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Abstract
In this paper, we propose a new representation for physical control – teleoreactive logic programs
– along with an interpreter that uses them to achieve goals. In addition, we present a new learning
method that acquires recursive forms of these structures from traces of successful problem solving.
We report experiments in three different domains that demonstrate the generality of this approach.
In closing, we review related work on learning complex skills and discuss directions for future
research on this topic.
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1. Introduction

Human skills have a hierarchical character, with complex procedures defined in terms of more basic
ones. In some domains, these skills are recursive in nature, in that structures are specified in terms
of calls to themselves. Such recursive procedures pose a clear challenge for machine learning that
deserves more attention than it has received in the literature. In this paper we present one response
to this problem that relies on a new representation for skills and a new method for acquiring them
from experience.

We focus here on the task of learning controllers for physical agents. We are concerned with ac-
quiring the structure and organization of skills, rather than tuning their parameters, which we view
as a secondary learning issue. We represent skills asteleoreactive logic programs, a formalism
that incorporates ideas from logic programming, reactive control, and hierarchical task networks.
This framework can encode hierarchical and recursive procedures that are considerably more com-
plex than those usually studied in research on reinforcement learning (Sutton & Barton, 1998) and
behavioral cloning (Sammut, 1996), but they can still be executed in a reactive yet goal-directed
manner. As we will see, it also embodies constraints that make the learning process tractable.

We assume that an agent uses hierarchical skills to achieve its goals whenever possible, but
also that, upon encountering unfamiliar tasks, it falls back on problem solving. The learner begins
with primitive skills for the domain, including knowledge of their applicability conditions and their
effects, which lets it compose them to form candidate solutions. When the system overcomes such
an impasse successfully, which may require substantial search, it learnsa new skill that it stores in
memory for use on future tasks. Thus, skill acquisition is incremental and intertwined with problem
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solving. Moreover, learning is cumulative in that skills acquired early on form the building blocks
for those mastered later. We have incorporated our assumptions about representation, performance,
and learning into ICARUS, a cognitive architecture for controlling physical agents.

Any approach to acquiring hierarchical and recursive proceduresfrom problem solving must
address three issues. These concern identifying the hierarchical organization of the learned skills,
determining when different skills should have the same name or head, and inferring the conditions
under which each skill should be invoked. To this end, our approach to constructing teleoreactive
logic programs incorporates ideas from previous work on learning and problem solving, but it also
introduces some important innovations.

In the next section, we specify our formalism for encoding initial and learned knowledge, along
with the performance mechanisms that interpret them to produce behavior. After this, we present
an approach to problem solving on novel tasks and a learning mechanism that transforms the results
of this process into executable logic programs. Next, we report experimental evidence that the
method can learn control programs in three recursive domains, as well asuse them on tasks that are
more complex than those on which they were acquired. We conclude by reviewing related work on
learning and proposing some important directions for additional research.

2. Teleoreactive Logic Programs

As we have noted, our approach revolves around a representationalformalism for the execution of
complex procedures – teleoreactive logic programs. We refer to these structures as “logic programs”
because their syntax is similar to the Horn clauses used in Prolog and related languages. We have
borrowed the term “teleoreactive” from Nilsson (1994), who used it to refer to systems that are goal
driven but that also react to their current environment. His examples incorporated symbolic control
rules but were not cast as logic programs, as we assume here.

A teleoreactive logic program consists of two interleaved knowledge bases. One specifies a set
of concepts that the agent uses to recognize classes of situations in the environment and describe
them at higher levels of abstraction. These monotonic inference rules have the same semantics as
clauses in Prolog and a similar syntax. Each clause includes a single head, stated as a predicate
with zero or more arguments, along with a body that includes one or more positive literals, negative
literals, or arithmetic tests. In this paper, we assume that a given head appears in only one clause,
thus constraining definitions to be conjunctive, although the formalism itself allows disjunctive
concepts.

ICARUS distinguishes between primitive conceptual clauses, which refer only to percepts that
the agent can observe in the environment, and complex clauses, which refer to other concepts in
their bodies. Specific percepts play the same role as ground literals in traditional logic programs,
but, because they come from the environment and change over time, we do not consider them part of
the program. Table 1 presents some concepts from the Blocks World. Concepts likeunstackableand
pickupableare defined in terms of the conceptsclear, on, ontable, andhand-empty, the subconcept
clear is defined in terms ofon, andon is defined using two cases of the perceptblock, along with
arithmetic tests on their attributes.

A second knowledge base contains a set of skills that the agent can execute in the world. Each
skill clause includes a head (a predicate with zero or more arguments) and abody that specifies a
set of start conditions and one or more components. Primitive clauses havea single start condition
(often a nonprimitive concept) and refer to executable actions that alter theenvironment. They also
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((on ?block1 ?block2)
:percepts ((block ?block1 xpos ?x1 ypos ?y1)

(block ?block2 xpos ?x2 ypos ?y2 height ?h2))
:tests ((equal ?x1 ?x2) (>= ?y1 ?y2) (<= ?y1 (+ ?y2 ?h2))))

((ontable ?block ?table)
:percepts ((block ?block xpos ?x1 ypos ?y1)

(table ?table xpos ?x2 ypos ?y2 height ?h2))
:tests ((>= ?y1 ?y2) (<= ?y1 (+ ?y2 ?h2))))

((clear ?block)
:percepts ((block ?block))
:negatives ((on ?other ?block)))

((holding ?block)
:percepts ((hand ?hand status ?block)

(block ?block)))

((hand-empty)
:percepts ((hand ?hand status ?status))
:tests ((eq ?status empty)))

((three-tower ?b1 ?b2 ?b3 ?table)
:percepts ((block ?b1) (block ?b2) (block ?b3) (table ?table))
:positives ((on ?b1 ?b2) (on ?b2 ?b3) (ontable ?b3 ?table)))

((unstackable ?block ?from)
:percepts ((block ?block) (block ?from))
:positives ((on ?block ?from) (clear ?block) (hand-empty)))

((pickupable ?block ?from)
:percepts ((block ?block) (table ?from))
:positives ((ontable ?block ?from) (clear ?block) (hand-empty)))

((stackable ?block ?to)
:percepts ((block ?block) (block ?to))
:positives ((clear ?to) (holding ?block)))

((putdownable ?block ?to)
:percepts ((block ?block) (table ?to))
:positives ((holding ?block)))

Table 1: Examples of concepts from the Blocks World.

specify the effects of their execution, stated as literals that hold after their completion, and may state
requirements that must hold during their execution. Table 2 shows the four primitive skills for the
Blocks World, which are similar in structure and spirit to STRIPSoperators, but may be executed in
a durative manner.

