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Abstract
In this article we describe a set of scalable techniques for learning the behavior of a group of agents
in a collaborative multiagent setting. As a basis we use the framework of coordination graphs of
Guestrin, Koller, and Parr (2002a) which exploits the dependencies between agents to decompose
the global payoff function into a sum of local terms. First, we deal with the single-state case and
describe a payoff propagation algorithm that computes the individual actions that approximately
maximize the global payoff function. The method can be viewed as the decision-making ana-
logue of belief propagation in Bayesian networks. Second, we focus on learning the behavior of
the agents in sequential decision-making tasks. We introduce different model-free reinforcement-
learning techniques, unitedly called Sparse CooperativeQ-learning, which approximate the global
action-value function based on the topology of a coordination graph, and perform updates using
the contribution of the individual agents to the maximal global action value. The combined use of
an edge-based decomposition of the action-value function and the payoff propagation algorithm for
efficient action selection, result in an approach that scales only linearly in the problem size. We pro-
vide experimental evidence that our method outperforms related multiagent reinforcement-learning
methods based on temporal differences.

Keywords: collaborative multiagent system, coordination graph, reinforcement learning,Q-
learning, belief propagation

1. Introduction

A multiagent system (MAS) consists of a group of agents that reside in an environment and can
potentially interact with each other (Sycara, 1998; Weiss, 1999; Durfee, 2001; Vlassis, 2003). The
existence of multiple operating agents makes it possible to solve inherently distributed problems,
but also allows one to decompose large problems, which are too complex or tooexpensive to be
solved by a single agent, into smaller subproblems.

In this article we are interested in collaborative multiagent systems in which the agents have
to work together in order to optimize a shared performance measure. In particular, we investigate
sequential decision-making problems in which the agents repeatedly interactwith their environ-
ment and try to optimize the long-term reward they receive from the system, which depends on a
sequence of joint decisions. Specifically, we focus oninherently cooperativetasks involving a large
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group of agents in which the success of the team is measured by the specificcombination of actions
of the agents (Parker, 2002). This is different from other approaches that assume implicit coordina-
tion through either the observed state variables (Tan, 1993; Dutta et al., 2005), or reward structure
(Becker et al., 2003). We concentrate on model-free learning techniques in which the agents do not
have access to the transition or reward model. Example application domains include network rout-
ing (Boyan and Littman, 1994; Dutta et al., 2005), sensor networks (Lesser et al., 2003; Modi et al.,
2005), but also robotic teams, for example, exploration and mapping (Burgard et al., 2000), motion
coordination (Arai et al., 2002) and RoboCup (Kitano et al., 1995; Kok et al., 2005).

Existing learning techniques have been proved successful in learning the behavior of a single
agent in stochastic environments (Tesauro, 1995; Crites and Barto, 1996; Ng et al., 2004). However,
the presence of multiple learning agents in the same environment complicates matters. First of all,
the action space scales exponentially with the number of agents. This makes it infeasible to apply
standard single-agent techniques in which an action value, representingexpected future reward, is
stored for every possible state-action combination. An alternative approach would be to decompose
the action value among the different agents and update them independently.However, the fact
that the behavior of one agent now influences the outcome of the individually selected actions of
the other agents results in a dynamic environment and possibly compromises convergence. Other
difficulties, which are outside the focus of this article, appear when the different agents receive
incomplete and noisy observations of the state space (Goldman and Zilberstein, 2004), or have a
restricted communication bandwidth (Pynadath and Tambe, 2002; Goldman andZilberstein, 2003).

For our model representation we will use the collaborative multiagent Markov decision process
(collaborative multiagent MDP) model (Guestrin, 2003). In this model eachagent selects an indi-
vidual action in a particular state. Based on the resulting joint action the systemtransitions to a
new state and the agents receive anindividual reward. The global reward is the sum of all individ-
ual rewards. This approach differs from other multiagent models, for example, multiagent MDPs
(Boutilier, 1996) or decentralized MDPs (Bernstein et al., 2000), in whichall agents observe the
global reward. In a collaborative MDP, it is still the goal of the agents to optimize the global re-
ward, but the individually received rewards allow for solution techniques that take advantage of the
problem structure.

One such solution technique is based on the framework of coordination graphs (CGs) (Guestrin
et al., 2002a). This framework exploits that in many problems only a few agents depend on each
other and decomposes a coordination problem into a combination of simpler problems. In a CG
each node represents an agent and connected agents indicate a local coordination dependency. Each
dependency corresponds to a local payoff function which assigns a specific value to every possible
action combination of the involved agents. The global payoff function equals the sum of all local
payoff functions. To compute the joint action that maximizes the global payofffunction, a vari-
able elimination (VE) algorithm can be used (Guestrin et al., 2002a). This algorithm operates by
eliminating the agents one by one after performing a local maximization step, and has exponen-
tial complexity in the induced tree width (the size of the largest clique generatedduring the node
elimination).

In this article we investigate different distributed learning methods to coordinate the behavior
between the agents. The algorithms are distributed in the sense that each agent only needs to com-
municate with the neighboring agents on which it depends. Our contribution is two-fold. First, we
describe a ‘payoff propagation’ algorithm (max-plus) (Vlassis et al., 2004; Kok and Vlassis, 2005)
to find an approximately maximizing joint action for a CG in which all local functionsare speci-
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fied beforehand. Our algorithm exploits the fact that there is a direct duality between computing
the maximum a posteriori configuration in a probabilistic graphical model and finding the optimal
joint action in a CG; in both cases we are optimizing over a function that is decomposed in local
terms. This allows message-passing algorithms that have been developed for inference in proba-
bilistic graphical models to be directly applicable for action selection in CGs. Max-plus is a popular
method of that family. In the context of CG, it can therefore be regarded as an approximate alterna-
tive to the exact VE algorithm for multiagent decision making. We experimentally demonstrate that
this method, contrary to VE, scales to large groups of agents with many dependencies.

The problem of finding the maximizing joint action in a fixed CG is also related to the work
on distributed constraint satisfaction problems (CSPs) in constraint networks (Pearl, 1988). These
problems consist of a set of variables which each take a value from a finite, discrete domain. Prede-
fined constraints, which have the values of a subset of all variables as input, specify a cost. The ob-
jective is to assign values to these variables such that the total cost is minimized (Yokoo and Durfee,
1991; Dechter, 2003).

As a second contribution, we study sequential decision-making problems in which we learn the
behavior of the agents. For this, we apply model-free reinforcement-learning techniques (Bertsekas
and Tsitsiklis, 1996; Sutton and Barto, 1998). This problem is different than finding the joint action
that maximizes predefined payoff relations, since in this case the payoff relations themselves have
to be learned. In our approach, namedSparse CooperativeQ-learning(Kok and Vlassis, 2004), we
analyze different decompositions of the global action-value function using CGs. The structure of
the used CG is determined beforehand, and reflects the specific problem under study. For a given
CG, we investigate both a decomposition in terms of the nodes (or agents), as well as a decom-
position in terms of the edges. In the agent-based decomposition the local function of an agent
is based on its own action and those of its neighboring agents. In the edge-based decomposition
each local function is based on the actions of the two agents forming this edge. Each state is re-
lated to a CG with a similar decomposition, but with different values for the local functions. To
update the local action-value function for a specific state, we use the contribution of the involved
agents to the maximal global action value, which is computed using either the max-plus or VE
algorithm. We perform different experiments on problems involving a large group of agents with
many dependencies and show that all variants outperform existing temporal-difference based learn-
ing techniques in terms of the quality of the extracted policy. Note that in our work we only consider
temporal-difference methods; other multiagent reinforcement-learning methods exist that are based,
for example, on policy search (Peshkin et al., 2000; Moallemi and Van Roy, 2004) or Bayesian ap-
proaches (Chalkiadakis and Boutilier, 2003).

The remainder of this article is structured as follows. We first review the notion of a CG and
the VE algorithm in Section 2. Next, in Section 3, we discuss our approximate alternative to VE
based on the max-plus algorithm and perform experiments on randomly generated graphs. Then,
we switch to sequential decision-making problems. First, we review severalexisting multiagent
learning methods in Section 4. In Section 5, we introduce the different variants of our Sparse Coop-
erativeQ-learning method, and give experimental results on several learning problems in Section 6.
We end with the conclusions in Section 7.

1791



KOK AND VLASSIS

2. Coordination Graphs and Variable Elimination

All agents in a collaborative multiagent system can potentially influence each other. It is therefore
important to ensure that the actions selected by the individual agents resultin optimal decisions
for the group as a whole. This is often referred to as thecoordination problem. In this section
we review the problem of computing a coordinated action for a group ofn agents as described by
Guestrin et al. (2002a). Each agenti selects an individual actionai from its action setA i and the
resultingjoint actiona = (a1, . . . ,an), as all other vectors of two or more variables in this article
emphasized using a bold notation, generates a payoffu(a) for the team. The coordination problem
is to find the optimal joint actiona∗ that maximizesu(a), that is,a∗ = argmaxa u(a).

We can compute the optimal joint action by enumerating over all possible joint actions and select
the one that maximizesu(a). However, this approach quickly becomes impractical, as the size of
the joint action space|A1× . . .×An| grows exponentially with the number of agentsn. Fortunately,
in many problems the action of one agent does not depend on the actions of all other agents, but
only on a small subset. For example, in many real-world domains only agents which are spatially
close have to coordinate their actions.

The framework of coordination graphs (CGs) (Guestrin et al., 2002a) isa recent approach to
exploit these dependencies. This framework assumes the action of an agent i only depends on a
subset of the other agents,j ∈ Γ(i). The global payoff functionu(a) is then decomposed into a
linear combination of local payoff functions, as follows,

u(a) =
n

∑
i=1

fi(ai). (1)

Each local payoff functionfi depends on a subset of all actions,ai ⊆ a, whereai = A i ×(× j∈Γ(i)A j),
corresponding to the action of agenti and those of the agents on which it depends. This decompo-
sition can be depicted using an undirected graphG = (V,E) in which each nodei ∈V represents an
agent and an edge(i, j)∈ E indicates that the corresponding agents have to coordinate their actions,
that is,i ∈ Γ( j) and j ∈ Γ(i). The global coordination problem is now replaced by a number of local
coordination problems each involving fewer agents.

In the remainder of this article, we will focus on problems with payoff functions including at
most two agents. Note that this still allows for complicated coordinated structures since every agent
can have multiple pairwise dependency functions. Furthermore, it is possible to generalize the
proposed techniques to payoff functions with more than two agents because any arbitrary graph can
be converted to a graph with only pairwise inter-agent dependencies (Yedidia et al., 2003; Loeliger,
2004). To accomplish this, a new agent is added for each local function that involves more than two
agents. This new agent contains an individual local payoff function that is defined over the combined
actions of the involved agents, and returns the corresponding value of the original function. Note
that the action space of this newly added agent is exponential in its neighborhood size (which can
lead to intractability in the worst case). Furthermore, new pairwise payoff functions have to be
defined between each involved agent and the new agent in order to ensure that the action selected
by the involved agent corresponds to its part of the (combined) action selected by the new agent.

