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Abstract

We describe polynomial-time algorithms that produce axiprate solutions with guaranteed ac-
curacy for a class of QP problems that are used in the desigmppiort vector machine classifiers.
These algorithms employ a two-stage process where thetfigeg produces an approximate so-
lution to a dual QP problem and the second stage maps thisxipyate dual solution to an ap-
proximate primal solution. For the second stage we desearili nlogn) algorithm that maps an
approximate dual solution with accura(3s/2K,, + Sﬁ)*z)\eﬁ to an approximate primal solution
with accuracyep wheren is the number of data samplés; is the maximum kernel value over
the data and > 0 is the SVM regularization parameter. For the first stage resent new results
for decompositioralgorithms and describe new decomposition algorithms gitaranteed accu-
racy and run time. In particular, farrate certifyingdecomposition algorithms we establish the
optimality of t = 1/(n—1). In addition we extend the recent= 1/(n— 1) algorithm of Simon
(2004) to form two neveompositelgorithms that also achieve the= 1/(n— 1) iteration bound of
List and Simon (2005), but yield faster run times in practidée also exploit the—rate certifying
property of these algorithms to produce new stopping rilasdre computationally efficient and
that guarantee a specified accuracy for the approximatesduglon. Furthermore, for the dual QP
problem corresponding to the standard classification proble describe operational conditions
for which the Simon and composite algorithms possess arr iggpsd ofO(n) on the number of
iterations. For this same problem we also describe generalittons for which a matching lower
bound exists fomny decomposition algorithm that uses working sets of size 2 tff@Simon and
composite algorithms we also establish@m?) bound on the overall run time for the first stage.
Combining the first and second stages gives an overall rue 6h©(n?(c, + 1)) wherecy is an
upper bound on the computation to perform a kernel evalnatPseudocode is presented for a
complete algorithm that inputs an accuragyand produces an approximate solution that satisfies
this accuracy in low order polynomial time. Experimentsiactuded to illustrate the new stopping
rules and to compare the Simon and composite decomposigoritams.

Keywords: quadratic programming, decomposition algorithms, apipnation algorithms, sup-
port vector machines

(©2006 Don Hush, Patrick Kelly, Clint Scovel and Ingo Steintwar



HusH, KELLY, SCOVEL AND STEINWART

1. Introduction

Solving a quadratic programming (QP) problem is a major component of tipegwgctor machine
(SVM) training process. In practice it is common to employ algorithms that edpproximate
solutions. This introduces a trade-off between computation and acctivaichas not been thor-
oughly explored. The accuracy, as measured by the difference dxetive criterion value of the
approximate solution and the optimal criterion value, is important for learninguse it has a di-
rect influence on the generalization error. For example, since the opfiiteaian value plays a
key role in establishing the SVM performance bounds in (Steinwart anee§ @904, 2005; Scovel
et al., 2005b) the influence of the accuracy can be seen directly thtbeginoofs of these bounds.
Since the primal QP problem can be prohibitively large and its Wolfe dualrQiblgm is consider-
ably smaller itis common to employ a two—stage training process where the fystmtzduces an
approximate solution to the dual QP problem and the second stage maps thisirape dual so-
lution to an approximate primal solution. Existing algorithms for the first stage aftew the user
to trade accuracy and computation for the dual QP problem through tieeabfa tolerance value
that determines when to stop the algorithm, but it is not known how to chooseathisto achieve
a desired accuracy or run time. Furthermore existing algorithms for thexdestage have been
developed largely without concern for accuracy and therefore littleasvkrabout the accuracy of
the approximate primal solutions they produce. In this paper we descritétlgs that accept the
accuracyep of the primal QP problem as an input and are guaranteed to producepeoxapate
solution that satisfies this accuracy in low order polynomial time. To our kriyelehese are the
first algorithms of this type for SVMs. In addition our run time analysis revaseffect of the
accuracy on the run time, thereby allowing the user to make an informed deoigjarding the
trade—off between computation and accuracy.

Algorithmic strategies for the dual QP problem must address the fact treat thie number of
data samples is large the storage requirements for the kernel matrix can be exce3siebar-
rier can be overcome by invoking algorithmic strategies that solve a larga@piem by solving
a sequence of smaller QP problems where each of the smaller QP problertangolby fixing a
subset of the variables and optimizing with respect to the remaining variakgarithmic strate-
gies that solve a QP problem in this way are caliedompositioralgorithms and a number have
been developed for dual QP problems: (Balcazar et al., 2001; Chaln @005, 2006; Cristian-
ini and Shawe-Taylor, 2000; Hsu and Lin, 2002; Hush and Scovel3;2lbachims, 1998; Keerthi
et al., 2000, 2001; Laskov, 2002; Liao et al., 2002; List and Simon4 22005; Mangasarian and
Musicant, 1999, 2001; Osuna et al., 1997; Platt, 1998; Simon, 2004;jK/998).

The key to developing a successful decomposition algorithm is in the meteddaidetermine
the working setswhich are the subsets of variables to be optimized at each iteration. Tanguar
tee stepwise improvement each working set must contaertéfying pair (Definition 3 below).
Stronger conditions are required to guarantee convergence: (€hahg2000; Chen et al., 2006;
Hush and Scovel, 2003; Lin, 2001a,b; List and Simon, 2004) and @x@mger conditions appear
necessary to guarantee rates of convergence: (Balcazar et dl;,@€h and Scovel, 2003; Lin,
2001a). Indeed, although numerous decomposition algorithms have tmgmsed few are known
to possess polynomial run time bounds. Empirical studies have estimated ttimeuof some
common decomposition algorithms to be proportionaitevherep varies from approximately 1.7
to approximately 3.0 depending on the problem instance: (Joachims, 1888o\, 2002; Platt,
1998). Although these types of studies can provide useful insights thaylimited utility in pre-
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dicting the run time for future problem instances. In addition these particuidies do not appear
to be calibrated with respect to the accuracy of the final criterion valuesartteir relevance to
the framework considered here is not clear. Lin (2001a) performseeogence rate analysis that
may eventually be used to establish run time bounds for a popular decompedgarithm, but
these results hold under rather restrictive assumptions and more woedischbefore the tightness
and utility of these bounds is known (a more recent version of this analgsibe found in (Chen
et al., 2006)). Balcazar et al. (2001) present a randomized decdinp@dgorithm whose expected
run time isO((n+r(k?d?)) kdlogn) wheren is the number of sampled,is the dimension of the
input space, K k < nis a data dependent parameter aficfd?) is the run time required to solve
the dual QP problem over’d? samples. This algorithm is very attractive whefu? < n, but in
practice the value at is unknown and it may be large when the Bayes error is not close to zero.
Hush and Scovel (2003) define a clasgate certifying algorithmsand describe an example al-

gorithm that use®© @ computation to reach an approximate dual solution with accuracy

€, whereK, is the maximum value of the kernel matrix. Recently Simon (2004) introduce@a ne
rate certifying algorithm which can be shown, using the results in (List amtg 2005), to use

@] (% +n?log @—:)) computation to reach an approximate dual solution with accuraashere

A > 0 is the SVM regularization parameter. In this paper we combine Simon'’s algowith the
popularGeneralized SM@lgorithm of Keerthi et al. (2001) to obtaincampositealgorithm that
possesses the same computation bound as Simon’s algorithm, but appesar$atioless computa-

tion in practice (as illustrated in our experiments). We also extend this agptoderm a second
compositealgorithm with similar properties. In addition we introduce operational assungto

K, and the choice ok ande that yield a simpler computation bound©fn?) for these algorithms.
Finally to guarantee that actual implementations of these algorithms producxiapgte solutions

with accuracye we introduce two new stopping rules that terminate the algorithms when an adap-
tively computed upper bound on the accuracy falls bedow

The second stage of the design process maps an approximate dual sol@ioapproximate
primal solution. In particular this stage determines how the approximate dudibsois used to
form the normal vector and offset parameter for the SVM classifier. dblmmon practice to use
the approximate dual solution as coefficients in the linear expansion of thehdd forms the nor-
mal vector, and then use a heuristic based on approximate satisfactionkartsh-Kuhn-Tucker
(KKT) optimality conditions to choose the offset parameter. This approasimisle and compu-
tationally efficient, but it produces an approximate primal solution whosearacg is unknown.

In this paper we take a different approach based on the work of Huah €005). This work
studies the accuracy of the approximate primal solution as a function of tueaay of the ap-
proximate dual solution and the map from approximate dual to approximate priimgérticular

for the SVM problem it appears that choosing this map involves a tradbebifeen computation
and accuracy. Here we employ a map described and analyzed in (Halsh2@05) that guarantees

an accuracy o€, for the primal QP problem when the dual QP problem is solved with accuracy
(2\/27Kn+8\f)\)*2)\e,2). This map resembles current practice in that it performs a direct substitution
of the approximate dual solution into a linear expansion for the normal ydxtodiffers in the way

that it determines the offset parameter. We develo@@riogn) algorithm that computes the offset
parameter according to this map.

The main results of this paper are presented in Sections 2 and 3. Proafstfte theorems,
lemmas, and corollaries in these sections can be found in Section 6, excc&pebrem 2 which is
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established in (Hush et al., 2005). Section 2 describes the SVM formulptesents algorithms for
the first and second stages, and provides theorems that characteratinacy and run time for
these algorithms. Section 3 then determines specific run time bounds for desitarpalgorithms
applied to the standard classification problem and the density level deteobbieqm. Section 4
describes experiments that illustrate the new stopping rules and compaumttiae of different
decomposition algorithms. Section 5 provides a summary of results and estaldisloverall run
time bound. A complete algorithm that computessgroptimal solution to the primal QP problem
is provided by (Procedure 1, Section 2) and Procedures 3-8 in tlemdigp

2. Definitions, Algorithms, and Main Theorems

Let X be a pattern space aikd X x X — R be a kernel function with Hilbert spa¢¢ and feature
map@: X — H so thatk(xi,x2) = @(x1) - @(X2), VX1, %2 € X. DefineY := {—1,1}. Given a data set
((X1,¥1)5---, (%0, ¥n)) € (X xY)" theprimal QP problem that we consider takes the form

mingpe  AllWIIZ+ 3 i
s.t. Yi(@() - W+b) > 1§ 1)
& >0 i=12..n

whereA > 0, u; > 0 andy;u; = 1. This form allows a different weight; for each data sample.
Specific cases of interest include:

1. the L1-SVMfor the standard supervised classification problem which gets1/n, i =
1,...n

2. theDLD-SVMfor the density level detection problem described in (Steinwart et al.,)2005

which sets L
Ui = { g yi=1

Tony V=1
wheren; is the number of samples distributed accordinBitand assigned labgl=1,n_1 is
the number of samples distributed according1te and assigned labgl= —1,h=dP;/dP_;
is the density function, angl > 0 defines th@—level set{h > p} that we want to detect.