In contrast, nonprimitive skill clauses specify how to decompose activity intosubskills. Because
a skill may refer to itself, either directly or through a subskill, the formalism supports recursive
definitions. For this reason, nonprimitive skills do not specify effects, which can depend on the
number of levels of recursion, nor do they state requirements. However,the head of each complex
skill refers to some concept that the skill aims to achieve, an assumption Reddy and Tadepalli
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((unstack ?block ?from)
:percepts ((block ?block ypos ?y)

(block ?from))
:start ((unstackable ?block ?from))
:actions ((*grasp ?block) (*move-up ?block ?y))
:effects ((clear ?from)

(holding ?block)))

((pickup ?block ?from)
:percepts ((block ?block ypos ?y)

(table ?from))
:start ((pickupable ?block ?from))
:actions ((*grasp ?block) (*move-up ?block ?y))
:effects ((holding ?block)))

((stack ?block ?to)
:percepts ((block ?block)

(block ?to xpos ?x ypos ?y height ?height))
:start ((stackable ?block ?to))
:actions ((*move-over ?block ?x)

(*move-down ?block (+ ?y ?height))
(*ungrasp ?block))

:effects ((on ?block ?to)
(hand-empty)))

((putdown ?block ?to)
:percepts ((block ?block)

(table ?to ypos ?y height ?height))
:start ((putdownable ?block ?to))
:actions ((*move-sideways ?block)

(*move-down ?block (+ ?y ?height))
(*ungrasp ?block))

:effects ((ontable ?block ?to)
(hand-empty)))

Table 2: Primitive skills for the Blocks World domain. Each skill clause has a head that specifies
its name and arguments, a set of typed variables, a single start condition, a set of effects,
and a set of executable actions, each marked by an asterisk.

(1997) have also made in their research on task decomposition. This connection between skills
and concepts constitutes a key difference between the current approach and our earlier work on
hierarchical skills in ICARUS (Choi et al., 2004; Langley & Rogers, 2004), and it figures centrally
in the learning methods we describe later. Table 3 presents some recursiveskills for the Blocks
World, including two clauses for achieving the conceptclear.

Teleoreactive logic programs are closely related to Nau et al.’s SHOP (1999) formalism for
hierarchical task networks. This organizes knowledge into tasks, whichserve as heads of clauses,
and methods, which specify how to decompose tasks into subtasks. Primitive methods describe
the effects of basic actions, much like STRIPS operators. Each method also states its application
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((clear ?B) 1 ((unstackable ?B ?A) 3
:percepts ((block ?C) (block ?B)) :percepts ((block ?A) (block ?B))
:start ((unstackable ?C ?B)) :start ((on ?B ?A) (hand-empty))
:skills ((unstack ?C ?B))) :skills ((clear ?B) (hand-empty)))

((hand-empty) 2 ((clear ?A) 4
:percepts ((block ?C) (table ?T)) :percepts ((block ?B) (block ?A))
:start ((putdownable ?C ?T)) :start ((on ?B ?A) (hand-empty))
:skills ((putdown ?C ?T))) :skills ((unstackable ?B ?A)

(unstack ?B ?A)))

Table 3: Some nonprimitive skills for the Blocks World domain that involve recursive calls. Each
skill clause has a head that specifies the goal it achieves, a set of typedvariables, one or
more start conditions, and a set of ordered subskills. Numbers after the head distinguish
different clauses that achieve the same goal.

conditions, which may involve predicates that are defined in logical axioms. In our framework, skill
heads correspond to tasks, skill clauses are equivalent to methods, and concept definitions play the
role of axioms. In this mapping, teleoreactive logic programs are a special class of hierarchical
task networks in which nonprimitive tasks always map onto declarative goalsand in which top-level
goals and the preconditions of primitive methods are always single literals. Wewill see that these
two assumptions play key roles in our approach to problem solving and learning.

Note that every skill/taskScan be expanded into one or more sequences of primitive skills. For
each skillS in a teleoreactive logic program, ifS has conceptC as its head, then every expansion
of S into such a sequence must, if executed successfully, produce a state in which C holds. This
constraint is weaker than the standard assumption made for macro-operators (e.g., Iba, 1988); it
does not guarantee that, once initiated, the sequence will achieveC, since other events may intervene
or the agent may encounter states in which one of the primitive skills does not apply. However, if
the sequence of primitive skills can be run to completion, then it will achieve the goal literalC. The
approach to learning that we report later is designed to acquire programswith this characteristic,
and we give arguments to this effect at the close of Section 4.

3. Interpreting Teleoreactive Logic Programs

As their name suggests, teleoreactive logic programs are designed for reactive execution in a goal-
driven manner, within a physical setting that changes over time. As with most reactive controllers,
the associated performance element operates in discrete cycles, but it also involves more sophisti-
cated processing than most such frameworks.

On each decision cycle, ICARUSupdates a perceptual buffer with descriptions of all objects that
are visible in the environment. Each such percept specifies the object’s type, a unique identifier, and
zero or more attributes. For example, in the Blocks World these would include structures like(block
A xpos 5 ypos 1 width 1 height 1). In this paper, we emphasize domains in which the agent perceives
the same objects on successive time steps but in which some attributes change value. However, we
will also consider teleoreactive systems for domains like in-city driving (Choi et al., 2004) in which
the agent perceives different objects as it moves through the environment.
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Once the interpreter has updated the perceptual buffer, it invokes an inference module that elab-
orates on the agent’s perceptions. This uses concept definitions to drawlogical conclusions from
the percepts, which it adds to a conceptual short-term memory. This dynamicstore contains higher-
level beliefs, cast as relational literals, that are instances of generic concepts. The inference module
operates in a bottom-up, data-driven manner that starts from descriptionsof perceived objects, such
(block A xpos 5 ypos 1 width 1 height 1)and(block B xpos 5 ypos 0 width 1 height 1), matches
these against the conditions in concept definitions, and infers beliefs about primitive concepts like
(on A B). These trigger inferences about higher-level concepts, such as(clear A), which in turn
support additional beliefs like(unstackable A B). This process continues until the agent has added
all beliefs that are implied by its perceptions and concept definitions.1

After the inference module has augmented the agent’s perceptions with high-level beliefs, the
architecture’s execution module inspects this information to decide what actions to take in the en-
vironment. To this end, it also examines its current goal, which must be encoded as an instance of
some known concept, and its skills, which tell it how to accomplish such goals. Unlike inference,
the execution process proceeds in a top-down manner, finding paths through the skill hierarchy that
terminate in primitive skills with executable actions. We define askill path to be a chain of skill
instances that starts from the agent’s goal and descends through the hierarchy along subskill links,
unifying the arguments of each subskill consistently with those of its parent.

Furthermore, the execution module only considers skill paths that areapplicable. This holds if
no concept instance that corresponds to a goal along the path is satisfied, if the requirements of the
terminal (primitive) skill instance are satisfied, and if, for each skill instance in the path not executed
on the previous cycle, the start condition is satisfied. This last constraint isnecessary because skills
may take many cycles to achieve their desired effects, making it important to distinguish between
their initiation and their continuation. To this end, the module retains the path through the skill
hierarchy selected on the previous time step, along with the variable bindings needed to reconstruct
it.

For example, imagine a situation in which the block C is on B, B is on A, and A is on the
table, in which the goal is(clear A), and in which the agent knows the primitive skills in Table 2
and the recursive skills in Table 3. Further assume that this is the first cycle, so that no previous
activities are under way. In this case, the only path through the skill hierarchy is [(clear A) 4],
[(unstackable B A) 3], [(clear B) 1], [(unstack C B)]. Applying the primitive skill(unstack C B)
produces a new situation that leads to new inferences, and in which the onlyapplicable path is
[(clear A) 4], [(unstackable B A) 3], [(hand-empty) 2], [(putdown CT)]. This enables a third path
on the next cycle,[(clear A) 4], [(unstack B A)], which generates a state in which the agent’s goal
is satisfied. Note that this process operates much like the proof procedurein Prolog, except that it
involves activities that extend over time.

