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Abstract

In this article we describe a set of scalable techniqguegfiming the behavior of a group of agents
in a collaborative multiagent setting. As a basis we use tliméwork of coordination graphs of
Guestrin, Koller, and Parr (2002a) which exploits the delesicies between agents to decompose
the global payoff function into a sum of local terms. Firste deal with the single-state case and
describe a payoff propagation algorithm that computesnb&idual actions that approximately
maximize the global payoff function. The method can be vihwas the decision-making ana-
logue of belief propagation in Bayesian networks. Secoralfatus on learning the behavior of
the agents in sequential decision-making tasks. We int@diifferent model-free reinforcement-
learning techniques, unitedly called Sparse Cooper&#iearning, which approximate the global
action-value function based on the topology of a coordamatiraph, and perform updates using
the contribution of the individual agents to the maximallbglbaction value. The combined use of
an edge-based decomposition of the action-value functidrtee payoff propagation algorithm for
efficient action selection, result in an approach that saady linearly in the problem size. We pro-
vide experimental evidence that our method outperfornaedimultiagent reinforcement-learning
methods based on temporal differences.

Keywords: collaborative multiagent system, coordination graphpfeecement learningQ-
learning, belief propagation

1. Introduction

A multiagent system (MAS) consists of a group of agents that reside in\aroement and can
potentially interact with each other (Sycara, 1998; Weiss, 1999; Du2f#@1; Vlassis, 2003). The
existence of multiple operating agents makes it possible to solve inherently wistriproblems,
but also allows one to decompose large problems, which are too complex expgeasive to be
solved by a single agent, into smaller subproblems.

In this article we are interested in collaborative multiagent systems in which #sagave
to work together in order to optimize a shared performance measure. tiouper, we investigate
sequential decision-making problems in which the agents repeatedly intgthdheir environ-
ment and try to optimize the long-term reward they receive from the systeiohwkpends on a
sequence of joint decisions. Specifically, we focusrgrerently cooperativeasks involving a large
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group of agents in which the success of the team is measured by the spewifimation of actions
of the agents (Parker, 2002). This is different from other appemtiat assume implicit coordina-
tion through either the observed state variables (Tan, 1993; Dutta et@h), 20 reward structure
(Becker et al., 2003). We concentrate on model-free learning teammigwhich the agents do not
have access to the transition or reward model. Example application domairgeimetwork rout-
ing (Boyan and Littman, 1994; Dutta et al., 2005), sensor networks érLessl., 2003; Modi et al.,
2005), but also robotic teams, for example, exploration and mapping4RBiieg al., 2000), motion
coordination (Arai et al., 2002) and RoboCup (Kitano et al., 1995; Kalt.e2005).

Existing learning techniques have been proved successful in learrdrtgetiavior of a single
agent in stochastic environments (Tesauro, 1995; Crites and Bart,N§®t al., 2004). However,
the presence of multiple learning agents in the same environment complicates nfatirof all,
the action space scales exponentially with the number of agents. This maKesadilie to apply
standard single-agent techniques in which an action value, represerpiagted future reward, is
stored for every possible state-action combination. An alternative agipreauld be to decompose
the action value among the different agents and update them independdothever, the fact
that the behavior of one agent now influences the outcome of the indilicigdected actions of
the other agents results in a dynamic environment and possibly comprommesgence. Other
difficulties, which are outside the focus of this article, appear when therdiit agents receive
incomplete and noisy observations of the state space (Goldman and Zilbe2éi@#), or have a
restricted communication bandwidth (Pynadath and Tambe, 2002; Goldmaillaeictein, 2003).

For our model representation we will use the collaborative multiagent Mat&oision process
(collaborative multiagent MDP) model (Guestrin, 2003). In this model egemnt selects an indi-
vidual action in a particular state. Based on the resulting joint action the sysdesitions to a
new state and the agents receiveraaividualreward. The global reward is the sum of all individ-
ual rewards. This approach differs from other multiagent models,damele, multiagent MDPs
(Boutilier,|1996) or decentralized MDPs (Bernstein et al., 2000), in whitkgents observe the
global reward. In a collaborative MDP, it is still the goal of the agents tindpe the global re-
ward, but the individually received rewards allow for solution techrséchat take advantage of the
problem structure.

One such solution technique is based on the framework of coordinatiphgy(@Gs) (Guestrin
et al., 2002a). This framework exploits that in many problems only a fewtagipend on each
other and decomposes a coordination problem into a combination of simpldem® In a CG
each node represents an agent and connected agents indicate adodmlation dependency. Each
dependency corresponds to a local payoff function which assigpedifis value to every possible
action combination of the involved agents. The global payoff functionlsgha sum of all local
payoff functions. To compute the joint action that maximizes the global pdyofftion, a vari-
able elimination (VE) algorithm can be used (Guestrin et al., 2002a). Thisithigooperates by
eliminating the agents one by one after performing a local maximization step,asneixponen-
tial complexity in the induced tree width (the size of the largest clique genedatétg the node
elimination).

In this article we investigate different distributed learning methods to codeldtha behavior
between the agents. The algorithms are distributed in the sense that eachrdg@aeeds to com-
municate with the neighboring agents on which it depends. Our contributioroifolal. First, we
describe a ‘payoff propagation’ algorithm (max-plus) (Vlassis et aD42®ok and Vlassis, 2005)
to find an approximately maximizing joint action for a CG in which all local functians speci-
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fied beforehand. Our algorithm exploits the fact that there is a direditglbatween computing
the maximum a posteriori configuration in a probabilistic graphical model aéghfj the optimal
joint action in a CG; in both cases we are optimizing over a function that is dezsmdgn local
terms. This allows message-passing algorithms that have been develope@rfence in proba-
bilistic graphical models to be directly applicable for action selection in CGs -phasis a popular
method of that family. In the context of CG, it can therefore be regardeshapproximate alterna-
tive to the exact VE algorithm for multiagent decision making. We experimentatiyahstrate that
this method, contrary to VE, scales to large groups of agents with many dkapeias.

The problem of finding the maximizing joint action in a fixed CG is also related to thr w
on distributed constraint satisfaction problems (CSPs) in constraint netW@earl, 1988). These
problems consist of a set of variables which each take a value from a flisiteete domain. Prede-
fined constraints, which have the values of a subset of all variablepuats §pecify a cost. The ob-
jective is to assign values to these variables such that the total cost is minitiesh (@and Durfee,
1991; Dechter, 2003).

As a second contribution, we study sequential decision-making problentsch we learn the
behavior of the agents. For this, we apply model-free reinforcementihepiechniques (Bertsekas
and Tsitsiklis, 1996; Sutton and Barto, 1998). This problem is differemt finding the joint action
that maximizes predefined payoff relations, since in this case the palaifbres themselves have
to be learned. In our approach, nant®garse Cooperativ@-learning(Kok and Vlassis, 2004), we
analyze different decompositions of the global action-value functiorguSi@s. The structure of
the used CG is determined beforehand, and reflects the specific probtensiudy. For a given
CG, we investigate both a decomposition in terms of the nodes (or agentsgllassva decom-
position in terms of the edges. In the agent-based decomposition the loctibfunf an agent
is based on its own action and those of its neighboring agents. In the edgd-decomposition
each local function is based on the actions of the two agents forming this &dgé state is re-
lated to a CG with a similar decomposition, but with different values for the lagaitfons. To
update the local action-value function for a specific state, we use thékdiun of the involved
agents to the maximal global action value, which is computed using either the logaRpVE
algorithm. We perform different experiments on problems involving a largegof agents with
many dependencies and show that all variants outperform existing telrgiifteeence based learn-
ing techniques in terms of the quality of the extracted policy. Note that in out weionly consider
temporal-difference methods; other multiagent reinforcement-learning oweéxist that are based,
for example, on policy search (Peshkin et al., 2000; Moallemi and Van Zif}4) or Bayesian ap-
proaches (Chalkiadakis and Boutilier, 2003).

The remainder of this article is structured as follows. We first review the mati@ CG and
the VE algorithm in Section!2. Next, in Section 3, we discuss our approximateatiie to VE
based on the max-plus algorithm and perform experiments on randomlyatemthgraphs. Then,
we switch to sequential decision-making problems. First, we review seseisting multiagent
learning methods in Section 4. In Section 5, we introduce the differeniniarid our Sparse Coop-
erativeQ-learning method, and give experimental results on several learnibtepms in Section|6.
We end with the conclusions in Section 7.
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2. Coordination Graphsand Variable Elimination

All agents in a collaborative multiagent system can potentially influence dheh dt is therefore
important to ensure that the actions selected by the individual agents irespitimal decisions
for the group as a whole. This is often referred to asdberdination problem In this section
we review the problem of computing a coordinated action for a groupagfents as described by
Guestrin et al. (2002a). Each agérgelects an individual actiog from its action setz; and the
resultingjoint actiona = (ag,...,an), as all other vectors of two or more variables in this article
emphasized using a bold notation, generates a payafffor the team. The coordination problem
is to find the optimal joint actioa* that maximizesi(a), that is,a" = argmaxu(a).

We can compute the optimal joint action by enumerating over all possible joint actimhselect
the one that maximizes(a). However, this approach quickly becomes impractical, as the size of
the joint action spacka; x ... x 4| grows exponentially with the number of agentd-ortunately,
in many problems the action of one agent does not depend on the actioh®tbiea agents, but
only on a small subset. For example, in many real-world domains only ageraB afe spatially
close have to coordinate their actions.

The framework of coordination graphs (CGs) (Guestrin et al., 2002a)rézent approach to
exploit these dependencies. This framework assumes the action of istn agéy depends on a
subset of the other agentse I'(i). The global payoff functioru(a) is then decomposed into a
linear combination of local payoff functions, as follows,

@) - 3 f) ®

Each local payoff functiorf; depends on a subset of all actioasc a, wherea; = 4; x (x jer(i)ﬂj),
corresponding to the action of agergnd those of the agents on which it depends. This decompo-
sition can be depicted using an undirected gréph (V, E) in which each nodec V represents an
agent and an eddg j) € E indicates that the corresponding agents have to coordinate their actions,
thatis,i € '(j) andj € I'(i). The global coordination problem is now replaced by a number of local
coordination problems each involving fewer agents.

