
Journal of Machine Learning Research 7 (2006) 429–454 Submitted 7/05; Revised 1/06; Published 2/06

Inductive Synthesis of Functional Programs:
An Explanation Based Generalization Approach

Emanuel Kitzelmann emanuel.kitzelmann@wiai.uni-bamberg.de

Ute Schmid ute.schmid@wiai.uni-bamberg.de

Department of Information Systems and Applied Computer Science
Otto-Friedrich-University
Bamberg, Germany

Editors: Roland Olsson and Leslie Pack Kaelbling

Abstract

We describe an approach to the inductive synthesis of recursive equations from input/output-
examples which is based on the classical two-step approach to induction of functional Lisp
programs of Summers (1977). In a first step, I/O-examples are rewritten to traces which
explain the outputs given the respective inputs based on a datatype theory. These traces
can be integrated into one conditional expression which represents a non-recursive pro-
gram. In a second step, this initial program term is generalized into recursive equations
by searching for syntactical regularities in the term. Our approach extends the classical
work in several aspects. The most important extensions are that we are able to induce a
set of recursive equations in one synthesizing step, the equations may contain more than
one recursive call, and additionally needed parameters are automatically introduced.
Keywords: inductive program synthesis, inductive functional programming, explanation
based generalization, recursive program schemes

1. Introduction

Automatic induction of recursive programs from input/output-examples (I/O-examples) is
an active area of research since the sixties and of interest for AI research as well as for soft-
ware engineering (Lowry and McCarthy, 1991; Flener and Partridge, 2001). In the seventies
and eighties, there were several approaches to the synthesis of Lisp programs from examples
or traces (see Biermann et al. 1984 for an overview). The most influential approach was
developed by Summers (1977), who put inductive synthesis on a firm theoretical foundation.

Summers’ early approach is an explanation based generalization (EBG) approach, thus
it widely relies on algorithmic processes and only partially on search: In a first step, traces—
steps of computations executed from a program to yield an output from a particular input—
and predicates for distinguishing the inputs are calculated for each I/O-pair. Construction
of traces, which are terms in the classical functional approaches, relies on knowledge of the
inductive datatype of the inputs and outputs. That is, traces explain the outputs based
on a theory of the used datatype given the respective inputs. The classical approaches for
synthesizing Lisp-programs used the general Lisp datatype S-expression. By integrating
traces and predicates into a conditional expression a non-recursive program explaining all
I/O-examples is constructed as a result of the first synthesis step. In a second step, regular-

c©2006 Emanuel Kitzelmann and Ute Schmid.

Kitzelmann and Schmid

ities are searched for between the traces and predicates respectively. Found regularities are
then inductively generalized and expressed in the form of the resulting recursive program.

The programs synthesized by Summers’ system contain exactly one recursive function,
possibly along with one constant term calling the recursive function. Furthermore, all
synthesizable functions make use of a small fixed set of Lisp-primitives, particularly of
exactly one predicate function, atom, which tests whether its argument is an atom, e.g.,
the empty list. The latter implies two things: First, that Summers’ system is restricted to
induce programs for structural problems on S-expressions. That means, that execution of
induced programs depends only on the structure of the input S-expression, but never on
the semantics of the atoms contained in it. For example, reversing a list is a structural
problem, yet not sorting a list. The second implication is, that calculation of the traces is
a deterministic and algorithmic process, i.e., does not rely on search and heuristics.

Due to only limited progress regarding the class of programs which could be inferred by
functional synthesis, interest decreased in the mid-eighties. There was a renewed interest of
inductive program synthesis in the field of inductive logic programming (ILP) (Flener and
Yilmaz, 1999; Muggleton and De Raedt, 1994), in genetic programming and other forms of
evolutionary computation (Olsson, 1995) which rely heavily on search.

We here present an EBG approach which is based on the methodologies proposed by
Summers (1977). We regard the functional two-step approach as worthwhile for the follow-
ing reasons: First, algebraic datatypes provide guidance in expressing the outputs in terms
of the inputs as the first synthesis step. Second, it enables a seperate and thereby special-
ized handling of a knowledge dependent part and a purely syntactic driven part of program
synthesis. Third, using both algebraic datatypes and seperating a knowledge-dependent
from a syntactic driven part enables a more accurate use of search than in ILP or evolu-
tionary programming. Fourth, the two-step approach using algebraic datatypes provides a
systematic way to introduce auxiliary recursive equations if necessary.

Our approach extends Summers in several important aspects, such that we overcome
fundamental restrictions of the classical approaches to induction of Lisp programs: First, we
are able to induce a set of recursive equations in one synthesizing step, second, the equations
may contain more than one recursive call, and third, additionally needed parameters are
automatically introduced. Furthermore, our generalization step is domain-independent, in
particular independent from a certain programming language. It takes as input a first-order
term over an arbitrary signature and generalizes it to a recursive program scheme, that is, a
set of recursive equations over that signature. Hence it can be used as a learning component
in all domains which can represent their objects as recursive program schemes and provide a
system for solving the first synthesis step. For example, we use the generalization algorithm
for learning recursive control rules for AI planning problems (cp. Schmid and Wysotzki
2000; Wysotzki and Schmid 2001).

2. Overview Over the Approach

The three central objects dealt with by our system are (1) sets of I/O-examples specifying
the algorithm to be induced, (2) initial (program) terms explaining the I/O-examples, and
(3) recursive program schemes (RPSs) representing the induced algorithms. Their func-
tional role in our two-step synthesis approach is shown in Figure 1.

430

An EBG Approach to Inductive Synthesis of Functional Programs

I/O-examples

1. Step: Explanation, based

on knowledge of datatypes−−−−−−−−−−−−−−−−−−−−−→ Initial Term

2. Step: Generalization,

purely syntactic driven−−−−−−−−−−−−−−−−−−→ RPS

Figure 1: Two synthesis steps

2.1 First Synthesis Step: From I/O-examples to an Initial Term

An example for I/O-examples is given in Table 1. The examples specify the lasts function
which takes a list of lists as input and yields a list of the last elements of the lists as
output. In the first synthesis step, an initial term is constructed from these examples. An

[] 7→ [],
[[a]] 7→ [a],

[[a, b]] 7→ [b],
[[a, b, c], [d]] 7→ [c, d],

[[a, b, c, d], [e, f]] 7→ [d, f],
[[a], [b], [c]] 7→ [a, b, c]

Table 1: I/O-examples for lasts

initial term is a term respecting an arbitrary first-order signature extended by the special
constant symbol Ω, meaning the undefined value and directing generalization in the second
synthesis step. Suitably interpreted, an initial term evaluates to the specified output when
its variable is instantiated with a particular input of the example set and to undefined for
all other inputs.

Table 2 gives an example of an initial term. It shows the result of applying the first
synthesis step to the I/O-examples for the lasts function as shown in Table 1. if means
the 3ary non-strict function which returns the value of its second parameter if its first
parameter evaluates to true and otherwise returns the value of its third parameter; empty
is a predicate which tests, whether its argument is the empty list; head and tail yield the
first element and the rest of a list respectively; cons constructs a list from one element and
a list; and [] denotes the empty list.

Calculation of initial terms relies on knowledge of the datatypes of the example inputs
and outputs. For our exemplary lasts program inputs and outputs are lists. Lists are
uniquely constructed by means of the empty list [] and the constructor cons. Furthermore,
they are uniquely decomposed by the functions head and tail . That allows to calculate
a unique term which expresses an example output in terms of the input. For example,
consider the fourth I/O-example from Table 1: If x denotes the input [[a, b, c], [d]], then the
term cons(head(tail(tail(head(x)))), head(tail(x))) expresses the specified output [c, d] in
terms of the input. Such traces are constructed for each I/O-pair. The overall concept for
integrating the resulting traces into one initial term is to go through all traces in parallel
position by position. If the same function symbol is contained at the current position in all
traces, then it is introduced to the initial term at this position. If at least two traces differ
at the current position, then an if -expression is introduced. Therefore a predicate function
is calculated to discriminate the inputs according to the different traces. Construction
of the initial term proceeds from the discriminated inputs and traces for the second and

431

Kitzelmann and Schmid

if(empty(x), [],
cons(
head(
if(empty(tail(head(x))), head(x),
if(empty(tail(tail(head(x)))), tail(head(x)),
if(empty(tail(tail(tail(head(x))))), tail(tail(head(x))),
Ω)))),

if(empty(tail(x)), [],
cons(
head(
if(empty(tail(head(tail(x)))), head(tail(x)),
Ω)),

if(empty(tail(tail(x))), [],
Ω)))))))

Table 2: Initial term for lasts

third branch of the if -tree respectively. We describe the calculation of initial terms from
I/O-examples, i.e., the first synthesis step, in Section 4.

