Journal of Machine Learning Research 7 (2006) 587-602 StdariP/04; Revised 12/05; Published 4/06

Toward Attribute Efficient Learning of Decision Lists and Parities

Adam R. Klivans* KLIVANS @CS.UTEXAS.EDU
Department of Computer Science

University of Texas at Austin

Austin, TX 78712, USA

Rocco A. Servedid ROCCO@CS.COLUMBIA .EDU
Department of Computer Science

Columbia University

New York, NY 10027, USA

Editor: Dana Ron

Abstract
We consider two well-studied problems regarding attriteffecient learning: learning decision
lists and learning parity functions. First, we give an aitjon for learning decision lists of length
k over n variables using Ak logn examples and time9k"®). This is the first algorithm for
learning decision lists that has both subexponential sagrhplexity and subexponential running
time in the relevant parameters. Our approach establisfedataonship between attribute efficient
learning and polynomial threshold functions and is base@ orew construction of low degree,
low weight polynomial threshold functions for decisiorntdis For a wide range of parameters our
construction matches a lower bound due to Beigel for detigsts and gives an essentially optimal
tradeoff between polynomial threshold function degreewaeight.

Second, we give an algorithm for learning an unknown patitycfion onk out of n variables
usingO(n'~%/%) examples in polgn) time. Fork = o(logn) this yields a polynomial time algorithm
with sample complexityo(n); this is the first polynomial time algorithm for learning figron
a superconstant number of variables with sublinear sampigptexity. We also give a simple
algorithm for learning an unknown lengkhparity usingO(klogn) examples imk/2 time, which
improves on the naiveX time bound of exhaustive search.

Keywords: PAC learning, attribute efficiency, learning parity, démislists, Winnow

1. Introduction

An important goal in machine learning theory is to desagmibute efficientlgorithms for learning
various classes of Boolean functions. A classef Boolean functions ovem variablesxy, ..., X, is
said to beattribute efficiently learnabléf there is a polyn) time algorithm which can learn any
function f € C using a number of examples which is polynomial in the “size” (description l¢ngth
of the functionf to be learned, rather than m the number of features in the domain over which
learning takes place. (Note that the running time of the learning algorithm mgsbharal be at least

n since each example is anrbit vector.) Thus an attribute efficient learning algorithm for e.g. the
class of Boolean conjunctions must be able to learn any Boolean conjurdtiotiiterals over

X1, ..., % using polyk,logn) examples, sincklogn bits are required to specify such a conjunction.

x. Work done at Harvard University and supported by an NSF Matheat&@aiences Postdoctoral Research Fellowship.
t. Supported in part by NSF CAREER award CCF-0347282.

(©2006 Adam Klivans and Rocco Servedio.

KLIVANS AND SERVEDIO

A longstanding open problem in machine learning, posed first by BlunDj1&8 subsequently
by various authors (Blum, 1996; Blum et al., 1995; Blum and Langley71%8liant, 1999), is
whether or not there exist attribute efficient algorithms for learegision listswhich are essen-
tially nested “if-then-else” statements (we give a precise definition in Secjio@2e motivation
for considering the problem comes from timdinite attribute modelntroduced in Blum (1990).
Blum et al. (1995) showed that for many concept classes (includingidedists) attribute efficient
learnability in the standard-attribute model is equivalent to learnability in the infinite attribute
model. Since simple classes such as disjunctions and conjunctions are aéfficigatly learnable
(and hence learnable in the infinite attribute model), this motivated Blum (19%@ktwhether the
richer class of decision lists is thus learnable as well. Several resea(&iem, 1996; Blum and
Langley, 1997; Dhagat and Hellerstein, 1994; Nevo and El-Yani®228ervedio, 2000) have since
considered this problem; we summarize this previous work in Section 1.2. idoeatly, Valiant
(1999) relates the problem of learning decision lists attribute efficiently tetoumes about human
learning abilities.

Another outstanding challenge in machine learning is to determine whetheettistrattribute
efficient algorithms for learningarity functions The parity function on a set of 0/1-valued variables
Xiy, - -, %, takes valuer-1 or —1 depending on whethey, +- - - +X;, is even or odd. As with decision
lists, a simple PAC learning algorithm is known for the class of parity functiatab attribute
efficient algorithm is known.

1.1 Our Results

We give the first learning algorithm for decision lists that is subexponentiabth sample com-
plexity (in the relevant parameteksand logn) and running time (in the relevant parametgrOur
results demonstrate for the first time that it is possible to simultaneously avoigvtiret case” in
both sample complexity and running time, and thus suggest that it may perapsdible to learn
decision lists attribute efficiently. Our main learning result for decision lists is:

Theorem 1 There is an algorithm which learns length-k decision lists of@r1}" with mistake
bound 2°*) Jogn and time R("°).

This bound improves on the sample complexity of Littlestone’s well-known Winatgerithm
(Littlestone, 1988) for alk and improves on its running time as well foe= Q(log¥/?n); see Section
1.2.

