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Abstract

We present Variable Influence Structure Analysis, or VISA, an algorithm that performs hierarchical
decomposition of factored Markov decision processes. VISA uses a dynamic Bayesian network
model of actions, and constructs a causal graph that captures relationships between state variables.
In tasks with sparse causal graphs VISA exploits structure by introducing activities that cause the
values of state variables to change. The result is a hierarchy of activities that together represent a
solution to the original task. VISA performs state abstraction for each activity by ignoring irrelevant
state variables and lower-level activities. In addition, we describe an algorithm for constructing
compact models of the activities introduced. State abstraction and compact activity models enable
VISA to apply efficient algorithms to solve the stand-alone subtask associated with each activity.
Experimental results show that the decomposition introduced by VISA can significantly accelerate
construction of an optimal, or near-optimal, policy.
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1. Introduction

Markov decision processes, or MDPs, are widely used to model stochastic control tasks. Many
researchers have developed algorithms that determine optimal or near-optimal decision policies
for MDPs. However, most of these algorithms scale poorly as the size of a task grows. Much
recent research on MDPs has focused on finding task structure that makes it possible to simplify
construction of a useful policy. In this paper, we present Variable Influence Structure Analysis,
or VISA, an algorithm that identifies task structure in factored MDPs and combines hierarchical
decomposition and state abstraction to exploit task structure and simplify policy construction. VISA
was first introduced in a conference paper (Jonsson and Barto, 2005); this paper provides more detail
and additional insights as well as a new section on compact activity models.

Hierarchical decomposition exploits task structure by introducing stand-alone policies (also
known as activities, macro-actions, temporally-extended actions, options, or skills) that can take
multiple time steps to execute. We use the term activity (Harel, 1987) to denote such a stand-alone
policy. Activities can exploit repeating structure by representing subroutines that are executed mul-
tiple times during solution of a task. If an activity has been learned in one task, it can be reused
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in other tasks that require execution of the same subroutine. Activities also enable more efficient
exploration by providing high-level behavior that enables a decision maker to look ahead to the
completion of the associated subroutine. There exist three major models of activities in reinforce-
ment learning: Hierarchical Abstract Machines, or HAMs (Parr and Russell, 1998), options (Sutton
et al., 1999), and MAXQ (Dietterich, 2000a).

It may not be apparent to a system designer how to select subroutines that enable efficient
hierarchical decomposition. To take full advantage of hierarchical decomposition, a system should
be able to identify useful subroutines on its own. Several researchers have developed algorithms
that use task-specific knowledge to identify useful subroutines. One approach is to identify useful
subgoals and introduce activities that accomplish the subgoals (Digney, 1996; McGovern and Barto,
2001; Simsek and Barto, 2004). Another approach is to solve several tasks and identify activities
that are useful across tasks (Pickett and Barto, 2002; Thrun and Schwartz, 1996). There also exist
algorithms that use graph theory to cluster states into regions and introduce activities for moving
between regions (Menache et al., 2002; Mannor et al., 2004; Simgek et al., 2005). Other algorithms
introduce activities that cause the values of specific variables to change (Hengst, 2002; Singh et al.,
2005).

Hierarchical decomposition is intimately related to state abstraction, that is, ignoring part of the
available information to reduce the effective size of the state space. At each moment, only some of
the information that is part of the state description may be relevant for selecting an optimal action.
For example, the color of the wall is most likely irrelevant for the task of navigating to the front
door of a building. State abstraction compresses the state space by grouping together states that
only differ on irrelevant information. Each group of states can be treated as a single state, reducing
the complexity of policy computation. Dean and Givan (1997) showed that under certain conditions,
the optimal policy of an MDP is preserved under state abstraction.

Each activity can be viewed as a stand-alone subtask that can be solved independently. If each
subtask is as difficult to solve as the original task, hierarchical decomposition actually increases the
complexity of finding an optimal policy. However, if state abstraction is used to simplify the solution
of each subtask, hierarchical decomposition can significantly accelerate policy computation. In
particular, information that is relevant for one subtask may be irrelevant for another. In other words,
it makes sense to perform state abstraction separately for each subtask (Dietterich, 2000b; Jonsson
and Barto, 2001).

VISA uses a compact model of factored MDPs first suggested by Boutilier et al. (1995). When
an action is executed, the resulting value of a state variable depends on the values of state variables
prior to executing the action. In many cases, the resulting value is conditionally independent of a
subset of the state variables at the previous time step. The compact model uses dynamic Bayesian
networks, or DBNs (Dean and Kanazawa, 1989), to represent the effect of actions in factored MDPs.
Since DBNs encode conditional independence, the model can represent the effect of actions using
much less memory than the number of states. Several researchers have developed algorithms that
take advantage of the DBN model to efficiently compute policies of factored MDPs (Boutilier et al.,
1995; Feng et al., 2003; Guestrin et al., 2001; Hoey et al., 1999; Kearns and Koller, 1999).

2. Overview

In addition to being compact, the DBN model contains information about the preconditions neces-
sary for an action to have the desired effect. For example, consider a task in which the objective is
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to play music, described by two state variables: one representing my current location, and the other
representing the current sound level. There are actions for changing my location, and an action to
turn on the stereo. Being next to the stereo is a precondition for causing music to play when mak-
ing a motion to turn on the stereo, a fact that is encoded in the transition probabilities of the DBN
model. In other words, there is a causal relationship between the location variable and the sound
level variable, conditional on the action of turning on the stereo.

To change the value of the sound level variable, it is first necessary to satisfy the precondition
of being next to the stereo. Thus, a useful activity is one that causes my location to be next to the
stereo. Given such an activity, it is straightforward to solve the task: first execute the activity that
causes my location to be next to the stereo, and then turn on the stereo. The idea behind VISA is to
use the DBN model to identify the preconditions necessary to change the value of each state variable
and introduce activities for satisfying those preconditions. The result is a hierarchy of activities that
can be used in a compact representation of the solution to the factored MDP. The HEX-Q algorithm
(Hengst, 2002) is based on similar ideas, but does not use the DBN model to identify preconditions.

The goal of VISA is to introduce activities in such a way that their associated subtasks are easier
to solve than the original task. Since the DBN model implicitly represents relationships between
state variables, it is relatively easy to determine which state variables and activities are relevant for
solving a particular subtask. This makes it possible to perform state abstraction for subtasks by
ignoring irrelevant state variables and activities. For example, while causing my location to be next
to the stereo, it is possible to ignore differences in sound level, since the sound level typically has
no impact on location. If the subtasks are sufficiently easy to solve, hierarchical decomposition can
lead to a significant reduction in computational complexity.

VISA, described in Section 4, uses the DBN model to construct a causal graph describing state
variable relationships. If two state variables mutually influence each other, it is not possible to
introduce activities that change the value of one without taking into account the value of the other.
Consequently, it is not possible to perform state abstraction in a way that makes the associated
subtasks easier to solve. State variables that mutually influence each other correspond to cycles in
the causal graph, so VISA gets rid of cycles by identifying the strongly connected components of
the graph and constructing a component graph with one node per component.

The algorithm then identifies exits (Hengst, 2002), that is, combinations of variable values and
actions that cause the value of some state variable to change. For each exit, VISA introduces an
activity that solves the subtask of changing the corresponding variable value. VISA uses the causal
graph to identify state variables and activities that are relevant for solving the subtask, and performs
state abstraction by ignoring irrelevant state variables and activities. At the top level, the algorithm
introduces an activity that corresponds to the original MDP. Experimental results show that the
decomposition generated by VISA can significantly accelerate construction of an optimal or near-
optimal policy.

If VISA had access to compact models of activities, similar to the DBN model of primitive
actions, it could apply more efficient algorithms to construct the stand-alone policies of activities.
To fully model the stand-alone subtask associated with each activity, it is necessary to determine
the transition probabilities of the lower-level activities used to solve the subtask. However, existing
methods cannot determine transition probabilities of activities without enumerating the state space.
Since the state space grows exponentially with the number of state variables, this seems like a bad
idea. Instead, the implementation of VISA in Section 4 uses reinforcement learning (Sutton and
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Barto, 1998), which does not require knowledge of transition probabilities, to learn the policy of
each activity.

In Section 5, we describe an algorithm that constructs compact activity models without enu-
merating the state space. We decompose computation of an activity model by considering the con-
ditional probabilities of one state variable at a time. The result is a DBN model for each activity
identical to the DBN model of primitive actions. VISA can then apply the more efficient algorithms
that take advantage of DBN models, accelerating construction of the stand-alone policies even fur-
ther. Experimental results show that our algorithm can construct compact activity models without
significantly decelerating solution of a task.

3. Background

In this section, we provide a background to the problem that our algorithm attempts to solve, and
we introduce notation of concepts that we use throughout the paper.

3.1 Markov Decision Processes

A finite Markov decision process, or MDP (Bellman, 1957), isatuple M = (S,A,¥,P,R), where S is
a finite set of states, A is a finite set of actions, W C S x A is a set of admissible state-action pairs, P is
a transition probability function, and R is an expected reward function. Let As={ac A | (s,a) € ¥}
be the set of admissible actions in state s € S. W is such that for each state s € S, Ag is non-empty,
that is, there is at least one admissible action for each state. As a result of executing action a € Ag
in state s € S, the process transitions to state s’ € S with probability P(s’ | s,a) and provides the
decision maker with an expected reward R(s,a). P is such that for each admissible state-action pair
(s,a) e W, SgesP(s']s,a) =1.

For each state s € S and each action a € A, a stochastic policy Ttselects action a in state s with
probability 11(s,a). Ttis such that for each state s € S, 3 54 T1(s,a) = 1. In the discounted case, the
optimal value function V* associated with MDP 4 is defined by the Bellman optimality equation:

V*(s) = R
(s) gggg[ (s,a)+v§gS

P(s'| S,a)V*(S’)] ; (1)

where y is a discount factor. An optimal policy 1t is any stochastic policy that, in each state s € S,
assigns positive probabilities only to actions in the set

A*(s) = argmax [R(s,a) +y Y P(s'[s,a)Vi(s’)
achs fes

A factored MDP is described by a set of discrete state variables S. Each state variable S; € S
takes on values in its domain D(S;). The set of states S C xgesD(Si) is a subset of the Cartesian
product of the state variable domains. A state s € S is an assignment of values to the set of state
variables S. Let fc, C C'S, be a projection such that if s is an assignmentto S, fc(s) is s’s assignment
to C. We define a context c as an assignment of values to the subset of state variables C C S.

3.2 Coffee Task

We illustrate factored MDPs using the coffee task (Boutilier et al., 1995), in which a robot has to
deliver coffee to its user. The coffee task is described by six binary state variables: S;, the robot’s
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. [0, 1] [.8,.2]

Figure 1: The DBN for action GO in the coffee task

location (office or coffee shop); Sy, whether the robot has an umbrella; Sg, whether it is raining; Sy,
whether the robot is wet; S¢, whether the robot has coffee; and Sy, whether the user has coffee. To
distinguish between variable values we use the notation D(S;) = {i, i}, which has obvious meaning
for all state variables except S;, where we use L to denote the coffee shop and L to denote the office.
The robot has four actions: GO, causing its location to change and the robot to get wet if it is raining
and it does not have an umbrella; BC (buy coffee) causing it to hold coffee if it is in the coffee shop;
GU (get umbrella) causing it to hold an umbrella if it is in the office; and DC (deliver coffee) causing
the user to hold coffee if the robot has coffee and is in the office. All actions have a chance of
failing. The robot gets a reward of 0.9 whenever the user has coffee plus a reward of 0.1 whenever
itis dry.

3.3 DBN Model

Boutilier et al. (1995) developed a compact model of factored MDPs that uses dynamic Bayesian
networks, or DBNs (Dean and Kanazawa, 1989), to represent the effect of actions. The DBN model
contains one DBN for each action a € A of a factored MDP. Figure 1 illustrates the DBN for action
GO in the coffee task. The DBN has two nodes for each state variable plus two nodes representing
expected reward. Nodes on the left represent the values of variables prior to executing GO, and
nodes on the right represent the values after executing GO. The value of a state variable S; as a
result of executing GO depends on the values of state variables that have edges to S; in the DBN. Let
Pa(Sj) C S denote the subset of state variables with edges to S;. A dashed line indicates that a state
variable is unaffected by GO.