2.2 Second Synthesis Step: From Initial Terms to Recursive Equations

In the second synthesis step, initial ground terms are generalized to a recursive program
scheme. Initial terms are considered as (incomplete) unfoldings of an RPS which is to be
induced by generalization. An RPS is a set of recursive equations whose left-hand-sides
consist of the names of the equations followed by their parameter lists and whose right-
hand-sides consist of terms over the signature from the initial terms, the set of the equation
names, and the parameters of the equations. One equation is distinguished to be the main
one. An example is given in Table 3. This RPS, suitably interpreted, computes the lasts
function as described above and specified by the examples in Table 1. It results from

lasts(x) = if(empty(x), [], cons(head(last(head(x))), lasts(tail(x))))

last(x) = if(empty(tail(x)), x, last(tail(x)))

Table 3: Recursive Program Scheme for lasts

applying the second synthesis step to the initial term shown in Table 2. Note that it is a
generalization from the initial term in that it not merely computes the lasts function for the
example inputs but for input-lists of arbitrary length containing lists of arbitrary length.

The second synthesis step does not depend on domain knowledge. The meaning of the
function symbols is irrelevant, because the generalization is completely driven by detecting
syntactical regularities in the initial terms. To understand the link between initial terms
and RPSs induced from them, we consider the process of incrementally unfolding an RPS.

432

An EBG Approach to Inductive Synthesis of Functional Programs

Unfolding of an RPS is a (non-deterministic and possibly infinite) rewriting process which
starts with the instantiated head of the main equation of an RPS and which repeatedly
rewrites a term by substituting any instantiated head of an equation in the term with
either the equally instantiated body or with the special symbol Ω. Unfolding stops, when
all heads of recursive equations in the term are rewritten to Ω, i.e., the term contains no
rewritable head any more. Consider the last equation from the RPS shown in Table 3 and
the initial instantiation {x 7→ [a, b, c]}. We start with the instantiated head last([a, b, c])
and rewrite it to the term:

if(empty(tail([a, b, c])), [a, b, c], last(tail([a, b, c])))

This term contains the head of the last equation instantiated with {x 7→ tail([a, b, c])}.
When we rewrite this head again with the equally instantiated body we obtain:

if(empty(tail([a, b, c])), [a, b, c],
if(empty(tail(tail([a, b, c]))), tail([a, b, c]),

last(tail(tail([a, b, c]))))

This term now contains the head of the equation instantiated with {x 7→ tail(tail([a, b, c]))}.
We rewrite it once again with the instantiated body and then replace the head in the
resulting term with Ω and obtain:

if(empty(tail([a, b, c])), [a, b, c],
if(empty(tail(tail([a, b, c]))), tail([a, b, c]),

if(empty(tail(tail(tail([a, b, c])))), tail(tail([a, b, c])),Ω)))

The resulting finite term of a finite unfolding process is also called unfolding. Unfoldings
of RPSs contain regularities if the heads of the recursive equations are more than once
rewritten with its bodies before they are rewritten with Ωs. The second synthesis step is
based on detecting such regularities in the initial terms.

We describe the generalization of initial terms to RPSs in Section 3. The reason why
we first describe the second synthesis step and only afterwards the first synthesis step is,
that the latter is governed by the goal of constructing a term which can be generalized in
the second step. Therefore, for understanding the first step, it is necessary to know the
connection between initial terms and RPSs as established in the second step.

2.3 Characteristics and Limitations of the Approach

The overall objective of our approach is automatical induction of recursive functional pro-
grams from I/O-examples which are correct with respect to the functional behaviour desired
by the user. Since the approach is based on finding differences between traces, i.e., analyzing
one example in relation to the following example, the examples have to be the first k exam-
ples according to an ordering of the underlying data-type with the first example beeing the
least complex instance for which the target recursive program is defined. This is in contrast
to learning from a randomly chosen set of training data (according to some distribution)
which is the common setting in most learning approaches, e.g., in all PAC-learning (Valiant,
1984) algorithms. Another implication of this generalization methodology is that very few

433

Kitzelmann and Schmid

examples are sufficient. This is again in contrast to most learning settings, especially in
contrast to the identification-in-the-limit setting (Gold, 1967). A third implication is that
the examples have to be correct, i.e., the desired function has to be consistent with the
examples. This is not a limitation in our view since we assume that the examples are given
by some (end-user) programmer who knows the functional behaviour of the target program
and thus can provide a few correct examples. A fourth implication of the example-driven
approach is, that termination is assured for the induced programs. This is an important
characteristic since in general, termination is not decidable. Our algorithms output a set
of recursive equations which are consistent with the I/O-examples, i.e., which compute any
specified example-output from the respective example-input.

There are restrictions regarding the programs which can be synthesized. The first step
(see Section 2.1 for an overview and Section 4 for details) is restricted to structural problems,
i.e., functions on lists may only depend on the list structure but not on the meaning of the
items in the lists. The induced recursive equations stand in some call-relation. Due to
the second synthesis step (see Section 2.2 for an overview and Section 3 for details), this
relation is restricted to be flat, that is, recursive calls cannot be nested. Furthermore, the
relation is non-mutual, i.e., if one equation calls a second one, then the second one cannot
call the first one. Since the induction process relies on two successive synthesis steps, the
overall restrictions are the sum of the restrictions of the first step and the restrictions of the
second step. On the other hand, the two-step approach provides some modularity. Since the
limitation to structural problems is a restriction of only the first step, it would be sufficient
to only extend or substitute the first step to extend our approach to be capable of dealing
with non-structural problems, e.g., sorting problems.

For experimental results, a discussion of the approach, and a comparison to other in-
ductive programming systems see Sections 5 and 6.

3. Generalizing an Initial Term to an RPS

Since our generalization algorithm exploits the relation between an RPS and its unfoldings,
in the following we will first introduce the basic terminology for terms, substitutions, and
term rewriting as for example presented in Dershowitz and Jouanaud (1990). Then we will
present definitions for RPSs and the relation between RPSs and their unfoldings. The set
of all possible RPSs constitutes the hypothesis language for our induction algorithm. Some
restrictions on this general hypothesis language are introduced and finally, the components
of the generalization algorithm are described.

3.1 Preliminaries

We denote the set of natural numbers starting with 0 by N and the natural numbers greater
than 0 by N+. A signature Σ is a set of (function) symbols with α : Σ→ N giving the arity
of a symbol. We write TΣ for the set of ground terms, i.e., terms without variables, over Σ
and TΣ(X) for the set of terms over Σ and a set of variables X. We write TΣ,Ω for the set of
ground terms—called partial ground terms—constructed over Σ∪{Ω}, where Ω is a special
constant symbol denoting the undefined value. Furthermore, we write TΣ,Ω(X) for the set
of partial terms constructed over Σ∪{Ω} and variables X. With T∞Σ,Ω(X) we denote the set
of inifinite partial terms over Σ and variables X. Over the sets TΣ,Ω, TΣ,Ω(X) and T∞Σ,Ω(X)

434

An EBG Approach to Inductive Synthesis of Functional Programs

a complete partial order (CPO) ≤ is defined by: a) Ω ≤ t for all t ∈ TΣ,Ω, TΣ,Ω(X), T∞Σ,Ω(X)
and b) f(t1, . . . , tn) ≤ f(t′1, . . . , t

′
n) iff ti ≤ t′i for all i ∈ [1;n].

Terms can uniquely be expressed as labeled trees: If a term is a constant symbol or
a variable, then the corresponding tree consists of only one node labeled by the constant
symbol or variable. If a term has the form f(t1, . . . , tn), then the root node of the corre-
sponding tree is labeled with f and contains from left to right the subtrees corresponding
to t1, . . . , tn. We use the terms tree and term as synonyms. A position of a term/tree is
a sequence of positive natural numbers, i.e., an element from N ∗

+ . The set of positions of
a term t, denoted pos(t), contains the empty sequence ε and the position iu, if the term
has the form t = f(t1, . . . , tn) and u is a position from pos(ti), i ∈ [1;n]. Each position
of a term uniquely denotes one subterm. We write t|u for denoting that subterm which is
determined as follows: (a) t|ε = t, (b) if t = f(t1, . . . , tn) and u is a position in ti, then
t|iu = ti|u, i ∈ [1;n]. E.g., for the term f(x, y, g(h(a, p(s, t), b), z)) the position 312 denotes
the subterm p(s, t) because it is the second subterm of the first subterm of the third subterm
of the original term. We say that position u is smaller than position u′, u ≤ u′, if u is a
prefix of u′. If u is a position of term t and u′ ≤ u, then u′ is a position of t. For a term t
and a position u, node(t, u) denotes the fixed symbol f ∈ Σ, if t|u = f(t1, . . . , tn) or t|u = f
respectively. The set of all positions at which a fixed symbol f appears in a term is denoted
by pos(t, f). The replacement of a subterm t|u by a term s in a term t at position u is
written as t[u← s]. Let U denote a set of positions in a term t. Then t[U ← s] denotes the
replacement of all subterms t|u with u ∈ U by s in t.

