Journal of Machine Learning Research 7 (2006) 1493-1515 mitgddl 10/05; Revised 3/06; Published 7/06

Building Support Vector Machines with
Reduced Classifier Complexity

S. Sathiya Keerthi SELVARAK @YAHOO-INC.COM
Yahoo! Research

3333 Empire Avenue, Building 4

Burbank, CA 91504, USA

Olivier Chapelle CHAPELLE@TUEBINGEN.MPG.DE
MPI for Biological Cybernetics
72076 Tbingen, Germany

Dennis DeCoste DECOSTED@YAHOO-INC.COM
Yahoo! Research

3333 Empire Avenue, Building 4

Burbank, CA 91504, USA

Editors: Kristin P. Bennett and Emilio Parrado-Héamdez

Abstract

Support vector machines (SVMs), though accurate, are refeped in applications requiring
great classification speed, due to the number of supporbrgebeing large. To overcome this
problem we devise a primal method with the following projgert (1) it decouples the idea of basis
functions from the concept of support vectors; (2) it griefiinds a set of kernel basis functions
of a specified maximum sizel{ay) to approximate the SVM primal cost function well; (3) it is
efficient and roughly scales &(ndZ,,) wheren is the number of training examples; and, (4) the
number of basis functions it requires to achieve an accuwkse to the SVM accuracy is usually
far less than the number of SVM support vectors.

Keywords: SVMs, classification, sparse design

1. Introduction

Support Vector Machines (SVMs) are modern learning systems thaedstate-of-the-art perfor-
mance in real world pattern recognition and data mining applications suchtasategorization,
hand-written character recognition, image classification and bioinform&es though they yield
very accurate solutions, they are not preferred in online applicatioesendiassification has to be
done in great speed. This is due to the fact that a large set of bastofasis usually needed to
form the SVM classifier, making it complex and expensive. In this papedevise a method to
overcome this problem. Our method incrementally finds basis functions to maxiouasaay. The
process of adding new basis functions can be stopped when the ctdsssfireached some limiting
level of complexity. In many cases, our method efficiently forms classifieistwhave an order of
magnitude smaller number of basis functions compared to the full SVM, whilevaoh nearly the
same level of accuracy.

SVM solution and post-processing simplification Given a training sef(x;,yi)};, i € {1, —1},
the Support Vector Machine (SVM) algorithm with Bppenalization of the training errors consists

(©2006 Sathiya Keerthi, Olivier Chapelle and Dennis DeCoste.

KEERTHI, CHAPELLE AND DECOSTE

of solving the following primal problem
m|n§||w|| +§i;max(0,1—yiw-(p(xi)) . (1)

Computations involving are handled using the kernel functidx;, Xj) = @(x;) - ¢(X;). For conve-
nience the bias term has not been included, but the analysis presentisdoiapr can be extended
in a straightforward way to include it. The quadratic penalization of the £makes the primal
objective function continuously differentiable. This is a great advarsagdoecomes necessary for
developing a primal algorithm, as we will see below.

The standard way to train an SVM is to introduce Lagrange multiptiesnd optimize them
by solving a dual problem. The classifier function for a new inpig then given by the sign of
Yiaiyik(x,x). Because there is a flat part in the loss function, the vecisiusually sparse. The
for which a; # 0 are calledsupport vectors (SVs).et ngy denote the number of SVs for a given
problem. A recent theoretical result by Steinwart (Steinwart, 2004ysttbatngy grows as a
linear function ofn. Thus, for large problems, this number can be large and the training dimgjtes
complexities might become prohibitive since they are respecti@lynsy + nsy?®) andO(ngy).

Several methods have been proposed for reducing the number afrsupptors. Burges and
Schilkopf (1997) apply nonlinear optimization methods to seek sparse repagsas after building
the SVM classifier. Along similar lines, Sotkopf et al. (1999) usk; regularization orfd to obtain
sparse approximations. These methods are expensive since they iinebk@ution of hard non-
convex optimization problems. They also become impractical for large probl@ugns et al.
(2001) give an exact algorithm to prune the support vector set ae8YM classifier is built.
Thies and Weber (2004) give special ideas for the quadratic kerimele $1ese methods operate as
a post-processing step, an expensive standard SVM training is stiltedqu

Direct simplification via basis functions and primal Instead of finding the SVM solution by
maximizing the dual problem, one approach iglbectly minimize the primal formafter invoking
the representer theorem to represgmts

W= Zl Big(xi)- 2

If we allow (B; # O for all i, substitute (2) in (1) and solve for tiff¢'s then (assuming uniqueness
of solution) we will getB; = yia; and thus we will precisely retrieve the SVM solution (Chapelle,
2005). But our aim is to obtain approximate solutions that have as few emar3gs as possible.
For many classification problems there exists a small subset of the basi®fshsuited to the
complexity of the problem being solved, irrespective of the training sizevthrathat will yield
pretty much the same accuracy as the SVM classifier. The evidence foothesdrom the empir-
ical performance of other sparse kernel classifiers: the Relevaaater\Machine (Tipping, 2001),
Informative Vector Machine (Lawrence et al., 2003) are probabilistic hisddea Bayesian setting;
and Kernel Matching Pursuit (Vincent and Bengio, 2002) is a discrimvi@atiethod that is mainly
developed for the least squares loss function. These recent ngha®vks have laid the claim that
they can match the accuracy of SVMs, while also bringing down consilyetab number of basis
functions as well as the training cost. Work on simplifying SVM solution hascaaght up well

1. Eachk(x,x;) will be referred to as a basis function.

1494

BUILDING SVMs WITH REDUCED COMPLEXITY

with those works in related kernel fields. The method outlined in this paperswagentribution to
fill this gap.

We deliberately use the variable narfigin (2) so as to interpret it as a basis weight as opposed
to viewing it asy;a; whereq; is the Lagrange multiplier associated with ikl primal slack con-
straint. While the two are (usually) one and the same at exact optimality, théyeczary different
when we talk of sub-optimal primal solutions. There is a lot of freedom wiesimply think of
the Bi’'s as basis weights that yield a good suboptimvdbr (1). First, we do not have to put any
bounds on thgs;. Second, we do not have to think ofdacorresponding to a particular location
relative to the margin planes to have a certain value. Going even one moreirdtew, fwe do not
even have to restrict the basis functions to be a subset of the trainingpseples.

Osuna and Girosi (1998) consider such an approach. They adpavsty by including thés
regularizerA1||B||1 in the primal objective. But they do not develop an algorithm (for solving the
modified primal formulation and for choosing the righ) that scales efficiently to large problems.

