Journal of Machine Learning Research 7 (2006) 117-139 Stda805; Revised 12/05; Published 1/06

Bounds for Linear Multi-Task Learning

Andreas Maurer ANDREASMAURER@COMPUSERVECOM
Adalbertstrasse 55
D-80799 Minchen, Germany

Editor: Nello Cristianini

Abstract

We give dimension-free and data-dependent bounds forrlmali-task learning where a common
linear operator is chosen to preprocess data for a vectaskfdpecific linear-thresholding classi-
fiers. The complexity penalty of multi-task learning is bded by a simple expression involving
the margins of the task-specific classifiers, the Hilbehr&idt norm of the selected preprocessor
and the Hilbert-Schmidt norm of the covariance operatorttier total mixture of all task distri-
butions, or, alternatively, the Frobenius norm of the t@ahmian matrix for the data-dependent
version. The results can be compared to state-of-the-guttgseon linear single-task learning.
Keywords: learning to learn, transfer learning, multi-task learning

1. Introduction

Simultaneous learning of different tasks under some common constraim, aafled multi-task
learning, has been tested in practice with good results under a variety of diffeirentnstances
(see Baxter 1998, Caruana 1998, Thrun 1998, Ando and Zhar).20We technique has been
analyzed theoretically and in some generality by Baxter (2000) and Ardi@laaing (2005). The
latter reference appears to be the first to use Rademacher averagesontext. The purpose of
this paper is to improve some of these theoretical results in a special casectfg importance,
when input data are represented in a linear, potentially infinite dimensionet sand the common
constraint is a linear preprocessor.

Finite systems provide simple examples illustrating the potential advantages of rekilidan-
ing. Consider agnostic learning with an input spAcand a finite sef of hypotheses : X — {0,1}.
For a hypothesid € 7 let er(f) be the expected error and( &) the empirical error on a training
sampleS of sizen (drawn iid from the underlying task distribution) respectively. Combining Ho
effding’s inequality with a union bound one shows (see e.g. Anthony amtel® 1999), that with
probability greater than 4+ 6 we have for everyf € ¥ the error bound

er(f) ge?(f)+%\/ln5f+ln(1/6). (1)

Suppose now that there are a 8&éta finite but large sef; of preprocessorg: X — 9, and another
set# of classifierh: 9 — {0, 1} with ]}[] < | F|. For acleverly chosen preprocesger G it will

likely be the case that we find sorhes # such thaho g has the same or even a smaller empirical
error than the best € . But this will lead to an improvement of the bound above (replacihg

by \}[\) only if we choose before seeing the data, otherwise we incur a large estimation penalty
for the selection of (replacing| 7 | by |# o G|).
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The situation is improved if we have a setroflifferent learning tasks with corresponding task
distributions and samples, ..., Sy, each of sizen and drawn iid from the corresponding distribu-
tions. We now consider solutiofig o g,... hmo g for each of then tasks where the preprocessing
mapg € G is constrained to be the same for all tasksd only theh, € A specialize to each tagk
at hand. Again Hoeffding's inequality and a union bound imply that with gbdlity greater - &
we have for all(hy, ...,hn) € H™and everyg € G

TSP P Y AP

|\|\/|3
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Here el (f) and & (f) denote the expected error in tdsknd the empirical error on training sample
S respectively. The left hand side above is an average of the expectes, so that the guarantee
implied by the bound is a little weaker than the usual PAC guarantees (buese@did, 2003, for
bounds on the individual errors). The first term on the right is theamesempirical error, which
a multi-task learning algorithm seeks to minimize. We can take it as an operatighiraitidn of
task-relatedness relative (g7, G) that we are able to obtain a very small value for this term. The
remaining term, which bounds the estimation error, now exhibits the advaritagdtotask learn-
ing: Sharing the preprocessor implies sharing its cost of estimation, anchtifogye contribution
arising from the selection @f € G decreases with the number of learning tasks. Since by assump-
tion }}[} < |F|, the estimation error in the multi-task bound (2) can become much smaller than in
the single task case (1) if the numbeof tasks becomes large.

The choice of the preprocesspe G can also be viewed as the selection of the hypothesis space
H og. This leads to an alternative formulation of multi-task learning, where the conofent is
a hypothesis space chosen from a class of hypothesis spaces (irsEh{sHiag ‘ge g}), and the
classifiers for the individual tasks are all chosen from the selecteatiggis space. Here we prefer
the functional formulation of selecting a preprocessor instead of a hggpistspace, because it is
more intuitive and sufficient in the situations which we consider.

The arguments leading to (2) can be refined and extended to certain infasses to give
general bounds for multi-task learning (Baxter 2000, Ando and Zh&@%)2 In this paper we
concentrate on the case where the input spacsea subset of the unit ball in a Hilbert spadethe
classg of preprocessors is a satof bounded symmetric linear operatorsidnand the clasg/ is
the set of classifieris, obtained by 0-thresholding linear functionals H with |v|| < B, that is

hy (x) = sign((x,v)) andh, o T (x) = sign({Tx,v)),xe H, T € 4, ||v|| <B.

The learner now searches for a multi-classifigs T = (hy1 o T, ...,hymo T) where the preprocessing
operatofT € 4 is the same for all tasks and only the vectdrspecialize to each taslat hand. The
desired multi-classifieln, o T should have a small value of the average error

er(hyoT) = ZerJ n%IiPr{sign«Tx',v'» #Y'},

whereX! andY' are the random variables modeling input-values and labels fortheask. To
guide this search we look for bounds orftero T) in terms of the total observed data for all tasks,
valid uniformly for allv = (v, ...,v") with ||V'|| < B and allT € 4. We will prove the following :
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LINEAR MULTI-TASK LEARNING

Theorem 1 Let3 € (0,1). With probability greater tharl — 3 it holds for allv = (v1,...,v") € H
with ||V'|| < 1 and all bounded symmetric operators T on H w5 > 1, and for ally € (0,1)

that

4T llus
81 Tllns

yv/n
Here é,(voT) is a margin-based empirical error estimate, bounded by the relative nufnber o

examples(X!, /') in the total training sample for all taskswhereY (T X', V') <y (see section 4).
The quantity|| T ||y is theHilbert-Schmidt nornof T, defined for symmetri@ by

er(hyoT) <eéfy(voT)+

C -
ICllys+ =+~

21/2
ITlhs = (Z}‘i ) )
where); is the sequence of eigenvaluesTofcounting multiplicities, see section 2).
Cisthe total covariance operatarorresponding to the mixture of all the task-input-distributions
in H. Since data are constrained to the unit balinve always havgC||,,5 < 1 (see section 3).

