
Journal of Machine Learning Research 7 (2006) 1493–1515 Submitted 10/05; Revised 3/06; Published 7/06

Building Support Vector Machines with
Reduced Classifier Complexity

S. Sathiya Keerthi SELVARAK@YAHOO-INC.COM

Yahoo! Research
3333 Empire Avenue, Building 4
Burbank, CA 91504, USA

Olivier Chapelle CHAPELLE@TUEBINGEN.MPG.DE

MPI for Biological Cybernetics
72076 T̈ubingen, Germany

Dennis DeCoste DECOSTED@YAHOO-INC.COM

Yahoo! Research
3333 Empire Avenue, Building 4
Burbank, CA 91504, USA

Editors: Kristin P. Bennett and Emilio Parrado-Hernández

Abstract
Support vector machines (SVMs), though accurate, are not preferred in applications requiring

great classification speed, due to the number of support vectors being large. To overcome this
problem we devise a primal method with the following properties: (1) it decouples the idea of basis
functions from the concept of support vectors; (2) it greedily finds a set of kernel basis functions
of a specified maximum size (dmax) to approximate the SVM primal cost function well; (3) it is
efficient and roughly scales asO(nd2

max) wheren is the number of training examples; and, (4) the
number of basis functions it requires to achieve an accuracyclose to the SVM accuracy is usually
far less than the number of SVM support vectors.
Keywords: SVMs, classification, sparse design

1. Introduction

Support Vector Machines (SVMs) are modern learning systems that deliver state-of-the-art perfor-
mance in real world pattern recognition and data mining applications such as text categorization,
hand-written character recognition, image classification and bioinformatics.Even though they yield
very accurate solutions, they are not preferred in online applications where classification has to be
done in great speed. This is due to the fact that a large set of basis functions is usually needed to
form the SVM classifier, making it complex and expensive. In this paper wedevise a method to
overcome this problem. Our method incrementally finds basis functions to maximize accuracy. The
process of adding new basis functions can be stopped when the classifier has reached some limiting
level of complexity. In many cases, our method efficiently forms classifiers which have an order of
magnitude smaller number of basis functions compared to the full SVM, while achieving nearly the
same level of accuracy.

SVM solution and post-processing simplification Given a training set{(xi ,yi)}
n
i=1, yi ∈ {1,−1},

the Support Vector Machine (SVM) algorithm with anL2 penalization of the training errors consists

c©2006 Sathiya Keerthi, Olivier Chapelle and Dennis DeCoste.



KEERTHI, CHAPELLE AND DECOSTE

of solving the following primal problem

min
λ
2
‖w‖2 +

1
2

n

∑
i=1

max(0,1−yiw·φ(xi))
2. (1)

Computations involvingφ are handled using the kernel function,k(xi ,x j) = φ(xi) ·φ(x j). For conve-
nience the bias term has not been included, but the analysis presented in this paper can be extended
in a straightforward way to include it. The quadratic penalization of the errors makes the primal
objective function continuously differentiable. This is a great advantageand becomes necessary for
developing a primal algorithm, as we will see below.

The standard way to train an SVM is to introduce Lagrange multipliersαi and optimize them
by solving a dual problem. The classifier function for a new inputx is then given by the sign of
∑i αiyik(x,xi). Because there is a flat part in the loss function, the vectorα is usually sparse. Thexi

for which αi 6= 0 are calledsupport vectors (SVs). Let nSV denote the number of SVs for a given
problem. A recent theoretical result by Steinwart (Steinwart, 2004) shows thatnSV grows as a
linear function ofn. Thus, for large problems, this number can be large and the training and testing
complexities might become prohibitive since they are respectively,O(n nSV +nSV

3) andO(nSV).
Several methods have been proposed for reducing the number of support vectors. Burges and

Scḧolkopf (1997) apply nonlinear optimization methods to seek sparse representations after building
the SVM classifier. Along similar lines, Schölkopf et al. (1999) useL1 regularization onβ to obtain
sparse approximations. These methods are expensive since they involvethe solution of hard non-
convex optimization problems. They also become impractical for large problems. Downs et al.
(2001) give an exact algorithm to prune the support vector set after the SVM classifier is built.
Thies and Weber (2004) give special ideas for the quadratic kernel. Since these methods operate as
a post-processing step, an expensive standard SVM training is still required.

Direct simplification via basis functions and primal Instead of finding the SVM solution by
maximizing the dual problem, one approach is todirectly minimize the primal formafter invoking
the representer theorem to representw as

w =
n

∑
i=1

βiφ(xi). (2)

If we allow βi 6= 0 for all i, substitute (2) in (1) and solve for theβi ’s then (assuming uniqueness
of solution) we will getβi = yiαi and thus we will precisely retrieve the SVM solution (Chapelle,
2005). But our aim is to obtain approximate solutions that have as few non-zero βi ’s as possible.
For many classification problems there exists a small subset of the basis functions1 suited to the
complexity of the problem being solved, irrespective of the training size growth, that will yield
pretty much the same accuracy as the SVM classifier. The evidence for this comes from the empir-
ical performance of other sparse kernel classifiers: the Relevance Vector Machine (Tipping, 2001),
Informative Vector Machine (Lawrence et al., 2003) are probabilistic models in a Bayesian setting;
and Kernel Matching Pursuit (Vincent and Bengio, 2002) is a discriminative method that is mainly
developed for the least squares loss function. These recent non-SVM works have laid the claim that
they can match the accuracy of SVMs, while also bringing down considerably, the number of basis
functions as well as the training cost. Work on simplifying SVM solution has notcaught up well

1. Eachk(x,xi) will be referred to as a basis function.

1494



BUILDING SVMS WITH REDUCED COMPLEXITY

with those works in related kernel fields. The method outlined in this paper makes a contribution to
fill this gap.

We deliberately use the variable name,βi in (2) so as to interpret it as a basis weight as opposed
to viewing it asyiαi whereαi is the Lagrange multiplier associated with thei-th primal slack con-
straint. While the two are (usually) one and the same at exact optimality, they canbe very different
when we talk of sub-optimal primal solutions. There is a lot of freedom whenwe simply think of
the βi ’s as basis weights that yield a good suboptimalw for (1). First, we do not have to put any
bounds on theβi . Second, we do not have to think of aβi corresponding to a particular location
relative to the margin planes to have a certain value. Going even one more step further, we do not
even have to restrict the basis functions to be a subset of the training set examples.

Osuna and Girosi (1998) consider such an approach. They achievesparsity by including theL1

regularizer,λ1‖β‖1 in the primal objective. But they do not develop an algorithm (for solving the
modified primal formulation and for choosing the rightλ1) that scales efficiently to large problems.