Allowing only payoff functions defined over at most two agents, the globalpayoff functionu(a)
can be decomposed as

u(a) = ∑
i∈V

fi(ai)+ ∑
(i, j)∈E

fi j (ai ,a j). (2)
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Figure 1: Example CG with eight agents; an edge represents a coordinationdependency.

1

2 3

4

f12 f13

f34

(a) Initial graph.

2 3

4
f34

φ23

(b) After elimination of agent 1.

Figure 2: CG corresponding to the decomposition (3) before and after eliminating agent 1.

A local payoff functionfi(ai) specifies the payoff contribution for the individual actionai of agenti,
and fi j defines the payoff contribution for pairs of actions(ai ,a j) of neighboring agents(i, j) ∈ E.
Fig. 1 shows an example CG with 8 agents.

In order to solve the coordination problem and finda∗ = argmaxa u(a) we can apply the vari-
able elimination (VE) algorithm (Guestrin et al., 2002a), which is in essence identical to variable
elimination in a Bayesian network (Zhang and Poole, 1996). The algorithm eliminates the agents
one by one. Before an agent (node) is eliminated, the agent first collectsall payoff functions related
to its edges. Next, it computes a conditional payoff function which returns the maximal value it is
able to contribute to the system for every action combination of its neighbors, and a best-response
function (or conditional strategy) which returns the action corresponding to the maximizing value.
The conditional payoff function is communicated to one of its neighbors and the agent is elimi-
nated from the graph. Note that when the neighboring agent receives afunction including an action
of an agent on which it did not depend before, a new coordination dependency is added between
these agents. The agents are iteratively eliminated until one agent remains. This agent selects the
action that maximizes the final conditional payoff function. This individual action is part of the
optimal joint action and the corresponding value equals the desired value maxa u(a). A second pass
in the reverse order is then performed in which every agent computes its optimal action based on its
conditional strategy and the fixed actions of its neighbors.

1793



KOK AND VLASSIS

We illustrate VE on the decomposition graphically represented in Fig. 2(a), that is,

u(a) = f12(a1,a2)+ f13(a1,a3)+ f34(a3,a4), (3)

We first eliminate agent 1. This agent does not depend on the local payoff function f34 and therefore
the maximization ofu(a) in (3) can be written as

max
a

u(a) = max
a2,a3,a4

{

f34(a3,a4)+max
a1

[ f12(a1,a2)+ f13(a1,a3)]
}

. (4)

Agent 1 computes a conditional payoff functionφ23(a2,a3) = maxa1[ f12(a1,a2)+ f13(a1,a3)] and
the best-response functionB1(a2,a3) = argmaxa1[ f12(a1,a2) + f13(a1,a3)] which respectively re-
turn the maximal value and the associated best action agent 1 is able to perform given the actions
of agent 2 and 3. Since the functionφ23(a2,a3) is independent of agent 1, it is now eliminated from
the graph, simplifying (4) to maxa u(a) = maxa2,a3,a4[ f34(a3,a4)+ φ23(a2,a3)]. The elimination of
agent 1 induces a new dependency between agent 2 and 3 and thus a change in the graph’s topology.
This is depicted in Fig. 2(b). We then eliminate agent 2. Onlyφ23 depends on agent 2, so we define
B2(a3) = argmaxa2 φ23(a2,a3) and replaceφ23 by φ3(a3) = maxa2 φ23(a2,a3) producing

max
a

u(a) = max
a3,a4

[ f34(a3,a4)+φ3(a3)], (5)

which is independent ofa2. Next, we eliminate agent 3 and replace the functionsf34 andφ3 re-
sulting in maxa u(a) = maxa4 φ4(a4) with φ4(a4) = maxa3[ f34(a3,a4)+ φ3(a3)]. Agent 4 is the last
remaining agent and fixes its optimal actiona∗4 = argmaxa4 φ4(a4). A second pass in the reverse
elimination order is performed in which each agent computes its optimal (unconditional) action
from its best-response function and the fixed actions from its neighbors.In our example, agent 3
first selectsa∗3 = B3(a∗4). Similarly, we geta∗2 = B2(a∗3) anda∗1 = B1(a∗2,a

∗
3). When an agent has more

than one maximizing best-response action, it selects one randomly, since it always communicates its
choice to its neighbors. The described procedure holds for the case ofa truly distributed implemen-
tation using communication. When communication is restricted, additional common knowledge
assumptions are needed such that each agent is able to run a copy of the algorithm (Vlassis, 2003,
ch. 4).

The VE algorithm always produces the optimal joint action and does not depend on the elimi-
nation order. The execution time of the algorithm, however, does. Computing the optimal order is
known to be NP-complete, but good heuristics exist, for example, first eliminating the agent with the
minimum number of neighbors (Bertelé and Brioschi, 1972). The execution time is exponential in
the induced width of the graph (the size of the largest clique computed duringnode elimination). For
densely connected graphs this can scale exponentially inn. Furthermore, VE will only produce its
final result after the end of the second pass. This is not always appropriate for real-time multiagent
systems where decision making must be done under time constraints. In these cases, an anytime
algorithm that improves the quality of the solution over time is more appropriate (Vlassis et al.,
2004).

3. Payoff Propagation and the Max-Plus Algorithm1

Although the variable elimination (VE) algorithm is exact, it does not scale well with densely con-
nected graphs. In this section, we introduce themax-plus algorithmas an approximate alternative
to VE and compare the two approaches on randomly generated graphs.

1Section 3 is largely based on (Kok and Vlassis, 2005).
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Figure 3: Graphical representation of different messagesµi j in a graph with four agents.

3.1 The Max-Plus Algorithm

The max-product algorithm (Pearl, 1988; Yedidia et al., 2003; Wainwright et al., 2004) is a pop-
ular method for computing themaximum a posteriori(MAP) configuration in an (unnormalized)
undirected graphical model. This method is analogous to the belief propagation or sum-product
algorithm (Kschischang et al., 2001). It operates by iteratively sendinglocally optimized messages
µi j (a j) between nodei and j over the corresponding edge in the graph. For tree-structured graphs,
the message updates converge to a fixed point after a finite number of iterations (Pearl, 1988). After
convergence, each node then computes the MAP assignment based on its local incoming messages
only.

There is a direct duality between computing the MAP configuration in a probabilistic graphical
model and finding the optimal joint action in a CG; in both cases we are optimizing over a function
that is decomposed in local terms. This allows message-passing algorithms thathave been devel-
oped for inference in probabilistic graphical models, to be directly applicable for action selection in
CGs. Max-plus is a popular method of that family. In the context of CG, it cantherefore be regarded
as a ‘payoff propagation’ technique for multiagent decision making.

Suppose that we have a coordination graphG = (V,E) with |V| vertices and|E| edges. In order
to compute the optimal joint actiona∗ that maximizes (2), each agenti (node inG) repeatedly sends
a messageµi j to its neighborsj ∈ Γ(i). The messageµi j can be regarded as a local payoff function
of agentj and is defined as

µi j (a j) = max
ai

{

fi(ai)+ fi j (ai ,a j)+ ∑
k∈Γ(i)\ j

µki(ai)

}

+ci j , (6)

whereΓ(i) \ j represents all neighbors of agenti except agentj, andci j is a normalization value
(which can be assumed zero for now). This message is an approximation ofthe maximum payoff
agenti is able to achieve for a given action of agentj, and is computed by maximizing (over the
actions of agenti) the sum of the payoff functionsfi and fi j and all incoming messages to agenti
except that from agentj. Note that this message only depends on the payoff relations between agent i
and agentj and the incoming message to agenti. Messages are exchanged until they converge to a
fixed point, or until some external signal is received. Fig. 3 shows a CG with four agents and the
corresponding messages.

A messageµi j in the max-plus algorithm has three important differences with respect to the
conditional payoff functions in VE. First, before convergence each message is an approximation
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of the exact value (conditional team payoff) since it depends on the incoming (still not converged)
messages. Second, an agenti only has to sum over the received messages from its neighbors which
are defined over individual actions, instead of enumerating over all possible action combinations of
its neighbors. This is the main reason for the scalability of the algorithm. Finally, inthe max-plus
algorithm, messages are always sent over the edges of the original graph. In the VE algorithm,
the elimination of an agent often results in new dependencies between agentsthat did not have to
coordinate initially.

For trees the messages converge to a fixed point within a finite number of steps (Pearl, 1988;
Wainwright et al., 2004). Since a messageµji (ai) equals the payoff produced by the subtree with
agentj as root when agenti performs actionai , we can at any time step define

gi(ai) = fi(ai)+ ∑
j∈Γ(i)

µji (ai), (7)

which equals the contribution of the individual function of agenti and the different subtrees with the
neighbors of agenti as root. Using (7), we can show that, at convergence,gi(ai) = max{a′|a′i=ai}u(a′)
holds. Each agenti can then individually select its optimal action

a∗i = argmax
ai

gi(ai). (8)

If there is only one maximizing action for every agenti, the globally optimal joint actiona∗ =
argmaxa u(a) is unique and has elementsa∗ = (a∗i ). Note that this optimal joint action is computed
by only local optimizations (each node maximizesgi(ai) separately). In case the local maximizers
are not unique, an optimal joint action can be computed by a dynamic programming technique
(Wainwright et al., 2004, sec. 3.1). In this case, each agent informs its neighbors in a predefined
order about its action choice such that the other agents are able to fix their actions accordingly.

centralized max-plus algorithm for CG= (V,E)
initialize µi j = µji = 0 for (i, j) ∈ E, gi = 0 for i ∈V andm= −∞
while fixed point = falseand deadline to send action has not yet arriveddo

// run one iteration
fixed point = true
for every agenti do

for all neighborsj = Γ(i) do
sendj messageµi j (a j) = maxai

{

fi(ai)+ fi j (ai ,a j)+∑k∈Γ(i)\ j µki(ai)
}

+ci j

if µi j (a j) differs from previous message by a small thresholdthen
fixed point = false

determinegi(ai) = fi(ai)+∑ j∈Γ(i) µji (ai) anda′i = argmaxai gi(ai)
if use anytime extensionthen

if u((a′i)) > m then
(a∗i ) = (a′i) andm= u((a′i))

else
(a∗i ) = (a′i)

return(a∗i )

Algorithm 1: Pseudo-code of the centralized max-plus algorithm.
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Unfortunately there are no guarantees that max-plus converges in graphs with cycles and there-
fore no assurances can be given about the quality of the corresponding joint actiona∗ = (a∗i ) with
ai from (8) in such settings. Nevertheless, it has been shown that a fixed point of message pass-
ing exists (Wainwright et al., 2004), but there is no algorithm yet that provably converges to such
a solution. However, bounds are available that characterize the quality ofthe solution if the algo-
rithm converges (Wainwright et al., 2004). Regardless of these results, the algorithm has been suc-
cessfully applied in practice in graphs with cycles (Murphy et al., 1999; Crick and Pfeffer, 2003;
Yedidia et al., 2003). One of the main problems is that an outgoing message from agenti which
is part of a cycle eventually becomes part of its incoming messages. As a result the values of the
messages grow extremely large. Therefore, as in (Wainwright et al., 2004), we normalize each sent
message by subtracting the average of all values inµik usingci j = 1

|Ak|
∑k µik(ak) in (6). Still, the

joint action might change constantly when the messages keep fluctuating. Thisnecessitates the de-
velopment of an extension of the algorithm in which each (local) action is only updated when the
corresponding global payoff improves. Therefore, we extend the max-plus algorithm by occasion-
ally computing the global payoff and only update the joint action when it improves upon the best
value found so far. The best joint action then equals the last updated joint action. We refer to this
approach as theanytimemax-plus algorithm.2

The max-plus algorithm can be implemented in either a centralized or a distributed version.
The centralized version operates using iterations. In one iteration each agent i computes and sends
a messageµi j to all its neighborsj ∈ Γ(i) in a predefined order. This process continues until all
messages are converged, or a ‘deadline’ signal (either from an external source or from an internal
timing signal) is received and the current joint action is reported. For the anytime extension, we
insert the current computed joint action into (2) after every iteration and only update the joint action
when it improves upon the best value found so far. A pseudo-code implementation of the centralized
max-plus algorithm, including the anytime extension, is given in Alg. 1.