We prove Theorem 1 in two parts; first we generalize the Winnow algorithmiearning lin-
ear threshold functions to leapolynomial threshold function®TFs). In recent work on learning
DNF formulas (Klivans and Servedio, 2004), intersections of halispé€livans et al., 2004), and
Boolean formulas of superconstant depth (O’Donnell and Serve@@8)2 PTFs of degreé have
been learned in time®@ by using polynomial time linear programming algorithms such as the
Ellipsoid algorithm (see Klivans and Servedio, 2004). In contrast, siecgvant to achieve low
sample complexity as well as a?® running time, we use a generalization of the Winnow algo-
rithm to learn PTFs. This generalization has sample complexity and running tiorel®avhich
depend on the degree and the total magnitude of the integer coefficiemnts (wécall the weight)
of the PTF:

588

TOWARD ATTRIBUTE EFFICIENT LEARNING

Theorem 2 Let ¢ be a class of Boolean functions ovi, 1}" with the property that each € ¢
has a PTF of degree at most d and weight at mostT¥én there is an online learning algorithm for
¢ which runs in f time per example and has mistake bour(§\®- d - logn).

This reduces the decision list learning problem to a problem of repregafgiision lists with
PTFs of low weight and low degree. To this end we prove:

Theorem 3 Let L be a decision list of length k. Then L is computed by a polynomialttble:s
function of degre€(k%/3) and weightOk”*),

Theorem 1 follows directly from Theorems 2 and 3. We emphasize thatr&ime® doesot
follow from previous results (Klivans and Servedio, 2004) on regméag DNF formulas as PTFs;
the PTF construction from Klivans and Servedio (2004) in fact hasmxptially larger weight

20(KL/3) 5(kL/3 . .
(2 rather than 2k than the construction in this paper.

Our PTF construction is essentially optimal in the tradeoff between degree@ight that it
achieves. In 1994 Beigel (1994) gave a lower bound showing thatlegseed PTF for a certain
decision list must have weigh®$V%). 1 For d = n%/3, Beigel's lower bound implies that our
construction in Theorem 3 is essentially the best possible.

For parity functions, we give a@(n*) time algorithm which can PAC learn an unknown parity
on k variables out oh using G(nlfl/k) examples. To our knowledge this is the first algorithm
for learning parity on a superconstant number of variables with sublgaaple complexity. Our
algorithm works by finding a “low weight” solution to a systemmofinear equations (corresponding
to a set ofm examples). We prove that with high probability we can find a solution of weight
O(n*~Y/¥) irrespective ofm. Thus by takingm to be only slightly larger tham'~%/¥, standard
arguments show that our solution is a good hypothesis.

We also describe a simple algorithm, due to Dan Spielman, for learning anwnkperity
on k variables using@(klogn) examples an«f)(n"/z) time. This gives a square root running time
improvement over a naiv@(n¥) exhaustive search.

1.2 Previous Results

In previous work several algorithms with different performance bsuindnning time and sample
complexity) have been given for learning lendgidecision lists.

e Rivest (1987) gave the first algorithm for learning decision lists in VakaRAC model of
learning from random examples. Littlestone (Blum, 1996) later gave anguelf Rivest’'s
algorithm in the online learning model. The algorithm can learn any decisiorf lishgthk
in O(kr?) time usingO(kn) examples.

e A brute-force approach is to maintain the set of all lenigttecision lists which are consistent
with the examples seen so far, and to predict at each stage using majorityveotihe sur-
viving hypotheses. This “halving algorithm,” proposed in various formangluin (1988);
Barzdin and Freivald (1972); Mitchell (1982), can learn decision listermythk using only
O(klogn) examples, but the running timer€®).

1. Krause (2002) claims a lower bound of degiesnd weight £("/d) for a particular decision list; this claim, however,
is in error.

589

KLIVANS AND SERVEDIO

e Several researchers (Blum, 1996; Valiant, 1999) have observed/thaow can learn length-
k decision lists from 2% logn examples in time 2¥nlogn. This follows from the fact that
any decision list of lengttk can be expressed as a linear threshold function with integer
coefficients of magnitude<9.

e Finally, several researchers have considered the special casgrihtea lengthk decision
list in which the output bits of the list have at m@talternations. Valiant (1999) and Nevo
and El-Yaniv (2002) have given refined analyses of Winnow’sqreréince for this case (see
Dhagat and Hellerstein, 1994). However, for the general caseathean be as large ds
these results do not improve on the standard Winnow analysis descritregl ab

Note that all of these earlier algorithms have an exponential dependenatleast one of the
relevant parameter& @nd logn for sample complexityk for running time).

Little previous work has been published on learning parity functions attraftiteently in the
PAC model. The standard PAC learning algorithm for parity (based on gp&/system of linear
equations) is due to Helmbold et al. (1992); however this algorithm is nottridfficient since
it usesQ(n) examples regardless &f Several authors have considered learning parity attribute
efficiently in a model where the learner is allowed to make membership quetieihute efficient
learning is easier in this framework since membership queries can help ideiifant variables.
Blum et al. (1995) give a randomized polynomial time membership-queryitdgofor learning
parity onk variables using onlyO(klogn) examples, and these results were later refined Uehara
et al. (2000).

1.3 Organization

In Section 2 we give necessary background. In Section 3 we showdoeduce the decision list
learning problem to a problem of finding suitable PTF representationidide lists (Theorem 2).

In Section 4 we give our PTF construction for decision lists (Theoremi8)Section 5 we discuss
the connection between Theorem 3 and Beigel's ODDMAXBIT lower bolm&ection 6 we give

our results on learning parity functions, and we conclude in Section 7.

