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Abstract

In this paper, we propose a new representation for physigatal — teleoreactive logic programs
— along with an interpreter that uses them to achieve goaladdiition, we present a new learning
method that acquires recursive forms of these structuoes firaces of successful problem solving.
We report experiments in three different domains that destnate the generality of this approach.
In closing, we review related work on learning complex skdind discuss directions for future
research on this topic.
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1. Introduction

Human skills have a hierarchical character, with complex proceduresedéfi terms of more basic
ones. In some domains, these skills are recursive in nature, in that stsuate specified in terms
of calls to themselves. Such recursive procedures pose a clear gedailgrmachine learning that
deserves more attention than it has received in the literature. In this peg@esent one response
to this problem that relies on a new representation for skills and a new methadduiring them
from experience.

We focus here on the task of learning controllers for physical agerdsaréd/concerned with ac-
quiring the structure and organization of skills, rather than tuning theinpetexs, which we view
as a secondary learning issue. We represent skillelasreactive logic programsa formalism
that incorporates ideas from logic programming, reactive control, andrhlgcal task networks.
This framework can encode hierarchical and recursive procsdiat are considerably more com-
plex than those usually studied in research on reinforcement learnitigr{SuBarton, 1998) and
behavioral cloning (Sammut, 1996), but they can still be executed in éiveget goal-directed
manner. As we will see, it also embodies constraints that make the learnicegprvactable.

We assume that an agent uses hierarchical skills to achieve its goalsweheossible, but
also that, upon encountering unfamiliar tasks, it falls back on problem gplifine learner begins
with primitive skills for the domain, including knowledge of their applicability condis@nd their
effects, which lets it compose them to form candidate solutions. When thensgsercomes such
an impasse successfully, which may require substantial search, it Eeasvs skill that it stores in
memory for use on future tasks. Thus, skill acquisition is incremental antviimed with problem
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solving. Moreover, learning is cumulative in that skills acquired early omfthe building blocks
for those mastered later. We have incorporated our assumptions apmasgeetation, performance,
and learning into¢ARUS, a cognitive architecture for controlling physical agents.

Any approach to acquiring hierarchical and recursive proceduoes problem solving must
address three issues. These concern identifying the hierarchiealization of the learned skills,
determining when different skills should have the same name or head, andrigfthe conditions
under which each skill should be invoked. To this end, our approacbrtstizcicting teleoreactive
logic programs incorporates ideas from previous work on learning esfalgm solving, but it also
introduces some important innovations.

In the next section, we specify our formalism for encoding initial and kediknowledge, along
with the performance mechanisms that interpret them to produce behaier.tlis, we present
an approach to problem solving on novel tasks and a learning mechamistratisforms the results
of this process into executable logic programs. Next, we report expemmevidence that the
method can learn control programs in three recursive domains, as weskdsem on tasks that are
more complex than those on which they were acquired. We conclude bymegieelated work on
learning and proposing some important directions for additional research

2. Teleoreactive L ogic Programs

As we have noted, our approach revolves around a representdbomalism for the execution of
complex procedures — teleoreactive logic programs. We refer to thestusés as “logic programs”
because their syntax is similar to the Horn clauses used in Prolog and relzgeades. We have
borrowed the term “teleoreactive” from Nilsson (1994), who used ieterrto systems that are goal
driven but that also react to their current environment. His examplesgaated symbolic control
rules but were not cast as logic programs, as we assume here.

A teleoreactive logic program consists of two interleaved knowledgesb&a®e specifies a set
of concepts that the agent uses to recognize classes of situations irvitemerent and describe
them at higher levels of abstraction. These monotonic inference rulestha@same semantics as
clauses in Prolog and a similar syntax. Each clause includes a single tedad, as a predicate
with zero or more arguments, along with a body that includes one or morevediiials, negative
literals, or arithmetic tests. In this paper, we assume that a given headappealy one clause,
thus constraining definitions to be conjunctive, although the formalism itselivaltisjunctive
concepts.

IcARuUs distinguishes between primitive conceptual clauses, which refer onlyréepts that
the agent can observe in the environment, and complex clauses, whechaefther concepts in
their bodies. Specific percepts play the same role as ground literals in tratlibgic programs,
but, because they come from the environment and change over time, weamsider them part of
the program. Table 1 presents some concepts from the Blocks Worldeftsrikeunstackabland
pickupableare defined in terms of the concepisar on, ontable andhand-emptythe subconcept
clearis defined in terms 0bn, andonis defined using two cases of the perchfuick, along with
arithmetic tests on their attributes.

A second knowledge base contains a set of skills that the agent carteekethe world. Each
skill clause includes a head (a predicate with zero or more arguments) @y dhat specifies a
set of start conditions and one or more components. Primitive clauses Isavgle start condition
(often a nonprimitive concept) and refer to executable actions that altentti®nment. They also
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((on ?bl ockl ?bl ock2)
.percepts ((block ?blockl xpos ?x1 ypos ?yl)
(bl ock ?bl ock2 xpos ?x2 ypos ?y2 height ?h2))
‘tests ((equal ?x1 ?x2) (>= ?yl ?y2) (<= ?yl (+ ?y2 ?h2))))

((ontabl e ?bl ock ?table)
:percepts ((block ?block xpos ?x1 ypos ?yl)
(table ?table xpos ?x2 ypos ?y2 height ?h2))
‘tests ((>= ?yl ?y2) (<= ?yl (+ ?y2 ?h2))))

((clear ?bl ock)
:percepts ((block ?block))
:negatives ((on ?other ?block)))

((hol di ng ?bl ock)
.percepts ((hand ?hand status ?bl ock)
(bl ock ?block)))
((hand-enpty)
:percepts ((hand ?hand status ?status))
‘tests ((eq ?status enpty)))

((three-tower ?bl ?b2 ?b3 ?table)
:percepts ((block ?bl) (block ?b2) (block ?b3) (table ?table))
:positives ((on ?bl ?b2) (on ?b2 ?b3) (ontable ?b3 ?table)))

((unstackabl e ?bl ock ?from
:percepts ((block ?block) (block ?from)
;positives ((on ?block ?fron) (clear ?block) (hand-enpty)))

((pi ckupabl e ?bl ock ?from
:percepts ((block ?block) (table ?from)
spositives ((ontable ?block ?from (clear ?block) (hand-enpty)))

((stackabl e ?bl ock ?to)
:percepts ((block ?block) (block ?to))
;positives ((clear ?to) (holding ?block)))

((put downabl e ?bl ock ?to)
cpercepts ((block ?block) (table ?to))
:positives ((holding ?block)))

Table 1: Examples of concepts from the Blocks World.

specify the effects of their execution, stated as literals that hold after thrajpletion, and may state
requirements that must hold during their execution. Table 2 shows the fimitige skills for the
Blocks World, which are similar in structure and spirit torF8Ps operators, but may be executed in
a durative manner.