The interpreter incorporates two preferences that provide a balance between reactivity and per-
sistence. First, given a choice between two or more subskills, it selects the first one for which the
corresponding concept instance is not satisfied. This bias supports reactive control, since the agent
reconsiders previously completed subskills and, if unexpected events have undone their effects, re-
executes them to correct the situation. Second, given a choice between two or more applicable skill
paths, it selects the one that shares the most elements from the start of the path executed on the

1. Although this mechanism reasons over structures similar to Horn clauses, its operation is closer in spirit to the
elaboration process in Soar (Laird et al., 1986) than to the query-driven reasoning in Prolog.
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Figure 1: Organization of modules for reactive execution, problem solving, and skill learning, along
with their inputs and outputs.

previous cycle. This bias encourages the agent to keep executing a high-level skill it has started
until it achieves the associated goal or becomes inapplicable.

Most research on reactive execution emphasizes dynamic domains in whichunexpected events
can occur that fall outside the agent’s control. Domains like the Blocks Worlddo not have this
character, but this does not mean one cannot utilize a reactive controllerto direct behavior (e.g., see
Fern et al., 2004). Moreover, we have also demonstrated (Choi et al., 2004) the execution module’s
operation in the domain of in-city driving, which requires reactive response to an environment that
changes dynamically. Our framework is relevant to both types of settings.

To summarize, ICARUS’ procedure for interpreting teleoreactive logic programs relies on two
interacting processes – conceptual inference and skill execution. On each cycle, the architecture per-
ceives objects and infers instances of conceptual relations that they satisfy. After this, it starts from
the current goal and uses these beliefs to check the conditions on skill instances to determine which
paths are applicable, which in turn constrains the actions it executes. The environment changes,
either in response to these actions or on its own, and the agent begins another inference-execution
cycle. This looping continues until the concept that corresponds to the agent’s top-level goal is
satisfied, when it halts.

4. Solving Problems and Learning Skills

Although one can construct teleoreactive logic programs manually, this process is time consuming
and prone to error. Here we report an approach to learning such programs whenever the agent en-
counters a problem or subproblem that its current skills do not cover. In such cases, the architecture
attempts to solve the problem by composing its primitive skills in a way that achieves the goal.
Typically, this problem-solving process requires search and, given limitedcomputational resources,
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may fail. However, when the effort is successful the agent producesa trace of the solution in terms
of component skills that achieved the problem’s goal. The system transforms this trace into new
skill clauses, which it adds to memory for use on future tasks.

Figure 1 depicts this overall organization. As in some earlier problem-solvingarchitectures like
PRODIGY (Minton, 1988) and Soar (Laird et al., 1986), problem solving and learning are tightly
linked and both are driven by impasses. A key difference is that, in these systems, learning pro-
duces search-control knowledge that makes future problem solving more effective, whereas in our
framework it generates teleoreactive logic programs that the agent usesin the environment. Never-
theless, there remain important similarities that we discuss later at more length.

4.1 Means-Ends Problem Solving

As described earlier, the execution module selects skill clauses that shouldachieve the current goal
and that have start conditions which match its current beliefs about the environment. Failure to
retrieve such a clause produces an impasse that leads the architecture to invoke its problem-solving
module. Table 4 presents pseudocode for the problem solver, which utilizes a variant of means-ends
analysis (Newell & Simon, 1961) that chains backward from the goal. Thisprocess relies on a goal
stack that stores both subgoals and skills that might accomplish them. The top-level goal is simply
the lowest element on this stack.

Despite our problem-solving method’s similarity to means-ends analysis, it differs from standard
formulation in three important ways:
• whenever the skill associated with the topmost goal on the stack becomes applicable, the system

executes it in the environment, which leads to tight interleaving of problem solving and control;
• both the start conditions of primitive skills (i.e., operators) and top-level goals must be cast as

single relational literals, which may be defined concepts;2

• backward chaining can occur not only off the start condition of primitive skills but also off the
definition of a concept, which means the single-literal assumption causes no loss of generality.

As we will see shortly, the second and third of these assumptions play key roles in the mechanism
for learning new skills, but we should first examine the operation of the problem-solving process
itself.

As Table 4 indicates, the problem solver pushes the current goal G onto the goal stack, then
checks it on each execution cycle to determine whether it has been achieved. If so, then the module
pops the stack and focuses on G’s parent goal or, upon achieving thetop-level goal, simply halts. If
the current goal G is not satisfied, then the architecture retrieves all nonprimitive skills with heads
that unify with G and, if any participate in applicable paths through the skill hierarchy, selects the
first one found and executes it. This execution may require many cycles, but eventually it produces
a new environmental state that either satisfies G or constitutes another impasse.

If the problem solver cannot find any complex skills indexed by the goal G,it instead retrieves
all primitive skills that produce G as one of their effects. The system then generates candidate
instances of these skills by inserting known objects as their arguments. To select among these skill
instances, it expands the instantiated start condition of each skill instance todetermine how many of
its primitive components are satisfied, then selects the one with the fewest literalsunsatisfied in the
current situation. If the candidates tie on this criterion, then it selects one atrandom. If the selected

2. We currently define all concepts manually, but it would not be difficultto have the system define them automatically
for operator preconditions and conjunctive goals.
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Solve(G)
Push the goal literal G onto the empty goal stack GS.
On each cycle,

If the top goal G of the goal stack GS is satisfied,
Then pop GS.
Else if the goal stack GS does not exceed the depth limit,

Let S be the skill instances whose heads unify with G.
If any applicable skill paths start from an instance in S,
Then select one of these paths and execute it.
Else let M be the set of primitive skill instances that

have not already failed in which G is an effect.
If the set M is nonempty,
Then select a skill instance Q from M.

Push the start condition C of Q onto goal stack GS.
Else if G is a complex concept with the unsatisfied

subconcepts H and with satisfied subconcepts F,
Then if there is a subconcept I in H that has not yet failed,

Then push I onto the goal stack GS.
Else pop G from the goal stack GS.

Store information about failure with G’s parent.
Else pop G from the goal stack GS.

Store information about failure with G’s parent.

Table 4: Pseudocode for interleaving means-ends problem solving with skill execution.

skill instance’s condition is met, the system executes the skill instance in the environment until it
achieves the associated goal, which it then pops from the stack. If the condition is not satisfied, the
architecture makes it the current goal by pushing it onto the stack.

However, if the problem solver cannot find any skill clause that would achieve the current goal
G, it uses G’s concept definition to decompose the goal into subgoals. If more than one subgoal is
unsatisfied, the system selects one at random and calls the problem solveron it recursively, which
makes it the current goal by pushing it onto the stack. This leads to chainingoff the start condition of
additional skills and/or the definitions of other concepts. Upon achieving a subgoal, the architecture
pops the stack and, if other subconcepts remain unsatisfied, turns its attention to achieving them.
Once all have been satisfied, this means the parent goal G has been achieved, so it pops the stack
again and focuses on the parent.

Of course, the problem-solving module must make decisions about which skillsto select during
skill chaining and the order in which it should tackle subconcepts during concept chaining. The
system may well make the incorrect choice at any point, which can lead to failure on a given subgoal
when no alternatives remain or when it reaches the maximum depth of the goalstack. In such cases,
it pops the current goal, stores the failed candidate with its parent goals to avoid considering them
in the future, and backtracks to consider other options. This strategy produces depth-first search
through the problem space, which can require considerable time on some tasks.