A substitution σ is a mapping from variables to terms. Substitutions are naturally
continued to mappings from terms to terms by σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)). Sub-
stitutions are written in postfix notation, i.e., we write tσ instead of σ(t). Substitutions
β : X → TΣ from variables to ground terms are called (variable) instantiations. A term p is
called pattern of a term t, iff t = pσ for a substitution σ. A pattern p of a term t is called
trivial, iff p is a variable and non-trivial otherwise. We write t ≤s p iff p is a pattern of t
and t <s p iff additionally holds, that p and t can not be unified by variable renaming only.

A term rewriting system (TRS) over Σ and X is a set of pairs of terms R ⊆ TΣ(X) ×
TΣ(X). The elements (l, r) of R are called rewrite rules and are written l → r. A term t′

can be derived in one rewrite step from a term t using R (t→R t′), if there exists a position
u in t, a rule l → r ∈ R, and a substitution σ : X → TΣ(X), such that (a) t|u = lσ and
(b) t′ = t[u ← rσ]. R implies a rewrite relation →R⊆ TΣ(X) × TΣ(X) with (t, t′) ∈→R if
t→R t′.

3.2 Recursive Program Schemes

Definition 1 (Recursive Program Scheme) Given a signature Σ, a set of function
variables Φ = {G1, . . . , Gn} for a natural number n > 0 with Σ∩Φ = ∅ and arity α(Gi) > 0
for all i ∈ [1;n], a natural number m ∈ [1;n], and a set of equations

G =

{ G1(x1, . . . , xα(G1)) = t1,

...
Gn(x1, . . . , xα(Gn)) = tn }

435

Kitzelmann and Schmid

where the ti are terms with respect to the signature Σ ∪ Φ and the variables x1, . . . , xα(Gi),
S = (G,m) is an RPS. Gm(x1, . . . , xα(Gm)) = tm is called the main equation of S.

The function variables in Φ are called names of the equations, the left-hand-sides are called
heads, the right-hand-sides bodies of the equations. For the lasts RPS shown in Table 3
holds: Σ = {if , empty , cons, head , tail , []}, Φ = {G1, G2} with G1 = lasts and G2 = last ,
and m = 1. G is the set of the two equations.

We can identify a TRS with an RPS S = (G,m):

Definition 2 (TRS implied by an RPS) Let S = (G,m) be an RPS over Σ, Φ and
X, and Ω the bottom symbol in TΣ,Ω(X). The equations in G constitute rules RS =
{Gi(x1, . . . , xα(Gi)) → ti | i ∈ [1;n]} of a term rewriting system. The system addition-
ally contains rules RΩ = {Gi(x1, . . . , xα(Gi))→ Ω | i ∈ [1;n], Gi is recursive}.

The standard interpretation of an RPS, called free interpretation, is defined as the
supremum in T∞Σ,Ω(X) of the set of all terms in TΣ,Ω(X) which can be derived by the
implied TRS from the head of the main equation. Two RPSs are called equivalent, iff
they have the same free interpretation, i.e., if they compute the same function for every
interpretation of the symbols in Σ. Terms in TΣ,Ω which can be derived by the instantiated
head of the main equation regarding some instantiation β : X → TΣ are called unfoldings
of an RPS relative to β. Note, that terms derived from RPSs are partial and do not contain
function variables, i.e., all heads of the equations are eventually rewritten by Ωs.

The goal of the generalization step is to find an RPS which explains a set of initial
terms, i.e., to find an RPS such that the initial terms are unfoldings of that RPS. We
denote initial terms by t̄ and a set of initial terms by I. We liberalize I such that it may
include incomplete unfoldings. Incomplete unfoldings are unfoldings, where some subtrees
containing Ωs are replaced by Ωs.

We need to define four further concepts, namely recursion positions which are positions
in the equation bodies where recursive calls appear, substitution terms which are the argu-
ment terms in recursive calls, unfolding positions which are positions in unfoldings at which
the heads of the equations are rewritten with their bodies, and finally parameter instanti-
ations in unfoldings which are subterms of unfoldings resulting from the initial parameter
instantiation and the substitution terms:

Definition 3 (Recursion Positions and Substitution Terms) Let G(x1, . . . , xα(G)) =
t with parameters X = {x1, . . . , xα(G)} be a recursive equation. The set of recursion posi-
tions of G is given by R = pos(t, G). Each recursive call of G at position r ∈ R in t implies
substitutions σr : X → TΣ(X) : xj 7→ t|rj for all j ∈ [1;α(G)] for the parameters in X. We
call the terms t|rj substitution terms of G.

For equation lasts of the lasts RPS (Table 3) holds R = {32} and xσ32 = tail(x). For
equation last holds R = {3} and xσ3 = tail(x).

Now consider an unfolding process of a recursive equation and the positions at which
rewrite steps are applied in the intermediate terms. The first rewriting is applied at root-
position ε, since we start with the instantiated head of the equation which is completely
rewritten with the instantiated body. In the instantiated body, rewrites occur at recursion

436

An EBG Approach to Inductive Synthesis of Functional Programs

positions R. Assume that on recursion position r ∈ R the instance of the head is rewritten
with an instance of the body. Then, relative to the resulting subtree at position r, rewrites
occur again at recursion positions, e.g., at position r′ ∈ R. Relative to the entire term these
latter rewrites occur therefore at compositions of position r and recursion positions, e.g.,
at position rr′ and so on. We call the infinite set of positions at which rewrites can occur
in the intermediate terms within an unfolding of a recursive equation unfolding positions.
They are determined by the recursion positions as follows:

Definition 4 (Unfolding Positions) Let R be the recursion positions of a recursive equa-
tion G. The set of unfolding positions U of G is defined as the smallest set of positions
which contain the position ε and, if u ∈ U and r ∈ R, the position ur.

The unfolding positions of equation lasts of the lasts RPS are {32, 3232, 323232, . . .}.
Now we look at the variable instantiations occuring during unfolding a recursive equa-

tion. Recall the unfolding process of the last equation (see Table 3) described at the end of
Section 2.2. The initial instantiation was βε = β = {x 7→ [a, b, c]}, thus in the body of the
equation (replaced for the instantiated head as result of the first rewrite step), its variable
is instantiated with this initial instantiation. Due to the substitution term tail(x), the vari-
able of the head in this body is instantiated with β3 = σ3 βε = {x 7→ tail([a, b, c])}, i.e., the
variable in the body replaced for this instantiated head is instantiated with σ3 βε. A further
rewriting step implies the instantiation β33 = σ3 σ3 βε = σ3 β3 = {x 7→ tail(tail([a, b, c]))}
and so on. We index the instantiations occuring during unfolding with the unfolding posi-
tions at which the particular instantiated heads were placed. They are determined by the
substitutions implied by recursive calls and an initial instantiation as follows:

Definition 5 (Instantiations in Unfoldings) Let G(x1, . . . , xα(G)) = t be a recursive
equation with parameters X = {x1, . . . , xα(G)}, R and U the recursion positions and unfold-
ing positions of G resp., σr the substitutions implied by the recursive call of G at position
r ∈ R, and β : X → TΣ an initial instantiation. Then a family of instantiations indexed
over U is defined as βε = β and βur = σr βu for u ∈ U, r ∈ R.

3.3 Restrictions and the Generalization Problem

An RPS which can be induced from initial terms is restricted in the following way: First,
it contains no mutual recursive equations, second, there are no calls of recursive equations
within calls of recursive equations (no nested recursive calls). The first restriction is not a
semantical restriction, since each mutual recursive program can be transformed to an equiv-
alent (regarding a particular algebra) non-mutual recursive program. Yet it is a syntactical
restriction, since unfoldings of mutual RPSs can not be generalized using our approach. A
restriction similar to the second one was stated by Rao (2004). He names TRSs complying
with such a restriction flat TRSs.

Inferred RPSs conform to the following syntactical characteristics: First, all equations,
potentially except of the main equation, are recursive. The main equation may be recursive
as well, but, it is the only equation not required to be recursive. Second, inferred RPSs are
minimal, in that (i) each equation is directly or indirectly (by means of other equations)
called from the main equation, and (ii) no parameter of any equation can be omitted

437

Kitzelmann and Schmid

if

empty

x

x

tail

tail

head

tail

tail

tail

head

Omega

if

if

cons

if

if

cons

if

if

[]

x

empty

x

empty

x

[]empty

[]empty

empty

x

empty

x

x

x

x

x

head

tail

head

head

tail

tail

head

tail

head

tail

tail

head

tail

head

head

tail

tail

tail

Omega

Omega

Figure 2: Initial Tree for lasts

without changing the free interpretation. RPSs complying with the stated restrictions and
characteristics are called minimal, non-mutual, flat recursive program schemes.