The same functionality can also be implemented using a distributed implementation. Now,
each agent computes and communicates an updated message directly after it has received a new
(and different) message from one of its neighbors. This results in a computational advantage over
the sequential execution of the centralized algorithm since messages are now sent in parallel. We
additionally assume that after a finite number of steps, the agents receive a ‘deadline’ signal after
which they report their individual actions.

For the distributed case, the implementation of the anytime extension is much more complex
since the agents do not have direct access to the actions of the other agents or the global payoff
function (2). Therefore, the evaluation of the (distributed) joint action is only initiated by an agent
when it believes it is worthwhile to do so, for example, after a big increase in the values of the
received messages. This agent starts the propagation of an ‘evaluation’ message over a spanning
treeST. A spanning tree is a tree-structured subgraph ofG that includes all nodes. This tree is fixed
beforehand and is common knowledge among all agents. An agent receiving an evaluation message
fixes its individual action until after the evaluation. When an agent is a leaf of ST it also computes
its local contribution to the global payoff and sends this value to its parent inST. Each parent
accumulates all payoffs of its children and after adding its own contribution sends the result to its
parent. Finally, when the root ofSThas received all accumulated payoffs from its children, the sum
of these payoffs (global payoff) is distributed to all nodes inST. The agents only update their best

2An alternative, and perhaps more accurate, term is ‘max-plus with memory’. However, we decided on the term
‘anytime’ for reasons of consistency with other publications (Kok and Vlassis, 2005; Kok, 2006).
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distributed max-plus for agent i, CG= (V,E), spanning tree ST= (V,S)
initialize µi j = µji = 0 for j ∈ Γ(i), gi = 0, pi = 0 andm= −∞
while deadline to send action has not yet arriveddo

wait for messagemsg
if msg= µji (ai) // max-plus messagethen

for all neighborsj ∈ Γ(i) do
computeµi j (a j) = maxai

{

fi(ai)+ fi j (ai ,a j)+∑k∈Γ(i)\ j µki(ai)
}

+ci j

send messageµi j (a j) to agentj if it differs from last sent message
if use anytime extensionthen

if heuristic indicates global payoff should be evaluatedthen
sendevaluate( i ) to agenti // initiate computation global payoff

else
a∗i = argmaxai [ fi(ai)+∑ j∈Γ(i) µji (ai)]

if msg= evaluate( j ) // receive request for evaluation from agentj then
if a′i not locked, locka′i = argmaxai [ fi(ai)+∑ j∈Γ(i) µji (ai)] and setpi = 0
sendevaluate( i ) to all neighbors (parent and children) inST 6= j
if i = leaf inST then

sendaccumulate payoff( 0 ) to agenti // initiate accumulation payoffs
if msg= accumulate payoff( p j ) from agentj then

pi = pi + p j // add payoff childj
if received accumulated payoff from all children inST then

get actionsa′j from j ∈ Γ(i) in CG and setgi = fi(a′i)+ 1
2 ∑ j∈Γ(i) fi j (a′i ,a

′
j)

if i = root ofST then
sendglobal payoff( gi + pi ) to agenti

else
sendaccumulate payoff( gi + pi ) to parent inST

if msg= global payoff( g ) then
if g > m then

a∗i = a′i andm= g
sendglobal payoff( g ) to all children inST and unlock actiona′i

returna∗i

Algorithm 2: Pseudo-code of a distributed max-plus implementation.

individual actiona∗i when this payoff improves upon the best one found so far. When the ‘deadline’
signal arrives, each agent reports the action related to the highest found global payoff, which might
not correspond to the current messages. Alg. 2 shows a distributed version in pseudo-code.

3.2 Experiments

In this section, we describe our experiments with the max-plus algorithm on differently shaped
graphs. For cycle-free graphs max-plus is equivalent to VE when the messages in the first iteration
are sent in the same sequence as the elimination order of VE and in the reverse order for the second
iteration (comparable to the reversed pass in VE). Therefore, we only test max-plus on graphs with
cycles.
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(a) Graph with 15 edges (average
degree of 2).

(b) Graph with 23 edges (average
degree of 3.07).

(c) Graph with 37 edges (average
degree of 4.93).

Figure 4: Example graphs with 15 agents and cycles.

We ran the algorithms on differently shaped graphs with 15 agents and a varying number of
edges. In order to generate balanced graphs in which each agent approximately has the same degree,
we start with a graph without edges and iteratively connect the two agents with the minimum number
of neighbors. In case multiple agents satisfy this condition, an agent is picked at random from the
possibilities. We apply this procedure to create 100 graphs for each|E| ∈ {8,9, . . . ,37}, resulting
in a set of 3,000 graphs. The set thus contains graphs in the range of on average 1.067 neighbors
per agent (8 edges) to 4.93 neighbors per agent (37 edges). Fig. 10 depicts example graphs with
respectively 15, 23 and 37 edges (on average 2, 3.07 and 4.93 neighbors per node). We create three
copies of this set, each having a different payoff function related to the edges in the graph. In the
first set, each edge(i, j) ∈ E is associated with a payoff functionfi j defined over five actions per
agent and each action combination is assigned a random payoff from a standard normal distribution,
that is, fi j (ai ,a j) ∼ N (0,1). This results in a total of 515, around 3 billion, different possible joint
actions. In the second set, we add one outlier to each of the local payoff functions: for a randomly
picked joint action, the corresponding payoff value is set to 10·N (0,1). For the third test set, we
specify a payoff function based on 10 actions per agent resulting in 1015 different joint actions. The
values of the different payoff functions are again generated using a standard normal distribution.

For all graphs we compute the joint action using the VE algorithm, the standard max-plus al-
gorithm, and the max-plus algorithm with the anytime extension. Irrespectively of convergence, all
max-plus methods perform 100 iterations. As we will see later in Fig. 6 the policyhas stabilized
at this point. Furthermore, a random ordering is used in each iteration to determine which agents
sends its messages.

The timing results for the three different test sets are plotted in Fig. 5.3 The x-axis shows the
average degree of the graph, and they-axis shows, using a logarithmic scale, the average timing
results, in milliseconds, to compute the joint action for the corresponding graphs. Remember from
Section 2 that the computation time of the VE algorithm depends on the induced widthof the
graph. The induced width depends both on the average degree and the actual structure of the graph.
The latter is generated at random, and therefore the complexity of graphs with the same average
degree differ. Table 1 shows the induced width for the graphs used in theexperiments based on the
elimination order of the VE algorithm, that is, iteratively remove a node with the minimumnumber

3All results are generated on an Intel Xeon 3.4GHz / 2GB machine using aC++ implementation.
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(a) 5 actions per agent.
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(b) 5 actions and outliers.
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(c) 10 actions per agent.

Figure 5: Timing results for VE and max-plus for different graphs with 15 agents and cycles.

average degree (1,2] (2,3] (3,4] (4,5]

induced width 1.23 (±0.44) 2.99 (±0.81) 4.94 (±0.77) 6.37 (±0.68)

Table 1: Average induced width and corresponding standard deviation for graphs with an average
degree in(x−1,x].

of neighbors. The results are averaged over graphs with a similar average degree. For a specific
graph, the induced width equals the maximal number of neighbors that have tobe considered in a
local maximization.

In Fig. 5, we show the timing results for the standard max-plus algorithm; the results for the
anytime extension are identical since they only involve an additional check ofthe global payoff
value after every iteration. The plots indicate that the time for the max-plus algorithm grows lin-
early as the complexity of the graphs increases. This is a result of the relation between the number
of messages and the (linearly increasing) number of edges in the graph. The graphs with 10 actions
per agent require more time compared to the two other sets because the computation of every mes-
sage involves a maximization over 100 instead of 25 joint actions. Note that all timing results are
generated with a fixed number of 100 iterations. As we will see later, the max-plus algorithm can
be stopped earlier without much loss in performance, resulting in even quicker timing results.

For the graphs with a small, less than 2.5, average degree, VE outperforms the max-plus algo-
rithm. In this case, each local maximization only involves a few agents, and VE isable to finish its
two passes through the graph quickly. However, the time for the VE algorithmgrows exponentially
for graphs with a higher average degree because for these graphs ithas to enumerate over an increas-
ing number of neighboring agents in each local maximization step. Furthermore, the elimination of
an agent often causes a neighboring agent to receive a conditional strategy involving agents it did
not have to coordinate with before, changing the graph topology to an even denser graph. This ef-
fect becomes more apparent as the graphs become more dense. More specifically, for graphs with 5
actions per agent and an average degree of 5, it takes VE on average23.8 seconds to generate the
joint action. The max-plus algorithm, on the other hand, only requires 10.18 milliseconds for such
graphs. There are no clear differences between the two sets with 5 actions per agent since they both
require the same number of local maximizations, and the actual values do not influence the algo-
rithm. However, as is seen in Fig. 5(c), the increase of the number of actions per agent slows the
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VE algorithm down even more. This is a result of the larger number of joint actions which has to
be processed during the local maximizations. For example, during a local maximization of an agent
with five neighbors 55 = 3,125 actions have to be enumerated in the case of 5 actions per agent.
With 10 actions per agent, this number increases to 105 = 100,000 actions. During elimination the
topology of the graph can change to very dense graphs resulting in evenlarger maximizations. This
is also evident from the experiments. For some graphs with ten actions per agent and an average
degree higher than 3.2, the size of the intermediate tables grows too large for the available memory,
and VE is not able to produce a result. These graphs are removed from the set. For the graphs with
an average degree between 3 and 4, this results in the removal of 81 graphs. With an increase of the
average degree, this effect becomes more apparent: VE is not able to produce a result for 466 out of
the 700 graphs with an average degree higher than 4; all these graphs are removed from the set. This
also explains why the increase in the curve of VE in Fig. 5(c) decreases:the more difficult graphs,
which take longer to complete, are not taken into account. Even without thesegraphs, it takes VE on
average 339.76 seconds, almost 6 minutes, to produce a joint action for the graphs with anaverage
degree of 5. The max-plus algorithm, on the other hand, needs on average 31.61 milliseconds.