Thedual QP problem is
max. —3a-Qa+a-l
st. y-a=0 2
0<ag <y i=12..,n
where
Qij = YiyjK(%i, X})/2A.
The change of variables defined by
0 yi=1

U yi=-1 )

ai:=vig+l, li= {
gives thecanonical dualQP problem

max, —30-Qa +0 - W-+Wo
s.t. la=c 4)
0<agi<y i=12..n
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where

Qij =k(x,Xj)/2A, c=1-1, w=Ql+y, Wo=—|'y—%|~Q|. (5)

We denote the canonical dual criterion by

1
R(a) := —Ea-Qa + 0 - W+ Wo.
Note that this change of variables preserves the criterion value. Alsdhaitthe relation between
a anda is one-to—one. Most of our work is with the canonical dual because itli§iespthe
algorithms and their analysis.
We define the set af-optimal solutions of a constrained optimization problem as follows.

Definition 1 Let P be a constrained optimization problem with parameter sg@aeiterion func-
tion G: © — R, feasible seD C © of parameter values that satisfy the constraints, and optimal
criterion value G (i.e. G* = sup,g G(6) for a maximization problem and'G= infy_g G(6) for a
minimization problem). Then for argy> 0 we define

0:(P):= {8 O:|G(6) - G| <&}
to be the set af—optimal solutions for P.
We express upper and lower computation bounds uSi{ngandQ(-) notations defined by

O(g(n)) = {f(n) : 3 positive constants andng such that 6< f(n) < cg(n) for all n > ny},
Q(g(n)) = {f(n) : 3 positive constants andng such that &< cg(n) < f(n) for alln> ng}.

We now describe our algorithm for the primal QP problem. It computes arzippate canon-
ical dual solutiond and then maps to an approximate primal solutignb, &) using the map de-
scribed in the following theorem. This theorem is derived from (Hush e2@05, Theorem 2 and
Corollary 1) which is proved using the result in (Scovel et al., 2005a).

Theorem 2 Consider the primal QP problemgRy in (1) with A > 0 and |@(x)[°> < K,i =1,..,n,
and its corresponding canonical dual QP probleraJ® in (4) with criterion R. Lete, >0, € =
(2v/2K + 8\5\)*2)\8% and suppose that € 0¢(Dsyy) and Ra) > 0. If

P = Zl}\ii(di—h)(P(Xi)

El(b) = maX(Ovl_yi(lD'(p(Xi) +b))7 i=1.,n

and
n ~
b e argminy u;(b)
I; 151

then(,b,€(D)) € 0¢, (Psvm)-
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This theorem gives an expression fprthat coincides with the standard practice of replacing an
optimal dual solutioro* by an approximate dual solutianin the expansion for the optimal nor-
mal vector determined by the KKT conditions. The remaining variabland b are obtained by
substituting]s into the primal optimization problem, optimizing with respect to the slack varigble
and then minimizing with respect to!. To guarantee an accuraey for the primal problem this
theorem stipulates that the value of the dual criterion at the approximate sdbatioon—negative
and that the accuracy for the dual solution satisfy (2v/2K + 8v/A) ~2Ae3. The first condition
is easily achieved by algorithms that start with= | (so that the initial criterion value is 0) and
continually improve the criterion value at each iteration. We will guaranteecitensl condition by
employing an appropriate stopping rule for the decomposition algorithm.

Procedure 1 shows the primal QP algorithm that produces,aoptimal sqution(d,E)) that

defines the SVM classifier
n s
. ai —|I ~
sign ( )k(x;,x)er .
(i; 2

This algorithm inputs a data s& = ((X1,Y1), ..., (Xn,Yn)), @ kernel functiork, and parameter values
A, uandep. Lines 3—6 produce an exact solution for the degenerate case wWhibkeedata samples
have the same label. The rest of the routine forms an instance of the calrthrat QP according to
(5), setse according to Theorem 2, sei€ = | so thatR(a®) = 0, uses the routinBeconposi ti on

to compute as—approximate canonical dual solutiGnand uses the routir@ f set to compute the
offset parametelB according to Theorem 2. The paramegewhich is defined in the next section,
is a temporary value computed Bgconposi ti on that allows a more efficient computation iof
by O f set . The next three sections provide algorithms and computational bounttsefoputines
DeconpositionandCO f set.

Procedure 1The algorithm for the primal QP problem.

1: Primal QP (Th, K, A, u,€p)

2:

3 if (yi = y1, Vi) then

4 G—Il,b—y

5. Return@,b)

6: end if

7: Form canonical duak);; k(x'z')’\x"), lj — L%”“‘ wW—Ql+y, c—1-1
8: Compute Desired Accuracy of Dua«— ﬁ
9: Initialize canonical dual variable® — |

10: (&,g) + Decomposition(Q,w,c,u,&,a’)

11: b Offset(g,Y,u)

12: Return@, b)

2.1 Decomposition Algorithms

We begin with some background material that describes: optimality conditiorieéacanonical
dual, a model decomposition algorithm, necessary and sufficient conditioeenvergence to a

1. This method for choosing the offset was investigated briefly in (Keetthl., 2001, Section 4).
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solution, and sufficient conditions for rates of convergence. In masgsthis background material
extends a well known result to the slightly more general case considereavhere each component
of umay have a different value.
Consider an instance of the canonical dual QP problem giveiQbw, wo, c,u). Define the set
of feasible values
2:={a:(0<0;j<uy)and(a-1=c)},

and the set of optimal solutions
2% :=argmaxR(a).
aeAa

Also define the optimal criterion vall® := sup,., R(a) and the gradient at
g(a) :=0OR(a) = —Qa + w. (6)

The optimality conditions established by Keerthi et al. (2001) take the form,

*

aeAa & gja) <gk(a)forall j:aj; <uj, k:ok>0. (7)
These conditions motivate the following definition from (Keerthi et al., 208dsh and Scovel,
2003).

Definition 3 A certifying pair(also called aviolating pail) for a € 4 is a pair of indices that witness
the non—optimality oft, i.e. itis a pair of indices j o < uj and k: ax > 0 such that g(a) > gk(a).

Using the approach in (Hush and Scovel, 2003, Section 3) it can benstiat the requirement
that working sets contain a certifying pair is both necessary and suffimeobtain a stepwise
improvement in the criterion value. Thus, since certifying pairs are defimeatms of the gradient
component values it appears that the gradient plays an essential ra&emaing members of
the working sets. To compute the gradient at each iteration using (6) @s@(n’) operations.
However since decomposition algorithms compute a sequence of feasibts (@0 using
working sets of sizg, the sparsity ofa™! —a™) means that the update

g(a™™*) =g(a™) - Q@™ —a™) (8)

requires onlyO(pn) operations. A model decomposition algorithm that uses this update is shown
in Procedure 2. After computing an initial gradient vector this algorithm itertite process of
determining a working set, solving a QP problem restricted to this workingmeating the gradient
vector, and testing a stopping condition.

The requirement that working sets contain a certifying pair is necessanmyadb sufficient to
guarantee convergence to a solution (e.g. see the examples in Chen @&jl.K&erthi and Ong,
2000). However Lin (2002b) has shown that includingax—violating pairdefined by

(j*,k*) : j*earg maxgi(a), k*earg mi%gi(a) (9)

1.0 <Uj 1:ai >

in each working set does guarantee convergence to a solution. Orgradhent has been computed
a max-—violating pair can be determined in one pass through the gradientcentpand therefore
requiresO(n) computation. The class afax—violating pair algorithmghat include a max—violating
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Procedure 2A model decomposition algorithm for the canonical dual QP problem.
Model Deconposi ti on(Q,w,c,u,&,a®)

=

2:
3: Compute initial gradieng® «— —Qa° +w
4: m«0
5: repeat
6: Compute a working s&y™
7:  Computea™! by solving the restricted QP determineddy andw™
8: Update the gradieng™* « g™ — Q(a™?! —a™M)
90 m«—m+1
10: until (stopping condition is satisfied)

[EnY
[N

: Return@™, g™

pair in each working set includes many popular algorithms (e.g. Changian@@01; Joachims,
1998; Keerthi et al., 2001). Although asymptotic convergence to a solistiguaranteed for these
algorithms, their convergence rate is unknown. In contrast we nowitdesagorithms based on
alternative pair selection strategies that have the gamég computational requirements (once the
gradient has been computed) but possess known rates of corsetgemsolution.

Consider the model decomposition algorithm in Procedure 2. The run time ofidireloop
is the product of the number of iterations and the computation per iterationbathdof these
depend heavily on the size of the working sets and how they are cho$ensniallest size that
admits a convergent algorithm is 2 and many popular algorithms adopt this/gzeefer to these
asW2 decomposition algorithms. A potential disadvantage of this approach is thatithieer of
iterations may be larger than it would be otherwise. On the other hand adoywtitkgng sets of
size 2 allows us to solve each 2—variable QP problem in constant time (e.¢Rlatgel998). In
addition W2 decomposition algorithms require on(n) computation to update the gradient and
have the advantage that the overall algorithm can be quite simple (as demwohbly thaV2max—
violating pair algorithm). Furthermore adopting size 2 working sets will allow us\dement our
new stopping rules in constant time. Thus, while most of the algorithms weildedelow allow
the working sets to be larger than 2, our experiments will be performed withwWvariants.