The above theorem is the simplest, but not the tightest or most generabfaun results. For
example the factor 8 on the right hand side can be decreased to be #ybitcae to 2, thereby
incurring only a logarithmic penalty in the last term.

A special case results from restricting the set of candidate prepasdesy, the set of orthog-
onal projections irH with d-dimensional range. In this case learning amounts to the selection of a
d-dimensional subspadé of H and of anm-tuple of vectors/ in M (components of' orthogonal
to M are irrelevant to the projected data). All operafbrs ?y satisfy| T||;s = v/d, which can then
be substituted in the above bound. Identifying such a projection with thewtaliparamete®, this
corresponds to the case considered by Ando and Zhang (2005 w/ipeactical algorithm for this
type of multi-task learning is presented. The idenfi®j|,;s = v/d then expresses the regularization
condition mentioned in (Ando, Zhang 2005).

The bound in the above theorem is dimension free, it does not requirathdidtribution irH
to be confined to a finite dimensional subspace. Almost to the contraryoSeipipat the input data
are distributed uniformly oM N S; whereM is ak-dimensional subspace lh andS, is the sphere
consisting of vectors with unit norm iH. ThenC has thek-fold eigenvalue 1k, the remaining
eigenvalues being zero. Therefdj€||,,s = 1/vk, so part of the bound above decreases to zero
as the dimensionality of the data-distribution increases, in contrast to thel lim@Ando, Zhang,
2005), which increases linearly ikn The fact that our bounds are dimension free allows their
general use for multi-task learning in kernel-induced Hilbert spaces @sistianini and Shawe-
Taylor 2000).

If we compare the second term on the right hand side to the estimation etnod bo(2), we
can recognize a certain similarity: Loosely speaking we can idethﬂl'ﬂVHS /m with the cost of
estimating the operatdr, andHT\|E|SHCHHSWith the cost of finding the linear classifiers, ..., V.

The order of dependence on the number of tasksthe same in Theorem 1 as in (2).

In the limit m — oo it is preferable to use a different bound (see Theorems 13 and 1thg at

expense of slower convergencenin The main inequality of the theorem then becomes

. 2[|7?||sie 2 3\
L¢Py m
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for some very smakl > 0 to be fixed in advance. T is an orthogonal projection witth-dimensional

range thenHTzHa/S2 = d¥/4, so for a large number of tasks the bound on the estimation error

becomes approximately

2dY/4|C]3

ywhooo

One of the best dimension-free bounds for linear single-task learreege(g. Bartlett and Mendel-
son 2002, or Lemma 11 below) would givée @&./n) for this term, if all data are constrained to
unit vectors. We therefore expect superior estimation for multi-task legofid-dimensional pro-
jections with largem, wheneverdl/“HCHﬁ/S2 < 1. If we again assume the data-distribution to be
uniform onM N S with M ak-dimensional subspace, this is the case whengverk, that is, qual-
itatively speaking, whenever the dimension of the utilizable part of the datam@&derably smaller
than the dimension of the total data distribution.

The results stated above give some insights, but they have the practadVatisage of being
unobservable, because they depend on the properties of the coeaoip@ratoC, which in turn
depends on an unknown data distribution. One way to solve this problermgsthe fact that the
finite-sample approximations to the covariance operator have good dmatomm properties (see
Theorem 8 below). The corresponding result is:

Theorem 2 With probability greater tharl — & in the sampleX it holds for all w, ..., vy, € H with
vi]| <1 and all bounded symmetric operators T on H wjth|,5 > 1, and for ally € (0,1) that

8 Tllus
8||T 1 - 1 9In
I HHS HC(X)HF oy .
yv/n mn ' 'm 2nm

where the|C (X)||, is the Frobenius norm of the gramian.

er(hyoT) <eéfy(voT)+

By definition

1/2
A 2
jeool = 3 (o))
BN

HereXi' is the random variable describing thth data point in the sample corresponding to the
I-th task. The corresponding Iab\ﬁ| enters only in the empirical margin error. The quantity
(mn) || (X)| ., can be regarded as an approximation|@,s, valid with high probability, so
that Theorem 2 is a sample based version of Theorem 1.

In section 2 we introduce the necessary terminology and results on Hilblenti&t operators
and in section 3 the covariance operator of random elements in a Hilbed.saction 4 gives a
formal definition of multi-task systems and a general PAC bound in terms adrRacher complex-
ities. For the readers benefit a proof of this bound is given in an appewikere we follow the path
prepared by Kolchinskii and Panchenko (2002 ) and Bartlett and Msad (2002 ). In section 5
we study the Rademacher complexities of linear multi-task systems. In sectiogiéeAmounds for
non-interacting systems, which are essentially equivalent to single-taskigaand derive bounds
for proper, interacting multi-task learning, including the above mentionedtse$Ve conclude with
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LINEAR MULTI-TASK LEARNING

the construction of an example to demonstrate the advantages of multi-taskdeditme appendix
contains missing proofs and a convenient reference-table to the notatiateéinitions introduced
in the paper.

2. Hilbert-Schmidt Operators

For afixed real, separable Hilbert sp&tewith inner product ., .) and norm|.||, we define a second
real, separable Hilbert space consistingidbert-Schmidt operatorsWith HS we denote the real
vector space of operatofson H satisfyings ™, | Ta||? < w for every orthonormal basi®)® , of
H. EveryT € HSis bounded. Fo5 T € HSand an orthonormal basis)) the seriesy; (Se, Ta)
is absolutely summable and independent of the chosen basis. The n{8ibgis= Y (Se,Ta)
defines an inner product dthS, making it into a Hilbert space. We denote the corresponding norm
with ||.||45 in contrast to the usual operator nofinf|,,. See Reed and Simon (1980) for background
on functional analysis). We u$¢S" to denote the set of symmetric Hilbert-Schmidt operators. For
every member oHS* there is a complete orthonormal basis of eigenvectors, an@l ®HS" the
norm || T||s is just thelz-norm of its sequence of eigenvalues. WitI" we denote the members
of HS" with only nonnegative eigenvalues.

We use two simple maps froi or H? to HS to relate the geometries of objectskhto the
geometry inrHS.

Definition 3 Letxy < H. We define two operators,@nd G,y on H by

Qz = (zx)x,VzeH
Gyxyz = (X,2y,VzeH.