Wu et al. (2005) writev as

W:._IZlBi(p(ii)

wherel is a chosen small number and optimize the primal objective withB3thes well as the
X as variables. But the optimization can become unwieldyi$f not small, especially since the
optimization of theq”is a hard non-convex problem.

In the RSVM algorithm (Lee and Mangasarian, 2001; Lin and Lin, 200@8phdom subset of the
training set is chosen to be theahd then only th@; are optimized. Because basis functions are
chosen randomly, this method requires many more basis functions thardrieexder to achieve
a level of accuracy close to the full SVM solution; see Section 3.

A principled alternative to RSVM is to use a greedy approach for the satecfithe subset
of the training set for forming the representation. Such an approacheemspopular in Gaussian
processes (Smola and Batrtlett, 2001; Seeger et al., 2003; Keerthiran®@6). Greedy meth-
ods of basis selection also exist in the boosting literature (Friedman, 2@@4¢HR 2001). These
methods entail selection from a continuum of basis functions using eithdiegtalescent or linear
programming column generation. Bennett et al. (2002) and Bi et al. |2/0& modified ideas for
kernel methods that employ a set of basis functions fixed at the trainintspoin

Particularly relevant to the work in this paper are the kernel matching pyMP) algo-
rithm of Vincent and Bengio (2002) and the growing support vectosiias (GSVC) algorithm of
Parrado-Herandez et al. (2003). KMP is an effective greedy discriminative agprd@at is mainly
developed for least squares problems. GSVC is an efficient method teatgboped for SVMs and
uses a heuristic criterion for greedy selection of basis functions.

Our approach The main aim of this paper is to give an effective greedy method SVMs which
uses a basis selection criterion that is directly related to the training cost funema is also very
efficient. The basic theme of the method is forward selection. It starts with an empty basisf
functions and greedily chooses new basis functions (from the trainipgosemprove the primal
objective function. We develop efficient schemes for both, the greeliction of a new basis
function, as well as the optimization of tRefor a given selection of basis functions. For choosing
upto dmax basis functions, the overall compuational cost of our meth@(igf,,,). The different

2. For convenience, in the RSVM method, the SVM regularizer is replagedsimplel, regularizer or.

1495

KEERTHI, CHAPELLE AND DECOSTE

SpSVM-2 SVM

Data Set TestErate #Basis | TestErate Ngyv

Banana 10.87 (1.74) 17.3(7.3) 10.54 (0.68) 221.7 (66.98)
Breast 29.22(2.11) 12.1(5.6) 28.18(3.00) 185.8 (16.44)
Diabetis | 23.47 (1.36) 13.8(5.6) 23.73(1.24) 426.3(26.91)
Flare 33.90(1.10) 8.4(1.2)| 33.98(1.26) 629.4 (29.43)
German | 24.90(1.50) 14.0(7.3) 24.47 (1.97) 630.4 (22.48)
Heart 15,50 (1.10) 4.3(2.6)| 15.80 (2.20) 166.6 (8.75)
Ringnorm | 1.97 (0.57) 12.9(2.0) 1.68(0.24) 334.9(108.54
Thyroid 5.47 (0.78) 10.6 (2.3) 4.93(2.18) 57.80 (39.61)
Titanic 22.68 (1.88) 3.3(0.9)| 22.35(0.67) 150.0 (0.0)
Twonorm | 2.96 (0.82) 8.7(3.7)| 2.42(0.24) 330.30(137.02
Waveform | 10.66 (0.99) 14.4 (3.3) 10.04 (0.67) 246.9 (57.80)

Table 1: Comparison dbpSVM-2andSVMon benchmark data sets fromgRch). For TestErate,
#Basis andhgy, the values are means over ten different training/test splits and the values
in parantheses are the standard deviations.

components of the method that we develop in this paper are not new in thesnaetare inspired
from the above mentioned papers. However, from a practical poinieef, vt is not obvious how
to combine and tune them in order to get a very efficient SVM training algorithhat is what
we achieved in this paper through numerous and careful experimentstitated the techniques
employed.

Table 1 gives a preview of the performance of our method (c&lp8VM-2n the table) in
comparison with SVM on several UCI data sets. As can be seen theragtluod gives a competing
generalization performance while reducing the number of basis functegssignificantly. (More
specifics concerning Table 1 will be discussed in Section 4.)

The paper is organized as follows. We discuss the details of the effigiimipation of the
primal objective function in Section 2. The key issue of selecting basiditunscis taken up in
Section 3. Sections 4-7 discuss other important practical issues ancogimitational results that
demonstrate the value of our method. Section 8 gives some concluding senfdrk appendix
gives details of all the data sets used for the experiments in this paper.

2. The Basic Optimization

LetJ C {1,...,n} be a given index set of basis functions that form a subset of the traseingVe
consider the problem of minimizing the objective function in (1) over the seeoforsw of the
form3

w=Y Biox). (3)
%J j

3. More generally, one can consider expansion on points which doetmidpto the training set.

1496

BUILDING SVMs WITH REDUCED COMPLEXITY

2.1 Newton Optimization

Let Kij = k(xi,Xj) = @(Xi) - ¢(xj) denote the generic element of the« n kernel matrixK. The
notationK,; refers to the submatrix d made of the rows indexed byand the columns indexed
by J. Also, for an-dimensional vectop, let p; denote theJ| dimensional vector containingp; :
jed}.

Letd = |J|. With w restricted to (3), the primal problem (1) becomesdhdimensional mini-
mization problem of finding; that solves

min(B) = 35 K-+ 5 3 max0.1- o)’ @

whereo; = K; 5B;. Except for the regularizer being more general, Bg K335 (as opposed to the
simple regularizer||;||%), the problem in (4) is very much the same as in a linear SVM design.
Thus, the Newton method and its maodification that are developed for linear $Mitsgasarian,
2002; Keerthi and DeCoste, 2005) can be used to solve (4) and obdasoltition[3;.

Newton Method
1. Choose a suitable starting vectgf}, Setk = 0.
2. If B is the optimal solution of (4), stop.

3. Letl ={i:1-y,0 > 0} whereog; = KLJBE is the output of tha-th example. Obtairﬁgj as
the result of a Newton step or equivalently as the solution of the regulalézstl squares
problem,

min=f3; K + =) (1-YyiK; . 5

il PLULSME 2;(YiKi.aBs) 5)

4. Take[3‘f,+l to be the minimizer off on L, the line joiningR and E‘]. Setk :=k+1 and go
back to step 2 for another iteration.