In addition to their size, the content of the working sets has a significant tropabe run time
through its influence on the convergence rate of the algorithm. Hush an@IS2003) prove that
convergence rates can be guaranteed simply by includirgeacertifying pairin each working
set. Roughly speaking mate certifying pairis a certifying pair that, when used as the working
set, provides a sufficient stepwise improvement. To be more precise wevitathe following
definitions. Define a working set to be a subset of the index set of theamwns ofa, and let
W denote a working set of unspecified size akigldenote a working set of size. In particular
Wh = {1,2,...,n} denotes the entire index set. The set of feasible solutions for the cahdunada
QP sub—problem defined by a feasible vatuand a working setV is defined

a(a,W):={aea:0;=aq;Vi¢gW}.
Define
o(aW) == sup g(a)-(4—a)

bea(a,w)
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to be the optimal value of the linear programming (LP) problera.aThe following definition is
adapted from (Hush and Scovel, 2003).

Definition 4 For T > 0 an index pair W is called at-rate certifying pairfor a if o(a|Ws) >
1o0(a|Wy). A decomposition algorithm that includestarate certifying pair in the working set
at every iteration is called a—rate certifying algorithm

For at—rate certifying algorithm Hush and Scovel (2003) provide an uppentt@n the number

of iterations as a function af. An improved bound can be obtained as a special case of (List
and Simon, 2005, Theorem 1). The next theorem provides a slightlyetitfound that does not
depend on the size of the working sets and therefore slightly improves thed laibtained from
(List and Simon, 2005, Theorem 1) when the size of the working sets rltrgn 2.

Theorem 5 Consider the canonical dual QP problem in (4) with criterion function R amdn®
matrix Q. Let L> maxQ; and S> maxu;. A t—rate certifying algorithm that starts witk®
achieves R— R(a™) < ¢ after [m] iterations of the main loop where

()] 8

2 (4S 1(R* —R(a9%) 4
T<Te‘1+['”<4Lsz>D’ Es1 o

[0] denotes the smallest integer greater than or equdl, tand[6].. = max(0,8).

Chang et al. (2000) have shown that for every 4 there exists a—rate certifying pair with

T > 1/n?. This result can be used to establish the existence of decomposition algoviitims
polynomial run times. The first such algorithm was provided by Hush andeb¢2003) where the
rate certifying pairs satisfied> 1/n?. However the value can be improved and the bound on the
number of iterations reduced if the rate certifying pairs are determinedetiffg. Indeed List and
Simon (2005) prove that> 1/n for amax—Ip2pair

W € arg maxo(afW)

which is a pair with the maximum linear program value. The next theorem mewdlightly better
result oft > 1/(n— 1) for this pair and establishes the optimality of this boéind

Theorem 6 Fora ¢ 4
o (o Wh)
n-1 -

Furthermore, there exist problem instances for which there exéta such that

o (o Wh)
n-1 -

max o(a|Ws) >
Jhax o(alWs) =

whax o(aWg) =

2. This result provides a negligible improvement overtthel/n result of List and Simon but is included here because it
establishes optimality and because its proof, which is quite different fratroftList and Simon, provides additional
insight into the construction of certifying pairs that achieve 1/(n—1).
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Since a max—Ip2 pair gives the largest values¢h|W,) it follows from Definition 4 and The-
orem 6 that the largest single valuetthat can be valid for all iterations of all problem instances
is 1/(n—1). Thus a max—Ip2 pair is optimal in that it achieves the minimum iteration bound in
Theorem 5 with respect tb Furthermore Simon (2004) has introduced an algorithm for computing
a max—Ip2 pair that requires on®(n) computation and therefore coincides with @) computa-
tion required to perform the other steps in the main loop. However, in spite rdmise suggested
by this analysis experimental results suggest that there is much room to erheeonvergence
rates achieved with max—Ip2 pairs (e.g. see Section 4). The result bedoidgs a simple way to
determine pair selection methods whose convergence rates are at lgastias those guaranteed
by the max—Ip2 pair method and possibly much better. This result is stated asllargcsince it
follows trivially from the proof of Theorem 5.

Corollary 7 Let DECOVP be a realization of the model decomposition algorithm for the canonical
dual QP in Procedure 2 and lgin™) represent a sequence of feasible points produced by this
algorithm. At each iteration m Ie\f\/zm be at-rate certifying pair and let™* be the feasible
point determined by solving the restricted QP determined’B;andV'VZm. If for every m> 0 the
stepwise improvement satisfiegoR*1) — R(a™) > R(G™1) — R(a™) then DECOVP will achieve
R*— R(a™) < ¢ after [ iterations of the main loop whera is given by Theorem 5.

This theorem implies that any pair whose stepwise improvement is at leasbdsagahat
produced by a max—Ip2 pair yields a decomposition algorithm that inherits tla¢igtebound in
Theorem 5 witht = 1/(n—1). An obvious example is enax—qp2pair, which is a pair with the
largest stepwise improvement. However since determining such a pair may requistastidl
computation we seek alternatives. In particular Simon’s algorithm visits alegeod candidate
pairs in its search for a max—Ip2 pair and can therefore be easily extémdedn an alternative
pair selection algorithm that is computationally efficient and satisfies this stepmjzrovement
property. To see this we start with a description of Simon’s algorithm.

First note that when searching for a max—Ip2 pair it is sufficient to considly pairs(j,k)
wheregj(a) > gk(a). For such a pair it is easy to show that (e.g. see the proof of Theorem 6)

o(al{j,k}) = min(uj —aj,ax)(gj(a) — gk(a)) = Ajk (gj(a) —gk(a)) (10)

whereu; is the upper bound om; specified in (4) andj, := min(u; —aj,ax). The key to Simon’s
algorithm is the recognition that among t@¥n?) index pairs there are at most 2listinct values
for A:

Up — 031, 01, Up — 02, O2, ..., Un —0Up, Up. (11)
Consider searching this list of values for one that corresponds to a mexiralwe ofa. For an
entry of the formu; — aj for somej, an indexk that maximizess(a|{j,k}) satisfies

k € arg max (gj(a)—g(a)) = arg min g(a).

l:00>uj—a; l:o>uj—a;
Similarly for an entry of the fornmy for somek, an indexj that maximizes(a|{j,k}) satisfies

j € arg max (gl( )—gk(a)) = arg max g(a).

u—a; > iU —oy >0k

Now suppose we search the list of values from largest to smallest apdriaeg of the maximum
gradient component value for entries of the foum- a; and the minimum gradient component
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value for entries of the form as we go. Then as we visit each entry in the list the index pair that
maximizeso can be computed in constant time. Thus a max—Ip2 pair can be determined iassne p
through the list. A closer examination reveals that only the nonzero valués &tont of the list
need to be scanned, since entries with zero values cannot form aiogrgir (i.e. they correspond
to pairs for which there is no feasible direction for improvement). In addismte nonzero entries
of the formu; — a correspond to componenisvherea < uj, and nonzero entries of the forag
correspond to componerksvhereay > 0, once the scan reaches the last nonzero entry in the list the
indices of the maximum and minimum gradient component values corresponads-aviolating
pair. Pseudocode for this algorithm is shown in Procedure 4 in Appendiki6 algorithm requires
that the ordered list of values be updated at each iteration. If the enteistosed in a linear array
this can be accomplished @( pn) time by a simplesearch and inserlgorithm, where is the size
of the working set. However, with the appropriate data structure (e.gl-dolack tree) this list can
be updated iO(plogn) time. In this case the size of the working sets must safisfyO(n/logn)
to guarantee a®(n) run time for the main loop.

Simon’s algorithm computes both a max—Ip2 pair and a max—violating pair attiediyetne
same cost. In addition the stepwise improvement for an individual pair cearbputed in constant
time. Indeed with\;" = {j,k} andg(a(") > g(a}') the stepwise improvemendg takes the form

NSy —D%q/2, &3> gA
g:{ % ’ (12)

2 otherwise

wheredg = g(a) — g(ay), q= Qjj + Quk— 2Q andA = min(u; —aaf"). Thus we can effi-
ciently compute and compare the stepwise improvements of the max—violating artpthpairs
and choose the one with the largest improvement. We call thiCtraposite—Ipair selection
method. It adds a negligible amount of computation to the main loop and its stepwissangent
cannot be worse than either the max—violating pair or max—Ip2 algorithm aMieecan extend
this idea further by computing the stepwise improvement for all certifying paited by Simon’s
algorithm and then choosing the best. We call thisGuenposite—lipair selection method. This
methods adds mon—negligibleemount of computation to the main loop, but may provide even bet-
ter stepwise updates. It is worth mentioning that other methods have beeatlyéstroduced which
examine a subset of pairs and choose the one with the largest stepwisedamprt (e.g. see Fan
et al., 2005; Lai et al., 2003). The methods described here are differ¢hat they are designed
specifically to satisfy the condition in Corollary 7.

We have described four pair selection methods; max—Ip2, Composite+loftasx—violating
and max—Ip2), Composite—Il (best of certifying pairs visited by Simon'sratyn), and max—qp2
(largest stepwise improvement) which all yield decomposition algorithms thatysésiteration
bound in Theorem 5 with = 1/(n— 1), but whoseactualcomputational requirements on a specific
problem may be quite different. In Section 4 we perform experiments totigeés the actual
computational requirements for these methods.

2.2 Stopping Rules

Algorithms derived from the model in Procedure 2 require a stopping lndeed to achieve the run
time guarantees described in the previous section the algorithms must be tedrpirtggerly. The
most common stopping rule is based on the observation that, prior to congergemax—violating
pair (j*,k*) represents the most extreme violator of the optimality conditions in (7). Thisestsyg
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the stopping rulestop at the first iteratiomn where
gj- (@™ — ge (a™) < tol (13)

wheretol > 0 is a user defined parameter. This stopping rule is employed by many existing d
composition algorithms (e.g. see Chang and Lin, 2001; Chen et al., 2086HKet al., 2001; Lin,
2002a) and is especially attractive for max—violating pair algorithms sinceithean be computed

in constant time once a max—violating pair has been computed. Lin (2002a)egitif$ rule by
proving that the ga;-(a™) — gk (a™) converges to zero asymptotically for the sequence of fea-
sible points generated by a particular class of decomposition algorithms.ditioadkeerthi and
Gilbert (2002) prove that (13) is satisfied in a finite number of steps f@eaiic decomposition
algorithm. However the efficacy of this stopping rule is not yet fully unad. In particular we

do not know the relation between this rule and the accuracy of the appr@dwlation it produces,
and we do not know the convergence rate properties of the seq(mn@e™) — gk-(a™)) on which

the rule is based. In contrast we now introduce new stopping rules whanagtee a specified ac-
curacy for the approximate solutions they produce, and whose camaggate properties are well
understood. In addition we will show that these new stopping rules caormeuted in constant
time when coupled with the pair selection strategies in the previous section.

