
Journal of Machine Learning Research 7 (2006) 733–769 Submitted 12/05; Revised 4/06; Published 5/06

QP Algorithms with Guaranteed Accuracy and Run Time
for Support Vector Machines

Don Hush DHUSH@LANL .GOV

Patrick Kelly KELLY @LANL .GOV

Clint Scovel JCS@LANL .GOV

Ingo Steinwart INGO@LANL .GOV

Modeling, Algorithms and Informatics Group, CCS-3, MS B265
Los Alamos National Laboratory
Los Alamos, NM 87545 USA

Editor: Bernhard Scḧolkopf

Abstract

We describe polynomial–time algorithms that produce approximate solutions with guaranteed ac-
curacy for a class of QP problems that are used in the design ofsupport vector machine classifiers.
These algorithms employ a two–stage process where the first stage produces an approximate so-
lution to a dual QP problem and the second stage maps this approximate dual solution to an ap-
proximate primal solution. For the second stage we describeanO(nlogn) algorithm that maps an
approximate dual solution with accuracy(2

√
2Kn +8

√
λ)−2λε2

p to an approximate primal solution
with accuracyεp wheren is the number of data samples,Kn is the maximum kernel value over
the data andλ > 0 is the SVM regularization parameter. For the first stage we present new results
for decompositionalgorithms and describe new decomposition algorithms withguaranteed accu-
racy and run time. In particular, forτ–rate certifyingdecomposition algorithms we establish the
optimality of τ = 1/(n−1). In addition we extend the recentτ = 1/(n−1) algorithm of Simon
(2004) to form two newcompositealgorithms that also achieve theτ = 1/(n−1) iteration bound of
List and Simon (2005), but yield faster run times in practice. We also exploit theτ–rate certifying
property of these algorithms to produce new stopping rules that are computationally efficient and
that guarantee a specified accuracy for the approximate dualsolution. Furthermore, for the dual QP
problem corresponding to the standard classification problem we describe operational conditions
for which the Simon and composite algorithms possess an upper bound ofO(n) on the number of
iterations. For this same problem we also describe general conditions for which a matching lower
bound exists foranydecomposition algorithm that uses working sets of size 2. For the Simon and
composite algorithms we also establish anO(n2) bound on the overall run time for the first stage.
Combining the first and second stages gives an overall run time of O(n2(ck + 1)) whereck is an
upper bound on the computation to perform a kernel evaluation. Pseudocode is presented for a
complete algorithm that inputs an accuracyεp and produces an approximate solution that satisfies
this accuracy in low order polynomial time. Experiments areincluded to illustrate the new stopping
rules and to compare the Simon and composite decomposition algorithms.
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1. Introduction

Solving a quadratic programming (QP) problem is a major component of the support vector machine
(SVM) training process. In practice it is common to employ algorithms that produceapproximate
solutions. This introduces a trade-off between computation and accuracythat has not been thor-
oughly explored. The accuracy, as measured by the difference between the criterion value of the
approximate solution and the optimal criterion value, is important for learning because it has a di-
rect influence on the generalization error. For example, since the optimal criterion value plays a
key role in establishing the SVM performance bounds in (Steinwart and Scovel, 2004, 2005; Scovel
et al., 2005b) the influence of the accuracy can be seen directly throughthe proofs of these bounds.
Since the primal QP problem can be prohibitively large and its Wolfe dual QP problem is consider-
ably smaller it is common to employ a two–stage training process where the first stage produces an
approximate solution to the dual QP problem and the second stage maps this approximate dual so-
lution to an approximate primal solution. Existing algorithms for the first stage often allow the user
to trade accuracy and computation for the dual QP problem through the choice of a tolerance value
that determines when to stop the algorithm, but it is not known how to choose thisvalue to achieve
a desired accuracy or run time. Furthermore existing algorithms for the second stage have been
developed largely without concern for accuracy and therefore little is known about the accuracy of
the approximate primal solutions they produce. In this paper we describe algorithms that accept the
accuracyεp of the primal QP problem as an input and are guaranteed to produce an approximate
solution that satisfies this accuracy in low order polynomial time. To our knowledge these are the
first algorithms of this type for SVMs. In addition our run time analysis revealsthe effect of the
accuracy on the run time, thereby allowing the user to make an informed decision regarding the
trade–off between computation and accuracy.

Algorithmic strategies for the dual QP problem must address the fact that when the number of
data samplesn is large the storage requirements for the kernel matrix can be excessive.This bar-
rier can be overcome by invoking algorithmic strategies that solve a large QP problem by solving
a sequence of smaller QP problems where each of the smaller QP problems is obtained by fixing a
subset of the variables and optimizing with respect to the remaining variables.Algorithmic strate-
gies that solve a QP problem in this way are calleddecompositionalgorithms and a number have
been developed for dual QP problems: (Balcazar et al., 2001; Chen etal., 2005, 2006; Cristian-
ini and Shawe-Taylor, 2000; Hsu and Lin, 2002; Hush and Scovel, 2003; Joachims, 1998; Keerthi
et al., 2000, 2001; Laskov, 2002; Liao et al., 2002; List and Simon, 2004, 2005; Mangasarian and
Musicant, 1999, 2001; Osuna et al., 1997; Platt, 1998; Simon, 2004; Vapnik, 1998).

The key to developing a successful decomposition algorithm is in the method used to determine
the working sets, which are the subsets of variables to be optimized at each iteration. To guaran-
tee stepwise improvement each working set must contain acertifying pair (Definition 3 below).
Stronger conditions are required to guarantee convergence: (Changet al., 2000; Chen et al., 2006;
Hush and Scovel, 2003; Lin, 2001a,b; List and Simon, 2004) and even stronger conditions appear
necessary to guarantee rates of convergence: (Balcazar et al., 2001; Hush and Scovel, 2003; Lin,
2001a). Indeed, although numerous decomposition algorithms have been proposed few are known
to possess polynomial run time bounds. Empirical studies have estimated the runtime of some
common decomposition algorithms to be proportional tonp wherep varies from approximately 1.7
to approximately 3.0 depending on the problem instance: (Joachims, 1998; Laskov, 2002; Platt,
1998). Although these types of studies can provide useful insights they have limited utility in pre-
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dicting the run time for future problem instances. In addition these particular studies do not appear
to be calibrated with respect to the accuracy of the final criterion value andso their relevance to
the framework considered here is not clear. Lin (2001a) performs a convergence rate analysis that
may eventually be used to establish run time bounds for a popular decompositionalgorithm, but
these results hold under rather restrictive assumptions and more work is needed before the tightness
and utility of these bounds is known (a more recent version of this analysis can be found in (Chen
et al., 2006)). Balcazar et al. (2001) present a randomized decomposition algorithm whose expected
run time isO

(

(n+ r(k2d2)) kd logn
)

wheren is the number of samples,d is the dimension of the
input space, 1≤ k ≤ n is a data dependent parameter andr(k2d2) is the run time required to solve
the dual QP problem overk2d2 samples. This algorithm is very attractive whenk2d2≪ n, but in
practice the value ofk is unknown and it may be large when the Bayes error is not close to zero.
Hush and Scovel (2003) define a class ofrate certifying algorithmsand describe an example al-

gorithm that usesO
(

Knn5 logn
ε

)

computation to reach an approximate dual solution with accuracy

ε, whereKn is the maximum value of the kernel matrix. Recently Simon (2004) introduced a new
rate certifying algorithm which can be shown, using the results in (List and Simon, 2005), to use

O
(

nKn
λε +n2 log

(

λn
Kn

))

computation to reach an approximate dual solution with accuracyε, where

λ > 0 is the SVM regularization parameter. In this paper we combine Simon’s algorithm with the
popularGeneralized SMOalgorithm of Keerthi et al. (2001) to obtain acompositealgorithm that
possesses the same computation bound as Simon’s algorithm, but appears to use far less computa-
tion in practice (as illustrated in our experiments). We also extend this approach to form a second
compositealgorithm with similar properties. In addition we introduce operational assumptions on
Kn and the choice ofλ andε that yield a simpler computation bound ofO(n2) for these algorithms.
Finally to guarantee that actual implementations of these algorithms produce approximate solutions
with accuracyε we introduce two new stopping rules that terminate the algorithms when an adap-
tively computed upper bound on the accuracy falls belowε.