There might be several RPSs which explain an initial term t̄, but have different free
interpretations. For example, Ω is an unfolding of every RPS with a recursive main equation.
Therefore, an important question is which RPS will be induced. Summers (1977) required
that recurrence relations hold at least over three succeeding traces and predicates to justify
a generalization. A similar requirement would be that induced RPSs explain the initial
terms recurrently, meaning that I contains at least one term t̄ which can be derived from
an unfolding process, in which each recursive equation had to be rewritten at least three
times with its body. We use a slightly different requirement: One characteristic of minimal
RPSs is, that if at least one substitution term is replaced by another, then the resulting
RPS has a different free interpretation. We call this characteristic substitution uniqueness.
Thus, it is sensible to require that induced RPSs are substitution unique regarding the
initial terms, i.e., that if some substitution term is changed, then the resulting RPS no
longer explains the initial terms. It holds, that a minimal RPS explains a set of initial trees
recurrently, if it explains it substitution uniquely.

Thus the problem of generalizing a set of initial terms I to an RPS is to find an RPS
which explains I and which is substitution unique regarding I.

3.4 Solving the Generalization Problem

We will not state the generalization algorithm in detail in this section but we will describe
the underlying concepts and the algorithm in a more informal manner. For this section and
its subsections we use the term body of an equation for terms which are strictly speaking
incomplete bodies: They contain only the name of the equation instead of complete recursive
calls including substitution terms at recursion positions. For example, we refer to the term
if (empty(x), [], cons(head(last(head(x))), lasts)) as the body for equation lasts of the lasts

438

An EBG Approach to Inductive Synthesis of Functional Programs

RPS (see Table 3). The reason is, that we infer the complete body in two steps: First the
term which we name body in this context, second the substitution terms for the recursive
calls.

Generalization of a set of initial terms to an RPS is done in three successive steps,
namely segmentation of the terms, construction of equation bodies and calculation of sub-
stitution terms. These three generalization steps are organized in a divide-and-conquer
algorithm, where backtracking can occur to the divide-phase. Segmentation constitutes the
divide-phase which proceeds top-down through the initial terms. Within this phase recur-
sion positions (see Definition 3) and positions indicating further recursive equations are
searched for each induced equation. The latter set of positions is called subscheme positions
(see Definition 6 below). Found recursion positions imply unfolding positions (see Defini-
tion 4). As a result of the divide-phase the initial terms are divided into several parts by
the subscheme positions, such that—roughly speaking—each particular part is assumed to
be an unfolding of one recursive equation. Furthermore, the particular parts are segmented
by the unfolding positions, such that—roughly speaking—each segment is assumed to be
the result of one unfolding step of the respective recursive equation.

Consider the initial tree in Figure 2, it represents the initial term for lasts, shown in
Table 2. The curved lines on the path to the rightmost Ω divide the tree into three segments
which correspond to unfolding steps of the main equation, i.e., equation lasts. Note, that
the rightmost segment is incomplete. The short broad lines denote two subtrees which
are—except of their root head—unfoldings of the last equation. The curved lines within
these subtrees divide each subtree into segments, such that each segment corresponds to
one unfolding step of the last equation.

When the initial trees are segmented, calculation of equation bodies and of substitution
terms follows within the conquer-phase. These two steps proceed bottom-up through the
divided initial trees and reduce the trees during this process. The effect is, that bodies and
substitution terms for each equation are calculated from trees which are unfoldings of only
the currently induced equation and hence, each segment in these trees is an instantiation
of the body of the currently induced equation. For example, for the lasts tree shown in
Figure 2, a body and substitution terms are first calculated from the two subtrees, i.e.,
for the last equation. Since there are no further recursive equations called by the last
equation—i.e., the segments of the two subtrees contain themselves no subtrees which are
unfoldings of further equations—each segment is an instantiation of the body of the last
equation. When this equation is completely inferred, the two subtrees are replaced by
suitable instantiations of the head of the inferred last equation. The resulting reduced tree
is an unfolding of merely one recursive equation, the lasts equation. The three segments
in this reduced tree—indicated by the curved lines on the path to the rightmost Ω—are
instantiations of the body of the searched for lasts equation. From this reduced tree, body
and substitution terms for the lasts equation are induced and the RPS is completely induced.

Segmentations are searched for, whereas calculation of bodies and substitution terms
are algorithmic. Construction of bodies always succeeds, whereas calculation of substitution
terms—such that the inferred RPS explains the initial terms—may fail. Thus, an inferred
RPS can be seen as the result of a search through a hypothesis space where the hypotheses
are segmentations (divide-phase), and a constructive goal test, including construction of
bodies and calculation of substitution terms (conquer-phase), which tests, whether the

439

Kitzelmann and Schmid

completely inferred RPS explains the initial terms (and is substitution unique regarding
them). In the following we describe each step in more detail:

3.4.1 Segmentation

When induction of an RPS from a set of initial trees I starts, the hypothesis is, that
there exists an RPS with a recursive main equation which explains I. First, recursion and
subscheme positions for the hypothetical main equation Gm are searched for.

Definition 6 (Subscheme Positions) Subscheme positions are all smallest positions in
the body of a recursive equation G which denote subterms, in which calls of further recursive
equations from the RPS appear, but no recursive call of equation G.

E.g., the only subscheme position of equation lasts of the lasts RPS (Table 3) is u = 31. A
priori, only particular positions from the initial trees come into question as recursion and
subscheme positions, namely those which belong to a path leading from the root to an Ω.
The reason is, that eventually each head of a recursive equation at any unfolding position
in an intermediate term while unfolding this equation is rewritten with an Ω:

Lemma 7 (Recursion and Subscheme Positions imply Ωs) Let t̄ ∈ TΣ,Ω be an (in-
complete) unfolding of an RPS S = (G,m) with a recursive main equation Gm. Let R, U
and S be the sets of recursion, unfolding and subscheme positions of Gm respectively. Then
for all u ∈ U ∩ pos(t̄) holds:

1. pos(t̄|u,Ω) 6= ∅
2. ∀s ∈ S : if us ∈ pos(t̄) then pos(t̄|us,Ω) 6= ∅

It is not very difficult to see that this lemma holds. For a lack of space we do not give the
proof here. It can be found in (Kitzelmann, 2003) where Lemma 7 and Lemma 9 are proven
as one lemma. Knowing Lemma 7, before search starts, the initial trees can be reduced to
their skeletons which are terms resulting from replacing subtrees without Ωs with variables.

Definition 8 (Skeleton) The skeleton of a term t ∈ TΣ,Ω(X), written skeleton(t) is the
minimal pattern of t for which holds pos(t, Ω) = pos(skeleton(t),Ω).

For example, consider the subtree indicated by the leftmost short broad line of the tree in
Figure 2. Omitting the root head , it is an unfolding of the last equation of the lasts RPS
shown in Table 3. Its skeleton is the substantially reduced term:

if (x1, x2, if (x3, x4, if (x5, x6,Ω)))

Search for recursion and subscheme positions is done on the skeletons of the original
initial trees. Thereby the hypothesis space is substantially narrowed without restricting the
hypothesis language, since only those hypotheses are ruled out which are a priori known to
fail the goal test.

Ωs are not only implied by recursion and subscheme positions, but also imply Ωs recur-
sion and subscheme positions since Ωs in unfoldings result only from rewriting an instanti-
ated head of a recursive equation in a term with an Ω:

440

An EBG Approach to Inductive Synthesis of Functional Programs

Lemma 9 (Ωs imply recursion and subscheme positions) Let t̄ ∈ TΣ,Ω be an (in-
complete) unfolding of an RPS S = (G,m) with a recursive main equation Gm. Let R, U
and S be the sets of recursion, unfolding and subscheme positions of Gm respectively. Then
for all v ∈ pos(t̄, Ω) hold

• It exists an u ∈ U ∩ pos(t̄), r ∈ R with u ≤ v < ur or

• it exists an u ∈ U ∩ pos(t̄), s ∈ S with us ≤ v.

Proof: in (Kitzelmann, 2003).

From the definition of subscheme positions and the previous lemma follows, that subscheme
positions are determined, if a set of recursion positions has been fixed. Lemma 7 restricts the
set of positions which come into question as recursion and subscheme positions. Lemma 9
together with characteristics from subscheme positions suggests to organize the search as a
search for recursion positions with a depending parallel calculation of subscheme positions.
When hypothetical recursion, unfolding, and subscheme positions are determined they are
checked regarding the labels in the initial trees on pathes leading to Ωs. The nodes between
one unfolding position and its successors in unfoldings result from the same body (with
different instantiations). Since variable instantiations only occur in subtrees at positions
not belonging to pathes leading to Ωs, for each unfolding position the nodes between it and
its successors are necessarily equal :

Lemma 10 (Valid Segmentation) Let t̄ ∈ TΣ,Ω be an unfolding of an RPS S = (G,m)
with a recursive main equation Gm. Then there exists a term ťG ∈ TΣ,Ω(X) with pos(ťG,Ω) =
R∪S such that for all u ∈ U ∩pos(t̄) hold: ťG ≤Ω t̄|u where ≤Ω is defined as (a) Ω ≤Ω t if
pos(t,Ω) 6= ∅, (b) x ≤Ω t if x ∈ X and pos(t, Ω) = ∅, and (c) f(t1, . . . , tn) ≤Ω f(t′1, . . . , t

′
n)

if ti ≤Ω t′i for all i ∈ [1;n].
Proof: in (Kitzelmann, 2003).