The simplest stopping rule that guarantees-aoptimal solution for a—rate certifying algo-
rithm is to stop aftem’iterations wheren’is given by Theorem 5 witlR* — R(a®) replaced by a
suitable upper bound (e.g. 1). We call tdtopping Rule OHowever the bound in Theorem 5 is
conservative. For a typical problem instance the algorithm may reaclctieamye in far fewer
iterations. We introduce stopping rules that are tailored to the problem iestanuctherefore may
terminate the algorithm much earlier. These rules compute an upper botRid-dr(a) adaptively
and then stop the algorithm when this upper bound falls belolhere are many ways to determine
an upper bound oR* — R(a). For example the primal-dual gap, which is the difference between
the primal criterion value and the dual criterion value, provides such adand therefore could
be used to terminate the algorithm. However, computing the primal-dual gap addlsignificant
computation to the main loop and so we do not pursue it here. Instead wepmlstepping rules
that, when coupled with one of the pair selection methods in the previous sesgsimple to com-
pute. These rules use the bouRt— R(a) < o(a|W,) /Tt which was first established by Hush and
Scovel (2003) and is reestablished as part of the theorem below. &bteth and corollary below
establish the viability of these rules by proving that this bound convergesrtoasR(a™) — R,
and that ifR(a™) — R* at a certain rate then the bound converges to zero at a similar rate.

Theorem 8 Consider the canonical dual QP problem in (4) with Gram matrix Q, colstrzector
u, feasible sef, criterion function R, and optimal criterion value'RLeta € 4 and let W, be a
size p working set. Then the gap-RR(a) is bounded below and above as follows:

1. LetL> maxQ; and

sup Zu,z < Up
{VpVpCWh} iV,

where the supremum is over all size p subsets,ofliven

o(aWp) min (1, o(a|Wp)
2 pLUp

> < R —R(a). (14)
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2. If W, includes ar—rate certifying pair fora then

o(a/Wp)

R —R(a) .

< (15)

The next corollary follows trivially from Theorem 8.

Corollary 9 Consider the canonical dual QP problem in (4) with criterion function R. &oy
sequence of feasible pointa™) and corresponding sequence of working s#t") that include
T—rate certifying pairs the following holds:

Ro™ - R < o(aMw™ —0.
In addition, rates for Ra™) — R* imply rates foro(a™W™) — 0.
This corollary guarantees that the following stopping rule will eventually teateimt—rate certi-

fying algorithm, and that when terminated at iteratioiit Will produce a solutiorn™ that satisfies
R(a™ —R* <e.

Definition 10 (Stopping Rule 1) For a t—rate certifying algorithm with—rate certifying pair se-
quenceW,"), stop at the first iteratiomh whereo(a™W,") < te.

This rule can be implemented in constant time using (10). The effectivehtrgs nule will depend
on the tightness of the upper bound in (15) for valuea ofar the optimum. We can improve this
stopping rule as follows. Define

3T := R(a™1) —R(a™)

and suppose we have the following bound at iteration
R'—R(@™) <s.
Then at iteratiorm+ 1 we have

m+1 Wm+1
R* —R(@™1) < min (0(0(!2), S— 6Q> :

Thus an initial bound® (e.g.s° = a®/1) can be improved using the recursion

M1y L
s = min (0(0( W ),s'“6Q>

T

which leads to the following stopping rule:

Definition 11 (Stopping Rule 2) For a 1—rate certifying algorithm witht—rate certifying pair se-
quenceWJ"), stop at the first iteratiomih where § <.

This rule is at least as good as Stopping Rule 1 and possibly better. Hoivesguires that we
additionally compute the stepwise improveméfjt= R(a™1) — R(a™) at each iteration. In the
worst case, since the criterion can be writRn) = %a -(g(a) +w) +wp, the stepwise improvement
O can be computed i®(n) time (assuming(a™) has already been computed). However for
W2 variants this value can be computed in constant time using (12). In Sectiondesegibe
experimental results that compare all three stopping rules.
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2.3 Computing the Offset

We have concluded our description of algorithms forDeeomposition routine in Procedure 1 and
now proceed to describe an algorithm for thiset routine. According to Theorem 2 this routine
must solve

bearg rrginiui max(0,1—y;(P-@(x)+b)).

An efficient algorithm for determininﬁ is enabled by using (5) and (6) to write

B[ e
\M:

1-yiQ-o(x)=1— YI< X17X|)>
=1-yi(Qa—1))i = yi(w —(Qd)i) = vigi(d).

This simplifies the problem to

n

bearg nginzlui max (0, yi(gi(6) —b)).

The criteriony [, uymax(0, i (gi(&) — b)) is the sum of hinge functions with slopesy; and
b—interceptsyi (G). It is easy to verify that the finite s€i(a),i = 1,...,n} contains an optimal
solutionb. To see this note that the sum of hinge functions creates a piecewise linizaeswvhere
minima occur at corners, and also possibly along flat spots that haveer edreach end. Since the
corners coincide with the poings(a) the set{g;(d),i = 1,...,n} contains an optimal solution. The
run time of the algorithm that performs a brute force computation of the critésraavery member
of this set isO(n?). However this can be reduced@jinlogn) by first sorting the valueg;(&) and
then visiting them in order, using constant time operations to update the critationat each step.
The details are shown in Procedure 8 in Appendix 6.

2.4 A Complete Algorithm

We have now described a complete algorithm for computingpaoptimal solution to the primal
QP problem. A specific realization is provided by (Procedure 1,Section@)aocedures 3-8 in
Appendix 6. Multiple options exist for theecomposition routine depending on the choice of work-
ing set size, pair selection method, and stopping rule. The realization inpleadig implements a
W2variant of the Composite—I decomposition algorithm with Stopping Rule 2 (arakik/enodi-
fied to implement the Composite—Il algorithm). In the next two sections we completaio time
analysis of decomposition algorithms.

3. Operational Analysis of Decomposition Algorithms

In this section we use Theorem 5 and Corollary 7 to determine run time boond=sé certifying
decomposition algorithms that are applied to the L1-SVM and DLD-SVM caabdiml QP prob-
lems. Itis clear from Theorem 5 that these bounds will depend on thenpteest, S L, R* and
€. Let us consider each of these in turn. In the algorithms below each wgoskincontains either
a max—Ip2 pair or a pair whose stepwise improvement is at least as good akahmax—Ip2 pair.
Thus by Corollary 7 we can set=1/(n—1). Instead however we set= 1/n since this value
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is also valid and it greatly simplifies the iteration bounds without changing thsic bature. The
parameteS will take on a different, but known, value for the L1-SVM and DLD-SVkbblems
as described below. Using the definitionlofn Theorem 5 and the definition @ in (5) we set
L= % whereK > max<i<nk(x,% ). We consider two possibilities fa¢. The first is the value

Kn = maxk(xi,X;)
1<i<n

which is used to bound the run time for a specific problem instance and thedsiscthe constant

K = supk(x, x)
xeX
which is used to bound the run time for classes of problem instances thtiteusame kernel, e.g.
SVM learning problems where the kernel is fixed. In the second caseenstarested in problems
whereK is finite. For example for the Gaussian RBF kerkigd X ) = e 9IxXI” we obtainK = 1.
The optimal criterion valu®* is unknown but restricted ti®, 1]. To see this we use (5) to obtain

R(a) = —%G-QG—FG'W—I—WO = —%(a—l)-Q(a—I)Jr(a—l)-y.
Then sincd € 4 it follows that R* > R(l) = 0. Furthermore, using the positivity € and the
definition ofl in (3) we obtain that for ang € 2 the bound

R(a) = —%(a—l)-Q(a—I)Jr(a—l)-y < (a—=l)y<ul=1
holds. We have now considered all the parameters that determine the itdration exceph and
€ which are chosen by the user.

Recent theoretical results by Steinwart and Scovel (2004, 2006yeS6et al. (2005b) indicate
that with a suitable choice of kernel and mild assumptions on the distribution thedrelassifier's
generalization error will approach the Bayes error at a fast rate ihwese\ O n—B, where the rate
is determined (in part) by the choice okOf < 1. Although these results hold for exact solutions
to the primal QP problem it is likely that similar results will hold for approximate sohgtias long
asep — 0 at a sufficiently fast rate in. However in practice there is little utility in improving
the performance once it is sufficiently close to the Bayes error. Thisestg¢hat once we reach
a suitably large value af there may be no need to decreasande, below some fixed values
andep. Thus, for fixed valuea > 0 ande, > 0 we call any(A, €;) that satisfied > A ande, > €,
an operationalchoice of these parameters. Whinis finite Theorem 2 gives a corresponding
fixed valueg = (2v/2K + 8\/X)‘2)\e_|o2 > 0 that we use to define an operational choice of the dual
accuracy.

We begin our analysis by considering decomposition algorithms for the Li4-Bkoblem.
Although our emphasis is on rate certifying decomposition algorithms, outtfe@stem establishes
a lower bound on the number of iterations &y W2decomposition algorithm.

Theorem 12 Consider the L1-SVM canonical dual with optimal criterion valde Rny W2 vari-
ant of Procedure 2 that starts witk® = | will achieve R —R(a™) < € in no less tharfm] iterations

where -
m = max(o, n(2—s)>
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Remark 13 When R > ¢ the minimum number of iterations is proportional to n and increases
linearly with R'. Thus it is important to understand the conditions whetassignificantly larger
thane. Under very general conditions it can be shown that, with high probabRty> e — ¢,
where € is the Bayes classification error arng is a term that tends t6 for large n. Thus, for large
n, R* will be significantly larger tharg when é is significantly larger tharg, which we might expect
to be common in practice.

