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Abstract

Support vector machines utilizing the 1-norm, typically sp as linear programs (Mangasarian,
2000; Bradley and Mangasarian, 1998), are formulated hese@mpletely unconstrained mini-
mization of a convex differentiable piecewise-quadrabfeotive function in the dual space. The
objective function, which has a Lipschitz continuous geatliand contains only one additional fi-
nite parameter, can be minimized by a generalized Newtohadednd leads to an exact solution
of the support vector machine problem. The approach heradedon a formulation of a very
general linear program as an unconstrained minimizatioblpm and its application to support
vector machine classification problems. The present appradiich generalizes both (Mangasar-
ian, 2004) and (Fung and Mangasarian, 2004) is also appliedrilinear approximation where a
minimal number of nonlinear kernel functions are utilizecapproximate a function from a given
number of function values.

1. Introduction

One of the principal advantages of 1-norm support vector machinddgysis that, unlike 2-norm
SVMs, they are very effective in reducing input space features fealfifkernels and in reducing
the number of kernel functions (Bradley and Mangasarian, 1998) Bnd Mangasarian, 2004) for
nonlinear SVMs. With few exceptions, the simplex method (Dantzig, 1963pé&as the exclusive
algorithm for solving 1-norm SVMs. The interesting paper (Zhu et al. 420¢hich treats the 1-
norm SVM uses standard linear programming packages for solving theiufation. To the best
of our knowledge there has not been an exact completely unconstwiffer@ntiable minimiza-
tion formulation of 1-norm SVMs, which is the principal concern of the presather theoretical
contribution which we outline now.

In Section 2 we show how a very general linear program can be sob/élgeaminimization
of a completely unconstrained differentiable piecewise-quadratic cduwvestion that contains a
single finite parameter. This result generalizes (Mangasarian, 200evinear programs with
millions of constraints were solved as unconstrained minimization problems neaadiged New-
ton method. In Section 3 we show how to set up 1-norm SVMs, with linear anlihear kernels
as unconstrained minimization problems and state a generalized Newton methuelrfeolution.
In Section 4 we show how to solve the problem of approximating an unknanctibn based on
a given number of function values using a minimal number of kernel furstidde achieve this
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MANGASARIAN

by again converting a 1-norm approximation problem to an unconstraindchination problem.
Computational results given in Section 5 show that the proposed appsofaster than a conven-
tional linear programming solver, CPLEX (ILO, 2003), and faster thaottear related method as
well as having better input space feature suppression for a lineaifielaaad mostly better kernel
function suppression for a nonlinear classifier. Section 6 concludemires.

We now describe our notation and give some background material. Allrgawith be column
vectors unless transposed to a row vector by a ptirRer a vectox in then-dimensional real space
R", x, denotes the vector iR" with all of its negative components set to zero. This corresponds
to projectingx onto the nonnegative orthant. For a vectar R", x, denotes the vector iR" with
componentgx,); = 1 if x; > 0 and 0 otherwise (i.ex is the result of applying the step function
component-wise t®). Forx € R", ||X||1, ||X|| and||X||~, will denote the -, 2— andeo— norms ofx.
For simplicity we drop the 2 fronix||2. The notatiorA € R™" will signify a realm x n matrix. For
such a matrid’ will denote the transpose 8f A; will denote the-th row of AandA;; will denote the
ij-th element ofA. A vector of ones or zeroes in a real space of arbitrary dimension wilkbeted
by e or 0, respectively. For a piecewise-quadratic function suchi@3,= 3||(Ax—b), |+ $XPx,
whereA € R™" P e R™" P =P/, P positive semidefinite and € R™, the ordinary Hessian does
not exist because its gradient, the: 1 vector f (x) = A'(Ax—b), + Px, is not differentiable but
is Lipschitz continuous with a Lipschitz constant ||| ||Al| + ||P||. However, one can define its
generalized Hessiar{Hiriart-Urruty et al., 1984; Facchinei, 1995; Mangasarian, 2004gkvis the
n x n symmetric positive semidefinite matrix:

02f (x) = A'diag(Ax—b). A+ P,

wherediag(Ax— b), denotes amm x m diagonal matrix with diagonal element8ix — by;).., i =
1,....m. The generalized Hessian has many of the properties of the reguldari@dgiart-Urruty

et al., 1984; Facchinei, 1995; Mangasarian, 2001) in relatioi(xp. If the smallest eigenvalue of
0%f (x) is greater than some positive constant foxallR", thenf (x) is a strongly convex piecewise-
guadratic function ofR". A separating plane, with respect to two given point se@snd3 in R",

is a plane that attempts to separBfeinto two halfspaces such that each open halfspace contains
points mostly ofa or 3. The notation= denotes a definition.