2. Preliminaries

Attribute efficient learning has been chiefly studied in timine mistake-bounchodel of concept
learning which was introduced in Littlestone (1988, 1989a). In this modetilgguproceeds in a
series of trials, where in each trial the learner is given an unlabeledd@oebamplex € {0,1}"
and must predict the valugx) of the unknown target functioh. After each prediction the learner
is given the true value of (x) and can update its hypothesis before the next trial begins. The
mistake bounaf a learning algorithm on a target concegs the worst-case number of mistakes
that the algorithm makes over all (possibly infinite) sequences of exanagpldshe mistake bound
of a learning algorithm on a concept class (class of Boolean functidis)he worst-case mistake
bound across all functions e C. The running time of a learning algorithAfor a concept clasS
is defined as the product of the mistake bound oh C times the maximum running time required
by A to evaluate its hypothesis and update its hypothesis in any trial.

Our main interests are the classesdetision listsand parity functions A decision listL of
lengthk over the Boolean variables, ..., X, is represented by a list &f pairs and a bi{¢1,b1),
(l2,02),..., (4, bx),bkr1 where eachy; is a literal and eacly; is either—1 or 1 Given anyx €

590

TOWARD ATTRIBUTE EFFICIENT LEARNING

{0,1}", the value ofL(x) is by if i is the smallest index such thétis made true by; if no 4 is true
thenL(x) = by1. A parity function of lengthk is defined by a set of variabl& {xi,...,x,} such
that|S = k. The parity functiors(x) takes value 1{1) on inputs which set an even (odd) number
of variables inSto 1.

Given a concept clasS over {0,1}" and a Boolean functiorf € C, let siz€ f) denote the
description length of under some reasonable encoding scheme. We say that a learning algorithm
A for C in the mistake-bound model #tribute efficienif the mistake bound oA on any concept
f € Cis polynomial in sizéf). In particular, the description length of a lendttecision list (parity)
is O(klogn), and thus we would ideally like to have péh)-time algorithms which learn decision
lists (parities) of lengttk with a mistake bound of po(k, logn).

We note here that attribute efficiency has also been studied in other leannohgjs, including
Valiant's Probably Approximately Correct (PAC) model of learning fraandom examples. Stan-
dard conversion techniques are known (Angluin, 1988; Haussl88;19ttlestone, 1989b) which
can be used to transform any mistake bound algorithm into a PAC learningtlatlgoThese trans-
formations essentially preserve the running time of the mistake bound algoritditheasample size
required by the PAC algorithm is essentially the mistake bound. Thus, paositulis for mistake
bound learning, such as those we give for decision lists in this papectldiygeld corresponding
positive results for the PAC model.

Finally, our results for decision lists are achieved by a careful analygislgnomial threshold
functions Let f be a Boolean functiof : {0,1}" — {—1,1} and letp be a polynomial im variables
with integer coefficients. Led denote the degree ¢f and letW denote the sum of the absolute
values ofp’s integer coefficients. If the sign gf(x) equalsf (x) for everyx € {0,1}", then we say
that p is apolynomial threshold function (PTF) of degree d and weighfioW/f .

3. Expanded-Winnow: Learning Polynomial Threshold Functions

Littlestone (1988) introduced the online Winnow algorithm and showed thamnitadtribute effi-
ciently learn Boolean conjunctions, disjunctions, and low weight linearhiotd$unctions. Through-
out its execution Winnow maintains a linear threshold function as its hypotladsise heart of the
algorithm is an update rule which makes a multiplicative update to each codffi€tte hypothesis
each time a mistake is made. Since its introduction Winnow has been intensivegdstarn both
applied and theoretical standpoints (see Blum, 1997; Golding and Rot®;, KB&nen et al., 1997;
Servedio, 2002).

The following theorem due to Littlestone (1988) gives a mistake bound fon@\irfor linear
threshold functions:

Theorem 4 Let f(x) be the linear threshold function sigf’ ; wix; — 6) over inputs xc {0,1}"
where® and w, ..., w, are integers. Let W= S ; |wi|. Then Winnow learns (k) with mistake
bound QW?logn) and uses (n) time steps per example.

We will use a generalization of the Winnow algorithm, which we call Expand&thow, to
learn polynomialthreshold functions of degree at maktOur generalization introduceﬁ’:1 (’l‘)
new variables (one for each monomial of degree ug)tand runs Winnow to learn a linear thresh-
old function over these new variables. More precisely, in each trial weerbthen-bit received
examplex= (x1,...,%,) intoay? , (7) bit expanded example (where the bits in the expanded exam-
ple correspond to monomials over, . .., x,), and we give the expanded example to Winnow. Thus

591

KLIVANS AND SERVEDIO

the hypothesis which Winnow maintains — a linear threshold function over #eesyf expanded
features — is a polynomial threshold function of degdeever the originaln variablesxy, ..., Xn.
Theorem 2, which follows directly from Theorem 4, summarizes the pmdoce of Expanded-
Winnow:

Theorem 2Let ¢ be a class of Boolean functions o), 1}" with the property that each € ¢ has
a polynomial threshold function of degree at most d and weight at moShéh Expanded-Winnow
algorithm runs in (@ time per example and has mistake bour(\®-d - logn) for ¢.

Theorem 2 shows that the degree of a polynomial threshold functiorg$iraffects Expanded-
Winnow's running time, and the weight of a polynomial threshold functiomsfiyoaffects its sam-
ple complexity.