In the DBN for action a, each state variable S; is associated with a conditional probability distri-
bution P? that determines the value of S; after executing a. Like Boutilier et al. (1995), we assume
that conditional probabilities are stored in trees. Figure 1 illustrates the conditional probability tree
associated with state variable Sy and action GO. For example, if the robot is dry (W), it is raining
(R), and the robot does not have an umbrella (U), the robot becomes wet with probability 0.8 after
executing GO. We assume that there are no edges between state variables in the same layer of the
DBN. Consequently, the DBN model cannot represent arbitrary transition probabilities. Instead, the
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transition probabilities are approximated according to P(s' | s,a) ~ [5esP(Si = i) (8') | Pa(Si) =
fra(s) (5))-

3.4 Options

We use options (Sutton et al., 1999) to model activities. Given an MDP M = (S,A,W,P,R), an
option is a tuple o = (I, 1, B), where |1 C S is an initiation set, Ttis a policy, and 3 is a termination
function. Option o can be executed in any state s € I, repeatedly selects actions a € A according
to 11, and terminates in state s’ € S with probability B(s’). An action a € A can be viewed as an
option with initiation set | = {s € S| (s,a) € W} whose policy always selects a and terminates in all
states with probability 1. Adding options to the action set of an MDP forms a semi-Markov decision
process, or SMDP (Puterman, 1994). It is possible to construct hierarchies of options in which the
options on one level selects among options on a lower level.

Ravindran (2004) showed that an option o is associated with a stand-alone task given by the op-
tion SMDP M, = (S, 0o, Wo, Po, Ro), Where Oy is a set of lower-level options. The set of admissible
state-option pairs W, C S x O is determined by the initiation sets of options in O,. The transition
probability function Py, is determined by the transition probability function P of the underlying MDP
and the policies and termination functions of the options in O,. The expected reward function Ry, is
independent of the expected reward function R of the underlying MDP and can be selected to reflect
the desired behavior of option 0. The policy 1t of option o can be defined as any optimal policy of
the option SMDP MM,

SMDP Q-learning (Bradtke and Duff, 1995) maintains estimates of the optimal option-value
Q(s,0), representing the return for executing option o in state s. Following execution of an option o
in state s, the option-value is updated using the following update rule:

Q(S,O)<—Q(S,0)+O( r+yk0|')']€ao)(Q(S/,0/)—Q(S,0) ’

where s’ is the state in which o terminated, k is the number of time steps elapsed during the execution
of o, r is the cumulative discounted reward during this time, and a is the learning rate. Parr (1998)
showed that SMDP Q-learning eventually converges to an optimal policy when the learning rate a
is appropriately decreased towards 0.

3.5 State Abstraction

We use partitions to represent state abstraction in MDPs. A partition A of the set of states S is a
collection of disjoint subsets, or blocks, A C S such that (Jyca A = S. [s]a € /A denotes the block to
which state s € S belongs. A function f : S — X from S onto an arbitrary set X induces a partition
At of S such that for each pair of states (si,sj) € S, [sila; = [sj]a, if and only if f(si) = f(s;).
Let A; and A, be two partitions of S. Partition A; refines A,, denoted A1 < Ay, if and only if, for
each pair of states (s;,s;j) € S2, [si]n, = [$j]a, implies that [si]a, = [sj]a,. The relation < is a partial
ordering on the set of partitions of S.

Dean and Givan (1997) defined two properties of partitions of the set of states S. A partition
A has the stochastic substitution property if, for each pair of states (s;,s;j) € S2, each action a €
A and each block A € A, [si]a = [sj]a implies that 5o A P(sk | Si,a) = TseaP(sk | 8j,a). Ais
reward respecting if for each pair of states (s;,s;) € S? and each action a € A, [si]a = [sj]a implies
that R(sj,a) = R(sj,a). A partition A that has the stochastic substitution property and is reward
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respecting induces a reduced MDP which has fewer states and preserves optimality (Dean and
Givan, 1997). Ravindran (2004) developed a theory of MDP homomorphisms and extended the
above definitions to partitions of the set W of admissible state-action pairs.

4. VISA

Variable Influence Structure Analysis, or VISA (Jonsson and Barto, 2005), is an algorithm that ana-
lyzes causal relationships between state variables to perform hierarchical decomposition of factored
MDPs. VISA uses the DBN model of factored MDPs to compactly represent transition probabilities
and expected reward. However, VISA makes additional use of the DBN model. The conditional
probability distributions of the DBN model specify which preconditions have to hold for the value
of a state variable to change as a result of executing an action. The aim of VISA is to facilitate
variable value changes by introducing activities that satisfy those preconditions. For example, if the
task is to play music, a useful activity is one that causes my location to be next to the stereo, since
being next to the stereo is a precondition for successfully making a motion to turn it on.

Algorithm 1 VISA

1: Input: DBN model of a factored MDP
construct the causal graph of the task
identify the strongly connected components of the causal graph
for each strongly connected component
identify a set of exits that cause the values of state variables in the component to change
for each exit
construct the components of an option SMDP
use the causal graph to perform state abstraction for the option SMDP
apply reinforcement learning techniques to learn the policy of each option SMDP

Algorithm 1 gives a high-level description of VISA. Before decomposing the task, VISA uses
the DBN model to construct a causal graph that determines how state variables influence each other.
A state variable influences another if it appears in the precondition of an action that changes the
value of the latter. If two state variables mutually influence each other, changing the value of
one variable depends on the value of the other. Thus, it is impossible to decompose the task by
introducing activities that exclusively change the value of one of the variables. State variables that
mutually influence each other correspond to cycles in the causal graph. VISA gets rid of cycles by
identifying the strongly connected components of the causal graph. State variables in a strongly
connected component are treated as a single variable for the purpose of decomposition.

For each strongly connected component, VISA searches the conditional probability distributions
of the DBN model for exits (Hengst, 2002), that is, pairs of a precondition and an action that cause
the value of a state variable in the component to change. For each exit, VISA introduces an exit
option, that is, an activity that terminates when the precondition of the exit is met and then executes
the exit action. In other words, the purpose of an exit option is to change the value of a state
variable by first satisfying the necessary precondition and then executing the appropriate action. To
determine the policy of each exit option, VISA constructs the components of an option SMDP and
defines the policy as a solution to the resulting option SMDP.

To simplify learning the policy of an exit option, VISA performs state abstraction for the option
SMDP. From the causal graph it is easy to identify a set of state variables that are irrelevant, that
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Figure 2: The causal graph of the coffee task

is, do not influence state variables whose values appear in the precondition. VISA performs state
abstraction by ignoring differences in the values of irrelevant state variables. In addition, the option
SMDP only needs to include actions and options that change the values of state variables that appear
in the precondition. The resulting state abstraction significantly reduces the complexity of learning
the exit option policies. The causal graph implicitly defines a hierarchy of options in which an exit
option that changes the value of a state variable in a strongly connected component selects between
options that change the values of state variables in strongly connected components with incoming
edges.

4.1 Causal Graph

The first step of VISA is to construct a causal graph representing the causal relationships between
state variables. The causal graph contains one node per state variable plus one node corresponding
to expected reward. There is a directed edge between two state variables S; and S; if and only if
there exists an action a € A such that there is an edge between S and S; in the DBN for a. In other
words, each edge in the causal graph represents a causal relationship between two state variables
conditional on one or several actions. The algorithm labels each edge with the actions that give rise
to the causal relationship.

Recall that Figure 1 shows the DBN for action GO in the coffee task. There are several interesting
things to note. For each state variable S;, the value of S; as a result of executing GO depends on
the value of S; prior to executing GO. In other words, each node in the causal graph should have
an associated reflexive edge. However, we are not interested in the causal relationship of a state
variable onto itself, so we remove reflexive edges in the causal graph. Also, there are edges from
state variable Sy to state variable Sy in the DBN, as well as from Sy to Sy. Consequently, there
should be an edge from Sy to Sy in the causal graph labeled GO, as well as an edge from Sg to Sy
labeled GO.

The causal graph of the coffee task is shown in Figure 2. Note that the edges from the DBN for
action GO have been incorporated, as well as edges from the DBNs for the other actions. Also note
that there are no cycles in the causal graph. However, this is not true for arbitrary tasks, since it is
possible for state variables to mutually influence each other. VISA gets rid of cycles in the causal
graph by identifying the strongly connected components of the graph, each consisting of one or
several state variables that are pairwise connected through directed paths. It is possible to construct
a component graph in which each node is a strongly connected component, and which has an edge
between two nodes if and only if there is an edge in the causal graph between a state variable of the
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Figure 3: HEX-Q’s state variable ordering in the coffee task

first component and a state variable of the second component. The component graph is guaranteed
to contain no cycles. In the coffee task, each state variable in the causal graph is its own strongly
connected component, so the component graph is identical to the causal graph.

The expected reward node deserves additional explanation. Just as for the other variables, there
is an edge in the causal graph between a state variable S; and the expected reward node if and only
if there is an action a € A such that the expected reward as a result of executing a depends on the
value of S;. All edges to the expected reward node are incoming, since the value of a state variable
never depends on the expected reward received at the previous time step. Thus, the expected reward
as a result of executing any action only depends on the values of state variables with edges to the
expected reward node in the causal graph. For the purpose of optimizing reward, it is only necessary
to consider actions and options that change the values of those state variables.

4.2 ldentifying Exits

VISA builds on ideas from the HEX-Q algorithm (Hengst, 2002), an algorithm that also performs
hierarchical decomposition of factored MDPs. The HEX-Q algorithm first determines an ordering
on the state variables by randomly executing actions and counting the frequency with which the
value of each state variable changes. The state variable whose value changes the most frequently
becomes the lowest variable in the ordering, and so on. For each state variable S; in the ordering,
the HEX-Q algorithm identifies exits (k,a), pairs of a state variable value k € D(S;) and an action
a € A, that cause the value of the next state variable in the ordering to change. The HEX-Q algorithm
introduces an option for each exit, and the options on one level of the hierarchy become actions on
the next level.

Even though the HEX-Q algorithm achieved some early success, the frequency of change heuris-
tic may not be an accurate indicator of how state variables influence each other. In addition, the
ordering does not capture the fact that the value of a state variable may depend on multiple other
state variables. Figure 3 illustrates the state variable ordering that the HEX-Q algorithm comes up
with in the coffee task. There are several differences between this ordering and the causal graph.
The ordering wrongly concludes that state variable Sy influences Sg, when it is really the other way
around. The ordering also fails to capture the fact that the value of Sy depends on both Sy and Sc.

VISA also searches for exits that cause the values of state variables to change. However, instead
of the frequency of change heuristic, VISA uses the causal graph to determine how state variables
influence each other. Since the causal graph more realistically describes the causal relationships
between state variables, VISA is able to successfully decompose more general tasks than the HEX-
Q algorithm. Also, since the value of a state variable may depend on several other state variables,
an exit (c,a) in VISA is composed of a context ¢ and an action a € A. Recall that a context c is an
assignment of values to a subset C C S of the state variables.

VISA searches for exits in the conditional probability trees of the DBN model. Consider the
conditional probability tree associated with state variable Sy and action GO in Figure 1. The third
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EXIT VARIABLE CHANGE
((),G0) St L—LL—L
<(SL = L),BC> SC C—>C
((SL.=L),DC) Sc C—C
<(SL:E, c:C),DC> SH ﬁ—>H

(S =L),au Sy U—-u
((Sy=U,Sg =R),G0) Sy W —-Ww

Table 1: Exits identified in the coffee task

leaf from the left is associated with states that assign W to Sy, R to Sg, and U to Sy. As a result
of executing action GO in such states, the value of Sy becomes W with probability 0.8. Since the
value of state variable Sy changes from W to W with non-zero probability, VISA generates an exit
((Sy=U,Sg =R),G0) that causes the value of Sy, to change. The context of the exit is determined by
the values of state variables on the path from the root to the leaf. Note that the value of Sy does not
appear in the exit since that is the state variable whose value the exit changes. Also note that the exit
((Sy =U,Sg = R),G0) does not cause the value of Sy to change with probability 1, so to effectuate
the change the robot may have to execute GO multiple times in the context (Sy = U, Sz = R).