Wu et al. (2005) writew as

w =
l

∑
i=1

βiφ(x̃i)

where l is a chosen small number and optimize the primal objective with theβi as well as the
x̃i as variables. But the optimization can become unwieldy ifl is not small, especially since the
optimization of the ˜xi is a hard non-convex problem.

In the RSVM algorithm (Lee and Mangasarian, 2001; Lin and Lin, 2003) arandom subset of the
training set is chosen to be the ˜xi and then only theβi are optimized.2 Because basis functions are
chosen randomly, this method requires many more basis functions than needed in order to achieve
a level of accuracy close to the full SVM solution; see Section 3.

A principled alternative to RSVM is to use a greedy approach for the selection of the subset
of the training set for forming the representation. Such an approach hasbeen popular in Gaussian
processes (Smola and Bartlett, 2001; Seeger et al., 2003; Keerthi and Chu, 2006). Greedy meth-
ods of basis selection also exist in the boosting literature (Friedman, 2001; Rätsch, 2001). These
methods entail selection from a continuum of basis functions using either gradient descent or linear
programming column generation. Bennett et al. (2002) and Bi et al. (2004) give modified ideas for
kernel methods that employ a set of basis functions fixed at the training points.

Particularly relevant to the work in this paper are the kernel matching pursuit (KMP) algo-
rithm of Vincent and Bengio (2002) and the growing support vector classifier (GSVC) algorithm of
Parrado-Herńandez et al. (2003). KMP is an effective greedy discriminative approach that is mainly
developed for least squares problems. GSVC is an efficient method that isdeveloped for SVMs and
uses a heuristic criterion for greedy selection of basis functions.

Our approach The main aim of this paper is to give an effective greedy method SVMs which
uses a basis selection criterion that is directly related to the training cost function and is also very
efficient. The basic theme of the method is forward selection. It starts with an empty set ofbasis
functions and greedily chooses new basis functions (from the training set) to improve the primal
objective function. We develop efficient schemes for both, the greedy selection of a new basis
function, as well as the optimization of theβi for a given selection of basis functions. For choosing
uptodmax basis functions, the overall compuational cost of our method isO(nd2

max). The different

2. For convenience, in the RSVM method, the SVM regularizer is replacedby a simpleL2 regularizer onβ.

1495



KEERTHI, CHAPELLE AND DECOSTE

SpSVM-2 SVM
Data Set TestErate #Basis TestErate nSV
Banana 10.87 (1.74) 17.3 (7.3) 10.54 (0.68) 221.7 (66.98)
Breast 29.22 (2.11) 12.1 (5.6) 28.18 (3.00) 185.8 (16.44)
Diabetis 23.47 (1.36) 13.8 (5.6) 23.73 (1.24) 426.3 (26.91)
Flare 33.90 (1.10) 8.4 (1.2) 33.98 (1.26) 629.4 (29.43)
German 24.90 (1.50) 14.0 (7.3) 24.47 (1.97) 630.4 (22.48)
Heart 15.50 (1.10) 4.3 (2.6) 15.80 (2.20) 166.6 (8.75)
Ringnorm 1.97 (0.57) 12.9 (2.0) 1.68 (0.24) 334.9 (108.54)
Thyroid 5.47 (0.78) 10.6 (2.3) 4.93 (2.18) 57.80 (39.61)
Titanic 22.68 (1.88) 3.3 (0.9) 22.35 (0.67) 150.0 (0.0)
Twonorm 2.96 (0.82) 8.7 (3.7) 2.42 (0.24) 330.30 (137.02)
Waveform 10.66 (0.99) 14.4 (3.3) 10.04 (0.67) 246.9 (57.80)

Table 1: Comparison ofSpSVM-2andSVMon benchmark data sets from (Rätsch). For TestErate,
#Basis andnSV, the values are means over ten different training/test splits and the values
in parantheses are the standard deviations.

components of the method that we develop in this paper are not new in themselves and are inspired
from the above mentioned papers. However, from a practical point of view, it is not obvious how
to combine and tune them in order to get a very efficient SVM training algorithm.That is what
we achieved in this paper through numerous and careful experiments thatvalidated the techniques
employed.

Table 1 gives a preview of the performance of our method (calledSpSVM-2in the table) in
comparison with SVM on several UCI data sets. As can be seen there, ourmethod gives a competing
generalization performance while reducing the number of basis functions very significantly. (More
specifics concerning Table 1 will be discussed in Section 4.)

The paper is organized as follows. We discuss the details of the efficient optimization of the
primal objective function in Section 2. The key issue of selecting basis functions is taken up in
Section 3. Sections 4-7 discuss other important practical issues and givecomputational results that
demonstrate the value of our method. Section 8 gives some concluding remarks. The appendix
gives details of all the data sets used for the experiments in this paper.

2. The Basic Optimization

Let J ⊂ {1, . . . ,n} be a given index set of basis functions that form a subset of the trainingset. We
consider the problem of minimizing the objective function in (1) over the set ofvectorsw of the
form3

w = ∑
j∈J

β jφ(x j). (3)

3. More generally, one can consider expansion on points which do not belong to the training set.

1496



BUILDING SVMS WITH REDUCED COMPLEXITY

2.1 Newton Optimization

Let Ki j = k(xi ,x j) = φ(xi) · φ(x j) denote the generic element of then× n kernel matrixK. The
notationKIJ refers to the submatrix ofK made of the rows indexed byI and the columns indexed
by J. Also, for an-dimensional vectorp, let pJ denote the|J| dimensional vector containing{p j :
j ∈ J}.

Let d = |J|. With w restricted to (3), the primal problem (1) becomes thed dimensional mini-
mization problem of findingβJ that solves

min
βJ

f (βJ) =
λ
2

β⊤
J KJJβJ +

1
2

n

∑
i=1

max(0,1−yioi)
2 (4)

whereoi = Ki,JβJ. Except for the regularizer being more general, i.e.,β⊤
J KJJβJ (as opposed to the

simple regularizer,‖βJ‖
2), the problem in (4) is very much the same as in a linear SVM design.

Thus, the Newton method and its modification that are developed for linear SVMs(Mangasarian,
2002; Keerthi and DeCoste, 2005) can be used to solve (4) and obtain the solutionβJ.

Newton Method

1. Choose a suitable starting vector,β0
J. Setk = 0.

2. If βk
J is the optimal solution of (4), stop.

3. Let I = {i : 1− yioi ≥ 0} whereoi = Ki,Jβk
J is the output of thei-th example. Obtain̄βJ as

the result of a Newton step or equivalently as the solution of the regularizedleast squares
problem,

min
βJ

λ
2

β⊤
J KJJβJ +

1
2 ∑

i∈I

(1−yiKi,JβJ)
2. (5)

4. Takeβk+1
J to be the minimizer off on L, the line joiningβk

J and β̄J. Setk := k+ 1 and go
back to step 2 for another iteration.