The solution of (5) is given by
E‘] = Blj — P’lg, where P=)\KJJ"‘ K\]|KJT| and g=)\KJJBJ — KJ|(y| — 0) (6)

P andg are also the (generalized) Hessian and gradient of the objective faifdjio

Because the loss function is piecewise quadratic, Newton method cosnergdinite number
of iterations. The number of iterations required to converge to the exhtiosoof (4) is usually
very small (less than 5). Some Matlab code is available onlirmé tgi: / / ww. kyb. t uebi ngen.
mpg. de/ bs/ peopl e/ chapel | e/ pri mal .

2.2 Updating the Hessian

As already pointed out in Section 1, we will mainly need to solve (4) in an inaneahmode? with
the solution; of (4) already available, solve (4) again, but with one more basis funatided, i.e.,
Jincremented by one. Keerthi and DeCoste (2005) show that the Newtowdrnistiiery efficient

4. In our method basis functions are added one at a time.

1497

KEERTHI, CHAPELLE AND DECOSTE

for such seeding situations. Since the kernel matrix is dense, we maintaupdate a Cholesky
factorization ofP, the Hessian defined in (6). Even wilHixed, during the course of solving (4)
via the Newton method? will undergo changes due to changed inEfficient rank one schemes
can be used to do the updating of the Cholesky factorization (Seegéh). 2ZlMe updatings of the
factorization ofP that need to be done because of changésie not going to be expensive because
such changes mostly occur whéis small; whenJ is large,| usually undergoes very small changes
since the set of training errors is rather well identified by that stage. @&eB and its factorization
will also undergo changes (their dimensions increase by one) each timienaant is added tg.
This is a routine updating operation that is present in most forward selengtiods.

2.3 Computational Complexity

It is useful to ask: what is the complexity of the incremental computationsegetxisolve (4)
when its solution is available for sonde at which point one more basis element is included in it
and we want to re-solve (4)? In the best case, when the support gettodoes not change, the
cost is mainly the following: computing the new row and columiKgf (d + 1 kernel evaluations);
computing the new row oy, (n kernel computations);computing the new elements Bf(O(nd)
cost); and the updating of the factorizationR{O(d?) cost). Thus the cost can be summarized as:
(n+d+ 1) kernel evaluations an®(nd) cost. Even wheh does change and so the cost is more,
it is reasonable to take the above mentioned cost summary as a good estima&eadttbf the
incremental work. Adding up these costs tillax basis functions are selected, we get a complexity
of O(nd?2,,,). Note that this is the basic cost given that we already know the sequédggdasis
functions that are to be used. Th@nd?,,) is also the complexity of the method in which basis
functions are chosen randomly. In the next section we discuss the pralblselecting the basis
functions systematically and efficiently.

3. Selection of New Basis Element

Suppose we have solved (4) and obtained the mininfize©bviously, the minimum value of the
objective function in (4) (call itf;) is greater than or equal tb", the optimal value of (1). If the
difference between them is large we would like to continue on and includeertudisis function.
Take onej ¢ J. How do we judge its value of inclusion? The best scoring mechanism is the
following one.

3.1 Basis Selection Method 1

Include j in J, optimize (4) fully using(B;,B;), and find the improved value of the objective func-
tion; call it ﬂ Choose the that gives the least value tﬁj‘. We already analyzed in the earlier section
that the cost of doing one basis element inclusioB(isd). So, if we want to try all elements out-
sideJ, the cost isO(n?d); the overall cost of such a method of selectihgyx basis functions is
0O(n?d3,,,), which is much higher than the basic ca®tnd?,,,) mentioned in the previous section.
Instead, if we work only with a random subset of sizehosen from outsidé, then the cost in one
basis selection step comes dowrQtxnd), and the overall cost is limited ©(knd?,,,). Smola and
Bartlett (2001) have successfully tried such random subset chaic&afissian process regression,
usingk = 59. However, note that, even with this scheme, the cost of new basis selationd))

5. In fact this is noh but the size of. Since we do not know this size, we upper bound inby

1498

BUILDING SVMs WITH REDUCED COMPLEXITY

is still disproportionately higher (by times) than the cost of actually including the newly selected
basis function@(nd)). Thus we would like to go for cheaper methods.

3.2 Basis Selection Method 2

This method computes a score for a new elemjentO(n) time. The idea has a parallel in Vincent
and Bengio’s work on Kernel Matching Pursuit (Vincent and Bengf)2) for least squares loss
functions. They have two methods callpefitting and backfitting see equations (7), (3) and (6)
of Vincent and Bengio (2003). Their prefitting is parallel toBasis Selection Method that we
described earlier. The cheaper method that we suggest below is ptorahelr backfittingidea.
Supposef; is the solution of (4). Including a new elemeptnd its corresponding variabl@;
yields the problem of minimizing

A NVALSI ST By 13 (K. B
56 B () (B)+ pome i vikeb KB ()

We fix B; and optimize (7) using only the new varialfie and see how much improvement in the
objective function is possible in order to define the score for the new etefnen

This one dimensional function is piecewise quadratic and can be minimizettyera0(nlogn)
time by a dichotomy search on the different breakpoints. But, a very preeigulation of the
scoring function is usually unnecessary. So, for practical solutionanesimply do a few Newton-
Raphson-type iterations on the derivative of the function and get agpgianal solution inO(n)
time. Note that we also need to compute the veltgrwhich requiresl kernel evaluations. Though
this cost is subsumed @(n), it is a factor to remember if kernel evaluations are expensive.

If all j ¢ J are tried, then the complexity of selecting a new basis functio@(i¥), which
is disproportionately large compared to the cost of including the chosés foastion, which is
O(nd). Like in Basis Selection Method We can simply choose random basis functions to try.
If dmax is specified, one can chooge= O(dmax) Without increasing the overall complexity beyond
O(nd?,,,)- More complex schemes incorporating a kernel cache can also be tried.

3.3 Kernel Caching

For upto medium size problems, say: 15,000, it is a good idea to have cache for the entire kernel
matrix. If additional memory space is available and, say a Gaussian kemmlpi®yed, then the
values of||x; — x;||? can also be cached; this will help significantly reduce the time associated with
the tuning of hyperparameters. For larger problems, depending on mepamy available, it is a
good idea to cache as many as possible, full kernel rows corresgpiadjrthat get tried, but do

not get chosen for inclusion. It is possible that they get called in a latge sththe algorithm, at
which time, this cache can be useful. Itis also possible to think of variatioteeahethod in which

full kernel rows corresponding to a large set (as much that can fit intoang of randomly chosen
training basis is pre-computed and only these basis functions are causfdeselection.

3.4 Shrinking

As basis functions get added, the SVM solutisrand the margin planes start stabilizing. If the
number of support vectors form a small fraction of the training set, th@ma flarge fraction of

6. For least squares problems, Adler et al. (1996) had given the Eisas as Vincent and Bengio in earlier work.

1499

KEERTHI, CHAPELLE AND DECOSTE

(well-classified) training examples, we can easily conclude that they witigiry never come into
the active sett. Such training examples can be left out of the calculations without causingralue
harm. This idea of shrinking has been effectively used to speed-up tBAIMng (Joachims, 1999;
Platt, 1998).