Table 1 shows a complete list of exits identified by VISA in the coffee task. The table shows
which state variable is affected by each exit together with the resulting change. To generate these
exits, VISA had to search through each leaf of each conditional probability tree of the DBN model.
At each leaf, the algorithm examined whether the value of state variable S; changes, where S; is
the state variable whose conditional probabilities the current tree represents. In other words, the
complexity of this part of the algorithm is proportional to the number of leaves of the conditional
probability trees.

4.3 Exit Transformations

Sometimes it is possible to transform exits in order to take further advantage of causality. Consider
the two exits ((S. =L),DC) and ((S. = L,Sc =C),DC) in the coffee task. These are almost identical:
their associated exit options both terminate in states that assign the value L to state variable S; and
execute action DC following successful termination. Recall that C — C is the exit option associated
with the exit ((S. = L),DC), causing the value of S¢ to change from C to C. The effect of the exit
{(SL =L,Sc =C),DC) is equivalent to the effect of a transformed exit ((S¢ = C),C — C), that is,
reach a state that assigns C to S¢ and execute option C — C following termination. The benefit of
this transformation is that the exit option H — H associated with the exit ((S. =L,S¢ = C),DC) no
longer has to care about the value of S;, effectively removing an edge in the component graph of the
task. After identifying an exit, VISA compares it to exits identified for ancestor strongly connected
components, and performs exit transformations when possible.

4.4 Introducing Exit Options

For each exit (c,a) with a non-empty context ¢, VISA introduces an option o = (I, 1, 3). Option
0 terminates in any state s € S whose projection fc(s) onto C equals c. We refer to an option
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Figure 4: The transition graph (left) and reachability tree (right) of the component Sy

introduced by VISA as an exit option. Unlike regular options, an exit option associated with an exit
(c,a) executes action a following termination. Note that it is not necessary to introduce options
for exits with empty contexts, since these options are in fact equivalent to primitive actions. For
example, VISA identifies an exit ((),G0) in the coffee task. Executing action GO in any state causes
the location of the robot to change, so the exit option associated with this exit is equivalent to the
primitive action GO. As we shall see, it is still useful to detect exits with empty contexts.

In the coffee task example, we adopt the convention of referring to an exit option using the
change that it causes, since this is an unambiguous and simple notation. For example, option W — W
is the exit option associated with the exit ((Sy = U, Sg = R),G0) that causes the value of Sy to change
from W to W with non-zero probability. In general, several exits may cause the same change in the
value of a variable, and VISA would introduce an exit option for each of these exits, so this notation
is not always unambiguous.

4.4.1 INITIATION SET

The initiation set | of exit option o determines when o is admissible, that is, the subset of states in
which it is possible to execute 0. Two factors influence the initiation set. Option o should only be
admissible in states from which it is possible to reach the associated context c. For example, option
W — W should only be admissible in states that assign U to Sy and R to Sg. The robot has no action
for getting rid of an umbrella, and it cannot affect whether it is raining, so it can only get wet if it
does not have an umbrella and it is raining. Option o should also only be admissible if it causes
the value of at least one state variable to change. In our example, option W — W should only be
admissible in states that assign W to Sy, since otherwise the option cannot cause the value of Sy to
change fromW to W.

VISA includes a method for constructing the initiation set of each exit option. For each strongly
connected component, the algorithm constructs a transition graph that represents possible transitions
between contexts in the joint value set of its state variables. Each transition graph is in the form of
a tree in which possible transitions are represented as directed edges between the leaves. Possible
transitions are determined using the conditional probability trees of the DBN model. Figure 4 (left)
shows the transition graph of the strongly connected component containing the state variable Sy in
the coffee task. The robot can acquire an umbrella by executing the exit option U — U, so there is
a corresponding edge in the transition graph between the leaf associated with states that assign U
to Sy and the leaf associated with states that assign U to Sy. However, the robot has no action for
getting rid of an umbrella, so there is no edge going the other way.

VISA uses the transition graphs to construct a set of trees that represent the initiation set I. For
each transition graph, VISA constructs a reachability tree that classifies states based on whether
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(true) or not (false) the associated context is reachable. Figure 4 (right) shows the reachability tree
for Sy associated with the context (Sy = U, Sz = R) of the exit associated with W — W. Similarly,
VISA constructs a reachability tree for Sg. VISA also constructs a tree that classifies states based on
whether or not the associated exit changes the value of at least one state variable in the corresponding
strongly connected component. In our example, states that assign W to Sy map to a leaf labeled true,
and states that assign W to Sy map to a leaf labeled false. The initiation set I of option o is implicitly
defined by the trees constructed by VISA. A state s € S is an element in | if and only if s maps to a
leaf labeled true in each tree. Algorithm 2 summarizes the method used by VISA to construct the
initiation set of an exit option.

Algorithm 2 Initiation set
1: Input: DBN model, component graph, exit (c,a)
2: identify the set of components that contain state variables whose values appear in ¢
3: for each component in this set
4 use the DBN model to construct a transition graph of the component
5: perform search in the transition graph to construct a reachability tree
6: construct a tree that determines whether (c,a) changes the value of at least one variable
7. define the initiation set as the set of states that map to true in each tree

Alternatively, reachability could be computed directly using operations on trees or algebraic
decision diagrams (ADDs). Feng and Hansen (2002) showed how to compute forward reachability
in factored MDPs using ADDs. Since an exit represents termination of an exit option, here we
are interested in computing backward reachability: from which states is it possible to reach the
exit? Algorithmically, this is similar to forward reachability. However, VISA makes further use
of transition graphs, and once the transition graphs have been constructed, reachability is easily
computed using depth-first search on the reverse edges. For this reason we chose to stick with the
above approach.

4.4.2 TERMINATION CONDITION

An exit option terminates as soon as it reaches the context c of its associated exit (c,a), or as soon
as it can no longer reach c. Even though an exit option executes action a following termination, we
can still represent termination of the option using the standard termination condition function (3. For
an exit option, B(s) is 1 for states in the set {s € S| fc(s) = c}, where c is the associated context.
B(s) is also 1 for states s ¢ I, that is, when the process can no longer reach the associated context c.
In all other cases, B(s) = 0.

4.4.3 PoLicy

VISA cannot directly define the policy of an exit option since it does not know the best strategy
for reaching the associated context c. Instead, the algorithm constructs an option SMDP M, =
(So,00,Wo,Po,Ro) for option o that implicitly defines its policy 1t First, the algorithm defines
So = S. Next, the algorithm finds all strongly connected components that contain at least one state
variable whose value appears in the context ¢ associated with option 0. The algorithm defines O, as
the set of options that cause the values of state variables in those strongly connected components to
change. For example, consider the exit option W — W and its associated context (Sy = U, Sz = R).
Two strongly connected components contain state variables whose values appear in the context: the
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strongly connected component containing Sy, and the strongly connected component containing Sg.
A single option, U — U, causes the values of state variables to change in the former component,
while no option causes the values of state variables to change in the latter. In other words, the
option set O, of W — W only needs to include the exit option U — U. Note that primitive actions
may change the values of state variables in strongly connected components for which there are no
options; for example, action GO changes the value of state variable S;.

If there are lower-level options that cause the process to leave the initiation set of an option in
Oo, VISA includes these options in O, as well. For example, the exit option U — U causes the
process to leave the initiation set of the exit option W — W. If the robot does not have an umbrella
and it is raining, the exit option W — W will no longer be admissible as a result of executing the
exit option U — U causing the robot to hold an umbrella. In other words, an option whose option
set O, includes the exit option W — W should include the exit option U — U as well.

VISA defines the expected reward function Ry as —1 everywhere except when option o termi-
nates unsuccessfully, in which case the algorithm administers a large negative reward. This ensures
that the policy of option o attempts to reach the context ¢ as quickly as possible. Note that this may
not be optimal in terms of the expected reward of the original task; we address this issue at a later
point. The set of admissible state-option pairs, W, is determined by the initiation sets of the options
in Og. VISA does not represent the transition probability function P, explicitly. It is possible to
construct a DBN model for each option similar to the DBN model for the primitive actions. How-
ever, there is currently no technique that constructs DBN models of options without enumerating all
states. Since a goal of VISA is to alleviate the curse of dimensionality, we want to avoid enumerat-
ing the states. Instead, VISA uses reinforcement learning (Sutton and Barto, 1998), which does not
require explicit knowledge of the transition probabilities, to learn the policy of each option. In the
next section, we develop an algorithm that constructs DBN models of options identified by VISA
without enumerating all states, as an alternative to reinforcement learning. The transition graphs
of strongly connected components play a part in constructing DBN models of options, but nothing
prevents options from changing the values of state variables that do not appear in the associated
context, which makes the issue slightly more complicated.

4.5 State Abstraction

VISA simplifies learning in the option SMDPs by performing state abstraction separately for each
exit option. This is where causality really matters. Let us consider all strongly connected compo-
nents that contain at least one state variable whose value appears in the context ¢ associated with
an option. Let Z C S denote the subset of state variables contained in those strongly connected
components. Let Y C S denote the subset of state variables S; such that either S; € Z or there is a
directed path in the causal graph from S; to a state variable in Z. For example, in the case of exit
option W — W, Z = {Sy,Sg} and Y = {S;, Sy, Sr}, since there is a directed path from Sy to Sy in
the causal graph of the coffee task.

Recall that the goal of an exit option o is to reach the associated context c. We know that
C CZ CY, thatis, that the state variables whose values appear in the context ¢ are contained in Y.
We also know that there are no edges from any state variable S; ¢ Y to any state variable S; € Y; if
there were, state variable S; would have been included in Y. It follows that the option SMDP 41,
can ignore the values of state variables not in Y since they have no influence on the variables in C,
whose values we want to set to c.
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More formally, we can define a partition that satisfies the stochastic substitution property and
is reward respecting (cf. Section 3.5), and thus guaranteed to preserve an optimal solution to the
option SMDP 24,

Theorem 1 The projection function fy induces a partition Ay of S that has the stochastic substitu-
tion property and is reward respecting.

Proof The projection function fy induces a partition Ay of S such that two states s; and s, belong
to the same block if and only if fy(s1) = fy(s2), that s, if s; and s, assign exactly the same values to
state variables in Y. Let y, denote the assignment to Y of states in block A of the induced partition,
that is, for each state s € A, we have that fy(s) = y,. Then for each pair of states (s1,s) € S, each
action a € A, and each block A € Ay, [s1]a, = [S2]a, implies that

> P(s|sa) = ZP (fr(s) | s1,@)P(fs-v(s) [ s1,8) =
53
= Z P(ya | fv(s1),2)P(fs-v(s) [ s1,8) =
= Pyl fy(s), ZP (fs—v(s) [s1,8) =
= P fy(s2),a ZPfsv ) | s2,8) =

= S P | fv(s2),a)P(fs v () | s2.8) =

SEA

= S P(fv(s) | s2.a)P(fs v(s) | 52,0) ZPSISz,

SEA

The equality Sscp P(fs_v(S) | s1,a@) = Ssea P(fs_v (S) | S2,a) follows from the fact that as we sum
over states in A, we go through every possible assignment of values to state variables in the set
S—Y,soin fact, S5\ P(fs_v(s) | s,a) = 1 for each state s’ € S. It follows that the partition Ay
induced by fy has the stochastic substitution property.

In general, the partition Ay induced by fy is not reward respecting with respect to the expected
reward function R of the original MDP. However, recall that the expected reward function R, of
option o is independent of the expected reward function R of the original MDP. To form a reduced
option SMDRP it is sufficient that the partition Ay is reward respecting with respect to Ro. R is de-
fined as —1 everywhere except when the process leaves the initiation set of option 0. The initiation
set of option o is determined by the state variables in Z C Y, so whether or not the process leaves
the initiation set depends only on those state variables. It follows that Ay is reward respecting with
respect to Ro. [ |

VISA goes a step further and forms the partition Az induced by the projection fz. In other
words, the option SMDP of option o ignores all state variables not in strongly connected components
for which the value of at least one state variable appears in the context ¢ associated with option o.