Figure 2 shows an example of the problem solver’s behavior on the BlocksWorld in a situation
where block A is on the table, block B is on A, block C is on B, and the hand is empty. Upon
being given the objective(clear A), the architecture looks for any executable skill with this goal as
its head. When this fails, it looks for a skill that has the objective as one of itseffects. In this case,
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(clear C)

(hand−empty)

(on C B)

(holding C)(ontable A T)

(on B A)

(clear B)

(hand−empty)

(clear A)

C

B

A

initial state

(unstack C B)

(unstack B A)(unstackable B A)

goal

initial state

(putdown C T)

final state

CA

B

(unstackable C B)

Figure 2: A trace of successful problem solving in the Blocks World, which ellipses indicating
concepts/goals and rectangles denoting primitive skills.

invoking the primitive skill instance(unstack B A)would produce the desired result. However, this
cannot yet be applied because its instantiated start condition,(unstackable B A), does not hold, so
the system stores the skill instance with the initial goal and pushes this subgoal onto the stack.

Next, the problem solver attempts to retrieve skills that would achieve(unstackable B A)but,
because it has no such skills in memory, it resorts to chaining off the definitionof unstackable. This
involves three instantiated subconcepts –(clear), (on B A), and(hand-empty)– but only the first of
these is unsatisfied, so the module pushes this onto the goal stack. In response, it considers skills
that would produce this literal as an effect and retrieves the skill instance(unstack C B), which it
stores with the current goal.

In this case, the start condition of the selected skill,(unstackable C B), already holds, so the
architecture executes(unstack C B), which alters the environment and causes the agent to infer
(clear B)from its percepts. In response, it pops this goal from the stack and reconsiders its parent,
(unstackable B A). Unfortunately, this has not yet been achieved because executing the skill has
caused the third of its component concept instances,(hand-empty), to become false. Thus, the
system pushes this onto the stack and, upon inspecting memory, retrieves theskill instance(putdown
C T), which it can and does execute.

This second step achieves the subgoal(hand-empty), which in turn lets the agent infer(unstack-
able B A). Thus, the problem solver pops this element from the goal stack and executes the skill
instance it had originally selected,(unstack B A), in the new situation. Upon completion, the system
perceives that the altered environment satisfies the top-level goal,(clear A), which leads it to halt,
since it has solved the problem. Both our textual description and the graph inFigure 2 represent
the trace of successful problem solving; as noted earlier, finding sucha solution may well involve
search, but we have omitted missteps that require backtracking for the sake of clarity.

Despite the clear evidence that humans often resort to means-ends analysis when they encounter
novel problems (Newell & Simon, 1961), this approach to problem solving has been criticized in
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the AI planning community because it searches over a space of totally ordered plans. As a result,
on problems for which the logical structure of a workable plan is only partiallyordered, it can carry
out extra work by considering alternative orderings that are effectively equivalent. However, the
method also has clear advantages, such as low memory load because it must retain only the current
stack rather than a partial plan. Moreover, it provides direct supportfor interleaving of problem
solving and execution, which is desirable for agents that must act in their environment.

Of course, executing a component skill before it has constructed a complete plan can lead the
system into difficulty, since the agent cannot always backtrack in the physical world and can pro-
duce situations from which it cannot recover without starting over on the problem. In such cases,
the problem solver stores the goal for which the executed skill caused trouble, along with every-
thing below it in the stack. The system begins the problem again, this time avoidingthe skill and
selecting another option. If a different execution error occurs this time, the module again stores the
problematic skill and its context, then starts over once more. In this way, the architecture continues
to search the problem space until it achieves its top-level goal or exceeds the number of maximum
allowed attempts.3

4.2 Goal-Driven Composition of Skills

Any method for learning teleoreactive logic programs or similar structures must address three issues.
First, it must determine the structure of the hierarchy that decomposes problems into subproblems.
Second, the technique must identify when different clauses should havethe same head and thus be
considered in the same situations. Finally, it must infer the conditions under which to invoke each
clause. The approach we describe here relies on results produced bythe problem solver to answer
these questions. Just as problem solving occurs whenever the system encounters an impasse, that is,
a goal it cannot achieve by executing stored skills, so learning occurs whenever the system resolves
an impasse by successful problem solving. The ICARUS architecture shares this idea with earlier
frameworks like Soar and PRODIGY, although the details differ substantially.

The response to the first issue is thathierarchical structure is determined by the subproblems
handled during problem solving. As Figure 2 illustrates, this takes the form of a semilattice in
which each subplan has a single root node. This structure follows directlyfrom our assumptions
that each primitive skill has one start condition and each goal is cast as a single literal. Because
the problem solver chains backward off skill and concept definitions, the result is a hierarchical
structure that suggests a new skill clause for each subgoal. Table 5 (a)presents the clauses that the
system proposes based on the solution to the(clear A)problem, without specifying their heads or
conditions. Figure 2 depicts the resulting hierarchical structure, using numbers to indicate the order
in which the system generates each clause.

The answer to the second question is thatthe head of a learned skill clause is the goal literal that
the problem solver achieved for the subproblem that produced it. This follows from our assumption
that the head of each clause in a teleoreactive logic program specifies some concept that the clause
will produce if executed. At first glance, this appears to confound skillswith concepts, but another
view is that it indexes skill clauses by the concepts they achieve. Table 5 (b) shows the clauses
learned from the problem-solving trace in Figure 2 once the heads have been inserted. Note that this

3. The problem solver also starts over if it has not achieved the top-levelobjective within a given number of cycles.
Jones and Langley (in press) report another variant of means-ends problem solving that uses a similar restart strategy
but keeps no explicit record of previous failed paths.
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(a) (<head> 1 (<head> 3
:percepts ((block ?C) (block ?B)) :percepts ((block ?A) (block ?B))
:start <conditions> :start <conditions>
:skills ((unstack ?C ?B))) :skills ((clear ?B) (hand-empty)))

(<head> 2 (<head> 4
:percepts ((block ?C) (table ?T)) :percepts ((block ?B) (block ?A))
:start <conditions> :start <conditions>
:skills ((putdown ?C ?T))) :skills ((unstackable ?B ?A)

(unstack ?B ?A)))

(b) ((clear ?B) 1 ((unstackable ?B ?A) 3
:percepts ((block ?C) (block ?B)) :percepts ((block ?A) (block ?B))
:start <conditions> :start <conditions>
:skills ((unstack ?C ?B))) :skills ((clear ?B) (hand-empty)))

((hand-empty) 2 ((clear ?A) 4
:percepts ((block ?C) (table ?T)) :percepts ((block ?B) (block ?A))
:start <conditions> :start <conditions>
:skills ((putdown ?C ?T))) :skills ((unstackable ?B ?A)

(unstack ?B ?A)))

(c) ((clear ?B) 1 ((unstackable ?B ?A) 3
:percepts ((block ?C) (block ?B)) :percepts ((block ?A) (block ?B))
:start ((unstackable ?C ?B)) :start ((on ?B ?A) (hand-empty))
:skills ((unstack ?C ?B))) :skills ((clear ?B) (hand-empty)))

((hand-empty) 2 ((clear ?A) 4
:percepts ((block ?C) (table ?T)) :percepts ((block ?B) (block ?A))
:start ((putdownable ?C ?T)) :start ((on ?B ?A) (hand-empty))
:skills ((putdown ?C ?T))) :skills ((unstackable ?B ?A)

(unstack ?B ?A)))

Table 5: Skill clauses for the Blocks World learned from the trace in Figure2 (a) after hierarchical
structure has been determined, (b) after the heads have been identified,and (c) after the
start conditions have been inserted. Numbers after the heads indicate the order in which
clauses are generated.

strategy leads directly to the creation of recursive skills whenever a conceptual predicateP is the
goal andP also appears as a subgoal. In this example, because(clear A) is the top-level goal and
(clear B)occurs as a subgoal, one of the clauses learned forclear is defined recursively, although
this happens indirectly throughunstackable.