In the remainder of this article, we will focus on problems with payoff functiorcluding at
most two agents. Note that this still allows for complicated coordinated strgciuree every agent
can have multiple pairwise dependency functions. Furthermore, it is p@deilyeneralize the
proposed techniques to payoff functions with more than two agents leeaaysrbitrary graph can
be converted to a graph with only pairwise inter-agent dependencidgl{yet al., 2003; Loeliger,
2004). To accomplish this, a new agent is added for each local funcdimtiolves more than two
agents. This new agent contains an individual local payoff functiangiuefined over the combined
actions of the involved agents, and returns the corresponding value ofitfinal function. Note
that the action space of this newly added agent is exponential in its nelgidzbsize (which can
lead to intractability in the worst case). Furthermore, new pairwise payafftions have to be
defined between each involved agent and the new agent in order te e¢hatithe action selected
by the involved agent corresponds to its part of the (combined) actiocteelby the new agent.

Allowing only payoff functions defined over at most two agents, the glphgbff functionu(a)
can be decomposed as

u(a) :-; fil)+ 5 fij(aa). @
i€ (i,))eE
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(a) Initial graph. (b) After elimination of agent 1.

Figure 2: CG corresponding to the decomposition (3) before and after alimjragent 1.

A local payoff functionfi(a ) specifies the payoff contribution for the individual acterof agent,
and fij defines the payoff contribution for pairs of actiaf@g,a;) of neighboring agent§, j) € E.
Fig./1 shows an example CG with 8 agents.

In order to solve the coordination problem and faid= argmaxu(a) we can apply the vari-
able elimination (VE) algorithm (Guestrin et al., 2002a), which is in essenctidaéto variable
elimination in a Bayesian network (Zhang and Poole, 1996). The algorithm eliesirihe agents
one by one. Before an agent (node) is eliminated, the agent first calleptsyoff functions related
to its edges. Next, it computes a conditional payoff function which retumsnidximal value it is
able to contribute to the system for every action combination of its neighbwilsa &est-response
function (or conditional strategy) which returns the action correspgniirthe maximizing value.
The conditional payoff function is communicated to one of its neighbors am@gent is elimi-
nated from the graph. Note that when the neighboring agent recefuestion including an action
of an agent on which it did not depend before, a new coordinationndigpey is added between
these agents. The agents are iteratively eliminated until one agent remhiasagént selects the
action that maximizes the final conditional payoff function. This individualom is part of the
optimal joint action and the corresponding value equals the desired valygifaiaxA second pass
in the reverse order is then performed in which every agent computegiitsabpction based on its
conditional strategy and the fixed actions of its neighbors.
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We illustrate VE on the decomposition graphically represented in Fig. 2(a)stha

u(a) = fio(a1, @) + fra(au, as) + faa(as,as), 3)

We first eliminate agent 1. This agent does not depend on the localf ayction f3, and therefore
the maximization ofi(a) in (3) can be written as

maxu(a) = Jmax { fa4(az,a4) + n’;«'l:v{ f1o(ag,a2) + f13(as, as)]}. (4)

Agent 1 computes a conditional payoff functigps(az, az) = max, [f12(a1, a2) + fi3(a1,a3)] and
the best-response functid (az,a3) = argmax, [f12(a1,a2) + f13(as, ag)] which respectively re-
turn the maximal value and the associated best action agent 1 is able torpgiven the actions
of agent 2 and 3. Since the functiges(ay, az) is independent of agent 1, it is now eliminated from
the graph, simplifying (4) to mayu(a) = maXa, a, a,[ f3a(as, a4) + P3(az,as)]. The elimination of
agent 1 induces a new dependency between agent 2 and 3 and tlamga chthe graph’s topology.
This is depicted in Fig. 2(b). We then eliminate agent 2. Gmlydepends on agent 2, so we define
B2(ag) = argmax, g23(a2, ag) and replaceps by ¢z(ag) = madxe, $23(a2, as) producing

maxu(a) = max|faa(as, as) + 93(a0)] (5)

which is independent adi,. Next, we eliminate agent 3 and replace the functiépsand @; re-
sulting in max u(a) = maxg, @a(as) With @a(as) = maxe,|[faa(az,as) + @z(ag)]. Agent 4 is the last
remaining agent and fixes its optimal actiah= argmax, @(as4). A second pass in the reverse
elimination order is performed in which each agent computes its optimal (utticorad) action
from its best-response function and the fixed actions from its neighlborsur example, agent 3
first selects = Bz(ay). Similarly, we ge®; = By(a3) andaj = B1(a3,a3). When an agent has more
than one maximizing best-response action, it selects one randomly, sireaysalommunicates its
choice to its neighbors. The described procedure holds for the casteudy distributed implemen-
tation using communication. When communication is restricted, additional commaviddge
assumptions are needed such that each agent is able to run a copylgbtitara (Vlassis, 2003,
ch. 4).

The VE algorithm always produces the optimal joint action and does netndiepn the elimi-
nation order. The execution time of the algorithm, however, does. Compugngptimal order is
known to be NP-complete, but good heuristics exist, for example, first elimgide agent with the
minimum number of neighbors (Beréehnd Brioschi, 1972). The execution time is exponential
the induced width of the graph (the size of the largest clique computed cwdeelimination). For
densely connected graphs this can scale exponentiatly Furthermore, VE will only produce its
final result after the end of the second pass. This is not always piigefor real-time multiagent
systems where decision making must be done under time constraints. In #isese &n anytime
algorithm that improves the quality of the solution over time is more appropriatesgilat al.,
2004).

n

3. Payoff Propagation and the M ax-Plus Algorithnﬁ

Although the variable elimination (VE) algorithm is exact, it does not scale wigll @ensely con-
nected graphs. In this section, we introduce tinex-plus algorithmas an approximate alternative
to VE and compare the two approaches on randomly generated graphs.

1section 3 is largely based on (Kok and Vlassis, 2005).
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Figure 3: Graphical representation of different messgges a graph with four agents.

3.1 The Max-Plus Algorithm

The max-product algorithm (Pearl, 1988; Yedidia et al., 2003; Wairwegial., 2004) is a pop-
ular method for computing themaximum a posterioffMAP) configuration in an (unnormalized)
undirected graphical model. This method is analogous to the belief propagatsum-product
algorithm (Kschischang et al., 2001). It operates by iteratively serddoaily optimized messages
Hij (aj) between nodéand j over the corresponding edge in the graph. For tree-structuredsgraph
the message updates converge to a fixed point after a finite number of rier@earl, 1988). After
convergence, each node then computes the MAP assignment based ocaliitsdoming messages
only.

There is a direct duality between computing the MAP configuration in a pilidiadgraphical
model and finding the optimal joint action in a CG; in both cases we are optimizirgadwunction
that is decomposed in local terms. This allows message-passing algorithrhathdieen devel-
oped for inference in probabilistic graphical models, to be directly appédabaction selection in
CGs. Max-plus is a popular method of that family. In the context of CG, itlkearefore be regarded
as a ‘payoff propagation’ technique for multiagent decision making.

Suppose that we have a coordination gr&ph (V, E) with |V| vertices andE| edges. In order
to compute the optimal joint acticat that maximizes (2), each ager{hode inG) repeatedly sends
a messagg;j to its neighborg € I'(i). The messagg; can be regarded as a local payoff function
of agentj and is defined as

Hij (a;) =maa><{ fi(a) + fij (ai,a)) + Uki(ai)}JFCij» (6)

kel N\ j
whererl (i) \ j represents all neighbors of agergxcept agenf, andc;j is a normalization value
(which can be assumed zero for now). This message is an approximatios wfaximum payoff
agenti is able to achieve for a given action of aggntand is computed by maximizing (over the
actions of ageni) the sum of the payoff function§ and fi; and all incoming messages to agent
except that from agent Note that this message only depends on the payoff relations betwed agen
and agenf and the incoming message to ager¥lessages are exchanged until they converge to a
fixed point, or until some external signal is received. Fig. 3 shows a @Gfaur agents and the
corresponding messages.

A messagelj in the max-plus algorithm has three important differences with respect to the
conditional payoff functions in VE. First, before convergence eachsamge is an approximation
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of the exact value (conditional team payoff) since it depends on thenimgp(still not converged)
messages. Second, an agemrly has to sum over the received messages from its neighbors which
are defined over individual actions, instead of enumerating over ailesaction combinations of
its neighbors. This is the main reason for the scalability of the algorithm. Finaltigeimax-plus
algorithm, messages are always sent over the edges of the original draghe VE algorithm,
the elimination of an agent often results in new dependencies between dgdrdsl not have to
coordinate initially.

For trees the messages converge to a fixed point within a finite number of(Steprl, 1988;
Wainwright et al., 2004). Since a messagea;) equals the payoff produced by the subtree with
agentj as root when agemtperforms actiorg;, we can at any time step define

gi(a) = fi(a)+ 3 (@), ()
jer(i)

which equals the contribution of the individual function of ageamd the different subtrees with the
neighbors of agentas root. Using (7), we can show that, at convergegge;) = MaXa|a—a) u(@)
holds. Each agentcan then individually select its optimal action

a =arg mavg; (&) (8)

If there is only one maximizing action for every agenthe globally optimal joint actioa* =
argmaxu(a) is unique and has elemer#ts= (&). Note that this optimal joint action is computed
by only local optimizations (each node maximizg&;) separately). In case the local maximizers
are not unique, an optimal joint action can be computed by a dynamic progrgmeghnique
(Wainwright et al., 2004, sec. 3.1). In this case, each agent informeigflmors in a predefined
order about its action choice such that the other agents are able to fixdtieirssaccordingly.

centralized max-plus algorithmfor CG=(V,E)
initialize pj = pji =0for (i, ) € E,gi=0fori € Vandm= —c
while fixed_point = falseand deadline to send action has not yet arrided
// run one iteration
fixed point = true
for every agent do
for all neighborsj =T(i) do
sendj message (aj) = max, { fi(a) + fij (&, aj) + Txerinj Hi(@) } +Gij
if wj(a;) differs from previous message by a small threshbleh
fixed point = false
determineg;(a) = fi(a) + ¥ jer (i) Hji (&) andaj = argmayx, gi(ai)
if use anytime extensidimen
if u((a))>m then
(af) = (&) andm = u((&)))
else
(&) = (&)
return(a)

Algorithm 1. Pseudo-code of the centralized max-plus algorithm.
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Unfortunately there are no guarantees that max-plus converges imsgsdgh cycles and there-
fore no assurances can be given about the quality of the corrésggoiht actiona® = (&) with
a; from (8) in such settings. Nevertheless, it has been shown that a foiatiqgf message pass-
ing exists (Wainwright et al., 2004), but there is no algorithm yet thatgistyvconverges to such
a solution. However, bounds are available that characterize the quatte ablution if the algo-
rithm converges (Wainwright et al., 2004). Regardless of these reghdtalgorithm has been suc-
cessfully applied in practice in graphs with cycles (Murphy et al., 199%:k@nd Pfeffer, 2003;
Yedidia et al., 2003). One of the main problems is that an outgoing messagefrenti which
is part of a cycle eventually becomes part of its incoming messages. Aslathesvalues of the
messages grow extremely large. Therefore, as in (Wainwright et al) 208 normalize each sent
message by subtracting the average of all valugsinsingci; = ﬁ Y kHik(a) in (6). Still, the
joint action might change constantly when the messages keep fluctuatinqetiissitates the de-
velopment of an extension of the algorithm in which each (local) action is quiyated when the
corresponding global payoff improves. Therefore, we extend thephaxalgorithm by occasion-
ally computing the global payoff and only update the joint action when it imgoymn the best
value found so far. The best joint action then equals the last updated ¢tion.aWe refer to this
approach as thanytimemax-plus algorithm?