We will frequently use parts of the following lemma, the proof of which is vegye

Lemma4 Letxy,X,y € Hand Te HS. Then
() Qx € HS and || Q«llys = ”X”2
(i) (Qu Qs = (X ¥)°.
(i) (T, Qs = (TXX).
(V) (T*T, Qs = [TV
(V) QQx = (X,y) Gxy-
(Vi) Gy € HS and||Gyyllys = [IX [IYII-
(V”) <Gx,yaex’,y’>HS: <X’ X/> <y7yl>
(viii) <T>Gx,y>|-|s =(Txy).
(ix) For a € R, Qux = 0?Qx.

Proof Forx= 0 (jii) is obvious. Forx # 0 choose an orthonormal basg);’, so thate; = X/ ||x]|.
Thene is the only nonzero eigenvector &, with eigenvalue|x||? > 0. Also

(T.Qons= Y (Ta, Q@) = (Tx Q) / [X|* = (TxX),

which gives (iii). (ii), (i) and (iv) follow from substitution 0Qy, Qx andT*T respectively forT.
(v) follows directly from the definition when applied to amy H. Let (ex),_, be any orthonormal
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basis. Thex= ¥ (X, &) &, so by boundedness f

(Txy) = <T Z (X, e«>emy> = Z<Te«, (X, &)y) = Z (Tex, Gxyex)

= <TvGX7Y>H5a
which is (viii). Similarly
(Gxy:Gry)ns = Z<<X,e«>y,<%aa<>y>=<Y7V>Z<Xae«> (X, &)
= () (ny),

which gives (vii) and (vi). (ix) is obvious. |

The following application of Lemma 4 is the key to our main results.

Lemma5 Let T € HS and w, ...,wm and \, ..., Vi vectors in H with/|vi|| < B. Then

" 1/2
> (Twi,v) <BJ[Tllys (2’<Wlawr>’>
=1 r

and
m

1/4
3 (Tww) < BmY2||T*T |42 (; <w|,wr>2)

Proof Without loss of generality assuniee= 1. Using Lemma 4 (viii), Schwarz’ inequality iHS
and Lemma 4 (vii) we have

m m
Y (Mwv) = (T.5>Guw ) <ITlxs
=1 =1 HS

m 1/2
ITllhs (Z (Wi, W) (Vi aVr>)
r;: 1/2
< Tlus <Z|<W|7Wr>|> :

This proves the first inequality. Also, using Schwarz’ inequalitjHimndR™, Lemma 4 (iv) and
Schwarz’ inequality irHS

(Tww) < (liuv.n) <§ va\) . \/m<T*T’|_§1QW'>1/2

HS

m
Z GW| M
=1

HS

M3

1/4
< Vm|TT|HS — /M| T*T|42 <;<w|,wr>2>
N

5o

HS
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The set ofd-dimensional, orthogonal projectionslihis denoted with?y. We havePy C HS
and ifP € % then||P||,s = v/d andP? = P.

An operatolT is calledtrace-classf 3>, (Te, &) is an absolutely convergent series for every
orthonormal basige );-; of H. In this case the numbeér(T) = $°, (Tq, &) is called thetrace of
T and it is independent of the chosen basis.

If 4 C HS" is a set of symmetric and bounded operatord iwe use the notation

14)lus=sup{[|Tlus: T € 4} and2*> = {T?: T € 4}.

3. Vector- and Operator-Valued Random Variables

Let (Q, %, 1) be a probability space with expectatiBiiF| = [, Fdufor a random variablé : Q —

R. Let X be a random variable with values kh, such thatE [||X||] < . The linear functional
veH — E[(X,v)] is bounded byE [||X||] and thus defines (by the Riesz Lemma) a unique vector
E [X] € H such thaE [(X,v)] = (E[X],V), Vv e H, with | E [X]|| < E[||X]|].

We now look at the random variabl@x, with values inHS. Suppose thaE [||X|]2} < 0o,
Passing to the spadéS of Hilbert-Schmidt operators the above construction can be carried out
again: By Lemma 4 (iE[||Qx|lugl = E [|\X||2} < oo, SO there is a unique operatBQx] € HS
such tha€ [(Qx, T)yd = (E[Qx], T)ys, VT € HS

Definition 6 The operator EQx] is called the covariance operator of X.

Lemma 7 The covariance operator x| € HS™ has the following properties.
() IE[Qxlllns < E[|Qxllng-
(”) <E [QX}M Z) =E [<yvx> <Z7X>] ,Vy,ze H.
(i) tr (E[Qx)) =E [IX]°].

(iv) For H-valued independentpand X with E [||Xi HZ} < oo we have
(E[Qq) E[Qe)us = E[(*1.%2)?] .
(v) Under the same hypotheses, iX¥z] = 0 then

E [Qxy+%] = E[Qx] + E [Qx,]

Proof (i) follows directly from the construction, (iv) from the identity
(E[Qxu] E[Qx))us = E [(Qx:, Qx,) i) - Lety,z€ H. Then using 4 (viii) we get

(E[Qx]Y.2 = (E[Qx],Gyz)ns=E[(Qx.Gyz)ys =E[(QxY.2)]
= E[(y.X)(zX)]

and hence (ii). We have with orthonormal ba@g),_, and using (ii)

tr (E[Qx)) = 3 (E[Qu]&@) = ¥ El{ecX) (6 X)] =E [IXI7].
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which gives (iii). Substitution of an eigenvectofor bothy andzin (i) shows that the corresponding
eigenvalue must be nonnegative x| € HS'.

Finally (v) holds because for anyz € H we have, using independence and the mean-zero
condition forX,, that

(E[Qx %)Y, 2)

=E[{y, X1 +X2) (X1 + X2, 2)]

= E[{y,X1) (X1,2)] + E[(y, X2) (X2, 2)] + E[(Y, X1) (X2, D] + E[(Y, X2) (X1,2)]
= ((E[Qx,] +E[Qx))Y,2) + (Y, E [X1]) (E [X2],2) + (Y, E [X2]) (E [X4],2)

= ((E[Qx] +E[Qx])Y,2)

Property (ii) above is sometimes taken as the defining property of the covarigerator (see
Baxendale 1976).

If X is distributed uniformly orM N S;, whereM is ak-dimensional subspace afsg the unit
sphereirH, thenE [<X,y}2} = (E[Qx]Y,Y) is zeroif and only ify € M+, so the range d [Qx] is M,
so there are exactleigenvectors corresponding to non-zero eigenvalu&sQf|. By symmetry
these eigenvalues must all be equal, and by (iii) above they sum up toElBd has thek-fold
eigenvalue 1k, with zero as the only other eigenvalue. It follows th&[Qx]||ys = 1/vk. We
have given this derivation to illustrate the tendency of the Hilbert-Schmidhrmdrthe covariance
operator of a distribution concentrated on unit vectors to decrease widtifdotive dimensionality
of the distribution. This idea is relevant to the interpretation of our results.