Clearly, introducing recursive statements can easily lead to overly general or even nonterminat-
ing programs. Our approach avoids the latter because the problem solvernever considers a subgoal
if it already occurs earlier in the goal stack; this ensures that subgoals which involve the same
predicate always have different arguments. However, we still requiresome means to address the
third issue of determining conditions on learned clauses that guards against the danger of overgen-

504



LEARNING RECURSIVECONTROL PROGRAMS

Learn(G)
If the goal G involves skill chaining,
Then let S1 and S2 be G’s first and second subskills.

If subskill S1 is empty,
Then create a new skill clause N with head G,

with the head of S2 as the only subskill,
and with the same start condition as S2.

Return the literal for skill clause N.
Else create a new skill clause N with head G,

with the heads of S1 and S2 as ordered subskills,
and with the same start condition as S1.

Return the literal for skill clause N.
Else if the goal G involves concept chaining,

Then let C1, ..., Ck be G’s initially satisfied subconcepts.
Let Ck+1, ..., Cn be G’s stored subskills.
Create a new skill clause N with head G,
with Ck+1, ..., Cn as ordered subskills,
and with C1, ..., Ck as start conditions.

Return the literal for skill clause N.

Table 6: Pseudocode for creation of skill clauses through goal-driven composition.

eralization. The response differs depending on whether the problem solver resolves an impasse by
chaining backward on a primitive skill or by chaining on a concept definition.

Suppose the agent achieves a subgoalG through skill chaining, say by first applying skillS1

to satisfy the start condition forS2 and executing the skillS2, producing a clause with headG and
ordered subskillsS1 andS2. In this case,the start condition for the new clause is the same as that for
S1, since whenS1 is applicable, the successful completion of this skill will ensure the start condition
for S2, which in turn will achieveG. This differs from traditional methods for constructing macro-
operators, which analytically combine the preconditions of the first operator and those preconditions
of later operators it does not achieve. However,S1 was either selected because it achievesS2’s start
condition or it was learned during its achievement, both of which mean thatS1’s start condition is
sufficient for the composed skill.4

In contrast, suppose the agent achieves a goal conceptG through concept chaining by satisfying
the subconceptsGk+1, . . . ,Gn, in that order, while subconceptsG1, . . . ,Gk were true at the outset.
In response, the system would construct a new skill clause with headG and the ordered subskills
Gk+1, . . . ,Gn, each of which the system already knew and used to achieve the associated subgoal or
which it learned from the successful solution of one of the subproblems.In this case,the start con-
dition for the new clause is the conjunction of subgoals that were already satisfied beforehand. This
prevents execution of the learned clause when some ofG1, . . . ,Gk are not satisfied, in which case
the sequenceGk+1, . . . ,Gn may not achieve the goalG. Table 6 gives pseudocode that summarizes
both methods for determining the conditions on new clauses.

Table 5 (c) presents the conditions learned for each of the skill clauses learned from the trace in
Figure 2. Two of these (clauses 1 and 2) are trivial because they result from degenerate subproblems
that the system solves by chaining off a single primitive operator. Another skill clause (3) is more

4. If skill S2 is executed without invoking another skill to meet its start condition, the method creates a new clause, with
S2 as its only subskill, that restates the original skill in a new form withG in its head.
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Solve(G)
Push the goal literal G onto the empty goal stack GS.
On each cycle,

If the top goal G of the goal stack GS is satisfied,
Then pop GS and let New be Learn(G).

If G’s parent P involved skill chaining,
Then store New as P’s first subskill.
Else if G’s parent P involved concept chaining,

Then store New as P’s next subskill.
Else if the goal stack GS does not exceed the depth limit,

Let S be the skill instances whose heads unify with G.
If any applicable skill paths start from an instance in S,
Then select one of these paths and execute it.
Else let M be the set of primitive skill instances that

have not already failed in which G is an effect.
If the set M is nonempty,
Then select a skill instance Q from M.

Push the start condition C of Q onto goal stack GS.
Store Q with goal G as its last subskill.
Mark goal G as involving skill chaining.

Else if G is a complex concept with the unsatisfied
subconcepts H and with satisfied subconcepts F,

Then if there is a subconcept I in H that has not yet failed,
Then push I onto the goal stack GS.

Store F with G as its initially true subconcepts.
Mark goal G as involving concept chaining.

Else pop G from the goal stack GS.
Store information about failure with G’s parent.

Else pop G from the goal stack GS.
Store information about failure with G’s parent.

Table 7: Pseudocode for interleaved problem solving and execution extended to support goal-driven
composition of skills. New steps are indicated in italic font.

interesting because it results from chaining off the concept definition forunstackable. This has
the start conditions(on ?A ?B)and(hand-empty)because the subconcept instances(on A B) and
(hand-empty)held at the outset.5 The final clause (4) is most intriguing because it results from
using a learned clause (3) followed by the primitive skill instance(unstack B A). In this case, the
start condition is the same as that for the first subskill clause (3).

Upon initial inspection, the start conditions for clause 3 for achievingunstackablemay appear
overly general. However, recall that the skill clauses in a teleoreactivelogic program are interpreted
not in isolation but as parts of chains through the skill hierarchy. The interpreter will not select
a path for execution unless all conditions along the path from the top clause tothe primitive skill
are satisfied. This lets the learning method store very abstract conditions for new clauses with
less danger of overgeneralization. On reflection, this scheme is the only one that makes sense for
recursive control programs, since static preconditions cannot characterize such structures. Rather,

5. Although primitive skills have only one start condition, we do not currently place this constraint on learned clauses,
as they are not used in problem solving and it makes acquired programsmore readable.
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the architecture must compute appropriate preconditions dynamically, depending on the depth of
recursion. The Prolog-like interpreter used for skill selection providesthis flexibility and guards
against overly general behavior.

We refer to the learning mechanism that embodies these answers asgoal-driven composition.
This process operates in a bottom-up fashion, with new skills being formed whenever a goal on the
stack is achieved. The method is fully incremental, in that it learns from single training cases, and
it is interleaved with problem solving and execution. The technique shares this characteristic with
analytical methods for learning from problem solving, such as those found in Soar and PRODIGY.
But unlike these methods, it learns hierarchical skills that decompose problems into subproblems,
and, unlike most methods for forming macro-operators, it acquires disjunctive and recursive skills.
Moreover, learning is cumulative in that skills learned from one problem are available for use on
later tasks. Taken together, these features make goal-driven compositiona simple yet powerful
approach to learning logic programs for reactive control. Nor is the method limited to working with
means-ends analysis; it should operate over traces of any planner thatchains backward from a goal.

The architecture’s means-ends module must retain certain information duringproblem solving
to support the composition of new skill clauses. Table 7 presents expanded pseudocode that specifies
this information and when the system stores it. The form and content is similar to that recorded in
Veloso and Carbonell’s (1993) approach to derivational analogy. The key difference is that their
system stores details about subgoals, operators, and preconditions in specific cases that drive future
problem solving, whereas our approach transforms these instances intogeneralized hierarchical
structures for teleoreactive control.