The max-plus algorithm can be implemented in either a centralized or a distribetsidrv
The centralized version operates using iterations. In one iteration eanhi @mputes and sends
a messaggy; to all its neighborsj € (i) in a predefined order. This process continues until all
messages are converged, or a ‘deadline’ signal (either from amakssurce or from an internal
timing signal) is received and the current joint action is reported. For thgnaam extension, we
insert the current computed joint action into (2) after every iteration atyduplate the joint action
when it improves upon the best value found so far. A pseudo-code imptatiun of the centralized
max-plus algorithm, including the anytime extension, is given in Alg. 1.

The same functionality can also be implemented using a distributed implementation. Now
each agent computes and communicates an updated message directly aftereitdived a new
(and different) message from one of its neighbors. This results in a datignal advantage over
the sequential execution of the centralized algorithm since messagesaasemioin parallel. We
additionally assume that after a finite number of steps, the agents recelgadline’ signal after
which they report their individual actions.

For the distributed case, the implementation of the anytime extension is much more xomple
since the agents do not have direct access to the actions of the oth&s ag#re global payoff
function (2). Therefore, the evaluation of the (distributed) joint actiomiy mitiated by an agent
when it believes it is worthwhile to do so, for example, after a big increaseeirvdlues of the
received messages. This agent starts the propagation of an ‘evaluadissage over a spanning
treeST. A spanning tree is a tree-structured subgrap8 tifat includes all nodes. This tree is fixed
beforehand and is common knowledge among all agents. An agentingcaivevaluation message
fixes its individual action until after the evaluation. When an agent is a fe@ffaot also computes
its local contribution to the global payoff and sends this value to its pareSfTinEach parent
accumulates all payoffs of its children and after adding its own contribugBadssthe result to its
parent. Finally, when the root &T has received all accumulated payoffs from its children, the sum
of these payoffs (global payoff) is distributed to all nodeS&ih The agents only update their best

2An alternative, and perhaps more accurate, term is ‘max-plus with mgmdowever, we decided on the term
‘anytime’ for reasons of consistency with other publications (Kok angsita 2005; Kok, 2006).
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di stributed max-plus for agent i, CG=(V,E), spanning tree ST=(V,S
initialize pj = ;i =0for j €l (i), g =0, pi=0andm= —o
while deadline to send action has not yet arriveal
wait for messagensg
if msg= y;i(a) // max-plus messagehen
for all neighborsj € (i) do
computety; (a;) = mav, { fi(&) + fij(ai,)) + Yuer(y j Wi(@) } +Gij
send message; (a;) to agentj if it differs from last sent message
if use anytime extensidmen
if heuristic indicates global payoff should be evaluatbén
sendeval uat e( i) to agent // initiate computation global payoff
else
a = argmax[fi(a) + 3 jer) Hji (a)]
if msg=eval uat e( j ) // receive request for evaluation from aggnthen
if & not locked, locka] = argmax, [fi(a;) + Y jer(yMji(a)] and setp; = 0
sendeval uat e( i ) to all neighbors (parent and children)&T # |
if i =leafinSTthen
sendaccunul at e_payof f (0 ) to agent // initiate accumulation payoffs
if msg=accunul at e_payoff ( p; ) from agentj then
pi = pi + p; // add payoff childj
if received accumulated payoff from all childrenSi then
get actionsa; from j € I'(i) in CG and set = fi(&) + 3 5 jer() fij (8, &)
if i =rootofSTthen
sendgl obal _payof f ( g+ p; ) to agent
else
sendaccunul at e_payof f ( g; + pi ) to parent inST
if msg= gl obal _payoff(g) then

if g>m then
a =a andm=g
sendgl obal _payof f (@) to all children inST and unlock actior{
returna;’

Algorithm 2: Pseudo-code of a distributed max-plus implementation.

individual actiona® when this payoff improves upon the best one found so far. When tlaelfice’
signal arrives, each agent reports the action related to the highest gtabal payoff, which might
not correspond to the current messages. Alg. 2 shows a distributgdrver pseudo-code.

3.2 Experiments

In this section, we describe our experiments with the max-plus algorithm ceretily shaped
graphs. For cycle-free graphs max-plus is equivalent to VE when tssages in the first iteration
are sent in the same sequence as the elimination order of VE and in theererggsfor the second
iteration (comparable to the reversed pass in VE). Therefore, we onimn#esplus on graphs with
cycles.
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(a) Graph with 15 edges (average(b) Graph with 23 edges (average (c) Graph with 37 edges (average
degree of 2). degree of 7). degree of 83).

Figure 4: Example graphs with 15 agents and cycles.

We ran the algorithms on differently shaped graphs with 15 agents and/iagzanumber of
edges. In order to generate balanced graphs in which each agemtiapely has the same degree,
we start with a graph without edges and iteratively connect the two agéhtde minimum number
of neighbors. In case multiple agents satisfy this condition, an agent isdpgtk@andom from the
possibilities. We apply this procedure to create 100 graphs for |€&ch {8,9,...,37}, resulting
in a set of 3000 graphs. The set thus contains graphs in the range of on ave@&genkighbors
per agent (8 edges) ta3B neighbors per agent (37 edges). Fig. 10 depicts example graphs with
respectively 15, 23 and 37 edges (on average 2, 3.07 and 4.93 oeigidy node). We create three
copies of this set, each having a different payoff function related todge<in the graph. In the
first set, each edg@, j) € E is associated with a payoff functiofy defined over five actions per
agent and each action combination is assigned a random payoff fromdasianormal distribution,
that is, fij (ai,aj) ~ A (0,1). This results in a total of 3, around 3 billion, different possible joint
actions. In the second set, we add one outlier to each of the local payefidns: for a randomly
picked joint action, the corresponding payoff value is set toAL00,1). For the third test set, we
specify a payoff function based on 10 actions per agent resulting'frdiferent joint actions. The
values of the different payoff functions are again generated usitendard normal distribution.

For all graphs we compute the joint action using the VE algorithm, the standasgblora al-
gorithm, and the max-plus algorithm with the anytime extension. Irrespectivelyrvergence, all
max-plus methods perform 100 iterations. As we will see later in/Fig. 6 the plaéisystabilized
at this point. Furthermore, a random ordering is used in each iteration torde¢ewhich agents
sends its messages. B

The timing results for the three different test sets are plotted in FigThe x-axis shows the
average degree of the graph, and yhaxis shows, using a logarithmic scale, the average timing
results, in milliseconds, to compute the joint action for the correspondindngrdemember from
Section 2 that the computation time of the VE algorithm depends on the induced ofittle
graph. The induced width depends both on the average degree armtiuhlestructure of the graph.
The latter is generated at random, and therefore the complexity of graghther same average
degree differ. Table 1 shows the induced width for the graphs used expgeiments based on the
elimination order of the VE algorithm, that is, iteratively remove a node with the minimumber

3All results are generated on an Intel Xeon 3.4GHz / 2GB machine usBigramplementation.
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Figure 5: Timing results for VE and max-plus for different graphs with ¢&rais and cycles.

’ average degree \ (1,2] \ (2,3 \ (3,4 \ (4,5] ‘
| induced width | 1.23(+0.44) | 2.99 (+0.81) | 4.94(+0.77) | 6.37 (+0.68) |

Table 1: Average induced width and corresponding standard deviatiamrdphs with an average
degree inx—1,x].

of neighbors. The results are averaged over graphs with a similarggvdegyree. For a specific
graph, the induced width equals the maximal number of neighbors that haeectansidered in a
local maximization.

In Fig.|5, we show the timing results for the standard max-plus algorithm; thdtsder the
anytime extension are identical since they only involve an additional chetikeaflobal payoff
value after every iteration. The plots indicate that the time for the max-plusithligogrows lin-
early as the complexity of the graphs increases. This is a result of the ndietisveen the number
of messages and the (linearly increasing) number of edges in the grtaplgrdphs with 10 actions
per agent require more time compared to the two other sets because the cmmmdtavery mes-
sage involves a maximization over 100 instead of 25 joint actions. Note that albtimgults are
generated with a fixed number of 100 iterations. As we will see later, the taaxafgorithm can
be stopped earlier without much loss in performance, resulting in eveneguiokng results.

For the graphs with a small, less tha® 2average degree, VE outperforms the max-plus algo-
rithm. In this case, each local maximization only involves a few agents, and &fidlego finish its
two passes through the graph quickly. However, the time for the VE algogtbms exponentially
for graphs with a higher average degree because for these grapsdatenumerate over an increas-
ing number of neighboring agents in each local maximization step. Furthertherelimination of
an agent often causes a neighboring agent to receive a conditicatabgtinvolving agents it did
not have to coordinate with before, changing the graph topology to andmmser graph. This ef-
fect becomes more apparent as the graphs become more dense. dtifieafy, for graphs with 5
actions per agent and an average degree of 5, it takes VE on a&3&gseconds to generate the
joint action. The max-plus algorithm, on the other hand, only requires3lifdilliseconds for such
graphs. There are no clear differences between the two sets with 5sgotipagent since they both
require the same number of local maximizations, and the actual values ddloenhae the algo-
rithm. However, as is seen in Fig. 5(c), the increase of the number of agiEmagent slows the
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VE algorithm down even more. This is a result of the larger number of joiidra& which has to
be processed during the local maximizations. For example, during a locahmation of an agent
with five neighbors 5= 3,125 actions have to be enumerated in the case of 5 actions per agent.
With 10 actions per agent, this number increases f0=1000,000 actions. During elimination the
topology of the graph can change to very dense graphs resulting ifaggen maximizations. This
is also evident from the experiments. For some graphs with ten actions geragl an average
degree higher than3, the size of the intermediate tables grows too large for the available memory,
and VE is not able to produce a result. These graphs are removed fesutth-or the graphs with
an average degree between 3 and 4, this results in the removal of 8 gysiph an increase of the
average degree, this effect becomes more apparent: VE is not abteltecpra result for 466 out of
the 700 graphs with an average degree higher than 4; all these graphs@ved from the set. This
also explains why the increase in the curve of VE in Fig. 5(c) decre#isesnore difficult graphs,
which take longer to complete, are not taken into account. Even withoutdhagies, it takes VE on
average 3396 seconds, almost 6 minutes, to produce a joint action for the graphs vatressge
degree of 5. The max-plus algorithm, on the other hand, needs on ex&t&g milliseconds.