The fact thaHSis a separable Hilbertspace justthsllows to define an operat&[T| when-
everT is a random variable with values WS andE [||T| g < . Also any result valid irH has
a corresponding analogue valid iHS. We quote a corresponding operator-version of a Theorem
of Cristianini and Shawe-Taylor (2004) on the concentration of indegeinvector-valued random
variables.

Theorem 8 Suppose thatiT..., Ty, are independent random variables in H wjth || < 1. Then for
all d > O with probability greater thard we have

ZlE __ZiT <—<1+ I”(;/é))

Apply this with T; = Qx, where theX; are iidH-valued with||X;|| < 1. The theorem then shows
that the covariance operatBrQx] can be approximated iHS-norm with high probability by the
empirical estimatesl/m) 5; Qx.. The quantity

o] - (zowmr)”

is the Frobenius norm of the Gramian (or kernel-) maiX)i; = (X, X;), denoted|C(X)||,. An

immediate corollary to the above is, thdy/m)||C(X)||, is with high probability a good approxi-
mation of||E [Qx]|ls. In the proof of Theorem 2 we will not need this fact however.
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4. Multi-Task Problems and General Bounds

For our discussion of multi-task learning we concentrate on binary labeled Het(Q,Z, ) be a
probability space. We assume that there isidti-task problermodeled bymindependent random
variablesZ' = (X',Y!) : Q — X x {-1,1}, where

e | € {1,...,m} identifies one of then learning tasks,
o X! models the input data of tHeth task, distributed in a set, called theinput space

e Y' € {—1,1} models the output-, or label-data of theh task.

n

e ForeacH €{1,...,m} there is am-tuple of independent random variab(e'é)in:l = (Xi' ’Yil)izl’

where eactz! is identically distributed t&'.
1 _ | (nvm)
The random variabl& = (Z}) ;) 5
write X = ()(i')gﬂ;r)‘z(m. We use the superscripto identify learning tasks running from 1 tu,
the subscript to identify data points in the sample, running from IntdMe will use the notations
_ () (M) ; _ (A (m _ _ () (M)
X = (X_i)(iJ):(l,l) for generic membencs agix™™ andz = (4)(”):(171) = (%,y) = (X ,y})(i"l):(lﬂl) for
generic members di{x x {—1,1})"™.

is called thetraining sampleor training data. We also

A multiclassifieris a maph : X — {—1,1}™. We writeh = (h,...,h™) and interpret! (x) as the
label assigned to the vectamwhen the task is known to e The average error of a multiclassifier

h is the quantity
er(h) = %IiPr{h' (x') ;AY'},

which is just the misclassification probability averaged over all tasks. Typaalassifier is chosen
from some candidate set minimizing some error estimate based on the training. detre we
consider zero-threshold classifigsswhich arise as follows:

Suppose thaf is a class of vector valued functiohs — R™with f = (f1,..., f™). A function
f € 7 defines a multi-classifiér; = (hf, ..., h") throughh} (x) =sign( f' (x)). To give uniform error
bounds for such classifiers in terms of empirical estimates, we defiyesf@the margin functions

1 if t<O0
Qt)=< 1-t/y if O<t<y,
0 if y<t

and forf € F the random variable

@)= o3 3w (Y1 ().

I=1i

called theempirical y-margin error of f. The following Theorem gives a bound or(l&) in terms
of efy (f), valid with high probability uniformly irf € # andy.
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Theorem 9 Letg, d € (0,1)
(i) With probability greater tharl — & it holds for allf € # and ally € (0,1) that

In(1/ (3ve))
2nm

_
y(1—¢)
(i) With probability greater tharll — & it holds for allf € # and ally € (0,1) that

er(hr) < efy(f) + E [%’“(T)(X)} +

er(hy) <efy(f) + ! ; X)+ %rfys»

Heref{um(f) is theempirical Rademacher complexitythe sense of the following

Definition 10 Let {al : | € {1,...,m},i € {1,...,n}} be a collection of independent random vari-
ables, distributed uniformly i{—1,1}. The empirical Rademacher complexity of a cl#wf
functionsf : X — R™is the function®™ (¥ ) defined on(x")™ by

~m _ i m n | -
Ra"(F) (x) = Eo [surJ I;i;crl f! (xl)] .

feg MN

For the readers convenience we give a proof of Theorem 9 in thandppe

The bounds in the Theorem each involve three terms. The last one septbe dependence
of the estimation error on the confidence paramétand a model-selection penalty(fty (ye))
for the choice of the margig. Note that it generally decreases as/om This is not an a priori
advantage of multi-task learning, but a trivial consequence of the fattmb estimate an average
of m probabilities (in contrast to Ben David, 2003, where bounds are validdon individual task
- of course under more restrictive assumptions). Thg'dmdecay however implies that even for
moderate values ah andn the parameteg in Theorem 9 can be chosen very small, so that the
factor 1/ (1—¢) in the second term on the right of the two bounds is very close to unity.

The second term involves the complexity of the function claseither as measured in terms of
the distribution of the random variab¥or in terms of the observed sample. Since the distribution
of X is unobservable in practice, the bound (i) is primarily of theoretical impogtambile (ii) can
be used to drive an algorithm which selects the multi-clasdifierwhere(f*,y) € F x (0,1) are
chosen to minimize the right side of the bound with gigre. It is questionable if minimizing
upper bounds is a good strategy, but it can serve as a motivating guideline
_ Of key importance in the analysis of these algorithms is the empirical Rademawhptexity
R (F) (X), as observed on the sample and its expectation, measuring respectively the sample-
and distribution-dependent complexities of the function clas8ounds on these quantities can be
substituted in Theorem 9 to give corresponding error bounds.