2. Linear Programs as Exact Unconstrained Differentiable Minmization Problems

We consider in this section a very general linear program (LP) that iosnt@nnegative and un-
restricted variables as well as inequality and equality constraints. We will Bbav to obtain an
exact solution of this LP by a single minimization of a completely unconstrainedréliftiable
piecewise-quadratic function that contains a single finite parameter. Wewiglg the primal linear
program:

min cx+d'y st. Ax+By> b, Ex+Gy=h, x>0, 1)
(x,y)eRMH
wherece R", d e R, Ac R™" Bec R™! E e R*" G e R/, be R"andh € R¥, and its dual:
max b'u+hv st. Au+E'v<c, Bu+Gv=d,u>0. (2)
(u,v)eRmK

The exterior penalty problem for the dual linear program is:

min | e(~bu— )+ S(|(Ku+ Ev—0), 2+ [But Gv—d |+ (), 7). @)

(u,v)eRMTk
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SVM-1 AS UNCONSTRAINEDMINIMIZATION

Solving the exterior penalty problem for a positive sequefgé converging to zero will yield a
solution to the dual linear program (2) (Fiacco and McCormick, 1968{sBkas, 1999). However,
we will not do that here because of the inherent inaccuracies associated withtasgragterior
penalty methods and the fact that this would merely yield an approxidugtksolution butnot a
primal solution. Instead, we will solve the exterior penalty problem for somtefvalue of the
penalty parameteg and from thisinexactdual solution we shall easily extract axactprimal
solution by using the following proposition.

Proposition 1 Exact Primal Solution Computation Let the primal LP (1) be solvable. Then the
dual exterior penalty problem (3) is solvable for alt- 0. For anye € (0,€] for somee > 0, any
solution(u, V) of (3) generates an exact solution to primal LP (1) as follows:

x= S(AU+EV—0),, y= > (Bu+Gv—a) @
In addition, this(x,y) minimizes:
[+ [ly[1® + | Ax-+ By— b, (5)

over the solution set of the primal LP (1).

Proof The dual exterior penalty minimization problem (3) can be written in the equit/&dem:

. 1
min g(—bu—hv)+ Z(||z)?+|Bu+Gv—d|*> + |z
(UV,z1,20) ERM+ken+m 2 ©)
st. —Au—E'v+c+zg > O
u+z > 0.

The justification for this is that at a minimum of (6) the variabtgsandz, are nonnegative, else

if any component of these variables is negative the objective functioheatrictly decreased by
setting that component to zero while maintaining constraint feasibility. Hehees@ution of (6),

z1 = (ANu+E'v—c); andz = (—u).. The Wolfe dual (Mangasarian, 1994, Problem 8.2.2) for the
convex quadratic program (6) is:

1
max = S((lze)? + [BUl?+ |GV + 2VGBuU—[|d[|* +[|z[*) — cF
(u7v7zl722’r’s)eRm+k+n+m+ﬂ+m 2
st. —eb+B(Bu+Gv—-d)+Ar—s = 0 @
—eh+G(Bu+Gv—-d)+Er = 0
z17=r > 0
=s > 0,
which can be written in the equivalent form:
. 1
— min (Ir?+||B'ull?+ |G'V|?+ 2VGBu— ||d||2+||s||?) + cr
(u,v,r,8) cRMtk+n+m 2
B'u+G'v—d
s.t.—bJrB(“*fB/‘L’H(;VdeAQZES > 0 (8)
—h+G(7")+E; = 0
r > 0.
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Note that at a solution of the exterior penalty problem (6) and the comelépg Wolfe dual (7) we
have that:

r=27 = (A/U+ E'v— C)+ (9)
S=2 = (—U);.
Define now: o /
X = ¢=:(Au+E'v-c);
y = iBut+cv-d), (10)

where the equality in (10) follows from (9). Substituting (10) in (8) giv&fter some algebra, the
optimization problem (11) below. It is easiest to see that (8) follows frab) ifwe substitute fox
andy from (10) in (11) below and note thatOr = ex and that 0< s= £(Ax+ By— b) which follow
from the constraints of (8) and the definitions (10xandy.