The solution of (5) is given by

β̄J = βk
J −P−1g, where P = λKJJ +KJIK

⊤
JI and g = λKJJβJ −KJI(yI −oI ). (6)

P andg are also the (generalized) Hessian and gradient of the objective function (4).
Because the loss function is piecewise quadratic, Newton method converges in a finite number

of iterations. The number of iterations required to converge to the exact solution of (4) is usually
very small (less than 5). Some Matlab code is available online athttp://www.kyb.tuebingen.
mpg.de/bs/people/chapelle/primal.

2.2 Updating the Hessian

As already pointed out in Section 1, we will mainly need to solve (4) in an incremental mode:4 with
the solutionβJ of (4) already available, solve (4) again, but with one more basis functionadded, i.e.,
J incremented by one. Keerthi and DeCoste (2005) show that the Newton method is very efficient

4. In our method basis functions are added one at a time.

1497



KEERTHI, CHAPELLE AND DECOSTE

for such seeding situations. Since the kernel matrix is dense, we maintain andupdate a Cholesky
factorization ofP, the Hessian defined in (6). Even withJ fixed, during the course of solving (4)
via the Newton method,P will undergo changes due to changes inI . Efficient rank one schemes
can be used to do the updating of the Cholesky factorization (Seeger, 2004). The updatings of the
factorization ofP that need to be done because of changes inI are not going to be expensive because
such changes mostly occur whenJ is small; whenJ is large,I usually undergoes very small changes
since the set of training errors is rather well identified by that stage. Of courseP and its factorization
will also undergo changes (their dimensions increase by one) each time an element is added toJ.
This is a routine updating operation that is present in most forward selectionmethods.

2.3 Computational Complexity

It is useful to ask: what is the complexity of the incremental computations needed to solve (4)
when its solution is available for someJ, at which point one more basis element is included in it
and we want to re-solve (4)? In the best case, when the support vector set I does not change, the
cost is mainly the following: computing the new row and column ofKJJ (d+1 kernel evaluations);
computing the new row ofKJI (n kernel computations);5 computing the new elements ofP (O(nd)
cost); and the updating of the factorization ofP (O(d2) cost). Thus the cost can be summarized as:
(n+ d+ 1) kernel evaluations andO(nd) cost. Even whenI does change and so the cost is more,
it is reasonable to take the above mentioned cost summary as a good estimate of the cost of the
incremental work. Adding up these costs tilldmax basis functions are selected, we get a complexity
of O(nd2

max). Note that this is the basic cost given that we already know the sequence of dmax basis
functions that are to be used. Thus,O(nd2

max) is also the complexity of the method in which basis
functions are chosen randomly. In the next section we discuss the problem of selecting the basis
functions systematically and efficiently.

3. Selection of New Basis Element

Suppose we have solved (4) and obtained the minimizerβJ. Obviously, the minimum value of the
objective function in (4) (call itfJ) is greater than or equal tof ⋆, the optimal value of (1). If the
difference between them is large we would like to continue on and include another basis function.
Take one j 6∈ J. How do we judge its value of inclusion? The best scoring mechanism is the
following one.

3.1 Basis Selection Method 1

Include j in J, optimize (4) fully using(βJ,β j), and find the improved value of the objective func-
tion; call it f̃ j . Choose thej that gives the least value off̃ j . We already analyzed in the earlier section
that the cost of doing one basis element inclusion isO(nd). So, if we want to try all elements out-
sideJ, the cost isO(n2d); the overall cost of such a method of selectingdmax basis functions is
O(n2d2

max), which is much higher than the basic cost,O(nd2
max) mentioned in the previous section.

Instead, if we work only with a random subset of sizeκ chosen from outsideJ, then the cost in one
basis selection step comes down toO(κnd), and the overall cost is limited toO(κnd2

max). Smola and
Bartlett (2001) have successfully tried such random subset choices for Gaussian process regression,
usingκ = 59. However, note that, even with this scheme, the cost of new basis selection (O(κnd))

5. In fact this is notn but the size ofI . Since we do not know this size, we upper bound it byn.

1498



BUILDING SVMS WITH REDUCED COMPLEXITY

is still disproportionately higher (byκ times) than the cost of actually including the newly selected
basis function (O(nd)). Thus we would like to go for cheaper methods.

3.2 Basis Selection Method 2

This method computes a score for a new elementj in O(n) time. The idea has a parallel in Vincent
and Bengio’s work on Kernel Matching Pursuit (Vincent and Bengio, 2002) for least squares loss
functions. They have two methods calledprefitting andbackfitting; see equations (7), (3) and (6)
of Vincent and Bengio (2002).6 Their prefitting is parallel toBasis Selection Method 1that we
described earlier. The cheaper method that we suggest below is parallelto their backfittingidea.
SupposeβJ is the solution of (4). Including a new elementj and its corresponding variable,β j

yields the problem of minimizing

λ
2
(β⊤

J β j)

(

KJJ KJ j

K jJ K j j

)(

βJ

β j

)

+
1
2

n

∑
i=1

max(0,1−yi(KiJβJ +Ki j β j)
2, (7)

We fix βJ and optimize (7) using only the new variableβ j and see how much improvement in the
objective function is possible in order to define the score for the new element j.

This one dimensional function is piecewise quadratic and can be minimized exactly in O(nlogn)
time by a dichotomy search on the different breakpoints. But, a very precise calculation of the
scoring function is usually unnecessary. So, for practical solution we can simply do a few Newton-
Raphson-type iterations on the derivative of the function and get a nearoptimal solution inO(n)
time. Note that we also need to compute the vectorKJ j, which requiresd kernel evaluations. Though
this cost is subsumed inO(n), it is a factor to remember if kernel evaluations are expensive.

If all j 6∈ J are tried, then the complexity of selecting a new basis function isO(n2), which
is disproportionately large compared to the cost of including the chosen basis function, which is
O(nd). Like in Basis Selection Method 1, we can simply chooseκ random basis functions to try.
If dmax is specified, one can chooseκ = O(dmax) without increasing the overall complexity beyond
O(nd2

max). More complex schemes incorporating a kernel cache can also be tried.

3.3 Kernel Caching

For upto medium size problems, sayn< 15,000, it is a good idea to have cache for the entire kernel
matrix. If additional memory space is available and, say a Gaussian kernel isemployed, then the
values of‖xi −x j‖

2 can also be cached; this will help significantly reduce the time associated with
the tuning of hyperparameters. For larger problems, depending on memory space available, it is a
good idea to cache as many as possible, full kernel rows corresponding to j that get tried, but do
not get chosen for inclusion. It is possible that they get called in a later stage of the algorithm, at
which time, this cache can be useful. It is also possible to think of variations ofthe method in which
full kernel rows corresponding to a large set (as much that can fit into memory) of randomly chosen
training basis is pre-computed and only these basis functions are considered for selection.