The max-plus algorithm thus outperforms VE with respect to the computation time for densely
connected graphs. But how do the resulting joint actions of the max-plus algorithm compare to the
optimal solutions of the VE algorithm? Fig. 6 shows the payoff found with the max-plus algorithm
relative to the optimal payoff, after each iteration. A relative payoff of 1 indicates that the found
joint action corresponds to the optimal joint action, while a relative payoff of0 indicates that it
corresponds to the joint action with the minimal possible payoff. Each of the four displayed curves
corresponds to the average result of a subset with a similar average degree. Specifically, each subset
contains all graphs with an average degree in(x−1,x], with x∈ {2,3,4,5}.

We first discuss the result of the standard max-plus algorithm in the graphson the left. For all
three sets, the loosely connected graphs with an average degree less than two converge to a similar
policy as the optimal joint action in a few iterations only. As the average degreeincreases, the
resulting policy declines. As seen in Fig. 6(c), this effect is less evident inthe graphs with outliers;
the action combinations related to the positive outliers are clearly preferred,and lowers the number
of oscillations. Increasing the number of actions per agent has a negative influence on the result, as
is evident from Fig. 6(e), because the total number of action combinations increases. The displayed
results are an average of a large set of problems, and an individual run typically contains large
oscillations between good and bad solutions.

When using the anytime version, which returns the best joint action found sofar, the obtained
payoff improves for all graphs. This indicates that the failing convergence of the messages causes
the standard max-plus algorithm to oscillate between different joint actions and ‘forget’ good joint
actions. Fig. 6 shows that for all sets near-optimal policies are found, although more complex graphs
need more iterations to find them.

4. Collaborative Multiagent Reinforcement Learning

Until now, we have been discussing the problem of selecting an optimal joint action in a group of
agents for a given payoff structure and a single state only. Next, we considersequential decision-
making problems. In such problems, the agents select a joint action which provides them a reward
and causes a transition to a new state. The goal of the agents is to select actions that optimize a
performance measure based on the received rewards. This might involve asequenceof decisions.
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(a) Max-plus (5 actions per agent).
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(b) Anytime max-plus (5 actions).
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(c) Max-plus (5 actions per agent and outliers)
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(d) Anytime max-plus (5 actions and outliers).
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(e) Max-plus (10 actions per agent).
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(f) Anytime max-plus (10 actions).

Figure 6: Relative payoff compared to VE for both standard max-plus (graphs on the left) and
anytime max-plus (graphs on the right) for graphs with 15 agents and cycles.
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An important aspect of this problem is that the agents have no prior knowledge about the effect of
their actions, but that this information has to belearnedbased on the, possibly delayed, rewards.
Next, we review a model to represent such a problem and describe several solution techniques.

4.1 Collaborative Multiagent MDP and Q-Learning

Different models exist to describe a group of agents interacting with their environment. We will use
the collaborative multiagent MDP framework (Guestrin, 2003) which is an extension of the single-
agent Markov decision process (MDP) framework (Puterman, 1994).It consists of the following
model parameters:

• A time stept = 0,1,2,3, . . ..

• A group ofn agentsA = {A1,A2, ...,An}.

• A set of discrete state variablesSi . The global state is the cross-product of allm variables:
S= S1× ...×Sm. A statest ∈ Sdescribes the state of the world at timet.

• A finite set of actionsA i for every agenti. The action selected by agenti at time stept
is denoted byat

i ∈ A i . The joint actionat ∈ A = A1 × . . .× An is the combination of all
individual actions of then agents.

• A state transition functionT : S×A ×S→ [0,1] which gives transition probabilityp(st+1|st ,at)
that the system will move to statest+1 when the joint actionat is performed in statest .

• A reward functionRi : S×A → R which provides agenti with an individual rewardr t
i ∈

Ri(st ,at) based on the joint actionat taken in statest . The global reward is the sum of all
local rewards:R(st ,at) = ∑n

i=1Ri(st ,at).

This model assumes that the Markov property holds which denotes that the state description at
time t provides a complete description of the history before timet. This is apparent in both the
transition and reward function in which all information before timet is ignored. Furthermore, it
also assumes that the environment is stationary, that is, the reward and transition probabilities are
independent of the time stept. Since the transition function is stationary, we will in most cases omit
the time stept superscript when referring to a statest , and use the shorthands′ for the next state
st+1.

A policy π : s → a is a function which returns an actiona for any given states. The objec-
tive is to find an optimal policyπ∗ that maximizes the expected discounted future returnV∗(s) =
maxπ E

[

∑∞
t=0 γtR(st ,π(st))|π,s0 = s

]

for each states. The expectation operatorE[·] averages over
stochastic transitions, andγ ∈ [0,1) is the discount factor. Rewards in the near future are thus pre-
ferred over rewards in the distant future. The return is defined in terms of the sum of individual
rewards, and the agents thus have to cooperate in order to achieve their common goal. This differs
from self-interested approaches (Shapley, 1953; Hansen et al., 2004) in which each agent tries to
maximize its own payoff.

Q-functions, or action-value functions, represent the expected futurediscounted reward for a
states when selecting a specific actiona and behaving optimally from then on. The optimalQ-
functionQ∗ satisfies the Bellman equation:

Q∗(s,a) = R(s,a)+ γ∑
s′

p(s′|s,a)max
a′

Q∗(s′,a′). (9)
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GivenQ∗, the optimal policy for the agents in states is to jointly select the action argmaxa Q∗(s,a)
that maximizes the expected future discounted return.

Reinforcement learning (RL) (Sutton and Barto, 1998; Bertsekas and Tsitsiklis, 1996) can be
applied to estimateQ∗(s,a). Q-learning is a widely used learning method for single-agent systems
when the agent does not have access to the transition and reward model. The agent interacts with
the environment by selecting actions and receives(s,a, r,s′) samples based on the experienced state
transitions.Q-learning starts with an initial estimateQ(s,a) for each state-action pair. At each time
step the agent selects an action based on an exploration strategy. A commonlyused strategy isε-
greedy which selects the greedy action, argmaxaQ(s,a), with high probability, and, occasionally,
with a small probabilityε selects an action uniformly at random. This ensures that all actions, and
their effects, are experienced. Each time an actiona is taken in states, rewardR(s,a) is received,
and next states′ is observed, the correspondingQ-value is updated with a combination of its current
value and the temporal-difference error, the difference between its current estimateQ(s,a) and the
experienced sampleR(s,a)+ γmaxa′ Q(s′,a′), using

Q(s,a) = Q(s,a)+α[R(s,a)+ γmax
a′

Q(s′,a′)−Q(s,a)] (10)

whereα ∈ (0,1) is an appropriate learning rate which controls the contribution of the new experi-
ence to the current estimate. When every state-action pair is associated with auniqueQ-value and
every action is sampled infinitely often (as with theε-greedy action selection method), iteratively
applying (10) is known to converge to the optimalQ∗(s,a) values (Watkins and Dayan, 1992).

Next, we describe four multiagent variants of tabularQ-learning to multiagent environments,
and discuss their advantages and disadvantages. We do not consider any function-approximation
algorithms. Although they have been been successfully applied in severaldomains with large state
sets, they are less applicable for large action sets since it is more difficult to generalize over nearby
(joint) actions. Furthermore, we only consider model-free methods in which the agents do not have
access to the transition and reward function. The agents do observe the current state and also receive
an individual reward depending on the performed joint action and the unknown reward function.
Finally, we assume the agents are allowed to communicate in order to coordinate their actions.

4.2 MDP Learners

In principle, a collaborative multiagent MDP can be regarded as one largesingle agent in which
each joint action is represented as a single action. It is then possible to learnthe optimalQ-values
for the joint actions using standard single-agentQ-learning, that is, by iteratively applying (10). In
thisMDP learnersapproach either a central controller models the complete MDP and communicates
to each agent its individual action, or each agent models the complete MDP separately and selects
the individual action that corresponds to its own identity. In the latter case, the agents do not need to
communicate but they have to be able to observe the executed joint action and the received individual
rewards. The problem of exploration is solved by using the same random number generator (and
the same seed) for all agents (Vlassis, 2003).

Although this approach leads to the optimal solution, it is infeasible for problemswith many
agents. In the first place, it is intractable to model the complete joint action space, which is ex-
ponential in the number of agents. For example, a problem with 7 agents, each able to perform 6
actions, results in almost 280,000Q-values per state. Secondly, the agents might not have access
to the needed information for the update because they are not able to observe the state, action, and

1804



COLLABORATIVE MULTIAGENT REINFORCEMENTLEARNING BY PAYOFF PROPAGATION

reward of all other agents. Finally, it will take many time steps to explore all jointactions resulting
in slow convergence.

4.3 Independent Learners

At the other extreme, we have theindependent learners(IL) approach (Claus and Boutilier, 1998)
in which the agents ignore the actions and rewards of the other agents, andlearn their strategies
independently. Each agent stores and updates an individual tableQi and the globalQ-function is
defined as a linear combination of all individual contributions,Q(s,a) = ∑n

i=1Qi(s,ai). Each local
Q-function is updated using

Qi(s,ai) := Qi(s,ai)+α[Ri(s,a)+ γmax
a′i

Qi(s′,a′i)−Qi(s,ai)]. (11)

Note that eachQi is based on the global states. This approach results in big storage and compu-
tational savings in the action-space, for example, with 7 agents and 6 actionsper agent only 42
Q-values have to be stored per state. However, the standard convergence proof forQ-learning does
not hold anymore. Because the actions of the other agents are ignored in the representation of the
Q-functions, and these agents also change their behavior while learning, the system becomes non-
stationary from the perspective of an individual agent. This might lead to oscillations. Despite the
lack of guaranteed convergence, this method has been applied successfully in multiple cases (Tan,
1993; Sen et al., 1994).

4.4 Coordinated Reinforcement Learning

In many situations an agent has to coordinate its actions with a few agents only,and acts indepen-
dently with respect to the other agents. In Guestrin et al. (2002b) three differentCoordinated Rein-
forcement Learningapproaches are described which take advantage of the structure of theproblem.
The three approaches are respectively a variant ofQ-learning, policy iteration, and direct policy
search. We will concentrate on theQ-learning variant which decomposes the globalQ-function into
a linear combination of local agent-dependentQ-functions. Each localQi is based on a subset of all
state and action variables,

Q(s,a) =
n

∑
i=1

Qi(si ,ai), (12)

wheresi andai are respectively the subset of state and action variables related to agenti. These
dependencies are established beforehand and differ per problem. Note that in this representation,
each agent only needs to observe the state variablessi which are part of its localQi-function. The
corresponding CG is constructed by adding an edge between agenti and j when the action of agentj
is included in the action variables of agenti, that is,a j ∈ ai . As an example, imagine a computer
network in which each machine is modeled as an agent and only depends on the state and action
variables of itself and the machines it is connected to. The coordination graph would in this case
equal the network topology.