In contrast, nonprimitive skill clauses specify how to decompose activitysinbgkills. Because
a skill may refer to itself, either directly or through a subskill, the formalismpsuig recursive
definitions. For this reason, nonprimitive skills do not specify effectsciwlocan depend on the
number of levels of recursion, nor do they state requirements. Howbeehnead of each complex
skill refers to some concept that the skill aims to achieve, an assumptiory ReddTadepalli
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((unstack ?block ?from
.percepts ((block ?block ypos ?y)
(block ?from)
start ((unstackabl e ?bl ock ?from)
cactions  ((*grasp ?block) (*move-up ?block ?y))
.effects  ((clear ?from
(hol di ng ?bl ock)))

((pickup ?block ?from
:percepts ((block ?block ypos ?y)
table ?from)
pi ckupabl e ?bl ock ?from)
*grasp ?bl ock) (*nove-up ?block ?y))
hol di ng ?bl ock)))

?to)

(
(
(
(
(
k
(bl ock ?bl ock)
(
(
(
(
(
(

.start (
;actions
ceffects  (
((stack ?bloc
:percepts (
bl ock ?to xpos ?x ypos ?y height ?height))
.start ((stackabl e ?block ?to))
;actions  ((*nove-over ?block ?x)
*nove-down ?bl ock (+ ?y ?height))
*ungrasp ?bl ock))
ceffects  ((on ?block ?to)
(hand-enpty)))
((putdown ?bl ock ?to)
:percepts ((block ?block)
(table ?to ypos ?y height ?height))
start ((put downabl e ?bl ock ?to))
ractions  ((*nove-sideways ?bl ock)
(*nmove-down ?block (+ ?y ?height))
(*ungrasp ?bl ock))
;effects  ((ontable ?block ?to)
(

hand- enpty)))

Table 2: Primitive skills for the Blocks World domain. Each skill clause hasaal ltkat specifies
its name and arguments, a set of typed variables, a single start conditetpfeeffects,
and a set of executable actions, each marked by an asterisk.

(1997) have also made in their research on task decomposition. Thisctionneetween skills
and concepts constitutes a key difference between the current appand our earlier work on
hierarchical skills in tARus (Choi et al., 2004; Langley & Rogers, 2004), and it figures centrally
in the learning methods we describe later. Table 3 presents some reakiivdor the Blocks
World, including two clauses for achieving the concefgtar

Teleoreactive logic programs are closely related to Nau et al’'s SHO#9) ¥8rmalism for
hierarchical task networks. This organizes knowledge into tasks, veleicle as heads of clauses,
and methods, which specify how to decompose tasks into subtasks. Primitikkedsealescribe
the effects of basic actions, much liker@ps operators. Each method also states its application
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((clear ?B) 1 ((unstackable ?B ?A) 3
:percepts ((block ?C) (block ?B)) :percepts ((block ?A) (block ?B))
cstart ((unstackabl e ?C ?B)) sstart ((on ?B ?A) (hand-enpty))
:skills ((unstack ?C ?B))) cskills ((clear ?B) (hand-enpty)))
((hand-enpty) 2 ((clear ?A) 4
.percepts ((block ?C) (table ?T)) cpercepts ((block ?B) (block ?A))
cstart ((putdownabl e ?C ?T)) cstart ((on ?B ?A) (hand-enpty))
cskills ((putdown ?C ?T))) cskills ((unstackabl e ?B ?A)

(

unstack ?B ?A)))

Table 3: Some nonprimitive skills for the Blocks World domain that involve reigarcalls. Each
skill clause has a head that specifies the goal it achieves, a set ofvgpables, one or
more start conditions, and a set of ordered subskills. Numbers aftee#fiedistinguish
different clauses that achieve the same goal.

conditions, which may involve predicates that are defined in logical axiameurframework, skill
heads correspond to tasks, skill clauses are equivalent to methddsprazept definitions play the
role of axioms. In this mapping, teleoreactive logic programs are a spéasa of hierarchical
task networks in which nonprimitive tasks always map onto declarative godlg which top-level
goals and the preconditions of primitive methods are always single literalsvilgee that these
two assumptions play key roles in our approach to problem solving andrigarn

Note that every skill/task can be expanded into one or more sequences of primitive skills. For
each skillSin a teleoreactive logic program, $has concep€ as its head, then every expansion
of Sinto such a sequence must, if executed successfully, produce a statecimGuvholds. This
constraint is weaker than the standard assumption made for macro-opdeatp, Iba, 1988); it
does not guarantee that, once initiated, the sequence will achisugce other events may intervene
or the agent may encounter states in which one of the primitive skills doeppigt dowever, if
the sequence of primitive skills can be run to completion, then it will achievedaHiteralC. The
approach to learning that we report later is designed to acquire progvamthis characteristic,
and we give arguments to this effect at the close of Section 4.

3. Interpreting Teleoreactive L ogic Programs

As their name suggests, teleoreactive logic programs are designeddtiveeexecution in a goal-
driven manner, within a physical setting that changes over time. As with reastive controllers,
the associated performance element operates in discrete cycles, batiftvalses more sophisti-
cated processing than most such frameworks.

On each decision cyclechrRus updates a perceptual buffer with descriptions of all objects that
are visible in the environment. Each such percept specifies the obje&;stymique identifier, and
zero or more attributes. For example, in the Blocks World these would inctudeisres like(block
A xpos 5 ypos 1 width 1 height 1)n this paper, we emphasize domains in which the agent perceives
the same objects on successive time steps but in which some attributes chlargdtowever, we
will also consider teleoreactive systems for domains like in-city driving {(€hal., 2004) in which
the agent perceives different objects as it moves through the envinbnme

497



LANGLEY AND CHOI

Once the interpreter has updated the perceptual buffer, it invoke$esiarioce module that elab-
orates on the agent’s perceptions. This uses concept definitions tdadyi@al conclusions from
the percepts, which it adds to a conceptual short-term memory. This dystoreccontains higher-
level beliefs, cast as relational literals, that are instances of generepts. The inference module
operates in a bottom-up, data-driven manner that starts from descripfipasceived objects, such
(block A xpos 5 ypos 1 width 1 height Bhd (block B xpos 5 ypos 0 width 1 height, Ithatches
these against the conditions in concept definitions, and infers beliefd pbmitive concepts like
(on A B). These trigger inferences about higher-level concepts, su¢btlea A) which in turn
support additional beliefs likéunstackable A B)This process continues until the agent has added
all beliefs that are implied by its perceptions and concept definifions.

After the inference module has augmented the agent’s perceptions withekigheliefs, the
architecture’s execution module inspects this information to decide what si¢tidake in the en-
vironment. To this end, it also examines its current goal, which must be edaxlan instance of
some known concept, and its skills, which tell it how to accomplish such goalkenference,
the execution process proceeds in a top-down manner, finding patbghhiee skill hierarchy that
terminate in primitive skills with executable actions. We defirgk@él pathto be a chain of skill
instances that starts from the agent’s goal and descends throughridrefyealong subskill links,
unifying the arguments of each subskill consistently with those of its parent.

Furthermore, the execution module only considers skill paths thatpgoicable This holds if
no concept instance that corresponds to a goal along the path is saiigfiedequirements of the
terminal (primitive) skill instance are satisfied, and if, for each skill ingtan¢he path not executed
on the previous cycle, the start condition is satisfied. This last constraiatessary because skills
may take many cycles to achieve their desired effects, making it important togdistinbetween
their initiation and their continuation. To this end, the module retains the path thithegskill
hierarchy selected on the previous time step, along with the variable bindieged to reconstruct
it.

For example, imagine a situation in which the block C is on B, B is on A, and A is on the
table, in which the goal igclear A) and in which the agent knows the primitive skills in Table 2
and the recursive skills in Table 3. Further assume that this is the first, ggckat no previous
activities are under way. In this case, the only path through the skill bleyds [(clear A) 4],
[(unstackable B A) 3], [(clear B) 1], [(unstack C B}pplying the primitive skill (unstack C B)
produces a new situation that leads to new inferences, and in which theappligable path is
[(clear A) 4], [(unstackable B A) 3], [(hand-empty) 2], [(putdownTqj. This enables a third path
on the next cyclef(clear A) 4], [(unstack B A)Jwhich generates a state in which the agent’s goal
is satisfied. Note that this process operates much like the proof prodederelog, except that it
involves activities that extend over time.