Theorem 2 The projection function fz induces a partition Az of S that is reward respecting and
has the stochastic substitution property if and only if for each pair of states s1,s, € S?, each option
0’ € Oo, and each block A € Az, [s1]a, = [S2]a, implies that Po(z) | fy(51),0") = Po(zy | fy(s2),0),
where z, is the assignment of values to Z of states in block A.
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Proof Az is still reward respecting with respect to R,. However, a state variable in Y —Z may
influence the state variables in Z, so Az does not always have the stochastic substitution property.
We can write the sum ¥ ¢ Po(s | 51,0') as

> Po(s[s1,0") = Po(fz(s)]s1,0")Po(fs-z(s)|s1,0') =
SEA SEA
= > Po(zr | fy(s1),0)Po(fs-z(s) | 81,0') =
SEA

= Po(2a | fv(52),0) 3 Po(fs 2(5) | 51,0) =

SEA

= Po(zp | fy(s1),0).

Using the same calculations, we obtain ¥ ¢\ Po(S | $2,0") = Po(2z) | fv(s2),0"). Az has the stochas-
tic substitution property if and only if for each pair of states (s1,s») € S?, each option o’ € O,,
and each block A € Az, [s1]a, = [S2]a, implies that Po(z) | fy(s1),0") = Po(z) | fy(s2),0’), where
fy(s1) = fy(s2) does not hold in general. [ ]

From the work of Dean and Givan (1997) and Theorem 1 it follows that the partition Ay induces
a reduced SMDP that preserves optimality. Since the reduced SMDP can have far fewer state-action
pairs than the original option SMDP, it can be significantly easier to solve, resulting in an important
reduction in complexity. In addition, it follows from Theorem 2 that the partition Az induces a
reduced SMDP that preserves optimality if and only if for each exit option o’ € O,, state variables
in Y — Z do not influence the state variables in Z as a result of executing o’. Instead of solving the
option SMDP directly, VISA solves the reduced SMDP induced by the partition Az, which can have
even fewer state-action pairs than the reduced SMDP induced by Ay.

Because of the way exits are defined, the exit options discovered by VISA often satisfy Theorem
2. For example, consider the exit option H — H in the coffee task. After exit transformations,
Z=1{Sc} and Y = {S.,Sc}, s0 Y —Z = {S.}. The options in the set O, are C — C and C —
C, with associated exits ((Sp = L),BC) and {(S. = L),DC), respectively. As a result of executing
action BC, the resulting value of state variable S¢ depends on the previous value of state variable S;.
However, as a result of executing the exit option C — C, the resulting value of S¢ does not depend
on the previous value of S;. Regardless of the previous value of S;, option C — C always reaches
the context (Sp = L) prior to executing BC, which causes the robot to buy coffee with non-zero
probability. The same is true for exit option C — C, so it follows from Theorem 2 that the partition
Az induced by fz has the stochastic substitution property.

If there exists a state variable in Y — Z that influences a state variable in Z, the partition Az
does not have the stochastic substitution property. In other words, an optimal solution to the option
SMDP M, is not preserved in the reduced SMDP induced by the partition Az. A solution to the
reduced SMDP only corresponds to an approximate solution to M,. However, we believe that
there is still a reason to perform state abstraction this way. The size of the partition Ay may be
exponentially larger than the size of Az, so the difference in learning complexity may be significant
in the two cases. We argue that the reduction in learning complexity often outweighs the loss of
exact optimality.

To take even further advantage of structure, VISA stores the policies of options in the form of
policy trees. The benefit of using a policy tree is that the number of leaves in the tree may be smaller
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than the actual number of states. At each leaf of the policy tree, VISA stores action-values or, more
accurately described, option-values, which indicate the utility of executing different options in states
that map to that leaf. Recall that VISA maintains a transition graph, in the form of a tree, for each
strongly connected component in the causal graph. The policy tree structure of an option can be
constructed by merging the transition graph trees of strongly connected components that contain
state variables whose values appear in the associated context. The policy tree structure induces a
partition Ay such that Az < Ap, that is, Ay is guaranteed to have at most as many blocks as Az.

Another part of abstraction is reducing the number of options in the option set O, of the option
SMDP M,. If there are fewer options to select from, an autonomous agent can discover more
quickly which option or options result in an optimal value for each block of the state partition.
As we explained above, VISA finds strongly connected components that contain at least one state
variable whose value appears in the context ¢ associated with option 0. The algorithm fills the
option set O, with options that change the values of state variables in those strongly connected
components. The algorithm also includes options that leave the initiation sets of options in O,. It
is not necessary to include other options in O, since they do not have any impact on reaching the
context ¢ associated with option 0. Thus, VISA can reduce the number of options of each option
SMDP, further reducing the complexity of learning.

4.6 Task Option

VISA also introduces an option, which we call the task option, associated with the reward node in
the component graph of the task. The purpose of the task option is to approximate a solution to the
original MDP. However, instead of being a policy that selects among primitive actions, the policy
of the task option selects among the exit options introduced by VISA. Thus, the policy of the task
option represents a hierarchical solution to the task that takes advantage of the exit options to set the
values of relevant state variables in such a way as to maximize expected reward.

The task option is admissible everywhere, that is, its initiation set equals S. If the task is finite-
horizon, the termination condition function (3 is defined such that the task option terminates when-
ever the task is completed. If the task is infinite-horizon, (3 is defined such that the task option never
terminates. To learn the task option policy, VISA constructs the option SMDP corresponding to
the task option using the same strategy it uses for the exit options. However, the expected reward
function of the task option SMDP is equal to the expected reward function of the original MDP.
For determining the policy of the task option, the expected reward for executing an exit option o is
defined as the sum of discounted reward of the primitive actions selected during the execution of o.

VISA also performs state abstraction for the task option SMDP in the same way it does for exit
options. First, VISA finds the set of state variables Z C V in strongly connected components with
edges to the expected reward node in the component graph. VISA performs state abstraction by
ignoring the values of state variables not in Z, and it constructs a policy tree structure to further
reduce the number of states. In addition, the option set of the task option SMDP only includes exit
options that change the values of state variables in Z.

The task option is the only reward-dependent component of VISA. If several tasks share the
same set of state variables and actions, the same set of exit options apply to all of these tasks. For
example, this would apply to a workshop environment with a fixed number of objects where a robot
may be instructed to perform several tasks, such as moving objects. VISA can construct a causal
graph that is common to all tasks by excluding the expected reward node, and use the graph to
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Task option

Figure 5: The hierarchy of options discovered by VISA in the coffee task

introduce exit options as before. When provided with the expected reward function of a specific
task, VISA can construct the task option by overlaying the expected reward node onto the existing
causal graph. This way, VISA just needs to learn the policies of the exit options once and can
reuse them throughout all tasks. This facilitates transfer of knowledge between tasks in the same
environment.

4.7 Option Hierarchy

The task option together with the exit options introduced by VISA implicitly define a hierarchy of
options in which the options on one level selects options on the next lower level. Recall that for an
option associated with a node in the component graph, the option SMDP only includes options that
change state variables in components that have edges to that node. In other words, the component
graph determines the structure of the option hierarchy. Since the component graph is guaranteed to
contain no cycles, the option hierarchy is well-defined, and it is not possible for an option to execute
itself, either directly or indirectly.

Figure 5 shows the hierarchy of options that VISA comes up with in the coffee task. The option
hierarchy is determined by the component graph of the coffee task, illustrated in Figure 2. The
task option always sits at the top level of the hierarchy. There are two components with edges to
the expected reward node, namely Sy and Sy. Option H — H changes the value of Sy, and option
W — W changes the value of Sy. In addition, option U — U causes the process to leave the initiation
set of W — W. In other words, the task option selects among the three options H — H, W — W,
andU — U.

In turn, there are two components with edges to the component Sy, namely Sy and Sc. The
primitive action GO changes the value of S;, while options C — C and C — C change the value
of S.. Consequently, option H — H selects among G0, C — C, and C — C. There are also two
components with edges to Sy, namely Sy and Sz. Option U — U changes the value of Sy, while
no option changes the value of Sz. Thus, W — W can only select U — U. Finally, there are edges
between Sy and S¢ as well as between S;. and Sy, so optionsC — C, C — C, and U — U all select
among the primitive action GO that changes the value of S;.
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4.8 Merging Strongly Connected Components

If there are many context-action pairs that cause changes, it is not particularly useful to introduce an
option for each of them. Instead, VISA merges two strongly connected components that are linked
by too many exits. After VISA identifies exits for a strongly connected component, the algorithm
counts the number of exits identified. If the number of exits is larger than a threshold, VISA merges
the strongly connected component with one or several of its parents. The merge operation places all
state variables in the strongly connected components into a single component and recomputes the
exits of the new component. As a result, the complexity of solving an associated subtask increases
because there are more state variables in the set Z. However, the number of subtasks decreases since
there are fewer exits as a result.

4.9 Summary of the Algorithm

In summary, VISA first constructs the causal graph to determine how state variables are related. If
there are cycles in the causal graph, it is not possible to decompose the task, so VISA gets rid of
cycles by identifying the strongly connected components. For each strongly connected component,
VISA uses the DBN model to identify exits, that is, pairs of variable values and actions that cause
the value of some state variable in the component to change. For each exit, VISA constructs the
components of an exit option, whose purpose it is to bring about the corresponding variable value
change using a minimum number of options. At the top level, VISA constructs a task option that
uses the exit options to approximate a solution to the original MDP. VISA uses reinforcement learn-
ing techniques to learn a policy of each option introduced. Algorithm 3 provides pseudo-code for
VISA.

4.10 Limitations of the Algorithm

VISA only decomposes a task if there are two or more strongly connected components in the causal
graph of the task. Otherwise, VISA cannot exploit conditional independence between state variables
to identify options. Since the option SMDPs are stand-alone, the hierarchy discovered by VISA
enables recursive optimality at best, as opposed to hierarchical optimality (Dietterich, 2000a). In
addition, VISA works best when there are relatively few exits that cause the values of state variables
in a strongly connected component to change.

Furthermore, the option-specific state abstraction performed by VISA is independent of the
way options are formed. Given access to the causal graph, VISA makes it possible to efficiently
perform state abstraction for any option whose goal is to reach a context specified by an assignment
of values to a subset of the state variables. For the purpose of state abstraction, it does not matter
how an autonomous agent determines that it is useful to reach that specific context. In other words,
the state abstraction part of VISA could be combined with other techniques for discovering useful
activities, as long as they are of the required form.

State abstraction for the task option is particularly efficient in tasks for which the expected
reward depends on only a few state variables. If most state variables influence reward, learning the
task option policy requires almost the same effort as learning a policy over primitive actions. Also
note that exit options attempt to change the value of a state variable using as few primitive actions as
possible. In terms of expected reward, such a behavior may not be optimal, since each action does
not necessarily incur the same expected reward. In some tasks, it would be necessary to choose a
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Algorithm 3 VISA

1: Input: DBN model of a factored MDP M with set of state variables S

2: construct the causal graph of the task

3: compute the strongly connected components of the causal graph

4: perform a topological sort of the strongly connected components

5. for each strongly connected component SC C Sin topological order

6: identify exits that cause the values of state variables in SC to change

7 while the number of exits exceeds a threshold

8: merge SC with a parent strongly connected component

9 label the new strongly connected component SC and recompute the exits
10: for each exit (c,a) of the strongly connected component SC
11 perform any possible exit transformations
12: compute the set Z of influencing state variables
13: construct an initiation set |
14: construct a termination function 3 using the context c
15: construct a policy tree by merging transition graphs of parent components
16: let Sy be the leaves of the policy tree
17: let O, be the set of options that changes values of state variables in Z
18: let W, be defined by the initiation sets of options in Oq
19: define Ry as —1 everywhere except when the context c is unreachable
20: let P, be undefined
AR construct the option SMDP M, = (S, O, Wo, Po, Ro)
22: construct an exit option o = (I, Tt B), where 1= optimal policy of M,

23; construct the transition graph of the strongly connected component SC
24: construct a task option corresponding to the original task
25: use reinforcement learning techniques to learn the policy of each option
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different expected reward function for exit option SMDPs to avoid large negative rewards. However,
VISA is most efficient in tasks for which few state variables influence reward. In such tasks, lower-
level variables do not influence reward, so the optimal behavior is to achieve the precondition of
an exit as quickly as possible. For example, in the coffee task, the option hierarchy discovered by
VISA enables optimality, since none of the exit options choose suboptimal actions.