A local Qi is updated using the global temporal-difference error, the difference between the
current globalQ-value and the expected future discounted return for the experienced state transition,
using

Qi(si ,ai) := Qi(si ,ai)+α[R(s,a)+ γmax
a′

Q(s′,a′)−Q(s,a)]. (13)
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The global rewardR(s,a) is given. The maximizing action ins′ and the associated maximal ex-
pected future return, maxa′ Q(s′,a′), are computed in a distributed manner by applying the VE al-
gorithm discussed in Section 2 on the CG. The estimate of the globalQ-value ins, Q(s,a) in (13),
is computed by fixing the action of every agent to the one assigned ina and applying a message
passing scheme similar to the one used in the VE algorithm. We use a table-based representation for
theQ-functions in our notation. However, since each individualQ-function is entirely local, each
agent is allowed to choose its own representation, for example, using a function approximator as in
Guestrin et al. (2002b).

The advantage of this method is that it is completely distributed. Each agent keeps a localQ-
function and only has to exchange messages with its neighbors in the graph inorder to compute
the globalQ-values. In sparsely connected graphs, this results in large computational savings since
it is not necessary to consider the complete joint action-space. However,the algorithm is still
slow for densely connected graphs because of two main reasons. First,the size of each localQ-
function grows exponentially with the number of neighbors of the corresponding agent. Secondly,
the computational complexity of the VE algorithm is exponential in the induced widthof the graph,
as shown in Section 3.2.

4.5 Distributed Value Functions

Another method to decompose a large action space is the distributed value functions (DVF) ap-
proach (Schneider et al., 1999). Each agent maintains an individual local Q-function, Qi(si ,ai),
based on its individual action and updates it by incorporating theQ-functions of its neighboring
agents. A weight functionf (i, j) determines how much theQ-value of an agentj contributes to the
update of theQ-value of agenti. This function defines a graph structure of agent dependencies, in
which an edge is added between agentsi and j if the corresponding functionf (i, j) is non-zero. The
update looks as follows:

Qi(si ,ai) := (1−α)Qi(si ,ai)+α[Ri(s,a)+ γ ∑
j∈{i∪Γ(i)}

f (i, j)max
a′j

Q j(s′,a′j)]. (14)

Note thatf (i, i) also has to be defined and specifies the agent’s contribution to the current estimate.
A common approach is to weigh each neighboring function equally,f (i, j) = 1/|i ∪ Γ( j)|. Each
Q-function of an agenti is thus divided proportionally over its neighbors and itself. This method
scales linearly in the number of agents.

5. Sparse Cooperative Q-Learning

In this section, we describe our Sparse CooperativeQ-learning, or SparseQ, methods which also
approximate the globalQ-function into a linear combination of localQ-functions. The decompo-
sition is based on the structure of a CG which is chosen beforehand. In principle we can select
any arbitrary CG, but in general a CG based on the problem under studyis used. For a given CG,
we investigate both a decomposition in terms of the nodes (or agents), as well as the edges. In the
agent-based decomposition the local function of an agent is based on its own action and those of its
neighboring agents. In the edge-based decomposition each local function is based on the actions of
the two agents it is connected to. In order to update a local function, the keyidea is to base the up-
date not on the difference between the current globalQ-value and the experienced global discounted

1806



COLLABORATIVE MULTIAGENT REINFORCEMENTLEARNING BY PAYOFF PROPAGATION

1

2 3

4

Q1(a1,a2,a3)

Q2(a1,a2)

Q3(a1,a3,a4)

Q4(a3,a4)

(a) Agent-based decomposition.

1

2 3

4

Q12(a1,a2) Q13(a1,a3)

Q34(a3,a4)

(b) Edge-based decomposition.

Figure 7: An agent-based and edge-based decomposition of the globalQ-function for a 4-agent
problem.

return, but rather on the current localQ-value and thelocal contributionof this agent to the global
return.

Next, we describe an agent-based decomposition of the globalQ-function and explain how the
local contribution of an agent is used in the update step. Thereafter, we describe an edge-based
decomposition, and a related edge-based and agent-based update method.

5.1 Agent-Based Decomposition4

As in Guestrin et al. (2002b) we decompose the globalQ-function over the different agents. Every
agenti is associated with a localQ-function Qi(si ,ai) which only depends on a subset of all pos-
sible state and action variables. These dependencies are specified beforehand and depend on the
problem. TheQi-functions correspond to a CG which is constructed by connecting each agent with
all agents in which its action variable is involved. See Fig. 7(a) for an exampleof an agent-based
decomposition for a 4-agent problem.

Since the globalQ-function equals the sum of the localQ-functions of alln agents,Q(s,a) =

∑n
i=1Qi(si ,ai), it is possible to rewrite theQ-learning update rule in (10) as

n

∑
i=1

Qi(si ,ai) :=
n

∑
i=1

Qi(si ,ai)+α
[

n

∑
i=1

Ri(s,a)+ γmax
a′

Q(s′,a′)−
n

∑
i=1

Qi(si ,ai)
]

. (15)

Only the expected discounted return, maxa′ Q(s′,a′), cannot be directly written as the sum of local
terms since it depends on theglobally maximizing joint action. However, we can use the VE al-
gorithm to compute, in a distributed manner, the maximizing joint actiona∗ = argmaxa′ Q(s′,a′)
in states′, and from this compute the local contributionQi(s′i ,a

∗
i ) of each agent to the total action

valueQ(s′,a∗). Note that the local contribution of an agent to the global action value might belower
than the maximizing value of its localQ-function because it is unaware of the dependencies of its
neighboring agents with the other agents in the CG. Since we can substitute maxa′ Q(s′,a′) with
∑n

i=1Qi(s′,a∗i ), we are able to decompose all terms in (15) and rewrite the update for each agent i
separately:

Qi(si ,ai) := Qi(si ,ai)+α[Ri(s,a)+ γQi(s′i ,a
∗
i )−Qi(si ,ai)]. (16)

4Subsection 5.1 is based on (Kok and Vlassis, 2004).
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This update is completely based on local terms and only requires the distributedVE algorithm to
compute the maximizing joint actiona∗. In contrast to CoordRL, we directly take advantage of the
local rewards received by the different agents. Especially for larger problems with many agents, this
allows us to propagate back the reward to the local functions related to the agents responsible for
the generated rewards. This is not possible in CoordRL which uses the global reward to update the
different local functions. As a consequence, the agents are not ableto distinguish which agents are
responsible for the received reward, and all functions, including the ones which are not related to
the received reward, are updated equally. It might even be the case that the high reward generated
by one agent, or a group of agents, is counterbalanced by the negativereward of another agent. In
this case, the combined global reward equals zero and no functions are updated.

Just as the coordinated RL approach, both the representation of the local Qi-functions and the
VE algorithm grow exponentially with the number of neighbors. This becomes problematic for
densely connected graphs, and therefore we also investigate an edge-based decomposition of the
Q-function which does not suffer from this problem in the next section.

5.2 Edge-Based Decomposition

A different method to decompose the globalQ-function is to define it in terms of the edges of the
corresponding CG. Contrary to the agent-based decomposition, which scales exponentially with the
number of neighbors in the graph, the edge-based decomposition scales linearly in the number of
neighbors. For a coordination graphG= (V,E) with |V| vertices and|E| edges, each edge(i, j)∈ E
corresponds to a localQ-function Qi j , and the sum of all localQ-functions defines the globalQ-
function:

Q(s,a) = ∑
(i, j)∈E

Qi j (si j ,ai ,a j), (17)

wheresi j ⊆ si ∪s j is the subset of the state variables related to agenti and agentj which are relevant
for their dependency. Note that each localQ-function Qi j always depends on the actions of two
agents,ai anda j , only. Fig. 7(b) shows an example of an edge-based decomposition for a4-agent
problem.

An important consequence of this decomposition is that it only depends on pairwise functions.
This allows us to directly apply the max-plus algorithm from Section 3 to compute themaximizing
joint action. Now, both the decomposition of the action-value function and the method for action
selection scale linearly in the number of dependencies, resulting in an approach that can be applied
to large agent networks with many dependencies.

In order to update a localQ-function, we have to propagate back the reward received by the
individual agents. This is complicated by the fact that the rewards are received per agent, while the
localQ-functions are defined over the edges. For an agent with multiple neighbors it is therefore not
possible to derive which dependency generated (parts of) the reward. Our approach is to associate
each agent with a localQ-functionQi that is directly computed from the edge-basedQ-functionsQi j .
This allows us to relate the received reward of an agent directly to its agent-basedQ-functionQi .
In order to computeQi , we assume that each edge-basedQ-function contributes equally to the two
agents that form the edge. Then, the localQ-functionQi of agenti is defined as the summation of
half the value of all localQ-functionsQi j of agenti and its neighborsj ∈ Γ(i), that is,

Qi(si ,ai) =
1
2 ∑

j∈Γ(i)

Qi j (si j ,ai ,a j). (18)
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(b) Agent-based update.

Figure 8: A graphical representation of the edge-based and agent-based update method after the
transition from states to s′. See the text for a detailed description.

The sum of all localQ-functionsQi equalsQ in (17). Next, we describe two update methods for the
edge-based decomposition defined in terms of these local agent-basedQ-functions.

5.2.1 EDGE-BASED UPDATE

The first update method we consider updates each localQ-functionQi j based on its current estimate
and its contribution to the maximal return in the next state. For this, we rewrite (16) by replacing
every instance ofQi with its definition in (18) to

1
2 ∑

j∈Γ(i)

Qi j (si j ,ai ,a j) :=
1
2 ∑

j∈Γ(i)

Qi j (si j ,ai ,a j)+

α

[

∑
j∈Γ(i)

Ri(s,a)

|Γ(i)|
+ γ

1
2 ∑

j∈Γ(i)

Qi j (s′i j ,a
∗
i ,a

∗
j )−

1
2 ∑

j∈Γ(i)

Qi j (si j ,ai ,a j)

]

. (19)

Note that in this decomposition for agenti we made the assumption that the rewardRi is divided
proportionally over its neighborsΓ(i). In order to get an update equation for an individual local
Q-function Qi j , we remove the sums. Because, one half of every localQ-function Qi j is updated
by agenti and the other half by agentj, agent j updates the localQ-function Qi j using a similar
decomposition as (19). Adding the two gives the following update equation for a single localQ-
functionQi j :

Qi j (si j ,ai ,a j) := Qi j (si j ,ai ,a j)+

α
[

Ri(s,a)

|Γ(i)|
+

Rj(s,a)

|Γ( j)|
+ γQi j (s′i j ,a

∗
i ,a

∗
j )−Qi j (si j ,ai ,a j)

]

. (20)

Each localQ-functionQi j is updated with a proportional part of the received reward of the two
agents it is related to and with the contribution of this edge to the maximizing joint actiona∗ =
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(a∗i ) = argmaxa′ Q(s′,a′) in the states′. The latter is computed by either applying the exact VE
algorithm or the approximate max-plus algorithm. We can also derive (20) from (10) directly using
(17). However, we want to emphasize that it is possible to derive this update rule from the agent-
based decomposition discussed in Section 5.1.