3.4 Shrinking

As basis functions get added, the SVM solutionw and the margin planes start stabilizing. If the
number of support vectors form a small fraction of the training set, then, for a large fraction of

6. For least squares problems, Adler et al. (1996) had given the same ideas as Vincent and Bengio in earlier work.

1499



KEERTHI, CHAPELLE AND DECOSTE

(well-classified) training examples, we can easily conclude that they will probably never come into
the active setI . Such training examples can be left out of the calculations without causing any undue
harm. This idea of shrinking has been effectively used to speed-up SVMtraining (Joachims, 1999;
Platt, 1998).

3.5 Experimental Evaluation

We now evaluate the performance of basis selection methods 1 and 2 (we will call them asSpSVM-1,
SpSVM-2) on some sizable benchmark data sets. A full description of these data sets and the kernel
functions used is given in the appendix. The value ofκ = 59 is used. To have a baseline, we also
consider the method,Randomin which the basis functions are chosen randomly. This is almost the
same as the RSVM method (Lee and Mangasarian, 2001; Lin and Lin, 2003), the only difference
being the regularizer (β⊤

J KJ,JβJ in (4) versus‖βJ‖
2 in RSVM). For another baseline we consider

the (more systematic) unsupervised learning method in which an incomplete Cholesky factorization
with pivoting (Meijerink and van der Vorst, 1977; Bach and Jordan, 2005) is used to choose basis
functions.7 For comparison we also include the GSVC method of Parrado-Hernández et al. (2003).
This method, originally given for SVM hinge loss, uses the following heuristiccriterion to select
the next basis functionj∗ 6∈ J:

j∗ = arg min
j∈I , j 6∈J

max
l∈J

|K jl | (8)

with the aim of encouraging new basis functions that are far from the basisfunctions that are already
chosen; also,j is restricted only to the support vector indices (I in (5)). For a clean comparison with
our methods, we implemented GSVC for SVMs using quadratic penalization, max(0,1−yioi)

2. We
also tried another criterion, suggested to us by Alex Smola, that is more complexthan (8):

j∗ = arg max
j∈I , j 6∈J

(1−y jo j)
2d2

j (9)

whered j is the distance (in feature space) of thej-th training point from the subspace spanned by
the elements ofJ. This criterion is based on an upper bound on the improvement to the training cost
function obtained by including thej-th basis function. It also makes sense intuitively as it selects
basis functions that are both not well approximated by the others (larged j ) and for which the error
incurred is large.8 Below, we will refer to this criterion asBH. It is worth noting that both (8) and
(9) can be computed very efficiently.

Figures 1 and 2 compare the six methods on six data sets.9 Overall, SpSVM-1andSpSVM-2
give the best performance in terms of achieving good reduction of test error rate with respect to the
number of basis functions. AlthoughSpSVM-2slightly lagsSpSVM-1in terms of performance in the
early stages, it does equally well as more basis functions are added. SinceSpSVM-2is significantly
less expensive, it is the best method to use. SinceSpSVM-1is quite cheap in the early stages, it is
also appropriate to think of a hybrid method in whichSpSVM-1is used in the early stages and, when
it becomes expensive, switch toSpSVM-2. The other methods sometimes do well, but, overall, they
are inferior in comparison toSpSVM-1andSpSVM-2. Interestingly, on theIJCNNandVehicledata

7. We also tried the method of Bach and Jordan (2005) which uses the training labels, but we noticed little improvement.
8. Note that when the set of basis functions is not restricted, the optimalβ satisfiesλβiyi = max(0,1−yioi).
9. Most figures given in this paper appear in pairs of two plots. One plot gives test error rate as a function of the number

of basis functions, to see how effective the compression is. The other plot gives the test error rate as a function of
CPU time, and is used to indicate the efficiency of the method.

1500



BUILDING SVMS WITH REDUCED COMPLEXITY

10
1

10
2

10
3

14.4

14.6

14.8

15

15.2

15.4

Num of basis functions

T
es

t e
rr

or
 r

at
e 

(%
)

Adult

10
1

10
2

10
3

14.4

14.6

14.8

15

15.2

15.4

CPU time (secs)

T
es

t e
rr

or
 r

at
e 

(%
)

Adult

SpSVM−2
SpSVM−1
Cholesky
Random
GSVC
BH

10
2

10
3

1

2

3

4

5

6

7

Num of basis functions

T
es

t e
rr

or
 r

at
e 

(%
)

IJCNN

10
2

10
3

10
4

1

2

3

4

5

6

7

CPU time (secs)

T
es

t e
rr

or
 r

at
e 

(%
)

IJCNN

SpSVM−2
SpSVM−1
Cholesky
Random
GSVC
BH

10
1

10
2

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Num of basis functions

T
es

t e
rr

or
 r

at
e 

(%
)

Shuttle

10
1

10
2

10
3

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

CPU time (secs)

T
es

t e
rr

or
 r

at
e 

(%
)

Shuttle

SpSVM−2
SpSVM−1
Cholesky
Random
GSVC
BH

Figure 1: Comparison of basis selection methods onAdult, IJCNN & Shuttle. On Shuttlesome
methods were terminated because of ill-conditioning in the matrixP in (6).

1501



KEERTHI, CHAPELLE AND DECOSTE

10
2

10
3

1

2

3

4

5

6

7

Num of basis functions

T
es

t e
rr

or
 r

at
e 

(%
)

M3V8

10
2

10
3

10
4

1

2

3

4

5

6

7

CPU time (secs)

T
es

t e
rr

or
 r

at
e 

(%
)

M3V8

SpSVM−2
SpSVM−1
Cholesky
Random
GSVC
BH

10
2

10
3

0.5

1

1.5

2

2.5

3

3.5

Num of basis functions

T
es

t e
rr

or
 r

at
e 

(%
)

M3VOthers

10
2

10
3

0.5

1

1.5

2

2.5

3

3.5

CPU time (secs)

T
es

t e
rr

or
 r

at
e 

(%
)

M3VOthers

SpSVM−2
SpSVM−1
Cholesky
Random
GSVC
BH

10
1

10
2

10
3

11.5

12

12.5

13

13.5

14

14.5

15

15.5

Num of basis functions

T
es

t e
rr

or
 r

at
e 

(%
)

Vehicle

10
2

10
3

10
4

11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

CPU time (secs)

T
es

t e
rr

or
 r

at
e 

(%
)

Vehicle

SpSVM−2
SpSVM−1
Cholesky
Random
GSVC
BH

Figure 2: Comparison of basis selection methods onM3V8, M3VOthers& Vehicle.

1502



BUILDING SVMS WITH REDUCED COMPLEXITY

sets,Cholesky, GSVCandBH are even inferior toRandom. A possible explanation is as follows:
these methods give preference to points that are furthest away in feature space from the points
already selected. Thus, they are likely to select points which are outliers (far from the rest of the
training points); but outliers are probably unsuitable points for expandingthe decision function.