The interpreter incorporates two preferences that provide a balabwedn reactivity and per-
sistence. First, given a choice between two or more subskills, it selectssherfe for which the
corresponding concept instance is not satisfied. This bias suppacts/eecontrol, since the agent
reconsiders previously completed subskills and, if unexpected evergsihdone their effects, re-
executes them to correct the situation. Second, given a choice between tnore applicable skill
paths, it selects the one that shares the most elements from the start offtlexgeuted on the

1. Although this mechanism reasons over structures similar to Horn slaitseoperation is closer in spirit to the
elaboration process in Soar (Laird et al., 1986) than to the quergrdraasoning in Prolog.
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Figure 1: Organization of modules for reactive execution, problem smleind skill learning, along
with their inputs and outputs.
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previous cycle. This bias encourages the agent to keep executing &Eewdjtskill it has started
until it achieves the associated goal or becomes inapplicable.

Most research on reactive execution emphasizes dynamic domains inuviegpected events
can occur that fall outside the agent’s control. Domains like the Blocks Wihldot have this
character, but this does not mean one cannot utilize a reactive contoalligect behavior (e.g., see
Fern et al., 2004). Moreover, we have also demonstrated (Choi e0@#l) the execution module’s
operation in the domain of in-city driving, which requires reactive respdn an environment that
changes dynamically. Our framework is relevant to both types of settings.

To summarize, ¢ARUS procedure for interpreting teleoreactive logic programs relies on two
interacting processes — conceptual inference and skill executionacbrcgcle, the architecture per-
ceives objects and infers instances of conceptual relations that ttiefy.safter this, it starts from
the current goal and uses these beliefs to check the conditions on diilides to determine which
paths are applicable, which in turn constrains the actions it executes. nvlierenent changes,
either in response to these actions or on its own, and the agent beginsrantghence-execution
cycle. This looping continues until the concept that corresponds to tet'agop-level goal is
satisfied, when it halts.

4. Solving Problems and L earning Skills

Although one can construct teleoreactive logic programs manually, thi®gsas time consuming
and prone to error. Here we report an approach to learning sudngoms whenever the agent en-
counters a problem or subproblem that its current skills do not caveudh cases, the architecture
attempts to solve the problem by composing its primitive skills in a way that achiegegotl.
Typically, this problem-solving process requires search and, given limitegbutational resources,
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may fail. However, when the effort is successful the agent prodatesce of the solution in terms
of component skills that achieved the problem’s goal. The system tramsfihis trace into new
skill clauses, which it adds to memory for use on future tasks.

Figure 1 depicts this overall organization. As in some earlier problem-sofrtigtectures like
PrRoDIGY (Minton, 1988) and Soar (Laird et al., 1986), problem solving and Iegrare tightly
linked and both are driven by impasses. A key difference is that, in thesenss, learning pro-
duces search-control knowledge that makes future problem solving efi@ctive, whereas in our
framework it generates teleoreactive logic programs that the ageninubesenvironment. Never-
theless, there remain important similarities that we discuss later at more length.

4.1 Means-Ends Problem Solving

As described earlier, the execution module selects skill clauses that stahidde the current goal
and that have start conditions which match its current beliefs about theement. Failure to
retrieve such a clause produces an impasse that leads the architectuokéait® problem-solving
module. Table 4 presents pseudocode for the problem solver, whichsitilizariant of means-ends
analysis (Newell & Simon, 1961) that chains backward from the goal. Gioisess relies on a goal
stack that stores both subgoals and skills that might accomplish them. Ther¢bgdal is simply
the lowest element on this stack.
Despite our problem-solving method’s similarity to means-ends analysis, itdiften standard
formulation in three important ways:
e whenever the skill associated with the topmost goal on the stack beconlieslblgpthe system
executes it in the environment, which leads to tight interleaving of problenmgpénd control;
¢ both the start conditions of primitive skills (i.e., operators) and top-levelsgoast be cast as
single relational literals, which may be defined concépts;
e backward chaining can occur not only off the start condition of primitkitssbut also off the
definition of a concept, which means the single-literal assumption causessofigenerality.

As we will see shortly, the second and third of these assumptions play lesyincdhe mechanism
for learning new skills, but we should first examine the operation of thblgne-solving process
itself.

As Table 4 indicates, the problem solver pushes the current goal G anfgo#i stack, then
checks it on each execution cycle to determine whether it has been athiese, then the module
pops the stack and focuses on G’s parent goal or, upon achievihgpthevel goal, simply halts. If
the current goal G is not satisfied, then the architecture retrieves gifingtive skills with heads
that unify with G and, if any participate in applicable paths through the skilbhibry, selects the
first one found and executes it. This execution may require many cyciesyéntually it produces
a new environmental state that either satisfies G or constitutes another impasse.

If the problem solver cannot find any complex skills indexed by the god#liGstead retrieves
all primitive skills that produce G as one of their effects. The system theerrgtes candidate
instances of these skills by inserting known objects as their argumentsletbd among these skill
instances, it expands the instantiated start condition of each skill instadetetonine how many of
its primitive components are satisfied, then selects the one with the fewest litesalssfied in the
current situation. If the candidates tie on this criterion, then it selects aaaddm. If the selected

2. We currently define all concepts manually, but it would not be diffimuliave the system define them automatically
for operator preconditions and conjunctive goals.
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Sol ve(Q
Push the goal literal Gonto the enpty goal stack GS.
On each cycle,
If the top goal G of the goal stack GSis satisfied,

Then pop GS.
Else if the goal stack GS does not exceed the depth linmt,
Let S be the skill instances whose heads unify with G

If any applicable skill paths start froman instance in S,
Then sel ect one of these paths and execute it.
Else let Mbe the set of prinitive skill instances that
have not already failed in which Gis an effect.
If the set Mis nonenpty,
Then select a skill instance Q fromM
Push the start condition C of Qonto goal stack GCS.
Else if Gis a conplex concept with the unsatisfied
subconcepts H and with satisfied subconcepts F,
Then if there is a subconcept | in Hthat has not yet failed,
Then push | onto the goal stack GS.
El se pop G fromthe goal stack GS.
Store information about failure with Gs parent.
El se pop G fromthe goal stack GS.
Store information about failure with Gs parent.

Table 4: Pseudocode for interleaving means-ends problem solving villtexacution.

skill instance’s condition is met, the system executes the skill instance in tivemment until it
achieves the associated goal, which it then pops from the stack. If tliiooris not satisfied, the
architecture makes it the current goal by pushing it onto the stack.

However, if the problem solver cannot find any skill clause that woulhdexe the current goal
G, it uses G's concept definition to decompose the goal into subgoals.réf timan one subgoal is
unsatisfied, the system selects one at random and calls the problemasolveecursively, which
makes it the current goal by pushing it onto the stack. This leads to chaiffitng start condition of
additional skills and/or the definitions of other concepts. Upon achievinggaal, the architecture
pops the stack and, if other subconcepts remain unsatisfied, turns its attengichieving them.
Once all have been satisfied, this means the parent goal G has beermedchait pops the stack
again and focuses on the parent.