We briefly outline a path that can be used to establish a formal proof of tliaises. Since the
duality gap for the L1-SVM primal and dual QP problems is zerojsRhe optimal value of the
primal QP problem (e.g. for finite and infinite dimensional problems resgdg see Cristianini
and Shawe-Taylor, 2000; Hush et al., 2005). Furthermore it is eashtav that R is greater
than or equal to the corresponding empirical classification error (i.e.tthiming error). Therefore
the error deviance result in (Hush et al., 2003) can be used to estaldisbrgl conditions on the
data set = ((x1,Y¥1),-..,(Xn,Yn)), the kernel k, and the regularization paramedesuch that the
bound R > e* — ¢, holds with probabilityl — 8, whereg, = O( In(ﬁ/é)/n). Since éis a
constant it can be further shown that with a suitably chosen constan® end a sufficiently large
value ny, then Pr( number of iterations> ”g:cs),Vn > no)) > 1- &, whered,, — 0 at a rate
that is exponential in¢ Thus when'e> € we can prove that the number of iterationgign) with
probability 1.

We now continue our analysis by establishing upper bounds on the computagjoired for
rate certifying decomposition algorithms applied to the L1-SVM and the DLD—$udblems. In
the examples below we establish two types of computation bougelseric boundsvhich hold
for any value ofn, any choice ofA > 0, and either value of; andoperational boundshat hold
whenK = K is finite and operational choices are madeda@ndA. In the latter case we obtain
bounds that are uniform ik ande and whose constants depend on the operational levarsdA.
These bounds are expressed ugi{g) notation which suppresses their dependencé pa and
A but reveals their dependence on In both examples we first consider a general class of rate
certifying decomposition algorithms whose working sets may be larger thaor 2hése algorithms
we establish generic and operational bounds on the number of iteratioas vile consider thé/2
variants of these algorithms and establish operational bounds on theitlouartime.

Example 1 Consider solving the L1-SVM canonical dual using a decompositionigigorhere
each working set includes a certifying pair whose stepwise improvemaniigiast as good as that
produced by a max—Ip2 pair. This includes algorithms where each wgpiah includes a max—
Ip2, Composite—I, Composite—Il or max—gp2 pair. Applying TheorenittbS+= 1/n, L= K/2A,
R* —R(a%) < 1, 1= 1/n ande < 1 gives the generic bound

2nin <1> , €> %
€ AN

< (16)
2K An 2K
2n<)\sn_1+|n<2K>>’ s<%

on the number of iterations. With & K, this expression gives a bound on the number of iterations
for a specific problem instance. When=KK is finite, operational choices are made foandA,

748



QP ALGORITHMS

and n is large the number of iterations is determined by the first case an¢hijs @his matches
the lower bound in Remark 13 and is therefore optimal in this sense. For aaiént that uses
an algorithm from Section 2.1 to compute a max—Ip2, Composite—I or Compbgitar at each
iteration the main loop requires @) computation to determine the pair,(l@gn) computation to
update the ordered list M, @) computation to update, and Qn) computation to update the
gradient. Thus the main loop requires a total ofr() computation. Combining the bounds on
the number of iterations and the computation per iteration we obtain an oveoafiputational
requirement of @?). In contrast, for a W2 variant that computes a max—qp2 pair at eachtitera
the main loop computation will increase. Indeed the current best algorithroomputing a max—
gp2 pair is a brute force search which requirer®) computation and we strongly suspect that
this cannot be reduced to the(©) efficiency of Simon’s algorithm. Combining this with the lower
bound on the number of iterations in Remark 13 demonstrates that treecaises where the overall
run time of the max—qgp2 variant is inferior.

Example 2 Consider solving the DLD-SVM canonical dual using a decompositiomitiigowhere
each working set includes a certifying pair whose stepwise improvematigiast as good as that
produced by a max—Ip2 pair. In this case we can determine a value fof@l@ss,

maxu; = max< 1 P ) < max(1 1> = # =S
i (1+p)m’ (1+p)n_1/) — m’n_1/  min(n,n_q)

where n and n_; are the number of samples with labels-\L and y= —1 respectively as described
in Section 2. Suppose that A n_1 (results for the opposite case are similar). Applying Theorem 5
with L=K/2\, R* —R(a®) < 1, andt = 1/n gives the generic bound

1 2Kn
2nin( =), &€>—
€ An2

m< (17)
2Kn A2 2Kn
on( =— —1+In( =% —
n(s)\nf +in <2Kn>> » ES An2
on the number of iterations. The dependence pdistinguishes this bound from the bound in (16).
With K= K (17) gives a bound on the number of iterations for a specific problem iost&8uppose
that iy = Q(n). Then when K=K is finite, operational choices are made foandA, and n is large
the number of iterations is determined by the first case and(ig.OFor a W2 variant that uses
an algorithm from Section 2.1 to compute a max—Ip2, Composite—I or Compbgiter at each

iteration the main loop requires @) computation. Thus the overall computational requirement is
o(rP).

4. Experiments

The experiments in this section are designed to accomplish three goals: ttigaieethe utility
of Stopping Rules 1 and 2 by comparing them with Stopping Rule 0, to comptaral aersus
worst case computational requirements, and to investigate the computagqnakments o2
decomposition algorithms that use different pair selection methods. Ous fe@n the computa-
tional requirements of the main loop of the decomposition algorithm since this mdplmtes a
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dominating term to our run time analysis, and since the computational requireaiehts other
algorithmic components can be determined very accurately without experiinantd/e compare
the four rate certifying pair selection methods (max—qp2, max—Ip2, Comphsitiemposite—Il)
described in Section 2.1, and a max—violating pair method that wemaadl-vps This max—vps
algorithm is identical to the Composite—I algorithm, except that when choosimgelen a max—Ip2
and max-—violating pair we always choose the max-violating pair. To pro\igeciive compar-
isons all algorithms use the same stopping rule. This means that the max—vpthalgeses a
different stopping rule than existing max—violating algorithms. Nevertheledsdimg the max—
vps algorithm in our experiments helps provide insight into how the algorithmslaj@ed here
might compare with existing algorithms.

Our experiments are based on two different problems: a DLD-SVM profidemed from the
Cyber—Security data set described in (Steinwart et al., 2005) and an L1-SVM problemefb
from the Spambasedata set from the UCI repository (Blake and Merz, 1998). All experisien
employ SVMs with a Gaussian RBF kerrigk, x') = e 91*-XI*_ Since a value of the regularization
parameter(A,0) that optimizes performance is usually not known ahead of time, the value that
is ultimately used to design the classifier is usually determined through some tgparch that
requires running the algorithm with different values(afo). Thus it is important to understand
how different values, optimal and otherwise, affect the run time. To egglos effect we present
results for two different valuegA*,6*) and(A, 0), obtained as follows. We train the SVM at a set
of grid values and choog@*,0*) to be a value that gives the best performance on an independent
validation data set. Then(A,q) is chosen to be some other grid value encountered during the
search that yielded non—optimal but nontrivial performance (i.e. it aehisome separation of the
training data). For the DLD-SVM the performance is defined by the risktfom % in (Steinwart
et al., 2005) and for the L1-SVM it is the average classification error.

TheCyber—Security data set was derived from network traffic collected from a single compute
over a 16-month period. The goal is to build a detector that will recogniamalous behavior from
the machine. Each data sample is a 12—dimensional feature vector whosenemtspepresent real
valued measurements of network activity over a one-hour window (evgrdge number of bytes
per session”). Anomalies are defined by choosing a uniform referdistribution and a density
levelp = 1. The parameter valuga*,o*) = (10~7,1071) and(A, @) = (.05,.05) were obtained by
employing a grid search witiy:n_1 = 4000:10,000 training samples and 2000:100,000 validation
samples. The solution obtained with parameter va{déso*) separated the training data and gave
a validation risk ofg. = 0.00025. The correspondirajarm rate(i.e. the rate at which anomalies
are predicted by the classifier once it is placed in operation) is 0.0005.

The Spambasedata set contains 4601 samples frfh x {—1,1} whered = 57. This data set
contains 1813 samples with lahet —1 and 2788 samples with labgt= 1. The parameter values
(A*,0%) = (10°%,10°%) and (A,0) = (1072,102) are obtained by employing a grid search with
3601 training samples and 1000 valldation samples. The solution obtained vathgtar values
(A*,0%) did not separate the training data and gave a classification errc®@@3 0n the validation
set.

We present results for three experiments.

3. More specifically, for each value afe {1,.5,.1,.05,...,.000005.000000%} we search a grid of values that starts
with the set{0.001,0.01,0.05,0.1,0.5,1,5,10,100} and is refined using a golden search as described in (Steinwart
et al., 2005, Section 4).
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Experiment 1 This experiment investigates the utility of Stopping Rules 1 and 2 by com{tiagimg
with Stopping Rule 0. More specifically we compare the actual criterion gap Ra™) to the
bounds used by these three stopping rules. We refer to the bounds foin§tBoites 0, 1, and 2 as
Bounds 0, 1, and 2 respectively. To obtain an estirRatef R* we run the decomposition algorithm
in Procedure 3 witle = 10~1% and compute the resulting criterion value. Then to obtain results for
comparison we run this algorithm again and compute: the criterionigap R(a™), Bound 1 given

by no(a™W4"), Bound 2 obtained from the recursive rulg-s min(no(a™Ws"),s™1 — &1, and
Bound 0 given by equation (23) in the proof of Theorem 5.

10 T T T T T T

D S _

01}
0.01 }
0.001 |
1e-04 |

1le-05

10 . 1Q0 1000
number of iterations

1le-06

Figure 1: The criterion gaR* — R™ and bounds on this gap employed by Stopping Rules 0, 1 and
2 for theCyber—Security data. Bound 0 and 2 are indistinguishable up to about iteration
25, at which point they separate and Bound 2 becomes a monotonicalgadeay lower
envelope of Bound 1.

A plot of these values when the algorithm is applied taGkiber—Security data with(A*, 0*) =
(1077,101) and n:n_; = 4000:10000 is shown in Figure 1. While Bound 1 is a bit erratic Bound
2 is monotonic and relatively smooth. Nevertheless both will stop the algorithesaly the same
iteration (unles< is very close to 1). In addition while Bounds 1 and 2 may be loose, i.e. tkey ar
often several orders of magnitude larger than the actual criterion gagir tiehavior tracks that of
the criterion gap relatively well and therefore the corresponding stoppirigsrare very effective
relative to Rule 0. For example suppose we chaosel0~°. Because the initial criterion gap is so
small it takes only abo5iterations for the algorithm to reach this accuracy. Both Stopping Rules
1 and 2 terminate the algorithm after approximat&@00iterations, but Stopping Rule 0 terminates
after approximatelyl.225x 10'3 jterations (approximateljt0 orders of magnitude more).

