
Journal of Machine Learning Research 7 (2006) 587–602 Submitted 12/04; Revised 12/05; Published 4/06

Toward Attribute Efficient Learning of Decision Lists and Parities

Adam R. Klivans∗ KLIVANS @CS.UTEXAS.EDU

Department of Computer Science
University of Texas at Austin
Austin, TX 78712, USA

Rocco A. Servedio† ROCCO@CS.COLUMBIA .EDU

Department of Computer Science
Columbia University
New York, NY 10027, USA

Editor: Dana Ron

Abstract
We consider two well-studied problems regarding attributeefficient learning: learning decision

lists and learning parity functions. First, we give an algorithm for learning decision lists of length
k over n variables using 2Õ(k1/3) logn examples and timenÕ(k1/3). This is the first algorithm for
learning decision lists that has both subexponential sample complexity and subexponential running
time in the relevant parameters. Our approach establishes arelationship between attribute efficient
learning and polynomial threshold functions and is based ona new construction of low degree,
low weight polynomial threshold functions for decision lists. For a wide range of parameters our
construction matches a lower bound due to Beigel for decision lists and gives an essentially optimal
tradeoff between polynomial threshold function degree andweight.

Second, we give an algorithm for learning an unknown parity function onk out of n variables
usingO(n1−1/k) examples in poly(n) time. Fork= o(logn) this yields a polynomial time algorithm
with sample complexityo(n); this is the first polynomial time algorithm for learning parity on
a superconstant number of variables with sublinear sample complexity. We also give a simple
algorithm for learning an unknown length-k parity usingO(k logn) examples innk/2 time, which
improves on the naivenk time bound of exhaustive search.
Keywords: PAC learning, attribute efficiency, learning parity, decision lists, Winnow

1. Introduction

An important goal in machine learning theory is to designattribute efficientalgorithms for learning
various classes of Boolean functions. A classC of Boolean functions overn variablesx1, . . . ,xn is
said to beattribute efficiently learnableif there is a poly(n) time algorithm which can learn any
function f ∈C using a number of examples which is polynomial in the “size” (description length)
of the function f to be learned, rather than inn, the number of features in the domain over which
learning takes place. (Note that the running time of the learning algorithm must ingeneral be at least
n since each example is ann-bit vector.) Thus an attribute efficient learning algorithm for e.g. the
class of Boolean conjunctions must be able to learn any Boolean conjunctionof k literals over
x1, . . . ,xn using poly(k, logn) examples, sincek logn bits are required to specify such a conjunction.

∗. Work done at Harvard University and supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.
†. Supported in part by NSF CAREER award CCF-0347282.

c©2006 Adam Klivans and Rocco Servedio.

KLIVANS AND SERVEDIO

A longstanding open problem in machine learning, posed first by Blum (1990) and subsequently
by various authors (Blum, 1996; Blum et al., 1995; Blum and Langley, 1997; Valiant, 1999), is
whether or not there exist attribute efficient algorithms for learningdecision lists, which are essen-
tially nested “if-then-else” statements (we give a precise definition in Section 2). One motivation
for considering the problem comes from theinfinite attribute modelintroduced in Blum (1990).
Blum et al. (1995) showed that for many concept classes (including decision lists) attribute efficient
learnability in the standardn-attribute model is equivalent to learnability in the infinite attribute
model. Since simple classes such as disjunctions and conjunctions are attributeefficiently learnable
(and hence learnable in the infinite attribute model), this motivated Blum (1990) toask whether the
richer class of decision lists is thus learnable as well. Several researchers (Blum, 1996; Blum and
Langley, 1997; Dhagat and Hellerstein, 1994; Nevo and El-Yaniv, 2002; Servedio, 2000) have since
considered this problem; we summarize this previous work in Section 1.2. Morerecently, Valiant
(1999) relates the problem of learning decision lists attribute efficiently to questions about human
learning abilities.

Another outstanding challenge in machine learning is to determine whether thereexist attribute
efficient algorithms for learningparity functions. The parity function on a set of 0/1-valued variables
xi1, . . . ,xik takes value+1 or−1 depending on whetherxi1 + · · ·+xik is even or odd. As with decision
lists, a simple PAC learning algorithm is known for the class of parity functions but no attribute
efficient algorithm is known.

1.1 Our Results

We give the first learning algorithm for decision lists that is subexponentialin both sample com-
plexity (in the relevant parametersk and logn) and running time (in the relevant parameterk). Our
results demonstrate for the first time that it is possible to simultaneously avoid the “worst case” in
both sample complexity and running time, and thus suggest that it may perhaps be possible to learn
decision lists attribute efficiently. Our main learning result for decision lists is:

Theorem 1 There is an algorithm which learns length-k decision lists over{0,1}n with mistake

bound 2Õ(k1/3) logn and time nÕ(k1/3).

This bound improves on the sample complexity of Littlestone’s well-known Winnowalgorithm
(Littlestone, 1988) for allk and improves on its running time as well fork= Ω(log3/2n); see Section
1.2.

We prove Theorem 1 in two parts; first we generalize the Winnow algorithm for learning lin-
ear threshold functions to learnpolynomial threshold functions(PTFs). In recent work on learning
DNF formulas (Klivans and Servedio, 2004), intersections of halfspaces (Klivans et al., 2004), and
Boolean formulas of superconstant depth (O’Donnell and Servedio, 2003), PTFs of degreed have
been learned in timenO(d) by using polynomial time linear programming algorithms such as the
Ellipsoid algorithm (see Klivans and Servedio, 2004). In contrast, sincewe want to achieve low
sample complexity as well as annO(d) running time, we use a generalization of the Winnow algo-
rithm to learn PTFs. This generalization has sample complexity and running time bounds which
depend on the degree and the total magnitude of the integer coefficients (which we call the weight)
of the PTF:

588

TOWARD ATTRIBUTE EFFICIENT LEARNING

Theorem 2 Let C be a class of Boolean functions over{0,1}n with the property that each f∈ C
has a PTF of degree at most d and weight at most W. Then there is an online learning algorithm for
C which runs in nd time per example and has mistake bound O(W2 ·d · logn).