Of course, the problem-solving module must make decisions about whichtelsliect during
skill chaining and the order in which it should tackle subconcepts duringequt chaining. The
system may well make the incorrect choice at any point, which can lead teefaitiua given subgoal
when no alternatives remain or when it reaches the maximum depth of thetgcdal In such cases,
it pops the current goal, stores the failed candidate with its parent goalsitb@nsidering them
in the future, and backtracks to consider other options. This strategiiges depth-first search
through the problem space, which can require considerable time on sdwme tas

Figure 2 shows an example of the problem solver’'s behavior on the BWoKisl in a situation
where block A is on the table, block B is on A, block C is on B, and the hand igyenypon
being given the objectivéclear A) the architecture looks for any executable skill with this goal as
its head. When this fails, it looks for a skill that has the objective as one effésts. In this case,
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initial state

(unstack C B)

(hand—-empty)

(unstackable C B)

(unstackable B A)

(unstack B A)

(ontable A T)

(putdown C T)

.

initial state final state

(on B A)

- 00000

Figure 2: A trace of successful problem solving in the Blocks World, tvigllipses indicating
concepts/goals and rectangles denoting primitive skills.

invoking the primitive skill instancéunstack B Awould produce the desired result. However, this
cannot yet be applied because its instantiated start condftinstackable B A)does not hold, so
the system stores the skill instance with the initial goal and pushes this sulngodhe stack.

Next, the problem solver attempts to retrieve skills that would achieastackable B Aput,
because it has no such skills in memory, it resorts to chaining off the defioitionstackableThis
involves three instantiated subconcept&lear) (on B A), and(hand-empty} but only the first of
these is unsatisfied, so the module pushes this onto the goal stack. Ingesp@onsiders skills
that would produce this literal as an effect and retrieves the skill instantsdack C B)which it
stores with the current goal.

In this case, the start condition of the selected skilhstackable C B)already holds, so the
architecture execute@instack C B)which alters the environment and causes the agent to infer
(clear B)from its percepts. In response, it pops this goal from the stack aondsiEers its parent,
(unstackable B A)Unfortunately, this has not yet been achieved because executingiliheas
caused the third of its component concept instan@esnd-empty)to become false. Thus, the
system pushes this onto the stack and, upon inspecting memory, retrieskl ihetance(putdown
C T), which it can and does execute.

This second step achieves the subgbahd-empty)which in turn lets the agent inféunstack-
able B A) Thus, the problem solver pops this element from the goal stack andtesdbe skill
instance it had originally selecte@instack B A)in the new situation. Upon completion, the system
perceives that the altered environment satisfies the top-level @bedy A) which leads it to halt,
since it has solved the problem. Both our textual description and the gréfigure 2 represent
the trace of successful problem solving; as noted earlier, finding awsciution may well involve
search, but we have omitted missteps that require backtracking for ta@telarity.

Despite the clear evidence that humans often resort to means-endssamhbs they encounter
novel problems (Newell & Simon, 1961), this approach to problem solvagyldeen criticized in
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the Al planning community because it searches over a space of totallyedrglems. As a result,
on problems for which the logical structure of a workable plan is only partiathgred, it can carry
out extra work by considering alternative orderings that are efiggtigquivalent. However, the
method also has clear advantages, such as low memory load because #tainsinly the current
stack rather than a partial plan. Moreover, it provides direct sugpoitterleaving of problem
solving and execution, which is desirable for agents that must act in th@ioement.

Of course, executing a component skill before it has constructed aletangdan can lead the
system into difficulty, since the agent cannot always backtrack in thsigddyworld and can pro-
duce situations from which it cannot recover without starting over on tbkel@m. In such cases,
the problem solver stores the goal for which the executed skill causebdl¢rcalong with every-
thing below it in the stack. The system begins the problem again, this time avaiairskill and
selecting another option. If a different execution error occurs this tireeqibdule again stores the
problematic skill and its context, then starts over once more. In this way, théemture continues
to search the problem space until it achieves its top-level goal or extkechumber of maximum
allowed attempts.

4.2 Goal-Driven Composition of Skills

Any method for learning teleoreactive logic programs or similar structuresaddsess three issues.
First, it must determine the structure of the hierarchy that decomposdem®mto subproblems.
Second, the technique must identify when different clauses shouldtagame head and thus be
considered in the same situations. Finally, it must infer the conditions undeh whinvoke each
clause. The approach we describe here relies on results produtled psoblem solver to answer
these questions. Just as problem solving occurs whenever the systeamiers an impasse, that s,
a goal it cannot achieve by executing stored skills, so learning ocdwraver the system resolves
an impasse by successful problem solving. TheRUS architecture shares this idea with earlier
frameworks like Soar andADIGY, although the details differ substantially.

The response to the first issue is thérarchical structure is determined by the subproblems
handled during problem solvingAs Figure 2 illustrates, this takes the form of a semilattice in
which each subplan has a single root node. This structure follows diffeatty our assumptions
that each primitive skill has one start condition and each goal is castiagla bteral. Because
the problem solver chains backward off skill and concept definitioresrélsult is a hierarchical
structure that suggests a new skill clause for each subgoal. Tabl@ieé&ents the clauses that the
system proposes based on the solution to(thear A)problem, without specifying their heads or
conditions. Figure 2 depicts the resulting hierarchical structure, usimipers to indicate the order
in which the system generates each clause.

The answer to the second question is thathead of a learned skill clause is the goal literal that
the problem solver achieved for the subproblem that producddhit follows from our assumption
that the head of each clause in a teleoreactive logic program specifiescamcept that the clause
will produce if executed. At first glance, this appears to confound skitls concepts, but another
view is that it indexes skill clauses by the concepts they achieve. Table gh@ws the clauses
learned from the problem-solving trace in Figure 2 once the heads hamertserted. Note that this

3. The problem solver also starts over if it has not achieved the top-dbjettive within a given number of cycles.
Jones and Langley (in press) report another variant of mearsspeablem solving that uses a similar restart strategy
but keeps no explicit record of previous failed paths.
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(a) (<head> 1
:percepts ((block ?C) (block ?B))

cstart <condi ti ons>
:skills  ((unstack ?C ?B)))
(<head> 2

.percepts ((block ?C) (table ?T))
start <condi ti ons>
cskills  ((putdown ?C ?T)))

(<head> 3
percepts ((block ?A) (block ?B))

cstart <condi tions>
:skills  ((clear ?B) (hand-enpty)))
(<head> 4

.percepts ((block ?B) (block ?A))

cstart <condi ti ons>

:skill's  ((unstackable ?B ?A)
(unstack ?B ?A)))

(b) ((clear ?B) 1
:percepts ((block ?C) (block ?B))
start <condi ti ons>
:skills  ((unstack ?C ?B)))

((hand-enpty) 2

:percepts ((block ?C) (table ?T))
start <condi tions>

:skills  ((putdown ?C ?T)))

((unstackable ?B ?A) 3

:percepts ((block ?A) (block ?B))
(start <condi ti ons>

:skills  ((clear ?B) (hand-enpty)))

((clear ?A) 4
.percepts ((block ?B) (block ?A))
start <condi ti ons>
:skills  ((unstackable ?B ?A)
(unstack ?B ?A)))

(c) ((clear ?B) 1
:percepts ((block ?C) (block ?B))
start ((unstackabl e ?C ?B))
:skills  ((unstack ?C ?B)))
((hand-enpty) 2

:percepts ((block ?C) (table ?T))
start ((put downabl e ?C ?7T))
:skills  ((putdown ?C ?T)))

((unstackable ?B ?A) 3

.percepts ((block ?A) (block ?B))
cstart ((on ?B ?A) (hand-enpty))
:skills )

((clear ?B) (hand-enpty)))

((clear ?A)
cstart ((on ?B ?A) (hand-enpty))
:skills  ((unstackable ?B ?A)

(
(
4
:percepts ((block ?B) (block ?A))
(
(
(

unstack ?B ?A)))