The second stage of the design process maps an approximate dual solutionto an approximate
primal solution. In particular this stage determines how the approximate dual solution is used to
form the normal vector and offset parameter for the SVM classifier. It iscommon practice to use
the approximate dual solution as coefficients in the linear expansion of the data that forms the nor-
mal vector, and then use a heuristic based on approximate satisfaction of theKarush-Kuhn-Tucker
(KKT) optimality conditions to choose the offset parameter. This approach issimple and compu-
tationally efficient, but it produces an approximate primal solution whose accuracy is unknown.
In this paper we take a different approach based on the work of Hush et al. (2005). This work
studies the accuracy of the approximate primal solution as a function of the accuracy of the ap-
proximate dual solution and the map from approximate dual to approximate primal.In particular
for the SVM problem it appears that choosing this map involves a trade–offbetween computation
and accuracy. Here we employ a map described and analyzed in (Hush etal., 2005) that guarantees
an accuracy ofεp for the primal QP problem when the dual QP problem is solved with accuracy
(2
√

2Kn +8
√

λ)−2λε2
p. This map resembles current practice in that it performs a direct substitution

of the approximate dual solution into a linear expansion for the normal vector, but differs in the way
that it determines the offset parameter. We develop anO(nlogn) algorithm that computes the offset
parameter according to this map.

The main results of this paper are presented in Sections 2 and 3. Proofs for all the theorems,
lemmas, and corollaries in these sections can be found in Section 6, except for Theorem 2 which is
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established in (Hush et al., 2005). Section 2 describes the SVM formulation,presents algorithms for
the first and second stages, and provides theorems that characterize the accuracy and run time for
these algorithms. Section 3 then determines specific run time bounds for decomposition algorithms
applied to the standard classification problem and the density level detection problem. Section 4
describes experiments that illustrate the new stopping rules and compare the run time of different
decomposition algorithms. Section 5 provides a summary of results and establishes an overall run
time bound. A complete algorithm that computes anεp–optimal solution to the primal QP problem
is provided by (Procedure 1, Section 2) and Procedures 3–8 in the appendix.

2. Definitions, Algorithms, and Main Theorems

Let X be a pattern space andk : X×X→ R be a kernel function with Hilbert spaceH and feature
mapφ : X→ H so thatk(x1,x2) = φ(x1) ·φ(x2),∀x1,x2 ∈ X. DefineY := {−1,1}. Given a data set
((x1,y1), ...,(xn,yn)) ∈ (X×Y)n theprimal QP problem that we consider takes the form

minψ,b,ξ λ‖ψ‖2 +∑n
i=1uiξi

s.t. yi(φ(xi) ·ψ+b)≥ 1−ξi

ξi ≥ 0, i = 1,2, ...,n
(1)

whereλ > 0, ui > 0 and∑i ui = 1. This form allows a different weightui for each data sample.
Specific cases of interest include:

1. the L1–SVMfor the standard supervised classification problem which setsui = 1/n, i =
1, ...,n,

2. theDLD–SVMfor the density level detection problem described in (Steinwart et al., 2005)
which sets

ui =

{

1
(1+ρ)n1

, yi = 1
ρ

(1+ρ)n−1
, yi =−1

wheren1 is the number of samples distributed according toP1 and assigned labely= 1, n−1 is
the number of samples distributed according toP−1 and assigned labely=−1, h= dP1/dP−1

is the density function, andρ > 0 defines theρ–level set{h > ρ} that we want to detect.

ThedualQP problem is
maxa −1

2a·Qa+a·1
s.t. y·a = 0

0≤ ai ≤ ui i = 1,2, ...,n.
(2)

where
Qi j = yiy jk(xi ,x j)/2λ.

The change of variables defined by

αi := yiai + l i , l i =

{

0 yi = 1
ui yi =−1

(3)

gives thecanonical dualQP problem

maxα −1
2α ·Qα+α ·w+w0

s.t. 1·α = c
0≤ αi ≤ ui i = 1,2, ...,n

(4)
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where

Qi j = k(xi ,x j)/2λ, c = l ·1, w = Ql +y, w0 =−l ·y− 1
2

l ·Ql. (5)

We denote the canonical dual criterion by

R(α) :=−1
2

α ·Qα+α ·w+w0.

Note that this change of variables preserves the criterion value. Also notethat the relation between
a and α is one–to–one. Most of our work is with the canonical dual because it simplifies the
algorithms and their analysis.

We define the set ofε–optimal solutions of a constrained optimization problem as follows.

Definition 1 Let P be a constrained optimization problem with parameter spaceΘ, criterion func-
tion G : Θ→ R, feasible set̃Θ ⊆ Θ of parameter values that satisfy the constraints, and optimal
criterion value G∗ (i.e. G∗ = supθ∈Θ̃ G(θ) for a maximization problem and G∗ = infθ∈Θ̃ G(θ) for a
minimization problem). Then for anyε≥ 0 we define

O ε(P) := {θ ∈ Θ̃ : |G(θ)−G∗| ≤ ε}

to be the set ofε–optimal solutions for P.

We express upper and lower computation bounds usingO(·) andΩ(·) notations defined by

O(g(n)) = { f (n) : ∃ positive constantsc andn0 such that 0≤ f (n)≤ cg(n) for all n≥ n0},
Ω(g(n)) = { f (n) : ∃ positive constantsc andn0 such that 0≤ cg(n)≤ f (n) for all n≥ n0}.

We now describe our algorithm for the primal QP problem. It computes an approximate canon-
ical dual solutionα̂ and then maps to an approximate primal solution(ψ̂, b̂, ξ̂) using the map de-
scribed in the following theorem. This theorem is derived from (Hush et al.,2005, Theorem 2 and
Corollary 1) which is proved using the result in (Scovel et al., 2005a).

Theorem 2 Consider the primal QP problem PSVM in (1) with λ > 0 and |φ(xi)|2 ≤ K, i = 1, ..,n,
and its corresponding canonical dual QP problem DSVM in (4) with criterion R. Letεp > 0, ε =

(2
√

2K +8
√

λ)−2λε2
p and suppose that̂α ∈ O ε(DSVM) and R(α̂)≥ 0. If

ψ̂ =
1
2λ

n

∑
i=1

(α̂i− l i)φ(xi)

ξ̂i(b) = max(0,1−yi(ψ̂ ·φ(xi)+b)), i = 1, ..,n

and

b̂∈ argmin
n

∑
i=1

ui ξ̂i(b)

then(ψ̂, b̂, ξ̂(b̂)) ∈ O εp(PSVM).
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This theorem gives an expression forψ̂ that coincides with the standard practice of replacing an
optimal dual solutionα∗ by an approximate dual solution̂α in the expansion for the optimal nor-
mal vector determined by the KKT conditions. The remaining variablesξ̂ and b̂ are obtained by
substitutingψ̂ into the primal optimization problem, optimizing with respect to the slack variableξ,
and then minimizing with respect tob 1. To guarantee an accuracyεp for the primal problem this
theorem stipulates that the value of the dual criterion at the approximate solution be non–negative
and that the accuracy for the dual solution satisfyε = (2

√
2K + 8

√
λ)−2λε2

p. The first condition
is easily achieved by algorithms that start withα = l (so that the initial criterion value is 0) and
continually improve the criterion value at each iteration. We will guarantee the second condition by
employing an appropriate stopping rule for the decomposition algorithm.

