience. Most ofthis material is combined from
Anthony and Bartlett (1999), Bartlett and Mendelson (2002), Bartlett etal (2005) and Ando and
Zhang (2005), and we make no claim to originality for any of it. A preliminary result is
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Theorem 16 LetF be a[0,1]m-valued function class on a spaceX , andX =
(

Xl
i

)(m,n)

(l ,i)=(1,1)
a vector

of X -valued independent random variables where for fixed l and varying iall the Xl
i are identically

distributed. Fixδ > 0. Then with probability greater than1−δ we have for allf =
(

f 1, ..., f m
)

∈ F

1
m

m

∑
l=1

E
[

f l
(

Xl
1

)]

≤ 1
mn

m

∑
l=1

n

∑
i=1

f l
(

Xl
i

)

+R m
n (F )+

√

ln(1/δ)

2mn
.

We also have with probability greater than1−δ for all f =
(

f 1, ..., f m
)

∈ F , that

1
m

m

∑
l=1

E
[

f l
(

Xl
1

)]

≤ 1
mn

m

∑
l=1

n

∑
i=1

f l
(

Xl
i

)

+ R̂ m
n (F )(X)+

√

9ln(2/δ)

2mn
.

Proof Let Ψ be the function onX mn given by

Ψ(x) = sup
f∈F

1
m

m

∑
l=1

(

E
[

f l
(

Xl
1

)]

− 1
n

n

∑
i=1

f l
(

Xl
i

)

)

and letX′ be an iid copy of theX mn-valued random variableX. Then

E [Ψ(X)] = EX

[

sup
f∈F

1
mn

EX′

[

m

∑
l=1

n

∑
i=1

(

f l
(

(

Xl
i

)′)

− f l
(

Xl
i

)

)

]]

≤ EXX ′

[

sup
f∈F

1
mn

m

∑
l=1

n

∑
i=1

(

f l
(

(

Xl
i

)′)

− f l
(

Xl
i

)

)

]

= EXX ′

[

sup
f∈F

1
mn

m

∑
l=1

n

∑
i=1

σl
i

(

f l
(

(

Xl
i

)′)

− f l
(

Xl
i

)

)

]

,

for any realizationσ =
(

σl
i

)

of the Rademacher variables, because the expectationEXX ′ is symmetric

under the exchange
(

Xl
i

)′←→ Xl
i . Hence

E [Ψ(X)]≤ EXEσ

[

sup
f∈F

2
mn

m

∑
l=1

n

∑
i=1

σl
i f l
(

Xl
i

)

]

= R m
n (F ) .

Now fix x ∈ X mn and letx′ ∈ X mn be asx, except for one modified coordinate
(

xl
i

)′
. Since eachf l

has values in[0,1] we have|Ψ(x)−Ψ(x′)| ≤ 1/(mn). So by the one-sided version of the bounded
difference inequality (see McDiarmid, 1998)

Pr

{

Ψ(X) > EX′
[

Ψ
(

X′
)]

+

√

ln(1/δ)

2mn

}

≤ δ.

Together with the above bound onE [Ψ(X)] and the definition ofΨ this gives the first conclusion.

With x andx′ as above we have
∣

∣

∣
R̂ m

n (F )(x)− R̂ m
n (F )(x′)

∣

∣

∣
≤ 2/(mn) , so by the other tail of

the bounded difference inequality

Pr

{

R m
n (F ) < R̂ m

n (F )(X)+

√

4ln(1/δ)

2mn

}

≤ δ,
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which, combined with the first conclusion in a union bound, gives the second conclusion.

We quote the following folklore theorem (see for example Bartlett et al, 2005) bounding the
Rademacher complexity of a function class composed with a fixed Lipschitz function.

Theorem 17 Let F be anR
m-valued function class on a spaceX and suppose thatφ : R→ R has

Lipschitz constant L. Let

φ◦F =
{(

φ◦ f 1, ...,φ◦ f m) :
(

f 1, ..., f m) ∈ F
}

.

Then
R̂ m

n (φ◦F )≤ L R̂ m
n (F ) .