Table 5: Skill clauses for the Blocks World learned from the trace in Figued after hierarchical
structure has been determined, (b) after the heads have been ideatifiet) after the
start conditions have been inserted. Numbers after the heads indicatel¢nenowhich

clauses are generated.

strategy leads directly to the creation of recursive skills whenever aepturl predicaté is the
goal andP also appears as a subgoal. In this example, beqalear A)is the top-level goal and
(clear B)occurs as a subgoal, one of the clauses learnediéarris defined recursively, although
this happens indirectly througimstackable

Clearly, introducing recursive statements can easily lead to overly demaengen nonterminat-
ing programs. Our approach avoids the latter because the problem seWezrconsiders a subgoal
if it already occurs earlier in the goal stack; this ensures that subgdathwnvolve the same
predicate always have different arguments. However, we still regoinee means to address the
third issue of determining conditions on learned clauses that guards @ manger of overgen-
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Learn(GQ
If the goal G involves skill chaining,
Then let S; and S; be Gs first and second subskills.
If subskill S; is enpty,
Then create a new skill clause Nwith head G
with the head of S, as the only subskill,
and with the same start condition as Sp.
Return the literal for skill clause N
El se create a new skill clause Nwith head G
with the heads of S; and S; as ordered subskills,
and with the same start condition as S;.
Return the literal for skill clause N
Else if the goal Ginvolves concept chaining,
Then let C, ..., Gcbe Gs initially satisfied subconcepts.
Let C¢r1, ..., Ch be Gs stored subskills.
Create a new skill clause Nwth head G
with Gg1, ..., Gy as ordered subskills,
and with C;, ..., G as start conditions.
Return the literal for skill clause N

Table 6: Pseudocode for creation of skill clauses through goalrdogmposition.

eralization. The response differs depending on whether the probleer sesolves an impasse by
chaining backward on a primitive skill or by chaining on a concept definition

Suppose the agent achieves a sub@d#hrough skill chaining, say by first applying sk
to satisfy the start condition fd& and executing the skilb,, producing a clause with hed&land
ordered subskill$; andS,. In this casethe start condition for the new clause is the same as that for
S1, since wherg,; is applicable, the successful completion of this skill will ensure the stadition
for S, which in turn will achieveG. This differs from traditional methods for constructing macro-
operators, which analytically combine the preconditions of the first opeaatbthose preconditions
of later operators it does not achieve. Howe&mnvas either selected because it achiesgs start
condition or it was learned during its achievement, both of which mearSifeastart condition is
sufficient for the composed skill.

In contrast, suppose the agent achieves a goal cofcgpbugh concept chaining by satisfying
the subconcept&y,1,...,Gp, in that order, while subconcep®, ..., Gk were true at the outset.
In response, the system would construct a new skill clause with Geattl the ordered subskills
Gk.1, ..., Gp, each of which the system already knew and used to achieve the assacibgmal or
which it learned from the successful solution of one of the subproblemnthkis casethe start con-
dition for the new clause is the conjunction of subgoals that were alreadyiedtizforehandThis
prevents execution of the learned clause when sont& of. ., Gx are not satisfied, in which case
the sequenc6y.1,...,Gn may not achieve the go@. Table 6 gives pseudocode that summarizes
both methods for determining the conditions on new clauses.

Table 5 (c) presents the conditions learned for each of the skill clauesegetefrom the trace in
Figure 2. Two of these (clauses 1 and 2) are trivial because thayfresn degenerate subproblems
that the system solves by chaining off a single primitive operator. Anotlikckluse (3) is more

4. If skill S is executed without invoking another skill to meet its start condition, the rdetheates a new clause, with
S as its only subskill, that restates the original skill in a new form \@tim its head.
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Sol ve(Q
Push the goal literal Gonto the enpty goal stack GS.
On each cycle,
If the top goal G of the goal stack GSis satisfied,
Then pop GS and let New be Learn(G)
If G's parent P involved skill chaining,
Then store New as P’s first subskill.
Else if G's parent P involved concept chaining,
Then store New as P’s next subskill.
Else if the goal stack GS does not exceed the depth linit,
Let S be the skill instances whose heads unify with G
If any applicable skill paths start froman instance in S,
Then sel ect one of these paths and execute it.
Else let Mbe the set of primtive skill instances that
have not already failed in which Gis an effect.
If the set Mis nonenpty,
Then select a skill instance Q fromM
Push the start condition C of Qonto goal stack GS.
Store Q with goal G as its last subskill.
Mark goal G as involving skill chaining.
Else if Gis a conplex concept with the unsatisfied
subconcepts H and with satisfied subconcepts F,
Then if there is a subconcept | in Hthat has not yet failed,
Then push | onto the goal stack GS.
Store F with G as its initially true subconcepts.
Mark goal G as involving concept chaining.
El se pop G fromthe goal stack GS.
Store information about failure with Gs parent.
El se pop G fromthe goal stack GS.
Store information about failure with Gs parent.

Table 7: Pseudocode for interleaved problem solving and executiami®ddo support goal-driven
composition of skills. New steps are indicated in italic font.

interesting because it results from chaining off the concept definitiomfstackable This has
the start conditiongon ?A ?B)and (hand-emptybecause the subconcept instanf@s A B) and
(hand-emptyheld at the outset. The final clause (4) is most intriguing because it results from
using a learned clause (3) followed by the primitive skill instafwestack B A) In this case, the
start condition is the same as that for the first subskill clause (3).

Upon initial inspection, the start conditions for clause 3 for achievingtackablenay appear
overly general. However, recall that the skill clauses in a teleoredotie program are interpreted
not in isolation but as parts of chains through the skill hierarchy. Thegratar will not select
a path for execution unless all conditions along the path from the top cladbe myimitive skill
are satisfied. This lets the learning method store very abstract conditiomgoclauses with
less danger of overgeneralization. On reflection, this scheme is the omlithahmakes sense for
recursive control programs, since static preconditions cannotatlae such structures. Rather,

5. Although primitive skills have only one start condition, we do not cutygplace this constraint on learned clauses,
as they are not used in problem solving and it makes acquired prognanesreadable.
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the architecture must compute appropriate preconditions dynamically, dlagesn the depth of
recursion. The Prolog-like interpreter used for skill selection proviiesflexibility and guards
against overly general behavior.

We refer to the learning mechanism that embodies these answgeosladriven composition
This process operates in a bottom-up fashion, with new skills being formedevker a goal on the
stack is achieved. The method is fully incremental, in that it learns from sirgjlérig cases, and
it is interleaved with problem solving and execution. The technique shaseshracteristic with
analytical methods for learning from problem solving, such as thosealfouSoar and RODIGY.
But unlike these methods, it learns hierarchical skills that decomposéeprslinto subproblems,
and, unlike most methods for forming macro-operators, it acquires digjarand recursive skills.
Moreover, learning is cumulative in that skills learned from one problesrasailable for use on
later tasks. Taken together, these features make goal-driven compasitiomple yet powerful
approach to learning logic programs for reactive control. Nor is the method ditaterorking with
means-ends analysis; it should operate over traces of any plannehéiad backward from a goal.

The architecture’s means-ends module must retain certain information gwdhtem solving
to support the composition of new skill clauses. Table 7 presents expppadadocode that specifies
this information and when the system stores it. The form and content is similaattoettorded in
Veloso and Carbonell’s (1993) approach to derivational analogg KBy difference is that their
system stores details about subgoals, operators, and preconditipesificscases that drive future
problem solving, whereas our approach transforms these instancegeimtoalized hierarchical
structures for teleoreactive control.