As we mentioned in Section 1, there also exist other greedy methods of kernel basis selection
that are motivated by ideas from boosting. These methods are usually given in a setting different
from that we consider: a set of (kernel) basis functions is given and aregularizer (such as‖β‖1) is
directly specified on the multiplier vectorβ. The method of Bennett et al. (2002) called MARK is
given for least squares problems. It is close to the kernel matching pursuit method. We compare
SpSVM-2with kernel matching pursuit and discuss MARK in Section 5. The method of Biet al.
(2004) uses column generation ideas from linear and quadratic programming to select new basis
functions and so it requires the solution of, both, the primal and dual problems.10 Thus, the basis
selection process is based on the sensitivity of the primal objective functionto an incoming basis
function. On the other hand, ourSpSVMmethods are based on computing an estimate of the de-
crease in the primal objective function due to an incoming basis function; also, the dual solution is
not needed.

4. Hyperparameter Tuning

In the actual design process, the values of hyperparameters need to bedetermined. This can be done
using k-fold cross validation. Cross validation (CV) can also be used to choosed, the number of
basis functions. Since the solution given by our method approaches the SVM solution asd becomes
large, there is really no need to choosed at all. One can simply choosed to be as big a value as
possible. But, to achieve good reduction in the classifier complexity (as well as computing time)
it is a good idea to track the validation performance as a function ofd and stop when this function
becomes nearly flat. We proceed as follows. First an appropriate value for dmax is chosen. For a
given choice of hyperparameters, the basis selection method (say,SpSVM-2) is then applied on each
training set formed from the k-fold partitions tilldmax basis functions are chosen. This gives an
estimate of the k-fold CV error for each value ofd from 1 todmax. We choosed to be the number
of basis functions that gives the lowest k-fold CV error. This computationcan be repeated for each
set of hyperparameter values and the best choice can be decided.

Recall that, at staged, our basis selection methods choose the(d+1)-th basis function from a
set ofκ random basis functions. To avoid the effects of this randomness on hyperparameter tuning,
it is better to make thisκ-set to be dependent only ond. Thus, at staged, the basis selection methods
will choose the same set ofκ random basis functions for all hyperparameter values.

We applied the above ideas on 11 benchmark data sets from (Rätsch) usingSpSVM-2as the
basis selection method. The Gaussian kernel,k(xi ,x j) = 1+ exp(−γ‖xi − x j‖

2) was used. The
hyperparameters,λ andγ were tuned using 3-fold cross validation. The values, 2i , i = −7, · · · ,7
were used for each of these parameters. Ten different train-test partitions were tried to get an idea
of the variability in generalization performance. We usedκ = 25 anddmax = 25. (TheTitanic data
set has three input variables, which are all binary; hence we setdmax = 8 for this data set.)

Table 1 (already introduced in Section 1) gives the results. For comparison we also give the
results for the SVM (solution of (1)); in the case of SVM, the number of support vectors (nSV) is the

10. The CPLEX LP/QP solver is used to obtain these solutions.

1503



KEERTHI, CHAPELLE AND DECOSTE

number of basis functions. Clearly, our method achieves an impressive reduction in the number of
basis functions, while yielding test error rates comparable to the full SVM.

5. Comparison with Kernel Matching Pursuit

Kernel matching pursuit (KMP) (Vincent and Bengio, 2002) was mainly given as a method of
greedily selecting basis functions for the non-regularized kernel leastsquares problem. As we
already explained in Section 3, our basis selection methods can be viewed asextensions of the
basic ideas of KMP to the SVM case. In this section we empirically compare the performances
of these two methods. For both methods we only considerBasis Selection Method 2and refer
to the two methods simply asKMP and SpSVM. It is also interesting to study the effect of the
regularizer term (λ‖w‖2/2 in (1)) on generalization. The regularizer can be removed by settingλ =
0. The original KMP formulation of Vincent and Bengio (2002) considered such a non-regularized
formulation only. In the case of SVM, when perfect separability of the training data is possible, it
is improper to setλ = 0 without actually rewriting the primal formulation in a different form; so,
in our implementation we brought in the effect of no-regularization by settingλ to the small value,
10−5. Thus, we compare 4 methods:KMP-R, KMP-NR, SpSVM-RandSpSVM-NR. Here “R” and
“NR” refer to regularization and no-regularization, respectively.

Figures 3 and 4 compare the four methods on six data sets. Except onM3V8, SpSVM gives a
better performance than KMP. The better performance ofKMP onM3V8 is probably due to the fact
that the examples corresponding to each of the digits, 3 and 8, are distributed as a Gaussian, which
is suited to the least squares loss function. Note that in the case ofM3VOtherswhere the “Others”
class (corresponding to all digits other than 3) is far from a Gaussian distribution, SVM does better
than KMP.

The no-regularization methods,KMP-NRandSpSVM-NRgive an interesting performance. In
the initial stages of basis addition we are in the underfitting zone and so they perform as well (in fact,
a shade better) than their respective regularized counterparts. But, asexpected, they start overfitting
when many basis functions are added. See, for example the performanceon Adult data set given in
Figure 3. Thus, when using these non-regularized methods, a lot of care is needed in choosing the
right number of basis functions. The number of basis functions at which overfitting sets-in is smaller
for SpSVM-NRthan that ofKMP-NR. This is because of the fact that, while KMP has to concentrate
on reducing the residual on all examples in its optimization, SVM only needs to concentrate on the
examples violating the margin condition.

It is also useful to mention the method, MARK11 of Bennett et al. (2002) which is closely re-
lated to KMP. In this method, a new basis function (say, the one corresponding to the j-th training
example) is evaluated by looking at the magnitude (larger the better) of the gradient of the primal
objective function with respect toβ j evaluated at the currentβJ. This gradient is the dot product of
the kernel column containingKi j and the residual vector having the elements,oi −yi . The compu-
tational cost as well as the performance of MARK are close to those of KMP. MARK can also be
easily extended to the SVM problem in (1): all that we need to do is to replace the residual vec-
tor mentioned above by the vector having the elements,yi max{0,1−yioi}. This modified method
(which uses our Newton optimization method as the base solver) is close to ourSpSVM-2in terms
of computational cost as well as performance. Note that, if we optimize (7) for β j using only a

11. The basis selection idea used in MARK is also given in the earlier papers, Mallat and Zhang (1993) and Adler et al.
(1996) under the name,Basic Matching Pursuit.