Suppose now thatF is anR
m-valued function class onX . For f =

(

f 1, ..., f m
)

define functions
f′ =

(

f ′1, ..., f ′m
)

andf′′ =
(

f ′′1, ..., f ′′m
)

, from X×{−1,1} to R
m or [0,1]m respectively, by

f ′l (x,y) = y f l (x) and f ′′l (x,y) = φγ ◦ f ′l (x,y) = φγ (y f (x))

and function classesF ′ = {f′ : f ∈ F } and F ′′ = {f′′ : f ∈ F }. It follows from the definition of
R̂ that R̂ m

n (F ′)(x,y) = R̂ m
n (F )(x) for all (x,y) ∈ (X×{−1,1})nm. Sinceφγ is Lipschitz with

constantγ−1, the previous theorem implies that

R̂ m
n

(

F ′′
)

(X,Y)≤ γ−1R̂ m
n (F )(X) andR m

n

(

F ′′
)

≤ γ−1R m
n (F ) . (20)

On the other hand, for everyf =
(

f 1, ..., f m
)

∈ F we have

er(hf) =
1
m∑E

[

1(−∞,0]

(

Yl
1 f l
(

Xl
1

))]

≤ 1
m∑E

[

φγ ◦
(

f ′
)l
(

Xl
1,Y

l
1

)]

=
1
m∑E

[

(

f ′′
)l
(

Xl
1,Y

l
1

)]

(21)

and
1

mn

m

∑
l=1

n

∑
i=1

f ′′l
(

Xl
i ,Y

l
i

)

=
1

mn

m

∑
l=1

n

∑
i=1

φγ

(

Yl
i f l
(

Xl
i

))

= êrγ (f) . (22)

Applying Theorem 16 to the classF ′′ and substitution of (21), (22) and (20) yield

Theorem 18 Let F be aR
m-valued function class on a spaceX , γ ∈ (0,1) and

(X,Y) =
(

Xl
i ,Y

l
i

)(m,n)

(l ,i)=(1,1)

a vector ofX×{−1,1}-valued independent random variables where for fixed l and varying iall the
(

Xl
i ,Y

l
i

)

are identically distributed. Fixδ > 0. Then with probability greater than1−δ we have for
all f ∈ F

er(hf)≤ êrγ (f)+ γ−1R m
n (F )+

√

ln(1/δ)

2mn
.

We also have with probability greater than1−δ for all f ∈ F , that

er(hf)≤ êrγ (f)+ γ−1R̂ m
n (F )(X)+

√

9ln(2/δ)

2mn
.
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To arrive at Theorem 9 we still need to convert this into a statement valid with high probability
for all marginsγ ∈ (0,1). This is done with Lemma 14, which we now apply to the event

F (α1,α2,δ) =

{

∃f ∈ F s.t. er(hf) > êrα2 (f)+α−1
1 R m

n (F )+

√

ln(1/δ)

2mn

}

.

Hypothesis (i) of Lemma 14 follows from the previous theorem, hypothesis (ii)from the fact that
the right side in the inequality increases if we decreaseδ andα1 and increaseα2. If we replacea by
1− ε andα by γ, then the conclusion of the lemma becomes the first conclusion of Theorem 9.The
second conclusion of Theorem 9 is handled similarly.

The following table is intended as an index and a quick reference to the notation and definitions
introduced in the paper.

Notation Short Description Section
H real, separable Hilbert space 2
〈., .〉 and‖.‖ inner product and norm onH 2
S1 unit-sphere inH 3
HS Hilbert-Schmidt operators onH 2
〈., .〉HS and‖.‖HS inner product and norm onHS 2
HS∗ symmetric operators inHS 2
Pd d-dimensional orthogonal projections inH 2
A a subset ofHS∗ 2
‖A‖HS supT∈A ‖T‖HS 2
∥

∥A2
∥

∥

HS supT∈A

∥

∥T2
∥

∥

HS 2
Qx, for x∈ H operatorQxz= 〈z,x〉x, ∀z∈ H 2
Gx,y, for x,y∈ H operatorGx,yz= 〈x,z〉y, ∀z∈ H 2
tr (T) trace of the operatorT 2
E [QX] covariance operator ofH-valued r.v.X 3
X generic input space 4
(

Xl ,Yl
)

random variables for multi-task problem 4
(

Xl
i ,Y

l
i

)

random variables for multi-task sample 4
er(h) average error of multiclassifierh 4
hf multiclassifier obtained by thresholdingf 4
φγ margin function 4
êrγ (f) empirical margin error of vector functionf 4
R̂ m

n (F ) empirical Rademacher complexity 4
Cl covariance operator forl -th task 5
C total covariance operator 5
Ĉ(X) Gramian of data-sampleX 3
FB, FB◦A fctn. classes for linear multi-task learning 5
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