4.11 Experiments

We ran several experiments to test the performance of VISA. Since VISA uses the DBN model of
factored MDPs, it would be unfair to compare it to algorithms that begin with less prior knowledge.
Instead, we compared VISA to two algorithms that also assume knowledge of the DBN model:
SPUDD (Hoey et al., 1999) and symbolic Real-Time Dynamic Programming, or sSRTDP (Feng
et al., 2003). SPUDD is a more efficient version of policy iteration that takes advantage of the
compactness of the DBN model to compute the value function in the form of an algebraic decision
diagram, or ADD.

SRTDP is an online planning algorithm that, at each step, constructs a set of states that are similar
to the current state according to one of two heuristics, called value and reach. The algorithm uses the
DBN model to determine the set of possible next states, and performs a masked backup of the value
function restricted to the set of current and next states. The algorithm then selects for execution one
of the actions whose current action-value estimate is highest. SRTDP stores the value function in
the form of ADDs, and uses SPUDD to perform the masked value backup at each step. SPUDD
includes a mechanism that limits the size of the ADDs, divides the state variables into subsets, and
decomposes the value backup into several smaller computations. In our implementation, we did not
allow the size of the ADDs to exceed 10,000 nodes.

We performed experiments with each algorithm in four tasks: the coffee task, the Taxi task, the
Factory task (Hoey et al., 1999), and a simplified version of the autonomous guided vehicle (AGV)
task of Ghavamzadeh and Mahadevan (2001). In the Taxi task (Dietterich, 2000a), a taxi has to pick
up a passenger from their location and deliver them to their destination. The Taxi task has 600 states
and 6 actions. In the Factory task (Hoey et al., 1999), a robot has to assemble a component made of
two objects. Before assembly is possible, the robot has to perform various operations on each of the
two objects, such as shaping, smoothing, polishing and painting. The objects can then be connected
either by drilling and bolting or by gluing. The task is described by 17 binary variables, for a total
of approximately 130,000 states, and the robot has 14 actions.

The Factory task was designed as a infinite-horizon task whose reward function assigns partial
reward in many states. When the component has been assembled, the optimal policy repeatedly
selects the same action in the same state for maximal reward. However, when using reinforcement
learning to learn a policy, it is necessary to reset the state once in a while to ensure that a policy
is learned for all states. When the state is reset, the positive reward as a result of assembling the
component is not large enough to prevent the learning agent from exploiting the partial reward in
other states. For this reason, we redefined the reward function of the Factory task to only assign
positive reward when the component has been assembled. This neither affects the optimal policy
nor the set of state variables that influence reward.

In the AGV task (Ghavamzadeh and Mahadevan, 2001), an autonomous guided vehicle (AGV)
has to transport parts between machines in a manufacturing workshop. We simplified the task by
reducing the number of machines from 4 to 2 and setting the processing time of machines to 0 to
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make the task fully observable. The resulting task is illustrated in Figure 6 and has approximately
75,000 states. The goal of the AGV is to proceed to the load station, pick up a random part i,
transport it to the drop-off location D; of machine M;, drop it off, then proceed to the pick-up
location P, of machine M;, pick up the processed part, transport it to the warehouse, and finally
drop it off. The AGV is restricted to move unidirectionally along the arrows in the figure, and has
to ensure that at least one part of each type is stored in the warehouse. The set of state variables
describing the task is S = {Sx, Sy, S, Sh, Sd1,Sp1, Sd2, Sp2, Sa1, Sa2}, Where Sy and Sy represent the
location of the AGV, S the direction it is facing, Sy the part it is holding, Sg; the number of parts at
the drop-off location D; of machine M, Sy the number of parts at the pick-up location P;, and Sy
whether a part of type i is present in the warehouse. The AGV has 6 actions: move in the direction
it is facing, turn left or right, drop off a part, pick up a part, and idle. Even though we simplified the
AGYV task, its size still presents a challenge for algorithms that discover activities.

Each graph in the results illustrates the average reward over 100 learning runs with each algo-
rithm. Since the algorithms are fundamentally different, we compared the actual running time in
milliseconds. The graphs for VISA include the time it takes to decompose the factored MDP. We
used SMDP Q-learning to learn the option policies, which reduces to regular Q-learning for poli-
cies that select among primitive actions. We set the discount factor to y = 0.9 and initially used a
step-size parameter a = 0.05, which we decayed at regular time intervals by multiplying the current
step-size parameter by 0.9. The policies of all options, including the task option, were learned in
parallel. Prior to executing, SRTDP computes action ADDs; the graphs include the time it takes to
do this. We report results of both heuristics (value and reach) used by SRTDP to construct the set of
similar states. All algorithms were coded in Java, except that the CUDD library (written in C) was
used to manipulate ADDs through the Java Native Interface.

SPUDD is conceptually different from VISA and sRTDP in that it does not require actual expe-
rience in the domain. Instead, it uses the transition probabilities and expected reward of the DBN
model to repeatedly update the policy off-line. Consequently, it is not possible to measure the re-
ward received as a result of executing actions in the environment. To evaluate the running time
of SPUDD, we first recorded the time elapsed between each iteration of the algorithm. After each
iteration, we recorded the current policy and stored it in memory. When policy iteration converged,
we retrieved each stored policy from memory. For each policy, we ran experiments in the domain
and selected actions according the policy. The average reward of each experiment appears at the
time at which the policy was recorded. Just as for VISA and sRTDP, we ran 100 trials and plotted
the average reward across trials.

In the results, we also present a comparison of the size of the state partitions produced by
SPUDD and VISA. The size of the state partition produced by SPUDD equals the number of leaves
in the ADD used to represent the value function. In contrast, the size of the state partition produced
by VISA equals the total number of leaves in the policy trees of exit options, including the task
option. Since the state partition produced by VISA does not necessarily preserve optimality, it is
often smaller than that of SPUDD.

4.12 Results

Figure 7 illustrates the results of the experiments in the coffee task. Since the coffee task is very
small, all algorithms converge quickly to an optimal policy, although SPUDD has a slight edge over
the others. The state partition produced by SPUDD contains 48 aggregated states, as compared to
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Figure 7: Results of learning in the coffee task

the 26 = 64 total states of the task. In contrast, the state partition produced by VISA contains a total
of 20 aggregated states.

Figure 8 illustrates the results of the experiments in the Taxi task. In this task, VISA and SPUDD
perform significantly better than sSRTDP, with SPUDD slightly faster than VISA. The state partition
of SPUDD contains 525 aggregated states, almost as many as the 600 states of the original task. In
comparison, the state partition produced by VISA contains a total of 106 aggregated states.

Figure 9 illustrates the results of the experiments in the Factory task. Again, SPUDD and VISA
have a similar convergence times, although it appears as if VISA converges to a slightly suboptimal
policy. The Factory task poses a significant challenge to online learning algorithms since a lot of
actions undo the effect of other actions, making it difficult to achieve the objective. We believe this
is the reason that SRTDP is struggling to converge quickly. The reason VISA does so well is that
the hierarchical decomposition restricts the policy to select between options that achieve relevant
subgoals, guiding the process towards the ultimate objective. The state partition of SPUDD contains
4,550 states, significantly less than the 217 ~ 130,000 states of the task. The state partition produced
by VISA is even smaller, containing 2,620 aggregated states.

Figure 10 illustrates the results of the experiments in the AGV task of VISA and sRTDP using
the reach heuristic. VISA decomposes the task in roughly 6 seconds and learning converges after 20
seconds. In comparison, it took SPUDD more than 4 minutes to converge to an optimal policy, and
its performance is not shown in Figure 10. sSRTDP using the reach heuristic completes the task a few
times within the first minute of running time but convergence is much slower than for VISA. During
our experiments, SRTDP using the value heuristic failed to complete the task even once within the
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Figure 10: Results of learning in the AGV task

first 15 minutes. The state partition of SPUDD contains 11,096 states, compared to the 75,000 states
of the task, while the state partition of VISA contains 5,996 aggregated states.

The results of the experiments illustrate the power of hierarchical decomposition when com-
bined with option-specific abstraction. Even though SPUDD and sRTDP take advantage of task
structure and are empirically faster than regular reinforcement learning algorithms, they still suffer
from the curse of dimensionality as the size of the state space grows. On the other hand, VISA
decomposes the original tasks into smaller, stand-alone tasks that are easier to solve without ever
enumerating the state space. Instead, the complexity of the decomposition is polynomial in the size
of the conditional probability trees of the DBN model. Each stand-alone task only distinguishes
among values of a subset of the state variables, which means that the complexity of learning does
not necessarily increase with the number of state variables. Evidently, the advantage offered by
VISA varies between tasks and is dependent on the causal graph structure.

5. Constructing Compact Option Models

VISA computes option policies by first constructing the option SMDP, WM, of each exit option
0. Since VISA does not have access to an estimate of the transition probability function, P, it
cannot use a planning algorithm to solve the option SMDP. Instead, VISA uses SMDP Q-learning
to learn the option policies, which does not require knowledge of transition probabilities as long as
the algorithm has access to a real system and enough time. If VISA had access to DBN models
that compactly describe the transition probabilities as a result of executing options, it would be
possible to apply existing planning algorithms that exploit the DBN models to efficiently solve the
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option SMDPs. Access to DBN models of options would open up new possibilities for learning and
planning with options.

In this section, we develop ideas for constructing compact models of the exit options introduced
by VISA. Current techniques for constructing option models require the state space to be enumer-
ated. Since the goal of VISA is to reduce the complexity of learning by ignoring a subset of state
variables, we want to avoid enumerating the state space. Instead, we define theoretical properties of
partitions that preserve the transition probabilities and expected reward of options. We then discuss
how to construct representations of transition probabilities and expected reward using partitions
with these properties. In many cases, the partitions contain far fewer blocks than the number of
states, resulting in a compact representation.

5.1 Multi-Time Option Models
Sutton et al. (1999) defined the multi-time model of an option 0 = (I, T, B) as

00

P(s'|s,0) = Zly‘P(s’,t |'s,0), (2)

t=
R(s,0) = E{ i V< IR(sy, ak) | s1 = s}, 3)
k=1

where t is the random duration until o terminates and P(s',t | s,0) is the probability that o terminates
in state s’ € S after t time steps when executed in state s € S. The expectation in Equation 3 is
taken over the distribution of state-action pairs (sk,ax), k € [1,t]. This distribution is determined by
the functions P(Sk+1 | Sk, ak), T(Sk,ak), and B(sk). We refer to the terms P(s’ | s,0) as discounted
probabilities since they do not sum to 1 for y < 1. However, the multi-time model enables learning
and planning with options as single units, which Sutton et al. (1999) call SMDP value learning and
SMDP planning, respectively.

It is possible to use dynamic programming to compute the multi-time model in Equations 2 and
3. We can set up the Bellman form of the equations in which each term is a function of the terms at
the next time step:

P& 15.0) =y 3 Tis.a) {P(s’ S BE) + 5 PLS"|5.2)(1- B )P | s”,o>] B
ac €S

R(s.0) = 3 s.a)|Rs2) +y 5 P 5.1~ BE)RE'0) | ®)
ac €S
Let us label each state with a unique subscripti € {1,...,|S|}. Let P? a € A, be the transition matrix

for action a whose entry (i, j) is P(sj | sj,a), and let P° be the corresponding matrix for option o.
Let M2, a € A, be the diagonal matrix whose entry (i,i) is 11(s;,a), and let B be the diagonal matrix
whose entry (i,i) is B(si). Let R a € A, be the vector whose ith entry is R(s;,a), and let R° be
the corresponding vector for option 0. To avoid confusion with the option initiation set I, we use
E to denote the identity matrix. Then we can write Equations 4 and 5 respectively in the following
forms:

P°:yZ\I‘IaPa(B+(E—B)P°), (6)

RO = zAI'Ia(RaerPa(E —B)RO). )
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5.2 Multi-Time Models for Exit Options

Recall that an exit option o is associated with an exit (c,a), composed of a context ¢ and an action
a. Unlike regular options, the exit option executes action a following termination in context c. In
addition, if o is executed in a state that already satisfies context ¢, o immediately terminates and
executes action a. As a consequence, it is necessary to modify the multi-time model to suit exit
options. The multi-time model of an exit option o has the following form:

P = y(BP? + (E —B) z N2 papo), (8)
acA
RO=BR*+(E—B) I M¥(R* +P¥R%), 9)
aeA

where a is the action of the exit associated with 0. The above definition assumes that o always
terminates in a state that satisfies context c, so that a is always executed following termination.