Results obtained by applying the algorithm to 8gambasedata with(A\*, 0*) = (1076,1073)
and n= 4601are shown in Figure 2. In this case the initial criterion gap is larger so theasa{ion
between the criterion gap and the bounds is smaller. Once again Bound Hitigaatic, and this
time there are several regions (beyond the initial region) where Boliradsd 2 are well separated.
This suggests that the monotonic behavior of Bound 2 provides a mmustrstopping rule. As be-
fore Bounds 1 and 2 are loose, but their behavior tracks that of the witayap relatively well and
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Figure 2: The criterion gaR* — R™ and bounds on this gap employed by Stopping Rules 0, 1 and
2 for theSpambasedata. Bound 0 and 2 are close up to about iteration 20,000, at which
point they separate and Bound 2 becomes a monotonically decreasingelovedope of
Bound 1.

therefore the corresponding stopping rules are very effective. Fanplait takes abou200,000
iterations for the algorithm to reach an accuraey= 10-°, while both Stopping Rules 1 and 2 ter-
minate the algorithm after approximate2y000, 000iterations and Stopping Rule 0 terminates after
approximatelyd x 10 iterations (approximatel orders of magnitude more). More generally the
number of the excess iterations for Stopping Rule 2 appears to be lessrimaden of magnitude
for a large range of values af

In both cases above it is clear that Stopping Rules 1 and 2 are far suger#topping Rule 0.

Experiment 2 This experiment compares actual computational requirements for tivelotp of
various decomposition algorithms applied to tBgber—Security data. With density levgb =

1, accuracye = 1078, parameter valueg\*,0*) = (10~7,1071) and (A,0) = (.05,.05), and five
different problem sizes;m_; = 2000:4000, 2500:5000, 3000:6000, 3500:7000, and 4000080
we employed the decomposition algorithm with Stopping Rule 2 and pair selewtitiods max—
Ip2, Composite—I, Composite—Il, max—vps and max—gp2. For eautligm size we generated ten
different training sets by randomly sampling (without replacement) thenadiglata set. Then we
ran the decomposition algorithm on each training set and recorded théeuaf iterations and the
wallclock time of the main loop. The minimum, maximum and average valubes& quantities
for parameter valuegA*,0*) = (10~7,1071) are shown in Figure 3. There is much to discern
from the plot on the left. It is easy to verify that for all pair selection methods thebers of
iterations are several orders of magnitude smaller than the worst cagadgiven in Example 2.
On average the convergence rate of the max—Ip2 method is much wanghé&other methods. This
may be partly due to the fact that this method uses only first order informiatidetermine its pair.

4. In Figures 3-6 the x—axis values of some points are slightly offsetagatibir y—axis values can be more easily
visualized.
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However, this is also true of the max—vps method whose convergeiede rauch faster. Indeed,

it is curious that the max—Ip2 method, which chooses a stepwise directiau lma a combination

of steepnessand room to move, has a worse convergence rate than the max—vps method, which
chooses a stepwise direction basedsteepnesslone. By slightly modifying the max—Ip2 method
to obtain the Composite—I method a much faster convergence rate is edseithe Composite—|

number of iterations

number of iterations

Figure 4: Main loop computation f@@yber—Security data With(X,E) = (.05,.05). The number of
iterations in the left plot is identical for all five methods for all valuesoT he wallclock
time in the right plot is indistinguishable for the Composite—I, max—vps and max—Ip2

and max-vps methods have roughly the same convergence rateugdests that Composite—I may
be achieving its improved rate by choosing a max—violating pair a large fractithe time. Indeed,
on a typical run of the Composite—I method we found that, among the 53% wéthtions where
the max—Ip2 and max—violating pairs were different, a max—violating pairceasen 4.3 times as
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often. Although a larger stepwise improvement does not guarantee a fasteergence rate the
max—qp2 method, which gives the largest stepwise improvement, alsthgafastest convergence
rate. However the Composite—Il method, which requires far less cotmputdhan the max—qp2
method, gave nearly the same convergence rate. Quantitatively thegavarenber of iterations for
the max—Ip2 method is roughly 9 times that of Composite—Il, while the ayexagber of iterations
for Composite—I is roughly 2 times that of Composite—Il. The variation in theber of iterations
is smallest for Composite—Il and max—qp2, followed by Composite—I argvpsg, and then max—
Ip2. This variation ranges from 2x to 8x across the different sample simém@thods. The plot on
the right shows the wallclock times. The times for the max—qp2 method aredbéttause they
are much larger than the rest. Indeed they are roughly n times larger tin@nvallclock times for
Composite—Il. The Composite—Il method achieved the fastest aveedigéoek times which were
roughly 6.8 times faster than the max—Ip2 method and 1.6 times faster than thmo€iteswl and
max-vps methods. _

Results for parameter valu@, o) = (.05,.05) are shown in Figure 4. The computational re-
quirements here are greater than with the previous parameter value ttMeuge this primarily to
the fact that Ris larger so that the initial criterion gap is larger. The larger valuelo€orresponds
to a strong regularization term that produces a solution where all compisnafa are forced from
their initial values at one bound to their final values at the opposite boundndve all B +n_1
components ofl to their opposite bound using working sets that contain one sample from each
class requires n; iterations (since n; > n;) and this is exactly what the algorithms did for all five
pair selection methods on every training set. This is a quintessential exafglproblem where
the number of iterations must be (at least) a significant fraction of the puwitiraining samples
regardless of which algorithm is used. The resulting solution has the sintelgiatation that its
normal vector is the difference in class means. The wallclock times of tkelp2a Composite—I
and max-vps algorithms are roughly 5 times faster than the Compositeslithign because of the
extra computation per iteration employed by Composite—Il. The relatioristtipeen the number
of iterations and the training set size is demonstrably linear, and the reldtiphetween the wall-
clock times and the training set size is demonstrably quadratic. These rda®ncide with the
linear and quadratic forms predicted by the analysis in Section 3.

Experiment 3 This experiment is similar to the previous experiment except that theitlgaerare
applied to theSpambasedata. With accuracg = 10-5, parameter value$\*,c*) = (1076,1073)
and(\,0) = (10-2,107%), and seven different problem sizes 100Q 150Q 200Q 250Q 3000 350Q
4000we employed the decomposition algorithm with Stopping Rule 2 and pair selewtitrods
max—Ip2, Composite—I, Composite—Il, max—vps and max—qp2. Weeaecomposition algorithm
on ten different training sets for each problem size and recorded the ewafliterations and the
wallclock time of the main loop. The minimum, maximum and average valtiessefquantities for
runs with parameter valug@\*,0*) = (10-%,10-3) are shown in Figure 5. Once again it is easy to
verify that for all pair selection methods the numbers of iterations in the lefgupseveral orders
of magnitude smaller than the worst case bound given in Example 1. iticadthe convergence
rate is fastest for the Composite—Il and max—gqp2 methods, followed by thpdsde—I and max—
vps methods, and then the max—qp2 method. In this case it appearsemairvps method has
a slight edge on the Composite—I method. On a typical run of the Complosiethod we found
that, among the 64% of the iterations where the max—Ip2 and max-violating\paie different, a
max-—violating pair was chosen 3.9 times as often. The variation in the nurhlterations, which
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ranges from 2x to 4x across the different sample sizes and methodsalisstrfor Composite—Il

and max—qgp2, followed by Composite—l and max—vps, and then max-jp@titatively the aver-

age number of iterations for max—Ip2, Composite—l and max—vps is ip@gh13 and 11 times that
of Composite—Il respectively. In addition the average wallclock times ahtbe-Ip2, Composite—|
and max—vps are roughly 23.6, 3.8 and 2.5 times that of CompositepHatgely. Once again the
plot on the right does not show the wallclock times for the max—qp2 methbthdy are roughly

n/4 times that of the Composite—II method.
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Figure 6: Main loop computation f@pambasedata: ()_\, 0) = (1072,10°3). The number of itera-
tions in the left plot is similar for all three methods. The wallclock time in the right plot
is nearly indistinguishable for the Composite—I and max—Ip2 methods.

The results for parameter valuég,c?) = (1072,1073) are shown in Figure 6 and indicate a
significant decrease in the computational requirements. This decieas®nputation as a result
of a larger A is opposite to what we observed in Experiment 2. We attribute this to the fdct tha
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the switch from(A*,0*) to (A,0) did not yield a big change in the initial criterion gap as it did
in Experiment 2. However most other characteristics of the solutiordueed here are similar to
those in Experiment 2. Indeed the number of iterations is roughly the &amad five pair selec-
tion methods and the wallclock times for the max—Ip2, Composite—I and nsa&lgqrithms are
approximately 5 times faster than Composite—Il. In addition the relationsl@psden the number
of iterations, the wallclock times, and the training set size coincide with the limedrquadratic
forms predicted by the analysis in the previous section.

For the L1-SVM the gap between the lower and upper iteration bounds is smhl® A is
larger. Indeed, for largk and largen the lower bound ig(R* —€) and the upper bound isih R{.
WhenR* is large these two values may differ by no more than a factor of 10. This ihaetiglains
why the computational requirements for the strongly regularized probletanicess in Experiments
2 and 3 exhibit such a low variance and coincide so well with the predictedrlened quadratic
forms. In these cases the max—Ip2, Composite—I and max—vps algorithnastast because they
require less computation per iteration. On the other hand, in instances Weregive near—
optimal performance the values#re smaller and so the gaps between the lower and upper bounds
are often much larger. In these cases the actual computation is often settoleither bound,
the variance is higher, and the Composite—Il algorithm is the fastest leeitaesguires far fewer
iterations. In addition these near—optimal valuea @an give a smaller value fd®*, especially
when they yield a solution that separates the training data. In such casegigheriterion gap is
smaller and the run times are often faster. This is the most likely explanationefaighificantly
lower computational requirements for t@gber—Security experiments.