1504



BUILDING SVMS WITH REDUCED COMPLEXITY

10
1

10
2

10
3

14.4

14.6

14.8

15

15.2

15.4

Num of basis functions

T
es

t e
rr

or
 r

at
e 

(%
)

Adult

SpSVM−R
SpSVM−NR
KMP−R
KMP−NR

10
1

10
2

10
3

14.4

14.6

14.8

15

15.2

15.4

CPU time (secs)

T
es

t e
rr

or
 r

at
e 

(%
)

Adult

10
2

10
3

1

2

3

4

5

6

7

8

Num of basis functions

T
es

t e
rr

or
 r

at
e 

(%
)

IJCNN

10
2

10
3

10
4

1

2

3

4

5

6

7

8

CPU time (secs)

T
es

t e
rr

or
 r

at
e 

(%
)

IJCNN

SpSVM−R
SpSVM−NR
KMP−R
KMP−NR

10
0

10
1

10
2

0.05

0.1

0.15

0.2

0.25

0.3

Num of basis functions

T
es

t e
rr

or
 r

at
e 

(%
)

Shuttle

10
1

10
2

10
3

0.05

0.1

0.15

0.2

0.25

0.3

CPU time (secs)

T
es

t e
rr

or
 r

at
e 

(%
)

Shuttle

SpSVM−R
SpSVM−NR
KMP−R
KMP−NR

Figure 3: KMP vs SpSVM (with/without regularization) onAdult, IJCNN& Shuttle.

1505



KEERTHI, CHAPELLE AND DECOSTE

10
2

10
3

1

2

3

4

5

6

Num of basis functions

T
es

t e
rr

or
 r

at
e 

(%
)

M3V8

10
2

10
3

10
4

1

2

3

4

5

6

CPU time (secs)

T
es

t e
rr

or
 r

at
e 

(%
)

M3V8

SpSVM−R
SpSVM−NR
KMP−R
KMP−NR

10
1

10
2

10
3

0.5

1

1.5

2

2.5

3

3.5

4

Num of basis functions

T
es

t e
rr

or
 r

at
e 

(%
)

M3VOthers

10
2

10
3

0.5

1

1.5

2

2.5

3

3.5

4

CPU time (secs)

T
es

t e
rr

or
 r

at
e 

(%
)

M3VOthers

SpSVM−R
SpSVM−NR
KMP−R
KMP−NR

10
1

10
2

10
3

11.5

12

12.5

13

13.5

14

14.5

Num of basis functions

T
es

t e
rr

or
 r

at
e 

(%
)

Vehicle

SpSVM−R
SpSVM−NR
KMP−R
KMP−NR

10
2

10
3

10
4

11.5

12

12.5

13

13.5

14

14.5

CPU time (secs)

T
es

t e
rr

or
 r

at
e 

(%
)

Vehicle

Figure 4: KMP vs SpSVM (with/without regularization) onM3V8, M3VOthers& Vehicle.

1506



BUILDING SVMS WITH REDUCED COMPLEXITY

single Newton step, the difference between MARK (as adapted above to SVMs) andSpSVM-2is
only in the use of the second order information.

6. Additional Tuning

We discuss in this section the choice ofκ for SpSVMas well as the possibility of not solving (4)
every time a new basis function is added.

6.1 Few Retrainings

It might be a bit costly to perform the Newton optimization described in Section 2.1each time a
new basis function is added. Indeed, it is unlikely that the set of supportvectors changes a lot after
each addition. Therefore, we investigate the possibility of retraining only from time to time.

We first tried to do retraining only when|J| = 2p for somep∈ N, the set of positive integers. It
makes sense to use an exponential scale since we expect the solution not tochange too much when
J is already relatively large. Note that the overall complexity of the algorithm does not change since
the cost of adding one basis function is stillO(nd). It is only the constant which is better, because
fewer Newton optimizations are performed.

The results are presented in figure 5. For a given number of basis functions, the test error is
usually not as good as if we always retrain. But on the other hand, this can be much faster. We
found that a good trade-off is to retrain whenever|J| = ⌊2p/4⌋ for p ∈ N. This is the strategy we
will use for the experiments in the rest of the paper.

6.2 Influence ofκ

The parameterκ is the number of candidate basis functions that are being tried each time a new
basis function should be added: we select a random set ofκ examples and the best one (as explained
in Section 3.2) among them is chosen. Ifκ = 1, this amounts to choosing a random example at each
step (i.e. theRandommethod on figures 1 and 2) .

The influence ofκ is studied in figure 6. The largerκ is, the better the test error for a given
number of basis functions, but also the longer the training time. We found thatκ = 10 is a good
trade-off and that is the value that we will keep for the experiments presented in the next section.

Finally, an interesting question is how to choose appropriately a good value for κ and an efficient
retraining strategy. Both are likely to be problem dependent, and even though κ = 59 was suggested
by Smola and Scḧolkopf (2000), we believe that there is no universal answer. The answer would
for instance depend on the cost associated with the computation of the kernel function, on the
number of support vectors and on the number of training points. Indeed,the basic cost for one
iteration isO(nd) and the number of kernel calculations isκnSV +n: the first term corresponds to
trying different basis function, while the second one correspond to the inclusion of the chosen basis
function. Soκ should be chosen such that the kernel computations takes about the same tame as the
training itself.

Ideally, an adaptive strategy should be designed to find automaticallyκ and to adjust the retrain-
ing schedule. The decay rate of the objective function as well as the variance of the scores produced
by the basis selection scoring function would be two key quantities helpful to adjust them.

1507



KEERTHI, CHAPELLE AND DECOSTE

10
1

10
2

10
3

2

4

6

8

10

12

Num of basis functions

T
es

t e
rr

or
 r

at
e 

(%
)

M3V8

Always

2p/4

2p

10
1

10
2

10
3

10
4

2

4

6

8

10

12

CPU time (secs)

T
es

t e
rr

or
 r

at
e 

(%
)

M3V8

Always

2p/4

2p

10
1

10
2

10
3

2

3

4

5

6

7

8

9

T
es

t e
rr

or
 r

at
e 

(%
)

Num of basis functions

ijcnn

Always

2p/4

2p

10
1

10
2

10
3

2

3

4

5

6

7

8

9

T
es

t e
rr

or
 r

at
e 

(%
)

CPU Time (sec)

ijcnn

Always

2p/4

2p

Figure 5: Three different possible retraining strategies showing a different trade-off between accu-
racy and time: always retraining is too time consumming; on the other hand retraining
not often enough can lead to sub-optimal performances (see the top left plot). For these
experiments,κ = 100 was used.

1508



BUILDING SVMS WITH REDUCED COMPLEXITY

10
1

10
2

10
3

2

4

6

8

10

12

14

T
es

t e
rr

or
 r

at
e 

(%
)

Num of basis functions

M3V8

1
10
100

10
1

10
2

10
3

2

4

6

8

10

12

14

CPU time (secs)

T
es

t e
rr

or
 r

at
e 

(%
)

M3V8

1
10
100

10
2

10
3

2

3

4

5

6

7

8

9

Num of basis functions

T
es

t e
rr

or
 r

at
e 

(%
)

ijcnn

1
10
100

10
1

10
2

10
3

2

3

4

5

6

7

8

9

T
es

t e
rr

or
 r

at
e 

(%
)

CPU time (secs)

ijcnn

1
10
100

Figure 6: Influence of the paramterκ: when it is large, a good reduction is achieved (left column),
but the computaional cost is larger (right column).κ = 10 seems a good trade-off.