— min_cx+dy + (X7 +[Iyl*+ |Ax+By—b]|?)
(x,y)eRnH
Ax+By > b (11)
Ex+Gy = h
X > 0.

This convex quadratic program (11) is feasible, because the linegrgomno(1) is feasible. It is
solvable for anye > 0 (Frank and Wolfe, 1956) because its objective function is boundkeavbe
since itis a strongly convex quadratic functior(xyy). Since the dual exterior penalty minimization
problem objective (3) or equivalently (6) is bounded below by the negafithe objective function
of (11) by the weak duality theorem (Mangasarian, 1994, Theorem)8l2&Bce (3) is solvable
for anye > 0. By the perturbation theory of linear programs (Mangasarian and iM&9&9), it
follows that fore € (0,€], for somee > 0, (x,y) as defined in (10) or equivalently (4), solve the
linear program (1) and additionally minimize the expression (5) over the solsgibof the original
linear program (1)J

A more direct, but just as laborious and rather unintuitive proof of Fsitjpm 1 can be given
by showing that the KKT necessary and sufficient optimality conditions X} follow from the
necessary and sufficient optimality conditions of setting the gradient oktke@ penalty problem
(3) equal to zero. We do not give that proof here because it doegistify how the quadratic
perturbation terms of (11) arose, but it merely starts with these terms as give

We turn now to an implementation of this result for various 1-norm SVMs.

3. 1-Norm SVMs as Unconstrained Minimization Problems

We consider first the 1-norm linear SVM binary classification problenn@sarian, 2000; Bradley
and Mangasarian, 1998; Fung and Mangasarian, 2004):

min- V[y[lz+[[wll1
(wy,y)

s.t. D(Aw—ey)+y

> e (12)
y = 0

where, with some abuse of notation by multiple representation, we leghth@ matrix A in this
section represemh points inR" to be separated to the best extent possible by a separating plane:

Xw=y, (13)
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SVM-1 AS UNCONSTRAINEDMINIMIZATION

according to the class of each row Afas given by then x m diagonal matrixD with elements
Di = +£1. The objective ternfly||1 minimizes the classification error weighted with the positive
parameter while the term||w||; maximizes theo-norm margin (Mangasarian, 1999) between the
bounding planeg'w = y+ 1 that approximately bound each of the two classes of points represented
by A. It is well known (Bradley and Mangasarian, 1998; Fung and Maangas, 2004) that using
lw||1 in the objective function of (12) instead of the standard 2-norm squared||w||? (Vapnik,
2000; Schilkopf and Smola, 2002) results in input space feature selection by esgipg many
components ofv, whereas the standard 2-norm SVM does not suppress any contpafi@nin
general. We convert (12) to an explicit linear program as in (Fung aaddgdsarian, 2004) by
setting:

w=p-q, p>0,9=0, (14)

which results in the linear program:

min vey+€(p+Q)
(P.a.v.y)
st. D(A(p—q)—ey)+y > e (15)
p.qy > 0.

We note immediately that this linear program is solvable because it is feasibliésaslujective
function is bounded below by zero. Hence, Proposition 1 can be utilizeteld the following
unconstrained reformulation of the problem.

Proposition 2 Exact1l-Norm SVM Solution via Unconstrained Minimization The unconstrained
dual exterior penalty problem for thenorm SVM (15):

: 1, ,
min —e€u+ o (|[(A Du—€)..[|* +|(~ADU—€).,||*+ (~€Du)? + || (u—ve)||* +| (~u)[|?),

(16)
is solvable for alle > 0. For anye € (0, €] for somee > 0, any solution u of (16) generates an exact
solution of thel-norm SVM classification problem (12) as follows:

W=p—-Qg= = %((A/DU—9)+—(—A/DU—9)+),
y = —1€Duy, (17)
y — u-ve),.