This reduces the decision list learning problem to a problem of representing decision lists with
PTFs of low weight and low degree. To this end we prove:

Theorem 3 Let L be a decision list of length k. Then L is computed by a polynomial threshold
function of degreẽO(k1/3) and weight2Õ(k1/3).

Theorem 1 follows directly from Theorems 2 and 3. We emphasize that Theorem 3 doesnot
follow from previous results (Klivans and Servedio, 2004) on representing DNF formulas as PTFs;
the PTF construction from Klivans and Servedio (2004) in fact has exponentially larger weight

(22Õ(k1/3)
rather than 2Õ(k1/3)) than the construction in this paper.

Our PTF construction is essentially optimal in the tradeoff between degree and weight that it
achieves. In 1994 Beigel (1994) gave a lower bound showing that anydegreed PTF for a certain
decision list must have weight 2Ω(n/d2). 1 For d = n1/3, Beigel’s lower bound implies that our
construction in Theorem 3 is essentially the best possible.

For parity functions, we give anO(n4) time algorithm which can PAC learn an unknown parity
on k variables out ofn usingÕ(n1−1/k) examples. To our knowledge this is the first algorithm
for learning parity on a superconstant number of variables with sublinearsample complexity. Our
algorithm works by finding a “low weight” solution to a system ofm linear equations (corresponding
to a set ofm examples). We prove that with high probability we can find a solution of weight
O(n1−1/k) irrespective ofm. Thus by takingm to be only slightly larger thann1−1/k, standard
arguments show that our solution is a good hypothesis.

We also describe a simple algorithm, due to Dan Spielman, for learning an unknown parity
on k variables usingO(k logn) examples and̃O(nk/2) time. This gives a square root running time
improvement over a naiveO(nk) exhaustive search.

1.2 Previous Results

In previous work several algorithms with different performance bounds (running time and sample
complexity) have been given for learning length-k decision lists.

• Rivest (1987) gave the first algorithm for learning decision lists in Valiant’s PAC model of
learning from random examples. Littlestone (Blum, 1996) later gave an analogue of Rivest’s
algorithm in the online learning model. The algorithm can learn any decision list of lengthk
in O(kn2) time usingO(kn) examples.

• A brute-force approach is to maintain the set of all length-k decision lists which are consistent
with the examples seen so far, and to predict at each stage using majority voteover the sur-
viving hypotheses. This “halving algorithm,” proposed in various forms inAngluin (1988);
Barzdin and Freivald (1972); Mitchell (1982), can learn decision lists of lengthk using only
O(k logn) examples, but the running time isnΘ(k).

1. Krause (2002) claims a lower bound of degreed and weight 2Ω(n/d) for a particular decision list; this claim, however,
is in error.

589

KLIVANS AND SERVEDIO

• Several researchers (Blum, 1996; Valiant, 1999) have observed that Winnow can learn length-
k decision lists from 2O(k) logn examples in time 2O(k)nlogn. This follows from the fact that
any decision list of lengthk can be expressed as a linear threshold function with integer
coefficients of magnitude 2Θ(k).

• Finally, several researchers have considered the special case of learning a length-k decision
list in which the output bits of the list have at mostD alternations. Valiant (1999) and Nevo
and El-Yaniv (2002) have given refined analyses of Winnow’s performance for this case (see
Dhagat and Hellerstein, 1994). However, for the general case where D can be as large ask,
these results do not improve on the standard Winnow analysis described above.

Note that all of these earlier algorithms have an exponential dependence on at least one of the
relevant parameters (k and logn for sample complexity,k for running time).

Little previous work has been published on learning parity functions attributeefficiently in the
PAC model. The standard PAC learning algorithm for parity (based on solving a system of linear
equations) is due to Helmbold et al. (1992); however this algorithm is not attribute efficient since
it usesΩ(n) examples regardless ofk. Several authors have considered learning parity attribute
efficiently in a model where the learner is allowed to make membership queries. Attribute efficient
learning is easier in this framework since membership queries can help identifyrelevant variables.
Blum et al. (1995) give a randomized polynomial time membership-query algorithm for learning
parity onk variables using onlyO(k logn) examples, and these results were later refined Uehara
et al. (2000).

1.3 Organization

In Section 2 we give necessary background. In Section 3 we show howto reduce the decision list
learning problem to a problem of finding suitable PTF representations of decision lists (Theorem 2).
In Section 4 we give our PTF construction for decision lists (Theorem 3).In Section 5 we discuss
the connection between Theorem 3 and Beigel’s ODDMAXBIT lower bound. In Section 6 we give
our results on learning parity functions, and we conclude in Section 7.

2. Preliminaries

Attribute efficient learning has been chiefly studied in theonline mistake-boundmodel of concept
learning which was introduced in Littlestone (1988, 1989a). In this model learning proceeds in a
series of trials, where in each trial the learner is given an unlabeled boolean examplex ∈ {0,1}n

and must predict the valuef (x) of the unknown target functionf . After each prediction the learner
is given the true value off (x) and can update its hypothesis before the next trial begins. The
mistake boundof a learning algorithm on a target conceptc is the worst-case number of mistakes
that the algorithm makes over all (possibly infinite) sequences of examples,and the mistake bound
of a learning algorithm on a concept class (class of Boolean functions)C is the worst-case mistake
bound across all functionsf ∈C. The running time of a learning algorithmA for a concept classC
is defined as the product of the mistake bound ofA onC times the maximum running time required
by A to evaluate its hypothesis and update its hypothesis in any trial.