We should clarify that the current implementation invokes a learned clause only when it is ap-
plicable in the current situation, so the problem solver never chains off its start conditions. Mooney
(1989) incorporated a similar constraint into his work on learning macro-operators to avoid the
utility problem (Minton, 1990), in which learned knowledge reduces search but leads to slower
behavior. However, we have extended his idea to cover cases in which learned skills can solve sub-
problems, which supports greater transfer across tasks. In our framework, this assumption means
that clauses learned from skill chaining have a left-branching structure, with the second subskill
being primitive.

In Section 2, we stated that every skill clause in a teleoreactive logic program can be expanded
into one or more sequences of primitive skills, and that each sequence, if executed legally, will
produce a state that satisfies the clause’s head concept. Here we arguethat goal-driven composition
learns sets of skill clauses for which this condition holds. As in most research on planning, we
assume that the preconditions and effects of primitive skills are accurate, and also that no external
forces interfere. First consider a clause with the headH that has been created as the result of suc-
cessful chaining off a primitive skill. This learned clause is guaranteed to achieve the goal concept
H becauseH must be an effect of its final subskill or the chaining would never have occurred.

Now consider a clause with the headH that has been created as the result of successful chain-
ing off a conjunctive definition of the conceptH. This clause describes a situation in which some
subconcepts ofH hold but others must still be achieved to makeH true. Some subconcepts may
become unsatisfied in the process and need to be reachieved, but the ordering on subgoals found
during problem solving worked for the particular objects involved, and replacing constants with
variables will not affect the result. Thus, if the clause’s start conditionsare satisfied, achieving the
subconcepts in the specified order will achieveH. Remember that our method doesnot guaran-
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tee, like those for learning macro-operators, that a given clause expansionwill run to completion.
Whether this occurs in a given domain is an empirical question, to which we nowturn.

5. Experimental Studies of Learning

As previously reported (Choi & Langley, 2005), the means-ends problem solving and learning
mechanisms just described construct properly organized teleoreactivelogic programs. After learn-
ing, the agent can simply retrieve and execute the acquired programs to solve similar problems
without falling back to problem solving. Here we report promising results from more systematic
and extensive experiments. The first two studies involve inherently recursive but nondynamic do-
mains, whereas the third involves a dynamic driving task.

5.1 Blocks World

The Blocks World involves an infinitely large table with cubical blocks, along with a manipulator
that can grasp, lift, carry, and ungrasp one block at a time. In this domain,we wrote an initial
program with nine concepts and four primitive skills. Additionally, we provided a concept for each
of four different goals.6 Theoretically, this knowledge is sufficient to solve any problem in the
domain, but the extensive search required would make it intractable to solvetasks with many blocks
using only basic knowledge. In fact, only 20 blocks are enough to make thesystem search for half
an hour. Therefore, we wanted the system to learn teleoreactive logic programs that it could execute
recursively to solve problems with arbitrary complexity. We have already discussed a recursive
program acquired from one training problem, which requires clearing thelowest object in a stack of
three blocks, but many other tasks are possible.

To establish that the learned programs actually help the architecture to solve more complex prob-
lems, we ran an experiment that compared the learning and non-learning versions. We presented the
system with six ten-problem sets of increasing complexity, one after another. More specifically, we
used sets of randomly generated problems with 5, 10, 15, 20, 25, and 30 blocks. If the goal-driven
composition mechanism is effective, then it should produce noticeable benefits in harder tasks when
the learning is active.

We carried out 200 runs with different randomized orders within levels oftask difficulty. In each
case, we let the system run a maximum of 50 decision cycles before starting over on a problem and
attempt a task at most five times before it gave up. For this domain, we set the maximum depth of
the goal stack used in problem solving to eight. Figure 3 displays the number of execution cycles
and the CPU time required for both conditions, which shows a strong benefitsfrom learning.

With number of cycles as the performance measure, we see a systematic decrease as the system
gains more experience. Every tenth problem introduces five additional objects, but the learning
system requires no extra effort to solve them. The architecture has constructed general programs
that let it achieve familiar goals for arbitrary numbers of blocks without resorting to deliberative
problem solving. Inspection reveals that it acquires the nonprimitive skill clauses in Table 3, as
well as additional ones that make recursive calls. In contrast, the nonlearning system requires more
decision cycles on harder problems, although this levels off later in the curve, as the problem solver
gives up on very difficult tasks.

6. These concerned achieving situations in which a given block is clear, one block is on another, one block is on another
and a third block is on the table, and three blocks are arranged in a tower.
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Figure 3: Execution cycles and CPU times required to solve a series of 5, 10, 15, 20, 25, and 30-
block problems (10 different tasks at each level) in the Blocks World as a function of the
number of tasks with and without learning. Each learning curve shows the mean over 200
different task orders and 95 percent confidence intervals.

The results for solution time show similar benefits, with the learning condition substantially
outperforming the condition without. However, the figure also indicates that even the learning
version slows down somewhat as it encounters problems with more blocks. Analysis of individual
runs suggests this results from the increased cost of matching against objects in the environment,
which is required in both the learning and nonlearning conditions. This poses an issue, not for our
approach to skill construction but to our architectural framework, so it deserves attention in future
research.

Table 8 shows the average results for each level of problem complexity, including the probability
that the system can solve a problem within the allowed number of cycles and attempts. In addition
to presenting the first two measures at more aggregate levels, it also reveals that, without learning,
the chances of finding a solution decrease with the number of blocks in the problem. Letting the
system carry out more search would improve these scores, but only at the cost of increasing the
number of cycles and CPU time needed to solve the more difficult problems.

5.2 FreeCell Solitaire

FreeCell is a solitaire game with eight columns of stacked cards, all face up and visible to the player,
that has been used in AI planning competitions (Bacchus, 2001). There are four free cells, which
can hold any single card at a time, and four home cells that correspond to thefour different suits.
The goal is to move all the cards on the eight columns to the home cells for their suits in ascending
order. The player can move only the cards on the top of the eight columns andthe ones in the free
cells. Each card can be moved to a free cell, to the proper home cell, or to an empty column. In
addition, the player can move a card to a column whose top card has the next number and a different
color. As in the Blocks World, we provided a simulated environment that allowslegal moves and
updates the agent’s perceptions.

509



LANGLEY AND CHOI

Blocks Learning No Learning

cycles CPU P(sol) cycles CPU P(sol)

5 21.25 4.03 0.997 52.52 8.82 0.958
10 13.61 6.90 0.997 85.15 40.60 0.857
15 11.22 11.13 0.995 98.82 94.93 0.816
20 9.76 16.09 0.997 92.06 149.05 0.863
25 11.04 27.41 0.996 91.77 230.43 0.842
30 11.67 40.85 0.995 95.89 344.49 0.826

Table 8: Aggregate scaling results for the Blocks World.
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Figure 4: Execution cycles and CPU times required to solve a series of 8, 12, 16, 20, and 24-card
FreeCell problems (20 different tasks each) as a function of the numberof tasks with and
without learning. Each learning curve shows the mean over 300 different task orders and
95 percent confidence intervals.