In addition this(w,y,y) minimizes:
IWl? -+ Y2+ [ly| + | D(Aw—ey) +y —el|?, (18)
over the solution set of thenorm SVM classification problem (12).

We note here the similarity between our unconstrained penalty minimization préb&rand the
corresponding problem of (Fung and Mangasarian, 2004, EquasjprBait, we also note a major
difference. In the latter, a penalty parametenultiplies the termj|(—u), ||? of equation (16) above
and is required to approach in order to obtain an exact solution to the original problem (12).
Thus, the solution obtained by (Fung and Mangasarian, 2004, Equ&jdarzany finitea is only
approximate, as pointed out there. Furthermore, our solution to (16)tirimizes the expression
(18) rather than being merely an approximate least 2-norm solution as igskeirc (Fung and
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Mangasarian, 2004, Equation 11). However the generalized Newtorochptlkscribed in (Fung
and Mangasarian, 2004) for a sequefiae] «}, is applicable here witkk = 1. For completeness
we state that result here. To do that wefiéti) denote the exterior penalty function (16). Then the
gradient and generalized Hessian as defined in the Introduction & ag\follows.

Of(u) = —ee+DA(ADu—e); —DA(—A'Du—e), (19)
+De€Du+ (u—ve); — (—u).

0°f(u) = DA(diag((ADu—e),+ (—A'Du—e),)AD
+De€D +diag((u—ve), + (—u).) (20)

= DA(diag(|A'Du| —e).)A'D
+Deé€D +diag((u—ve), + (—u).),
where the last equality follows from the equality:
(@=1).+(-a—1). =(la=1).. (21)

To handle a nonlinear symmetric ker€(A, B) that mapsR™" x R™/ into R™* and which
generates, instead of the separating plane (13), the nonlinear sepataface:

K(X,A)Dv=y, (22)
all we need to do is essentially to make the replacement:
A — K(AA)D, (23)

which we justify now. For a linear kern&l(A,A’) = AA, we have thatv= A'Dv, wherev is a dual
variable (Mangasarian, 2000) and the primal linear programming SVMK&&mes upon using
w = p—q= A'Dv and minimizing the 1-norm of in the objective instead that of.

min ve'y+ |[v]j1
(vyy)
st. D(AADv—ey)+y > e (24)
y >0
Setting:
v=r—s, r>0,s>0, (25)
the linear program (24) becomes:
min vey+€(r+s)
(rsy.y)
s.t. D(AAD(r—s)—ey)+y > e (26)
rﬂs7y Z 07

which is the linear kernel SVM in terms of the dual variabte r —s. If we replace the linear kernel
AAin (26) by the nonlinear kerné (A, A’) we obtain the nonlinear kernel linear program:

min vey+€e(r+s)
(rsyy)
s.t. D(K(AA)D(r—s)—ey)+y > e (27)
r,s,y > 0.
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SVM-1 AS UNCONSTRAINEDMINIMIZATION

We immediately note that the linear program (15) is identical to the linear pro@anif we make
the replacement (23).

Finally, a word regarding the choice efin Propositions 1 and 2. Computationally in (Fung
and Mangasarian, 2004) this does not seem to be critical and is eflgcndressed as follows. By
(Lucidi, 1987, Corollary 3.2), if for two successive valuegpg® > €2, the corresponding solutions
of the e-perturbed quadratic programs (11) are equal, then under certaimpiisns these equal
successive solutions constitute a solution of the linear programs (1) pth@t2also minimize the
guadratic perturbations (5) or (18). This result can be implemented cotigmatidy by using are,
which when decreased by some factor yields the same solution to (1) ofrfd®)r computational
results this turned out to either410~* or 1075.

We state now our generalized Newton algorithm for solving the unconstraimeimization
problem (16) as follows.