Our main interests are the classes ofdecision listsandparity functions. A decision listL of
lengthk over the Boolean variablesx1, . . . ,xn is represented by a list ofk pairs and a bit(ℓ1,b1),
(ℓ2,b2), . . . ,(ℓk,bk),bk+1 where eachℓi is a literal and eachbi is either−1 or 1. Given anyx ∈

590

TOWARD ATTRIBUTE EFFICIENT LEARNING

{0,1}n, the value ofL(x) is bi if i is the smallest index such thatℓi is made true byx; if no ℓi is true
thenL(x) = bk+1. A parity function of lengthk is defined by a set of variablesS⊂ {x1, . . . ,xn} such
that|S|= k. The parity functionχS(x) takes value 1 (−1) on inputs which set an even (odd) number
of variables inS to 1.

Given a concept classC over {0,1}n and a Boolean functionf ∈ C, let size(f) denote the
description length off under some reasonable encoding scheme. We say that a learning algorithm
A for C in the mistake-bound model isattribute efficientif the mistake bound ofA on any concept
f ∈C is polynomial in size(f). In particular, the description length of a lengthk decision list (parity)
is O(k logn), and thus we would ideally like to have poly(n)-time algorithms which learn decision
lists (parities) of lengthk with a mistake bound of poly(k, logn).

We note here that attribute efficiency has also been studied in other learningmodels, including
Valiant’s Probably Approximately Correct (PAC) model of learning from random examples. Stan-
dard conversion techniques are known (Angluin, 1988; Haussler, 1988; Littlestone, 1989b) which
can be used to transform any mistake bound algorithm into a PAC learning algorithm. These trans-
formations essentially preserve the running time of the mistake bound algorithm, and the sample size
required by the PAC algorithm is essentially the mistake bound. Thus, positiveresults for mistake
bound learning, such as those we give for decision lists in this paper, directly yield corresponding
positive results for the PAC model.

Finally, our results for decision lists are achieved by a careful analysis of polynomial threshold
functions. Let f be a Boolean functionf : {0,1}n →{−1,1} and letp be a polynomial inn variables
with integer coefficients. Letd denote the degree ofp and letW denote the sum of the absolute
values ofp’s integer coefficients. If the sign ofp(x) equalsf (x) for everyx∈ {0,1}n, then we say
that p is apolynomial threshold function (PTF) of degree d and weight Wfor f .

3. Expanded-Winnow: Learning Polynomial Threshold Functions

Littlestone (1988) introduced the online Winnow algorithm and showed that it can attribute effi-
ciently learn Boolean conjunctions, disjunctions, and low weight linear threshold functions. Through-
out its execution Winnow maintains a linear threshold function as its hypothesis;at the heart of the
algorithm is an update rule which makes a multiplicative update to each coefficient of the hypothesis
each time a mistake is made. Since its introduction Winnow has been intensively studied from both
applied and theoretical standpoints (see Blum, 1997; Golding and Roth, 1999; Kivinen et al., 1997;
Servedio, 2002).

The following theorem due to Littlestone (1988) gives a mistake bound for Winnow for linear
threshold functions:

Theorem 4 Let f(x) be the linear threshold function sign(∑n
i=1wixi − θ) over inputs x∈ {0,1}n

whereθ and w1, . . . ,wn are integers. Let W= ∑n
i=1 |wi |. Then Winnow learns f(x) with mistake

bound O(W2 logn) and uses O(n) time steps per example.

We will use a generalization of the Winnow algorithm, which we call Expanded-Winnow, to
learnpolynomialthreshold functions of degree at mostd. Our generalization introduces∑d

i=1

(n
i

)

new variables (one for each monomial of degree up tod) and runs Winnow to learn a linear thresh-
old function over these new variables. More precisely, in each trial we convert then-bit received
examplex= (x1, . . . ,xn) into a∑d

i=1

(n
i

)

bit expanded example (where the bits in the expanded exam-
ple correspond to monomials overx1, . . . ,xn), and we give the expanded example to Winnow. Thus

591

KLIVANS AND SERVEDIO

the hypothesis which Winnow maintains – a linear threshold function over the space of expanded
features – is a polynomial threshold function of degreed over the originaln variablesx1, . . . ,xn.
Theorem 2, which follows directly from Theorem 4, summarizes the performance of Expanded-
Winnow:

Theorem 2LetC be a class of Boolean functions over{0,1}n with the property that each f∈ C has
a polynomial threshold function of degree at most d and weight at most W. Then Expanded-Winnow
algorithm runs in nO(d) time per example and has mistake bound O(W2 ·d · logn) for C .

Theorem 2 shows that the degree of a polynomial threshold function strongly affects Expanded-
Winnow’s running time, and the weight of a polynomial threshold function strongly affects its sam-
ple complexity.

4. Constructing PTFs for Decision Lists

In previous constructions of polynomial threshold functions for computational learning theory ap-
plications (Klivans and Servedio, 2004; Klivans et al., 2004; O’Donnell and Servedio, 2003) the
sole goal has been to minimize the degree of the polynomials regardless of the size of the coeffi-
cients. As one example, the construction of Klivans and Servedio (2004)of Õ(n1/3) degree PTFs
for DNF formulae yields polynomials whose coefficients can be doubly exponential in the degree.
In contrast, we must now construct PTFs that have low degree and low weight.

We give two constructions of PTFs for decision lists, each of which has relatively low degree
and relatively low weight. We then combine these to achieve an optimal construction with improved
bounds on both degree and weight.

4.1 Outer Construction

Let L be a decision list of lengthk over variablesx1, . . . ,xk. We first give a simple construction of
a degreeh, weight 2O(k/h+h) PTF forL which is based on breaking the listL into sublists. We call
this construction the “outer construction” since we will ultimately combine this construction with a
different construction for the “inner” sublists.