3.5 Experimental Evaluation

We now evaluate the performance of basis selection methods 1 and 2 (walltiletn asSpSVM-1
SpSVM-2on some sizable benchmark data sets. A full description of these datadete&kernel
functions used is given in the appendix. The valu& ef 59 is used. To have a baseline, we also
consider the methodRandomn which the basis functions are chosen randomly. This is almost the
same as the RSVM method (Lee and Mangasarian, 2001; Lin and Lin,,206@3)nly difference
being the regularize3] K; ;B in (4) versus||B;||2 in RSVM). For another baseline we consider
the (more systematic) unsupervised learning method in which an incompletesihtaetorization
with pivoting (Meijerink and van der Vorst, 1977; Bach and Jordan52@ used to choose basis
functions! For comparison we also include the GSVC method of Parradoéneiez et al. (2003).
This method, originally given for SVM hinge loss, uses the following heuristiterion to select
the next basis functiofi* ¢ J:

J"=arg min max|Kj| (8)

with the aim of encouraging new basis functions that are far from the fusgisons that are already
chosen; alsoj is restricted only to the support vector indicesn((5)). For a clean comparison with
our methods, we implemented GSVC for SVMs using quadratic penalizatior{0niaxy;o;)2. We
also tried another criterion, suggested to us by Alex Smola, that is more cothplex8):

j" = arg max(1-y;0))°d; 9)
whered; is the distance (in feature space) of thth training point from the subspace spanned by
the elements ad. This criterion is based on an upper bound on the improvement to the tramshg c
function obtained by including thgth basis function. It also makes sense intuitively as it selects
basis functions that are both not well approximated by the others @y@ad for which the error
incurred is largé. Below, we will refer to this criterion aBH. It is worth noting that both (8) and
(9) can be computed very efficiently.

Figures 1 and 2 compare the six methods on six date’ségerall, SpSVM-1and SpSVM-2
give the best performance in terms of achieving good reduction of testrate with respect to the
number of basis functions. Althou@pSVM-2lightly lagsSpSVM-1n terms of performance in the
early stages, it does equally well as more basis functions are added.SPi8YM-2s significantly
less expensive, it is the best method to use. S8E8VM-1is quite cheap in the early stages, it is
also appropriate to think of a hybrid method in whiBpSVM-1s used in the early stages and, when
it becomes expensive, switch&wSVM-2The other methods sometimes do well, but, overall, they
are inferior in comparison t8pSVM-landSpSVM-2 Interestingly, on théJCNN andVehicledata

7. We also tried the method of Bach and Jordan (2005) which uses thadrkihels, but we noticed little improvement.

8. Note that when the set of basis functions is not restricted, the offtisatisfies\B;y; = max0,1—v;0;).

9. Most figures given in this paper appear in pairs of two plots. One plesgest error rate as a function of the number
of basis functions, to see how effective the compression is. The olitegipes the test error rate as a function of
CPU time, and is used to indicate the efficiency of the method.

1500

Test error rate (%)

Test error rate (%)

Test error rate (%)

BUILDING SVMs WITH REDUCED COMPLEXITY

Adult
: v
154 - 1
\ 1
\ ®, 1
15.2} \ * -
\ - '
\ - v
15} ' B \
\ -~ Y
\ ;
\
14.8+ N * -
N *
. o
14.6} VO A R
N S\
14.4] ‘2
10 10 10
Num of basis functions
IJCNN
\
m \
\
\
61 \
\
5l \
\
\
4t \
\
N
3l| — spsvm-2
— - SpSVM-1
% Cholesky
2| "= Random
—— GSVC
-©- BH
1 ‘ 2 3
10 10
Num of basis functions
Shuttle
s
SENY
\,
\,
AN x,/
0.08} S
»®
0.06} ®\®
0.04 =

107
Num of basis functions

10

Adult

T
L\ — SpSVM-2 | |
154 ~ - SpSVM-1
% Cholesky
= Random
_15.2¢ —+— GSVC
5 - BH
1]
S 15}
S
@
¢ 14.8}
2
14.6} B
14.4 n ‘2
10 10 10
CPU time (secs)
IJCNN
US ‘
\,
st v
S
@ 5}
s
g 4t
[)
@
()
[3t
2 L
1 2 ‘3
10 10 10
CPU time (secs)
Shuttle
0.2 — . .
W — SpSVM-2
0.18} e — - SpSVM-1 |/
- % Cholesky
| \ += Random ||
— 016 A —— GSVC
> A\ —©- BH
o 0.14¢1 . |
E j
‘9' 0.12} 1
5]
'g 0.1} 1
'_
0.08 1
0.06 | i
0.04 — *
10 10 10

CPU time (secs)

Figure 1: Comparison of basis selection methodsAdnlt, IJCNN & Shuttle On Shuttlesome
methods were terminated because of ill-conditioning in the m&Xix(6).

1501

KEERTHI, CHAPELLE AND DECOSTE

M3v8 M3v8

—— SpSVM-2 ||
\ — - SpSVM-1
\ % Cholesky
\ = Random
—+ GSVC
- BH

Test error rate (%)
Test error rate (%)

%]
10° 10° 10*
Num of basis functions CPU time (secs)
M3VOthers M3VOthers
35 T 3.5 T
— SpSVM-2
\\ — - SpSVM-1
3t % Cholesky |7
N =+ Random
. .) —— GSVC
S g 25 -o- BH
Q]
® ®
= - 2
e e
5 o
8 $ 151
[~
1 L
051
10? 10° 10? 10°
Num of basis functions CPU time (secs)
Vehicle Vehicle
15.5 T 16 T
—— SpSVM-2
15F 15.5F — — SpSVM-1 |1
% Cholesky
| 151\ = Random
s _ —— GSVC
g L -o- BH
o 7 @
8 j
5 135 5]
5} 5}
g g
= =
12.5¢
12}
115 — s ~ e "
10 10 10 10 10 10

Num of basis functions CPU time (secs)

Figure 2: Comparison of basis selection method#@v8 M3VOthers& Vehicle

1502

BUILDING SVMs WITH REDUCED COMPLEXITY

sets,Cholesky GSVCandBH are even inferior t(Random A possible explanation is as follows:
these methods give preference to points that are furthest away indesggace from the points
already selected. Thus, they are likely to select points which are outlerfdm the rest of the
training points); but outliers are probably unsuitable points for exparttimgecision function.