Algorithm 3 Generalized Newton Algorithm for (16) Let f(u), Of(u) and 0f(u) be defined
by (16),(19) and (20). Set the parameter valweg, 9, tolerancetol, andimax (typically: € €
[107, 4 x 1074] for linear SVMs and < [107°, 1] nonlinear SVMs, tok= 102, imax= 50, while
v andd are set by a tuning procedure). Start with arfyaeuR™. Fori =0,1,...:
() U+t =u — N2 (U) +8)~0f (u) = u' +Ad,
where the Armijo stepsiZe = max{1,1,1....} is such that:
. . . A o
f(u')—f(u'+)\id')Z—Z'Df(u')’d', (28)
and d is the modified Newton direction:
d' = —(%f(u)+ol)tof(u). (29)
In other words, start with\; = 1 and keep multiplying; by% until (28) is satisfied.
(1) Stop if|ju' —u 2| <tol ori = imax. Else, set4i+1and go to(l).

(1) Define the solution of thd-norm SVM (12) with least quadratic perturbation (18) by (17)
with u=u'.

We state a convergence result for this algorithm now.

Proposition 4 Let tol = 0, imax= o and lete > 0 be sufficiently small. Each accumulation point

u of the sequencéu'} generated by Algorithm 3 solves the exterior penalty problem (16). The
correspondingw, y,y) obtained by setting u ta in (17) is an exact solution to the prim&inorm
SVM (12) which in addition minimizes the quadratic perturbation (18) ovesdthation set of (12).

Proof That each accumulation pointof the sequencéu'} solves the minimization problem (13)

follows from exterior penalty results (Fiacco and McCormick, 1968; Béds, 1999) and standard

unconstrained descent methods such as (Mangasarian, 1995efftdr Examples 2.1(i), 2.2(iv))

and the facts that the direction choid'eof (24) satisfies, for some> O:
—Of(uyd = Df(u‘)’_(él+62f(u‘))‘1Df(u‘)

> c|Ofu)]?,
and that we are using an Armijo stepsize (28). The last statement of therthdoliows from
Proposition 22
We turn now to minimal kernel function approximation.

(30)
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4. Minimal Kernel Function Approximation as Unconstrained Minimization
Problems

We consider here the problem of constructing a kernel function appadion from a given number
of function values using the 1-norm to minimize both the error in the approximasorell as the
weights of the kernel functions. Utilizing the 1-norm in minimizing the kernel Wesiguppresses
unnecessary kernel functions similar to the approach of (Mangasatrialn 2004) except that we
shall solve the resulting linear program here through an unconstrainéahization reformulation.
Also, for simplicity we shall not incorporate prior knowledge as was don@li@ngasarian et al.,
2004).

We considem given function valued € R™ associated witim n-dimensional vectors repre-
sented by then rows of them x n matrix A. We shall fit the data points by a linear combination of
symmetric kernel functions as follows:

K(AA)v+ey~b, (31)
where the unknown parameters R™ andy € R are determined by minimizing the 1-norm of the

approximation error weighted by> 0 and the 1-norm of as follows:

min V|[K(AA)V+ey— bl + V] (32)
(vy)eRMt

Setting
vV = r—sr>0,s>0,
K(AJA)v+ey—b = y—zy>0,z>0,

we obtain the following linear program:

(33)

min Ve (y+2z)+€(r+s)
(r7s!y7y!z)
st. K(AA)(r—s)+ey—y+z = b (34)
rsy,z > 0,

which is similar to the nonlinear kernel SVM classifier linear programming fortimlg27) with
equality constraints replacing inequality constraints. We also note that this firegram is solv-
able because it is feasible and its objective function is bounded belowbyence, Proposition
1 can be utilized to yield the following unconstrained reformulation of the proble

Proposition 5 Exact 1-Norm Nonlinear SVM Approximation via Unconstrained Minimiza-
tion The unconstrained dual exterior penalty problem for theorm SVM approximation (34):

1
in —chii = Ny o) 112 L1/ Ny A |12
min —ebu-+ 2 (| (K(A A=)+ [[(~K(AA)u—e) >+

(35)
(€u)? +[|(~u=ve).[?+ [ (u—ve).|?),

is solvable for alle > 0. For anye € (0, €] for somee > 0, any solution u of (35) generates an exact
of thel-norm SVM approximation problem (32) as follows:

r—s= = 1

—

(K(AA)u—e); — (-K(AA)u—eg),),
—[J—Ve)+;
u—ve),

(PN
c

(36)

V=
Y
y
z
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SVM-1 AS UNCONSTRAINEDMINIMIZATION

In addition this(r,s,y,y,z) minimizes:
111 4 (18112 + Y2+ [Iy112 -+ (12117, 37)

over the solution set of theknorm SVM classification problem (34).