We begin by showing thatL can be expressed as a threshold ofmodified decision lists, which
we now define. The setBh of modified decision lists is defined as follows: each function inBh is
a decision list(ℓ1,b1),(ℓ2,b2), . . . ,(ℓh,bh),0 where eachℓi is some literal overx1, . . . ,xn and each
bi ∈{−1,1}. Thus the only difference between a modified decision listf ∈ Bh and a normal decision
list of lengthh is that the final output value is 0 rather thanbh+1 ∈ {−1,+1}.

Now assume we have a listL = (ℓ1,b1), . . . ,(ℓk,bk),bk+1. We breakL sequentially intok/h
blocks each of lengthh (assumek/h is an integer, otherwise we can use⌈k/h⌉ everywhere). Let
fi ∈ Bh be the modified decision list which corresponds to theith block of L, i.e. fi is the list
(ℓ(i−1)h+1,b(i−1)h+1), . . . , (ℓ(i+1)h,b(i+1)h),0. Intuitively fi computes theith block ofL and equals 0
only if we “fall of the edge” of theith block. We then have the following straightforward claim:

Claim 5 The decision list L is eqivalent to

sign

(

k/h

∑
i=1

2k/h−i+1 fi(x) + bk+1

)

. (1)

592

TOWARD ATTRIBUTE EFFICIENT LEARNING

Proof Given an inputx let r = (i −1)h+ c be the first index such thatℓr is satisfied. It is easy to

see thatf j(x) = 0 for j < i and hence the value in (1) is 2k/h−i+1br +∑k/h
j=i+12k/h− j+1 f j(x) + bk+1,

the sign of which is easily seen to bebr . Finally, if no literal is satisfied then the argument to (1) is
bk+1.

Note: It is easily seen that we can replace the 2 in formula (1) by a 3; this will proveuseful later.
As an aside, note that Claim 5 can already be used to obtain a tradeoff between running time

and sample complexity for learning decision lists. The classBh contains at most(4n)h functions.
Thus as in Section 3 it is possible to run the Winnow algorithm using the functionsin Bh as the base
features for Winnow. (So for each examplex which it receives, the algorithm would first compute
the value off (x) for eachf ∈ Bh, and would then use this vector of(f (x)) f∈Bh values as the example
point for Winnow.) A direct analogue of Theorem 2 now implies that Expanded-Winnow (run over
this expanded feature space of functions fromBh) can be used to learnLk in time nO(h)2O(k/h) with
mistake bound 2O(k/h)hlogn.

However, it will be more useful for us to obtain a PTF forL. We can do this from Claim 5 as
follows:

Theorem 6 Let L be a decision list of length k. For any h< k we have that L is computed by a
polynomial threshold function of degree h and weight2O(k/h+h).

Proof Consider the first modified decision listf1 = (ℓ1,b1),(ℓ2,b2), . . . ,(ℓh,bh),0 in the expression
(1). Forℓ a literal let ℓ̃ denotexi if ℓ is an unnegated variablexi and letℓ̃ denote 1− xi if if ℓ is a
negated variablexi . We have that for allx∈ {0,1}h, f1(x) is computed exactly by the polynomial

f1(x) = ℓ̃1b1 +(1− ℓ̃1)ℓ̃2b2 +(1− ℓ̃1)(1− ℓ̃2)ℓ̃3b3 + · · ·+(1− ℓ̃1) · · ·(1− ℓ̃h−1)ℓ̃hbh.

This polynomial has degreeh and has weight at most 2h+1. Summing these polynomial representa-
tions for f1, . . . , fk/h as in (1) we see that the resulting PTF given by (1) has degreeh and weight at
most 2k/h+1 ·2h+1 = 2O(k/h+h).

Specializing to the caseh =
√

k we obtain:

Corollary 7 Let L be a decision list of length k. Then L is computed by a polynomial threshold
function of degree k1/2 and weight2O(k1/2).

We close this section by observing that an intermediate result of Klivans andServedio (2004)
can be used to give an alternate proof of Corollary 7 with slightly weaker parameters; however our
later proofs require the construction given in this section.

4.2 Inner Approximator

In this section we construct low degree, low weight polynomials which approximate (in theL∞
norm) the modified decision lists from the previous subsection. Moreover, the polynomials we
construct are exactly correct on inputs which “fall off the end”:

593

KLIVANS AND SERVEDIO

Theorem 8 Let f ∈ Bh be a modified decision list of length h. Then there is a degree O(
√

hlogh)
polynomial p such that

• for every input x∈ {0,1}h we have|p(x)− f (x)| ≤ 1/h.

• f (x) = 0 implies p(x) = 0.

Proof
We construct a PTF satisfying the above requirements for a decision listf of the form(x1,b1),

. . . ,(xh,bh),0. The proof for a general modified decision list is similar. As in the proof ofTheorem
6 we have that

f (x) = b1x1 +b2(1−x1)x2 + · · ·+bh(1−x1) · · ·(1−xh−1)xh.

We will construct a lower (roughly
√

h) degree polynomial which closely approximatesf . Essen-
tially this construction has been done several times before (see Klivans and Servedio, 2004; Klivans
et al., 2004).

Let Ti denote(1−x1) . . .(1−xi−1)xi , so we can rewritef as

f (x) = b1T1 +b2T2 + · · ·+bhTh.

We approximate eachTi separately as follows: setAi(x) = h− i + xi + ∑i−1
j=1(1− x j). Note that for

x∈ {0,1}h, we haveTi(x) = 1 iff Ai(x) = h andTi(x) = 0 iff 0 ≤ Ai(x)≤ h−1. Let d = ⌈
√

h⌉. Now
define the polynomial

Qi(x) = q(Ai(x)/h) where q(y) = Cd(y(1+1/h)).