Fig. 8(a) shows a graphical representation of the update. The left part of the figure shows a
partial view of a CG in states. Only the agentsi and j, their connecting edge, which is related to a
local edge-basedQ-functionQi j , and some outgoing edges are depicted. The right part of the figure
shows the same structure for states′. Following (20), a localQ-function Qi j is directly updated
based on the received reward of the involved agents and the maximizing local Q-functionQi j in the
next state.

5.2.2 AGENT-BASED UPDATE

In the edge-based update method the reward is divided proportionally over the different edges of an
agent. All other terms are completely local and only correspond to the localQ-functionQi j of the
edge that is updated. A different approach is to first compute the temporal-difference errorper agent
and divide this value over the edges. For this, we first rewrite (16) for agenti using (18) to

1
2 ∑

j∈Γ(i)

Qi j (si j ,ai ,a j) :=

1
2 ∑

j∈Γ(i)

[Qi j (si j ,ai ,a j)]+α[Ri(s,a)+ γQi(s′i ,a
∗
i )−Qi(si ,ai)]. (21)

In order to transfer (21) into a local update function, we first rewrite thetemporal-difference error
as a summation of the neighbors of agenti, by

Ri(s,a)+ γQi(s′i ,a
∗
i )−Qi(si ,ai) = ∑

j∈Γ(i)

Ri(s,a)+ γQi(s′i ,a
∗
i )−Qi(si ,ai)

|Γ(i)|
. (22)

Note that this summation only decomposes the temporal-difference error intoj equal parts, and
thus does not usej explicitly. Because now all summations are identical, we can decompose (21)
by removing the sums. Just as in the edge-based update, there are two agents which update the same
local Q-functionQi j . When we add the contributions of the two involved agentsi and j, we get the
local update equation

Qi j (si j ,ai ,a j) := Qi j (si j ,ai ,a j) + α ∑
k∈{i, j}

Rk(s,a)+ γQk(s′k,a
∗
k)−Qk(sk,ak)

|Γ(k)|
. (23)

This agent-based update rule propagates back the temporal-differenceerror from the two agents
which are related to the localQ-function of the edge that is updated, and incorporates the infor-
mation ofall edges of these agents. This is different from the edge-based update method which
directly propagates back the temporal-difference error related to the edge that is updated. This is
depicted in Fig. 8(b). Again, the left part of the figure represents the situation in states, and the
right part the situation in the next states′. The edge-basedQ-functionQi j is updated based on the
local agent-basedQ-functions of the two agents that form the edge. These functions are computed
by summing over the local edge-basedQ-functions of all neighboring edges.
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Next, we will describe several experiments and solve them using both the agent-based and the
edge-based decomposition. For the latter, we apply both the agent-based and edge-based update
method, and show the consequences, both in speed and solution quality, ofusing the max-plus
algorithm as an alternative to the VE algorithm.

6. Experiments

In this section, we describe experiments using the methods discussed in Section 4 and Section 5.
We give results on a large single-state problem and on a distributed sensornetwork problem, which
was part of the NIPS 2005 benchmarking workshop. We selected these problems because they are
both fully specified and, more importantly, require the selection of a specific combination of actions
at every time step. This is in contrast with other experiments in which coordination can be modeled
through the state variables, that is, each agent is able to select its optimal action based on only the
state variables (for example, its own and other agents’ positions) and doesnot have to model the
actions of the other agents (Tan, 1993; Guestrin et al., 2002b; Becker et al., 2003).

6.1 Experiments on Single-State Problems

Now, we describe several experiments in which a group ofn agents have to learn to take the optimal
joint action in a single-state problem. The agents repeatedly interact with their environment by
selecting a joint action. After the execution of a joint actiona, the episode is immediately ended
and the system provides each agent an individual rewardRi(a). The goal of the agents is to select
the joint actiona which maximizesR(a) = ∑n

i=1Ri(a). The local rewardRi received by an agenti
only depends on a subset of the actions of the other agents. These dependencies are modeled using a
graph in which each edge corresponds to a local reward function that assigns a valuer(ai ,a j) to each
possible action combination of the actions of agenti and agentj. Each local reward function is fixed
beforehand and contains one specific pair of actions,(ãi , ã j) that results in a high random reward,
uniformly distributed in the range[5,15], that is, 5+U ([0,10]). However, failure of coordination,
that is, selecting an actionr(ãi ,a j) with a j 6= ã j or r(ai , ã j) with ai 6= ãi , will always result in a
reward of 0. All remaining joint actions,r(ai ,a j) with ai 6= ãi anda j 6= ã j , give a default reward
from the uniform distributionU ([0,10]). The individual rewardRi for an agenti equals the sum of
the local rewards resulting from the interactions with its neighbors,Ri(a) = ∑ j∈Γ(i) r(ai ,a j). Fig. 9
shows an example of the construction of the individual reward receivedby an agent based on its
interaction with its four neighbors, together with an example reward functionr(ai ,a j) corresponding
to an edge between agenti and agentj.

The goal of the agents is to learn, based on the received individual rewards, to select a joint
action that maximizes the global reward. Although we assume that the agents know on which other
agents it depends, this goal is complicated by two factors. First, the outcome of a selected action
of an agent also depends on the actions of its neighbors. For example, theagents must coordinate
in order to select the joint action(ãi , ã j) which, in most cases, returns the highest reward. Failure
of coordination, however, results in a low reward. Secondly, becauseeach agent only receives an
individual reward, they are not able to derive which neighbor interaction caused which part of the
reward. An important difference with the problem specified in Section 3.2, inwhich the the agents
have to select a joint action that maximizes predefined payoff functions, is that in this case the payoff
relations themselves have to be learned based on the received rewards.
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r(a1,a5)

(a) Construction of rewardR1(a).
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1 9.155 0 9.293 0.196

2 7.651 0 2.872 1.287

3 0 12.020 0 0

4 4.536 0 1.581 8.138

(b) Exampler(ai ,a j ) function.

Figure 9: Construction of the reward for agent 1 in the single-state problem. (a) The individual
rewardR1 is the sum of the rewardsr(a1,a j) generated by the interactions with its neigh-
bors j ∈ Γ(1) = {2,3,4,5}. (b) Exampler(ai ,a j) function.

We perform experiments with 12 agents, each able to perform 4 actions. The group as a whole
thus has 412 ≈ 1.7·107, or 17 million, different joint actions to choose from. We investigate reward
functions with different complexities, and apply the method described in Section 3.2 to randomly
generate 20 graphsG = (V,E) with |V| = 12 for each|E| ∈ {7,8, . . . ,30}. This results in 480
graphs, 20 graphs in each of the 24 groups. The agents of the simplest graphs (7 edges) have an
average degree of 1.16, while the most complex graphs (30 edges) have an average degree of 5.
Fig. 10 shows three different example graphs with different average degrees. Fig. 10(a) and (c)
depict respectively the minimum and maximal considered average degree, while Fig. 10(b) shows a
graph with an average degree of 2.

We apply the different variants of our sparse cooperativeQ-learning method described in Sec-
tion 5 and different existing multiagentQ-learning methods, discussed in Section 4, to this problem.
Since the problem consists of only a single state, allQ-learning methods storeQ-functions based
on actions only. Furthermore, we assume that the agents have access to a CG which for each agent
specifies on which other agents it depends. This CG is identical to the topology of the graph that
is used to generate the reward function. Apart from the differentQ-learning methods, we also ap-
ply an approach that selects a joint action uniformly at random and keeps track of the best joint
action found so far, and a method that enumerates all possible joint actions and stores the one with
the highest reward. To summarize, we now briefly review the main characteristics of all applied
methods:

Independent learners (IL) Each agenti stores a localQ-function Qi(ai) only depending on its
own action. Each update is performed using the private rewardRi according to (11). An agent
selects an action that maximizes its own localQ-functionQi .

Distributed value functions (DVF) Each agenti stores a localQ-function based on its own action,
and an update incorporates theQ-functions of its neighbors following (14). For stateless
problems, as the ones in this section, theQ-value of the next state is not used and this method
is identical to IL.
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(a) A graph with 7 edges (average
degree of 1.16).

(b) A graph with 12 edges (aver-
age degree of 2).

(c) A graph with 30 edges (aver-
age degree of 5.00).

Figure 10: Example graphs with 12 agents and different average degrees.

Coordinated reinforcement learning (CoordRL) Each agenti stores an individualQ-function
based on its own action and the actions of its neighborsj ∈ Γ(i). Each function is updated
based on theglobal temporal-difference error using the update equation in (13). This rep-
resentation scales exponentially with the number of neighbors. VE is used to determine the
optimal joint action which scales exponentially with the induced width of the graph.

Sparse cooperative Q-learning, agent-based (SparseQ agent) Each agent stores aQ-function that
is based on its own action and the actions of its neighborsj ∈ Γ(i). A function is updated
based on thelocal temporal-difference error following (16). The representation and compu-
tational complexity are similar to the CoordRL approach.

Sparse cooperative Q-learning, edge-based (SparseQ edge) Each edge in the used CG is associ-
ated with aQ-function based on the actions of the two connected agents. We apply both the
edge-basedupdate method (SparseQ edge, edge) from (20) which updates aQ-function based
on the value of the edge that is updated, and theagent-basedupdate method (SparseQ edge,
agent) from (23), which updates aQ-function based on the localQ-functions of the agents
forming the edge.

The two update methods are both executed with the VE algorithm and the anytime max-plus
algorithm in order to determine the optimal joint action, resulting in four different methods
in total. The max-plus algorithm generates a result when either the messages converge, the
best joint action has not improved for 5 iterations, or more than 20 iterations are performed.
The latter number of iterations is obtained by comparing the problem under study with the
coordination problem addressed in Section 3.2. Both problem sizes are similar, and as is
visible in Fig. 6 the coordination problem reaches a good performance after20 iterations.

Random method with memory Each iteration, each agent selects an action uniformly at random.
The resulting joint action is evaluated and compared to the best joint action found so far. The
best one is stored and selected.