The max-plus algorithm thus outperforms VE with respect to the computation tingefsely
connected graphs. But how do the resulting joint actions of the max-plastaly compare to the
optimal solutions of the VE algorithm? Fig. 6 shows the payoff found with the ptag-algorithm
relative to the optimal payoff, after each iteration. A relative payoff ofdidates that the found
joint action corresponds to the optimal joint action, while a relative payofd ofdicates that it
corresponds to the joint action with the minimal possible payoff. Each of thedisplayed curves
corresponds to the average result of a subset with a similar averaged&gecifically, each subset
contains all graphs with an average degreéxin 1,x], with x € {2,3,4,5}.

We first discuss the result of the standard max-plus algorithm in the goaptiee left. For all
three sets, the loosely connected graphs with an average degree tesgdltanverge to a similar
policy as the optimal joint action in a few iterations only. As the average degoeeases, the
resulting policy declines. As seen in Fig. 6(c), this effect is less evideheigraphs with outliers;
the action combinations related to the positive outliers are clearly prefemddowers the number
of oscillations. Increasing the number of actions per agent has a regdtitence on the result, as
is evident from Fig. 6(e), because the total number of action combinatioreaises. The displayed
results are an average of a large set of problems, and an individuaypically contains large
oscillations between good and bad solutions.

When using the anytime version, which returns the best joint action foufat,sihe obtained
payoff improves for all graphs. This indicates that the failing convergeni the messages causes
the standard max-plus algorithm to oscillate between different joint actiah$a@met’ good joint
actions. Fig. 6 shows that for all sets near-optimal policies are founduglthmore complex graphs
need more iterations to find them.

4. Collaborative M ultiagent Reinforcement L earning

Until now, we have been discussing the problem of selecting an optimal jctiohan a group of
agents for a given payoff structure and a single state only. Next, wadensequential decision-
making problemslin such problems, the agents select a joint action which provides thewaedre
and causes a transition to a new state. The goal of the agents is to selets #wdiboptimize a
performance measure based on the received rewards. This mightarassdgquencef decisions.
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An important aspect of this problem is that the agents have no prior knge/kelolout the effect of
their actions, but that this information has to learnedbased on the, possibly delayed, rewards.
Next, we review a model to represent such a problem and describmksekition techniques.

4.1 Collaborative Multiagent MDP and Q-L earning

Different models exist to describe a group of agents interacting with theiroement. We will use
the collaborative multiagent MDP framework (Guestrin, 2003) which is a@nsion of the single-
agent Markov decision process (MDP) framework (Puterman, 1994pnsists of the following
model parameters:

e Atimestept =0,1,2,3,....
e Agroup ofnagentsA = {A1,Ay,...,An}.

e A set of discrete state variabl& The global state is the cross-product ofralvariables:
S=S; x... x Sy A states' € Sdescribes the state of the world at time

¢ A finite set of actionsa; for every ageni. The action selected by ageinat time stept
is denoted bysyt € 4i. The joint actiona' € 2 = 41 x ... x 4y is the combination of all
individual actions of thex agents.

e A state transition functiof : Sx 2 x S— [0, 1] which gives transition probabilitp(s+1|s', a')
that the system will move to stage™ when the joint actiora! is performed in staté.

e A reward functionR; : Sx 2 — R which provides agenti with an individual reward! €
R (s, a') based on the joint actioaf taken in states. The global reward is the sum of all
local rewardsR(s',a') = S ; R (s, a).

This model assumes that the Markov property holds which denotes thaatbelsscription at
time t provides a complete description of the history before ttm&his is apparent in both the
transition and reward function in which all information before titnis ignored. Furthermore, it
also assumes that the environment is stationary, that is, the reward asitidraprobabilities are
independent of the time stépSince the transition function is stationary, we will in most cases omit
the time step superscript when referring to a state and use the shortharstifor the next state
s+,

A policy 11: s — a is a function which returns an actianfor any given states. The objec-
tive is to find an optimal policyt that maximizes the expected discounted future retit(s) =
max:E [T1 oV R(S, T(s))|m s” = 5] for each stats. The expectation operatéi]] averages over
stochastic transitions, anyk [0,1) is the discount factor. Rewards in the near future are thus pre-
ferred over rewards in the distant future. The return is defined in tefrtfeecsum of individual
rewards, and the agents thus have to cooperate in order to achieveothaioa goal. This differs
from self-interested approaches (Shapley, 1953; Hansenlet adl) RO&hich each agent tries to
maximize its own payoff.

Q-functions, or action-value functions, represent the expected fdisowunted reward for a
states when selecting a specific acti@and behaving optimally from then on. The opting
functionQ* satisfies the Bellman equation:

Q'(s2) =R(s:8)+Vy p(<]s.2) maxQ' (s, d). (©)
s
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GivenQ*, the optimal policy for the agents in statés to jointly select the action argma®*(s,a)
that maximizes the expected future discounted return.

Reinforcement learning (RL) (Sutton and Barto, 1998; Bertsekas aitsiklis, 1996) can be
applied to estimat®*(s,a). Q-learning is a widely used learning method for single-agent systems
when the agent does not have access to the transition and reward mbdeigdnt interacts with
the environment by selecting actions and receiges, r,s') samples based on the experienced state
transitions.Q-learning starts with an initial estima@(s, a) for each state-action pair. At each time
step the agent selects an action based on an exploration strategy. A conusexhlgtrategy is-
greedy which selects the greedy action, argg6s,a), with high probability, and, occasionally,
with a small probabilitye selects an action uniformly at random. This ensures that all actions, and
their effects, are experienced. Each time an acidtaken in state, rewardR(s,a) is received,
and next statd is observed, the correspondi@gvalue is updated with a combination of its current
value and the temporal-difference error, the difference between itsrtestimate)(s,a) and the
experienced sampl(s,a) + ymaxy Q(s, &), using

Q(s:3) = Q(s:a) +a[R(s. @) +ymaxQ(s,d) ~ Q(s.a) (10)

wherea € (0,1) is an appropriate learning rate which controls the contribution of the neeriexp
ence to the current estimate. When every state-action pair is associatedunitiuaQ-value and
every action is sampled infinitely often (as with thgreedy action selection method), iteratively
applying [(10) is known to converge to the optinggi(s,a) values (Watkins and Dayan, 1992).
Next, we describe four multiagent variants of tabufatearning to multiagent environments,
and discuss their advantages and disadvantages. We do not comsidenetion-approximation
algorithms. Although they have been been successfully applied in se\enains with large state
sets, they are less applicable for large action sets since it is more difficdhtralize over nearby
(joint) actions. Furthermore, we only consider model-free methods in whichgbnts do not have
access to the transition and reward function. The agents do observertbetstate and also receive
an individual reward depending on the performed joint action and thaeawk reward function.
Finally, we assume the agents are allowed to communicate in order to coordiatctions.

4.2 MDP Learners

In principle, a collaborative multiagent MDP can be regarded as one s&mgée agent in which

each joint action is represented as a single action. It is then possible taheasptimalQ-values

for the joint actions using standard single-ag@riearning, that is, by iteratively applying (10). In

this MDP learnerspproach either a central controller models the complete MDP and communicates
to each agent its individual action, or each agent models the complete MiaRassly and selects

the individual action that corresponds to its own identity. In the latter casegénts do not need to
communicate but they have to be able to observe the executed joint actioraiaddlved individual
rewards. The problem of exploration is solved by using the same randarhar generator (and

the same seed) for all agents (Vlassis, 2003).

Although this approach leads to the optimal solution, it is infeasible for probieithsmany
agents. In the first place, it is intractable to model the complete joint actiore spéduich is ex-
ponential in the number of agents. For example, a problem with 7 agentsabkcto perform 6
actions, results in almost 28W00 Q-values per state. Secondly, the agents might not have access
to the needed information for the update because they are not able tveotisestate, action, and
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reward of all other agents. Finally, it will take many time steps to explore all gitions resulting
in slow convergence.

4.3 Independent Learners

At the other extreme, we have tlredependent learneft.) approach (Claus and Boutilier, 1998)
in which the agents ignore the actions and rewards of the other agentkeaandheir strategies
independently. Each agent stores and updates an individual@alled the global-function is
defined as a linear combination of all individual contributio@és,a) = 3, Qi(s,a). Each local
Q-function is updated using

Qi(sa):=Qi(sa)+alR(sa) +vm%§lXQi (s, &) —Qi(s,&)]. (11)

Note that eacl®); is based on the global stage This approach results in big storage and compu-
tational savings in the action-space, for example, with 7 agents and 6 apBomgent only 42
Q-values have to be stored per state. However, the standard corsemeof forQ-learning does
not hold anymore. Because the actions of the other agents are ignoredraptesentation of the
Q-functions, and these agents also change their behavior while learnéngystem becomes non-
stationary from the perspective of an individual agent. This might leadddlations. Despite the
lack of guaranteed convergence, this method has been applied $ulkg@ssnultiple cases (Tan,
1993; Sen et al., 1994).

4.4 Coordinated Reinforcement Learning

In many situations an agent has to coordinate its actions with a few agentswodlgcts indepen-
dently with respect to the other agents. In Guestrin et al. (2002b) thifeeetitCoordinated Rein-
forcement Learningpproaches are described which take advantage of the structurepobthem.
The three approaches are respectively a variar@-tdarning, policy iteration, and direct policy
search. We will concentrate on tielearning variant which decomposes the gloQdlinction into

a linear combination of local agent-depend@riunctions. Each local; is based on a subset of all
state and action variables,

Q(s.a) = iQi (s, a), (12)

wheres andag; are respectively the subset of state and action variables related toi agédrgse
dependencies are established beforehand and differ per probleta.tidbin this representation,
each agent only needs to observe the state varigblelsich are part of its loca);-function. The
corresponding CG is constructed by adding an edge betweeniagetjtwhen the action of agert

is included in the action variables of agenthat is,a; € a;. As an example, imagine a computer
network in which each machine is modeled as an agent and only depends statdhand action
variables of itself and the machines it is connected to. The coordinatioh grapld in this case
equal the network topology.