For this domain, we provided the architecture with an initial program which involves 24 con-
cepts and 12 primitive skills that should, in principle, let it solve any initial configuration with a
feasible solution path. (Most but not all FreeCell problems are solvable.)However, the agent may
find a solution only after a significant amount of search using its means-ends problem solver. Again
we desired the system to learn teleoreactive logic programs that it can execute on complex FreeCell
problems with little or no search. In this case, we presented tasks as a sequence of five 20-problem
sets with 8, 12, 16, 20, and 24 cards. On each problem, we let the system run at most 1000 decision
cycles before starting over, attempt the task no more than five times before halting, and create goal
stacks up to 30 in depth. We ran both the learning and nonlearning versionson 300 sets of randomly
generated problems and averaged the results. Figure 4 shows the numberof cycles and the CPU
time required to solve tasks as a function of the number of problems encountered.

In the learning condition, the system rapidly acquired recursive FreeCell programs that reduced
considerably the influence of task difficulty as compared to the nonlearningversion. As before,
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Figure 5: The total number of cycles required to solve a particular right-turn task along with the
planning and execution times, as a function of the number of trials. Each learning curve
shows the mean computed over ten sets of trials and 95 percent confidenceintervals.

the benefits are reflected in both the number of cycles needed to solve problems and in the CPU
time. However, increasing the number of cards in this domain can alter the structure of solutions, so
the learning system continued to invoke means-ends problem solving in later portions of the curve.
For instance, situations with 20 cards often require column-to-column moves that do not appear in
simpler tasks, which caused comparable behavior in the two conditions at this complexity level.
However, the learning system took advantage of this experience to handle24-card problems with
much less effort. Learning also increased the probability of solution (about 80 percent) over the
nonlearning version (around 50 percent) on these tasks.

5.3 In-City Driving

The in-city driving domain involves a medium-fidelity simulation of a downtown driving environ-
ment. The city has several square blocks with buildings and sidewalks, street segments, and inter-
sections. Each street segment includes a yellow center line and white dotted lane lines, and it has its
own speed limit the agent should observe. Buildings on each block have unique addresses, to help
the agent navigate through the city easily and to allow specific tasks like package deliveries. A typ-
ical city configuration we used has nine blocks, bounded by four vertical streets and four horizontal
streets with four lanes each.

For this domain, we provided the system 41 concepts and 19 primitive skills. Withthe basic
knowledge, the agent can describe its current situation at multiple levels of abstraction and perform
actions for accelerating, decelerating, and steering left or right at realistic angles. Thus, it can
operate a vehicle, but driving safely in a city environment is a totally different story. The agent must
still learn how to stay aligned and centered within lane lines, change lanes, increase or decrease
speed for turns, and stop for parking. To encourage such learning,we provided the agent with the
task of moving to a destination on a different street segment that requires aright turn. To achieve
this task, it resorted to problem solving, which found a solution path that involved changing to the
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rightmost lane, staying aligned and centered until the intersection, steering right to place the car in
the target segment, and finally aligning and centering in the new lane.

We recorded the total number of cycles to solve this task, along with its breakdown into the
cycles devoted to planning and to execution, as a function of the number of trials. Figure 5 shows the
learning curve that results from averaging over ten different sets of trials. As the system accumulates
knowledge about the driving task, its planning effort effectively disappears, which leads to an overall
reduction in the total cycles, even though the execution cycles increase slightly. The latter occurs
because the vehicle happens to be moving in the right direction at the outset, which accidently brings
it closer to the goal while the system is engaged in problem solving. After learning, the agent takes
the same actions intentionally, which produces the increase in execution cycles. We should note that
this task is dominated by driving time, which places a lower bound on the benefitsof learning even
when behavior becomes fully automatized.

We also inspected the skills that the architecture learned for this domain. Table9 shows the five
clauses it acquires by the end of a typical training run. These structuresinclude two recursive refer-
ences, one in whichin-intersection-for-right-turninvokes itself directly, but also a more interesting
one in whichdriving-in-segmentcalls itself indirectly throughin-segment, in-intersection-for-right-
turn, andin-rightmost-lane. Testing this teleoreactive logic program on streets with more lanes than
occur in the training task suggests that it generalizes correctly to these situations.

6. Related Research

The basic framework we have reported in this paper incorporates ideas from a number of traditions.
Our representation and organization of knowledge draws directly from the paradigm of logic pro-
gramming (Clocksin & Mellish, 1981), whereas its utilization in a recognize-actcycle has more in
common with production-system architectures (Neches, Langley, & Klahr,1987). The reliance on
heuristic search to resolve goal-driven impasses, coupled with the caching of generalized solutions,
comes closest to the performance and learning methods used in problem-solving architectures like
Soar (Laird, Rosenbloom, & Newell, 1986) and PRODIGY (Minton, 1990). Finally, we have already
noted our debt to Nilsson (1994) for the notion of a teleoreactive system.

However, our approach differs from earlier methods for improving the efficiency of problem
solvers in the nature of the acquired knowledge. In contrast to Soar andPRODIGY, which create flat
control rules, our framework constructs hierarchical logic programs that incorporate nonterminal
symbols. Methods for learning macro-operators (e.g., Iba, 1988; Mooney, 1989) have a similar
flavor, in that they explicitly specify the order in which to apply operators, but they do not typically
support recursive references. Shavlik (1989) reports a system that learns recursive macro-operators
but that, like other work in this area, does not acquire reactive controllers.

Moreover, both traditions have used sophisticated analytical methods that rely on goal regres-
sion to collect conditions on control rules or macro-operators, nonincremental empirical techniques
like inductive logic programming, or combinations of such methods (e.g., Estlin & Mooney, 1997).
Instead, goal-driven composition transforms traces of successful means-ends search directly into
teleoreactive logic programs, determining their preconditions by a simple methodthat involves nei-
ther analysis or induction, as normally defined, and that operates in an incremental and cumulative
fashion.

Previous research on learning for reactive execution, like work on search control, has empha-
sized unstructured knowledge. For example, Benson’s (1995) TRAILacquires teleoreactive control
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((driving-in-segment ?me ?g994 ?g1021)
:percepts ((segment ?g994) (lane-line ?g1021) (self ?me))
:start ((in-segment ?me ?g994) (steering-wheel-straight ?me))
:skills ((in-lane ?me ?g1021)

(centered-in-lane ?me ?g994 ?g1021)
(aligned-with-lane-in-segment ?me ?g994 ?g1021)
(steering-wheel-straight ?me)))

((driving-in-segment ?me ?g998 ?g1008)
:percepts ((segment ?g998) (lane-line ?g1008) (self ?me))
:start ((steering-wheel-straight ?me))
:skills ((in-segment ?me ?g998)

(centered-in-lane ?me ?g998 ?g1008)
(aligned-with-lane-in-segment ?me ?g998 ?g1008)
(steering-wheel-straight ?me)))

((in-segment ?me ?g998)
:percepts ((self ?me) (intersection ?g978) (segment ?g998))
:start ((last-lane ?g1021))
:skills ((in-intersection-for-right-turn ?me ?g978)

(steer-for-right-turn ?me ?g978 ?g998)))

((in-intersection-for-right-turn ?me ?g978)
:percepts ((lane-line ?g1021) (self ?me) (intersection ?g978))
:start ((last-lane ?g1021))
:skills ((in-rightmost-lane ?me ?g1021)

(in-intersection-for-right-turn ?me ?g978)))

((in-rightmost-lane ?me ?g1021)
:percepts ((self ?me) (lane-line ?g1021))
:start ((last-lane ?g1021))
:skills ((driving-in-segment ?me ?g994 ?g1021)))

Table 9: Recursive skill clauses learned for the in-city driving domain.

programs for use in physical environments, but it utilizes inductive logic programming to determine
local rules for individual actions rather than hierarchical structures.Fern et al. (2004) report an
approach to learning reactive controllers that trains itself on increasinglycomplex problems, but
that also acquires decision lists for action selection. Khardon (1999) describes another method for
learning ordered, but otherwise unstructured, control rules from observed problem solutions.