As we mentioned in Section 1, there also exist other greedy methods of kasig selection
that are motivated by ideas from boosting. These methods are usualtyigieesetting different
from that we consider: a set of (kernel) basis functions is given aredwaarizer (such aB||1) is
directly specified on the multiplier vect@ The method of Bennett et al. (2002) called MARK is
given for least squares problems. It is close to the kernel matchingiporsthod. We compare
SpSVM-2with kernel matching pursuit and discuss MARK in Section 5. The method eft BI.
(2004) uses column generation ideas from linear and quadratic progrgniongelect new basis
functions and so it requires the solution of, both, the primal and dualgra3® Thus, the basis
selection process is based on the sensitivity of the primal objective furtctian incoming basis
function. On the other hand, o@pSVMmethods are based on computing an estimate of the de-
crease in the primal objective function due to an incoming basis function;talsolual solution is
not needed.

4. Hyperparameter Tuning

In the actual design process, the values of hyperparameters needdtebmined. This can be done
using k-fold cross validation. Cross validation (CV) can also be useddosgu, the number of
basis functions. Since the solution given by our method approaches Mes&\ution asd becomes
large, there is really no need to choasat all. One can simply chooskto be as big a value as
possible. But, to achieve good reduction in the classifier complexity (as welb@puting time)
it is a good idea to track the validation performance as a functiahaosfd stop when this function
becomes nearly flat. We proceed as follows. First an appropriate v@ak,x is chosen. For a
given choice of hyperparameters, the basis selection method&s@ay,M-2is then applied on each
training set formed from the k-fold partitions tith,ax basis functions are chosen. This gives an
estimate of the k-fold CV error for each valuedfrom 1 todnax. We choosel to be the number
of basis functions that gives the lowest k-fold CV error. This computatéonbe repeated for each
set of hyperparameter values and the best choice can be decided.

Recall that, at stage, our basis selection methods choose(ithe- 1)-th basis function from a
set ofk random basis functions. To avoid the effects of this randomness omgarpeneter tuning,
itis better to make thig-set to be dependent only dn Thus, at stagd, the basis selection methods
will choose the same set afrandom basis functions for all hyperparameter values.

We applied the above ideas on 11 benchmark data sets framsd) usingSpSVM-2as the
basis selection method. The Gaussian kerkgd, Xj) = 1+ exp(—Y||x — X;||?) was used. The
hyperparametersy andy were tuned using 3-fold cross validation. The valuésj 2 —7,---,7
were used for each of these parameters. Ten different train-ta#iquerwere tried to get an idea
of the variability in generalization performance. We uged 25 anddmnax = 25. (TheTitanic data
set has three input variables, which are all binary; hence wasgt= 8 for this data set.)

Table 1 (already introduced in Section 1) gives the results. For companisalso give the
results for the SVM (solution of (1)); in the case of SVM, the number opsupvectors ffsy) is the

10. The CPLEX LP/QP solver is used to obtain these solutions.

1503

KEERTHI, CHAPELLE AND DECOSTE

number of basis functions. Clearly, our method achieves an impressivetien in the number of
basis functions, while yielding test error rates comparable to the full SVM.

5. Comparison with Kernel Matching Pursuit

Kernel matching pursuit (KMP) (Vincent and Bengio, 2002) was mainhegias a method of
greedily selecting basis functions for the non-regularized kernel kEpsires problem. As we
already explained in Section 3, our basis selection methods can be vieveatkeasions of the
basic ideas of KMP to the SVM case. In this section we empirically compare tiermances
of these two methods. For both methods we only condi#eis Selection Method &nd refer
to the two methods simply asMP and SpSVM It is also interesting to study the effect of the
regularizer termX||w||?/2 in (1)) on generalization. The regularizer can be removed by séttiag
0. The original KMP formulation of Vincent and Bengio (2002) considesech a non-regularized
formulation only. In the case of SVM, when perfect separability of the iingidata is possible, it
is improper to seh = 0 without actually rewriting the primal formulation in a different form; so,
in our implementation we brought in the effect of no-regularization by seltitegthe small value,
107°. Thus, we compare 4 method§MP-R, KMP-NR SpSVM-RandSpSVM-NRHere ‘R’ and
“NR’ refer to regularization and no-regularization, respectively.

Figures 3 and 4 compare the four methods on six data sets. Excéf®\d6® SpSVM gives a
better performance than KMP. The better performandéMP on M3V8is probably due to the fact
that the examples corresponding to each of the digits, 3 and 8, are distrdsugeGaussian, which
is suited to the least squares loss function. Note that in the cdd8\éOtherswhere the “Others”
class (corresponding to all digits other than 3) is far from a Gaussiaibdistn, SVM does better
than KMP.

The no-regularization methodsMP-NRand SpSVM-NRyive an interesting performance. In
the initial stages of basis addition we are in the underfitting zone and so ttieyrpas well (in fact,

a shade better) than their respective regularized counterparts. Bupested, they start overfitting
when many basis functions are added. See, for example the perfororaAdelt data set given in
Figure 3. Thus, when using these non-regularized methods, a lotefscaeeded in choosing the
right number of basis functions. The number of basis functions at whietitiing sets-in is smaller

for SpSVM-NRhan that okKMP-NR This is because of the fact that, while KMP has to concentrate
on reducing the residual on all examples in its optimization, SVM only needsiceatrate on the
examples violating the margin condition.

It is also useful to mention the method, MARKof Bennett et al. (2002) which is closely re-
lated to KMP. In this method, a new basis function (say, the one corresgptadihe j-th training
example) is evaluated by looking at the magnitude (larger the better) of tHegtaf the primal
objective function with respect ®; evaluated at the currefl§. This gradient is the dot product of
the kernel column containinigi; and the residual vector having the elements; y;. The compu-
tational cost as well as the performance of MARK are close to those of. ’IMRK can also be
easily extended to the SVM problem in (1): all that we need to do is to replaceettidual vec-
tor mentioned above by the vector having the elementsax{0,1 — y;0;}. This modified method
(which uses our Newton optimization method as the base solver) is close Ep8WM-2n terms
of computational cost as well as performance. Note that, if we optimize (f;fasing only a

11. The basis selection idea used in MARK is also given in the earlier pdgaliat and Zhang (1993) and Adler et al.
(1996) under the nam8asic Matching Pursuit

1504

BUILDING SVMs WITH REDUCED COMPLEXITY

Adult

15474

15.2}

15}

14.8}

Test error rate (%)

14.6}

— SpSVM-R
— ~ SPSVM-NR |

14.4

Num of basis functions

IJCNN

S a1 [}

Test error rate (%)

w

0.3

10 10°

Num of basis functions

Shuttle

0.25¢

0.2F

0.15¢

Test error rate (%)