1509



KEERTHI, CHAPELLE AND DECOSTE

7. Comparison with Standard SVM Training

We conclude the experimental study by comparing our method with the well known SVM solver,
SVMLight(Joachims, 1999).12 For this solver, we selected random training subsets of sizes from
2−10n,2−9n, . . . ,n/4,n/2,n. For each training set size, we measure the test error, the training time
and the number of support vectors. TheL2 version (quadratic penalization of the slacks) is the one
relevant for our study since it is the same loss function as the one we used;note that, when the
number of basis functions increases towardsn, theSpSVMsolution will converge to theL2 SVM
solution. For completeness, we also included experimental results of an SVMtrained with aL1

penalization of the slacks. Finally, note that for simplicity we kept the same hyperparameters for
the different sizes, but that both methods would certainly gain by additionalhyerparameter tuning
(for instance when the number of basis functions is smaller, the bandwith of the RBF kernel should
be larger).

Results are presented in figures 7 and 8. In terms of compression (left columns), our method is
usually able to reach the same accuracy as a standard SVM using less than one-tenth the number of
basis functions (this confirms the results of table 1).

From a time complexity point of view also, our method is very competitive and can reach the
same accuracy as an SVM in less time. The only disappointing performance is on theM3V8data
set. A possible explanation is that for this data set, the number of support vectors is very small and
a standard SVM can compute the exact solution quickly.

Finally, note that when the number of basis functions is extremely small compared to the number
of training examples,SpSVMcan be slower than a SVM trained on a small subset (left part of the
right column plots). It is because solving (4) usingn training examples while there are only few
parameters to estimate is an overkill. It would be wiser to choosen as a function ofd, the number
of basis functions.

8. Conclusion

In this paper we have given a fast primal algorithm that greedily choosesa subset of the training
basis functions to approximate the SVM solution. As the subset grows the solution converges to the
SVM solution since choosing the subset to be the entire training set is guaranteed to yield the exact
SVM solution. The real power of the method lies in its ability to form very good approximations
of the SVM classifier with a clear control on the complexity of the classifier (number of basis
functions) as well as the training time. In most data sets, performance very close to that of the
SVM is achieved using a set of basis functions whose size is a small fractionof the number of SVM
support vectors. The graded control over the training time offered by our method can be valuable
in large scale data mining. Many a times, simpler algorithms such as decision trees are preferred
over SVMs when there is a severe constraint on computational time. While there is no satisfactory
way of doing early stopping with SVMs, our method enables the user to control the training time
by choosing the number of basis functions to use.

Our method can be improved and modified in various ways. Hyperparameter tuning time can
be substantially reduced by using gradient-based methods on a differentiable estimate of the gen-
eralization performance formed using k-fold cross validation and posterior probabilities. Improved
methods of choosing theκ-subset of basis functions in each step can also make the method more ef-

12. The default optimization options ofSVMLight (Version 6.0)have been used.

1510



BUILDING SVMS WITH REDUCED COMPLEXITY

10
2

10
3

10
4

0.144

0.146

0.148

0.15

0.152

0.154

0.156

0.158

Number of basis functions

T
es

t e
rr

or
adult

10
1

10
2

10
3

0.144

0.146

0.148

0.15

0.152

0.154

0.156

0.158

Time

T
es

t e
rr

or

adult

SVMLight L
2

SVMLight L
1

SpSVM

10
3

0.015

0.02

0.025

0.03

0.035

0.04

Number of basis functions

T
es

t e
rr

or

ijcnn

10
2

10
3

0.015

0.02

0.025

0.03

0.035

0.04

Time

T
es

t e
rr

or

ijcnn

SVMLight L
2

SVMLight L
1

SpSVM

10
2

10
3

0.5

1

1.5

2

2.5

x 10
−3

Number of basis functions

T
es

t e
rr

or

shuttle

10
1

10
2

10
3

0.5

1

1.5

2

2.5

x 10
−3

Time

T
es

t e
rr

or

shuttle

SVMLight L
2

SVMLight L
1

SpSVM

Figure 7: Comparison ofSpSVMwith SVMLight onAdult, IJCNN, Shuttle. For SVMLight, “Num
of basis functions” should be understood as number of support vectors.

1511



KEERTHI, CHAPELLE AND DECOSTE

10
3

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Number of basis functions

T
es

t e
rr

or

m3v8

10
1

10
2

10
3

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Time

T
es

t e
rr

or

m3v8

SVMLight L
2

SVMLight L
1

SpSVM

0.11

0.12

0.13

0.14

0.15

0.16

0.17

Number of basis functions

T
es

t e
rr

or

vehicle

10
0

10
2

10
4

0.11

0.12

0.13

0.14

0.15

0.16

0.17

Time

T
es

t e
rr

or

vehicle

SVMLight L
2

SVMLight L
1

SpSVM

Figure 8: Comparison ofSpSVMwith SVMLight on M3V8andVehicle. For SVMLight, “Num of
basis functions” should be understood as number of support vectors.

1512



BUILDING SVMS WITH REDUCED COMPLEXITY

fective. Also, all the ideas described in this paper can be easily extendedto the Huber loss function
using the ideas in Keerthi and DeCoste (2005).

Appendix: A Description of Data Sets Used

As in the main paper, letn denote the number of training examples. The six data sets used for
the main experiments of the paper are:Adult, IJCNN, M3V8, M3VOthers, ShuttleandVehicle. For
M3V8 and M3VOtherswe go by the experience in (DeCoste and Schölkopf, 2002) and use the
polynomial kernel,k(xi ,x j) = 1+(1+xi ·x j)

9 where eachxi is normalized to have unit length. For
all other data sets, we use the Gaussian kernel,k(xi ,x j) = 1+exp(−γ‖xi −x j‖

2). The values ofγ are
given below.13 In each case, the values chosen forγ andλ are ballpark values such that the methods
considered in the paper give good generalization performance.

Adult data set is the version given by Platt in hisSMOweb page:http://www.research.
microsoft.com/∼jplatt/smo.html. Platt created a sequence of data sets with increasing number
of examples in order to study the scaling properties of hisSMOalgorithm with respect ton. For
our experiments we only usedAdult-8which has 22,696 training examples and 9865 test examples.
Each example has 123 binary features, of which typically only 14 are non-zero. We usedγ = 0.05
andλ = 1.

The next five data sets are available from the following LIBSVM-Tools page: http://www.
csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

IJCNN data set has 49,990 training examples and 91,701 test examples. Each example is de-
scribed by 22 features. We usedγ = 4 andλ = 1/16.