A local Q; is updated using the global temporal-difference error, the differerbgden the
current globafQ-value and the expected future discounted return for the experietatedransition,
using

Qi(s,a) == Qi(s,a) +a[R(s,a) +yrr;§1xQ(s’, a/) —Q(s,a)]. (13)
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The global rewardR(s,a) is given. The maximizing action i and the associated maximal ex-
pected future return, mgQ(s, &), are computed in a distributed manner by applying the VE al-
gorithm discussed in Section 2 on the CG. The estimate of the glgvalue ins, Q(s,a) in (13),

is computed by fixing the action of every agent to the one assignadaimd applying a message
passing scheme similar to the one used in the VE algorithm. We use a table-¢@as=gntation for
the Q-functions in our notation. However, since each individQalunction is entirely local, each
agent is allowed to choose its own representation, for example, usingtiofuapproximator as in
Guestrin et al. (2002b).

The advantage of this method is that it is completely distributed. Each aggrg &decalQ-
function and only has to exchange messages with its neighbors in the grapdeinto compute
the globalQ-values. In sparsely connected graphs, this results in large computatémitegs since
it is not necessary to consider the complete joint action-space. Howeeglgorithm is still
slow for densely connected graphs because of two main reasons. tlérsize of each locaD-
function grows exponentially with the number of neighbors of the cormedipg agent. Secondly,
the computational complexity of the VE algorithm is exponential in the induced widtie graph,
as shown in Sectidn 3.2.

45 Distributed Value Functions

Another method to decompose a large action space is the distributed valtieriga®VF) ap-
proach (Schneider et al., 1999). Each agent maintains an individeell @afunction, Q;(s, &),
based on its individual action and updates it by incorporatingQHanctions of its neighboring
agents. A weight functiorf(i, j) determines how much th@-value of an agent contributes to the
update of theQ-value of agent. This function defines a graph structure of agent dependencies, in
which an edge is added between agéatsd j if the corresponding functiofi(i, j) is non-zero. The
update looks as follows:

Q(s,a) = (1-o)Q(s,a)+aR(sa)+y 5 f(i,j)maxQ;(s,aj)]. (14)
jefioT (i)} g

Note thatf(i,i) also has to be defined and specifies the agent’s contribution to the cistiemdte.

A common approach is to weigh each neighboring function equélly,j) = 1/|i UT (j)|. Each
Q-function of an agent is thus divided proportionally over its neighbors and itself. This method
scales linearly in the number of agents.

5. Spar se Cooper ative Q-L earning

In this section, we describe our Sparse CooperdfiMearning, or SparseQ, methods which also
approximate the globdaD-function into a linear combination of loc&-functions. The decompo-
sition is based on the structure of a CG which is chosen beforehand.inkipgbe we can select
any arbitrary CG, but in general a CG based on the problem under istudgd. For a given CG,
we investigate both a decomposition in terms of the nodes (or agents), aswledl @dges. In the
agent-based decomposition the local function of an agent is based omitsctian and those of its
neighboring agents. In the edge-based decomposition each local fuisdtiased on the actions of
the two agents it is connected to. In order to update a local function, thiel&ays to base the up-
date not on the difference between the current gl@bahlue and the experienced global discounted

1806



COLLABORATIVE MULTIAGENT REINFORCEMENTLEARNING BY PAYOFF PROPAGATION

Q1(ay,a, a3)

Q12(a1,a) Q13(ar,as)

e Qz(a1,ag,as)

Qo(ag, a2) Qza(asz, a4)

(4) Qa(as,as)
(a) Agent-based decomposition. (b) Edge-based decomposition.

Figure 7: An agent-based and edge-based decomposition of the @ealktion for a 4-agent
problem.

return, but rather on the current lod@dvalue and thdocal contributiorof this agent to the global
return.

Next, we describe an agent-based decomposition of the gi@tahction and explain how the
local contribution of an agent is used in the update step. Thereafteregeiloe an edge-based
decomposition, and a related edge-based and agent-based update method

5.1 Agent-Based Decompositior@

As in Guestrin et al. (2002b) we decompose the glép&linction over the different agents. Every
agenti is associated with a loc&-function Q;(s;,a) which only depends on a subset of all pos-
sible state and action variables. These dependencies are specifisghbatband depend on the
problem. TheQ;-functions correspond to a CG which is constructed by connecting egctt @ith
all agents in which its action variable is involved. See Fig.|7(a) for an exacfi@e agent-based
decomposition for a 4-agent problem.

Since the globaQ-function equals the sum of the loc@Hunctions of alln agentsQ(s,a) =
S ,Qi(s,a), itis possible to rewrite th€-learning update rule in (10) as

_iQi (s, &) = _iQi (s,&)+a [_iR(S,a) +ymaxQ(s,a) - _iQi (sa)]. (15)

Only the expected discounted return, m&Xs,a’), cannot be directly written as the sum of local
terms since it depends on tlggobally maximizing joint action. However, we can use the VE al-
gorithm to compute, in a distributed manner, the maximizing joint aciios: argmay Q(s, &)

in states, and from this compute the local contributiQq(s/,a") of each agent to the total action
valueQ(s,a*). Note that the local contribution of an agent to the global action value mightnes
than the maximizing value of its loc&-function because it is unaware of the dependencies of its
neighboring agents with the other agents in the CG. Since we can substituteQfsa®’) with
Si1Qi(s,&), we are able to decompose all terms|in (15) and rewrite the update for gawti a
separately:

Qi(s,a) = Qi(s,a)+a[Ri(s,a) +YQi(s, &) — Qi(s, &)]. (16)

4Subsection 5/1 is based on (Kok and Vlassis, 2004).
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This update is completely based on local terms and only requires the distrMEtatyorithm to
compute the maximizing joint acticai’. In contrast to CoordRL, we directly take advantage of the
local rewards received by the different agents. Especially for tamgdblems with many agents, this
allows us to propagate back the reward to the local functions related to ¢éiésagsponsible for
the generated rewards. This is not possible in CoordRL which uses thal géovard to update the
different local functions. As a consequence, the agents are notoathigtinguish which agents are
responsible for the received reward, and all functions, including ties evhich are not related to
the received reward, are updated equally. It might even be the cadbeHhzgh reward generated
by one agent, or a group of agents, is counterbalanced by the negatized of another agent. In
this case, the combined global reward equals zero and no functionpdated.

Just as the coordinated RL approach, both the representation of th&)|efcections and the
VE algorithm grow exponentially with the number of neighbors. This becomeisigmatic for
densely connected graphs, and therefore we also investigate ataskp-decomposition of the
Q-function which does not suffer from this problem in the next section.

5.2 Edge-Based Decomposition

A different method to decompose the glolgafunction is to define it in terms of the edges of the
corresponding CG. Contrary to the agent-based decomposition, wiailels xponentially with the
number of neighbors in the graph, the edge-based decomposition scakedylin the number of
neighbors. For a coordination gra@h= (V, E) with |V| vertices andE| edges, each edde j) € E
corresponds to a loc&-function Qjj, and the sum of all locaD-functions defines the glob&)-
function:

Qsa)= > Qij(sj,a,a), 17)

(i,))€E

wheres; C s Us;j is the subset of the state variables related to aigemd agen§ which are relevant
for their dependency. Note that each loGafunction Q;; always depends on the actions of two
agentsa anda;, only. Fig|7(b) shows an example of an edge-based decompositiorfagant
problem.

An important consequence of this decompaosition is that it only dependsimviggfunctions.
This allows us to directly apply the max-plus algorithm from Section 3 to compute#xémizing
joint action. Now, both the decomposition of the action-value function and thieaudor action
selection scale linearly in the number of dependencies, resulting in anaabpittat can be applied
to large agent networks with many dependencies.

In order to update a locd)D-function, we have to propagate back the reward received by the
individual agents. This is complicated by the fact that the rewards ag@vescper agent, while the
local Q-functions are defined over the edges. For an agent with multiple neghlimtherefore not
possible to derive which dependency generated (parts of) the re@ardapproach is to associate
each agent with a loc&-functionQ; that is directly computed from the edge-bagetunctionsQ;.
This allows us to relate the received reward of an agent directly to its &gesedQ-function Q;.

In order to comput&);, we assume that each edge-baQefinction contributes equally to the two
agents that form the edge. Then, the loQdiunctionQ; of agenti is defined as the summation of
half the value of all locaQ-functionsQjj of agenti and its neighborg € I' (i), that is,

1
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(a) Edge-based update. (b) Agent-based update.

Figure 8: A graphical representation of the edge-based and agssd-b@date method after the
transition from statsto s'. See the text for a detailed description.

The sum of all locaQ-functionsQ; equalsQ in (17). Next, we describe two update methods for the
edge-based decomposition defined in terms of these local agent®dsadtions.

5.2.1 EDGE-BASED UPDATE

The first update method we consider updates each @dahctionQ;j based on its current estimate
and its contribution to the maximal return in the next state. For this, we rewrijebgleplacing
every instance of); with its definition in|(18) to

1 1
5 2 Qispaa):=5 5 Qjlsja.a)+
jer(i) jer(i)
R(sa) 1 . 1
a Z el +Y§_Z' Qij (s, &, aj) — z Qij(sj,a.aj) |- (19)
jer( jer () Jer

Note that in this decomposition for aganive made the assumption that the rewRrds divided
proportionally over its neighbors(i). In order to get an update equation for an individual local
Q-function Q;j, we remove the sums. Because, one half of every IQehlnction Q;; is updated
by agenti and the other half by agent agentj updates the locaD-function Q;j using a similar
decomposition as (19). Adding the two gives the following update equatioa $ingle localQ-
functionQjj:

Qij(sj,a,a)) := Qij(sj,a,a) +
Ri(s,a) n Rj(s,a)
rmr - ral
Each localQ-function Q;; is updated with a proportional part of the received reward of the two
agents it is related to and with the contribution of this edge to the maximizing joint a&tien

+VyQij (s, & ,a]) — Qij(sj,a,a) |- (20)
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(&) = argmax Q(s,d) in the states. The latter is computed by either applying the exact VE
algorithm or the approximate max-plus algorithm. We can also derive (20) {t0) directly using
(17). However, we want to emphasize that it is possible to derive thisteipdle from the agent-
based decomposition discussed in Section 5.1.

Fig.|8(a) shows a graphical representation of the update. The l¢foptre figure shows a
partial view of a CG in state. Only the agentsand j, their connecting edge, which is related to a
local edge-base@-functionQ;j, and some outgoing edges are depicted. The right part of the figure
shows the same structure for state Following (20), a localQ-function Q;; is directly updated
based on the received reward of the involved agents and the maximizingddaactionQ;j in the
next state.