This lemma has to be slightly extended, if one allows for initial trees which are incomplete
unfoldings. Lemma 10 states the requirements to assumed recursion and subscheme posi-
tions which can be assured at segmentation time. They are necessary for an RPS which
explains the initial terms, yet not sufficient to assure, that an RPS complying with them
exists which explains the initial trees. That is, later a backtrack can occur to search for
other sets of recursion and subscheme positions. If found recursion and subscheme positions
R and S comply with the stated requirements, we call the pair (R, S) a valid segmentation.

In our implemented system the search for recursion positions is organized as a greedy
search through the space of sets of positions in the skeletons of the initial trees. When
a valid segmentation has been found, compositions of unfolding and subscheme positions
denote subtrees in the initial trees assumed to be unfoldings of further recursive equations.
Segmentation proceeds recursively on each set of (sub)trees denoted by compositions of
unfolding positions and one subscheme position s ∈ S. We denote such a set of initial
(sub)trees Is.

3.4.2 Construction of Equation Bodies

Construction of each equation body starts with a set of initial trees I for which at segmen-
tation time a valid segmentation (R, S) has been found, and an already inferred RPS for

441

Kitzelmann and Schmid

each subscheme position s ∈ S which explains the subtrees Is. These subtrees of the trees
in I are replaced by the suitably instantiated heads or respectively bodies of the main equa-
tions of the already inferred RPSs. For example, consider the initial tree for lasts shown in
Figure 2. When calculation of a body for the main equation lasts starts from this tree, an
RPS containing only the last equation which explains all three subtrees indicated by the
short broad lines has already been inferred. The initial tree is reduced by replacing these
three subtrees by suitable instantiations of the head of the last equation. We denote the set
of reduced initial trees also with I and its elements also with t̄. By reducing the initial trees
based on already inferred recursive equations, the problem of inducing a set of recursive
equations is reduced to the problem of inducing merely one recursive equation (where the
recursion positions are already known from segmentation).

An equation body is induced from the segments of an initial tree which is assumed to
be an unfolding of one recursive equation.

Definition 11 (Segments) Let t̄ be an initial tree, R a set of (hypothetical) recursion
positions and U the corresponding set of unfolding positions. The set of complete segments
of t̄ is defined as: {t̄|u[R← G] | u ∈ U ∩ pos(t̄), R ⊂ t̄|u}

For example, consider the subtree indicated by the leftmost short broad line of the initial
tree in Figure 2 without its root head . It is an unfolding of the last equation as stated in
Table 3. When the only recursion position 3 has been found it can be splitted into three
segments, indicated by the curved lines:

1. if(empty(tail(head(x))),head(x), G)

2. if(empty(tail(tail(head(x)))), tail(head(x)), G)

3. if(empty(tail(tail(tail(head(x))))), tail(tail(head(x))), G)

Expressed according to segments, the fact of a repetitive pattern between unfolding positions
(see Lemma 10) becomes the fact, that the sequences of nodes between the root and each
G are equal for each segment. Each segment is an instantiation of the body of the currently
induced equation. In general, the body of an equation contains other nodes among those
between its root and the recursive calls. These further nodes are also equal in each segment.
Differences in segments of unfoldings of a recursive equation can only result from different
instantiations of the variables of the body. Thus, for inducing the body of an equation
from segments, we assume each position in the segments which is equally labeled in all
segments as belonging to the body of the assumed equation, but each position which is
variably labeled in at least two segments as belonging to the instantiation of a variable.
This assumption can be seen as an inductive bias since it might occur, that also positions
which are equal over all segments belong to a variable instantiation. Nevertheless it holds,
that if an RPS exists which explains a set of initial trees, then there also exists an RPS
which explains the initial trees and is constructed based on the stated assumption. Based
on the stated assumption, the body of the equation to be induced is determined by the
segments and defined as follows:

Definition 12 (Valid Body) Given a set of reduced initial trees, the most specific maxi-
mal pattern of all segments of all the trees is called valid body and denoted t̂G.

442

An EBG Approach to Inductive Synthesis of Functional Programs

The maximal pattern of a set of terms can be calculated by first order anti-unification
(Plotkin, 1969).

Calculating a valid body regarding the three segments enumerated above results in
the term if (empty(tail(x)), x,G). The different subterms of the segments are assumed
to be instantiations of the parameters in the calculated valid body. Since each segment
corresponds to one unique unfolding position, instantiations of parameters in unfoldings as
defined in Definition 5 are now given. For example, from the three segments enumerated
above we obtain:

1. βε(x) = head(x)

2. β3(x) = tail(head(x))

3. β33(x) = tail(tail(head(x)))

3.4.3 Inducing Substitution Terms

Induction of substitution terms for a recursive equation starts on a set of reduced initial
trees which are assumed to be unfoldings of one recursive equation, an already inferred
(incomplete) equation body which contains only a G at recursion positions, and variable
instantiations in unfoldings according to Definition 5. The goal is to complete each occurence
of G to a recursive call including substitution terms for the parameters of the recursive
equation.

The following lemma follows from Definition 5 and states characteristics of parameter
instantiations in unfoldings more detailed. It characterizes the instantiations in unfoldings
against the substitution terms of a recursive equation considering each single position in
them.

Lemma 13 (Instantiations in Unfoldings) Let G(x1, . . . , xα(G)) = t be a recursive equa-
tion with parameters X = {x1, . . . , xα(G)}, recursion positions R and unfolding positions U ,
β : X → TΣ an instantiation, σr substitution terms for each r ∈ R and βu instantiations as
defined in Definition 5 for each u ∈ U . Then for all i, j ∈ [1;α(G)] and positions v hold:

1. If (xi σr)|v = xj then for all u ∈ U hold (xiβur)|v = xjβu.

2. If (xi σr)|v = f((xi σr)|v1, . . . , (xi σr)|vn), f ∈ Σ, α(f) = n then for all u ∈ U hold
node(xiβur, v) = f .

We can read the implications stated in the lemma in the inverted direction and thus we
get almost immediately an algorithm to calculate the substitution terms of the searched for
equation from the known instantiations in unfoldings.

One interesting case is the following: Suppose a recursive equation, in which at least
one of its parameters only occurs within a recursive call in its body, for example the equa-
tion G(x, y, z) = if (zerop(x), y,+(x,G(prev(x), z, succ(y)))) in which this is the case for
parameter z.1 For such a variable no instantiations in unfoldings are given when induction
of substitution terms starts. Also such variables are not contained in the (incomplete) valid

1. A practical example is the tower-of-hanoi-problem.

443

Kitzelmann and Schmid

equation body. Our generalizer introduces them each time, when none of the both implica-
tions of Lemma 13 hold. Then it is assumed, that the currently induced substitution term
contains such a “hidden” variable at the current position. Based on this assumption the
instantiations in unfoldings of the hidden variable can be calculated and the inference of
subtitution terms for it proceeds as described for the other parameters.

When substitution terms have been found, it has to be checked, whether they are sub-
stitution unique with regard to the reduced initial terms. This can be done for each substi-
tution term that was found separately.

3.4.4 Inducing an RPS

We have to consider two further points: The first point is that segmentation presupposes the
initial trees to be explainable by an RPS with a recursive main equation. Yet in Section 3.3
we characterized the inferable RPSs as liberal in this point, i.e., that also RPSs with a non-
recursive main equation are inferable. In such a case, the initial trees contain a constant
(not repetitive) part at the root such that no recursion positions can be found for these
trees (as for example the three subtrees indicated by the short broad lines in Figure 2 which
contain the constant root head). In this case, the root node of the trees is assumed to belong
to the body of a non-recursive main equation and induction of RPSs recursively proceeds
at each subtree of the root nodes.

The second point is that RPSs explaining the subtrees which are assumed to be un-
foldings of further recursive equations at segmentation time are already inferred. Based
on these already inferred RPSs, the initial trees are reduced and then a body and substi-
tution terms are induced. Calculation of a body always succeeds, whereas calculation of
substitution terms may fail. To deal with induction of RPSs explaining the subtrees as an
independent problem requires, that if there exists a set of RPSs explaining the subtrees
such that substitution terms can be calculated then substitution terms can be calculated
for any set of RPSs explaining the subtrees.