Shuttledata set has 43,500 training examples and 14,500 test examples. Each example is de-
scribed by 9 features. This is a multiclass data set with seven classes. We looked only at the binary
classification problem of differentiating class 1 from the rest. We usedγ = 16 andλ = 1/512.

M3V8data set is the binary classification problem ofMNISTcorresponding to classifying digit
3 from digit 8. The original data set has 11,982 training examples and 1984test examples for
this problem. Since the original test data set could not clearly show a distinction between several
closely competing methods, we formed an extended test set by applying invariances like translation
and rotation to create an extended test set comprising of 17,856 examples. (This data set can be
obtained from the authors.) We usedλ = 0.1.

M3VOthersdata set is another binary classification problem ofMNISTcorresponding to differ-
entiating digit 3 from all the other digits. The data set has 60,000 training examples and 10,000 test
examples. We usedλ = 0.1.

Vehicledata set corresponds to the “vehicle (combined, scaled to [-1,1])” version in the LIBSVM-
Tools page mentioned above. It has 78,823 training examples and 19,705 test examples. Each ex-
ample is described by 100 features. This is a multiclass data set with three classes. We looked only
at the binary classification problem of differentiating class 3 from the rest.We usedγ = 1/8 and
λ = 1/32.

Apart from the above six large data sets, we also used modified versions of UCI data sets as
given in (R̈atsch). These data sets were used to show the sparsity that is achievable using our
method; see Table 1 of Section 1 and the detailed discussion in Section 4.

13. For both, the polynomial and Gaussian kernels, the additive term “1”gives the effect of including the threshold term
in the classifier and regularizing it.

1513



KEERTHI, CHAPELLE AND DECOSTE

References

J. Adler, B. D. Rao, and K. Kreutz-Delgado. Comparison of basis selection methods. InProceedings
of the 30th Asilomar conference on signals, systems and computers, pages 252–257, 1996.

F. Bach and M. Jordan. Predictive low-rank decomposition for kernelmethods. InProceedings of
the Twenty-second International Conference on Machine Learning (ICML), 2005.

K. P. Bennett, M. Momma, and M. J. Embrechts. MARK: A boosting algorithm for heterogeneous
kernel models. InProceedings of SIGKDD’02, 2002.

J. Bi, T. Zhang, and K. P. Bennet. Column generation boosting methods formixture of kernels. In
Proceedings of SIGKDD’04, 2004.

C. J. C. Burges and B. Schölkopf. Improving the accuracy and speed of support vector learning
machines. InProceedings of the9th NIPS Conference, pages 375–381, 1997.

O. Chapelle. Training a support vector machine in the primal.Journal of Machine Learning Re-
search, 2005. submitted.

D. DeCoste and B. Schölkopf. Training invariant support vector machines.Machine Learning, 46:
161–190, 2002.

T. Downs, K. E. Gates, and A. Masters. Exact simplification of support vector solutions.Journal of
Machine Learning Research, 2:293–297, 2001.

J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics,
29:1180, 2001.

T. Joachims. Making large-scale SVM learning practical. InAdvances in Kernel Methods - Support
Vector Learning. MIT Press, Cambridge, Massachussetts, 1999.

S. S. Keerthi and W. Chu. A matching pursuit approach to sparse Gaussian process regression. In
Proceedings of the18th NIPS Conference, 2006.

S. S. Keerthi and D. DeCoste. A modified finite Newton method for fast solution of large scale
linear svms.Journal of Machine Learning Research, 6:341–361, 2005.

N. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: The Informative
Vector Machine. InProceedings of the15th NIPS Conference, pages 609–616, 2003.

Y. J. Lee and O. L. Mangasarian. RSVM: Reduced support vector machines. InProceedings of the
SIAM International Conference on Data Mining. SIAM, Philadelphia, 2001.

K. M. Lin and C. J. Lin. A study on reduced support vector machines.IEEE TNN, 14:1449–1459,
2003.

S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions
on ASSP, 41:3397–3415, 1993.

O. L. Mangasarian. A finite Newton method for classification.Optimization Methods and Software,
17:913–929, 2002.

1514



BUILDING SVMS WITH REDUCED COMPLEXITY

J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems of which
the coefficient matrix is a symmetric M-matrix.Mathematics of Computation, 31:148–162, 1977.

E. Osuna and F. Girosi. Reducing the run-time complexity of support vectormachines. InProceed-
ings of the International Conference on Pattern Recognition, 1998.

E. Parrado-Herńandez, I. Mora-Jimeńez, J. Arenas-Garcı́a, A. R. Figueiras-Vidal, and A. Navia-
Vázquez. Growing support vector classifiers with controlled complexity.Pattern Recognition,
36:1479–1488, 2003.

J. Platt. Sequential minimal optimization: A fast algorithm for training support vector machines.
Technical report, Microsoft Research, Redmond, 1998.

G. Rätsch.Robust boosting via convex optimization. PhD thesis, University of Potsdam, Department
of Computer Science, Potsdam, Germany, 2001.

G. Rätsch. Benchmark repository.http://ida.first.fraunhofer.de/∼raetsch/.

B. Scḧolkopf, S. Mika, C. J. C. Burges, P. Knirsch, K. R. Muller, G. Raetsch, and A. J. Smola. Input
space vs. feature space in kernel-based methods.IEEE TNN, 10:1000–1017, 1999.

M. Seeger. Low rank updates for the Cholesky decomposition. Technical report, University of
California, Berkeley, 2004.

M. Seeger, C. Williams, and N. Lawrence. Fast forward selection to speed up sparse Gaussian
process regression. InProceedings of the Workshop on AI and Statistics, 2003.

A. J. Smola and P. L. Bartlett. Sparse greedy Gaussian process regression. InProceedings of the
13th NIPS Conference, pages 619–625, 2001.

A. J. Smola and Scḧolkopf. Sparse greedy matrix approximation for machine learning. InProceed-
ings of the17th International Conference on Machine Learning, pages 911–918, 2000.

I. Steinwart. Sparseness of support vector machines - some asymptoticallysharp bounds. InPro-
ceedings of the16th NIPS Conference, pages 169–184, 2004.

T. Thies and F. Weber. Optimal reduced-set vectors for support vector machines with a quadratic
kernel.Neural Computation, 16:1769–1777, 2004.

M. E. Tipping. Sparse Bayesian learning and the Relevance Vector Machine. Journal of Machine
Learning Research, 1:211–244, 2001.

P. Vincent and Y. Bengio. Kernel matching pursuit.Machine Learning, 48:165–187, 2002.

M. Wu, B. Scḧolkopf, and G. Bakir. Building sparse large margin classifiers. InProceedings of the
22nd International Conference on Machine Learning, 2005.

1515