Computational results utilizing the linear programming formulation (32) with priemkedge
in (Mangasarian et al., 2004) but using the simplex method of solution igtigéidor solving ap-
proximation problems. The unconstrained minimization formulation (35) is angtbrod of solu-
tion which can also handle such problems without prior knowledge as weitlaprior knowledge
with appropriate but straightforward modifications.

We turn now to our computational results.

5. Computational Results

Computational testing was carried on a 3 Ghz Pentium 4 machine with 2GB of meororiyng
CentOS 4 Linux and utilizing the CPLEX 7.1 (ILO, 2003) linear programmingkpge within
MATLAB 7.1 (MATLAB, 1994-2001). We tested our algorithm on six publidyailable data sets.
Five from the UCI Machine Learning Repository Murphy and Aha ()9%@nosphere, Cleveland
Heart, Pima Indians, BUPA Liver and Housing. The sixth data set, Galaxy I3 available from
Odewahn et al. (1992). The results are summarized in Tables 1 and 2.

For the linear classifier (13) we compare in Table 1, NLPSVM (Fung andgélsarian, 2004),
CPLEX (ILO, 2003) and our Generalized LPNewton Algorithm for (1@), six public data sets
using ten-fold cross validation. NLPSVM is essentially identical to our algoritexcept that it
requires a penalty parameter multiplying the last term of (16) to approachynfdPLEX uses the
standard linear programming package CPLEX (ILO, 2003) to solve {@6)note that our method
LPNewton is faster than both NLPSVM and CPLEX on all six data sets are$ gihe best feature
suppression based on the average number of features used by thelassdier (13). NLPSVM
has the best test set correctness on two of the data sets, and comparedgtness on the other
four. The Armijo step size was not needed in either NLPSVM or LPNewtonning on 10%
of the training set was used to determine the parametarsld from the setg{212,...,21?} and
{1073,...,.10°} respectively. Epsilon was set to the value 4.00E-04 used in (Fung angadarian,
2004) for NLPSM and to 1.00E-06 for our LPNewton algorithm.

For the nonlinear classifier (22) we compare in Table 2, NLPSVM (FurgMangasarian,
2004), CPLEX (ILO, 2003) and our Generalized LPNewton Algorithnoi3(R7), on three public
data sets using ten-fold cross validation. We note again that our methodMt®Nis faster than
both NLPSVM and CPLEX on all three data sets and gives the best reduotibe number of
kernel functions utilized, on two of the data sets, based on the cardinality-of— s as defined in
(25) and (27). Best test set correctness was achieved on two dstayseur method and it was a
close second on the third data set. Again the Armijo step size was not heeslttgbirNLPSVM or
LPNewton. Tuning and choice of the parameteende was done as for the linear classifier above.
A Gaussian kernel was used for all three methods and data sets with thsi@gaparameter tuned
from the sef{ 2712 ..., 212,
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Data Set/Size  Algorithm lters Time Train% Test% Feat Eps
lonosphere NLPSVM 69 0.1796 92.6254 83.8016 20.6 4e-4
lonosphere CPLEX 0.17992.6255 85.4841 25.1
lonosphere LPNewton 30.7 0.0767 89.6169 87.1825 9.6 le-6
351x 34
BUPA Liver NLPSVM 100 0.1062 70.1791 67916 5.9 4e-4
BUPA Liver CPLEX 0.2278 70.4994 67.2941 6
BUPA Liver LPNewton 63.3 0.0623 69.1814 67.563 5.2 1le-6
345x 6
PimaIndians NLPSVM 93.2 0.2169 73.5809 72.6692 6.8 4e-4
Pima Indians CPLEX 1.170776.8086 75.2683 5.8
Pima Indians LPNewton 40.6  0.0904 76.0563 75.0051 4.6 1le-6
768x 8
Cleveland NLPSVM 422 0.0515 85.6742 84.1609 7.5 4e-4
Cleveland CPLEX 0.1409 85.9348 84.1609 8.4
Cleveland LPNewton 25.3 0.028 85.7478 84.5287 7.1 le-6
297x 13
Housing NLPSVM 66.6 0.0891 83.9049 83.8078 9.1 4e-4
Housing CPLEX 0.363 86.8035 84.3882 10.5
Housing LPNewton 57.4  0.0781 85.6626 83.2078 7.7 1le-6
506x 13
Galaxy Dim  NLPSVM 97.5 1.097 94.4392 94.4415 59 4e4
Galaxy Dim CPLEX 12.5357 95.5153 95.5153 11.5
Galaxy Dim LPNewton 39.2  0.4297 94.4948 94.5131 4.8 1le-6
4192« 14