4. Constructing PTFs for Decision Lists

In previous constructions of polynomial threshold functions for computatiearning theory ap-
plications (Klivans and Servedio, 2004; Klivans et al., 2004; O'Ddinswed Servedio, 2003) the
sole goal has been to minimize the degree of the polynomials regardless ofehed the coeffi-
cients. As one example, the construction of Klivans and Servedio (Zﬁ(IZIin/3) degree PTFs
for DNF formulae yields polynomials whose coefficients can be doubly mxpiial in the degree.
In contrast, we must now construct PTFs that have low degree and lmhtve

We give two constructions of PTFs for decision lists, each of which Hasvely low degree
and relatively low weight. We then combine these to achieve an optimal cotatrudth improved
bounds on both degree and weight.

4.1 Outer Construction

Let L be a decision list of lengtk over variables(, ..., xx. We first give a simple construction of
a degreen, weight 2/"h) PTF for L which is based on breaking the listinto sublists. We call
this construction the “outer construction” since we will ultimately combine this coastn with a
different construction for the “inner” sublists.

We begin by showing thdt can be expressed as a thresholanafdified decision listswvhich
we now define. The sety, of modified decision lists is defined as follows: each functiomjns
a decision list(¢1,b1), (¢2,b2),...,(¢n,bn),0 where eacHi; is some literal oveky,...,X, and each
bi € {—1,1}. Thus the only difference between a modified decisiorflists,, and a normal decision
list of lengthh is that the final output value is O rather than 1 € {—1,+1}.

Now assume we have a likt= (¢1,b1),..., (¢, bk),bk+1. We breakL sequentially intok/h
blocks each of length (assumek/h is an integer, otherwise we can ude’h| everywhere). Let
fi € By be the modified decision list which corresponds to itieblock of L, i.e. fj is the list
(¢i—1h+1,Pi-1)h11), - - -» Lii+nh, Bis1)n), 0. Intuitively fi computes théth block ofL and equals 0
only if we “fall of the edge” of thath block. We then have the following straightforward claim:

Claim 5 The decision list L is egivalent to

k/h
sign(_zlz"/hi“fi (X) + bk+1> . 1)

592

TOWARD ATTRIBUTE EFFICIENT LEARNING

Proof Given an inpuix letr = (i — 1)h+ c be the first index such thdt is satisfied. It is easy to
see thaffj(x) = 0 for j < i and hence the value in (1) i§/2-+1p, + ZT/:?+12k/h_j+lfj (X) + by,
the sign of which is easily seen to be Finally, if no literal is satisfied then the argument to (1) is

bk+1- n

Note: It is easily seen that we can replace the 2 in formula (1) by a 3; this will puseéul later.

As an aside, note that Claim 5 can already be used to obtain a tradeoffelmetwaning time
and sample complexity for learning decision lists. The clagsontains at most4n)" functions.
Thus as in Section 3 itis possible to run the Winnow algorithm using the fundtiansas the base
features for Winnow. (So for each examplgvhich it receives, the algorithm would first compute
the value off (x) for eachf € 8, and would then use this vector @f(x)) <5, Values as the example
point for Winnow.) A direct analogue of Theorem 2 now implies that ExjgarRd/innow (run over
this expanded feature space of functions freg) can be used to learn, in time n°M 20(/h) with
mistake bound 2%/Mhlogn.

However, it will be more useful for us to obtain a PTF far We can do this from Claim 5 as
follows:

Theorem 6 Let L be a decision list of length k. For any<hk we have that L is computed by a
polynomial threshold function of degree h and weigfit/h+"

Proof Consider the first modified decision lit = (01,b1), (L2,b2), ..., ({h, br), 0 in the expression
(1). For/ a literal let¢ denotex; if £ is an unnegated variable and let/ denote 1-x; if if £ is a
negated variablg. We have that for alk € {0,1}", f1(x) is computed exactly by the polynomial

f1(X) = f1by + (1 — 01) oy + (1 — 1) (1 — Lo)labs + -+ (1 — F1) - - (1 — Zp_1) Crbon.

This polynomial has degrdeand has weight at most2L. Summing these polynomial representa-
tions for fy,..., fyn as in (1) we see that the resulting PTF given by (1) has degae weight at
most ¥/M+1. oh+1 _ 20(k/h+h). m

Specializing to the case= vk we obtain:

Corollary 7 Let L be a decision list of length k. Then L is computed by a polynomialhbies
function of degree’®? and weigh2C®).

We close this section by observing that an intermediate result of Klivansanatdio (2004)
can be used to give an alternate proof of Corollary 7 with slightly weakempeters; however our
later proofs require the construction given in this section.

4.2 Inner Approximator

In this section we construct low degree, low weight polynomials which aqpiate (in thel
norm) the modified decision lists from the previous subsection. Moreovempahynomials we
construct are exactly correct on inputs which “fall off the end”:

593

KLIVANS AND SERVEDIO

Theorem 8 Let f € 3, be a modified decision list of length h. Then there is a degreéhogh)
polynomial p such that

o for every input > {0,1}" we have p(x) — f(x)| < 1/h.
e f(x) =0implies gx) =0.

Proof

We construct a PTF satisfying the above requirements for a decisidndisthe form(xz,b;),
..., (Xn,bn),0. The proof for a general modified decision list is similar. As in the prodftedorem
6 we have that

f(X) =bixa +bo(1—X0)%o+ - +br(1—X1) - - - (1 — Xn—1)Xn.

We will construct a lower (roughly/h) degree polynomial which closely approximatesEssen-
tially this construction has been done several times before (see Klivdrdamedio, 2004; Klivans
et al., 2004).

Let T; denote(1—x1)...(1—X_1)X, SO we can rewritd as

f(X) =b1Ti+boTo+ -+ bpTh.