0.1f

0.05¢

10

10" 10°
Num of basis functions

154+
15.2+
g
L
© 15}
S
5]
® 148}
'_
1461
3 144 1 ‘2 3
10 10 10
CPU time (secs)
IJCNN
8PS — SpSVM-R |/
. — - SpSVM-NR
71 R % KMP-R
A = KMP-NR

()]

Test error rate (%)
(6]

4+t
3 L
2 L 4
1 ‘2 ‘3 4
10 10 10
CPU time (secs)
Shuttle
0.3 - .
| A —— SpSVM-R
| 3 — - SpSVM-NR
L v % KMP-R
0.25 | T ‘= KMP-NR
s g
o 0.2f
g
s
@ 0.15}
?
(0]
|_
0.1}
0.05} ‘ ‘
10" 10 10°

CPU time (secs)

Figure 3: KMP vs SpSVM (with/without regularization) éwult, IJCNN& Shuttle

1505

Test error rate (%)

Test error rate (%)

Test error rate (%)

KEERTHI, CHAPELLE AND DECOSTE

M3Vv8 M3Vv8
6 T T 6 .
g — SpSVM-R
v — - SpSVM-NR
5 L
g
at K
o
S
3f 7
Q
'_
2t ,
Vinye
l "q 1 N N =~ /,‘l ‘*x L
10° 10° 10° 10° 10"
Num of basis functions CPU time (secs)
M3VOthers M3VOthers
4 3 g T 4 y
% —— SpSVM-R
a5l - — — SpSVM-NR || a5l
: Y % KMP-R ’
% = KMP-NR
3r . 3t
g Y
. | 3
25 £ 25 xx
5 A
2t £ 2t ‘i\
15 § 15 -
O or \ “
N
1 1 N
3 ~, 3 %
Y . kéu -
0.5} ‘) 05} ‘ Nl
10 10 10° 10° 10°
Num of basis functions CPU time (secs)
Vehicle Vehicle
145 14.5
I~y — SpSVM-R
N, — - SpSVM-NR
141 3 % KMP-R 14
= KMP-NR
135} g 135
]
g
13r s 13
5]
7]
12.5 L 125
121 121
115 1 . 3 5 115 . 3 . "
10 10 10 10 10 10

Num of basis functions

CPU time (secs)

Figure 4: KMP vs SpSVM (with/without regularization) &M3V8 M3VOthers& Vehicle

1506

BUILDING SVMs WITH REDUCED COMPLEXITY

single Newton step, the difference between MARK (as adapted abovelts5dhdSpSVM-2s
only in the use of the second order information.

6. Additional Tuning

We discuss in this section the choicekofor SpSVMas well as the possibility of not solving (4)
every time a new basis function is added.

6.1 Few Retrainings

It might be a bit costly to perform the Newton optimization described in Sectior&ch time a
new basis function is added. Indeed, it is unlikely that the set of suppotbrs changes a lot after
each addition. Therefore, we investigate the possibility of retraining ooty fime to time.

We first tried to do retraining only whed| = 2P for somep € N, the set of positive integers. It
makes sense to use an exponential scale since we expect the solutioshrerige too much when
Jis already relatively large. Note that the overall complexity of the algorithes ot change since
the cost of adding one basis function is gBlind). It is only the constant which is better, because
fewer Newton optimizations are performed.

The results are presented in figure 5. For a given number of basisdusicthe test error is
usually not as good as if we always retrain. But on the other hand, thibeanuch faster. We
found that a good trade-off is to retrain wheneldr= |2P/4| for p € N. This is the strategy we
will use for the experiments in the rest of the paper.

6.2 Influence ofk

The parametek is the number of candidate basis functions that are being tried each time a new
basis function should be added: we select a random se¢xdmples and the best one (as explained
in Section 3.2) among them is chosenk K 1, this amounts to choosing a random example at each
step (i.e. theRandommethod on figures 1 and 2) .

The influence ok is studied in figure 6. The largeris, the better the test error for a given
number of basis functions, but also the longer the training time. We found thatO is a good
trade-off and that is the value that we will keep for the experiments pregémthe next section.

Finally, an interesting question is how to choose appropriately a good valy@hd an efficient
retraining strategy. Both are likely to be problem dependent, and everttkea®9 was suggested
by Smola and Sdhikopf (2000), we believe that there is no universal answer. The@nsould
for instance depend on the cost associated with the computation of thd &eragon, on the
number of support vectors and on the number of training points. Indeedyasic cost for one
iteration isO(nd) and the number of kernel calculationxissy + n: the first term corresponds to
trying different basis function, while the second one correspond to thesion of the chosen basis
function. Sok should be chosen such that the kernel computations takes about the sanas tthe
training itself.

Ideally, an adaptive strategy should be designed to find automaticaty to adjust the retrain-
ing schedule. The decay rate of the objective function as well as theeardd the scores produced
by the basis selection scoring function would be two key quantities helpfuljtstthem.

1507

KEERTHI, CHAPELLE

AND DECOSTE

M3V8 M3V8
12 ---Always |
—opl4
5P
10F 1
o < 8l i
8 s
S 5
) 5 6F |
g i
= [
a4t |
2r S, 1
10" B 10° 10" 0’ 10

Num of basis functions
ijicnn

(0] 1
CPU time (secs)
ijcnn

of
gl
< 7r —
s s
< <
[} Q
T 6 g
g [
= =
< <
3o 5]
et e
3 3
= 4r =

w
T

N
T

©

o]

~

(2]

(%2

N

Num of basis functions

Figure 5: Three different possible retraining strategies showing aelifféerade-off between accu-
racy and time: always retraining is too time consumming; on the other hand negrain
not often enough can lead to sub-optimal performances (see the tofolfthor these

experimentsk = 100 was used.

1508

1 102 . 3
CPU Time (sec)

BUILDING SVMs WITH REDUCED COMPLEXITY

M3v8 M3v8
141
121
g 10
2 2
[s
S 5 8
@ 5]
g T 6
= =
a-
2,
10 10° 10°
Num of basis functions
ijcnn
9 oF
8 8
7 7+
b o 6F
s I
g5 Sst
[} [}
g T4
Q4 e 4
3 3r
2 2r
Num of basis functions CPU time (secs)

Figure 6: Influence of the paramter when it is large, a good reduction is achieved (left column),
but the computaional cost is larger (right columk)= 10 seems a good trade-off.