Table 1: Comparison of the Linear Classifier (13) obtained by NLPSVM (Fung ad Man-
gasarian, 2004), CPLEX (ILO, 2003) and our Generalized LPNewton Rgorithm 3

for (16) on six public data sets. Time is for one fold in seconds, Trainrad Test corect-
ness is the average over ten folds and Features (Feat) denote#verage number over
ten folds of input space features utilized by the linear classifier. Epon (Eps) is the
finite parameter defined in (16). Best result is in bold. Note that LPMwton is fastest

and has least features.
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Data Set/Size  Algorithm Iters Time Train% Test% Card(v) Eps
lonosphere NLPSVM 81.7 0.181 92.0242 89.4683 18.5 de-4
lonosphere CPLEX 0.155594.7773 91.4683 15.5
lonosphere LPNewton 36.5 0.103 92.5297 91.1587 11.2 le-6
351x 34

BUPA NLPSVM 88.3 0.1706 68.8514 65.2521 15,5 4e-4
BUPA CPLEX 0.2552 74.1061 69.2521 17.3
BUPA LPNewton 88.2 0.1345 73.6572 70.6975 25,5 1le+0
345x 6
Cleveland NLPSVM 84.6 0.1128 83.168 80.4368 9.1 4e-4
Cleveland CPLEX 0.1097 85.0383 81.8161 11.8
Cleveland LPNewton 80.2 0.1061 83.0151 82.8621 56 1e-9
297x 13

Table 2: Comparison of the Nonlinear Classifier (22) obtained by NLPSVM (Fuig and Man-
gasarian, 2004), CPLEX (ILO, 2003) and our Generalized LPNewton Byorithm 3
for (27) on three public data sets. Time for one fold is in seconds, @&in and Test
corectness is on ten folds. Card(v) denotes the average numbef nonzero compo-
nents ofv=r —sas defined in (25) and (27) and hence that is the number of kernel
functions utilized by the nonlinear classifier (22). Epsilon (Eps) is thdinite param-
eter defined in (16) with the replacement (23) ofA by K(A,A")D. Features (Feat)
denotes the average number of features over ten folds. Redut&VM (RSVM) (Lee
and Mangasarian, 2001) was used to speed all computations by ugithe reduced
kernel K(A,A') where 13 randomly chosen rows ofA constitute the rows of rows ofA.
Best result is in bold. Note that LPNewton is fastest.
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6. Conclusion and Outlook

We have derived an unconstrained differentiable convex minimizatiornefation of a most gen-
eral linear program and have applied it to 1-norm classification anczippation problems. Very
effective computational results of our method on special cases ofadimar programs (Man-
gasarian, 2004) and an approximate version for support vector neaclassification (Fung and
Mangasarian, 2004), as well as computational results presented infSedéad us to believe that
the proposed unconstrained reformulation of very general lineargmsyand support vector ma-
chines is a very promising computational method for solving such problemglaaswextensions
to knowledge-based formulations (Mangasarian, 2005; Fung et aB; RB#hgasarian et al., 2004).
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