We approximate eachly separately as follows: sé&(x) =h—i+x + zij;ll(l— Xj). Note that for
x € {0,1}", we haveT;(x) = 1 iff A(x) = handTi(x) = 0iff 0 < A(x) <h—1. Letd = [vh]. Now
define the polynomial

Q(x) =a(Ai(x)/h) where q(y) = Ca(y(1+1/h)).

As in Klivans and Servedio (2004), hetg(x) is thedth Chebyshev polynomial of the first kind (a
univariate polynomial of degred). We will need the following facts about Chebyshev polynomials
(Cheney, 1966):

o |Cy(x)| <1for|x <1withCy(1l) =1,
e Cjj(x) > d?for x> 1 with C}j(1) = d?;
e The coefficients o€ are integers each of whose magnitude is at mbst 2

The first two facts imply thatj(1) > 2 but|q(y)| < 1 fory € [0,1— #]. We thus have tha®;(x) =
q(1) > 2if Ti(x) = 1 and|Q;(x)| < 1if Tj(x) = 0. Now defineR (x) = (%)ZIOgh. This polynomial
is easily seen to be a good approximatorTorif x € {0,1}" is such thafl;(x) = 1 thenP(x) = 1,
and ifx € {0,1}" is such thaff; (x) = 0 then|P,(x)| < (%)2|ogh <5
Now defineR(x) = $_; biP(x) and p(x) = R(x) — R(0"). It is clear thatp(0") = 0. We will
show that for every input™+# x € {0,1}" we have|p(x) — f(x)| < 1/h. Fix such arx; leti be the
first index such thax; = 1. As shown above we hau&(x) = 1. Moreover, by inspection of;(x)
we have thaflj(x) = 0 for all j # i, and hencéP;(x)| < h—lz Consequently the value &x) must
lie in [by — "2, by + B=2). Since|R(0")| is at mostZ/h? and f(x) = by, we have thap(x) is anL
approximator forf (x) as desired.

594

TOWARD ATTRIBUTE EFFICIENT LEARNING

Finally, it is straightforward to verify thap(x) has the claimed degree. [|

Strictly speaking we cannot discuss the weight of the polynommisince its coefficients are
rational numbers but not integers. However, by multiplymby a suitable integer (clearing de-
nominators) we obtain an integer polynomial with essentially the same propéssewy the third
fact about Chebyshev polynomials from our proof above, we haveqgtfia is a rational number
N1/N, whereN; andN, are both integers of magnitud® v . EachQ;(x) fori = 1,...,h can be
written as an integer polynomial (of Weigh?(\m)) divided byh\/ﬁ. Thus each? (x) can be written
as B (x)/(hV'Np)2'ogh where B (x) is an integer polynomial of weightP(vhiogh) |t follows that
p(x) equalsp(X)/C, whereC is an integer which is at mosP#™*109°") and §is a polynomial with
integer coefficients and weighP#"*1°9°" We thus have

Corollary 9 Let f € 8, be a modified decision list of length h. Then there is an integer polynomial
p(x) of degree2v/hlogh and weighe®"’?108°N) and an integer C= 200?106’ gych that

e for every input > {0,1}" we have p(x) —Cf(x)| < C/h.
e f(x) =0implies gx) =0.

The fact thatp(x) is exactly 0 wherf (x) is O will be important in the next subsection when we
combine the inner approximator with the outer construction.

4.3 Composing the Constructions

In this section we combine the two constructions from the previous subsstti@itain our main
polynomial threshold construction:

Theorem 10 Let L be a decision list of length k. Then for any Ik, L is computed by a polynomial
threshold function of degree(®@2logh) and weightCk/M+*?log?h)

Proof Again assumé is the decision lis{x1,bs),..., (X, bk), bkr1 (the case wheh contains
negated literals is entirely similar). We begin with the outer construction: fromakefollowing

Claim 5 we have that
L(x) = sign (C)

whereC is the value from Corollary 9 and eadhis a modified decision list of lengthcomputing

the restriction ot to itsith block as defined in Subsection 4.1. Now we use the inner approximator
to replace eaclC fi above byp;, the approximating polynomial from Corollary 9, i.e. consider
sign(H (x)) where

k/h hoi
/N1 (%) + b
2

k/h _
H(x) = Zl(sk/hf'ﬂpi (X)) + Chgy1.

i=
We will show that sigiH (x)) is a PTF which computes correctly and has the desired degree and
weight.

Fix anyx € {0, 1}. If x= 0K then by Corollary 9 eachj(x) is 0 soH (x) = Chx.1 has the right

sign. Now suppose that= (i — 1)h+ cis the first index such tha¢ = 1. By Corollary 9, we have
that

595

KLIVANS AND SERVEDIO

o 3/M=i+lpi(x) =0forj <i;
o 3¢/N=+1p(x) differs from 3/"~+1Chy by at mosc3¥/h-+1. 1,
e The magnitude of each valu&/8-1+1p;(x) is at mosC3</"1*1(1+ 1) for j > i.