Fortunately we could prove, that this requirement holds provided the main equation is
constructed according to the “maximal-body” principle (see Definition 12). A proof sketch is
as follows: Assume there are two different RPSs explaining the subtrees of a fixed subscheme
position. Provided the main equations of the two RPSs are constructed according to the
“maximal-body” principle, one can prove that the main equations of both RPSs have the
same number of parameters with the same instantiations for explaining the subtrees (see
Schmid, 2003, page 203, Theorem 7.3.3). Though the main equations of the RPSs might be
different in their non-parameter positions, it is then assured that induction of the current
equation will succeed for either both of the two different RPSs or for none of them but not
for only one. The reason is that the possibly different non-parameter positions only affect
the calculation of the body which always succeeds and that the critical point of inferring
substitution terms is only affected by the parameters of the main equations of the RPSs
and their instantiations.

4. Generating an Initial Term

Our theory and prototypical implementation for the first synthesis step uses the datatype
List , defined as follows: The empty list [] is an (α-)list and if a is in element of type α and

444

An EBG Approach to Inductive Synthesis of Functional Programs

l is an α-list, then cons(a, l) is an α-list. Lists may contain lists, i.e., α may be of type
List α′.

4.1 Characterization of the Approach

The constructed initial terms are composed from the list constructor functions [], cons, the
functions for decomposing lists head , tail , the predicate empty testing for the empty list,
one variable x, the 3ary (non-strict) conditional function if as control structure, and the
bottom constant Ω meaning undefined. Similar to Summers (1977), the set of functions
used in our term construction approach implies the restriction of induced programs to solve
structural list programs. An extension to Summers is that we allow the example inputs
to be partially ordered instead of only totally ordered. This is related to the extension of
inducing sets of recursive equations as described in Section 3 instead of only one recursive
equation.

We say that an initial term explains I/O-examples, if it evaluates to the specified output
when applied to the respective input or to undefined. The goal of the first synthesis step is to
construct an initial term which explains a set of I/O-examples and which can be explained
by an RPS.

4.2 Basic Concepts

Definition 14 (Subexpressions) The set of subexpressions of a list l is defined to be the
smallest set which includes l itself and, if l has the form cons(a, l′), all subexpressions of a
and of l′. If a is an atom, then a itself is its only subexpression.

Since head and tail—which are defined by head(cons(a, l)) = a and tail(cons(a, l)) = l—
decompose lists uniquely, each subexpression can be associated with the unique term which
computes the subexpression from the original list. E.g., consider the list [[a], [b]]. The
set of all subexpressions together with their associated terms is: {x = [[a], [b]], head(x) =
[a], tail(x) = [[b]], head(head(x)) = a, tail(head(x)) = [], head(tail(x)) = [b], tail(tail(x)) =
[], head(head(tail(x))) = b, tail(head(tail(x))) = []}.

Since lists are uniquely constructed by the constructor functions [] and cons, traces
which compute the specified output can uniquely be constructed from the terms for the
subexpressions of the respective input:

Definition 15 (Construction of Traces) Let i 7→ o be an I/O-pair (i is a list). If o is
a subexpression of i, then the trace is defined to be the term associated with o. Otherwise
o has the form cons(a, l). Let t and t′ be the traces for the I/O-pairs i 7→ a and i 7→ l
respectively. The trace for i 7→ o is defined to be the term cons(t, t′).

For example, the trace for computing (the example-output) [a, b] from (the example-input)
[[a], [b]] is the term cons(head(head(x)), head(tail(x))).

Similar to Summers, we discriminate the inputs with respect to their structure, more
precisely with regard to a partial order over them implied by their structural complexity.
As stated above, we allow for arbitrarily nested lists as inputs. A partial order over such
lists is given by: [] ≤ l for all lists l and cons(a, l) ≤ cons(a′, l′), iff l ≤ l′ and, if a and a′

are again lists, a ≤ a′.

445

Kitzelmann and Schmid

Consider any unfolding of an RPS. Generally it holds, that greater positions on a path
leading to an Ω result from more rewritings of a head of a recursive equation with its body
compared to some smaller position. In other words, the computation represented by a node
at a greater position is one on a deeper recursion level than a computation represented by a
smaller position. Since we use only the complexity of an input list as criterion whether the
recursion stops or whether another call appears with the input decomposed in some way,
deeper recursions result from more complex inputs in the induced programs.

4.3 Solving the Term Construction Problem

The overall concept of constructing the initial tree is to introduce the nodes from the traces
position by position to the initial tree as long as the traces are equal and to introduce an
if -expression as soon as at least two (sub)traces differ. The predicate in the if -expression
divides the inputs into two sets. The “then”-subtree is recursively constructed from the
input/trace-pairs whose inputs evaluate to true with the predicate and the “else”-subtree
is recursively constructed from the other input/trace-pairs. Eventually only one single
input/trace-pair remains when an if -expression is introduced. In this case an Ω indicating
a recursive call on this path is introduced as leaf at the current position in the initial term
and (this subtree of) the initial tree is finished. The reason for introducing an Ω in this case
is, that we assume, that if the input/trace-set would contain a pair with a more complex
input, than the respective trace would at some position differ from the remaining trace and
thus it would imply an if -expression, i.e., a recursive call at some deeper position. Since
we do not know the position at which this difference would occur, we can not use this
single trace, but have to indicate a recursive call on this path by an Ω. Thus, for principal
reasons, the constructed initial terms are undefined for the most complex inputs of the
example set. There are two consequences of this particular loss of information in the initial
terms compared to the I/O-examples. Since the following generalization step is based on
the initial terms (1) the neccessary number of examples increases and (2) if the generalized
program is incorrect it could especially be incorrect for the most complex examples. Thus
consistence of the induced programs with respect to the I/O-examples is generally only
assured for all examples except of the most complex ones.

We now consider the both cases that all roots of the traces are equal and that they differ
respectively more detailed.

4.3.1 Equal Roots

Suppose all generated traces have the same root symbol. In this case, this symbol constitutes
the root of the initial tree. Subsequently the sub(initial)trees are calculated through a recur-
sive call to the algorithm. Suppose the initial tree has to explain the I/O-examples {[a] 7→
a, [a, b] 7→ b, [a, b, c] 7→ c}. Calculating the traces and replacing them for the outputs yields
the input/trace-set {[a] 7→ head(x), [a, b] 7→ head(tail(x)), [a, b, c] 7→ head(tail(tail(x)))}.
All three traces have the same root head , thus we construct the root of the initial tree
with this symbol. The algorithm for constructing the initial subterm of the constructed
root head now starts recusively on the set of input/trace-pairs where the traces are the
subterms of the roots head from the three original traces, i.e., on the set {[a] 7→ x, [a, b] 7→
tail(x), [a, b, c] 7→ tail(tail(x))}.

446

An EBG Approach to Inductive Synthesis of Functional Programs

The traces from these new input/trace-set have different roots, that is, an if -expression
is introduced as subtree of the constructed initial tree.

4.3.2 Introducing Control Structure

Suppose the traces (at least two of them) have different roots, as for example the traces of
the second input/trace-set in the previous subsection. That means that the initial term has
to apply different computations to the inputs corresponding to the different traces. This is
done by introducing the conditional function if , i.e., the root of the initial term becomes
the function symbol if and contains from left to right three subtrees: First, a predicate
term with the predicate empty as root to distinguish between the inputs which have to
be computed differently with regard to their complexity; second, a tree explaining all I/O-
pairs whose inputs are evaluated to true from the predicate term; third, a tree explaining
the remaining I/O-examples. It is presupposed, that all traces corresponding to inputs
evaluating to true with the predicate are equal. These equal subtraces become the second
subtree of the if -expression, i.e., they are evaluated, if an input evaluates to true with the
predicate. That means that never an Ω occurs in a “then”-subtree of a constructed initial
tree, i.e., that recursive calls in the induced RPSs may only occur in the “else”-subtrees. For
the “else”-subtree the algorithm is recursively processed on all remaining input/trace-pairs.

For the predicate must hold that it evaluates to true for the least complex inputs be-
cause the “then”-subtree represents the termination of recursion whereas the “else”-subtree
represents a further recursive call (for more complex inputs) of the induced program. An
algorithm for calculating predicates evaluating to true for a particular expression and to
false for any more complex expression can be found in (Smith, 1984, page 310). If, for
example, the two input lists [a, b] and [a, b, c] shall be distinguished then the predicate is
empty(tail(tail(x))). For more complex data types as for example trees, or for nested lists,
calculation of predicates might not be unique. Then a strategy for chosing a predicate has
to be applied.

5. Experimental Results

We have implemented prototypes (without any thoughts about efficiency) for both described
steps, construction of the initial tree and generalization to an RPS. The implementations
are in Common-Lisp. In Table 4 we have listed experimental results for a few sample
problems. Due to the restrictions of the first synthesis step all these induced programs
deal with structural problems and are composed of only the primitive functions stated in
Section 4.1. Many interesting programs, as for example quicksort or towers-of-hanoi, do
not meet these restrictions and are not regarded. Due to the restriction of the second
synthesis step all these programs contain no nested recursive calls. The first column lists
the names for the induced functions, the second column lists the number of given I/O-pairs,
the third column lists the total number of induced equations and in parentheses the number
of induced recursive equations, and the fourth column lists the times consumed by the first
step, the second step, and the total time respectively. The experiments were performed on
a Pentium 4 with Linux and the program runs are interpreted with the clisp interpreter.