Procedure 1 shows the primal QP algorithm that produces anεp–optimal solution(α̂, b̂) that
defines the SVM classifier

sign

(

n

∑
i=1

(

α̂i− l
2λ

)

k(xi ,x)+ b̂

)

.

This algorithm inputs a data setTn = ((x1,y1), ...,(xn,yn)), a kernel functionk, and parameter values
λ, u andεp. Lines 3–6 produce an exact solution for the degenerate case where all the data samples
have the same label. The rest of the routine forms an instance of the canonical dual QP according to
(5), setsε according to Theorem 2, setsα0 = l so thatR(α0) = 0, uses the routineDecomposition
to compute anε–approximate canonical dual solutionα̂, and uses the routineOffset to compute the
offset parameter̂b according to Theorem 2. The parameterg, which is defined in the next section,
is a temporary value computed byDecomposition that allows a more efficient computation ofb̂
by Offset. The next three sections provide algorithms and computational bounds forthe routines
Decomposition andOffset.

Procedure 1The algorithm for the primal QP problem.
1: PrimalQP (Tn,k,λ,u,εp)
2:

3: if (yi = y1,∀i) then
4: α̂← l , b̂← y1

5: Return(̂α, b̂)
6: end if
7: Form canonical dual:Qi j ← k(xi ,x j )

2λ , l i ← (1−yi)ui
2 , w←Ql +y, c← l ·1

8: Compute Desired Accuracy of Dual:ε← λε2
p

(2
√

2K+8
√

λ)2

9: Initialize canonical dual variable:α0← l
10: (α̂,g)← Decomposition(Q,w,c,u,ε,α0)
11: b̂← Offset(g,y,u)
12: Return(̂α, b̂)

2.1 Decomposition Algorithms

We begin with some background material that describes: optimality conditions for the canonical
dual, a model decomposition algorithm, necessary and sufficient conditionsfor convergence to a

1. This method for choosing the offset was investigated briefly in (Keerthi et al., 2001, Section 4).
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solution, and sufficient conditions for rates of convergence. In many cases this background material
extends a well known result to the slightly more general case considered here where each component
of u may have a different value.

Consider an instance of the canonical dual QP problem given by(Q,w,w0,c,u). Define the set
of feasible values

A := {α : (0≤ αi ≤ ui) and(α ·1 = c)},
and the set of optimal solutions

A ∗ := argmax
α∈A

R(α).

Also define the optimal criterion valueR∗ := supα∈A R(α) and the gradient atα

g(α) := ∇R(α) =−Qα+w. (6)

The optimality conditions established by Keerthi et al. (2001) take the form,

α ∈ A ∗ ⇔ g j(α)≤ gk(α) for all j : α j < u j , k : αk > 0. (7)

These conditions motivate the following definition from (Keerthi et al., 2001;Hush and Scovel,
2003).

Definition 3 A certifying pair(also called aviolating pair) for α∈A is a pair of indices that witness
the non–optimality ofα, i.e. it is a pair of indices j: α j < u j and k: αk > 0 such that gj(α) > gk(α).

Using the approach in (Hush and Scovel, 2003, Section 3) it can be shown that the requirement
that working sets contain a certifying pair is both necessary and sufficient to obtain a stepwise
improvement in the criterion value. Thus, since certifying pairs are definedin terms of the gradient
component values it appears that the gradient plays an essential role in determining members of
the working sets. To compute the gradient at each iteration using (6) requiresO(n2) operations.
However since decomposition algorithms compute a sequence of feasible points (αm)m≥0 using
working sets of sizep, the sparsity of(αm+1−αm) means that the update

g(αm+1) = g(αm)−Q(αm+1−αm) (8)

requires onlyO(pn) operations. A model decomposition algorithm that uses this update is shown
in Procedure 2. After computing an initial gradient vector this algorithm iterates the process of
determining a working set, solving a QP problem restricted to this working set, updating the gradient
vector, and testing a stopping condition.

The requirement that working sets contain a certifying pair is necessary but not sufficient to
guarantee convergence to a solution (e.g. see the examples in Chen et al., 2006; Keerthi and Ong,
2000). However Lin (2002b) has shown that including amax–violating pairdefined by

( j∗,k∗) : j∗ ∈ arg max
i:αi<ui

gi(α), k∗ ∈ arg min
i:αi>0

gi(α) (9)

in each working set does guarantee convergence to a solution. Once thegradient has been computed
a max–violating pair can be determined in one pass through the gradient components and therefore
requiresO(n) computation. The class ofmax–violating pair algorithmsthat include a max–violating
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Procedure 2A model decomposition algorithm for the canonical dual QP problem.

1: ModelDecomposition(Q,w,c,u,ε,α0)
2:

3: Compute initial gradientg0←−Qα0 +w
4: m← 0
5: repeat
6: Compute a working setWm

7: Computeαm+1 by solving the restricted QP determined byαm andWm

8: Update the gradient:gm+1← gm−Q(αm+1−αm)
9: m←m+1

10: until (stopping condition is satisfied)
11: Return(αm,gm)

pair in each working set includes many popular algorithms (e.g. Chang and Lin, 2001; Joachims,
1998; Keerthi et al., 2001). Although asymptotic convergence to a solutionis guaranteed for these
algorithms, their convergence rate is unknown. In contrast we now describe algorithms based on
alternative pair selection strategies that have the sameO(n) computational requirements (once the
gradient has been computed) but possess known rates of convergence to a solution.

Consider the model decomposition algorithm in Procedure 2. The run time of themain loop
is the product of the number of iterations and the computation per iteration, andboth of these
depend heavily on the size of the working sets and how they are chosen. The smallest size that
admits a convergent algorithm is 2 and many popular algorithms adopt this size.We refer to these
asW2decomposition algorithms. A potential disadvantage of this approach is that thenumber of
iterations may be larger than it would be otherwise. On the other hand adoptingworking sets of
size 2 allows us to solve each 2–variable QP problem in constant time (e.g. seePlatt, 1998). In
additionW2 decomposition algorithms require onlyO(n) computation to update the gradient and
have the advantage that the overall algorithm can be quite simple (as demonstrated by theW2max–
violating pair algorithm). Furthermore adopting size 2 working sets will allow us toimplement our
new stopping rules in constant time. Thus, while most of the algorithms we describe below allow
the working sets to be larger than 2, our experiments will be performed with their W2variants.

In addition to their size, the content of the working sets has a significant impact on the run time
through its influence on the convergence rate of the algorithm. Hush and Scovel (2003) prove that
convergence rates can be guaranteed simply by including arate certifying pair in each working
set. Roughly speaking arate certifying pair is a certifying pair that, when used as the working
set, provides a sufficient stepwise improvement. To be more precise we start with the following
definitions. Define a working set to be a subset of the index set of the components ofα, and let
W denote a working set of unspecified size andWp denote a working set of sizep. In particular
Wn = {1,2, ...,n} denotes the entire index set. The set of feasible solutions for the canonical dual
QP sub–problem defined by a feasible valueα and a working setW is defined

A (α,W) := {ά ∈ A : άi = αi ∀i /∈W}.

Define
σ(α|W) := sup

ά∈A (α,W)

g(α) · (ά−α)
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to be the optimal value of the linear programming (LP) problem atα. The following definition is
adapted from (Hush and Scovel, 2003).