We should clarify that the current implementation invokes a learned clalgevben it is ap-
plicable in the current situation, so the problem solver never chains offitisconditions. Mooney
(1989) incorporated a similar constraint into his work on learning macesatbprs to avoid the
utility problem (Minton, 1990), in which learned knowledge reduces $ebrt leads to slower
behavior. However, we have extended his idea to cover cases in whitleteskills can solve sub-
problems, which supports greater transfer across tasks. In ourvir@inethis assumption means
that clauses learned from skill chaining have a left-branching stryoiitie the second subskill
being primitive.

In Section 2, we stated that every skill clause in a teleoreactive logicgrogan be expanded
into one or more sequences of primitive skills, and that each sequenceciited legally, will
produce a state that satisfies the clause’s head concept. Here wéhatog@al-driven composition
learns sets of skill clauses for which this condition holds. As in most resear planning, we
assume that the preconditions and effects of primitive skills are accurat&lso that no external
forces interfere. First consider a clause with the hidatiat has been created as the result of suc-
cessful chaining off a primitive skill. This learned clause is guaranteedhieee the goal concept
H becauséd must be an effect of its final subskill or the chaining would never haceroed.

Now consider a clause with the heBdthat has been created as the result of successful chain-
ing off a conjunctive definition of the concepit This clause describes a situation in which some
subconcepts off hold but others must still be achieved to makdrue. Some subconcepts may
become unsatisfied in the process and need to be reachieved, butehagmh subgoals found
during problem solving worked for the particular objects involved, amda@ng constants with
variables will not affect the result. Thus, if the clause’s start conditizessatisfied, achieving the
subconcepts in the specified order will achié¢ve Remember that our method doest guaran-
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tee, like those for learning macro-operators, that a given clause sipanill run to completion.
Whether this occurs in a given domain is an empirical question, to which weuraw

5. Experimental Studiesof Learning

As previously reported (Choi & Langley, 2005), the means-endsl@molsolving and learning
mechanisms just described construct properly organized teleorelacfiegorograms. After learn-
ing, the agent can simply retrieve and execute the acquired programs ¢osswiNar problems
without falling back to problem solving. Here we report promising resutimfmore systematic
and extensive experiments. The first two studies involve inherentlysieeusut nondynamic do-
mains, whereas the third involves a dynamic driving task.

5.1 Blocks World

The Blocks World involves an infinitely large table with cubical blocks, aloriigp & manipulator
that can grasp, lift, carry, and ungrasp one block at a time. In this domairwrote an initial
program with nine concepts and four primitive skills. Additionally, we prodideconcept for each
of four different goal®. Theoretically, this knowledge is sufficient to solve any problem in the
domain, but the extensive search required would make it intractable totaskewith many blocks
using only basic knowledge. In fact, only 20 blocks are enough to makgyttem search for half
an hour. Therefore, we wanted the system to learn teleoreactive lagjcaons that it could execute
recursively to solve problems with arbitrary complexity. We have alreadyudged a recursive
program acquired from one training problem, which requires clearinipttest object in a stack of
three blocks, but many other tasks are possible.

To establish that the learned programs actually help the architecture to sokveonaplex prob-
lems, we ran an experiment that compared the learning and non-learnsignge We presented the
system with six ten-problem sets of increasing complexity, one after andloee specifically, we
used sets of randomly generated problems with 5, 10, 15, 20, 25, ardd&3 blf the goal-driven
composition mechanism is effective, then it should produce noticeabléitsendarder tasks when
the learning is active.

We carried out 200 runs with different randomized orders within levetasi difficulty. In each
case, we let the system run a maximum of 50 decision cycles before stargingroa problem and
attempt a task at most five times before it gave up. For this domain, we set timunaxepth of
the goal stack used in problem solving to eight. Figure 3 displays the nurhbgecution cycles
and the CPU time required for both conditions, which shows a strong befnefitdearning.

With number of cycles as the performance measure, we see a systemagisdess the system
gains more experience. Every tenth problem introduces five additiofedtepbut the learning
system requires no extra effort to solve them. The architecture hatwciesl general programs
that let it achieve familiar goals for arbitrary numbers of blocks withoubntésy to deliberative
problem solving. Inspection reveals that it acquires the nonprimitive dkilises in Table 3, as
well as additional ones that make recursive calls. In contrast, the moimgaystem requires more
decision cycles on harder problems, although this levels off later in the cas\vthe problem solver
gives up on very difficult tasks.

6. These concerned achieving situations in which a given block is cleahlock is on another, one block is on another
and a third block is on the table, and three blocks are arranged in a tower.
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Figure 3: Execution cycles and CPU times required to solve a series of 25100, 25, and 30-
block problems (10 different tasks at each level) in the Blocks World aseibn of the
number of tasks with and without learning. Each learning curve shows tae aver 200
different task orders and 95 percent confidence intervals.

The results for solution time show similar benefits, with the learning conditiontautely
outperforming the condition without. However, the figure also indicates e ¢he learning
version slows down somewhat as it encounters problems with more blodatysis of individual
runs suggests this results from the increased cost of matching aggestsah the environment,
which is required in both the learning and nonlearning conditions. Thisspséssue, not for our
approach to skill construction but to our architectural framework, sesedves attention in future
research.

Table 8 shows the average results for each level of problem complexityging the probability
that the system can solve a problem within the allowed number of cycles antptgtdn addition
to presenting the first two measures at more aggregate levels, it alstsrihagawithout learning,
the chances of finding a solution decrease with the number of blocks inabé&pr. Letting the
system carry out more search would improve these scores, but onlg absh of increasing the
number of cycles and CPU time needed to solve the more difficult problems.

5.2 FreeCdll Solitaire

FreeCell is a solitaire game with eight columns of stacked cards, all facedwgsible to the player,
that has been used in Al planning competitions (Bacchus, 2001). Thefewr free cells, which
can hold any single card at a time, and four home cells that correspond flauthéifferent suits.

The goal is to move all the cards on the eight columns to the home cells for titeiirsascending
order. The player can move only the cards on the top of the eight columrnb@wdes in the free
cells. Each card can be moved to a free cell, to the proper home cell, or to@Ety eolumn. In

addition, the player can move a card to a column whose top card has thaimgx¢inand a different
color. As in the Blocks World, we provided a simulated environment that allegel moves and
updates the agent’s perceptions.
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Blocks Learning No Learning

cycles CPU P(sol} cycles CPU P(sol)
5 21.25 4.03 0.997 5252  8.82 0.958
10 1361 6.90 0.997 85.15 40.60 0.857
15 11.22 11.13 0.995 98.82 9493 0.816
20 9.76 16.09 0.997 92.06 149.05 0.863
25 11.04 27.41 0.996 91.77 230.43 0.842
30 11.67 40.85 0.995 95.89 344.49 0.826

Table 8: Aggregate scaling results for the Blocks World.
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Figure 4: Execution cycles and CPU times required to solve a series of 86,120, and 24-card
FreeCell problems (20 different tasks each) as a function of the nunfitessks with and
without learning. Each learning curve shows the mean over 300 diffexskorders and
95 percent confidence intervals.