Combining these bounds, the valuetbfx) differs from 3/"=1+1Ch, by at most

k/h—i+1 _ .
c<3 + <1+1> [3k/“*'+3"/h*'*1+-~-+3] +1>

h h

which is easily seen to be less tha8/"-+1 in magnitude (foh > 1). Thus the sign dfl (x) equals
br, and consequently sigH (x)) is a valid polynomial threshold representationlf¢x). Finally, our
degree and weight bounds from Corollary 9 imply that the degré#(gf is O(h'/2logh) and the
weight ofH (x) is 20(k/N+0(h2log’h) and the theorem is proved. u

Takingh = k%3/log* 3k in the above theorem we obtain our main result on representing deci-
sion lists as polynomial threshold functions:

Theorem 3 Let L be a decision list of length k. Then L is computed by a polynomialttbies

function of degree ¥3log®/3k and weighgCk*log”*k)

Theorem 3 immediately implies that Expanded-Winnow can learn decision listsgthlk

using 2*”*) logn examples and time®k).

4.4 Application to Learning Decision Trees

Ehrenfeucht and Haussler (1989) gave an a 1iffi€9% algorithm for learning decision trees with
s leaves ovemn variables. Their algorithm use¥(°99 examples, and they asked if the sample
complexity could be reduced to pdlys). We can apply our techniques here to give an algorithm
. 3(s1/3 . - D(sl/3Y 4
using 2(¢°) logn examples, if we are willing to spem®S”") time.
First we need to generalize Theorem 10 for higher order decision lists-d&cision list is like
a standard decision list but each pair is now of the fo@mb;) whereC; is a conjunction of at most
r literals and as beforg = £1. The output of such arrdecision list on inpuk is b; wherei is the
smallest index such th&(x) = 1.
We have the following:

Corollary 11 Let L be an r-decision list of length k. Then for anykhk, L is computed by a
polynomial threshold function of degredi@/2logh) and weight'+O(k/h+"/2log?h)

Proof LetL be ther-decision list(Cy,by),. .., (Ck, bk),bkr1. By Theorem 10 there is a polynomial
threshold function of degre®(h/2logh) and weight &K/M"2108h) oyer the variable€y, .. ., Cy.
Now replace each variab@ by the interpolating polynomial which computes it exactly as a func-
tion from{0,1}" to {0, 1}. Each such interpolating polynomial has degread integer coefficients
of total magnitude at most 2and the corollary follows. |

596

TOWARD ATTRIBUTE EFFICIENT LEARNING

Corollary 12 There is an algorithm for learning r-decision lists o, 1}" which, when learning
rkt/3)

an r-decision list of length k, has mistake bo@¥ <) logn and runs in time A<"*).

Now we can apply Corollary 12 to obtain a tradeoff between running timeamgle complex-
ity for learning decision trees:

Theorerp 13 LetD be a degision tree of size s over n variables. Then D can be leaittechistake
bound29”®) logn in time ().

Proof Blum (1992) has shown that any decision tree of simcomputed by &logs)-decision list
of lengths. Applying Corollary 12 we thus see that Expanded-Winnow can be usedriodecision
trees of sizes over{0,1}" with the claimed bounds on time and sample complexity. |

5. Lower Bounds for Decision Lists

Here we observe that our construction from Theorem 10 is essentiditgadpn terms of the trade-
off it achieves between polynomial threshold function degree and weight.

Beigel (1994) constructs an oracle separafigirom PNP. At the heart of his construction is
a proof that any low degree PTF for a particular decision list called the @BEBIT , function
must have large weights:

Definition 14 The ODDMAXBIT , function on input x= xg, ..., X, € {0,1}" equals(—1)' where i
is the index of the first nonzero bit in x

It is clear that the ODDMAXBIT, function is equivalent to a decision ligks, —1), (x2,1),
(x3,—1),..., (%, (=)™, (=1)™* of lengthn. The main technical theorem that Beigel proves is as
follows:

Theorem 15 Let p be a degree d PTF with integer coefficients which compDRBMAXBIT .
Then w= 220V%) where w is the weight of.p

(As stated in Beigel (1994) the bound is actuaily> 122°(V%) wheresis the number of nonzero
coefficients inp. Sinces < w this implies the result as stated above.)

A lower bound of 2" on the weight of any linear threshold functiah= 1) for ODDMAXBIT ,
has long been known (Myhill and Kautz, 1961); Beigel's proof geliwga this lower bound to all
d= O(nl/z). A matching upper bound of%" on weight ford = 1 has also long been known (My-
hill and Kautz, 1961). Our Theorem 10 gives an upper bound whichhreatBeigel's lower bound
(up to logarithmic factors) for atl = O(n%/3):

Observation 16 For any d= O(n'/3) there is a polynomial threshold function of degree d and
weight2°("®) which compute© DDMAXBIT .

nlogzd

Proof Setd = h'/2loghin Theorem 10. The weight bound given by Theorem 1Pfs 2 4199
which is 20V%) for d = O(n%/3). |

597

KLIVANS AND SERVEDIO

Note that since the ODDMAXBIJ function has a polynomial size DNF, Beigel's lower bound
gives a polynomial size DNF such that any degreé(nl/?’) polynomial threshold function fof
must have Weightf?(”l/a). This suggests that the Expanded-Winnow algorithm cannot learn polyno
mial size DNF in 2"*) time from 2° * examples for ang > 0, and thus suggests that improving
the sample complexity of the DNF learning algorithm from Klivans and Serv&io4) while
maintaining its 2™ running time may be difficult.