Definition 4 For τ > 0 an index pair W2 is called aτ–rate certifying pairfor α if σ(α|W2) ≥
τσ(α|Wn). A decomposition algorithm that includes aτ–rate certifying pair in the working set
at every iteration is called aτ–rate certifying algorithm.

For aτ–rate certifying algorithm Hush and Scovel (2003) provide an upper bound on the number
of iterations as a function ofτ. An improved bound can be obtained as a special case of (List
and Simon, 2005, Theorem 1). The next theorem provides a slightly different bound that does not
depend on the size of the working sets and therefore slightly improves the bound obtained from
(List and Simon, 2005, Theorem 1) when the size of the working sets is larger than 2.

Theorem 5 Consider the canonical dual QP problem in (4) with criterion function R and Gram
matrix Q. Let L≥ maxi Qii and S≥ maxi ui . A τ–rate certifying algorithm that starts withα0

achieves R∗−R(αm)≤ ε after ⌈ḿ⌉ iterations of the main loop where

ḿ=































[

2
τ

ln

(

R∗−R(α0)

ε

)]

+

, ε≥ 4LS2

τ

2
τ

(

4LS2

τε
−1+

[

ln

(

τ(R∗−R(α0))

4LS2

)]

+

)

, ε <
4LS2

τ
,

⌈θ⌉ denotes the smallest integer greater than or equal toθ, and[θ]+ = max(0,θ).

Chang et al. (2000) have shown that for everyα ∈ A there exists aτ–rate certifying pair with
τ ≥ 1/n2. This result can be used to establish the existence of decomposition algorithmswith
polynomial run times. The first such algorithm was provided by Hush and Scovel (2003) where the
rate certifying pairs satisfiedτ≥ 1/n2. However the valueτ can be improved and the bound on the
number of iterations reduced if the rate certifying pairs are determined differently. Indeed List and
Simon (2005) prove thatτ≥ 1/n for amax–lp2pair

W∗2 ∈ arg max
W2⊆Wn

σ(α|W2)

which is a pair with the maximum linear program value. The next theorem provides a slightly better
result ofτ≥ 1/(n−1) for this pair and establishes the optimality of this bound2.

Theorem 6 For α ∈ A
max

W2⊆Wn

σ(α|W2)≥
σ(α|Wn)

n−1
.

Furthermore, there exist problem instances for which there existα ∈ A such that

max
W2⊆Wn

σ(α|W2) =
σ(α|Wn)

n−1
.

2. This result provides a negligible improvement over theτ≥ 1/n result of List and Simon but is included here because it
establishes optimality and because its proof, which is quite different from that of List and Simon, provides additional
insight into the construction of certifying pairs that achieveτ≥ 1/(n−1).
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Since a max–lp2 pair gives the largest value ofσ(α|W2) it follows from Definition 4 and The-
orem 6 that the largest single value ofτ that can be valid for all iterations of all problem instances
is 1/(n− 1). Thus a max–lp2 pair is optimal in that it achieves the minimum iteration bound in
Theorem 5 with respect toτ. Furthermore Simon (2004) has introduced an algorithm for computing
a max–lp2 pair that requires onlyO(n) computation and therefore coincides with theO(n) computa-
tion required to perform the other steps in the main loop. However, in spite of the promise suggested
by this analysis experimental results suggest that there is much room to improve the convergence
rates achieved with max–lp2 pairs (e.g. see Section 4). The result below provides a simple way to
determine pair selection methods whose convergence rates are at least asgood as those guaranteed
by the max–lp2 pair method and possibly much better. This result is stated as a corollary since it
follows trivially from the proof of Theorem 5.

Corollary 7 Let DECOMP be a realization of the model decomposition algorithm for the canonical
dual QP in Procedure 2 and let(αm) represent a sequence of feasible points produced by this
algorithm. At each iteration m let́Wm

2 be a τ–rate certifying pair and letάm+1 be the feasible
point determined by solving the restricted QP determined byαm andẂm

2 . If for every m≥ 0 the
stepwise improvement satisfies R(αm+1)−R(αm) ≥ R(άm+1)−R(αm) then DECOMP will achieve
R∗−R(αm)≤ ε after ⌈ḿ⌉ iterations of the main loop wherém is given by Theorem 5.

This theorem implies that any pair whose stepwise improvement is at least as good as that
produced by a max–lp2 pair yields a decomposition algorithm that inherits the iteration bound in
Theorem 5 withτ = 1/(n−1). An obvious example is amax–qp2pair, which is a pair with the
largest stepwise improvement. However since determining such a pair may require substantial
computation we seek alternatives. In particular Simon’s algorithm visits several good candidate
pairs in its search for a max–lp2 pair and can therefore be easily extendedto form an alternative
pair selection algorithm that is computationally efficient and satisfies this stepwise improvement
property. To see this we start with a description of Simon’s algorithm.

First note that when searching for a max–lp2 pair it is sufficient to consider only pairs( j,k)
whereg j(α) > gk(α). For such a pair it is easy to show that (e.g. see the proof of Theorem 6)

σ(α|{ j,k}) = min(u j −α j ,αk)(g j(α)−gk(α)) = ∆ jk (g j(α)−gk(α)) (10)

whereu j is the upper bound onα j specified in (4) and∆ jk := min(u j −α j ,αk). The key to Simon’s
algorithm is the recognition that among theO(n2) index pairs there are at most 2n distinct values
for ∆:

u1−α1, α1, u1−α2, α2, ..., un−αn, αn. (11)

Consider searching this list of values for one that corresponds to a maximum value ofσ. For an
entry of the formu j −α j for somej, an indexk that maximizesσ(α|{ j,k}) satisfies

k ∈ arg max
l :αl≥u j−α j

(g j(α)−gl (α)) = arg min
l :αl≥u j−α j

gl (α) .

Similarly for an entry of the formαk for somek, an indexj that maximizesσ(α|{ j,k}) satisfies

j ∈ arg max
l :ul−αl≥αk

(gl (α)−gk(α)) = arg max
l :ul−αl≥αk

gl (α) .

Now suppose we search the list of values from largest to smallest and keep track of the maximum
gradient component value for entries of the formu j −α j and the minimum gradient component
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value for entries of the formαk as we go. Then as we visit each entry in the list the index pair that
maximizesσ can be computed in constant time. Thus a max–lp2 pair can be determined in one pass
through the list. A closer examination reveals that only the nonzero values atthe front of the list
need to be scanned, since entries with zero values cannot form a certifying pair (i.e. they correspond
to pairs for which there is no feasible direction for improvement). In addition,since nonzero entries
of the formu j −α j correspond to componentsj whereα j < u j , and nonzero entries of the formαk

correspond to componentsk whereαk > 0, once the scan reaches the last nonzero entry in the list the
indices of the maximum and minimum gradient component values correspond to amax–violating
pair. Pseudocode for this algorithm is shown in Procedure 4 in Appendix 6. This algorithm requires
that the ordered list of values be updated at each iteration. If the entries are stored in a linear array
this can be accomplished inO(pn) time by a simplesearch and insertalgorithm, wherep is the size
of the working set. However, with the appropriate data structure (e.g. a red–black tree) this list can
be updated inO(plogn) time. In this case the size of the working sets must satisfyp = O(n/ logn)
to guarantee anO(n) run time for the main loop.