For this domain, we provided the architecture with an initial program whichiiega24 con-
cepts and 12 primitive skills that should, in principle, let it solve any initial gurhtion with a
feasible solution path. (Most but not all FreeCell problems are solvaHiaever, the agent may
find a solution only after a significant amount of search using its mearsgeolllem solver. Again
we desired the system to learn teleoreactive logic programs that it camexaccomplex FreeCell
problems with little or no search. In this case, we presented tasks as aseqddive 20-problem
sets with 8, 12, 16, 20, and 24 cards. On each problem, we let the systeahmost 1000 decision
cycles before starting over, attempt the task no more than five times befing hand create goal
stacks up to 30 in depth. We ran both the learning and nonlearning veosi@g9 sets of randomly
generated problems and averaged the results. Figure 4 shows the rafropeles and the CPU
time required to solve tasks as a function of the number of problems encedinter

In the learning condition, the system rapidly acquired recursive Fiep@grams that reduced
considerably the influence of task difficulty as compared to the nonleawirgjon. As before,

510



LEARNING RECURSIVE CONTROL PROGRAMS

250 300
1 1

.
I
'
|
‘
[
|
|

e
|
|
|
|
|

o

200
1

Number of cycles required

150
1

total -
planning - ______

execution _ - __ _ __

100
1

50
1

0
(=}
[u—
’
2
N H- L4

Number of trials

Figure 5: The total number of cycles required to solve a particular righttask along with the
planning and execution times, as a function of the number of trials. Eachrigaurve
shows the mean computed over ten sets of trials and 95 percent confiiemeals.

the benefits are reflected in both the number of cycles needed to solMemsoand in the CPU
time. However, increasing the number of cards in this domain can alter theus&rot solutions, so
the learning system continued to invoke means-ends problem solving in ¢atemg of the curve.
For instance, situations with 20 cards often require column-to-column moatddmot appear in
simpler tasks, which caused comparable behavior in the two conditions abthi@exity level.
However, the learning system took advantage of this experience to haddlerd problems with
much less effort. Learning also increased the probability of solution (&®percent) over the
nonlearning version (around 50 percent) on these tasks.

5.3 In-City Driving

The in-city driving domain involves a medium-fidelity simulation of a downtownidgwenviron-
ment. The city has several square blocks with buildings and sidewalkst segments, and inter-
sections. Each street segment includes a yellow center line and white dogdiohés, and it has its
own speed limit the agent should observe. Buildings on each block hayeeuaddresses, to help
the agent navigate through the city easily and to allow specific tasks like gadediveries. A typ-
ical city configuration we used has nine blocks, bounded by four vestiegets and four horizontal
streets with four lanes each.

For this domain, we provided the system 41 concepts and 19 primitive skills. tiétbasic
knowledge, the agent can describe its current situation at multiple levebswaation and perform
actions for accelerating, decelerating, and steering left or right éstieaangles. Thus, it can
operate a vehicle, but driving safely in a city environment is a totally diffestory. The agent must
still learn how to stay aligned and centered within lane lines, change lanesagecor decrease
speed for turns, and stop for parking. To encourage such leamgrovided the agent with the
task of moving to a destination on a different street segment that requiigistaurn. To achieve
this task, it resorted to problem solving, which found a solution path thativestachanging to the

511



LANGLEY AND CHOI

rightmost lane, staying aligned and centered until the intersection, stegimga place the car in
the target segment, and finally aligning and centering in the new lane.

We recorded the total number of cycles to solve this task, along with its breakohto the
cycles devoted to planning and to execution, as a function of the numb&isf Figure 5 shows the
learning curve that results from averaging over ten different setiatd.tAs the system accumulates
knowledge about the driving task, its planning effort effectively dissgrs, which leads to an overall
reduction in the total cycles, even though the execution cycles increak#yslighe latter occurs
because the vehicle happens to be moving in the right direction at the ouiget,agcidently brings
it closer to the goal while the system is engaged in problem solving. Afteritegrthe agent takes
the same actions intentionally, which produces the increase in executios.cyMgdeshould note that
this task is dominated by driving time, which places a lower bound on the beoi#isrning even
when behavior becomes fully automatized.

We also inspected the skills that the architecture learned for this domain. abtavs the five
clauses it acquires by the end of a typical training run. These strudctwlade two recursive refer-
ences, one in whicin-intersection-for-right-turinvokes itself directly, but also a more interesting
one in whichdriving-in-segmentalls itself indirectly throughin-segmentin-intersection-for-right-
turn, andin-rightmost-laneTesting this teleoreactive logic program on streets with more lanes than
occur in the training task suggests that it generalizes correctly to these situatio

6. Related Research

The basic framework we have reported in this paper incorporates ideasfnumber of traditions.
Our representation and organization of knowledge draws directly frenpainadigm of logic pro-
gramming (Clocksin & Mellish, 1981), whereas its utilization in a recognizesade has more in
common with production-system architectures (Neches, Langley, & KI&&7). The reliance on
heuristic search to resolve goal-driven impasses, coupled with the gawftgeneralized solutions,
comes closest to the performance and learning methods used in problengsobhitectures like
Soar (Laird, Rosenbloom, & Newell, 1986) and@bIGY (Minton, 1990). Finally, we have already
noted our debt to Nilsson (1994) for the notion of a teleoreactive system.

However, our approach differs from earlier methods for improving ffiei@ncy of problem
solvers in the nature of the acquired knowledge. In contrast to SodPrmoiGY, which create flat
control rules, our framework constructs hierarchical logic prograrasititorporate nonterminal
symbols. Methods for learning macro-operators (e.g., lba, 1988; Mod®89) have a similar
flavor, in that they explicitly specify the order in which to apply operatous they do not typically
support recursive references. Shavlik (1989) reports a systretirns recursive macro-operators
but that, like other work in this area, does not acquire reactive consoller

Moreover, both traditions have used sophisticated analytical methodsthatrr goal regres-
sion to collect conditions on control rules or macro-operators, nommenéal empirical techniques
like inductive logic programming, or combinations of such methods (e.g., Estliro&ndy, 1997).
Instead, goal-driven composition transforms traces of successfuisraals search directly into
teleoreactive logic programs, determining their preconditions by a simple mitabidvolves nei-
ther analysis or induction, as normally defined, and that operates in @miantal and cumulative
fashion.

Previous research on learning for reactive execution, like work arcBecontrol, has empha-
sized unstructured knowledge. For example, Benson’s (1995) TR&duires teleoreactive control
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((driving-in-segnment ?me ?9994 ?g1021)
:percepts ((segment ?g994) (lane-line ?91021) (self ?ne))
.start ((in-segnment ?nme ?9994) (steering-wheel-straight ?ne))
:skills  ((in-lane ?nme ?g1021)
(centered-in-lane ?me 29994 ?9g1021)
(aligned-with-lane-in-segnent ?me 29994 ?g1021)
(steering-wheel -straight ?me)))
((driving-in-segnent ?me 79998 ?g1008)
.percepts ((segnment ?g998) (lane-line ?91008) (self ?ne))
:start ((steering-wheel-straight ?me))
:skills  ((in-segment ?nme ?g998)
(centered-in-lane ?me 29998 ?g1008)
(aligned-with-lane-in-segnent ?me ?g998 ?g1008)
(steering-wheel -straight ?ne)))

((in-segnent ?me ?g998)
:percepts ((self ?me) (intersection ?g978) (segnment ?g998))
start ((last-1ane ?g1021))
:skills ((in-intersection-for-right-turn ?me ?g978)
(steer-for-right-turn ?me ?g978 ?g998)))
((in-intersection-for-right-turn ?me ?9978)
.percepts ((lane-line ?g1021) (self ?me) (intersection ?9978))
start ((last-1ane ?g1021))
:skills  ((in-rightnost-lane ?me ?g1021)
(in-intersection-for-right-turn ?nme ?9978)))
((in-rightnost-1ane ?me ?g1021)
:percepts ((self ?me) (lane-line ?91021))
start ((last-1ane ?g1021))
cskills  ((driving-in-segnent ?me ?g994 ?g1021)))

Table 9: Recursive skill clauses learned for the in-city driving domain.

programs for use in physical environments, but it utilizes inductive logigr@mming to determine
local rules for individual actions rather than hierarchical structufesrn et al. (2004) report an
approach to learning reactive controllers that trains itself on increasaughplex problems, but
that also acquires decision lists for action selection. Khardon (1998jibes another method for
learning ordered, but otherwise unstructured, control rules frasemied problem solutions.