Our approach shares some features with research on inductive programming, which focuses
on synthesizing iterative or recursive programs from input-output examples. For instance, Schmid’s
(2005) IPAL generates an initial program from the results of problem solving by replacing constants
with constructive expressions with variables, then transforms it into a recursive program through
inductive inference steps. Olsson’s (1995) ADATE also generates recursive programs through pro-
gram refinement transformations, but carries out an iterative deepening search guided by criteria
like fit to training examples and syntactic complexity. Schmid’s work comes closerto our own,
in that both operate over problem-solving traces and generate recursive programs, but our method
produces these structures directly, rather than using explicit transformation or revision steps.
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Perhaps the closest relative to our approach is Reddy and Tadepalli’s (1997) X-Learn, which
acquires goal-decomposition rules from a sequence of training problems.Their system does not
include an execution engine, but it generates recursive hierarchicalplans in a cumulative manner
that also identifies declarative goals with the heads of learned clauses. However, because it in-
vokes forward-chaining rather than backward-chaining search to solve new problems, it relies on
the trainer to determine program structure. X-Learn also uses a sophisticated mixture of analyti-
cal and relational techniques to determine conditions, rather than our much simpler method. Ruby
and Kibler’s (1991) SteppingStone has a similar flavor, in that it learns generalized decomposi-
tions through a mixture of problem reduction and forward-chaining search. Marsella and Schmidt’s
(1993) system also acquires task-decomposition rules by combining forward and backward search
to hypothesize state pairs, which in turn produce rules that it revises afterfurther experience.

Finally, we should mention another research paradigm that deals with speeding up the execution
of logic programs. One example comes from Zelle and Mooney (1993), whoreport a system that
combines ideas from explanation-based learning and inductive logic programming to infer the con-
ditions under which clauses should be considered. Work in this area startsand ends with standard
logic programs, whereas our system transforms a weak problem-solving method into an efficient
program for reactive control. In summary, although our learning technique incorporates ideas from
earlier frameworks, it remains distinct on a number of dimensions.

7. Directions for Future Research

Despite the promise of this new approach to representing, utilizing, and learning knowledge for
teleoreactive control, our work remains in its early stages. Future research should demonstrate the
acquisition of complex skills on additional domains. These should include both classical domains
like logistics planning and dynamic settings like in-city driving. We have reported preliminary
results on the latter, but our work in this domain to date has dealt with relatively simple skills, such
as changing lanes and slowing down to park. Humans’ driving knowledgeis far more complex, and
we should demonstrate that our methods are sufficient to acquire many more of them.

Note that, although driving involves reactive control, it also benefits fromroute planning and
other high-level activities. Recall that our definition of teleoreactive logicprograms, and our method
for learning them, guarantees only that a skill will achieve its associated goal if it executes success-
fully, not that such execution is possible. For such guarantees, we mustaugment the current exe-
cution module with some lookahead ability, as Nau et al. (1999) have already done for hierarchical
task networks. This will require additional effort from the agent, but stillfar less than solving a
problem with means-ends analysis.

Another response would use inductive logic programming or related methodsto learn additional
conditions on skill clauses that ensure they will achieve their goal, even without lookahead. To this
end, we can transform the results of lookahead search into positive andnegative instances of clauses,
based on whether they would lead to success, much as in early work on inducing search-control rules
from solution paths (Sleeman et al., 1982). Even if such conditions are incomplete, they should still
reduce the planning effort required to ensure the agent’s actions will produce the desired outcome.

Another important limitation concerns our assumption that the agent always executes a skill
to achieve a desired situation. The ability to express less goal-directed activities, such as playing
a piano piece, are precisely what distinguishes hierarchical task networks from classical planning
(Erol, Hendler, & Nau, 1994). We hope to extend our framework in this direction by generalizing
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its notion of goals to include concepts that describe sets of situations that holdduring certain time
intervals. To support the hierarchical skill acquisition, this augmented representation will require
extensions to both the problem solving and learning mechanisms. In addition, we should extend our
framework to handle skill learning in nonserializable domains, such as tile-sliding puzzles, which
motivated much of the early research on macro-operator formation (e.g., Iba, 1988).

Future work should also address a related form of overgeneralization we have observed on the
Tower of Hanoi puzzle. In this domain, the approach learns reasonablehierarchical skills that can
solve the task without problem solving, but that only do so about half the time.In other runs, the
learned skills attempt to move the smallest disk to the wrong peg, which ultimately causes the system
to fail. Humans often make similar errors but also learn to avoid them with experience. Inspection
of the behavioral trace suggests this happens because one learned skill clause includes variables
that are not mentioned in the head but are bound in the body. We believe thatincluding contextual
conditions about variables bound higher in the skill hierarchy will remove this nondeterminism and
produce more correct behavior.

In addition, recall that the current system does not chain backward from the start condition of
learned skill clauses. We believe that cases will arise in which such chaining, even if not strictly
necessary, will make the acquisition of complex skills much easier. Extending the problem solver to
support this ability means defining new conceptual predicates that the agent can use to characterize
situations in which its learned skills are applicable. This will be straightforwardfor some domains
and tasks, but some recursive skills will need recursively defined start concepts, which requires a
new learning mechanism. Augmenting the system in this manner may also lead to a utility problem
(Minton, 1990), not during execution of learned teleoreactive logic programs but during the problem
solving used for their acquisition, which we would then need to overcome.

Finally, we should note that, although our approach learns recursive logic programs that gen-
eralize to different numbers of objects, its treatment of goals is less flexible.For example, it can
acquire a general program for clearing a block that does not dependon the number of other objects
involved, but it cannot learn a program for constructing a tower with arbitrarily specified com-
ponents. Extending the system’s ability to transfer across different goals, including ones that are
defined recursively, is another important direction for future research on learning hierarchical skills.

8. Concluding Remarks

In the preceding pages, we proposed a new representation of knowledge – teleoreactive logic pro-
grams – and described how they can be executed over time to control physical agents. In addition,
we explained how a means-ends problem solver can use them to solve novel tasks and, more impor-
tant, transform the traces of problem solutions into new clauses that can beexecuted efficiently. The
responsible learning method – goal-driven composition – acquires recursive, executable skills in an
incremental and cumulative manner. We reported experiments that demonstrated the method’s abil-
ity to acquire hierarchical and recursive skills for three domains, along with its capacity to transfer
its learned structures to tasks with more objects than seen during training.

Teleoreactive logic programs incorporate ideas from a number of traditions, including logic pro-
gramming, adaptive control, and hierarchical task networks, in a manner that supports reactive but
goal-directed behavior. The approach which we have described for acquiring such programs, and
which we have incorporated into the ICARUS architecture, borrows intuitions from earlier work on
learning through problem solving, but its details rely on a new mechanism thatbears little resem-
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blance to previous techniques. Our work on learning teleoreactive logic programs is still in its early
stages, but it appears to provide a novel and promising path to the acquisition of effective control
systems through a combination of reasoning and experience.
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