5. Summary

We have described SVM classifier design algorithms that allow a differeigthivfor each training
sample. These algorithms accept an accueaayf a primal QP problem as input and are guaran-
teed to produce an approximate solution that satisfies this accuracy in lewpmtynomial time.
They employ a two—stage process where the first stage producesraxiapgie solution to a dual
QP problem and the second stage maps this approximate dual solution torarimpge primal
solution. For the second stage we have described a si@®(pign) algorithm that maps an ap-
proximate dual solution with accura@\/ﬂ+8ﬁ)*z)\e% to an approximate primal solution with
accuracyp. For the first stage we have presented new results for decompositioitatgoand we
have described decomposition algorithms that employ new pair selection matitbdsw stopping
rules.

Fort—rate certifyingdecomposition algorithms we have established the optimality-of/(n—

1) and described several pair selection methods (max—qp2, max—Ip2, GeerpaSomposite—Il)

that achieve the = 1/(n— 1) iteration bound. We have also introduced new stopping rules that are
computationally efficient and that guarantee a specified accuracy fapgreximate dual solution.
While these stopping rules can be used by any decomposition algorithm éhespaacially attractive

for the algorithms developed here because they add a negligible amowmpéitation to the main
loop.

Since the pair selection methods (max—Ip2, Composite—I, Composite—Il)@€uy computa-
tion they yieldW?2decomposition algorithms that require oi@yn) computation in the main loop.
In addition, for the L1-SVM dual QP problem we have described opemtimonditions for which
theseW?2 decomposition algorithms possess an upper bour@(nf on the number of iterations.
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For this same problem we have presented a lower bounanfpiV2decomposition algorithm and
we have described general conditions for which this bou{ig. Combining the bounds on main
loop computation with the bounds on number of iterations yields an overall rurofi@én?). Our
experiments suggest that the pair selection algorithms with the most promise &eniposite—|
and Composite—Il algorithms which were obtained through a simple extensiSimain’s algo-
rithm.

Once the run time of the decomposition algorithm has been established it is ttnaigind to
determine the run time of the main routine in Procedure 1.ck&e an upper bound on the time it
takes to perform a kernel evaluation. For an instance of L1-SVM wKésdinite and operational
choices are made far, and\ Procedure 1 take®(ckn?) time to compute the parameters for the
canonical dual on lines 7-&(n) time to seta® on line 9,0 (n2) time to compute an approximate
dual solution on line 10, an@(nlogn) time to compute the offséton line 11. Thus, the overall run
time isO(n?(ck+1)). This run time analysis assumes that the ma@riz computed once and stored
in main memory for fast (constant time) access. However the storageeswits for this matrix
may exceed the size of main memory. If this issue is resolved by computing el lesaiuation
each time an element @ is accessed then the time to compute an approximate dual solution is
multiplied by ck. On the other hand if the elements@fare cached in a block of main memory so
that the average access time for an eleme &f Bck, where 0< 3 < 1 is determined by the size
and replacement strategy for the cache, then the multiplier is redu@eq for the average case. It
is an interesting topic of future research to determine how the differensglaiction methods affect
the efficiency of the cache.

We note that algorithmic enhancements such as the shrinking heuristic imi@dsat998) can
easily be adapted to the algorithms presented here. In addition, the algorithinis aper have
been developed for the SVM formulation in (1), but similar algorithms with the samdime
guarantees can be developed for the 1-CLASS formulation oflsapf et al. (2001) which has a
similar form for the dual.

6. Proofs

The following lemma is used in the proofs of Theorems 5 and 8. It providesnand lower bounds
on the improvement in criterion value obtained by solving the restricted QRepnatetermined by
a feasible pointr and anarbitrary working set\.

Lemma 14 Consider the canonical dual QP problem in (4) with Gram matrix Q, conmstrzector
u, feasible setz, criterion function R, and optimal criterion value*RFor a € 2 and a size q
working set Vi let

agearg max R
gearg | nax. (v)

be a solution to the QP problem &t,W,). Then
R(og) —R(a) < o(aW). (18)
Furthermore, for(o,L,Uq) satisfyingo < o(a|Wg), L > maxQ;i, and

sup Zulz < Uq
(Vg VeCWh} 49,
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where the supremum is over all size p subsetsptht following bound holds,

Riag) —R(@) > | P2 o= (19)
Og) — o =2 — .
d ~ | @y 9<dllg

Proof First we prove the upper bound. From the positivity@and the definition o6 we obtain

1
R(aq) —R(a) = g(a) - (ag—a) —5(ag—a)-Q(ag—a) < g(a)-(ag—0a) < o(aWg).
Now we prove the lower bound. Let

Ggcarg max g(a)-(y—a
q gyeﬂ(qu)g( )-(y—a)

be a solution to the LP problem @, W) and consider the directialy := 6 —a. The improvement
in criterion value for any feasible point in this direction cannot be largar tha improvement for
g, i.e.

R(0g) —R(a) > R(a +wdg) —R(a), 0<w< 1. (20)

To obtain a lower bound for the right side we start by writing

R0 +wdg) —R(a) = wg(a)-dq—uz)qu-qu = W(G\Wq)—(;qu'qu > 00 — ujdq'qu-

Note thatdy has at most nonzero components determined by the membeW;ofLet Qq be the
g x g matrix formed from the elemen@;j : i, j € Wy, and let\yax(Qq) and traceéQq) be the largest
eigenvalue and the trace Q. SinceQ > 0= Qp > 0 we have\maQq) < tracgQq) < gL. Thus

dy-Qdy < Amax(Qq)(dg-dg) < aL § uf < qlUy

W
and therefore 7
R(o+ wdg) —R(0) > wo— ?qLUq.

Choosingw € [0, 1] to maximize the right side gives

0T 0 < qLUq
so that oLu
§ o—- 3%  o>qLy
R(a + w'dq) — R(a) > { 52?2 5< LUq (21)
200g° Ll
The first case satisfies L
P N a/2
so that _
Rl + wdy) - R(@) 0/2, 0 > qLUq
o+w —R(a 52 —
d w0 <qlUq
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Combining this result with (20) gives the result in (19). [ |

Proof [Proof of Theorem 5] This proof is a slight modification of the proof in {land Simon,
2005, Section 3.3) so we describe only the main differences. The bagwsicaap is to obtain an
upper bound on the number of iterations by deriving a lower bound onépa/ise improvement.
The first difference is based on an idea from the proof of Hush andeb¢2003, Theorem 5). Let
W' C W™ be at—rate certifying pair foo™. The stepwise improvement with™ is at least as good
as the stepwise improvement wit§" and therefore

R(a™™h) —R(@™) > R(G@™") — R(a™) (22)
whered™ ! is a solution to the two—variable QP problem(af",Wi"). Define
A" =R —R(a™M).

Sinceo(a™W,") > TA™ (see Hush and Scovel, 2003; List and Simon, 2005) we can bound kite rig
side of (22) by applying the lower bound in (Lemma 14, Equation (19)) gith2, o = TA™, and
U, = 2Sto obtain

(1Am)2 m_ 4P
a5 A<

Combining this result with (22) and usii{a™?1) — R(a™) = A™ — A™1 we obtain

s
AL < (1— I) A" whenA™ > 2=
2 T

4.
A™ <A™ y(A™)2, whenA™ < —

wherey = 12/8LS. This is essentially the same result obtained in (List and Simon, 2005, p. 316)
except that here we have4n place of the ternglLmax in (List and Simon, 2005) wherg is the

size of the working setv™ andLax is the largest among the eigenvalues of all the prinaipteg
submatrices o). To complete the proof we follow the steps in (List and Simon, 2005, Sectign 3.3
until the bottom of page 317 where we retain the (slightly) tighter bound

Om = Omy +Y(M—Mmp)
where, in our casén, > 1/4LS. This gives a bound on the criterion gap

<
Oy + Y(M— )

m

(23)

which leads to the “-1” term in the second part of our expressiomfand ensures that the expres-
sions in first and second parts match at the boundary vmeré'-rﬁ. |

Proof [Proof of Theorem 6:] We start by proving the first assertion. To simpidiation we write
g as a shorthand fag(a). Since settingt = a givesg- (& — a) = 0 it follows thata(a|W,) > 0.
Similarly o(a|Ws) > 0 for all W, C W,. Thus whero(a|W,) = 0 it follows that the assertion is true.
Therefore let us assunwga |W,) > 0.
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Let
W, e arngE%o(a W).

We start by deriving an expression fofa|W;). A two—variable problem with working s&t =

{j,k} satisfies

o(aWe)= sup g-(G—0a)= sup g-d
dea(a,W) o+dea (a W)

= sup djgj + dk Ok
dj = —dk
—qaj de < Uj—Qj
—0o < dk < ug—0ag

= sup d;(9j — %)
—Qj de < Uj—Qj
ax— Uk < dj <ag

= Ajk(9j — %)

where

—min(aj,uc—0k), gj <0k -
07 gj = Ok
The expression foo(a|W;') is obtained by maximizing over all pairs,

min(uj — aj,0x), g > Ok
Ajk =

aWs) = max Ai(gi — k).
o(a|W) {j7k}g)\§vn ik(9j — k)

Now write
o(alW,) = supg- (6 —a) = sup g-d=supg-d

Gea a+dea dep

where
»={d:d-1=0,—0a; <d <u—a}.

Let d* be a solution so that
o(a|Wy) =g-d*.

The intuition for what follows is that we will (implicitly) decomposg into

d"=dl+... +dP

(24)

such thatp < n—1, and for every € {1,...,p} d has only two non-zero components and- d

is feasible ati. Define the index sets

Iy ={i:d">0}, I_-={i:d"<0}
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and write
o(a|Wy) = _ d;gi + d’gi.
el iel_
Note thato(a|Wh) # 0 andd* - 1 = 0 imply that bothl ;. andl_ are non—-empty. We decompose the
right hand side into a sum of two—variable terms by applying the followingrsému. Initialize with
m=0,d®=d/,1°9=1,,1°=1I_,and

=73 dg+ Y d’g.
iely iel?
Then whileh™ 5 0 choose an index paiijm,km) € I x I, defined; x, = min(d]’, —di), and
define
hm+1 — z dim+lgi + Z dimlgi

ielm? ielmt?
where L
dim_éjmkm7 I'=Jm
4™t =9 A"+ 8k, | =Kn (25)
am, i # jmorkm

and
1ML = fid™t >0}, I™I=(i:d™?! <0l

This gives the recursion
h™% = " — 8} ke (Gim — G-
From equation (25) it follows that

d"eD = d™leD.