Because we modified the multi-time model to handle the case of exit options, we need to show
that the discounted probabilities, P°, and expected reward, R, associated with an exit option o are
well-defined under the condition that o is guaranteed to eventually terminate.

Definition 3 An option o is proper if for each state s; € I, 0 eventually terminates with probability
1 when executed in s;.

Definition 3 imposes a restriction on the policy tand termination condition function (3 of an option
0.

Theorem 4 For a proper option o, the systems of linear equations in Equations 8 and 9 are consis-
tent and have unique solutions.

The unknown quantities that we want to solve for are P° and R°. If we move the unknowns to the
left-hand side of Equations 8 and 9 we obtain the following systems of equations:

[E ~YE-B) ¥ na’Pa’] P° = yBP?, (10)
acA
!E—y(E—B) )3 na’Pa’] R°=BR*+(E—B) § NM7R?. (11)
acA aceA

Note that the unknown quantities P° and R° are multiplied by the same matrix M = E — y(E —
B)Saea M&Pa. The systems of linear equations in Equations 10 and 11 are consistent and have
unique solutions if and only if matrix M is invertible, that is, if and only if the determinant of M is
non-zero. The proof of Theorem 4 appears in Appendix A.

Since Equations 6 and 7 resemble the Bellman optimality equation in Equation 1, it is possible to
use algorithms similar to value iteration and policy iteration to solve for P® and R°. Note, however,
that we do not want to represent the matrices explicitly, since their size is proportional to the number
of states. Instead, we can use decision trees or ADDs to compactly represent the matrices. The
policy of an exit option is already in the form of a tree, and it is easy to construct a tree that represents
the termination condition function 3. SPUDD (Hoey et al., 1999) contains an efficient subroutine
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that uses the DBN model to perform multiplication of a matrix with the transition probability matrix
P2 without explicitly representing P2. For a proper option o, iteratively performing the calculations
on the right-hand side of Equations 8 and 9 will eventually converge to a compact representation of
P°and R°.

5.3 Decomposition of the Option Model

In Section 4, we compared VISA with several algorithms that take advantage of the DBN model
to compactly represent transition probabilities and expected reward. Even though these algorithms
construct compact representations of the value function, VISA outperformed these algorithms in
several tasks. The reason for this is that VISA introduces a set of subtasks and performs state
abstraction for each subtask by ignoring irrelevant state variables, making each subtask easier to
solve than the original task. It is possible to decompose computation of the multi-time option model
in a similar way.

Recall that we approximate the transition probabilities of primitive actions as products of the
conditional probabilities of each state variable Sq € S:

P(s'[s,a) ~ [] Pa(fis)(s') | frasy(s),a)-
SIS

The expression is an approximation for tasks in which there are dependencies between state vari-
ables at a same time step because our formalism does not account for such synchronous dependen-
cies.

It is possible to approximate the terms of the multi-time model in a similar way. However,
the multi-time model of an option o has two distributions that resemble transition probabilities:
P(s’ | s,0), the discounted probability of transitioning from s to s’ as a result of executing o; and
P(s',t | s,0), the exact probability of transitioning from s to s’ in t time steps as a result of executing
0. We can choose which of the two distributions to approximate.

If we choose to approximate P(s’ | s,0), we obtain the following approximation:

P(s'|5,0) ~ [T Pa(f(s;) () | frarsy)(s),0)-
SES

Since we do not (yet) have access to a DBN model of option o, we assume that all state variables are
parents of Sq, S0 fpas,)(S) = fs(s) =s. We can compute the terms Py(f(g,3(s') | s,0) in the same
way as the multi-time model:

Pd(f{Sj}(S/) | S,O) = Zl\}PdU:{SJ}(S/),t ‘ S¢0)'
t=
As a result, we obtain the following final approximation of Equation 2:

P(s'|s,0) ~ |_| 2¢Pd(f{%}(s’),t|s,o). (12)

Syest

Equation 12 enables us to compute the conditional probabilities Py (vq | S,0) of the multi-time model
separately for each state variable Sy. Here, vq € D(Sq) denotes one of the values of state variable
Sq.
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If we instead choose to approximate P(s',t | s,0), we obtain the following alternative approxi-
mation of Equation (2):

P(s'|s,0) = Zly‘Pst|so QVPd frgn(s),t]s,0). (13)

Note that the difference between Equations 12 and 13 is the order of the summation and the product.
As a result, Equation 12 assigns non-zero probability to events that could never occur, such as “the
value of state variable Sy, becomes L in 2 time steps, and the value of state variable Sy becomesW in
3 time steps.” This event could never occur because an option cannot simultaneously terminate after
2 time steps and 3 time steps. In this sense, Equation 13 is a better approximation of P(s’ | s,0), but
on the other hand, it does not enable us to compute a multi-time model of option o separately for
each state variable. As we shall see, the ability to decompose the computation significantly reduces
the complexity of computing the multi-time model. We believe that the reduction in complexity
justifies the loss of accuracy, although we currently have no bounds on the approximation error. For
this reason, we use Equation 12 as our approximation of Equation 2.

For each state variable Sy, each state s € S, and each value vq € D(Sq), we seek the term
P4(vq | S,0) representing the probability of transitioning into a state that assigns vq to Sq when o is
executed in state s. Pq(vq | S,0) is given by the following equation:

Pa(Vd | 8,0) = Y(B(s)Pd(va | 5,2) z (s, & SZ s'|s,a)Py(va|s,0)).  (14)

Let P be a [S| x |D(Sq)| matrix whose entry (i, j) equals Pq(j | si,0). We can solve for P using
the following system of equations:
PS = y(BPS + (E —B) > n&papy), (15)
acA
where P§ is the equivalent of P§ for exit action a.

Lemma5 For a proper option o, the system of linear equations in Equation 15 is consistent and
has a unique solution.

Let us again move all unknowns to the left side of the equation to obtain

[E —y(E —B) Z np¥ | pS = yBP3. (16)

acA
The proof of Lemma 5 follows directly from the proof of Theorem 4 since the matrix M =
[E —Yy(E —B) za/eAI'la/Pa'} that we need to invert to solve Equation 16 is the same as the matrix in
Equations 10 and 11.

Instead of a single system of equations (8), we now have to solve one system of equations per
state variable (15) to approximate the discounted probabilities P°. Since the system of equations are
similar, it appears as if little is gained, but as it turns out, the complexity of the computation may be
dramatically lower. The matrix P§ only has one column per value in D(Sq), which is considerably
less than the number of columns of P°, even for a very compact state representation. This means
that matrix multiplications can be carried out more efficiently. In addition, some state variables may
be irrelevant for computing P§, making the representation even more compact throughout the com-
putation. Specifically, decomposing computation of the option model makes it possible to construct
a different compact representation for each state variable.
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5.4 Partitions

We formalize the ability to construct compact representations for each state variable using partitions.
Recall that a partition A of the state set S that has the stochastic substitution property and is reward
respecting induces a reduced MDP that preserves optimality. We define three more properties of
partitions of S with respect to a factored MDP 4/ and an option o = (I, 1, B):

Definition 6 A partition A of S is policy respecting if for each pair of states (s;,s;) € S? and each
action a € A, [si]a = [sj] implies that 1i(sj,a) = 11(sj,a).

Definition 7 A partition A of S is termination respecting if for each pair of states (s;,s;) € s?,
[Si]n = [sj]a implies that B(si) = B(s;).

Definition 8 A partition A of S is probability respecting of state variable Sq if for each pair of states
(si,sj) € S?, each action a € A, and each value vq € D(Sg), [si]n = [sj]a implies that Py(vq | Si,a) =
Pa(vd | sj,a).

Using these definitions, it is possible to define partitions of S that preserve the multi-time model of
an option o, which we prove in the following two theorems:

Theorem 9 Let 0 be a proper option and let Ay be a partition of S that has the stochastic sub-
stitution property, is policy respecting, termination respecting, and probability respecting of Sg.
Then for each pair of states (si,s;) € S? and each value vy € D(Sq), [Sila, = [Sj]a, implies that
Pa(vd | i,0) = Pq4(vq | 8j,0).

The proof of Theorem 9 appears in Appendix B. As a consequence of Theorem 9, it is possible
to ignore some state variables while computing the discounted probability model of an exit option.
Take the example of computing the discounted probability P{ associated with state variable Sy and
exit option C — C in the coffee task. The policy and termination condition function of C — C only
distinguish between values of state variable Sy, that is, any partition of S that distinguishes between
values of S, is policy respecting and termination respecting. The value of Sy as a result of executing
any action is determined by the previous values of Sy, Sg, and Sy, that is, any partition of S that
distinguishes between values of Sy, Sg, and Sy is probability respecting of Sy. From Theorem 1
we know that a partition of S has the stochastic substitution property and is reward respecting if it
distinguishes between values of all state variables that influence relevant state variables. It follows
from Theorem 9 that a partition of S that distinguishes between values of Sy, Sy, Sg, and Sy preserves
the discounted probability Pg, that is, state variables Sc and Sy are irrelevant for computing Pg.

Theorem 10 Let o be a proper option and let Ag be a partition of S that has the stochastic substi-
tution property, is reward respecting, policy respecting, and termination respecting. Then for each
pair of states (si,sj) € S2, [si]ax = [Sj]s implies that R(si,0) = R(sj,0).

The proof of Theorem 10 appears in Appendix C. Usually, all state variables indirectly influence
reward, so normally it is not possible to ignore the values of any state variables while computing the
expected reward model R® associated with exit option o.
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5.5 Distribution Irrelevance

Dietterich (2000b) defined a condition that he calls result distribution irrelevance: a subset of the
state variables may be irrelevant for the resulting distribution of a temporally-extended activity. This
condition only exists in the undiscounted case, that is, for y = 1. Otherwise, the time it takes the
activity to terminate influences subsequent reward. We can take advantage of distribution irrelevance
to compute the multi-time model of an exit option when y= 1. Let o be the exit option associated
with the exit (c,a). Since o terminates in the context c, we know the value of each state variable in
the set C C S immediately before action a is executed. In other words, the values of state variables
in the set C prior to executing o are irrelevant for the resulting distribution of o.

Because of distribution irrelevance, we do not need to solve Equation 15 for state variables in
the set C. Instead, the conditional probabilities associated with state variable Sq € C and option o
are given by the conditional probabilities associated with Sq and the exit action a, restricted to states
s € S such that fc(s) = c. For example, as a result of executing the exit option associated with the
exit (S = L),BC) in the coffee task, the value of state variable Sy, is L immediately before executing
BC. Executing the exit action BC has no influence on the value of S;. As a result of executing the
option that acquires coffee, the location of the robot is always the coffee shop, regardless of its
previous location.

We can also simplify computation of conditional probabilities for state variables that are un-
affected by actions that the policy selects. Let U° C S denote the subset of state variables whose
values do not change as a result of executing any action selected by the policy Ttof exit option 0. For
the exit option o associated with exit ((Sp. = L),BC) in the coffee task, U° = {Sy, Sg,Sc, Su}, since
the values of these state variables do not change as a result of executing GO, the only action selected
by the policy of 0. Thus, the conditional probabilities associated with state variables in the set U°
can be computed without solving Equation 15.

5.6 Summary of the Algorithm

In summary, to compute the multi-time model of an exit option one should first solve Equation 9
to compute the expected reward. In addition, for each state variable, one should solve Equation 15
to compute the discounted probability model associated with that state variable. If y=1 and it is
possible to take advantage of distribution irrelevance, it is not necessary to solve Equation 15 for
that state variable. The computation is most efficient if matrices are represented as trees or ADDs;
in that case, the resulting models are also trees.

When we have computed the conditional probability tree associated with each state variable
for an exit option, as well as a tree representing expected reward, we can construct a DBN for the
option in the same way that we can for primitive actions. Figure 11 shows the DBN for the exit
option associated with the exit ((S. = L),BC) in the coffee task when y = 1, taking advantage of
distribution irrelevance. Note that there is no edge to state variable Sy, which indicates that the
resulting location does not depend on any of the state variables.