5. The Rademacher Complexity of Linear Multi-Task Learning

We will now concentrate on multi-task learning in the linear case, when the datnlia real,
separable Hilbert spaté, by means of some kernel-induced embedding (see Cristianini and Shawe-
Taylor 2000), the details of which will not concern us at this point. We floeeetakeH as input
spaceX, so that the random variableg take values irH for all | € {1,...,m}, and we generally
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require||X'|| < 1. The casd|X'|| = 1 where the data are constrained to the unit sphef¢ i of
particular interest, corresponding to a class of radial basis functiorelser

We write C' for the covariance operatd Qx| andC for the total covariance operat@r =
(1/m) 3, C', corresponding to a uniform mixture of distributions. By Lemma 7 we ﬁﬁﬁ}%s <

tr (C) =E[|IX|] <2

LetB > 0, letT be a fixed symmetric, bounded linear operatot-bwith ||T||,, < 1, and let4
be a set of symmetric, bounded linear operafom H, all satisfying||T||,, < 1. We will consider
the vector-valued function classes

Fs = {xeH— (Vi,...;Vm) (X) := (X, V1), ..., (X, Vi) = ||V ]| < B}
FaoT {xeH — (Vi,....,Vm) o T (X) := ({TX V1), ... (TX Vim)) * [Vi[| < B}
FoAd = {xeHwr (vi,....Vm)oT(X) :[[vi[| <B, T € 4}.

The algorithms which choose fromig and Fg o T are essentially trivial extensions of linear
single-task learning, where the tasks do not interact in the selection ofdividimal classifiersy;,
which are chosen independently. In the casg@®f T the preprocessing operafbiis chosen before
seeing the training data. Singl@ ||, < 1 we havefgo T C ¥, so that we can expect a reduced
complexity forfgo T and the key question becomes if the choic& gpossibly based on experience
with other data) was lucky enough to allow for a sufficiently low empiricalrerro

The non-interacting class&g and Fgo T are important for comparison s o 4 which repre-
sents proper multi-task learning. Here the preprocessing opdrasaselected frond in response
to the data. The constraint thatbe the same for all tasks forces an interaction of tasks in the choice
of T and(v,...,Vm), deliberately aiming for a low empirical error. At the same time we also have
Fso0 4 C ¥g, so that again a reduced complexity is to be expected, giving a smaller coiotniio
the estimation error. The promise of multi-task learning is based on the combioétioese two
ideas: Aiming for a low empirical error, using a function class of reducedpiexity.

We first look at the complexity of the function clagg. The proof of the following lemma is
essentially the same as the proof of Lemma 22 in Bartlett and Mendelson (2002)

Lemma 11 We have

3|H uMg

(i\x'u)
oAl

X)) = B g (@)
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Proof Using Schwarz’ and Jensen’s inequality and the independence of the get

~m B 2 m n
A (Fe ) = Eo [V17--.7\ZI7J|BISBFnIZi<iZlO-!X!’VI>]

o= g S|
])
- nm;(;u 'u)

2B o
Jensen’s inequality then gives the second conclusion [ |

n

i; o

IN

IN

The first bound in the lemma is just the average of the bounds given by tBanteMendelson in
on the empirical complexities for the various task-components of the samplpits constrained
to the unit sphere i, when||X'|| = 1, both bounds becomeB2./n, which sets the mark for
comparison with the interacting cagk o 4. For motivation we next look at the cagg o T,
working with a fixed linear preprocessorof operator norm bounded by 1. Using the above bound
we obtain

R (FaoT) (x) = R (Fs) (Tx Z (;HT%H ) : (4)

which is always bounded bB//n, because{T x| < |[x||,¥x. Using Lemma 4 (iv) we can rewrite

the right side above as
1/2
Elg 2 1 . QI
vnm& % '

HS

Taking the expectation and using the concavity of the root function giviéls two applications of
Jensen’s inequality and an application of Schwarz’ inequalityH),

E[RP (FooT)(X)] < 2 HTZHWHCHHS,

which can be significantly smaller thay,/n, for example ifT is a d-dimensional projection,
and the data-distribution is spread well over a much more thdimensional submanifold of the
unit ball in H, as explained in the introduction and section 3. If we substitute the bourve &ibo
Theorem 9 we obtain an inequality which looks like (3) in the limit- co.

We now consider the case whérds chosen from some sgt of (symmetric, bounded) candi-
date operators on the basis of the same saXpémultaneous to the determination of the classifica-
tion vectorsvy, ..., vi. We give two bounds each for the Rademacher complexity and its expectation
One is somewhat similar to other bounds for multi-task learning (e.g. (2))raottier one is tighter
in the limit when the number of tasks goes to infinity.
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Theorem 12 The following inequalities hold

R (Fao ) (x) < %f}_]””ﬁ%]!ﬁ(x)\\ﬂ% (5)
Ri"(FaoA) (x) < %((%HCMHH)Z@M (6)
T e @
e [ircono] < 2Lk (o2 2) ®

Proof Fix x and define vectors; = w; (0) = S, o!X depending on the Rademacher varialaes
Then by Lemma 5 and Jensen’s inequality

R (Feoa)(x) = Ec,[sup sup i§<Twi,v|) (9)

TeAvs,...vm,vi]|<B NMEL

ZB 1/2
< nmﬂHsEngw,wa) ]
< @||ﬂ|Hs<;Eo[|<vvl,wr>u>l/z.

nm 7

Now we have

Es [||W|H2} = iliEo [o!o'j] <x!,x'l> = i“x,'Hz (10)

Also, forl # r, we get, using Jensen’s inequality and independence of the Rademadhétes,

(Eo[(w.we))® < Eoq|(wh,wh)?) (11)

n n
- ZZ Es [o!oﬁo!,oﬂ <x!,xrj> <x!,,xrj,>
7n

Taking the square-root and inserting it together with (10) in (9) we obtaifoflowing intermediate

bound
. ) A\ 12\ 2
2 I
> > IK] +|§r (Z <X!7X,->> ) (12)

By Jensen’s inequality we have

1 n AV (1m0 AN
@,;(.;Ww) s(@zw,xw) = 2IEWlle,
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which together with (12) anfix || < 1 implies (5).
To prove (6) first use the second part of Lemma 5 and Jensen’s litgqoaaet

28|47 g a
n\/_HS ZE [W|,Wr>2} . (13)

Now we haveE, [0'0‘ ola' } < &jdirj + Biirdjj’ + 8ij:djir SO

i~ e

R (FaoA)(x) <

[ < 3 (IWIFRIE200))

i,J=1

Z@}M’Hﬁii (X)) <2 s

,)=1 i

IN

™M=

where we useg{x || < 1. Inserting this together with (11) in (13) gives

1/2 § 1/4
= U]jz—u <I,r: = Eo [<W|’Wr>2} +|;Eo [<WI’WI>2]>

oB|| 422 (o 2 v
H H (IZ Y (%) +2mr?> 7 (14)

r=1i,]=1

R (FeoA)(x) <

which is (6).
Taking the expectation of (12), using Jensen’s inequality|| < 1 and independence &f and
X" for | # r, and Jensen’s inequality again, we get