Thus if ™1 =£ 0 then botHi1+l andl™1 are non-empty verifying the existence of an index pair
for the next iteration. Furthermore, the definitiondgfy,, implies that eithed™"* = 0 ord*** = 0
(or both) so that the size of the index sets decreases by at least @uhdttegation, i.e.

U™ < UM -1,

Therefore at least one of the index sets becomes empty after anmdstterations. Furthermore
d™-1 = 0 implies that both index sets become empty at the same iteration. Thus this necursio
decomposes the original sum as follows

G(G‘Wn) =h’= 6j1k1(gj1 - gkl) + 6]2k2<gjz - gkz) + o+ 6jpkp(gjp - gkp) (26)
wherep < n-—1. Letq be the index corresponding to the largest of these terms arg let=
Oj kq(Qjq — Ok,) be its value. Then (26) implies

o(aMh)  o(aWh)

ke > .

(27)

Furthermore if we combine the fact tha,, > 0 impliesgj, — gk, > 0 with the definitions ofl
andAj k, We obtain

Bjaky = Min(dil, —di¢ ) < min(uj, —atjg, i) = Bjgie-
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Finally, combining this result with (27) and (24) gives

o(a|W, ' .
E1_|1n) < Ojgky = Ojekg(Tjg — Ikg) < Djgke(9j, — Gky) = 0(a|{]g,Kg}) < O(a|W5)

which completes the proof of the first assertion.

To prove the second assertion it suffices to give an example of a praidéance and a valuwec
4 such that the equality holds. For the primal problem in (1ylet(y*,y~) wherey® = (1,...,1)
andy = (—1,...,—1) are vectors whose lengths are not yet specified.ulls# decomposed into
corresponding components so thet (u™,u). For the corresponding canonical dual problem
consider the feasible valwe= (0,u™) (which is the initial value ofx in Procedure 1). This gives
g=y. lfut-1=u -1thenitis easy to verify that

o(aWa) = sup g-(G—a)=y-((u",0)—(0,u"))
aea(aWy)

and
max o(a = max(min(u; —a;,d P — =2min(u;,u;
WoCW, ( ‘VVZ) (Lk)( ( J IE k)<gj gk)) ( %9 *)

whereu;" is the largest component value wf, andu; is the largest component valuewf. Thus
any problem where™ -1=u" -1 and mirfu;},u; ) = z(n—l_l) yields the relationship we seek and fin-

ishes the proof. For example this condition is satisfiedby= (1/2) andu™ = (an—l_l), ey Z(n—l_l))
[ |

Proof [Proof of Corollary 7:] This proof follows directly from the proof of Theem 5 since by
assumption the stepwise improvementDBCOVP satisfies (22) and the rest of the proof follows
without modification. |

Proof [Proof of Theorem 8:] Letr, anda,, be solutions to the QP problem @t, W) and (o, W)
respectively. Sinc&®(ap) < R* andR(ap) = R* we obtain

R(ap) —R(a) < R"—R(a) = R(an) —R(a).

Applying (Lemma 14, Equation (19)) with = p ando = o(a|W,) on the left, and (Lemma 14,
Equation (18)) withg = n on the right gives

o(aW,) . o(a|Wp)
Tp min <1, ——P

oLU, > < R —R(a) < o(aW,).

If W, contains a—rate certifying pair thew(a W) < M and the proof is finished. [ |

Proof [Proof of Theorem 12:] Use (3) to determine the dual variablesda® corresponding to
a anda® respectively. This givea® = 0. Lets be the number of nonzero componentsioSince
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a® = 0 and aw2 decomposition algorithm can change only two components at each iteration the
number of iterationsn required to reach Satisfieam > s/2. Furthermore sinca < 1/n we obtain
s/n> &-1 and therefore
s ML
Z T

Sinced’is ane—optimal solution
1, . 4
—éa-Qa+a-1 > R —¢

and sinceQ is positive semi—definite this implies I > R*— ¢ and thereforen > ”(L{S). [ |

Appendix A. Algorithms

A complete algorithm that computes ag-optimal solution to the primal QP problem is provided

by the (Procedure 1,Section 2) and Procedures 3-8 in this appendoedere 3 implements\&2
variant of the Composite—I decomposition algorithm with Stopping Rule 2. Buveel implements
Simon’s algorithm where the values in (11) are stored in a list of 3—tupleg dbth (i, ¢) whereu

is a value from (11)i is the index of the corresponding componentipndg € {+, —} is a symbol
indicating the entry type (in particular = + wheny, = u;, — a;, andg = — wheny;, = q;,). The
algorithm scans the ordered list and saves the index pair that maxia{iagg, k}) as described in
Section 2.1. Since this algorithm tracks the indices of the maximum and minimummgrediees it

also produces a max—violating pair when it exits the loop. Procedure 5 ¢estpie initial gradient,

the initial list M, and an initial upper bouns? = 1 on the criterion ga®* — R(a®). The run time

of this procedure i©(n?) as determined by the gradient computation. Procedure 6 computes the
stepwise improvement for théh, p, andWi,y pairs and then updatesaccording to the pair with the
largestimprovement. This routine runsdl) time. Procedure 7 shows the deletions and insertions
required to update thil-list. With the appropriate data structure each of these insert and delete
operations can be performed @(logn) time. Procedure 8 implements tk&nlogn) algorithm
described in Section 2.3.
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Procedure 3The Composite—I Decomposition Algorithm.
1: Deconposi tion(Q,w,c,u,&,a)

2:

3 (g%,MO ) «—Initialize (Qwu,a

4: m«+<0

5: repeat

6 (Whipe, W 0™) < Si non(g™, M™)

7. if (6™ =0) then

8: Return™, g™)

9: endif
10:  (a™ &M W™) «— Conposit eUpdat e(a™, g™, Q. Wi 2, W)
11: gm+1 - gm_Q(aerl_am)
122 M™1. UpdateMist (M™ W™ o™ a1
132 s™l e min((n—1)o™s") — 7

14: m«—m+1
15: until (s" <)
16: Return@™,g™)

Procedure 4This routine uses Simon’s algorithm to compute a max—Ip2\Paige. It also com-
putes and returns a max—violating pais, and the valu@* = (0 |Wh2). It assumes thail is an
sorted list arranged in nonincreasing order by the value of first coemgon

1 SI nDn(Q! M) { M= [(“7 iaC)la (p'a i,C)Z, teey (uv i?C)Zn] }

2:
3 imax<—= 0, imin<=0, Omax— —%, Omin<— %, 0°«—0, Wnp—0
4: k—1

5: while (i > 0) do

6: if ((q=+1) and(gi, > gmax)) then
7 Omax < Gigs  Imax < Ik
8: if (Mk(Gmax— Gmin) > 0*) then
9 Whip2 < {imax imin}, 0 < tk(Omax— 9min)
10: end if
11:  elseif((¢ = —1) and(gi, < gmin)) then
12: Omin < Gix» imin < Ik
13: if (k(Omax— Gmin) > 0*) then
14: Whip2 < {imaximin}, 0 < tk(9max— 9min)
15: end if
16: endif
17 k—k+1
18: end while

19: Wmv — {imax, imin}
20: ReturnWmip2, Wiy, 0%)
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Procedure 5This routine accepts a feasible valmend computes the corresponding gradigrd
list M of 3—tuples(l, i,¢) sorted byy, and a trivial bound =1 onR* — R(a).

[EnY

[Eny
<

Initialize(Q,wu,0)

g —Qo+w
M~—0
for (i=1,...,n)do
M — Insert(M, (ai,i,—))
M « Insert(M, (ui —aj,i,+))
end for
s—1
Return@, M, s)

Procedure 6 This routine computes the stepwise improvements for a max—Ip2/¥ajp and a
max-violating paiWWn,, and then updates using the pair with the largest stepwise improvement.
It returns the new value af, and the corresponding stepwise improvement value and index pair.

I el e =
W N P O

el e e e
© 0 N o g &

NN N NN
a R wbdbke

N
> Q

Conposi t eUpdat (a4, g, Q, Winip2, Winy)
{i1,i2} —Whnip
59 “— 0,0, 9 Qiiy + Qizi, — 2Qisi,, Amipe = min(uil - aiolld’ aiozld)
if (8g > Amip2) then
Omip2 <— Bmip2 (59 - qulpz>
else 5
6mIp2 — 2%, Am|p2 — %
end if
{i1, J2} < Wiy

1 8y = 0j1 — Uiy 4 Qjujy + Qjajo = 2Qj1jos Drv= min(uil - a(jjlld’ a(j)zld)

Omv — Dmy (69 - @/)

. else

O
Dy — 3

o,
Omy — 2*9 q

ql

: end if

of" — af? + Amipo, OGP~ 0 — Ao
Return@"®%, dmip2, Winip2)

: else

ar_llew<_ Ggld + Dmw GTzeW<— a(j)zld —Dmy

Return@™%, dmy, Winy)

. end if
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Procedure 7This routine updates the sorted It

1: Updat eM i st (M,W,ad, gnew)

2:

3: {il,iz} —W

4: M — Delete(l\/l,(a,olld,ila_))

5. M « Delete(M, (U, —Gill i1, +))
6: M — Delete(M,(Giozld,iz,—))

7 M — Delete(M, (Ui, — Gi2| 7|27+))
8 M «— Insert(M,(GinleW,il,—))

9 M «— Insert(l\/l, (Ui, — o™, i17+))
10: M «— Insert(M,(O(inzeW,iz,—))

11: M — Insert(M,(u|2 a|r12ew7|27+))
12: ReturnM)

Procedure 8This routine determines the offset parameter according to Theorem 2.tiNdtthe
inputg is the gradient vector from the canonical dual solution.
. OFfset (g,y,u)

" Yiy=1U, S <0
((@-7)717 LTl) (gmyn? Un)) o SortIncreasing((gl,yl, Ul), ) (gnvynv Un))

L3y 1u|(g, 01)
L*~L, b—ag

for (i=1,...,n—1)do
if (yi =1) then
st —st—u
else
S «—S +U
end if
LeL—(Gr—G)(s" —s)
if (L <L*)then
L*—L, b—g1
end if
. end for
: Returnp)

© NGO wODNR

I e e e < =
O N R WDNR O
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