As in Klivans and Servedio (2004), hereCd(x) is thedth Chebyshev polynomial of the first kind (a
univariate polynomial of degreed). We will need the following facts about Chebyshev polynomials
(Cheney, 1966):

• |Cd(x)| ≤ 1 for |x| ≤ 1 with Cd(1) = 1;

• C′
d(x) ≥ d2 for x > 1 with C′

d(1) = d2;

• The coefficients ofCd are integers each of whose magnitude is at most 2d.

The first two facts imply thatq(1) ≥ 2 but |q(y)| ≤ 1 for y∈ [0,1− 1
h]. We thus have thatQi(x) =

q(1)≥ 2 if Ti(x) = 1 and|Qi(x)| ≤ 1 if Ti(x) = 0. Now definePi(x) =
(

Qi(x)
q(1)

)2logh
. This polynomial

is easily seen to be a good approximator forTi : if x∈ {0,1}h is such thatTi(x) = 1 thenPi(x) = 1,

and ifx∈ {0,1}h is such thatTi(x) = 0 then|Pi(x)| <
(

1
2

)2logh
< 1

h2 .

Now defineR(x) = ∑ℓ
i=1biPi(x) and p(x) = R(x)−R(0h). It is clear thatp(0h) = 0. We will

show that for every input 0h 6= x∈ {0,1}h we have|p(x)− f (x)| ≤ 1/h. Fix such anx; let i be the
first index such thatxi = 1. As shown above we havePi(x) = 1. Moreover, by inspection ofTj(x)
we have thatTj(x) = 0 for all j 6= i, and hence|Pj(x)| < 1

h2 . Consequently the value ofR(x) must
lie in [bi − h−1

h2 ,bi +
h−1
h2]. Since|R(0h)| is at mostℓ/h2 and f (x) = bi , we have thatp(x) is anL∞

approximator forf (x) as desired.

594

TOWARD ATTRIBUTE EFFICIENT LEARNING

Finally, it is straightforward to verify thatp(x) has the claimed degree.

Strictly speaking we cannot discuss the weight of the polynomialp since its coefficients are
rational numbers but not integers. However, by multiplyingp by a suitable integer (clearing de-
nominators) we obtain an integer polynomial with essentially the same properties.Using the third
fact about Chebyshev polynomials from our proof above, we have that q(1) is a rational number
N1/N2 whereN1 andN2 are both integers of magnitudehO(

√
h). EachQi(x) for i = 1, . . . ,h can be

written as an integer polynomial (of weighthO(
√

h)) divided byh
√

h. Thus eachPi(x) can be written
as P̃i(x)/(h

√
hN1)

2logh whereP̃i(x) is an integer polynomial of weighthO(
√

hlogh). It follows that
p(x) equals ˜p(x)/C, whereC is an integer which is at most 2O(h1/2 log2 h) and p̃ is a polynomial with
integer coefficients and weight 2O(h1/2 log2 h). We thus have

Corollary 9 Let f ∈ Bh be a modified decision list of length h. Then there is an integer polynomial
p(x) of degree2

√
hlogh and weight2O(h1/2 log2 h) and an integer C= 2O(h1/2 log2 h) such that

• for every input x∈ {0,1}h we have|p(x)−C f(x)| ≤C/h.

• f (x) = 0 implies p(x) = 0.

The fact thatp(x) is exactly 0 whenf (x) is 0 will be important in the next subsection when we
combine the inner approximator with the outer construction.

4.3 Composing the Constructions

In this section we combine the two constructions from the previous subsections to obtain our main
polynomial threshold construction:

Theorem 10 Let L be a decision list of length k. Then for any h< k, L is computed by a polynomial
threshold function of degree O(h1/2 logh) and weight2O(k/h+h1/2 log2 h).

Proof Again assumeL is the decision list(x1,b1), . . . , (xk,bk), bk+1 (the case whenL contains
negated literals is entirely similar). We begin with the outer construction: from thenote following
Claim 5 we have that

L(x) = sign

(

C

[

k/h

∑
i=1

3k/h−i+1 fi(x) + bk+1

])

whereC is the value from Corollary 9 and eachfi is a modified decision list of lengthh computing
the restriction ofL to its ith block as defined in Subsection 4.1. Now we use the inner approximator
to replace eachC fi above bypi , the approximating polynomial from Corollary 9, i.e. consider
sign(H(x)) where

H(x) =
k/h

∑
i=1

(3k/h−i+1pi(x)) + Cbk+1.

We will show that sign(H(x)) is a PTF which computesL correctly and has the desired degree and
weight.

Fix anyx∈ {0,1}k. If x = 0k then by Corollary 9 eachpi(x) is 0 soH(x) = Cbk+1 has the right
sign. Now suppose thatr = (i −1)h+c is the first index such thatxr = 1. By Corollary 9, we have
that

595

KLIVANS AND SERVEDIO

• 3k/h− j+1p j(x) = 0 for j < i;

• 3k/h−i+1pi(x) differs from 3k/h−i+1Cbr by at mostC3k/h−i+1 · 1
h;

• The magnitude of each value 3k/h− j+1p j(x) is at mostC3k/h− j+1(1+ 1
h) for j > i.

Combining these bounds, the value ofH(x) differs from 3k/h−i+1Cbr by at most

C

(

3k/h−i+1

h
+

(

1+
1
h

)

[

3k/h−i +3k/h−i−1 + · · ·+3
]

+1

)

which is easily seen to be less thanC3k/h−i+1 in magnitude (forh> 1). Thus the sign ofH(x) equals
br , and consequently sign(H(x)) is a valid polynomial threshold representation forL(x). Finally, our
degree and weight bounds from Corollary 9 imply that the degree ofH(x) is O(h1/2 logh) and the
weight ofH(x) is 2O(k/h)+O(h1/2 log2 h), and the theorem is proved.