Simon’s algorithm computes both a max–lp2 pair and a max–violating pair at essentially the
same cost. In addition the stepwise improvement for an individual pair can becomputed in constant
time. Indeed withWm

2 = { j,k} andg(αm
j )≥ g(αm

k ) the stepwise improvementδm
R takes the form

δm
R =

{

∆δg−∆2q/2, δg > q∆
δ2

g

2q, otherwise
(12)

whereδg = g(αm
j )−g(αm

k ), q = Q j j + Qkk−2Q jk and∆ = min
(

u j −αm
j ,αm

k

)

. Thus we can effi-
ciently compute and compare the stepwise improvements of the max–violating and max–lp2 pairs
and choose the one with the largest improvement. We call this theComposite–Ipair selection
method. It adds a negligible amount of computation to the main loop and its stepwise improvement
cannot be worse than either the max–violating pair or max–lp2 algorithm alone.We can extend
this idea further by computing the stepwise improvement for all certifying pairsvisited by Simon’s
algorithm and then choosing the best. We call this theComposite–IIpair selection method. This
methods adds anon–negligibleamount of computation to the main loop, but may provide even bet-
ter stepwise updates. It is worth mentioning that other methods have been recently introduced which
examine a subset of pairs and choose the one with the largest stepwise improvement (e.g. see Fan
et al., 2005; Lai et al., 2003). The methods described here are different in that they are designed
specifically to satisfy the condition in Corollary 7.

We have described four pair selection methods; max–lp2, Composite–I (best of max–violating
and max–lp2), Composite–II (best of certifying pairs visited by Simon’s algorithm), and max–qp2
(largest stepwise improvement) which all yield decomposition algorithms that satisfy the iteration
bound in Theorem 5 withτ = 1/(n−1), but whoseactualcomputational requirements on a specific
problem may be quite different. In Section 4 we perform experiments to investigate the actual
computational requirements for these methods.

2.2 Stopping Rules

Algorithms derived from the model in Procedure 2 require a stopping rule.Indeed to achieve the run
time guarantees described in the previous section the algorithms must be terminated properly. The
most common stopping rule is based on the observation that, prior to convergence, a max–violating
pair ( j∗,k∗) represents the most extreme violator of the optimality conditions in (7). This suggests
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the stopping rule:stop at the first iteratiońm where

g j∗(αḿ)−gk∗(αḿ)≤ tol (13)

wheretol > 0 is a user defined parameter. This stopping rule is employed by many existing de-
composition algorithms (e.g. see Chang and Lin, 2001; Chen et al., 2006; Keerthi et al., 2001; Lin,
2002a) and is especially attractive for max–violating pair algorithms since the rule can be computed
in constant time once a max–violating pair has been computed. Lin (2002a) justifies this rule by
proving that the gapg j∗(αm)−gk∗(αm) converges to zero asymptotically for the sequence of fea-
sible points generated by a particular class of decomposition algorithms. In addition Keerthi and
Gilbert (2002) prove that (13) is satisfied in a finite number of steps for a specific decomposition
algorithm. However the efficacy of this stopping rule is not yet fully understood. In particular we
do not know the relation between this rule and the accuracy of the approximate solution it produces,
and we do not know the convergence rate properties of the sequence(g j∗(αm)−gk∗(αm)) on which
the rule is based. In contrast we now introduce new stopping rules which guarantee a specified ac-
curacy for the approximate solutions they produce, and whose convergence rate properties are well
understood. In addition we will show that these new stopping rules can be computed in constant
time when coupled with the pair selection strategies in the previous section.

The simplest stopping rule that guarantees anε–optimal solution for aτ–rate certifying algo-
rithm is to stop after ´m iterations where ´m is given by Theorem 5 withR∗−R(α0) replaced by a
suitable upper bound (e.g. 1). We call thisStopping Rule 0. However the bound in Theorem 5 is
conservative. For a typical problem instance the algorithm may reach the accuracyε in far fewer
iterations. We introduce stopping rules that are tailored to the problem instance and therefore may
terminate the algorithm much earlier. These rules compute an upper bound onR∗−R(α) adaptively
and then stop the algorithm when this upper bound falls belowε. There are many ways to determine
an upper bound onR∗−R(α). For example the primal-dual gap, which is the difference between
the primal criterion value and the dual criterion value, provides such a bound and therefore could
be used to terminate the algorithm. However, computing the primal-dual gap wouldadd significant
computation to the main loop and so we do not pursue it here. Instead we develop stopping rules
that, when coupled with one of the pair selection methods in the previous section, are simple to com-
pute. These rules use the boundR∗−R(α) ≤ σ(α|W2)/τ which was first established by Hush and
Scovel (2003) and is reestablished as part of the theorem below. The theorem and corollary below
establish the viability of these rules by proving that this bound converges to zero asR(αm)→ R∗,
and that ifR(αm)→ R∗ at a certain rate then the bound converges to zero at a similar rate.

Theorem 8 Consider the canonical dual QP problem in (4) with Gram matrix Q, constraint vector
u, feasible setA , criterion function R, and optimal criterion value R∗. Let α ∈ A and let Wp be a
size p working set. Then the gap R∗−R(α) is bounded below and above as follows:

1. Let L≥maxiQii and
sup

{Vp:Vp⊆Wn}
∑
i∈Vp

u2
i ≤ Up

where the supremum is over all size p subsets of Wn. Then

σ(α|Wp)

2
min

(

1,
σ(α|Wp)

pLUp

)

≤ R∗−R(α). (14)
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2. If Wp includes aτ–rate certifying pair forα then

R∗−R(α) ≤ σ(α|Wp)

τ
. (15)

The next corollary follows trivially from Theorem 8.

Corollary 9 Consider the canonical dual QP problem in (4) with criterion function R. Forany
sequence of feasible points(αm) and corresponding sequence of working sets(Wm) that include
τ–rate certifying pairs the following holds:

R(αm)→ R∗ ⇔ σ(αm|Wm)→ 0.

In addition, rates for R(αm)→ R∗ imply rates forσ(αm|Wm)→ 0.

This corollary guarantees that the following stopping rule will eventually terminate aτ–rate certi-
fying algorithm, and that when terminated at iteration ´m it will produce a solutionαḿ that satisfies
R(αḿ)−R∗ ≤ ε.

Definition 10 (Stopping Rule 1) For a τ–rate certifying algorithm withτ–rate certifying pair se-
quence(Wm

2 ), stop at the first iteratiońm whereσ(αḿ|Wḿ
2 )≤ τε.

This rule can be implemented in constant time using (10). The effectiveness of this rule will depend
on the tightness of the upper bound in (15) for values ofα near the optimum. We can improve this
stopping rule as follows. Define

δm
R := R(αm+1)−R(αm)

and suppose we have the following bound at iterationm

R∗−R(αm)≤ s.

Then at iterationm+1 we have

R∗−R(αm+1)≤min

(

σ(αm+1|Wm+1
2 )

τ
, s−δm

R

)

.

Thus an initial bounds0 (e.g.s0 = σ0/τ) can be improved using the recursion

sm+1 = min

(

σ(αm+1|Wm+1
2 )

τ
,sm−δm

R

)

which leads to the following stopping rule:

Definition 11 (Stopping Rule 2) For a τ–rate certifying algorithm withτ–rate certifying pair se-
quence(Wm

2 ), stop at the first iteratiońm where śm≤ ε.

This rule is at least as good as Stopping Rule 1 and possibly better. However it requires that we
additionally compute the stepwise improvementδm

R = R(αm+1)−R(αm) at each iteration. In the
worst case, since the criterion can be writtenR(α) = 1

2α ·(g(α)+w)+w0, the stepwise improvement
δm

R can be computed inO(n) time (assumingg(αm) has already been computed). However for
W2 variants this value can be computed in constant time using (12). In Section 4 wedescribe
experimental results that compare all three stopping rules.
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2.3 Computing the Offset

We have concluded our description of algorithms for theDecomposition routine in Procedure 1 and
now proceed to describe an algorithm for theOffset routine. According to Theorem 2 this routine
must solve

b̂∈ argmin
b

n

∑
i=1

ui max(0,1−yi(ψ̂ ·φ(xi)+b)) .