Since the DBN model of an option is in the same form as the DBN models of primitive actions,
we can treat the option as a single unit and apply any of the algorithms that take advantage of
compact representations. In addition, the DBN model makes it possible to apply our technique to
nested options, that is, options selecting between other options. Once the policy of an option has
been learned, we can construct its DBN model and use that model both to learn the policy of a
higher-level option and later to construct a DBN model of the higher-level option.
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Figure 11: DBN for the option associated with ((S;, =L),BC)

TASK SPUDD VISA VISA-D
Coffee 75 +3 100 + 33 18+ 14
Taxi 4,965 + 20 2,220,102 + 1,861 7,465 + 139

Table 2: Comparison of time (ms) to convergence in two tasks

5.7 Experimental Results

We conducted a set of experiments to test the complexity of computing multi-time models for exit
options. First, we ran VISA on the coffee task and used Equations 8 and 9 to compute the multi-time
model of each exit option introduced. For each exit option, including the task option at the top level,
we used SPUDD to compute an optimal policy. In a second experiment, we ran VISA again, but this
time used Equation 15 to compute a separate transition probability model for each state variable.
We set y =1 and used distribution irrelevance whenever possible to simplify computation of the
transition probability model. We repeated these experiments in the Taxi task. For comparison, we
also computed the time it takes SPUDD to converge in these two tasks.

Table 2 presents the results of the experiments, averaged over 100 trials. VISA-D denotes the
VISA algorithm with the decomposed transition probability model. In all cases, the algorithms
converged to an optimal policy for the task. Since the coffee task is very small, all algorithms
converged relatively quickly. However, note that in the Taxi task, the convergence time of VISA
is orders of magnitudes larger than that of SPUDD and VISA-D, while the convergence time of
VISA-D is almost on par with that of SPUDD, even though it includes the time it took to compute
the compact option models. Evidently, distribution irrelevance and simplified computation of the
transition probability models can have a huge impact on the complexity of computing multi-time
models for exit options.
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6. Related Work

There exist several algorithms that decompose tasks into a hierarchy of activities. We have already
mentioned the HEX-Q algorithm (Hengst, 2002) and its relation to our work. Dean and Lin (1995)
used a fixed partition of the state space to decompose a factored MDP into regions. The authors
developed an algorithm for solving the decomposed task by constructing activities for moving be-
tween regions. At the top level, the algorithm forms an abstract MDP with the regions as states and
the activities as actions to approximate a global solution. Hauskrecht et al. (1998) extended this idea
by suggesting several ways of constructing the set of activities given the decomposition. Most of
their techniques rely on partial knowledge of the value function at different states to decide which
activities to introduce. These techniques rely on prior knowledge of a useful partition, while our
algorithm relies on the DBN model to decompose a task.

Nested Q-learning (Digney, 1996) introduces an activity for each value of each state variable.
The goal of each activity is to reach the context described by the single state variable value. Mc-
Govern and Barto (2001) use diverse density to locate bottlenecks in successful solution paths, and
introduce activities that reach these bottlenecks. Simsek and Barto (2004) measure the relative nov-
elty of each visited state, and introduce activities that reach states whose relative novelty exceeds a
threshold value. Recent work on intrinsic motivation (Singh et al., 2005) tracks salient changes in
variable values and introduces activities that cause salient changes to occur.

Other researchers use graph-theoretic approaches to decompose tasks. Menache et al. (2002)
construct a state transition graph and introduce activities that reach states on the border of strongly
connected regions of the graph. The authors use a max-flow/min-cut algorithm to identify border
states in the transition graph. Mannor et al. (2004) use a clustering algorithm to partition the state
space into different regions and introduce activities for moving between regions. Simsek et al.
(2005) identify subgoals by partitioning local state transition graphs that represent only the most
recently recorded experience.

Another approach is to track learning in several related tasks and identify activities that are use-
ful across tasks. SKILLS (Thrun and Schwartz, 1996) identifies activities that minimize a function
of the performance loss induced by the resulting hierarchy and the total description length of all
actions. PolicyBlocks (Pickett and Barto, 2002) identifies regions in the state space for which the
policy is identical across tasks, and introduces activities that represent the policy of each region.
Each activity is only admissible within its region of the state space.

Helmert (2004) developed an algorithm that constructs a causal graph similar to that of VISA
and uses the graph to decompose deterministic planning tasks. The algorithm assumes a STRIPS
formulation of actions (Fikes and Nilsson, 1971), which is similar to the DBN model of factored
MDPs. Just like the DBN model, the STRIPS formulation expresses actions in terms of causes and
effects on the state variables, except that the causes and effects are deterministic. Helmert (2004)
uses the STRIPS action formulation to construct a causal graph in a special class of deterministic
tasks in which the causal graph has one absorbing state variable with edges from each of the other
state variables. The author shows that his algorithm efficiently solves a set of standard planning
tasks using activities to represent the stand-alone tasks of the resulting decomposition.

There are several efficient algorithms for solving factored MDPs that use the DBN model to
compactly describe transition probabilities and expected reward. Structured Policy Iteration, or
SPI (Boutilier et al., 1995), stores the policy and value function in the form of trees. The algorithm
performs policy iteration by intermittently updating the policy and value function, possibly changing
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the structure of the trees in the process. Hoey et al. (1999) modified SPI to include algebraic decision
diagrams, or ADDs, which store conditional probabilities more compactly than trees. Symbolic
Real-Time Dynamic Programming, or SRTDP (Feng et al., 2003), also assumes that the conditional
probabilities of the DBN model are stored using ADDs. sRTDP is an extension of Real-Time
Dynamic Programming, or RTDP (Barto et al., 1995), that clusters states into abstract states based
on two criteria, and performs an efficient backup of the value of the current abstract state following
each execution of an action in the environment.

The DBN-E? algorithm (Kearns and Koller, 1999) is based on the assumption that there exists
an approximate planning algorithm for the task, and that the structure of the DBN model is given.
Using the planning procedure as a subroutine, the algorithm explores the state space and fills in the
parameters of the DBN model. The running time of the algorithm is polynomial in the number of
parameters of the DBN model, generally much smaller than the number of states. Guestrin et al.
(2001) developed an algorithm based on linear programming that combines the DBN model with
max-norm projections to solve factored MDPs. The algorithm is based on the assumption that there
is a set of basis functions for representing the value function. It is guaranteed to converge to an
approximately optimal solution.

Sutton et al. (1999) developed the multi-time model of options that we used to represent the
effect of activities. The multi-time model includes an estimate of the transition probabilities and
expected reward of options. Using the multi-time model of an option, it is possible to treat the
option as a single unit during learning and planning. SMDP value learning (Sutton et al., 1999) uses
the multi-time model to learn values or action-values in an SMDP. SMDP planning (Sutton et al.,
1999) uses the multi-time model to perform planning in an SMDP, similar to policy iteration.

7. Conclusion

We presented Variable Influence Structure Analysis, or VISA, an algorithm that decomposes fac-
tored MDPs into hierarchies of options. VISA uses a DBN model of the factored MDP to construct
a causal graph describing how state variables are related. The algorithm then searches in the con-
ditional probability trees of the DBN model for exits, that is, combinations of state variable values
and actions that cause the values of other state variables to change. VISA introduces an option for
each exit and uses sophisticated techniques to construct the components of each option. The result
is a hierarchy of options in which the policy of an option selects among options at a lower level in
the hierarchy. Experimental results in a series of tasks show that the performance of VISA is com-
parable to that of state-of-the-art algorithms that exploit the DBN model, and in one task (AGV)
VISA significantly outperforms the other algorithms.

VISA is based on the assumption that the values of key state variables change relatively infre-
quently. This is the same assumption made by Hengst (2002), Helmert (2004), and Singh et al.
(2005). Just like the HEX-Q algorithm (Hengst, 2002), VISA decomposes a task into activities
by detecting the combinations of state variable values and actions that cause key variable value
changes. However, as we already discussed, VISA uses the causal graph to represent how state
variables are related, which is a more realistic model than that used by HEX-Q. Unlike the work of
Helmert (2004), VISA can handle any configuration of the causal graph.

Many existing algorithms need to accumulate extensive experience in the environment to de-
compose a task into activities, and they usually store quantities for each state. Assuming that the
DBN model is given, VISA does not need to accumulate experience in the environment to perform
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the decomposition. In addition, VISA only stores quantities proportional to the size of the condi-
tional probability trees of the DBN model. Although we do not provide any comparisons, it is likely
that VISA uses less memory and performs decomposition of a task in less time than these other
algorithms.

Our second algorithm is a method for computing compact models of the options discovered by
VISA. Existing methods for computing compact option models do not scale well to large tasks.
For this reason, the first implementation of VISA uses reinforcement learning to approximate an
optimal policy of each option. If VISA had access to compact option models, it could use dynamic
programming techniques to compute the option policies without interacting with the environment.
Our algorithm constructs partitions with certain properties to reduce the complexity of computing
compact option models. The algorithm computes a DBN model for each option identical to the
DBN model for primitive actions. This makes it possible to apply existing algorithms that use the
DBN model to efficiently approximate option policies.

For VISA to successfully decompose a task, the causal graph needs to contain at least two
separate strongly connected components. In tasks for which each state variable indirectly influences
each other state variable, decomposition using this strategy is not possible. In other words, VISA
is limited to function well in tasks with relatively sparse relationships between state variables. We
believe that a non-trivial number of realistic tasks fall within this category. For example, in most
navigation tasks, location influences the value of variables representing stationary objects, which in
turn have no impact on location. Moreover, constructing the causal graph is polynomial in the size
of the DBNS, so it is relatively inexpensive to test whether or not VISA can successfully decompose
a task.

7.1 Future Work

Hoey et al. (1999) pioneered the use of algebraic decision diagrams, or ADDs, to store the condi-
tional probability distributions of the DBN model. Since ADDs are a more compact representation
than trees, they require less memory. More importantly, several operations can be executed faster
on ADDs than on trees. Although VISA uses trees to represent the conditional probability distri-
butions, it would be relatively straightforward to change the representation to ADDs. Possibly, this
modification could speed up decomposition and construction of compact option models.

It is also possible to combine VISA with other techniques that facilitate scaling. For example,
once VISA has decomposed a task into options, we can apply reinforcement learning with function
approximation to learn the option policies. Another possibility is to use existing algorithms to
detect bottlenecks in the transition graph of a strongly connected component in the causal graph.
This would enable further decomposition of the option SMDPs into even smaller subtasks.

Recall that VISA performs state abstraction for an option SMDP by constructing the partition
Nz, where Z C S is the set of state variables in strongly connected components whose variable
values appear in the context of the associated exit. As a result of state abstraction, the option policy
may be suboptimal. The problem occurs when an option selected by the option policy changes the
value of a state variable not in Z that indirectly influences state variables in Z. This problem would
be alleviated if we merge strongly connected components whose state variables are affected by the
same actions. The resulting decomposition would be less efficient in terms of learning complexity
but would guarantee recursive optimality.
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Our formal analysis of constructing compact option models requires partitions with a set of
established properties. The requirement that the partitions should have all of these properties is
quite strong. A possible line of future research is to relax or approximate the required properties
of partitions, which could lead to even more efficient computation of option models, albeit with
some loss of accuracy. An analysis of the resulting approximation could help determine a tradeoff
between the complexity of computing compact option models and the accuracy of the resulting
model.

We also made a strong independence assumption in order to reduce the complexity of computing
a compact option model. Our algorithm assumes that the value of a state variable that results from
executing an option is independent of the resulting values of other state variables. Since an option
takes variable time to execute, the option passes through many states during execution. The inde-
pendence assumption only holds if the resulting values of state variables are independent regardless
of which state the option is currently in. In many cases, our independence assumption induces an
approximation error. If possible, we would like to establish bounds on this approximation error to
analyze the accuracy of our algorithm.