Takingh = k2/3/ log4/3k in the above theorem we obtain our main result on representing deci-
sion lists as polynomial threshold functions:

Theorem 3 Let L be a decision list of length k. Then L is computed by a polynomial threshold
function of degree k1/3 log1/3k and weight2O(k1/3 log4/3 k).

Theorem 3 immediately implies that Expanded-Winnow can learn decision lists of length k
using 2Õ(k1/3) logn examples and timenÕ(k1/3).

4.4 Application to Learning Decision Trees

Ehrenfeucht and Haussler (1989) gave an a timenO(logs) algorithm for learning decision trees with
s leaves overn variables. Their algorithm usesnO(logs) examples, and they asked if the sample
complexity could be reduced to poly(n,s). We can apply our techniques here to give an algorithm
using 2Õ(s1/3) logn examples, if we are willing to spendnÕ(s1/3) time.

First we need to generalize Theorem 10 for higher order decision lists. An r-decision list is like
a standard decision list but each pair is now of the form(Ci ,bi) whereCi is a conjunction of at most
r literals and as beforebi = ±1. The output of such anr-decision list on inputx is bi wherei is the
smallest index such thatCi(x) = 1.

We have the following:

Corollary 11 Let L be an r-decision list of length k. Then for any h< k, L is computed by a
polynomial threshold function of degree O(rh1/2 logh) and weight2r+O(k/h+h1/2 log2 h).

Proof Let L be ther-decision list(C1,b1), . . . ,(Ck,bk),bk+1. By Theorem 10 there is a polynomial
threshold function of degreeO(h1/2 logh) and weight 2O(k/h+h1/2 log2 h) over the variablesC1, . . . ,Ck.
Now replace each variableCi by the interpolating polynomial which computes it exactly as a func-
tion from{0,1}n to {0,1}. Each such interpolating polynomial has degreer and integer coefficients
of total magnitude at most 2r , and the corollary follows.

596

TOWARD ATTRIBUTE EFFICIENT LEARNING

Corollary 12 There is an algorithm for learning r-decision lists over{0,1}n which, when learning

an r-decision list of length k, has mistake bound2Õ(r+k1/3) logn and runs in time nÕ(rk1/3).

Now we can apply Corollary 12 to obtain a tradeoff between running time and sample complex-
ity for learning decision trees:

Theorem 13 Let D be a decision tree of size s over n variables. Then D can be learnedwith mistake
bound2Õ(s1/3) logn in time nÕ(s1/3).

Proof Blum (1992) has shown that any decision tree of sizes is computed by a(logs)-decision list
of lengths. Applying Corollary 12 we thus see that Expanded-Winnow can be used to learn decision
trees of sizes over{0,1}n with the claimed bounds on time and sample complexity.

5. Lower Bounds for Decision Lists

Here we observe that our construction from Theorem 10 is essentially optimal in terms of the trade-
off it achieves between polynomial threshold function degree and weight.

Beigel (1994) constructs an oracle separatingPP from P
NP. At the heart of his construction is

a proof that any low degree PTF for a particular decision list called the ODDMAXBIT n function
must have large weights:

Definition 14 TheODDMAXBIT n function on input x= x1, . . . ,xn ∈ {0,1}n equals(−1)i where i
is the index of the first nonzero bit in x.

It is clear that the ODDMAXBITn function is equivalent to a decision list(x1,−1), (x2,1),
(x3,−1), . . . ,(xn,(−1)n),(−1)n+1 of lengthn. The main technical theorem that Beigel proves is as
follows:

Theorem 15 Let p be a degree d PTF with integer coefficients which computesODDMAXBIT n.
Then w= 2Ω(n/d2) where w is the weight of p.

(As stated in Beigel (1994) the bound is actuallyw≥ 1
s2Ω(n/d2) wheres is the number of nonzero

coefficients inp. Sinces≤ w this implies the result as stated above.)
A lower bound of 2Ω(n) on the weight of any linear threshold function (d = 1) for ODDMAXBITn

has long been known (Myhill and Kautz, 1961); Beigel’s proof generalizes this lower bound to all
d = O(n1/2). A matching upper bound of 2O(n) on weight ford = 1 has also long been known (My-
hill and Kautz, 1961). Our Theorem 10 gives an upper bound which matches Beigel’s lower bound
(up to logarithmic factors) for alld = O(n1/3):

Observation 16 For any d= O(n1/3) there is a polynomial threshold function of degree d and
weight2Õ(n/d2) which computesODDMAXBIT n.

Proof Setd = h1/2 logh in Theorem 10. The weight bound given by Theorem 10 is 2O(nlog2d
d2 +d logd)

which is 2Õ(n/d2) for d = O(n1/3).

597

KLIVANS AND SERVEDIO

Note that since the ODDMAXBITn function has a polynomial size DNF, Beigel’s lower bound
gives a polynomial size DNFf such that any degreẽO(n1/3) polynomial threshold function forf
must have weight 2Ω̃(n1/3). This suggests that the Expanded-Winnow algorithm cannot learn polyno-
mial size DNF in 2Õ(n1/3) time from 2n1/3−ε

examples for anyε > 0, and thus suggests that improving
the sample complexity of the DNF learning algorithm from Klivans and Servedio(2004) while
maintaining its 2Õ(n1/3) running time may be difficult.

6. Learning Parity Functions

Recall that the standard algorithm for learning parity functions works by viewing a set ofm labelled
examples as a set ofm linear equations overGF(2). Gaussian elimination is used to solve the system
and thus find a consistent parity. Even though there exists a solution of weight at mostk (since the
target parity is of lengthk), Gaussian elimination applied to a system ofm equations inn variables
overGF(2) may yield a solution of weight as large as min(m,n). Thus this standard algorithm and
analysis give anO(n) sample complexity bound for learning a parity of length at mostk.