5.2.2 AGENT-BASED UPDATE

In the edge-based update method the reward is divided proportionafiyhevdifferent edges of an
agent. All other terms are completely local and only correspond to the (@éahction Q;; of the
edge that is updated. A different approach is to first compute the tengiffeaknce erroper agent
and divide this value over the edges. For this, we first rewrite (16)dent using (18) to

1
é Z QI](SJ)ahaJ) =

jer(

| =

[Qij(sj,a,a))] +a[R(s,a) +YQi(s, &) — Qi(s,a)]. (21)

Jerﬂ

In order to transfer (21) into a local update function, we first rewriteténeporal-difference error
as a summation of the neighbors of agey

Ri(s,a 4—V(l($¥ar —Qi(s, aﬂ

R(s,a)+YQi(s,a) — Qi(s,a) ,er<. 0

(22)

Note that this summation only decomposes the temporal-difference erroj eqaal parts, and
thus does not usgexplicitly. Because now all summations are identical, we can decompose (21)
by removing the sums. Just as in the edge-based update, there aremgovegeh update the same
local Q-functionQ;j. When we add the contributions of the two involved agemtsd j, we get the

local update equation

R«(s,a) + YQk(S, 8;) — Qk(Sk, a)
kel T (k)| '

Qij(sj,a.a)) = Qij(sj,a,a) + a (23)
This agent-based update rule propagates back the temporal-differaocdrom the two agents
which are related to the loc&-function of the edge that is updated, and incorporates the infor-
mation of all edges of these agents. This is different from the edge-based updidtednrehich
directly propagates back the temporal-difference error related to treetbdyis updated. This is
depicted in Fig. 8(b). Again, the left part of the figure represents thatituin states, and the
right part the situation in the next state The edge-base@-functionQ;; is updated based on the
local agent-base@-functions of the two agents that form the edge. These functions areutechp
by summing over the local edge-bag@dunctions of all neighboring edges.
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Next, we will describe several experiments and solve them using both ¢me-bgsed and the
edge-based decomposition. For the latter, we apply both the agent-babedge-based update
method, and show the consequences, both in speed and solution qualigin@fthe max-plus
algorithm as an alternative to the VE algorithm.

6. Experiments

In this section, we describe experiments using the methods discussed im8eatid Section 5.
We give results on a large single-state problem and on a distributed setamrk problem, which
was part of the NIPS 2005 benchmarking workshop. We selected thelsieqmms because they are
both fully specified and, more importantly, require the selection of a speoifibmation of actions
at every time step. This is in contrast with other experiments in which coordinedio be modeled
through the state variables, that is, each agent is able to select its optimallzatied on only the
state variables (for example, its own and other agents’ positions) anchdbésive to model the
actions of the other agents (Tan, 1993; Guestrin et al., 2002b; Betckey 2003).

6.1 Experimentson Single-State Problems

Now, we describe several experiments in which a groupagents have to learn to take the optimal
joint action in a single-state problem. The agents repeatedly interact with theioement by
selecting a joint action. After the execution of a joint actmrthe episode is immediately ended
and the system provides each agent an individual re®da). The goal of the agents is to select
the joint actiona which maximizesR(a) = 31 ; Ri(a). The local rewardR; received by an agert
only depends on a subset of the actions of the other agents. Thesgldepies are modeled using a
graph in which each edge corresponds to a local reward functiondbighs a value(a;, a;) to each
possible action combination of the actions of agemtd agenf. Each local reward function is fixed
beforehand and contains one specific pair of actioéfisd;) that results in a high random reward,
uniformly distributed in the rangg, 15|, that is, 5+ « ([0,10]). However, failure of coordination,
that is, selecting an actior(&;,a;) with a; # &; or r(&;,&;) with & # &, will always result in a
reward of 0. All remaining joint actions,(a;,a;) with & # & anda; # &;, give a default reward
from the uniform distributiorez ([0,10]). The individual rewardR; for an agent equals the sum of
the local rewards resulting from the interactions with its neighR(®) = ¥ jcr(i) r (&, ;). Fig.'9
shows an example of the construction of the individual reward recdiyesth agent based on its
interaction with its four neighbors, together with an example reward funct@na, ) corresponding
to an edge between agergnd agenj.

The goal of the agents is to learn, based on the received individuardewto select a joint
action that maximizes the global reward. Although we assume that the agemt®krwhich other
agents it depends, this goal is complicated by two factors. First, the outcoagetected action
of an agent also depends on the actions of its neighbors. For exampégethts must coordinate
in order to select the joint actiofd;, &;) which, in most cases, returns the highest reward. Failure
of coordination, however, results in a low reward. Secondly, beceaske agent only receives an
individual reward, they are not able to derive which neighbor interaatased which part of the
reward. An important difference with the problem specified in Section 3\ &hioh the the agents
have to select a joint action that maximizes predefined payoff functionsitigtthis case the payoff
relations themselves have to be learned based on the received rewards.
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action ageni

1 2 3 4
T 19155 0  9.293 0.19
@ 2|7651 0 2872 1287
S 3 0 12020 0 0

8 4|4536 0 1581 8.138

(b) Exampler (a;,a;j) function.

(a) Construction of rewarB(a).

Figure 9: Construction of the reward for agent 1 in the single-state prob{@) The individual
rewardR, is the sum of the rewardgay, a;) generated by the interactions with its neigh-
borsj € I'(1) = {2,3,4,5}. (b) Exampler (&, a;) function.

We perform experiments with 12 agents, each able to perform 4 actioesyrohp as a whole
thus has # ~ 1.7-10’, or 17 million, different joint actions to choose from. We investigate reward
functions with different complexities, and apply the method described in $e8tibto randomly
generate 20 graphs = (V,E) with |V| = 12 for each|E| € {7,8,...,30}. This results in 480
graphs, 20 graphs in each of the 24 groups. The agents of the simi@Epbsd7 edges) have an
average degree of 116, while the most complex graphs (30 edges) have an average dédiee o
Fig./10 shows three different example graphs with different averageeds. Fig. 10(a) and (c)
depict respectively the minimum and maximal considered average dednézFg. 10(b) shows a
graph with an average degree of 2.

We apply the different variants of our sparse cooperdfiMearning method described in Sec-
tion'5 and different existing multiage@tlearning methods, discussed in Section 4, to this problem.
Since the problem consists of only a single stateQelkarning methods stor@-functions based
on actions only. Furthermore, we assume that the agents have acceds totddd for each agent
specifies on which other agents it depends. This CG is identical to the tgpoldlye graph that
is used to generate the reward function. Apart from the diffe@efgarning methods, we also ap-
ply an approach that selects a joint action uniformly at random and keagis af the best joint
action found so far, and a method that enumerates all possible joint actidrssaxes the one with
the highest reward. To summarize, we now briefly review the main chaisaterof all applied
methods:

Independent learners (IL) Each agent stores a loca-function Q;(a;) only depending on its
own action. Each update is performed using the private reRaadcording to (111). An agent
selects an action that maximizes its own lo@alunctionQ;.

Distributed value functions (DVF) Each agenitstores a locaQ-function based on its own action,
and an update incorporates tefunctions of its neighbors following (14). For stateless
problems, as the ones in this section, @xgalue of the next state is not used and this method
is identical to IL.
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(a) A graph with 7 edges (average (b) A graph with 12 edges (aver- (c) A graph with 30 edges (aver-
degree of 116). age degree of 2). age degree 0of.B0).

Figure 10: Example graphs with 12 agents and different averageegegre

Coordinated reinforcement learning (CoordRL) Each ageni stores an individuaRQ-function
based on its own action and the actions of its neightjazd (i). Each function is updated
based on theglobaltemporal-difference error using the update equation in (13). This rep-
resentation scales exponentially with the number of neighbors. VE is usedeionine the
optimal joint action which scales exponentially with the induced width of the graph

Spar se cooper ative Q-learning, agent-based (SparseQ agent) Each agent storeg@function that
is based on its own action and the actions of its neighlpard (i). A function is updated
based on théocaltemporal-difference error following (16). The representation and cemp
tational complexity are similar to the CoordRL approach.

Spar se cooper ative Q-learning, edge-based (SparseQ edge) Each edge in the used CG is associ-
ated with aQ-function based on the actions of the two connected agents. We apply both th
edge-basedpdate method (SparseQ edge, edge) from (20) which upd@tdaraction based
on the value of the edge that is updated, andahent-basedpdate method (SparseQ edge,
agent) from|[(23), which updates@function based on the loc&-functions of the agents
forming the edge.

The two update methods are both executed with the VE algorithm and the anytimglusax
algorithm in order to determine the optimal joint action, resulting in four differeethods
in total. The max-plus algorithm generates a result when either the messayesge, the
best joint action has not improved for 5 iterations, or more than 20 iteratrensesformed.
The latter number of iterations is obtained by comparing the problem under witldthe
coordination problem addressed in Section 3.2. Both problem sizes arersinithas is
visible in Fig. 6 the coordination problem reaches a good performance2éfitarations.

Random method with memory Each iteration, each agent selects an action uniformly at random.
The resulting joint action is evaluated and compared to the best joint actiod $ouar. The
best one is stored and selected.

Enumeration In order to compare the quality of the different methods, we compute the optimal
value by trying every possible joint action and store the one which resultsimighest
reward. This requires an enumeration over all possible joint actions. tNatt¢his approach
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method | (1,2 (23] | (3.4 | (45 |
IL/DVF 48 | 48 | 48 | 48

edge-based 152 | 248 | 344 440
agent-based 528 | 2,112 8,448 | 33,792

Table 2: Average number @-values needed for the different decompaositions for graphs with an
average degree ifx— 1, x].

does not perform any updates, and quickly becomes intractable folepms larger than the
one addressed here.

We do not apply the MDP learners approach since it would take too longtta Solution. First,
it requires an enumeration ovet’4~ 17 million) actions at every time step. Secondly, assuming
there is only one optimal joint action, the probability to actually find the optimal joitiba is
negligible. An exploration action should be made (probabd)jtyand this exploration action should
equal the optimal joint action (probability g%z).

Table 2 shows the average numbef®¥alues required by each of the three types of decompo-
sitions. The numbers are based on the generated graphs and aweragsichilarly shaped graphs.
Note the exponential growth in the agent-based decomposition that is usstt itie CoordRL and
agent-based SparseQ approach.