M(FeoA)(
<21l " ve\ ¥
TZIPIHS [ am4- X!
( 3 (< 5.000)7) )
ZB a 1z 2
|| ||HS (I r ZlQXII ZQXr> j) +nm)
_28)7 1)
—h — s ( I; E [Qx])ie + —>
2B Als (/18 1m 2\
— Y E[Qu],= r — ,
f ( mlzi Qx], 'm2 [Qx]>HS+m)
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which gives (7). In a similar way we obtain from (14)

E [ (F04) (X)]
ZBHﬂzHl/Z m n 14
< v (M3 3 (B[0g)E[y]), o ame?
1/4
2] v O R
STmH mPn? ||E ﬁ;;q&. HS+:~;mn2 ,
which gives (8) |

6. Bounds for Linear Multi-Task Learning

Inserting the bounds of Theorem 12 in Theorem 9 immediately gives

Theorem 13 Let 4 be a be set of bounded, symmetric operators in Hgd: (0,1)
(i) With probability greater thari — it holds for allf = (v1,...,vm) o T € Fgo 4 and ally€ (0,1)

that
. 1 In(1/ (3y%))
<
er(hf)_ery(f)+y(1_8)A+ onm
where A is either
_ 2B||A]lys 1
A_T ||CHHS+E (15)
’ |2 L e
AzT(ncuHsm) : (16)

(i) With probability greater tharll — & it holds for all f = (vi,...,vm) o T € Fgo 4 and for all
ye€ (0,1) that

1 9In(2/ (3ve))
y(1— s)A(x) * 2nm '

where the random variable (X) is either

2B||4 1 4 1
Ao = ke L e o)), + 2

2B |42 1/2 1. 2 5
A(X):% ((ﬁ”c(xﬂ\pr) +;1)

We finally extend this result from uniformly bounded sét®f operators to the s¢tS* of all
symmetric Hilbert-Schmidt operators. This is done following the techniquesitied in (Anthony,
Bartlett, 1999), using the following lemma (a copy of Lemma 15.5 from this reéele

er(hf) < efy(f)+

or
1/4
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Lemma 14 Suppose
{F (a1,02,0):0< 01,002,060 <1}

is a set of events such that:
(YForall 0<a<land0<d<1,

Pr{F (a,a,8)} <.
(iForall 0<or<a<a;<land0< 01 <0< 1,
F(01,02,01) CF(a,0,d).

Thenfor0<a,d< 1,

ae(0,1]

Pr( U F(aa,a,éa(la))) <38.

Applications of this lemma follow a standard pattern, as explained in detail in OhgttBartlett,
1999). Lete,d,B be as in the previous theorem. Foe (0,1] set

A(a) ={T eHS 1 [[T||ps< 1/a}
and consider the events

F (a1,0a2,06) = {3f € Fgo 4 (a3) such that

er(hy) > Efy(f)—i—ﬁ\/||c|%+%+ \/W}

By the first conclusion of Theorem 13 the eveht&n,, a3y, d) satisfy hypothesis (i) of Lemma 14,
and it is easy to see that (ii) also holds. If we aet 1— ¢ and replacex by 1/||T||,s, then the
conclusion of Lemma 14 reads as follows:

With probability greater 1 & it holds for everyf = (v,...,Vin) o T with (v1,...,vim) € Fg and
T e HS" with ||T||ys> 1 and ally € (0,1) that

ITlus

: 2B||T||ps 1 In( Oye? )

er(hs) <efy(f) + ———=> C +—=+\ .
) < i)+ 2L ] o 2\ =

Applying the same technique to the other conclusions of Theorem 13 giedsltbwing result,
which we state in abbreviated fashion:

Theorem 15 Theorem 13 holds with the following modifications:

e The class¥g o 4 is replaced by allf = (vi,...,vm)o T € Fg oHS® with ||T||45 > 1 (or
IT%[lus = 1).

o | Alls (or [|72]|,;9) is replaced byT s (or [|T?|,;9).

o (1—¢) and1/(3y) are replaced byl —¢)? and || T||ys/ (3ye?)
(or HTZHa/; (dye?)) respectively.
The requiremeni{T || ;s> 1 (or ||T?||,,s > 1) is an artifact introduced by the stratification lemma
14. Settingg = 1/2 andB = 1 gives Theorem 1 and Theorem 2.
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7. An Example

We conclude with an example illustrating the behavior of our bounds whemhggrom noisy data.
We start with a fairly generic situation and subsequently introduce sadegdized assumptions.

Suppose tha@X' ,Y')Im:1 are random variables modelling a multi-task problem as above. In the
following let M be the smallest closed subspate- H such thaX' e M a.s..

We now mix the data variable$' with noise, modeled by a random variat{& with values
in H, such that|XN|| < 1 andE [XN] = 0. The mixture is controlled by a paramesst (0, 1] and
replaces the original data-variablswith the contaminated random variat{e= sX + (1 —s) XN.
We now make the assumption that

o XN is independent ok' andY' for all .

Let us calls the signal amplitude and-1sthe noise amplitude. The case- 1 corresponds to
the original multi-task problem. Decreasiggand adding more noise, clearly makes learning more
difficult up to the case= 0 (which we exclude), where the data variables become independeat of th
labels and learning becomes impossible. We will look at the behavior of boilr éfounds for non-
interacting (single-task) and interacting (multi-task) learners as we dectiea signal amplitude
The bounds which we use are implied by Lemma 11 and Theorem 9 for thintevaeting case
and Theorem 13 for the interacting case, and state that each of the fgjlomonstatements holds
with probability at least - &:

1. Non-interacting bound. Vv € i, Vy,
§ In(1/(3
erthy) <ety(v) + gy 2s + 1/ M)

2. Interacting bound. Yo T € F10.4, Wy,
er(hy o T) <ef, (voT)+ A\ /|[Cllys+ & +/ My 0E)

The first damage done by decreasiig that the margity must be also decreaseddto obtain
a comparable empirical margin error for the mixed problem as for the origmoalem. Replacing
y by ysis very crude and normally insufficient, because of interfering noigehleueplacement can
be justified if one is willing to accept the orthogonality assumption:

e XN | Mas.