6.1 A Polynomial Time Algorithm

We now describe a simple poly(n)-time algorithm for PAC learning an unknown length-k parity
usingÕ(n1−1/k) examples (for a formal definition of the PAC model we refer the reader to thebook
by Kearns and Vazirani, 1994). As far as we know this is the first improvement on the standard
algorithm and analysis described above.

Theorem 17 The class of all parity functions on at most k variables is PAC learnable in O(n4) time
using O(n1−1/k logn) examples. The hypothesis output by the learning algorithm is a parity function
on O(n1−1/k) variables.

Proof If k = Ω(logn) then the standard algorithm suffices to prove the claimed bound. We thus
assume thatk = o(logn).

Let ℓ = n1−1/k. Let H be the set of all parity functions of length at mostℓ. Note that|H| ≤ nn1−1/k

so log|H| ≤ n1−1/k logn. Consider the following algorithm:

1. Choosem= 1
ε (log|H|+ log(1/δ)) examples. Express each example as a linear equation inn

variables overGF(2) as described above.

2. Randomly choose a set ofn− ℓ variables and assign them the value 0.

3. Use Gaussian elimination to attempt to solve the resulting system of equations onthe remain-
ing ℓ variables. If the system has a solution, output the corresponding parity (of length at most
ℓ = n1−1/k) as the hypothesis. If the system has no solution, output “FAIL.”

If the simplified system of equations has a solution, then by a standard Occam’s Razor argument
(see Kearns and Vazirani, 1994, for details), this solution is a good hypothesis. We will show that
the simplified system has a solution with probabilityΩ(1/n). The theorem follows by repeating
steps 2 and 3 of the above algorithm until a solution is found. An expectedO(n) repetitions will
suffice, and since Gaussian elimination runs in timeO(n3), the running time of our algorithm is
O(n4).

598

TOWARD ATTRIBUTE EFFICIENT LEARNING

LetV be the set ofk relevant variables on which the unknown parity function depends. It is easy
to see that as long as no variable inV is assigned a 0, the resulting simplified system of equations
will have a solution. The probability that in Step 2 then− ℓ variables chosen do not include any
variables inV is exactly

(n−k
n−ℓ

)

/
(n

ℓ

)

which equals
(n−k

ℓ−k

)

/
(n

ℓ

)

. Expanding binomial coefficients we
have

(n−k
ℓ−k

)

(n
ℓ

) =
k

∏
i=1

ℓ−k+ i
n−k+ i

>

(

ℓ−k
n−k

)k

=

(

ℓ

n

)k
(

1− k
ℓ

1− k
n

)k

>
1
n

(

1− k
ℓ

)k

>
1
n

(

1− k2

ℓ

)

>
1
2n

and the proof of the theorem is complete.

6.2 An Õ(nk/2) Time Attribute Efficient Algorithm

Spielman (2003) has observed that it is possible to improve on thenk time bound of a naive search
algorithm for learning parity usingk logn examples:

Theorem 18 (Spielman)The class of all parity functions on at most k variables is PAC learnable
in Õ(nk/2) time using O(k logn) examples. The hypothesis output by the learning algorithm is a
parity function on at most k variables.

Proof By Occam’s Razor we need only show that given a set ofm= O(k logn) labelled examples,
a consistent length-k parity can be found iñO(nk/2) time.

Given a labelled example(x1, . . . ,xn;y) we will view y as an(n+1)st attributexn+1. Thus our
task is to find a set of(k+1) attributesxi1, . . . ,xik+1, one of which must bexn+1, which sum to 0 in
every example in the sample.

Let (x1;y1), . . .(xm;ym) be the labelled examples in our sample. Given a subsetSof variables, let
vS denote the length-mbinary vector(χS(x1), . . . ,χS(xm)) obtained by computing the parity function
χS on each example in our sample.

We construct two lists, each containing
(n

k/2

)

vectors of lengthm. The first list contains all the
vectorsvS whereS ranges over allk/2-element subsets of{x1, . . . ,xn}. The second list contains all
the vectorsvS∪{xn+1} whereSagain ranges over allk/2-element subsets of{x1, . . . ,xn}.

After sorting these two lists of vectors, which takesÕ(nk/2) time, we scan through them in
parallel in time linear in the length of the lists and find a pair of vectorsvS1 from the first list and
vS2∪{xn+1} from the second list which are the same. (Note that any decomposition of the target parity
into two subsetsS1 andS2 of k/2 variables each will give such a pair). The setS1∪S2 is then a
consistent parity of lengthk.

7. Future Work

An obvious goal for future work is to improve our algorithmic results for learning decision lists.
As a first step, one might attempt to extend the tradeoffs we achieve: is it possible to learn decision
lists of lengthk in nk1/2

time from poly(k, logn) examples?

599

KLIVANS AND SERVEDIO

Another goal is to extend our results for decision lists to broader conceptclasses. In particular, it
would be interesting to obtain analogues of our algorithmic results for learninggeneral linear thresh-
old functions (independent of their weight). We note here that Goldmann etal. (1992) have given
a linear threshold function over{−1,1}n for which any polynomial threshold function must have
weight 2Ω(n1/2) regardless of its degree. Moreover Krause and Pudlak (1998) haveshown that any
Boolean function which has a polynomial threshold function over{0,1}n of weightw has a poly-
nomial threshold function over{−1,1}n of weightn2w4. These results imply thatrepresentational
results akin to Theorem 3 for general linear threshold functions must be quantitatively weaker than
Theorem 3; in particular, there is a linear threshold function over{0,1}n with k nonzero coefficients
for which any polynomial threshold function, regardless of degree, must have weight 2Ω(k1/2).