1509

KEERTHI, CHAPELLE AND DECOSTE

7. Comparison with Standard SVM Training

We conclude the experimental study by comparing our method with the wellrkisiM solver,
SVMLight(Joachims, 1999% For this solver, we selected random training subsets of sizes from
2710n,2-%n,...,n/4,n/2,n. For each training set size, we measure the test error, the training time
and the number of support vectors. Tlheversion (quadratic penalization of the slacks) is the one
relevant for our study since it is the same loss function as the one we ngtdthat, when the
number of basis functions increases towandthe SpSVMsolution will converge to thé, SVM
solution. For completeness, we also included experimental results of ant@¥Md with al;
penalization of the slacks. Finally, note that for simplicity we kept the samerpgmmeters for

the different sizes, but that both methods would certainly gain by additforeaparameter tuning
(for instance when the number of basis functions is smaller, the bandwitke &BF kernel should

be larger).

Results are presented in figures 7 and 8. In terms of compression (lefireg), our method is
usually able to reach the same accuracy as a standard SVM using lesad¢hi@mth the number of
basis functions (this confirms the results of table 1).

From a time complexity point of view also, our method is very competitive and eachrthe
same accuracy as an SVM in less time. The only disappointing performanoehis B3V8 data
set. A possible explanation is that for this data set, the number of supmbtotvés very small and
a standard SVM can compute the exact solution quickly.

Finally, note that when the number of basis functions is extremely small cothjmaitee number
of training examplesSpSVMcan be slower than a SVM trained on a small subset (left part of the
right column plots). It is because solving (4) usingraining examples while there are only few
parameters to estimate is an overkill. It would be wiser to chomsea function ofl, the number
of basis functions.

8. Conclusion

In this paper we have given a fast primal algorithm that greedily chomsesset of the training
basis functions to approximate the SVM solution. As the subset grows thesatonverges to the
SVM solution since choosing the subset to be the entire training set is gerdao yield the exact
SVM solution. The real power of the method lies in its ability to form very goggraximations
of the SVM classifier with a clear control on the complexity of the classifiemimer of basis
functions) as well as the training time. In most data sets, performance sy t© that of the
SVM is achieved using a set of basis functions whose size is a small fraétibea number of SVM
support vectors. The graded control over the training time offeredubyne@thod can be valuable
in large scale data mining. Many a times, simpler algorithms such as decision regaeferred
over SVMs when there is a severe constraint on computational time. Whikeitheo satisfactory
way of doing early stopping with SVMs, our method enables the user to ¢dhé&draining time
by choosing the number of basis functions to use.

Our method can be improved and modified in various ways. Hyperparamsieg time can
be substantially reduced by using gradient-based methods on a diffefersimate of the gen-
eralization performance formed using k-fold cross validation and posfaababilities. Improved
methods of choosing thesubset of basis functions in each step can also make the method more ef-

12. The default optimization options 8/MLight (Version 6.0have been used.

1510

Test error

Test error

Test error

0.158}

0.156

0.154}
0.152}

0.157
0.148}
0.146}

0.144}

0.04¢

0.035f

0.03

0.025}

0.027

0.015¢

BUILDING SVMs WITH REDUCED COMPLEXITY

107 10°
Number of basis functions
ijcnn

163
Number of basis functions
1072 shuttle

162
Number of basis functions

adult
2 [SVMLightL,
0.158¢ o SVMLightL_ ||
0.156| - —— SpSVM
0.154(
2 0.152}
()
2 0.15¢
—
0.148
0.146
0.144(
10* 10° 10°
Time
ijicnn
0.04k ~_ SVMLight L, |
T ~o SVMLight L,
0035 . —— SpSWM
" Q
5 0.03f
5
2 0.025
'_
0.02}
I SRS
0.015 S
10° 10°
Time
%1072 shuttle
2.5 [~ SvMLghtL, ||
\ . SVMLight L
A} 1
2, 4
S
T 1.5} :
%
(]
'_
1t O 7
0.5} :

10 10

Time

Figure 7. Comparison dpSVMwith SVMLight on Adult, IJCNN, Shuttle For SVMLight, “Num
of basis functions” should be undelrgﬂod as number of support gector

KEERTHI, CHAPELLE AND DECOSTE

m3v8 m3v8
004 | | 0'045; | ~_ SVMLigntL, ||
0.047 0.04f ™ ~o SVMLightL,
Y —— SpSVM
A}
0.035¢ 0.035¢
© 003} S 0.03]
o)
F 0.025] 2 0.025(
0.02+ 0.02¢
0.015¢ 0.015¢
10° 10" 10° 10°
Number of basis functions Time
vehicle vehicle
~_ SVMLight L,
0.177 Q' 1 0.17¢, . SvMLightL, |
\ N\
' X —— SpSVM
0.161 VY 1 0.16f ! P
5 0.15f 5 0.15f
T o
% 0.141 % 0.14¢
o)
= [
0.13¢ 0.13¢
0.12¢ 0.12¢
X -
0.1}] 0.11f ‘ ‘
Number of basis functions 10° 10° 10°

Figure 8: Comparison dspSVMwith SVMLight on M3V8andVehicle For SVMLight, “Num of
basis functions” should be understood as number of support vectors.

1512

BUILDING SVMs WITH REDUCED COMPLEXITY

fective. Also, all the ideas described in this paper can be easily extéodeel Huber loss function
using the ideas in Keerthi and DeCoste (2005).

Appendix: A Description of Data Sets Used

As in the main paper, led denote the number of training examples. The six data sets used for
the main experiments of the paper afetult, [IJCNN, M3V8 M3VOthers ShuttleandVehicle For
M3V8 and M3VOtherswe go by the experience in (DeCoste and @kbpf, 2002) and use the
polynomial kernelk(x;,x;) = 1+ (1+x; - Xj)® where eaclx; is normalized to have unit length. For
all other data sets, we use the Gaussian kekelx;) = 1+exp(—Yy||x —X;||?). The values of are
given below!3 In each case, the values chosenyfandA are ballpark values such that the methods
considered in the paper give good generalization performance.

Adult data set is the version given by Platt in MO web page:http:// wwv. r esear ch.

m crosoft. com ~j pl att/sno. ht nl . Platt created a sequence of data sets with increasing number
of examples in order to study the scaling properties of3MO algorithm with respect to. For

our experiments we only usédiult-8which has 22,696 training examples and 9865 test examples.
Each example has 123 binary features, of which typically only 14 arezaom- We useq = 0.05

andA = 1.

The next five data sets are available from the following LIBSVM-Toolsepddt p: / / www.
csie.ntu.edu.tw ~cjlin/libsvntool s/datasets/.

IJCNN data set has 49,990 training examples and 91,701 test examples. Eacleecisaten
scribed by 22 features. We useé- 4 and\ = 1/16.