An efficient algorithm for determininĝb is enabled by using (5) and (6) to write

1−yiψ̂ ·φ(xi) = 1−yi

(

1
2λ

n

∑
j=1

(α̂ j − l j)k(x j ,xi)

)

= 1−yi(Q(α̂− l))i = yi
(

wi− (Qα̂)i
)

= yigi(α̂) .

This simplifies the problem to

b̂∈ argmin
b

n

∑
i=1

ui max
(

0, yi
(

gi(α̂)−b
))

.

The criterion∑n
i=1ui max

(

0, yi
(

gi(α̂)−b
))

is the sum of hinge functions with slopes−uiyi and
b–interceptsgi(α̂). It is easy to verify that the finite set{gi(α̂), i = 1, ...,n} contains an optimal
solutionb̂. To see this note that the sum of hinge functions creates a piecewise linear surface where
minima occur at corners, and also possibly along flat spots that have a corner at each end. Since the
corners coincide with the pointsgi(α̂) the set{gi(α̂), i = 1, ...,n} contains an optimal solution. The
run time of the algorithm that performs a brute force computation of the criterionfor every member
of this set isO(n2). However this can be reduced toO(nlogn) by first sorting the valuesgi(α̂) and
then visiting them in order, using constant time operations to update the criterionvalue at each step.
The details are shown in Procedure 8 in Appendix 6.

2.4 A Complete Algorithm

We have now described a complete algorithm for computing anεp–optimal solution to the primal
QP problem. A specific realization is provided by (Procedure 1,Section 2) and Procedures 3–8 in
Appendix 6. Multiple options exist for theDecomposition routine depending on the choice of work-
ing set size, pair selection method, and stopping rule. The realization in the appendix implements a
W2variant of the Composite–I decomposition algorithm with Stopping Rule 2 (and is easily modi-
fied to implement the Composite–II algorithm). In the next two sections we complete our run time
analysis of decomposition algorithms.

3. Operational Analysis of Decomposition Algorithms

In this section we use Theorem 5 and Corollary 7 to determine run time bounds for rate certifying
decomposition algorithms that are applied to the L1–SVM and DLD–SVM canonical dual QP prob-
lems. It is clear from Theorem 5 that these bounds will depend on the parametersτ, S, L, R∗ and
ε. Let us consider each of these in turn. In the algorithms below each working set contains either
a max–lp2 pair or a pair whose stepwise improvement is at least as good as that of a max–lp2 pair.
Thus by Corollary 7 we can setτ = 1/(n− 1). Instead however we setτ = 1/n since this value
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is also valid and it greatly simplifies the iteration bounds without changing their basic nature. The
parameterSwill take on a different, but known, value for the L1–SVM and DLD–SVM problems
as described below. Using the definition ofL in Theorem 5 and the definition ofQ in (5) we set
L = K

2λ whereK ≥max1≤i≤nk(xi ,xi). We consider two possibilities forK. The first is the value

Kn = max
1≤i≤n

k(xi ,xi)

which is used to bound the run time for a specific problem instance and the second is the constant

K̄ = sup
x∈X

k(x,x)

which is used to bound the run time for classes of problem instances that usethe same kernel, e.g.
SVM learning problems where the kernel is fixed. In the second case we are interested in problems
whereK̄ is finite. For example for the Gaussian RBF kernelk(x,x′) = e−σ‖x−x′‖2 we obtainK̄ = 1.
The optimal criterion valueR∗ is unknown but restricted to[0,1]. To see this we use (5) to obtain

R(α) = − 1
2

α ·Qα+α ·w+w0 = − 1
2
(α− l) ·Q(α− l)+(α− l) ·y.

Then sincel ∈ A it follows that R∗ ≥ R(l) = 0. Furthermore, using the positivity ofQ and the
definition of l in (3) we obtain that for anyα ∈ A the bound

R(α) = − 1
2
(α− l) ·Q(α− l)+(α− l) ·y ≤ (α− l) ·y ≤ u·1 = 1

holds. We have now considered all the parameters that determine the iterationbound exceptλ and
ε which are chosen by the user.

Recent theoretical results by Steinwart and Scovel (2004, 2005); Scovel et al. (2005b) indicate
that with a suitable choice of kernel and mild assumptions on the distribution the trained classifier’s
generalization error will approach the Bayes error at a fast rate if we chooseλ ∝ n−β, where the rate
is determined (in part) by the choice of 0< β < 1. Although these results hold for exact solutions
to the primal QP problem it is likely that similar results will hold for approximate solutions as long
as εp→ 0 at a sufficiently fast rate inn. However in practice there is little utility in improving
the performance once it is sufficiently close to the Bayes error. This suggests that once we reach
a suitably large value ofn there may be no need to decreaseλ andεp below some fixed values̄λ
andε̄p. Thus, for fixed values̄λ > 0 andε̄p > 0 we call any(λ,εp) that satisfiesλ≥ λ̄ andεp ≥ ε̄p

an operationalchoice of these parameters. When̄K is finite Theorem 2 gives a corresponding

fixed valueε̄ = (2
√

2K̄ +8
√

λ̄)−2λ̄ε̄p
2 > 0 that we use to define an operational choice of the dual

accuracyε.
We begin our analysis by considering decomposition algorithms for the L1–SVM problem.

Although our emphasis is on rate certifying decomposition algorithms, our firsttheorem establishes
a lower bound on the number of iterations forany W2decomposition algorithm.

Theorem 12 Consider the L1–SVM canonical dual with optimal criterion value R∗. Any W2 vari-
ant of Procedure 2 that starts withα0 = l will achieve R∗−R(αm)≤ ε in no less than⌈m̄⌉ iterations
where

m̄ = max

(

0,
n(R∗− ε)

2

)

.
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Remark 13 When R∗ > ε the minimum number of iterations is proportional to n and increases
linearly with R∗. Thus it is important to understand the conditions where R∗ is significantly larger
than ε. Under very general conditions it can be shown that, with high probability,R∗ ≥ e∗− εn

where e∗ is the Bayes classification error andεn is a term that tends to0 for large n. Thus, for large
n, R∗ will be significantly larger thanε when e∗ is significantly larger thanε, which we might expect
to be common in practice.

We briefly outline a path that can be used to establish a formal proof of theseclaims. Since the
duality gap for the L1–SVM primal and dual QP problems is zero, R∗ is the optimal value of the
primal QP problem (e.g. for finite and infinite dimensional problems respectively see Cristianini
and Shawe-Taylor, 2000; Hush et al., 2005). Furthermore it is easy toshow that R∗ is greater
than or equal to the corresponding empirical classification error (i.e. thetraining error). Therefore
the error deviance result in (Hush et al., 2003) can be used to establish general conditions on the
data set Tn = ((x1,y1), ...,(xn,yn)), the kernel k, and the regularization parameterλ such that the

bound R∗ ≥ e∗− εn holds with probability1− δ, whereεn = O
(

√

ln(
√

n/δ)/n
)

. Since e∗ is a

constant it can be further shown that with a suitably chosen constant c> 0 and a sufficiently large

value n0, then Pr
(

number of iterations≥ n(e∗−ε)
2+c ,∀n≥ n0)

)

≥ 1− δn0 whereδn0 → 0 at a rate

that is exponential in n0. Thus when e∗ > ε we can prove that the number of iterations isΩ(n) with
probability 1.