Our approach shares some features with research on inductiveapnmgmg, which focuses
on synthesizing iterative or recursive programs from input-outpuneies. For instance, Schmid'’s
(2005) IPAL generates an initial program from the results of probldwirgpby replacing constants
with constructive expressions with variables, then transforms it into agsigeuprogram through
inductive inference steps. Olsson’s (1995) ADATE also generatessiee programs through pro-
gram refinement transformations, but carries out an iterative deepeearch guided by criteria
like fit to training examples and syntactic complexity. Schmid’s work comes closeur own,
in that both operate over problem-solving traces and generate rexpreigrams, but our method
produces these structures directly, rather than using explicit trandfomua revision steps.
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Perhaps the closest relative to our approach is Reddy and Taded®@®g)(X-Learn, which
acquires goal-decomposition rules from a sequence of training probl€hesr system does not
include an execution engine, but it generates recursive hierargiiara in a cumulative manner
that also identifies declarative goals with the heads of learned clausesevelp because it in-
vokes forward-chaining rather than backward-chaining searchite sew problems, it relies on
the trainer to determine program structure. X-Learn also uses a sopieidtioaxture of analyti-
cal and relational techniques to determine conditions, rather than our nmglesmethod. Ruby
and Kibler's (1991) SteppingStone has a similar flavor, in that it learnsergéned decomposi-
tions through a mixture of problem reduction and forward-chaining fedfarsella and Schmidt's
(1993) system also acquires task-decomposition rules by combiningrtbema backward search
to hypothesize state pairs, which in turn produce rules that it revisedatfteer experience.

Finally, we should mention another research paradigm that deals withisgpegdhe execution
of logic programs. One example comes from Zelle and Mooney (1993), repmrt a system that
combines ideas from explanation-based learning and inductive logicgmnoging to infer the con-
ditions under which clauses should be considered. Work in this areaataresnds with standard
logic programs, whereas our system transforms a weak problem-solvitngpani@to an efficient
program for reactive control. In summary, although our learning tecteniigcorporates ideas from
earlier frameworks, it remains distinct on a number of dimensions.

7. Directionsfor Future Research

Despite the promise of this new approach to representing, utilizing, andrigéknowledge for
teleoreactive control, our work remains in its early stages. Future mdsshould demonstrate the
acquisition of complex skills on additional domains. These should include bahicdh domains
like logistics planning and dynamic settings like in-city driving. We have repopt@liminary
results on the latter, but our work in this domain to date has dealt with relativeplesskills, such
as changing lanes and slowing down to park. Humans’ driving knowlsdge more complex, and
we should demonstrate that our methods are sufficient to acquire many hibeeo

Note that, although driving involves reactive control, it also benefits fromte planning and
other high-level activities. Recall that our definition of teleoreactive lpgigrams, and our method
for learning them, guarantees only that a skill will achieve its associatddf gfoexecutes success-
fully, not that such execution is possible. For such guarantees, weaungstent the current exe-
cution module with some lookahead ability, as Nau et al. (1999) have alresyfdr hierarchical
task networks. This will require additional effort from the agent, but fillless than solving a
problem with means-ends analysis.

Another response would use inductive logic programming or related metthtslsn additional
conditions on skill clauses that ensure they will achieve their goal, eveowtitbokahead. To this
end, we can transform the results of lookahead search into positiveegative instances of clauses,
based on whether they would lead to success, much as in early work airig@gearch-control rules
from solution paths (Sleeman et al., 1982). Even if such conditions armplete, they should still
reduce the planning effort required to ensure the agent’s actions willpe the desired outcome.

Another important limitation concerns our assumption that the agent alwaysites a skill
to achieve a desired situation. The ability to express less goal-directediegtisuch as playing
a piano piece, are precisely what distinguishes hierarchical task heatfrom classical planning
(Erol, Hendler, & Nau, 1994). We hope to extend our framework in thisation by generalizing
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its notion of goals to include concepts that describe sets of situations thadiwihg) certain time
intervals. To support the hierarchical skill acquisition, this augmentegseptation will require
extensions to both the problem solving and learning mechanisms. In addig@hould extend our
framework to handle skill learning in nonserializable domains, such as tiieglmizzles, which
motivated much of the early research on macro-operator formation (eag1988).

Future work should also address a related form of overgeneralizaddravwe observed on the
Tower of Hanoi puzzle. In this domain, the approach learns reasohavhrchical skills that can
solve the task without problem solving, but that only do so about half the timether runs, the
learned skills attempt to move the smallest disk to the wrong peg, which ultimatestigssystem
to fail. Humans often make similar errors but also learn to avoid them with experiénspection
of the behavioral trace suggests this happens because one leaithehsge includes variables
that are not mentioned in the head but are bound in the body. We believachaling contextual
conditions about variables bound higher in the skill hierarchy will remoigentbndeterminism and
produce more correct behavior.

In addition, recall that the current system does not chain backwana e start condition of
learned skill clauses. We believe that cases will arise in which such chaieen if not strictly
necessary, will make the acquisition of complex skills much easier. Extendirgydblem solver to
support this ability means defining new conceptual predicates that theGgeunse to characterize
situations in which its learned skills are applicable. This will be straightford@rdome domains
and tasks, but some recursive skills will need recursively definetigiacepts, which requires a
new learning mechanism. Augmenting the system in this manner may also lead to a rgiignp
(Minton, 1990), not during execution of learned teleoreactive logigienms but during the problem
solving used for their acquisition, which we would then need to overcome.

Finally, we should note that, although our approach learns recursiie goggrams that gen-
eralize to different numbers of objects, its treatment of goals is less flextaeexample, it can
acquire a general program for clearing a block that does not depetite number of other objects
involved, but it cannot learn a program for constructing a tower witlitrarily specified com-
ponents. Extending the system’s ability to transfer across different,goalading ones that are
defined recursively, is another important direction for future re$eandearning hierarchical skills.

8. Concluding Remarks

In the preceding pages, we proposed a new representation of kiy@neteleoreactive logic pro-
grams — and described how they can be executed over time to control ghggénts. In addition,
we explained how a means-ends problem solver can use them to solvéastgeand, more impor-
tant, transform the traces of problem solutions into new clauses that exebeated efficiently. The
responsible learning method — goal-driven composition — acquires nezuggecutable skills in an
incremental and cumulative manner. We reported experiments that demah#teamsethod’s abil-
ity to acquire hierarchical and recursive skills for three domains, aldtigitg capacity to transfer
its learned structures to tasks with more objects than seen during training.

Teleoreactive logic programs incorporate ideas from a number of tragliffeciuding logic pro-
gramming, adaptive control, and hierarchical task networks, in a maraiesupports reactive but
goal-directed behavior. The approach which we have describedduirang such programs, and
which we have incorporated into theARUS architecture, borrows intuitions from earlier work on
learning through problem solving, but its details rely on a new mechanisnbéaas little resem-
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blance to previous techniques. Our work on learning teleoreactive loggrams is still in its early
stages, but it appears to provide a novel and promising path to the acqudditdfective control
systems through a combination of reasoning and experience.
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