6. Learning Parity Functions

Recall that the standard algorithm for learning parity functions worksdying a set ofmlabelled
examples as a set oflinear equations ovesF(2). Gaussian elimination is used to solve the system
and thus find a consistent parity. Even though there exists a solution ditvegigostk (since the
target parity is of length), Gaussian elimination applied to a systemmoéquations im variables
over GF(2) may yield a solution of weight as large as rfimn). Thus this standard algorithm and
analysis give a®(n) sample complexity bound for learning a parity of length at nkost

6.1 A Polynomial Time Algorithm

We now describe a simple pdly)-time algorithm for PAC learning an unknown lendtiparity
usingé(nl—l/") examples (for a formal definition of the PAC model we refer the reader tbdbk
by Kearns and Vazirani, 1994). As far as we know this is the first impnare on the standard
algorithm and analysis described above.

Theorem 17 The class of all parity functions on at most k variables is PAC learnablg it Qime
using in‘l/klog n) examples. The hypothesis output by the learning algorithm is a parity function
on O(n'~%/¥) variables.

Proof If k= Q(logn) then the standard algorithm suffices to prove the claimed bound. We thus
assume that = o(logn).

Let/ = n*1/% LetH be the set of all parity functions of length at mésNote thatH| <n
so logH| < n*~VKlogn. Consider the following algorithm:

ni-1/k

1. Choosan= %(Iog|H | +1log(1/d)) examples. Express each example as a linear equation in
variables oveGF(2) as described above.

2. Randomly choose a setiof- £ variables and assign them the value O.

3. Use Gaussian elimination to attempt to solve the resulting system of equatithesremain-
ing ¢ variables. If the system has a solution, output the corresponding pafrigngth at most
¢ = n~1/K) as the hypothesis. If the system has no solution, output “FAIL.”

If the simplified system of equations has a solution, then by a standard GcRaztr argument
(see Kearns and Vazirani, 1994, for details), this solution is a goodthggis. We will show that
the simplified system has a solution with probabil®y1/n). The theorem follows by repeating
steps 2 and 3 of the above algorithm until a solution is found. An expé&atailrepetitions will
suffice, and since Gaussian elimination runs in ti@@3), the running time of our algorithm is
o(n*).

598

TOWARD ATTRIBUTE EFFICIENT LEARNING

LetV be the set ok relevant variables on which the unknown parity function depends. ésg e
to see that as long as no variableMinis assigned a 0, the resulting simplified system of equations
will have a solution. The probability that in Step 2 the- £ variables chosen do not include any

variables inV is exactly ("%) /(}) which equals(}—)/(}). Expanding binomial coefficients we

have
_ k
) Ukt Lok AN E
o il:ln—k+i n-k/ \n/ \1-k
1 K\ 1 K2\ 1
n(l€> >n(l€)>2n
and the proof of the theorem is complete. [|

6.2 AnO(n¥/2) Time Attribute Efficient Algorithm

Spielman (2003) has observed that it is possible to improve onttime bound of a naive search
algorithm for learning parity usiniglogn examples:

Theorem 18 (Spielman) The class of all parity functions on at most k variables is PAC learnable
in O(n¥/?) time using @klogn) examples. The hypothesis output by the learning algorithm is a
parity function on at most k variables.

Proof By Occam’s Razor we need only show that given a sehef O(klogn) labelled examples,
a consistent lengtk-parity can be found ilé(nk/z) time.

Given a labelled examplé, . . ., X,;y) we will view y as an(n+ 1)st attributex,;1. Thus our
task is to find a set ofk + 1) attributesx;,, ..., x;,,,, one of which must b&, 1, which sumto 0 in
every example in the sample.

Let (xL;y1), ... (XM ym) be the labelled examples in our sample. Given a substtariables, let
vs denote the lengtim binary vector(xs(x}), ..., xs(x™)) obtained by computing the parity function
Xs on each example in our sample.

We construct two lists, each containil(ngz) vectors of lengthm. The first list contains all the
vectorsvs whereSranges over ak/2-element subsets gk, ...,x,}. The second list contains all
the vectors/g jx,.,1 WhereSagain ranges over &l/2-element subsets ¢ky, ..., Xn}.

After sorting these two lists of vectors, which takegn*/2) time, we scan through them in
parallel in time linear in the length of the lists and find a pair of vectgydrom the first list and
Vs,uix..1} from the second list which are the same. (Note that any decomposition ofglee parity
into two subsets; and$; of k/2 variables each will give such a pair). The SgtUS; is then a
consistent parity of lengtk. |

7. Future Work

An obvious goal for future work is to improve our algorithmic results for &g decision lists.
As a first step, one might attempt to extend the tradeoffs we achieve: issibfto learn decision
lists of lengthk in n<"’? time from polyk,logn) examples?

599

KLIVANS AND SERVEDIO

Another goal is to extend our results for decision lists to broader contagstes. In particular, it
would be interesting to obtain analogues of our algorithmic results for leageingral linear thresh-
old functions (independent of their weight). We note here that Goldmaah €t992) have given
a linear threshold function ovgr-1,1}" for which any polynomial threshold function must have
weight 202 regardless of its degree. Moreover Krause and Pudlak (1998)dhawven that any
Boolean function which has a polynomial threshold function g\@d }" of weightw has a poly-
nomial threshold function ovef—1,1}" of weightn?w*. These results imply thaepresentational
results akin to Theorem 3 for general linear threshold functions musiéetitatively weaker than
Theorem 3; in particular, there is a linear threshold function §0et }" with k nonzero coefficients
for which any polynomial threshold function, regardless of degreet hawe weight 9(k2),

For parity functions many questions remain as well: can we learn parity furscbak =
O(logn) variables in polynomial time using a sublinear number of examples? Can wedagthk
parities in polynomial time using fewer thah 1/ examples? Can we learn lendttparities from
O(klogn) examples in tim@(nk/3)? Progress on any of these fronts would be quite interesting.