All induced programs compute the intended function. The number of given examples is
in each case the minimal one. When given one example less, the system does not produce

447

Kitzelmann and Schmid

function #expl #eqs(#rec) times in sec
last 4 2(1) .003 / .001 / .004
unpack 4 1(1) .003 / .002 / .005
init 4 1(1) .004 / .002 / .006
evenpos 7 2(1) .01 / .004 / .014
switch 6 1(1) .012 / .004 / .016
lasts 6 2(2) .014 / .015 / .029
shift 6 3(2) .015 / .033 / .048
mult-lasts 6 3(3) .023 / .21 / .233
reverse 6 4(3) .031 / .422 / .453
multi 12 5(5) .114 / 6.96 / 7.074

Table 4: Some inferred functions

an unintended program, but produces no program. Indeed, an initial term is produced in
such a case which is consistent with the example set, but no RPS is generalized, because it
exists no RPS which explains the initial term and is substitution unique with regard to it
(see Section 3.3).

last computes the last element of a list. The main equation is not recursive and only
applies a head to the result of the induced recursive equation which computes a one element
list containing the last element of the input list. unpack produces an output list, in which
each element from the input list is encapsulated in a one element list, e.g., unpack([a, b, c]) =
[[a], [b], [c]]. unpack is the classical example in (Summers, 1977). init returns the input list
without the last element. evenpos computes a list containing each second element of the
input list. The main equation is not recursive and only deals with the empty input list
as special case. switch returns a list, in which each two successive elements of the input
list are on switched positions, e.g., switch([a, b, c, d, e]) = [b, a, d, c, e]. lasts is the program
described in Section 2. The given I/O-examples are those from Table 1. shift moves the
last element of the input list to the front of the list. The main equation is not recursive
and only deals with the empty list and a one-element-list as special cases. The two induced
recursive equations compute the last element and the init of the input list respectively and
are combined to compute the shift function. mult-lasts takes a list of lists as input just
like lasts. It returns a list of the same structure as the input list where each inner list
contains repeatedly the last element of the corresponding inner list from the input. For
example, mult-lasts([[a, b], [c, d, e], [f]]) = [[b, b], [e, e, e], [f]]. All three induced equations are
recursive. The third equation computes a one element list containing the last element of
an input list. The second equation calls the third equation and returns a list of the same
structure as a given input list where the elements of the input list are replaced by the last
element. The first equation calls the second equation to compute the inner lists. reverse
reverses a list. The induced program has an unusual form, nevertheless it is correct. Finally
multi is a combination of mult-lasts, unpack, and switch. It takes a list of lists as input and
applies mult-lasts to the first list, unpack to the second list, switch to the third list, and then
again mult-lasts to the fourth list, unpack to the fifth list, switch to the sixth list and so on.
multi is in one run induced from the examples shown in Table 5. The induced program is

448

An EBG Approach to Inductive Synthesis of Functional Programs

[] 7→ [],
[[a]] 7→ [[a]],

[[a, b]] 7→ [[b, b]],
[[a, b, c], [d]] 7→ [[c, c, c], [[d]]],

[[a, b, c, d], [e, f], [g]] 7→ [[d, d, d, d], [[e], [f]], [g]],
[[a, b, c, d, e], [f, g, h], [i, j]] 7→ [[e, e, e, e, e], [[f], [g], [h]], [j, i]],
[[a], [b, c, d, e], [f, g, h], [i]] 7→ [[a], [[b], [c], [d], [e]], [g, f, h], [i]],

[[a], [b], [c, d, e, f], [g, h]] 7→ [[a], [[b]], [d, c, f, e], [h]],
[[a], [b], [c, d, e, f, g], [h], [i]] 7→ [[a], [[b]], [d, c, f, e, g], [h], [[i]]],

[[a], [b], [c, d, e, f, g, h], [i], [j, k], [l]] 7→ [[a], [[b]], [d, c, f, e, h, g], [i], [[j], [k]], [l]],
[[a], [b], [c], [d], [e], [f, g]] 7→ [[a], [[b]], [c], [d], [[e]], [g, f]],

[[a], [b], [c], [d], [e], [f], [g]] 7→ [[a], [[b]], [c], [d], [[e]], [f], [g]]

Table 5: I/O-examples for multi

shown in Table 6. Note that the names multi, switch, unpack etc. of the equations of the
induced RPS are ex post introduced from us; the system introduces names G1, G2,

multi(x) = if(empty(x), [], cons(multlasts(head(x)),
if(empty(tail(x)), [], cons(unpack(head(tail(x))),

if(empty(tail(tail(x))), [], cons(switch(head(tail(tail(x)))),
multi(tail(tail(tail(x))))))))))

switch(x) = if(empty(tail(x)), x, cons(head(tail(x)), cons(head(x),
if(empty(tail(tail(x))), [], switch(tail(tail(x)))))))

unpack(x) = cons(cons(head(x), []), if(empty(tail(x)), [], unpack(tail(x))))

multlasts(x) = if(empty(tail(x)), x, cons(head(last(x)),multlasts(tail(x))))

last(x) = if(empty(tail(tail(x))), tail(x), last(tail(x)))

Table 6: Recursive Program Scheme for multi

Considering the times taken by the first and second synthesis step for the problems
listed in Table 4 one finds (1) that they depend on the number of examples for the first step
and on the number of recursive equations for the second step and (2) that the times taken
from the second step increase faster than the times taken from the first step. A detailed
analysis of the complexities of the two synthesis steps has still to be done. For some results
regarding the second step see (Schmid, 2003, Section 7.4.1).

449

Kitzelmann and Schmid

6. Comparison with Other Inductive Programming Systems

Inductive learning of programs is in general primarily known from the field of inductive
logic programming (ILP), where the target language is relational descriptions in form of
logic programs, e.g., Prolog programs. However the usual goal of ILP is learning concepts
in form of a single, non-recursive predicate but not learning recursive algorithms with mul-
tiple interdependent predicates. Nevertheless there are ILP systems that have reasonable
behaviour on inducing recursive logic programs, GOLEM (Muggleton and Feng, 1990) as
an example. One interactive ILP system specializing in synthesizing recursive programs
is DIALOGS (Flener, 1997). For a comparison of different ILP systems specializing in
learning recursive predicates see (Flener and Yilmaz, 1999). More recent approaches to
learn recursive logic programs are the approach of Rao and Sattar (2001) and the system
ATRE (Malerba, 2003; Berardi et al., 2004). Two non-ILP systems for inducing recursive
programs are the evolutionary computation system ADATE (Automatic Design of Algo-
rithms Through Evolution) (Olsson, 1995) which induces functional programs in Standard
ML and the Optimal Ordered Problem Solver (OOPS) (Schmidhuber, 2004). All these sys-
tems and approaches differ in their induction strategy, in the training data (many examples
vs. few examples, only positive vs. both positive and negative examples, I/O-examples vs.
example-inputs together with an evaluation function), in whether the induction relies on
background knowledge, and in the limitations regarding inducable programs.

Our approach is different from most of the other approaches in that it is mostly ana-
lytical instead of search-based. In the following, we discuss this difference considering our
system, ADATE, the well known ILP system FOIL (Quinlan, 1990) which was extended
with concepts to learn recursive clauses (Cameron-Jones and Quinlan, 1993), and the Op-
timal Ordered Problem Solver. FOIL as well as ADATE and our system are capable of
inducing more than one recursive function/clause in one run. FOIL needs a specification
for every clause it shall induce, whereas ADATE and our system are capable of automat-
ically introduce auxiliary recursive functions and thereby auxiliary parameters. E.g., one
can give a specification of reversing a list to our system in terms of the I/O-examples
{[] 7→ [], [a] 7→ [a], [a, b] 7→ [b, a], [a, b, c] 7→ [c, b, a], [a, b, c, d] 7→ [d, c, b, a]} and it automat-
ically introduces an auxiliary function containing the second accumulating variable. When
ADATE or our system outputs more than one recursive function these functions clearly are
interdependent. In contrast, when different predicates to learn in one run are specified in
FOIL, they are mostly learned independently one after another though foremost learned
predicates can be used as background knowledge for the remaining predicates. FOIL has
no knowledge of structured datatypes, e.g. lists, on its own and actually can handle only
atoms. Thus lists have to be simulated with constants and one has to specify procedures
for “composing” and “decomposing” such simulated lists as background knowldedge.