Shuttledata set has 43,500 training examples and 14,500 test examples. Eacleeisatep
scribed by 9 features. This is a multiclass data set with seven classes. k§d tmdy at the binary
classification problem of differentiating class 1 from the rest. We ysed6 and\ = 1/512.

M3V8data set is the binary classification problemMiflIST corresponding to classifying digit
3 from digit 8. The original data set has 11,982 training examples and tE884&xamples for
this problem. Since the original test data set could not clearly show a distifmimveen several
closely competing methods, we formed an extended test set by applyinimoes like translation
and rotation to create an extended test set comprising of 17,856 exaniptes.déta set can be
obtained from the authors.) We useée- 0.1.

M3VOthersdata set is another binary classification problenvidilSTcorresponding to differ-
entiating digit 3 from all the other digits. The data set has 60,000 training dgarapd 10,000 test
examples. We usexi=0.1.

Vehicledata set corresponds to the “vehicle (combined, scaled to [-1,1]¥oversthe LIBSVM-
Tools page mentioned above. It has 78,823 training examples and 19,76%aeples. Each ex-
ample is described by 100 features. This is a multiclass data set with threescldfslooked only
at the binary classification problem of differentiating class 3 from the M&t.usedy = 1/8 and
A=1/32.

Apart from the above six large data sets, we also used modified verdidsSIalata sets as
given in (Ratsch). These data sets were used to show the sparsity that is achiesiaglewr
method; see Table 1 of Section 1 and the detailed discussion in Section 4.

13. For both, the polynomial and Gaussian kernels, the additive termiv&5 the effect of including the threshold term
in the classifier and regularizing it.

1513

KEERTHI, CHAPELLE AND DECOSTE

References

J. Adler, B. D. Rao, and K. Kreutz-Delgado. Comparison of basis sefemethods. IfProceedings
of the 30th Asilomar conference on signals, systems and comppigyss 252—-257, 1996.

F. Bach and M. Jordan. Predictive low-rank decomposition for kemethods. IrProceedings of
the Twenty-second International Conference on Machine Learningl()C2005.

K. P. Bennett, M. Momma, and M. J. Embrechts. MARK: A boosting algorithmhiierogeneous
kernel models. IfProceedings of SIGKDD’Q2002.

J. Bi, T. Zhang, and K. P. Bennet. Column generation boosting methodsixture of kernels. In
Proceedings of SIGKDD’'Q42004.

C. J. C. Burges and B. Selkopf. Improving the accuracy and speed of support vector learning
machines. IrProceedings of the!" NIPS Conferencepages 375-381, 1997.

O. Chapelle. Training a support vector machine in the prinrdalirnal of Machine Learning Re-
search 2005. submitted.

D. DeCoste and B. S¢itkopf. Training invariant support vector machinddachine Learning46:
161-190, 2002.

T. Downs, K. E. Gates, and A. Masters. Exact simplification of suppertor solutionsJournal of
Machine Learning ResearcB:293—-297, 2001.

J. H. Friedman. Greedy function approximation: a gradient boosting machimals of Statistics
29:1180, 2001.

T. Joachims. Making large-scale SVM learning practicalAttivances in Kernel Methods - Support
Vector LearningMIT Press, Cambridge, Massachussetts, 1999.

S. S. Keerthi and W. Chu. A matching pursuit approach to sparse @ays®cess regression. In
Proceedings of th&8" NIPS Conferenge2006.

S. S. Keerthi and D. DeCoste. A modified finite Newton method for fast solufdarge scale
linear svms.Journal of Machine Learning Researd1341-361, 2005.

N. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussieesg methods: The Informative
Vector Machine. IrProceedings of th&5" NIPS Conferencepages 609-616, 2003.

Y. J. Lee and O. L. Mangasarian. RSVM: Reduced support vectohimes. InProceedings of the
SIAM International Conference on Data MininGIAM, Philadelphia, 2001.

K. M. Lin and C. J. Lin. A study on reduced support vector machinEEE TNN 14:1449-1459,
2003.

S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictiosalieEE Transactions
on ASSP41:3397-3415, 1993.

O. L. Mangasarian. A finite Newton method for classificati@mptimization Methods and Software
17:913-929, 2002.

1514

BUILDING SVMs WITH REDUCED COMPLEXITY

J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linggstems of which
the coefficient matrix is a symmetric M-matridathematics of Computatio81:148-162, 1977.

E. Osuna and F. Girosi. Reducing the run-time complexity of support vawohines. IrProceed-
ings of the International Conference on Pattern Recognjtict98.

E. Parrado-Herandez, |I. Mora-Jimete, J. Arenas-Gara, A. R. Figueiras-Vidal, and A. Navia-
Véazquez. Growing support vector classifiers with controlled compleattern Recognition
36:1479-1488, 2003.

J. Platt. Sequential minimal optimization: A fast algorithm for training suppartorenachines.
Technical report, Microsoft Research, Redmond, 1998.

G. Ratsch.Robust boosting via convex optimizati&hD thesis, University of Potsdam, Department
of Computer Science, Potsdam, Germany, 2001.

G. Ratsch. Benchmark repositoryt t p: / /i da. first.fraunhofer. de/ ~raetsch/.

B. Sclolkopf, S. Mika, C. J. C. Burges, P. Knirsch, K. R. Muller, G. Raetseid A. J. Smola. Input
space vs. feature space in kernel-based metiadss TNN 10:1000-1017, 1999.

M. Seeger. Low rank updates for the Cholesky decomposition. Tedtmejgart, University of
California, Berkeley, 2004.

M. Seeger, C. Williams, and N. Lawrence. Fast forward selection todsppesparse Gaussian
process regression. Proceedings of the Workshop on Al and Statista03.

A. J. Smola and P. L. Bartlett. Sparse greedy Gaussian processsiegreb Proceedings of the
13" NIPS Conferencepages 619-625, 2001.

A. J. Smola and Sditkopf. Sparse greedy matrix approximation for machine learningrdceed-
ings of thel 7" International Conference on Machine Learnjmges 911-918, 2000.

I. Steinwart. Sparseness of support vector machines - some asymptalealty bounds. 1Rro-
ceedings of tha6" NIPS Conferencepages 169-184, 2004.

T. Thies and F. Weber. Optimal reduced-set vectors for suppotbiveachines with a quadratic
kernel. Neural Computation16:1769-1777, 2004.

M. E. Tipping. Sparse Bayesian learning and the Relevance VectoriMaclournal of Machine
Learning Researgh:211-244, 2001.

P. Vincent and Y. Bengio. Kernel matching pursitachine Learning48:165-187, 2002.

M. Wu, B. Scldlkopf, and G. Bakir. Building sparse large margin classifierd2rsceedings of the
22nd International Conference on Machine Learni2g05.

1515