We run each method on this problem for,@80 learning cycles. Each learning cycle is directly
followed by a test cycle in which the reward related to the current greediygotion is computed.
The values from the test cycles, thus without exploration, are used toazentipe performance
between the different methods. For @learning variants, th€@-values are initialized to zero and
the parameters are setdo= 0.2, & = 0.2, andy = 0.9.

Fig.[11 shows the timing results for all methﬂﬁhex—axis depicts the average degree of the
graph. They-axis, shown in logarithmic scale, depicts the average number of secosmlsisphe
15,000 learning cycles on graphs with a similar average degree. For the mtiomanethod it
represents the time for computing the reward of all joint actions.

The results show that the random and IL/DVF approach are the quiakdsiake less than a
second to complete. In the IL/DVF method each agent only stores functamesilon its individual
action and is thus constant in the number of dependencies in the graphthiliotiee time increase
in the random approach for graphs with a higher average degreesiscchy the fact that more local
reward functions have to be enumerated in order to compute the rewasthcturs in all methods,
but is especially visible in the curve of the random approach since for thisothéhe small absolute
increase is relatively large with respect to its computation time.

The CoordRL and the agent-based SparseQ method scale exponentiallyavititrease of
the average degree, both in their representation of the @dahctions and the computation of
the optimal joint action using the VE algorithm. The curves of these methodipverFig. 11.
Because these methods need a very long time, more than a day, to prag@ss with a higher
average degree than 3, the results for graphs with more than 18 edgastazomputed. The
edge-based decompositions do not suffer from the exponential giouwhle representation of the

5All results are generated on an Intel Xeon 3.4GHz / 2GB machine udihigramplementation.
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—+— CoordRL
—<— SparseQ agent (VE)
— - — - SparseQ edge, edge (VE)
O - SparseQ edge, agent (VE)

10 L SparseQ edge, agent (anytime) 4
— — — SparseQ edge, edge (anytime)
0 - Enumerate
—<— IL/IDVF
X
KRR K% Random
L L L L
1 2 3 4 5

average degree

Figure 11: Timing results for the different methods applied to the single-statdgms with 12
agents and an increasing number of edges. The results overlap fooahgRL and the
agent-based SparseQ decomposition, and the two edge-based detionguosing the
VE algorithm.

local Q-functions. However, this approach still grows exponentially with an emeef the average
degree when the VE algorithm is used to compute the maximizing joint action. Tlis foo both
the agent-based and edge-based update method, which overlap imtheWtsen the anytime max-
plus algorithm is applied to compute the joint action, both the representation Qffilmection and
the computation of the joint action scale linearly with an increasing averagealefhe agent-based
update method is slightly slower than the edge-based update method beesfirst ihcorporates
the neighboringQ-functions in its update (23), and therefore the values inQHanctions are less
distinct. As a consequence, the max-plus algorithm needs more iterationsijiate step to find
the maximizing joint action.

Finally, the enumeration method shows a slight increase in the computation time with an
crease of the average degree because it has to sum over more fatalrfs for the denser graphs
when computing the associated value. Note that the problem size was cliebathat the enumer-
ation method was able to produce a result for all different graphs.

Fig.[12 shows the corresponding performance for the most relevanbdsetBach figure depicts
the running average, of the last 10 cycles, of the obtained rewardvestatthe optimal reward for
the first 15000 cycles. The optimal reward is determined using the enumeration methsdltsRe
are grouped for graphs with a similar complexity, that is, having about time saimber of edges
per graph.

Fig./12(a) depicts the results for the simplest graphs with an averageedegs than or equal
to 2. We do not show the results for the CoordRL approach since it idtet@learn a good policy
and quickly stabilize around 41% of the optimal value. This corresponds totleothée which
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Figure 12: Running average, of the last 10 cycles, of the receivearderelative to the optimal
reward for different methods on the single-state, 12-agent problerhs. [éEgend of
Fig. 12(a) holds for all figures. See text for the problem description.

each agent selects a value uniformly at random each iteration. TheRloapproach updates each
local Q-function with the global temporal-difference error. Therefore, theesglobal reward is
propagated to each of the individu@ifunctions and the expected future discounted return, that is,
the sum of the loca@-functions, is overestimated. As a result Qevalues blow up, resulting in
random behavior.

The IL/DVF approach learns a reasonable solution, but it suffers fre fact that each agent
individually updates it€-value irrespective of the actions performed by its neighbors. Thexefo
the agents do not learn to coordinate and the policy keeps oscillating.

The random method keeps track of the best joint action found so farlanty $earns a better
policy. However, it learns slower than the different SparseQ methodge tHat this method does
not scale well to larger problems with more joint actions.

The agent-based SparseQ decomposition converges to an optimal potieyitsitores aQ-
value for every action combination of its neighbors, and is able to detece#tgbrforming action
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Figure 13: Running average of the received reward relative to the dptmvard for the different
edge-based methods, using either the VE or anytime max-plus algorithm, angdlee s

state, 12-agent problem.

combination. However, this approach learns slower than the differga-lbdsed decompositions
since it requires, as listed in Table 2, more samples to update the large ndrbealoes. The two
edge-based decompositions using the anytime extension both learn gtisstsolution. The
agent-based update method performs slightly better since it, indirectly, isctbdeneighboring

Q-values in its update.
As is seen in Fig. 12(b), the results are similar for the more complicated gvagihan average

degree between 2 and 3. Although not shown, the CoordRL learreersoaable to learn a good
policy and quickly stabilizes around 44% of the optimal value. On the othat, lihe agent-based
decomposition converges to the optimal policy. Although the final result istsliglorse compared
to the simpler graphs, the edge-based decompositions still learn near-gmiioeds. The result of
the agent-based update method is better than the edge-based update methtiab dirst includes

the neighboring-values in its update.
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method | w2 | 23 | 34 | (45 |
Random with memory 0.9271| 0.9144| 0.9122| 0.9104
IL 0.8696| 0.8571| 0.8474| 0.8372
CoordRL 0.4113| 0.4423 - -
SparseQ agent (VE) 1.0000| 0.9983 - -

SparseQ edge, agent (VE) | 0.9917| 0.9841| 0.9797| 0.9765
SparseQ edge, edge (VE) 0.9843| 0.9614| 0.9416| 0.9264
SparseQ edge, agent (anytime.9906| 0.9815| 0.9722| 0.9648
SparseQ edge, edge (anytime)0.9856| 0.9631| 0.9419| 0.9263

Table 3: Relative reward with respect to the optimal reward afte®Q® cycles for the different
methods and differently shaped graphs. Results are averaged apbsgrith an average
degree in(x— 1,x], as indicated by the column headers.

Similar results are also visible in Fig. 12(c) and Fig. 12(d). The agenelmessmpositions are
not applied to these graphs. As was already visible in Fig. 11, the algorieasitoo much time to
process graphs of this complexity.

Fig./13 compares the difference between using either the VE or the anytimplosalgorithm
to compute the joint action for the SparseQ methods using an edge-basetpdsdion. Fig. 13(a)
and Fig. 13(b) show that the difference between the two approachegligible for the graphs with
an average degree less than 3. However, for the more complex gféigh&3(c) and Fig. 13(d))
there is a small performance gain when the VE algorithm is used for the bgsett update method.
The agent-based update method incorporates the neighti@fimgctions, and therefore the values
of theQ-functions are less distinct. As a result, the max-plus algorithm has moreitliffic finding
the optimal joint action. But note that, as was shown in|Fig. 11, the VE algorigguires substan-
tially more computation time for graphs of this complexity than the anytime max-plusthigor

Although all results seem to converge, it is difficult to specify in which sdise proposed algo-
rithms converge, and if so, whether they converge to an optimal solutiendifficulties arise from
the fact that the reinforcement-learning algorithms deal with a double optinmizatie computa-
tion of the optimal joint action with the maxim&)-value, and the global (long-term) optimization
of the average discounted rewards. In this article we focus on the enhpés$csts.

Table 3 gives an overview of all results and compares the value of theajction correspond-
ing to the learned strategy in cycle , 080 for the different methods. Although the results slowly
decrease for the more complex reward functions, all SparseQ methaodsniear-optimal poli-
cies. Furthermore, there is only a minimal difference between the methodssth#tel VE and
the anytime max-plus algorithm to compute the joint action. For the densely dedrgraphs, the
edge-based decompositions in combination with the max-plus algorithm arelyheetmods that
are able to compute a good solution. The algorithms using VE fail to produesuét because of
their inability to cope with the complexity of the underlying graph structure (seti@ 3.2).
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6.2 Experimentson a Distributed Sensor Network

We also perform experiments on a distributed sensor network (DSN)gmnobrT his problem is a
sequential decision-making variant of the distributed constraint optimizatasigm described by
Ali et al. (2005), and was part of the NIPS 2005 benchmarking Wamlﬂéh

The DSN problem consists of two parallel chains of an arbitrary, butlequmber of sensors.
The area between the sensors is divided into cells. Each cell is suedydexactly four sensors
and can be occupied by a target. See|Fig. 14(a) for a configurationiglittsensors and two targets.
With equal probability a target moves to the cell on its left, to the cell on its righmains on its
current position. Actions that move a target to an illegal position, that iscampied cell or a cell
outside the grid, are not executed.

Each sensor is able to perform three actions: focus on a target in the @slimmediate left,
to its immediate right, or don’t focus at all. Every focus action has a smallhsodtled as a reward
of —1. When in one time step at least three of the four surrounding senswrs ém a target, it
is ‘hit’. Each target starts with a default energy level of three. Each timegett#s hit its energy
level is decreased by one. When it reaches zero the target is captdeemoved, and the three
sensors involved in the capture each receive a rewa#dl6f In case four sensors are involved in a
capture, only the three sensors with the highest index receive thedretaepisode finishes when
all targets are captured.

As in the NIPS-05 benchmarking event, we will concentrate on a problemeigtit sensors
and two targets. This configuration results 36,561 joint actions and 37 distinct states, that is,
9 states for each of the 3 configurations with 2 targets, 9 for those with ayet,tand 1 for those
without any targets. This problem thus has a large action space compatedttie space. When
acting optimally, the sensors are able to capture both targets in three ssejitinggn a cumulative
reward of 42. However, in order to learn this policy based on the redemwards, the agents have
to cope with the delayed reward and learn how to coordinate their actiohghgatanultiple targets
are hit simultaneously.

In our experiments we generate all statistics using the benchmark implementeitiorihe
following two differences. First, because the NIPS-05 implementation of i problem only
returns the global reward, we change the environment to return thedondiwewards in order to
comply to our model specification. Second, we set the fixed seed of tHermanumber generator
to a variable seed base on the current time in order to be able to perfoymgreuns.