For parity functions many questions remain as well: can we learn parity functions onk =
Θ(logn) variables in polynomial time using a sublinear number of examples? Can we learnlength-k
parities in polynomial time using fewer thann1−1/k examples? Can we learn length-k parities from
O(k logn) examples in timeÕ(nk/3)? Progress on any of these fronts would be quite interesting.

8. Acknowledgements

We thank Les Valiant for his observation that Claim 5 can be reinterpreted interms of polynomial
threshold functions, and we thank Jean Kwon for suggesting the Chebychev polynomial. We thank
Dan Spielman for allowing us to include his proof of Theorem 18.

References

D. Angluin. Queries and concept learning.Machine Learning, 2:319–342, 1988.

J. Barzdin and R. Freivald. On the prediction of general recursive functions. Soviet Mathematics
Doklady, 13:1224–1228, 1972.

R. Beigel. Perceptrons, PP, and the Polynomial Hierarchy.Computational Complexity, 4:339–349,
1994.

A. Blum. Learning Boolean functions in an infinite attribute space. InProceedings of the 22nd
Annual Symposium on Theory of Computing, pages 64–72, 1990.

A. Blum. Rank-r decision trees are a subclass ofr-decision lists.Information Processing Letters,
42(4):183–185, 1992.

A. Blum. On-line algorithms in machine learning. available at
http://www.cs.cmu.edu/˜avrim/Papers/pubs.html , 1996.

A. Blum. Empirical support for Winnow and weighted-majority algorithms: results on a calendar
scheduling domain.Machine Learning, 26:5–23, 1997.

A. Blum and P. Langley. Selection of relevant features and examples in machine learning.Artificial
Intelligence, 97(1-2):245–271, 1997.

A. Blum, L. Hellerstein, and N. Littlestone. Learning in the presence of finitelyor infinitely many
irrelevant attributes.Journal of Computer and System Sciences, 50:32–40, 1995.

600

TOWARD ATTRIBUTE EFFICIENT LEARNING

E. Cheney.Introduction to approximation theory. McGraw-Hill, New York, New York, 1966.

A. Dhagat and L. Hellerstein. PAC learning with irrelevant attributes. InProceedings of the 35th
Annual Symposium on Foundations of Computer Science, pages 64–74, 1994.

A. Ehrenfeucht and D. Haussler. Learning decision trees from random examples.Information and
Computation, 82(3):231–246, 1989.

A.R. Golding and D. Roth. A Winnow-based approach to spelling correction. Machine Learning,
34:107–130, 1999.

M. Goldmann, J. H̊astad, and A. Razborov. Majority gates vs. general weighted thresholdgates.
Computational Complexity, 2:277–300, 1992.

D. Haussler. Space efficient learning algorithms. Technical Report UCSC-CRL-88-2, University of
California at Santa Cruz, 1988.

D. Helmbold, R. Sloan, and M. Warmuth. Learning integer lattices.SIAM Journal on Computing,
21(2):240–266, 1992.

M. Kearns and U. Vazirani.An Introduction to Computational Learning Theory. MIT Press, Cam-
bridge, MA, 1994.

J. Kivinen, M. Warmuth, and P. Auer. The Perceptron algorithm vs. Winnow: linear vs. logarithmic
mistake bounds when few input variables are relevant.Artificial Intelligence, 97(1-2):325–343,
1997.

A. Klivans and R. Servedio. Learning DNF in time 2Õ(n1/3). Journal of Computer & System Sciences,
68(2):303–318, 2004.

A. Klivans, R. O’Donnell, and R. Servedio. Learning intersections andthresholds of halfspaces.
Journal of Computer & System Sciences, 68(4):808–840, 2004.

M. Krause. On the computational power of Boolean decision lists. In19th Annual Symposium on
Theoretical Aspects of Computer Science, pages 372–383, 2002.

M. Krause and P. Pudlak. Computing Boolean functions by polynomials and threshold circuits.
Computational Complexity, 7(4):346–370, 1998.

N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-threshold algo-
rithm. Machine Learning, 2:285–318, 1988.

N. Littlestone.Mistake bounds and logarithmic linear-threshold learning algorithms. PhD thesis,
University of California at Santa Cruz, 1989a.

N. Littlestone. From online to batch learning. InProceedings of the Second Annual Workshop on
Computational Learning Theory, pages 269–284, 1989b.

T. Mitchell. Generalization as search.Artificial Intelligence, 18:203–226, 1982.

J. Myhill and W. Kautz. On the size of weights required for linear-input switching functions.IRE
Trans. on Electronic Computers, EC10(2):288–290, 1961.

601

KLIVANS AND SERVEDIO

Z. Nevo and R. El-Yaniv. On online learning of decision lists.Journal of Machine Learning Re-
search, 3:271–301, 2002.

R. O’Donnell and R. Servedio. New degree bounds for polynomial threshold functions. InProceed-
ings of the 35th ACM Symposium on Theory of Computing, pages 325–334, 2003.

R. Rivest. Learning decision lists.Machine Learning, 2(3):229–246, 1987.

R. Servedio. Computational sample complexity and attribute-efficient learning. Journal of Com-
puter and System Sciences, 60(1):161–178, 2000.

R. Servedio. Perceptron, Winnow and PAC learning.SIAM Journal on Computing, 31(5):1358–
1369, 2002.

D. Spielman. Personal communication, 2003.

R. Uehara, K. Tsuchida, and I. Wegener. Identification of partial disjunction, parity, and threshold
functions.Theoretical Computer Science, 230:131–147, 2000.

L. Valiant. Projection learning.Machine Learning, 37(2):115–130, 1999.

602