8. Acknowledgements

We thank Les Valiant for his observation that Claim 5 can be reinterpreteirivs of polynomial
threshold functions, and we thank Jean Kwon for suggesting the Chebypolynomial. We thank
Dan Spielman for allowing us to include his proof of Theorem 18.

References

D. Angluin. Queries and concept learnifgachine Learning2:319-342, 1988.

J. Barzdin and R. Freivald. On the prediction of general recursimetions. Soviet Mathematics
Doklady, 13:1224-1228, 1972.

R. Beigel. Perceptrons, PP, and the Polynomial Hierar€lmyynputational Complexifyt:339-349,
1994.

A. Blum. Learning Boolean functions in an infinite attribute space.Piloceedings of the 22nd
Annual Symposium on Theory of Computipages 64—72, 1990.

A. Blum. Ranky decision trees are a subclass afecision lists.Information Processing Letters
42(4):183-185, 1992.

A. Blum. On-line algorithms in machine learning. available at
http://fwww.cs.cmu.edu/ avrim/Papers/pubs.html , 1996.

A. Blum. Empirical support for Winnow and weighted-majority algorithms: hsson a calendar
scheduling domainMachine Learning26:5-23, 1997.

A. Blum and P. Langley. Selection of relevant features and examples ininedearning Artificial
Intelligence 97(1-2):245-271, 1997.

A. Blum, L. Hellerstein, and N. Littlestone. Learning in the presence of finielpfinitely many
irrelevant attributesJournal of Computer and System Sciené&&s32—-40, 1995.

600

TOWARD ATTRIBUTE EFFICIENT LEARNING

E. Cheneylntroduction to approximation theoryMcGraw-Hill, New York, New York, 1966.

A. Dhagat and L. Hellerstein. PAC learning with irrelevant attributesProceedings of the 35th
Annual Symposium on Foundations of Computer Scigramges 64—74, 1994,

A. Ehrenfeucht and D. Haussler. Learning decision trees fromorarekamplesinformation and
Computation82(3):231-246, 1989.

A.R. Golding and D. Roth. A Winnow-based approach to spelling correctitecchine Learning
34:107-130, 1999.

M. Goldmann, J. Bistad, and A. Razborov. Majority gates vs. general weighted threghtdd.
Computational Complexity:277-300, 1992.

D. Haussler. Space efficient learning algorithms. Technical Repo8@JCRL-88-2, University of
California at Santa Cruz, 1988.

D. Helmbold, R. Sloan, and M. Warmuth. Learning integer lattic®#M Journal on Computing
21(2):240-266, 1992.

M. Kearns and U. VaziraniAn Introduction to Computational Learning TheotIT Press, Cam-
bridge, MA, 1994,

J. Kivinen, M. Warmuth, and P. Auer. The Perceptron algorithm vs. Windinear vs. logarithmic
mistake bounds when few input variables are relevamtificial Intelligence 97(1-2):325-343,
1997.

A. Klivans and R. Servedio. Learning DNF in tim82"). Journal of Computer & System Sciences
68(2):303-318, 2004.

A. Klivans, R. O’'Donnell, and R. Servedio. Learning intersections tunelsholds of halfspaces.
Journal of Computer & System Sciencé8(4):808-840, 2004.

M. Krause. On the computational power of Boolean decision listd9th Annual Symposium on
Theoretical Aspects of Computer Scienuages 372—-383, 2002.

M. Krause and P. Pudlak. Computing Boolean functions by polynomials ardhbld circuits.
Computational Complexity’ (4):346-370, 1998.

N. Littlestone. Learning quickly when irrelevant attributes abound: a nesafithreshold algo-
rithm. Machine Learning2:285-318, 1988.

N. Littlestone. Mistake bounds and logarithmic linear-threshold learning algorithi@&D thesis,
University of California at Santa Cruz, 1989a.

N. Littlestone. From online to batch learning. Pnoceedings of the Second Annual Workshop on
Computational Learning Theorpages 269—-284, 1989b.

T. Mitchell. Generalization as searchrtificial Intelligence 18:203-226, 1982.
J. Myhill and W. Kautz. On the size of weights required for linear-inputaving functions.IRE
Trans. on Electronic ComputerEC10(2):288-290, 1961.

601

KLIVANS AND SERVEDIO

Z. Nevo and R. El-Yaniv. On online learning of decision listaurnal of Machine Learning Re-
search 3:271-301, 2002.

R. O’Donnell and R. Servedio. New degree bounds for polynomiastuiel functions. IiProceed-
ings of the 35th ACM Symposium on Theory of Compugiages 325-334, 2003.

R. Rivest. Learning decision listdlachine Learning2(3):229-246, 1987.

R. Servedio. Computational sample complexity and attribute-efficient leardmgrnal of Com-
puter and System Sciencé§(1):161-178, 2000.

R. Servedio. Perceptron, Winnow and PAC learni®AM Journal on Computing31(5):1358—
1369, 2002.

D. Spielman. Personal communication, 2003.

R. Uehara, K. Tsuchida, and I. Wegener. Identification of partial didjan, parity, and threshold
functions. Theoretical Computer Scienc230:131-147, 2000.

L. Valiant. Projection learningMachine Learning37(2):115-130, 1999.

602