It is unrealistic to assume that a DBN model is always given prior to learning. If no DBN model
is available, it is necessary to learn a DBN model from experience prior to executing VISA. There
exist algorithms for active learning of Bayesian networks that can be applied to factored MDPs
(Murphy, 2001; Steck and Jaakkola, 2002; Tong and Koller, 2001). However, these algorithms
assume that it is possible to sample the MDP at arbitrary states. If we assume that it is only possible
to sample the MDP along trajectories, it becomes necessary to develop novel algorithms for active
learning of DBN models. Such algorithms would select actions with the goal of learning a DBN
model describing the effect of actions on the state variables as quickly as possible.
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Appendix A. Proof of Theorem 4

In this appendix we prove Theorem 4 from Section 5. Equations 10 and 11 are consistent and
have unique solutions if and only if the matrix M = E — y(E — B) S ,coM2P2 is invertible, that is, if
det(M) # 0. Each element of P2 is in the range [0, 1], and each row of P2 sums to 1. Because of
the properties of Tt it follows that S ,cA M = E and that 5 oo M2P# has the same properties as P2.
(E —B) is a diagonal matrix whose elements are in the range [0,1]. Then y(E —B) S ,caM?P2is a
matrix such that each element is in the range [0, 1] and such that the sum of each row is in the range
[0,1]. In other words, M has the following properties, where n = |S|:

1. foreachi=1,...,n: 0<mj<1,
2. foreachi=1,...,n, j#i: —mi <m;j <0,
3. foreachi=1,...,n: 0< z?zlmij < mijj.
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Lemma 11 An element m;; on the diagonal of M equals 0 if and only if

1. y=1,
2. PB(si) =0,

3. for each action a € A such that 1i(sj,a) > 0, P(si | si,a) = 1.

Proof mjj =1—y(1—B(Si)) SacaT(si,a)P(si|si,a). The only solutionto m;j =0isy=1, (s;) =0,
and P(s; | si,a) = 1 for each action a € A such that 1(s;,a) > 0. [

An option is proper if and only if there is no set of absorbing states S’ such that 3(s) = 0 for
each state s € S’. A set of states S’ is absorbing if and only if the probability of transitioning from
any state in S’ to any state outside S’ is 0. A special case occurs when S’ contains a single state
si such that B(si) = 0 and such that P(s; | si,a) for each action a € A such that 11(sj,a) > 0. From
Lemma 11 it follows that an element mj; on the diagonal of M equals 0 if and only if s; is an absorb-
ing state such that 3(s;) = 0. Since no such state exists for a proper option o, we conclude that all
elements on the diagonal of M are larger than O for a proper option 0. Then it is possible to mul-
tiply each row of M by its diagonal element 1/m;; to obtain a matrix A with the following properties:

1. foreachi=1,...,n: ajj =1,
2. foreachi=1,...,n, j#i: —1<a; <0,
3. foreachi=1,...,n: 0< ZT:laij <1.

Since matrix A is obtained by multiplying each row of M by a scalar, the determinant of M equals 0
if and only if the determinant of A equals 0. We can write A as

1 ap -+ am - rp -
aypg 1 - ap - Iy -

A = = s
an1 an2 - 1 — I'n —

where r; is the ith row of A. It is possible to eliminate an element a;j, j < i, by subtracting a;jr;
from row ri:

ri—aijrj:(ail—aijajl e —aij-1l - 1—ajjagi e ain—aijajn).
Lemmal2 0<1-ajaji <1,and1—ajaji =0ifandonlyifaj; =a;i = —1.
Proof Follows immediately from the properties of A. |

Lemma 13 If 1—a;ja; > 0, elimination of a;j preserves the properties of A.

Proof Since 1—ajja;; > 0, we can multiply r; —ajjrj by 1/(1 —a;ja;ji):

_ 1 an_aia aa
L T ] — e ¢ N [ Ain—ajj Jn)
fl 1—aja;i i —air] ( 1-aij3j l-ajai )-
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It follows immediately that element i of row r; equals (1 —aj;a;i)/(1—aija;i) = 1 and that element
jequals (aj; —ajj-1)/(1—ajaj) =0. Foreachk =1,...,n, k #1i, j, compute bounds on element
k of ri:

aik — ajjajk < aik—0 < 0-0

)

1—aijaji - 1—aijaji—1—aijaji
ik — ajjajk _ 1—aijaji+aik—aijajk—(1—aijaji):
1—ajjaji 1—ajjaji
_ 1+aik—aij(aji+ajk)_lz
1—aijaji
1+aix+a; 1-1
> _ild;ﬂ_lz______lz_L
1—aijaji 1—aijaji
Also compute bounds on the sum of the elements of r;:
za|k dijajk _ Zalk_alja]k ajj—ajj-1 2 aik — al]a]k
1—ajjaj 1—ajjaji 1—ajjaji k]+11 ajjaji
N 1—élij<’:1ji+ i aik—aijajkg
1-ajaji  (S5q 1-aijay
< 0404+0+1+0=1,
a|k a.”ajk 1 n n O+0
= — ik — & ai| >— =
Z 1—aja;i 1—ajjaj; Zl k™ ”z k=71 aija;i
It follows that row r; satisfies the properties of A. |

From Lemma 12 and Lemma 13 it follows that the properties of A are preserved under elimina-
tion unless the element on the diagonal equals 0. We can compute the determinant of A by repeatedly
performing elimination until A is an upper triangular matrix. If any element on the diagonal becomes
0 during elimination, det(A) = 0. Otherwise, the determinant of A equals the inverse of the product
of the coefficients by which we multiplied rows during elimination. Since each coefficient is larger
than O, it follows that det(A) > 0.

Lemma 14 Let C = {c1,...,cm} be a set of m indices, and let S(C,r;) = Y}, aic, be the sum of
elements of row r; whose column indices are elements of C. Assume that i € C and that S(C,r;) =0
after elimination of an element a;j, j <i. Then S(CU{j},ri) =0 and S(CU{j},rj) =0 prior to
elimination of a;;.

Proof When we eliminate an element a;;, j <1, the sum of elements of row ri whose column indices
are elements of C is

S(C,F) = S(C ) +0=
_ Z a.|ck a”ajck a|Jfa|J].:

1 m
= —— || Tas+aj|-ai| T aju+1
1-aijaj [(kzl - ”) ! (kzl o )

2296




CAusAaL GRAPH BASED DECOMPOSITION

Since i is one of the indices in C, it follows from the properties of A that S(C, r;) = 0 if and only
if Sklqai +aij =0 and either aj; =0 or S ;ajq +1=0. If a; =0, there was no reason to
perform elimination, so it follows that S(CU{ j},ri) = Y"1 aig, +aj =0and that S(CU { j}.rj) =
Zﬂ]zlajck-i-lzo. |

Lemma 15 If S(C,ry) = 0 for each row ry, k € C, after elimination of an element a;j, j ¢ C, in row
ri, i € C, it follows that S(CU { j},rx) = 0 for each row ry, k € CU{j} prior to elimination of a;;.

Proof If S(C,ri) = 0 following elimination of a;j, it follows from Lemma 14 that S(CU {j},ri) =0
and that S(CU{j},rj) = 0 prior to elimination of a;;. Fork € C—{i}, S(CU{j},r«) =S(C,rx) +
axj = akj. Since ax; < 0and S(CU{j},rk) > 0, it follows that S(CU {j}, rk) = ax; = 0.

Lemma 16 If det(A) =0, it is possible to rearrange the rows and columns of A to obtain

X 0
Y Z )’
where X is a k x k matrix such that for eachi=1,... Kk, le(:]_Xij =0.

Proof If det(A) =0, there exists i, j < i such that a;; becomes 0 during elimination of a;j. From
Lemma 12 it follows that a;; = aji = —1 prior to elimination of a;j, so S({i, j},ri) = aj; +aji =
—1+1=0andS({i,j},rj) =ajj+aji=1—1=0. LetC = {i, j}. Recursively find each index |
such that elimination of element ay occurred prior to this round in row ry, k € C. Then it follows
from Lemma 15 that S(CU {1}, ry) = 0 for each k € CU{l} prior to elimination of ay. Add each
such index | to C. Prior to elimination of any element, it is possible to rearrange the rows and
columns of A to obtain

! !/
ay . Alm 0 . 0
/ /
/aml /amm / 0 “e / 0
Ami1)1 Amiym  Ami1)(mry) Amipn |’
! !/ / /
any T Am an(m+1) ann

where the first m rows and columns are those whose indices are elements of C. Since S(C,rx) =0
for each row ry, k € C, it follows that the sum of row ry equals 0 and that for each | ¢ C, element
ay equals 0. [ |

From the definition of M it follows that it is only possible to rearrange the rows and columns to

obtain
X 0
Y Z )’
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such that the sum of each row of X equals 0, if there is an absorbing set of states S’ such that 3(s) =
for each state s € S’ and if y= 1. For a proper option o, it is not possible to rearrange M that way.
Since the sum of one row of M equals 0 if and only if the sum of the same row of A equals 0, it
is not possible to rearrange A that way either. It follows from the contrapositive of Lemma 16 that
det(A) = 0, which also means that det(M) # 0. This concludes the proof of Theorem 4.

Appendix B. Proof of Theorem 9

Assume that for each block A and each value vgq € D(Sq), the probability Py(vqy | Sk,0) is identical
for each state s, € A. Let Py, denote that probability. We will show that Py(vq | Si,0) =Pa(vq | 5j,0)
checks under this assumptlon if [Silang = [Sj]Aq-

From Equation 14, the expression for Pq(vq | Si,0) is given by

V| B(s)Ps(va | 5.2) + (1~ B(s0) 5

acA

n(si,a’)ngP(s’ | 'si,a’)Pq(Vq | s’,o)] )

We can expand the sum y ¢ g by first summing over blocks A of partition Ay and then over states sy
in block A, replacing Pg(Vq | sk, 0) with PP, :

Y | B(si)Pa(Va | si,a) + (1 —B(si)) Z (si,a) 3 Y P(s|si,a P)\vd]'

aeA AENG SKEA

Since Pf.vd does not depend on sk, we can move it outside the summation to obtain

Y |B(si)Pa(va | si.a) +(1—B(s)) 5 misi.a )Y PRw D Plsclsia )]-

acA AENg SKEA

We can expand the expression for Py(vq | Sj,0) in the same way to obtain

Y |Blsi)Palva |5i.2) + (1-B(sy)) Y ms.a) 3 PRy, ¥ Plsilsi.a >] .
acA AENy SKEA
If [Si]ng = [Sj]Aq, it Tollows immediately from the definitions of stochastic substitution property,
policy respecting, termination respecting, and probability respecting of Sq that Py (vq | Si,0) = Pg(Vd |
Sj,0). Lemma 5 states that the solution to the equations in Equation 15 is unique. Since we know
that Py (Vg | Si,0) = Pd(vq | Sj,0) is a solution, it follows from Lemma 5 that it is the only solution.
This concludes the proof.

Appendix C. Proof of Theorem 10

Assume that for each block A € Ag and each state si € A, the expected reward R(sk,0) as a result of
executing option o is equal, and let RY denote that expected reward. We will show that R(s;,0) =
R(sj,0) checks under this assumption |f [SilAg = [Sj]Ar-

From Equation 9, the expression for R(s;, 0) is given by

R(si,0) = B(si)R(si,a) + (1 —B(si)) Z

2 T(s;,a’) [ (si,a +§2Ps|s., )].
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We can expand the sum 5 ¢ g by first summing over blocks A of partition Ar and then over states sy
in block A, replacing R(sk,0) with R}:

R(si,0) = B(si)R(si,a) + (1 —B(si)) Z

acA

(s, a’) [R(si,a’)+ > Plsk] si,a’)Rgl .

AENARSEA

Since R;’ does not depend on sk, we move it outside the summation to obtain

R(si,0) = B(si)R(si,a) + (1 —B(si)) Z

acA

(s, ) [R(si,a’)+ > Ry > Plsk] si,a’)] :

AEAR SKEA

We expand the expression for R(sj,0) in the same way to obtain

R(sj,0) = B(sj)R(sj,a) + (1 —B(sj)) Z

aeA

m(sj,a’) [R(sj,a’)+ > Ry S Pls«] sj,a’)] :
AEAR SKEA

If [Si]ng = [Sj]Ag, it Tollows immediately from the definitions of stochastic substitution property,

reward respecting, policy respecting, and termination respecting that R(s;,0) = R(s;,0). Theorem

4 states that the solution to the equations in Equation 9 is unique. Since we know that R(s;,0) =

R(sj,0) is a solution, it follows from Theorem 4 that it is the only solution. This concludes the

proof.
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