We now continue our analysis by establishing upper bounds on the computation required for
rate certifying decomposition algorithms applied to the L1–SVM and the DLD–SVMproblems. In
the examples below we establish two types of computation bounds:generic boundswhich hold
for any value ofn, any choice ofλ > 0, and either value ofK; andoperational boundsthat hold
whenK = K̄ is finite and operational choices are made forε andλ. In the latter case we obtain
bounds that are uniform inλ andε and whose constants depend on the operational limitsε̄ andλ̄.
These bounds are expressed usingO(·) notation which suppresses their dependence onK̄, ε̄ and
λ̄ but reveals their dependence onn. In both examples we first consider a general class of rate
certifying decomposition algorithms whose working sets may be larger than 2. For these algorithms
we establish generic and operational bounds on the number of iterations. Then we consider theW2
variants of these algorithms and establish operational bounds on their overall run time.

Example 1 Consider solving the L1–SVM canonical dual using a decomposition algorithm where
each working set includes a certifying pair whose stepwise improvement isat least as good as that
produced by a max–lp2 pair. This includes algorithms where each working set includes a max–
lp2, Composite–I, Composite–II or max–qp2 pair. Applying Theorem 5 with S= 1/n, L = K/2λ,
R∗−R(α0)≤ 1, τ = 1/n andε < 1 gives the generic bound

ḿ≤



























2nln

(

1
ε

)

, ε≥ 2K
λn

2n

(

2K
λεn
−1+ ln

(

λn
2K

))

, ε <
2K
λn

(16)

on the number of iterations. With K= Kn this expression gives a bound on the number of iterations
for a specific problem instance. When K= K̄ is finite, operational choices are made forε and λ,
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and n is large the number of iterations is determined by the first case and is O(n). This matches
the lower bound in Remark 13 and is therefore optimal in this sense. For a W2variant that uses
an algorithm from Section 2.1 to compute a max–lp2, Composite–I or Composite–II pair at each
iteration the main loop requires O(n) computation to determine the pair, O(logn) computation to
update the ordered list M, O(1) computation to updateα, and O(n) computation to update the
gradient. Thus the main loop requires a total of O(n) computation. Combining the bounds on
the number of iterations and the computation per iteration we obtain an overallcomputational
requirement of O(n2). In contrast, for a W2 variant that computes a max–qp2 pair at each iteration
the main loop computation will increase. Indeed the current best algorithmfor computing a max–
qp2 pair is a brute force search which requires O(n2) computation and we strongly suspect that
this cannot be reduced to the O(n) efficiency of Simon’s algorithm. Combining this with the lower
bound on the number of iterations in Remark 13 demonstrates that there are cases where the overall
run time of the max–qp2 variant is inferior.

Example 2 Consider solving the DLD–SVM canonical dual using a decomposition algorithm where
each working set includes a certifying pair whose stepwise improvement isat least as good as that
produced by a max–lp2 pair. In this case we can determine a value for S asfollows,

max
i

ui = max

(

1
(1+ρ)n1

,
ρ

(1+ρ)n−1

)

≤max

(

1
n1

,
1

n−1

)

=
1

min(n1,n−1)
:= S

where n1 and n−1 are the number of samples with labels y= 1 and y=−1 respectively as described
in Section 2. Suppose that n1≤ n−1 (results for the opposite case are similar). Applying Theorem 5
with L = K/2λ, R∗−R(α0)≤ 1, andτ = 1/n gives the generic bound

ḿ≤



























2nln

(

1
ε

)

, ε≥ 2Kn

λn2
1

2n

(

2Kn

ελn2
1

−1+ ln

(

λn2
1

2Kn

))

, ε <
2Kn

λn2
1

(17)

on the number of iterations. The dependence on n1 distinguishes this bound from the bound in (16).
With K= Kn (17) gives a bound on the number of iterations for a specific problem instance. Suppose
that n1 = Ω(n). Then when K= K̄ is finite, operational choices are made forε andλ, and n is large
the number of iterations is determined by the first case and is O(n). For a W2 variant that uses
an algorithm from Section 2.1 to compute a max–lp2, Composite–I or Composite–II pair at each
iteration the main loop requires O(n) computation. Thus the overall computational requirement is
O(n2).

4. Experiments

The experiments in this section are designed to accomplish three goals: to investigate the utility
of Stopping Rules 1 and 2 by comparing them with Stopping Rule 0, to compare actual versus
worst case computational requirements, and to investigate the computational requirements ofW2
decomposition algorithms that use different pair selection methods. Our focus is on the computa-
tional requirements of the main loop of the decomposition algorithm since this loop contributes a
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dominating term to our run time analysis, and since the computational requirementsof the other
algorithmic components can be determined very accurately without experimentation. We compare
the four rate certifying pair selection methods (max–qp2, max–lp2, Composite–I, Composite–II)
described in Section 2.1, and a max–violating pair method that we callmax–vps. This max–vps
algorithm is identical to the Composite–I algorithm, except that when choosing between a max–lp2
and max–violating pair we always choose the max–violating pair. To provide objective compar-
isons all algorithms use the same stopping rule. This means that the max–vps algorithm uses a
different stopping rule than existing max–violating algorithms. Nevertheless including the max–
vps algorithm in our experiments helps provide insight into how the algorithms developed here
might compare with existing algorithms.

Our experiments are based on two different problems: a DLD–SVM problem formed from the
Cyber–Security data set described in (Steinwart et al., 2005) and an L1–SVM problem formed
from theSpambasedata set from the UCI repository (Blake and Merz, 1998). All experiments
employ SVMs with a Gaussian RBF kernelk(x,x′) = e−σ‖x−x′‖2. Since a value of the regularization
parameter(λ,σ) that optimizes performance is usually not known ahead of time, the value that
is ultimately used to design the classifier is usually determined through some type ofsearch that
requires running the algorithm with different values of(λ,σ). Thus it is important to understand
how different values, optimal and otherwise, affect the run time. To explore this effect we present
results for two different values,(λ∗,σ∗) and(λ̄, σ̄), obtained as follows. We train the SVM at a set
of grid values and choose(λ∗,σ∗) to be a value that gives the best performance on an independent
validation data set3. Then(λ̄, σ̄) is chosen to be some other grid value encountered during the
search that yielded non–optimal but nontrivial performance (i.e. it achieves some separation of the
training data). For the DLD–SVM the performance is defined by the risk functionR in (Steinwart
et al., 2005) and for the L1–SVM it is the average classification error.

TheCyber–Securitydata set was derived from network traffic collected from a single computer
over a 16-month period. The goal is to build a detector that will recognize anomalous behavior from
the machine. Each data sample is a 12–dimensional feature vector whose components represent real
valued measurements of network activity over a one-hour window (e.g. “average number of bytes
per session”). Anomalies are defined by choosing a uniform reference distribution and a density
level ρ = 1. The parameter values(λ∗,σ∗) = (10−7,10−1) and(λ̄, σ̄) = (.05, .05) were obtained by
employing a grid search withn1:n−1 = 4000:10,000 training samples and 2000:100,000 validation
samples. The solution obtained with parameter values(λ∗,σ∗) separated the training data and gave
a validation risk ofR = 0.00025. The correspondingalarm rate(i.e. the rate at which anomalies
are predicted by the classifier once it is placed in operation) is 0.0005.

TheSpambasedata set contains 4601 samples fromR
d
+×{−1,1} whered = 57. This data set

contains 1813 samples with labely =−1 and 2788 samples with labely = 1. The parameter values
(λ∗,σ∗) = (10−6,10−3) and (λ̄, σ̄) = (10−2,10−3) are obtained by employing a grid search with
3601 training samples and 1000 validation samples. The solution obtained with parameter values
(λ∗,σ∗) did not separate the training data and gave a classification error of 0.093 on the validation
set.