The assumption that the noise to be mixed in is orthogonal to the signal is sotreetifizial.
We will later assume that the dimensidrof the signal spach! is small and thakN is distributed
homogeneously on a high-dimensional sphere. This implies weak orthdgonahe sense that
(X',X'\'>2 is small with high probability, a statement which could also be used, but at frenss
of considerable complications. To immediately free us from considerationeoértipirical term
(and only for this purpose), we make the orthogonality assumption. Byqtirgeto M we can
then find for any sampl(aX,' Y') and any preprocessadrand any multi-classifying vector some
T’ andV’ such that &g (V') and é,s(V' o T') for the mixed sampleéxi' ) are the same ag\gv)
and &, (voT) for the original sample. We can therefore regard the emplrlcal terms asiadpoth
bounds and for all values afas long as4 is stable under projection td andy is replaced bys.
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This will cause a logarithmic penalty in the last term depending on the conédearameted, but
we will neglect this entire term on the grounds of rapid decay with the ptaducThe remaining
term, which depends a®and is different for both bounds, is then

2
—_— 17
Vs(i—2)vn )
for the non-interacting and
2| Allps 1
Collns+ (18)
(l 8)\/_ H HHS

for the interacting case. He@ = (1/m)3, E [st| (1- st} is the total covariance operator for

the noisy mixture problem. By independenceXot andX' and the mean-zero assumption Y
we obtain from Lemma 4 and 7 that

=(/my (PE[Qu]+(1-97E[Quv]) = FC+(1-9E Q.

whereC would be the total covariance operator for the original problem. To btlugld S-norm of
this operator we now introduce a simplifying assumption of homogeneity fordise dlistribution:

o XN is distributed uniformly on &-dimensional unit-sphere centered at the origin.
This implies that] E [Qun]||ys = 1/vk so that
ICdllfis < % ICllus + IE[Quxnlllns < S [Cllus+ 1/ V.

and substitution in (18) gives the new term

2 A4 1 1
H HHs \/‘ \|Hs+sz<\/R m) (19)

for the interacting bound. The dependence on the inverse signal amglittlle first factor has
disappeared, and &sandm increase, the bound for the noisy problem tends to the same limiting
value

1/2
2)|4|lys/IClIHE

y(1—¢)y/n

as the bound for the original 'noise free’ problem, for any fixed pasi@lue ofs. This contrasts
the behavior of all bounds which depend linearly on the dimension of the sgace (such as in)
and diverge ak — oo,

The quotient of (19) to the non-interacting (17) is

1
a LC|lys+ —
[ HHS\/ [Clis+ 2+ 1o

and the interacting bound will be better than the non-interacting bound wiietieés expression
is less than unity. This is more likely to happen when the signal amplisudesmall, and the
dimensiork of the noise distribution and the number of tagkare large.
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An intuitive explanation of the fact, that for multi-task learning a large dimenkiarf the
noise-distribution has a positive effect on the bound, is that for leeysample of homogeneously
distributed random unit vectors is less likely to lie in a common low-dimensionapsute, a cir-
cumstance which could mislead the multi-task learner.

Of course there are many situations, when multi-task learning doesn’agwadvantage over
single-task learning. To make a quantitative comparison we make more threesmumlifying
assumptions on the data distribution of ¥fe

e dm(M)=d<
The signal spachl is of course unknown to the learner, but we assume that
e we know its dimensiomwl.

Multi-task learning can then select from an economically choser seH S* of preprocessors
such thatq contains the set af-dimensional projection®y and|| 4|5 = v/d. We assume knowl-
edge ofd mainly for simplicity, without it we could invoke Theorem 15 instead of TheotEn
above, causing some complications, which we seek to avoid.

e The mixture of the distributions of th¢' is homogeneous o NM.

This implies||C||ys = 1/v/d, and, with|| 4|, = /d, the multi-task bound will improve over
the non-interacting bound if

d d
VA + —+ = <1
vk m

From this condition we conclude with four cook-book-rules to decide whisnworthwhile to go
through the computational trouble of multi-task learning instead of the simpldestiagk learning.

1. The problem is very noisys{s expected to be small)
2. The noise is high-dimensiond i expected to be large)
3. There are many learning tasksi§ large)

4. We suspect that the relevant information fomallasks lies in a low-dimensionad {s small)

If one believes these criteria to be met, then one can use an algorithm astdewvatoped in
(Ando, Zhang, 2005) to minimize the interacting bound above, With 7.

Appendix

We give a proof of Theorem 9 for the readers convenience. Mdsi®fnaterial is combined from
Anthony and Bartlett (1999), Bartlett and Mendelson (2002), Bartlesl €2005) and Ando and
Zhang (2005), and we make no claim to originality for any of it. A preliminasuteis
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(m;n)

Theorem 16 Let ¥ be a[0, 1]™-valued function class on a spage andX = (Xi')(| —(1,1) & vector

of X-valued independent random variables where for fixed | and varyatighe X' are identically
distributed. Fixd > 0. Then with probability greater thah— & we have for alf = (f,..., f™) € F

QUIEES S LI P

We also have with probability greater than- & for all f = (f1,..., f™) € 7, that

HMg

1
m

9In(2/3)

2 El ()] =2, 3,1 (4) + AR 00+ 5

Proof LetW be the function o™ given by
=supn 5 ([ ()] - 15 ¢ ()
and letX’ be an iid copy of thet™"-valued random variabl¥. Then
il = = g |51 () 00)]
oo [ (1 (04)) ()
oo o 5,5 (1 (64 -1 64)) |

for any realizatioro = (o{) of the Rademacher variables, because the expecttipris symmetric
under the exchanggX!)’ < X/. Hence

IN

feF

E[W (X)) < ExEs [supinlf _io: f (x')] = (7).
=1li=

Now fix x € X™and letx’ € X™ be asx, except for one modified coordinafg)’. Since eacH'
has values 0, 1] we havelW (x) — W (x')| < 1/ (mn). So by the one-sided version of the bounded
difference inequality (see McDiarmid, 1998)

2mn

Pr{W(X) > Ex [W(X)] + '”(1/5)} <
Together with the above bound & W (X)] and the definition ofV this gives the first conclusion.