Enumeration In order to compare the quality of the different methods, we compute the optimal
value by trying every possible joint action and store the one which results in the highest
reward. This requires an enumeration over all possible joint actions. Notethat this approach
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method (1,2] (2,3] (3,4] (4,5]

IL/DVF 48 48 48 48

edge-based 152 248 344 440

agent-based 528 2,112 8,448 33,792

Table 2: Average number ofQ-values needed for the different decompositions for graphs with an
average degree in(x−1,x].

does not perform any updates, and quickly becomes intractable for problems larger than the
one addressed here.

We do not apply the MDP learners approach since it would take too long to find a solution. First,
it requires an enumeration over 412(≈ 17 million) actions at every time step. Secondly, assuming
there is only one optimal joint action, the probability to actually find the optimal joint action is
negligible. An exploration action should be made (probabilityε), and this exploration action should
equal the optimal joint action (probability of1412).

Table 2 shows the average number ofQ-values required by each of the three types of decompo-
sitions. The numbers are based on the generated graphs and averagedover similarly shaped graphs.
Note the exponential growth in the agent-based decomposition that is used in both the CoordRL and
agent-based SparseQ approach.

We run each method on this problem for 15,000 learning cycles. Each learning cycle is directly
followed by a test cycle in which the reward related to the current greedy joint action is computed.
The values from the test cycles, thus without exploration, are used to compare the performance
between the different methods. For allQ-learning variants, theQ-values are initialized to zero and
the parameters are set toα = 0.2, ε = 0.2, andγ = 0.9.

Fig. 11 shows the timing results for all methods.5 Thex-axis depicts the average degree of the
graph. They-axis, shown in logarithmic scale, depicts the average number of seconds spent in the
15,000 learning cycles on graphs with a similar average degree. For the enumeration method it
represents the time for computing the reward of all joint actions.

The results show that the random and IL/DVF approach are the quickestand take less than a
second to complete. In the IL/DVF method each agent only stores functions based on its individual
action and is thus constant in the number of dependencies in the graph. Notethat the time increase
in the random approach for graphs with a higher average degree is caused by the fact that more local
reward functions have to be enumerated in order to compute the reward. This occurs in all methods,
but is especially visible in the curve of the random approach since for this method the small absolute
increase is relatively large with respect to its computation time.

The CoordRL and the agent-based SparseQ method scale exponentially withthe increase of
the average degree, both in their representation of the localQ-functions and the computation of
the optimal joint action using the VE algorithm. The curves of these methods overlap in Fig. 11.
Because these methods need a very long time, more than a day, to process graphs with a higher
average degree than 3, the results for graphs with more than 18 edges are not computed. The
edge-based decompositions do not suffer from the exponential growthin the representation of the

5All results are generated on an Intel Xeon 3.4GHz / 2GB machine using aC++ implementation.
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Figure 11: Timing results for the different methods applied to the single-state problems with 12
agents and an increasing number of edges. The results overlap for the CoordRL and the
agent-based SparseQ decomposition, and the two edge-based decompositions using the
VE algorithm.

localQ-functions. However, this approach still grows exponentially with an increase of the average
degree when the VE algorithm is used to compute the maximizing joint action. This holds for both
the agent-based and edge-based update method, which overlap in the graph. When the anytime max-
plus algorithm is applied to compute the joint action, both the representation of theQ-function and
the computation of the joint action scale linearly with an increasing average degree. The agent-based
update method is slightly slower than the edge-based update method because the first incorporates
the neighboringQ-functions in its update (23), and therefore the values in theQ-functions are less
distinct. As a consequence, the max-plus algorithm needs more iterations in anupdate step to find
the maximizing joint action.

Finally, the enumeration method shows a slight increase in the computation time with anin-
crease of the average degree because it has to sum over more local functions for the denser graphs
when computing the associated value. Note that the problem size was chosensuch that the enumer-
ation method was able to produce a result for all different graphs.

Fig. 12 shows the corresponding performance for the most relevant methods. Each figure depicts
the running average, of the last 10 cycles, of the obtained reward relative to the optimal reward for
the first 15,000 cycles. The optimal reward is determined using the enumeration method. Results
are grouped for graphs with a similar complexity, that is, having about the same number of edges
per graph.

Fig. 12(a) depicts the results for the simplest graphs with an average degree less than or equal
to 2. We do not show the results for the CoordRL approach since it is not able to learn a good policy
and quickly stabilize around 41% of the optimal value. This corresponds to a method in which
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(a) Average degree less than 2.
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(b) Average degree between 2 and 3.
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(c) Average degree between 3 and 4.
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(d) Average degree between 4 and 5.

Figure 12: Running average, of the last 10 cycles, of the received reward relative to the optimal
reward for different methods on the single-state, 12-agent problems. The legend of
Fig. 12(a) holds for all figures. See text for the problem description.

each agent selects a value uniformly at random each iteration. The CoordRL approach updates each
local Q-function with the global temporal-difference error. Therefore, the same global reward is
propagated to each of the individualQ-functions and the expected future discounted return, that is,
the sum of the localQ-functions, is overestimated. As a result theQ-values blow up, resulting in
random behavior.

The IL/DVF approach learns a reasonable solution, but it suffers from the fact that each agent
individually updates itsQ-value irrespective of the actions performed by its neighbors. Therefore,
the agents do not learn to coordinate and the policy keeps oscillating.

The random method keeps track of the best joint action found so far and slowly learns a better
policy. However, it learns slower than the different SparseQ methods. Note that this method does
not scale well to larger problems with more joint actions.

The agent-based SparseQ decomposition converges to an optimal policy since it stores aQ-
value for every action combination of its neighbors, and is able to detect the best performing action
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(a) Average degree less than 2.
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(b) Average degree between 2 and 3.
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(c) Average degree between 3 and 4.
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(d) Average degree between 4 and 5.

Figure 13: Running average of the received reward relative to the optimal reward for the different
edge-based methods, using either the VE or anytime max-plus algorithm, on the single-
state, 12-agent problem.

combination. However, this approach learns slower than the different edge-based decompositions
since it requires, as listed in Table 2, more samples to update the large number of Q-values. The two
edge-based decompositions using the anytime extension both learn a near-optimal solution. The
agent-based update method performs slightly better since it, indirectly, includes the neighboring
Q-values in its update.

As is seen in Fig. 12(b), the results are similar for the more complicated graphswith an average
degree between 2 and 3. Although not shown, the CoordRL learners are not able to learn a good
policy and quickly stabilizes around 44% of the optimal value. On the other hand, the agent-based
decomposition converges to the optimal policy. Although the final result is slightly worse compared
to the simpler graphs, the edge-based decompositions still learn near-optimalpolicies. The result of
the agent-based update method is better than the edge-based update method since the first includes
the neighboringQ-values in its update.
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method (1,2] (2,3] (3,4] (4,5]

Random with memory 0.9271 0.9144 0.9122 0.9104

IL 0.8696 0.8571 0.8474 0.8372

CoordRL 0.4113 0.4423 - -

SparseQ agent (VE) 1.0000 0.9983 - -

SparseQ edge, agent (VE) 0.9917 0.9841 0.9797 0.9765

SparseQ edge, edge (VE) 0.9843 0.9614 0.9416 0.9264

SparseQ edge, agent (anytime)0.9906 0.9815 0.9722 0.9648

SparseQ edge, edge (anytime)0.9856 0.9631 0.9419 0.9263

Table 3: Relative reward with respect to the optimal reward after 15,000 cycles for the different
methods and differently shaped graphs. Results are averaged over graphs with an average
degree in(x−1,x], as indicated by the column headers.

Similar results are also visible in Fig. 12(c) and Fig. 12(d). The agent-based decompositions are
not applied to these graphs. As was already visible in Fig. 11, the algorithm needs too much time to
process graphs of this complexity.

Fig. 13 compares the difference between using either the VE or the anytime max-plus algorithm
to compute the joint action for the SparseQ methods using an edge-based decomposition. Fig. 13(a)
and Fig. 13(b) show that the difference between the two approaches is negligible for the graphs with
an average degree less than 3. However, for the more complex graphs (Fig. 13(c) and Fig. 13(d))
there is a small performance gain when the VE algorithm is used for the agent-based update method.
The agent-based update method incorporates the neighboringQ-functions, and therefore the values
of theQ-functions are less distinct. As a result, the max-plus algorithm has more difficulty in finding
the optimal joint action. But note that, as was shown in Fig. 11, the VE algorithm requires substan-
tially more computation time for graphs of this complexity than the anytime max-plus algorithm.

Although all results seem to converge, it is difficult to specify in which cases the proposed algo-
rithms converge, and if so, whether they converge to an optimal solution. The difficulties arise from
the fact that the reinforcement-learning algorithms deal with a double optimization: the computa-
tion of the optimal joint action with the maximalQ-value, and the global (long-term) optimization
of the average discounted rewards. In this article we focus on the empirical results.

Table 3 gives an overview of all results and compares the value of the jointaction correspond-
ing to the learned strategy in cycle 15,000 for the different methods. Although the results slowly
decrease for the more complex reward functions, all SparseQ methods learn near-optimal poli-
cies. Furthermore, there is only a minimal difference between the methods that use the VE and
the anytime max-plus algorithm to compute the joint action. For the densely connected graphs, the
edge-based decompositions in combination with the max-plus algorithm are the only methods that
are able to compute a good solution. The algorithms using VE fail to produce a result because of
their inability to cope with the complexity of the underlying graph structure (see Section 3.2).
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6.2 Experiments on a Distributed Sensor Network

We also perform experiments on a distributed sensor network (DSN) problem. This problem is a
sequential decision-making variant of the distributed constraint optimization problem described by
Ali et al. (2005), and was part of the NIPS 2005 benchmarking workshop.6

The DSN problem consists of two parallel chains of an arbitrary, but equal, number of sensors.
The area between the sensors is divided into cells. Each cell is surrounded by exactly four sensors
and can be occupied by a target. See Fig. 14(a) for a configuration with eight sensors and two targets.
With equal probability a target moves to the cell on its left, to the cell on its right, orremains on its
current position. Actions that move a target to an illegal position, that is, an occupied cell or a cell
outside the grid, are not executed.

Each sensor is able to perform three actions: focus on a target in the cellto its immediate left,
to its immediate right, or don’t focus at all. Every focus action has a small costmodeled as a reward
of −1. When in one time step at least three of the four surrounding sensors focus on a target, it
is ‘hit’. Each target starts with a default energy level of three. Each time a target is hit its energy
level is decreased by one. When it reaches zero the target is capturedand removed, and the three
sensors involved in the capture each receive a reward of+10. In case four sensors are involved in a
capture, only the three sensors with the highest index receive the reward. An episode finishes when
all targets are captured.

As in the NIPS-05 benchmarking event, we will concentrate on a problem witheight sensors
and two targets. This configuration results in 38 = 6,561 joint actions and 37 distinct states, that is,
9 states for each of the 3 configurations with 2 targets, 9 for those with one target, and 1 for those
without any targets. This problem thus has a large action space compared toits state space. When
acting optimally, the sensors are able to capture both targets in three steps, resulting in a cumulative
reward of 42. However, in order to learn this policy based on the received rewards, the agents have
to cope with the delayed reward and learn how to coordinate their actions such that multiple targets
are hit simultaneously.