We apply the different techniques described in Section 4 and Section 5 toSNepBbblem.
We do not apply the CoordRL approach, since, just as in the experime8exction 6.1, it propa-
gates back too much reward causing the individpdiinctions to blow up. However, we do apply
the MDP learners approach which update®-&unction based on the full joint action space. All
applied methods learn for 1000 episodes which are divided into 200 episode blocks, each con-
sisting of 50 episodes. The following statistics are computed at the endlokpaode block: the
average reward, that is, the undiscounted sum of rewards dividéeelhyumber of episodes in an
episode block, the cumulative average reward of all previous epidodksh and the wall-clock
time. There is no distinction between learning and testing cycles, and theegaeiward thus
includes exploration actions. Thg-learning methods all use the following parametars= 0.2,
€ = 0.2, andy = 0.9, and start with zero-value@-values. We assume that both the DVF and the

6Seeht tp: // wwv. cs. rut gers. edu/ ~ni i ttman/ t opi cs/ ni ps05- ndp/ for a detailed description of the bench-
marking eventantttp://rlai.cs. ual berta. ca/ RLBB/ for the used RL-framework.
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(a) Network configuration. (b) Network with corresponding CG.

Figure 14: Fig. 14(a) shows an example sensor network with eightisef@dpand two targets).
Fig./14(b) shows the corresponding CG representing the agentdispses. The graph
has an average degree of 4, and an induced width of 3.

different SparseQ variants have access to a CG which specifiecfoagant on which other agents
it depends. This CG is shown in Fig. 14(b), and has an average defgtee

The results, averaged over 10 runs with different random seed$ialifferent techniques are
shown in Figl 15. The results contain exploration actions and are therefommpletely stable.
For this reason, we show the running average over the last 10 epiemits.bFig. 15(a) shows the
average reward for the different approaches. The optimal policy isiatignimplemented and, in
order to have a fair comparison with the other approaches, also inclndesm exploration actions
with probabilitye. It results in an average reward just below 40. The MDP approachsstithn
average reward around 17 after a few episodes. Although this value eolopared to the result of
the optimal policy, the MDP approach, as seen in [Fig. 15(b), does leaaptare the targets in a
small number of steps. From this we conclude that the low reward is mainly laoésanecessary
focus actions performed by the agents that are not involved in the aefptare. The MDP approach
thus discovers one of the many possible joint actions that results in a captinetarget and the
generation of a positive reward, and then exploits this strategy. Howeefound joint action is
non-optimal since one or more agents do not have to focus in order taedpdutarget. Because of
the large action space and the delayed reward, it takes the MDP appnoabhmore than 1@00
episodes to learn that other joint actions result in a higher reward.

Although the DVF approach performs better than IL, both methods do metege to a stable
policy and keep oscillating. This is caused by the fact that both appreatbee action values
based on individual actions and therefore fail to select coordinatetdigotions which are needed
to capture the targets.

In the different SparseQ variants each agent stores and update®{wahlies. Since these are
also based on the agent’s neighbors in the graph, the agents are ablm toole@inated actions.
Furthermore, the explicit coordination results in much more stable policies tlkalh #nd DVF
approach. The agent-based decomposition produces a slightly lowagaveward than the edge-
based decompositions, but, as shown in Fig. 15(b), it needs less stepsitedhe targets. Identical
to the MDP approach, the lower reward obtained by the agent-baseahgesition is a consequence
of the large action space involved in each local term. As a result the agen&bie to quickly
learn a good policy that captures the targets in a few steps, but it takeg dirlte to converge
to a joint action that does not involve the unnecessary focus actiongrad ebthe agents. For
example, each of the four agents in the middle of the DSN coordinates with 6ambats, and
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Figure 15: Different results on the DSN problem, averaged over 1€ r@ne run consists of 200
episode blocks, each corresponding to 50 learning episodes.

each of them thus storesfunction defined over®B= 729 actions per state. Because in the agent-
based decomposition the full action space is decomposed into differemieimdient local action
values, it does result in a better performance than the MDP learnersinbibigh obtained average
reward and the number of steps needed to capture the targets. Withtresibectwo edge-based
decompositions, the edge-based update method generates a slightly &gdrel, and a more stable
behavior than the agent-based update method. Although in both caseddéhendd between the
two methods is minimal, this result is different compared to the stateless probleeisbdd in
Section 6.1 in which the agent-based update method performed better. fétt/ehess of each
approach thus depends on the type of problem. We believe that the apeatipdate method has
its advantages for problems with fine-grained agent interactions sincmfiines all neighbors in

the update of th@-value.

Fig.|15(c) shows the cumulative average reward of the different methgisring the manual
policy, the edge-based update methods result in the highest cumulatregaveward. This is also
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’ method \ reward \ steps H method

reward \ steps ‘
Optimal | 38.454 | 3.752 || SparseQ edge, edge (anytime)27.692 | 8.795
MDP 19.061 | 7.071 || SparseQ edge, edge (VE) 28.880 | 8.113
DVF 16.962 | 22.437| SparseQ agent (VE) 24.844 | 6.378
IL 6.025 | 31.131|| SparseQ edge, agent (VE) 25.767 | 8.413
SparseQ edge, agent (anytimeR3.738 | 8.930

Table 4. Average reward and average number of steps per epised¢hevast 2 episode blocks
(100 episodes) for the DSN problem. Results are averaged over 40 run

seen in Table 4 which shows the reward and the number of steps perepigaciged over the
last 2 episode blocks, that is, 100 episodes, for the different metlSise the goal of the agents
is to optimize the received average reward, the SparseQ methods outpéni® other learning
methods. However, none of the variants converge to the optimal policyofdhe main reasons is
the large number of dependencies between the agents. This requidsalmétween an approach
that models many of the dependencies but learns slowly because of theaéigp of a large action
space, for example, the agent-based SparseQ or the MDP learreargmproach that ignores some
of the dependencies but is able to learn an approximate solution quicklyafféeis the approach
taken by the edge-based SparseQ variants: it models pairwise depiesdaren though it requires
three agents to capture a target.

Fig.|15(d) gives the timing results for the different methods. The IL ané Méthods are the
fastest methods since they only store and update indiviQuedlues. The agent-based SparseQ
method is by far the slowest. This method storég-function based on all action combinations of
an agent and its neighbors in the CG. This slows down the VE algorithm @vabig since it has
to maximize over a large number of possible joint action combinations in everynt@oamization
step.

Finally, Fig. 16 compares the difference between using the VE or the anytimelus algo-
rithm to compute the joint action for the SparseQ methods using an edge-thes@hposition.
Fig./16(a) shows that there is no significant difference in the obtaineardefor these two meth-
ods. Fig. 16(b) shows that the edge-based SparseQ variants thia¢ asgytime max-plus algorithm
need less computation time than those using the VE algorithm. However, theddésrare not that
evident as in the experiments from Section 6.1 because the used CG hativa stmple structure
(it has an induced width of 3), and VE is able to quickly find a solution wheatitezly eliminating
the nodes with the smallest degree.

7. Conclusion and Future Directions

In this article we addressed the problem of learning how to coordinate ttawioe of a large group
of agents. First, we described a payoff propagation algorithm (maj-giias can be used as an
alternative to variable elimination (VE) for finding the optimal joint action in a dowtion graph
(CG) with predefined payoff functions. VE is an exact method that willaglsvreport the joint
action that maximizes the global payoff, but it is slow for densely connegtaphs with cycles
because its worst-case complexity is exponential in the number of agentserffuore, this method
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Figure 16: Results of the edge-based decomposition methods on the D8Mnpraaveraged
over 10 runs. One run consists of 200 episode blocks, each congigsg to 50 learning
episodes.

is only able to report a solution after the complete algorithm has ended. Thelosalgorithm,
analogous to the belief propagation algorithm in Bayesian networks,tepdnarepeatedly sending
local payoff messages over the edges in the CG. By performing a loogluwtation based on its
incoming messages, each agent is able to select its individual action. Etiwetured graphs,
this approach results in the optimal joint action. For large, highly connectgahg with cycles, we
provided empirical evidence that this method can find near-optimal solutigruhentially faster
than VE. Another advantage of the max-plus algorithm is that it can be implenfefijedistributed
using asynchronous and parallel message passing.

Second, we concentrated on model-free reinforcement-learning aagh@® to learn the coor-
dinated behavior of the agents in a collaborative multiagent system. In @useéSEooperative
Q-learning (SparseQ) methods, we approximate the glQkainction using a CG representing the
coordination requirements of the system. We analyzed two possible dedéonmone in terms
of the nodes and one in terms of the edges of the graph. During learaiciy)acalQ-function is
updated based on its contribution to the maximal global payoff found with ditleeVE or max-
plus algorithm. Effectively, each agent learns its part of the global soldtyoonly coordinating
with the agents on which it depends. Results on both a single-state probleri2néents and
more than 17 million actions, and a distributed sensor network problem shoeuth@parseQ vari-
ants outperform other existing multiaggptiearning methods. The combination of the edge-based
decomposition and the max-plus algorithm results in a method which scales oragliie the
number of dependencies of the problem. Furthermore, it can be implemetitedistributed and
only requires that each agent is able to communicate with its neighbors in hte gighen com-
munication is restricted, it is still possible to run the algorithm when additional conkmowledge
assumptions are made.

There are several directions for future work. First of all, we are &stied in comparing dif-
ferent approximation alternatives from the Bayesian networks or @nsprocessing literature
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to our max-plus algorithm. A natural extension is to consider factor grgptesentations of the
problem structure (Kschischang et al., 2001), allowing more prior kriiyde@bout the problem to
be introduced beforehand. Another possible direction involves the ‘mickdt’ approach, an ap-
proximation in which the VE algorithm is simplified by changing the full maximizationeach
elimination of an agent to the summation of simpler local maximizations (Dechter ahg1R&7).

A different alternative for the VE algorithm is the usage of constrainpagation algorithms for
finding the optimal joint action (Modi et al., 2005). Another interesting issuelated to theQ-
updates of the edge-based decomposition of the SparseQ reinfordeargirtg method. Now we
assume that the received reward of an agent is divided proportionadhjits edges (see (20) and
(23)), but other schemes may also be possible. Furthermore, we like lfoappmethod to prob-
lems in which the topology of the CG differs per state, for example, whentaigea dynamically
added or removed from the system, or dependencies between the dgargs based on the current
situation (Guestrin et al., 2002c). Since@ifunctions and updates are defined locally, it is possible
to compensate the addition or removal of an agent by redefining on{-faections in which this
agent is involved. The max-plus algorithm and the local updates do nettbde changed as long
as the neighboring agents are aware of the new topology of the CG.
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