FOIL and ADATE directly search through a hypothesis space, whereas our system
deterministically constructs an explanation of the I/O-examples in a first step and only
then searches a hypothesis space for a generalization of the explanation. The main effect
regarding this difference is that FOIL and ADATE can be given any background knowledge
in terms of additional predicate specifications in the case of FOIL and predefined SML
functions in the case of ADATE respectively. These predicates or functions respectively
are then used in the synthesized programs. Since the branching factor in the search spaces

450

An EBG Approach to Inductive Synthesis of Functional Programs

grows as this background knowledge increases, increasing background knowledge supposably
tends to result in increasing run times. In contrast—though our generalization component is
domain independent—, our system on the whole is restricted to background knowledge that
admits an almost deterministic explanation of the I/O-examples. Therefore it cannot be
given any predefined functions to be used in a synthesized program. Until now, synthesized
programs can only be composed of the predefined functions stated in Section 4.1. Since the
particular knowledge of datatypes admits deterministic explanations, it is used to restrict
the hypothesis search space.

It would be interesting to compare the run times of FOIL, ADATE, and our system.
However, since the systems have different restrictions, it is not trivial to find adequate and
significant problems and specifications for a comparison. The restrictions of FOIL—no han-
dling with structured datatypes and no automatic introduction of auxiliary predicates and
variables—could be dealt with by simulating lists and by specifying all needed predicates.
On the other side, the restrictions of our system—only particular primitive functions can
be used in the synthesized programs—cannot be bypassed at present. For problems which
need only few predicates/functions as background knowledge and contain only one recursive
predicate/function as for example last or member, FOIL as well as our system take less than
one second on a Pentium 4 with Linux. We have not measured the run times of the ADATE
system for these simple problems, but on the web pages of the ADATE system2 Roland
Olsson reports on 570 seconds on a 200MHz PentiumPro for reversing a list.

Like FOIL and ADATE, the Optimal Ordered Problem Solver is based on a “generate-
and-test” method. In (Schmidhuber, 2004), inducing a recursive program for towers-of-
hanoi is reported. The induction takes a few days on a personal computer.

It is theoretically plausible as well as empirically evident that higher generality of ind-
ucable programs leads to higher computational effort of the program synthesizer. ADATE
as well as OOPS are highly general program synthesizers with high run times. On the
other extreme is our system with strong restrictions regarding synthesizable programs but
much faster program inductions. An interesting question is, whether it could be possible
to combine both approaches. We think that one approach to combine both methods could
be to generate the traces and predicates with some “generate-and-test” method and then
generalizing the integrated initial terms with our generalization algorithm. This would over-
come the restrictions to structural problems as well as to restricted background knowledge
which are implied by our analytical trace and predicate construction method. On the other
hand, by keeping the construction and generalization of traces one would (1) presumably
hold some advantage regarding run time compared to pure “generate-and-test” algorithms
because searching for traces is less elaborate than searching for a recursive program and
(2) hold the important point of constructing programs which are assured to terminate.
Thus this could be a good compromise regarding the conflicting aspects of generality of
the induced programs, computational effort of the induction algorithm, and assurance of
termination for the induced programs.

2. http://www-ia.hiof.no/˜rolando/

451

Kitzelmann and Schmid

7. Conclusion and Further Research

We presented an EBG approach to inducing sets of recursive equations representing func-
tional programs from I/O-examples. The underlying methodologies are inspired by classi-
cal approaches to induction of functional Lisp-programs, particularly by the approach of
Summers (1977). The presented approach goes in three main aspects beyond Summers’
approach: Sets of recursive equations can be induced at once instead of only one recur-
sive equation, each equation may contain more than one recursive call, and additionally
needed parameters are introduced systematically. We have implemented prototypes for
both steps. The generalizer works domain-independent and all problems which comply to
our general program scheme (Definition 1) with the restrictions described in Section 3.3 can
be solved, whereas construction of initial terms as described in Section 4 relies on knowledge
of datatypes.

We are investigating several extensions for the first synthesis step: First, we try to inte-
grate knowledge about further datatypes such as trees and natural numbers. For example,
we believe, that if we introduce zero and succ, denoting the natural number 0 and the suc-
cessor function resp. as constructors for natural numbers, prev for “decomposing” natural
numbers and the predicate zerop as bottom test on natural numbers, then it should be
possible to induce a program returning the length of a list for example. Another extension
will be to allow for more than one input parameter in the I/O-examples, such that append
becomes inducable for example. A third extension should be the ability to use user-defined
or in a previous step induced functions within an induction step.

Until now our approach suffers from the restriction to structural problems due to the
principal approach to calculate traces deterministically without search in the first synthesis
step. We work on overcoming this restriction, i.e., on extending the first synthesis step to
the ability of dealing with problems which are not (only) structural, list sorting for example.
A strong extension to the second step would be the ability to deal with nested recursive
calls, yet this would imply a much more complex structural analysis on the initial terms.

Acknowledgments

We would like to acknowledge previous work from Martin Mühlpfordt and Fritz Wysotzki.
Martin Mühlpfordt implemented the second synthesis step. We also like to thank three
anonymous reviewers for their very helpful comments and suggestions for improving an
earlier draft of this paper.

References

M. Berardi, A. Varlaro, and D. Malerba. On the effect of caching in recursive theory learning.
In R. Camacho, R. D. King, and A. Srinivasan, editors, Inductive Logic Programming:
ILP 2004, pages 44–62. Springer, 2004.

A. W. Biermann, G. Guiho, and Y. Kodratoff, editors. Automatic Program Construction
Techniques. Collier Macmillan, 1984.

452

An EBG Approach to Inductive Synthesis of Functional Programs

R. Mike Cameron-Jones and J. Ross Quinlan. Avoiding pitfalls when learning recursive
theories. In IJCAI, pages 1050–1055. Morgan Kaufmann, 1993.

N. Dershowitz and J.-P. Jouanaud. Rewrite systems. In J. Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B. Elsevier, 1990.

P. Flener. Inductive logic program synthesis with DIALOGS. In S. Muggleton, editor,
Proceedings of ILP’96, pages 175–198. Springer, 1997.

P. Flener and D. Partridge. Inductive programming. Autom. Softw. Eng., 8(2):131–137,
2001.

P. Flener and S. Yilmaz. Inductive synthesis of recursive logic programs: Achievements and
prospects. Journal of Logic Programming, 41(2–3):141–195, 1999.

E. Mark Gold. Language identification in the limit. Information and Control, 10(5):447–474,
1967.

E. Kitzelmann. Inductive functional program synthesis – a term-construction and
folding approach. Master’s thesis, Dept. of Computer Science, TU Berlin, 2003.
http://www.cogsys.wiai.uni-bamberg.de/kitzelmann/documents/thesis.ps.

M. L. Lowry and R. D. McCarthy. Autmatic Software Design. MIT Press, Cambridge,
Mass., 1991.

D. Malerba. Learning recursive theories in the normal ILP setting. Fundamenta Informat-
icae, 57(1):39–77, 2003.

S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal
of Logic Programming, Special Issue on 10 Years of Logic Programming, 19-20:629–679,
1994.

S. H. Muggleton and C. Feng. Efficient induction of logic programs. In Proceedings of the
First Conference on Algorithmic Learning Theory, pages 368–381, Tokyo, 1990. Ohmsha.

R. Olsson. Inductive functional programming using incremental program transformation.
Artificial Intelligence, 74(1):55–83, 1995.

G. D. Plotkin. A note on inductive generalization. In Machine Intelligence, volume 5, pages
153–163. Edinburgh University Press, 1969.

J. Ross Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–266,
1990.

M. R. K. Krishna Rao. Inductive inference of term rewriting systems from positive data.
In Algorithmic Learning Theory, pages 69–82, 2004.

M. R. K. Krishna Rao and A. Sattar. Polynomial-time learnability of logic programs with
local variables from entailment. Theoretical Computer Science, 268(2):179–198, 2001.

453

Kitzelmann and Schmid

U. Schmid. Inductive Synthesis of Functional Programs – Universal Planning, Folding of
Finite Programs, and Schema Abstraction by Analogical Reasoning. Springer, 2003.

U. Schmid and F. Wysotzki. Applying inductive programm synthesis to macro learning.
In Proc. 5th International Conference on Artificial Intelligence Planning and Scheduling
(AIPS 2000), pages 371–378. AAAI Press, 2000.

J. Schmidhuber. Optimal ordered problem solver. Machine Learning, 54(3):211–254, 2004.

D. R. Smith. The synthesis of LISP programs from examples: A survery. In A. W. Biermann,
G. Guiho, and Y. Kodratoff, editors, Automatic Program Construction Techniques, pages
307–324. Macmillan, 1984.

P. D. Summers. A methodology for LISP program construction from examples. Journal
ACM, 24(1):162–175, 1977.

L. G. Valiant. A theory of the learnable. In STOC ’84: Proceedings of the sixteenth annual
ACM symposium on Theory of computing, pages 436–445, New York, NY, USA, 1984.
ACM Press.

F. Wysotzki and U. Schmid. Synthesis of recursive programs from finite examples by
detection of macro-functions. Technical Report 01-2, Dept. of Computer Science, TU
Berlin, Germany, 2001.

454