In our experiments we generate all statistics using the benchmark implementation,with the
following two differences. First, because the NIPS-05 implementation of the DSN problem only
returns the global reward, we change the environment to return the individual rewards in order to
comply to our model specification. Second, we set the fixed seed of the random number generator
to a variable seed base on the current time in order to be able to perform varying runs.

We apply the different techniques described in Section 4 and Section 5 to the DSN problem.
We do not apply the CoordRL approach, since, just as in the experiments inSection 6.1, it propa-
gates back too much reward causing the individualQ-functions to blow up. However, we do apply
the MDP learners approach which updates aQ-function based on the full joint action space. All
applied methods learn for 10,000 episodes which are divided into 200 episode blocks, each con-
sisting of 50 episodes. The following statistics are computed at the end of each episode block: the
average reward, that is, the undiscounted sum of rewards divided bythe number of episodes in an
episode block, the cumulative average reward of all previous episode blocks, and the wall-clock
time. There is no distinction between learning and testing cycles, and the received reward thus
includes exploration actions. TheQ-learning methods all use the following parameters:α = 0.2,
ε = 0.2, andγ = 0.9, and start with zero-valuedQ-values. We assume that both the DVF and the

6Seehttp://www.cs.rutgers.edu/∼mlittman/topics/nips05-mdp/ for a detailed description of the bench-
marking event andhttp://rlai.cs.ualberta.ca/RLBB/ for the used RL-framework.
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(a) Network configuration. (b) Network with corresponding CG.

Figure 14: Fig. 14(a) shows an example sensor network with eight sensors (
N

) and two targets (•).
Fig. 14(b) shows the corresponding CG representing the agent dependencies. The graph
has an average degree of 4, and an induced width of 3.

different SparseQ variants have access to a CG which specifies for each agent on which other agents
it depends. This CG is shown in Fig. 14(b), and has an average degreeof 4.

The results, averaged over 10 runs with different random seeds, for the different techniques are
shown in Fig. 15. The results contain exploration actions and are thereforenot completely stable.
For this reason, we show the running average over the last 10 episode blocks. Fig. 15(a) shows the
average reward for the different approaches. The optimal policy is manually implemented and, in
order to have a fair comparison with the other approaches, also includes random exploration actions
with probabilityε. It results in an average reward just below 40. The MDP approach settles to an
average reward around 17 after a few episodes. Although this value is low compared to the result of
the optimal policy, the MDP approach, as seen in Fig. 15(b), does learn to capture the targets in a
small number of steps. From this we conclude that the low reward is mainly a result of unnecessary
focus actions performed by the agents that are not involved in the actual capture. The MDP approach
thus discovers one of the many possible joint actions that results in a captureof the target and the
generation of a positive reward, and then exploits this strategy. However, the found joint action is
non-optimal since one or more agents do not have to focus in order to capture the target. Because of
the large action space and the delayed reward, it takes the MDP approachmuch more than 10,000
episodes to learn that other joint actions result in a higher reward.

Although the DVF approach performs better than IL, both methods do not converge to a stable
policy and keep oscillating. This is caused by the fact that both approaches store action values
based on individual actions and therefore fail to select coordinated joint actions which are needed
to capture the targets.

In the different SparseQ variants each agent stores and updates local Q-values. Since these are
also based on the agent’s neighbors in the graph, the agents are able to learn coordinated actions.
Furthermore, the explicit coordination results in much more stable policies than the IL and DVF
approach. The agent-based decomposition produces a slightly lower average reward than the edge-
based decompositions, but, as shown in Fig. 15(b), it needs less steps to capture the targets. Identical
to the MDP approach, the lower reward obtained by the agent-based decomposition is a consequence
of the large action space involved in each local term. As a result the agents are able to quickly
learn a good policy that captures the targets in a few steps, but it takes a long time to converge
to a joint action that does not involve the unnecessary focus actions of some of the agents. For
example, each of the four agents in the middle of the DSN coordinates with 5 other agents, and
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(a) Average reward.
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(b) Average number of steps.
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(c) Cumulative average reward.
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(d) Cumulative time.

Figure 15: Different results on the DSN problem, averaged over 10 runs. One run consists of 200
episode blocks, each corresponding to 50 learning episodes.

each of them thus stores aQ-function defined over 36 = 729 actions per state. Because in the agent-
based decomposition the full action space is decomposed into different independent local action
values, it does result in a better performance than the MDP learners, bothin the obtained average
reward and the number of steps needed to capture the targets. With respect to the two edge-based
decompositions, the edge-based update method generates a slightly higher reward, and a more stable
behavior than the agent-based update method. Although in both cases the difference between the
two methods is minimal, this result is different compared to the stateless problems described in
Section 6.1 in which the agent-based update method performed better. The effectiveness of each
approach thus depends on the type of problem. We believe that the agent-based update method has
its advantages for problems with fine-grained agent interactions since it combines all neighbors in
the update of theQ-value.

Fig. 15(c) shows the cumulative average reward of the different methods. Ignoring the manual
policy, the edge-based update methods result in the highest cumulative average reward. This is also
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method reward steps method reward steps

Optimal 38.454 3.752 SparseQ edge, edge (anytime)27.692 8.795

MDP 19.061 7.071 SparseQ edge, edge (VE) 28.880 8.113

DVF 16.962 22.437 SparseQ agent (VE) 24.844 6.378

IL 6.025 31.131 SparseQ edge, agent (VE) 25.767 8.413

SparseQ edge, agent (anytime)23.738 8.930

Table 4: Average reward and average number of steps per episode over the last 2 episode blocks
(100 episodes) for the DSN problem. Results are averaged over 10 runs.

seen in Table 4 which shows the reward and the number of steps per episode averaged over the
last 2 episode blocks, that is, 100 episodes, for the different methods.Since the goal of the agents
is to optimize the received average reward, the SparseQ methods outperform the other learning
methods. However, none of the variants converge to the optimal policy. Oneof the main reasons is
the large number of dependencies between the agents. This requires a choice between an approach
that models many of the dependencies but learns slowly because of the exploration of a large action
space, for example, the agent-based SparseQ or the MDP learners, oran approach that ignores some
of the dependencies but is able to learn an approximate solution quickly. Thelatter is the approach
taken by the edge-based SparseQ variants: it models pairwise dependencies even though it requires
three agents to capture a target.

Fig. 15(d) gives the timing results for the different methods. The IL and DVF methods are the
fastest methods since they only store and update individualQ-values. The agent-based SparseQ
method is by far the slowest. This method stores aQ-function based on all action combinations of
an agent and its neighbors in the CG. This slows down the VE algorithm considerably since it has
to maximize over a large number of possible joint action combinations in every local maximization
step.

Finally, Fig. 16 compares the difference between using the VE or the anytime max-plus algo-
rithm to compute the joint action for the SparseQ methods using an edge-baseddecomposition.
Fig. 16(a) shows that there is no significant difference in the obtained reward for these two meth-
ods. Fig. 16(b) shows that the edge-based SparseQ variants that usethe anytime max-plus algorithm
need less computation time than those using the VE algorithm. However, the differences are not that
evident as in the experiments from Section 6.1 because the used CG has a relative simple structure
(it has an induced width of 3), and VE is able to quickly find a solution when iteratively eliminating
the nodes with the smallest degree.

7. Conclusion and Future Directions

In this article we addressed the problem of learning how to coordinate the behavior of a large group
of agents. First, we described a payoff propagation algorithm (max-plus) that can be used as an
alternative to variable elimination (VE) for finding the optimal joint action in a coordination graph
(CG) with predefined payoff functions. VE is an exact method that will always report the joint
action that maximizes the global payoff, but it is slow for densely connectedgraphs with cycles
because its worst-case complexity is exponential in the number of agents. Furthermore, this method
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Figure 16: Results of the edge-based decomposition methods on the DSN problem, averaged
over 10 runs. One run consists of 200 episode blocks, each corresponding to 50 learning
episodes.

is only able to report a solution after the complete algorithm has ended. The max-plus algorithm,
analogous to the belief propagation algorithm in Bayesian networks, operates by repeatedly sending
local payoff messages over the edges in the CG. By performing a local computation based on its
incoming messages, each agent is able to select its individual action. For tree-structured graphs,
this approach results in the optimal joint action. For large, highly connected graphs with cycles, we
provided empirical evidence that this method can find near-optimal solutions exponentially faster
than VE. Another advantage of the max-plus algorithm is that it can be implementedfully distributed
using asynchronous and parallel message passing.

Second, we concentrated on model-free reinforcement-learning approaches to learn the coor-
dinated behavior of the agents in a collaborative multiagent system. In our Sparse Cooperative
Q-learning (SparseQ) methods, we approximate the globalQ-function using a CG representing the
coordination requirements of the system. We analyzed two possible decompositions, one in terms
of the nodes and one in terms of the edges of the graph. During learning, each localQ-function is
updated based on its contribution to the maximal global payoff found with eitherthe VE or max-
plus algorithm. Effectively, each agent learns its part of the global solution by only coordinating
with the agents on which it depends. Results on both a single-state problem with12 agents and
more than 17 million actions, and a distributed sensor network problem show that our SparseQ vari-
ants outperform other existing multiagentQ-learning methods. The combination of the edge-based
decomposition and the max-plus algorithm results in a method which scales only linearly in the
number of dependencies of the problem. Furthermore, it can be implemented fully distributed and
only requires that each agent is able to communicate with its neighbors in the graph. When com-
munication is restricted, it is still possible to run the algorithm when additional common knowledge
assumptions are made.

There are several directions for future work. First of all, we are interested in comparing dif-
ferent approximation alternatives from the Bayesian networks or constraint processing literature
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to our max-plus algorithm. A natural extension is to consider factor graph representations of the
problem structure (Kschischang et al., 2001), allowing more prior knowledge about the problem to
be introduced beforehand. Another possible direction involves the ‘mini-bucket’ approach, an ap-
proximation in which the VE algorithm is simplified by changing the full maximization foreach
elimination of an agent to the summation of simpler local maximizations (Dechter and Rish, 1997).
A different alternative for the VE algorithm is the usage of constraint propagation algorithms for
finding the optimal joint action (Modi et al., 2005). Another interesting issue isrelated to theQ-
updates of the edge-based decomposition of the SparseQ reinforcement-learning method. Now we
assume that the received reward of an agent is divided proportionally over its edges (see (20) and
(23)), but other schemes may also be possible. Furthermore, we like to apply our method to prob-
lems in which the topology of the CG differs per state, for example, when agents are dynamically
added or removed from the system, or dependencies between the agents change based on the current
situation (Guestrin et al., 2002c). Since allQ-functions and updates are defined locally, it is possible
to compensate the addition or removal of an agent by redefining only theQ-functions in which this
agent is involved. The max-plus algorithm and the local updates do not have to be changed as long
as the neighboring agents are aware of the new topology of the CG.
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