With x andx’ as above we hav?{nm(f) (X)— RM(F)(X)| < 2/ (mn), so by the other tail of
the bounded difference inequality

2mn

Pr{xnmm <R () + M} <5
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which, combined with the first conclusion in a union bound, gives the secomclusion. |

We quote the following folklore theorem (see for example Bartlett et al, RB6&nding the
Rademacher complexity of a function class composed with a fixed Lipschitadan

Theorem 17 Let # be anR™-valued function class on a spadeand suppose thap: R — R has
Lipschitz constant L. Let

o F ={(pofh .. o f™:(fL. fM) e F}.
Then . .
Ra' (@0 F) <L R3"(F).
Suppose now thaf is anR™-valued function class oi. Forf = (f,... ™) define functions
= (f1,.., M) andf” = (f"2,..., ™), from X x {—1,1} toR™ or [0, 1]" respectively, by
1 (xy) =yf (x) and " (x,y) = @yo £ (x,y) = @y (Y f (X))

and function classeg’ = {f':fc F} and " = {f":f € F}. It follows from the definition of
R that R (F') (x,¥) = R"(F) (x) for all (x,y) € (Xx {-1,1})"™ Sinceq, is Lipschitz with
constant 1, the previous theorem implies that

R (F") (X, Y) Sy IRM(F) (X) and R (F) <y LRI (F). (20)
On the other hand, for evefy=(f!,..., f™) € 7 we have

er(hy) = %ZE :1(70070] (Yllfl (Xi)ﬂ
< %ZE:(Wo(f’)I(XLYlIH
- L[ (4v)] &)

and

1 m n 1 m n
— 1 (xy) == @ (Y (X)) =efy(f). (22)
a2 (K) =R 3 S e (v (X)) =<

Applying Theorem 16 to the clags” and substitution of (21), (22) and (20) yield

Theorem 18 Let ¥ be aR™-valued function class on a spagg y € (0,1) and
(mn)

(X,Y) = (XiI’Y”)(I.,i):(l,l)

a vector ofX x {—1,1}-valued independent random variables where for fixed | and varyatighie
(Xi' ,Yi') are identically distributed. Fix > 0. Then with probability greater thah— d we have for
allfe 7
R _ In(1/d)
< tgm —— .
er(hy) < efy(F) +y " Ra" () +\/ 5
We also have with probability greater thdn- o for all f € F, that
9In(2/9)

er(hr) < efy(f) +y R (F) (X) + 1/~
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To arrive at Theorem 9 we still need to convert this into a statement valid vgthgrobability
for all marginsy € (0,1). This is done with Lemma 14, which we now apply to the event

In(1/6)}

F(01,02,0) = {Hf € F st enhy) > g, () + a7 R (F) + o
Hypothesis (i) of Lemma 14 follows from the previous theorem, hypothesif@ii the fact that
the right side in the inequality increases if we decréaarda; and increases,. If we replacea by
1—¢anda byy, then the conclusion of the lemma becomes the first conclusion of Theoréne9.
second conclusion of Theorem 9 is handled similarly.

The following table is intended as an index and a quick reference to the motaitbdefinitions
introduced in the paper.

Notation Short Description Section

H real, separable Hilbert space 2

(.,.)and|.|| inner product and norm o 2

S unit-sphere irH 3

HS Hilbert-Schmidt operators o 2

(.,-)ysand|.|lys inner product and norm odS 2

HS symmetric operators iHS 2

Py d-dimensional orthogonal projectionskh 2

a a subset oHS" 2

4|1 SUPrea l|Tllns 2

122/l supr s |72 ls 2

Qy, forxe H operatorQyz= (z,x)x, Vze H 2

Gyy, forx,yc H operatoiGyyz= (x,2)y, Vze H 2

tr(T) trace of the operator 2

E [Qx] covariance operator ¢1-valued r.v.X 3

X generic input space 4

(x',yh random variables for multi-task problem 4

(XY random variables for multi-task sample 4

er(h) average error of multiclassifiér 4

hy multiclassifier obtained by thresholdifig 4

@ margin function 4

efy (f) empirical margin error of vector functidn 4

f{nm(f) empirical Rademacher complexity 4

c covariance operator fdrth task 5

C total covariance operator 5

C(X) Gramian of data-samphé 3

s, Fgo 4 fctn. classes for linear multi-task learning 5
References

[1] R. K. Ando, T. Zhang. A framework for learning predictive struetsifrom multiple tasks and
unlabeled datalournal of Machine Learning Researdt 1817-1853, 2005.

138



LINEAR MULTI-TASK LEARNING

[2] M. Anthony and P. BartlettNeural Network Learning: Theoretical Foundatiorambridge
University Press, Cambridge, UK, 1999.

[3] P. L. Bartlett and S. Mendelson. Rademacher and Gaussian CompeXisk Bounds and
Structural Resultslournal of Machine Learning Researc® 463-482, 2002.

[4] P. Bartlett, O. Bousquet and S. Mendelson. Local Rademacherleritigs. Available online:
http://www.stat.berkeley.edu/ bartlett/papers/bbm-Irc-02b.pdf.

[5] P. Baxendale. Gaussian measures on function spAces:. J. Math.98:891-952, 1976.

[6] J. Baxter. Theoretical Models of Learning to Learn,Liearning to Learn S.Thrun, L.Pratt
Eds. Springer 1998.

[7] J. Baxter. A Model of Inductive Bias Learningournal of Artificial Intelligence Researd?:
149-198, 2000.

[8] S. Ben-David and R. Schuller. Exploiting task relatedness for multipleléasking. INCOLT
03, 2003.

[9] R. Caruana. Multitask Learning, icearning to LearnS.Thrun, L.Pratt Eds. Springer 1998.

[10] Nello Cristianini and John Shawe-Taylor. Support Vector Machi@ambridge University
Press 2000.

[11] T. Evgeniou and M. Pontil. Regularized multi-task learniRgoc. Conference on Knowledge
Discovery and Data Mining2004.

[12] V. Koltchinskii and D. Panchenko. Empirical margin distributions andrizling the general-
ization error of combined classifiefBhe Annals of Statistic0l. 30, No 1, 1-50.

[13] Colin McDiarmid. Concentration, ifProbabilistic Methods of Algorithmic Discrete Mathe-
matics p. 195-248. Springer, Berlin, 1998.

[14] C. A. Miccheli and M. Pontil. Kernels for multi-task learning. Availabldioe, 2005.

[15] S.Mika, B.Scldlkopf, A.Smola, K.-R.Miller, M.Scholz and G.Rtsch. Kernel PCA and De-
noising in Feature Space&dvances in Neural Information Processing Systéfins1998.

[16] J. Shawe-Taylor, N. Cristianini. Estimating the moments of a random wvéttaceedings of
GRETSI 2003 Conferencke 47-52, 2003.

[17] Michael Reed and Barry Simortunctional Analysis part | of Methods of Mathematical
Physics, Academic Presk980.

[18] S. Thrun. Lifelong Learning Algorithms, ibearning to LearnS.Thrun, L.Pratt Eds. Springer
1998

139