We present results for three experiments.

3. More specifically, for each value ofλ ∈ {1, .5, .1, .05, ..., .000005, .0000001} we search a grid ofσ values that starts
with the set{0.001,0.01,0.05,0.1,0.5,1,5,10,100} and is refined using a golden search as described in (Steinwart
et al., 2005, Section 4).
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Experiment 1 This experiment investigates the utility of Stopping Rules 1 and 2 by comparingthem
with Stopping Rule 0. More specifically we compare the actual criterion gap R∗−R(αm) to the
bounds used by these three stopping rules. We refer to the bounds for Stopping Rules 0, 1, and 2 as
Bounds 0, 1, and 2 respectively. To obtain an estimateR̂∗ of R∗ we run the decomposition algorithm
in Procedure 3 withε = 10−10 and compute the resulting criterion value. Then to obtain results for
comparison we run this algorithm again and compute: the criterion gapR̂∗−R(αm), Bound 1 given
by nσ(αm|Wm

2 ), Bound 2 obtained from the recursive rule sm = min(nσ(αm|Wm
2 ),sm−1−δm−1

R ), and
Bound 0 given by equation (23) in the proof of Theorem 5.
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number of iterations

Figure 1: The criterion gap̂R∗−Rm and bounds on this gap employed by Stopping Rules 0, 1 and
2 for theCyber–Securitydata. Bound 0 and 2 are indistinguishable up to about iteration
25, at which point they separate and Bound 2 becomes a monotonically decreasing lower
envelope of Bound 1.

A plot of these values when the algorithm is applied to theCyber–Securitydata with(λ∗,σ∗) =
(10−7,10−1) and n1:n−1 = 4000:10000 is shown in Figure 1. While Bound 1 is a bit erratic Bound
2 is monotonic and relatively smooth. Nevertheless both will stop the algorithm atnearly the same
iteration (unlessε is very close to 1). In addition while Bounds 1 and 2 may be loose, i.e. they are
often several orders of magnitude larger than the actual criterion gap, their behavior tracks that of
the criterion gap relatively well and therefore the corresponding stopping rules are very effective
relative to Rule 0. For example suppose we chooseε = 10−5. Because the initial criterion gap is so
small it takes only about25 iterations for the algorithm to reach this accuracy. Both Stopping Rules
1 and 2 terminate the algorithm after approximately1000iterations, but Stopping Rule 0 terminates
after approximately1.225×1013 iterations (approximately10orders of magnitude more).

Results obtained by applying the algorithm to theSpambasedata with(λ∗,σ∗) = (10−6,10−3)
and n= 4601are shown in Figure 2. In this case the initial criterion gap is larger so the separation
between the criterion gap and the bounds is smaller. Once again Bound 1 is abit erratic, and this
time there are several regions (beyond the initial region) where Bounds1 and 2 are well separated.
This suggests that the monotonic behavior of Bound 2 provides a more robust stopping rule. As be-
fore Bounds 1 and 2 are loose, but their behavior tracks that of the criterion gap relatively well and
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Figure 2: The criterion gap̂R∗−Rm and bounds on this gap employed by Stopping Rules 0, 1 and
2 for theSpambasedata. Bound 0 and 2 are close up to about iteration 20,000, at which
point they separate and Bound 2 becomes a monotonically decreasing lowerenvelope of
Bound 1.

therefore the corresponding stopping rules are very effective. For example it takes about200,000
iterations for the algorithm to reach an accuracyε = 10−5, while both Stopping Rules 1 and 2 ter-
minate the algorithm after approximately2,000,000iterations and Stopping Rule 0 terminates after
approximately4×1011 iterations (approximately5 orders of magnitude more). More generally the
number of the excess iterations for Stopping Rule 2 appears to be less than an order of magnitude
for a large range of values ofε.

In both cases above it is clear that Stopping Rules 1 and 2 are far superiorto Stopping Rule 0.

Experiment 2 This experiment compares actual computational requirements for the main loop of
various decomposition algorithms applied to theCyber–Security data. With density levelρ =
1, accuracyε = 10−6, parameter values(λ∗,σ∗) = (10−7,10−1) and (λ̄, σ̄) = (.05, .05), and five
different problem sizes n1:n−1 = 2000:4000, 2500:5000, 3000:6000, 3500:7000, and 4000:8000
we employed the decomposition algorithm with Stopping Rule 2 and pair selectionmethods max–
lp2, Composite–I, Composite–II, max–vps and max–qp2. For each problem size we generated ten
different training sets by randomly sampling (without replacement) the original data set. Then we
ran the decomposition algorithm on each training set and recorded the number of iterations and the
wallclock time of the main loop. The minimum, maximum and average values ofthese quantities
for parameter values(λ∗,σ∗) = (10−7,10−1) are shown in Figure 34. There is much to discern
from the plot on the left. It is easy to verify that for all pair selection methods the numbers of
iterations are several orders of magnitude smaller than the worst case bound given in Example 2.
On average the convergence rate of the max–lp2 method is much worse than the other methods. This
may be partly due to the fact that this method uses only first order informationto determine its pair.

4. In Figures 3–6 the x–axis values of some points are slightly offset so that their y–axis values can be more easily
visualized.
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However, this is also true of the max–vps method whose convergence rate is much faster. Indeed,
it is curious that the max–lp2 method, which chooses a stepwise direction based on a combination
of steepnessand room to move, has a worse convergence rate than the max–vps method, which
chooses a stepwise direction based onsteepnessalone. By slightly modifying the max–lp2 method
to obtain the Composite–I method a much faster convergence rate is observed. The Composite–I
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Figure 3: Main loop computation forCyber–Securitydata with(λ∗,σ∗) = (10−7,10−1).
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Figure 4: Main loop computation forCyber–Securitydata with(λ̄, σ̄) = (.05, .05). The number of
iterations in the left plot is identical for all five methods for all values ofn. The wallclock
time in the right plot is indistinguishable for the Composite–I, max–vps and max–lp2
methods.

and max–vps methods have roughly the same convergence rate. This suggests that Composite–I may
be achieving its improved rate by choosing a max–violating pair a large fraction of the time. Indeed,
on a typical run of the Composite–I method we found that, among the 53% of the iterations where
the max–lp2 and max–violating pairs were different, a max–violating pair waschosen 4.3 times as
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often. Although a larger stepwise improvement does not guarantee a faster convergence rate the
max–qp2 method, which gives the largest stepwise improvement, also gave the fastest convergence
rate. However the Composite–II method, which requires far less computation than the max–qp2
method, gave nearly the same convergence rate. Quantitatively the average number of iterations for
the max–lp2 method is roughly 9 times that of Composite–II, while the average number of iterations
for Composite–I is roughly 2 times that of Composite–II. The variation in the number of iterations
is smallest for Composite–II and max–qp2, followed by Composite–I and max–vps, and then max–
lp2. This variation ranges from 2x to 8x across the different sample sizes and methods. The plot on
the right shows the wallclock times. The times for the max–qp2 method are omitted because they
are much larger than the rest. Indeed they are roughly n times larger thanthe wallclock times for
Composite–II. The Composite–II method achieved the fastest average wallclock times which were
roughly 6.8 times faster than the max–lp2 method and 1.6 times faster than the Composite–I and
max–vps methods.

Results for parameter value(λ̄, σ̄) = (.05, .05) are shown in Figure 4. The computational re-
quirements here are greater than with the previous parameter value. We attribute this primarily to
the fact that R∗ is larger so that the initial criterion gap is larger. The larger value ofλ corresponds
to a strong regularization term that produces a solution where all components ofα are forced from
their initial values at one bound to their final values at the opposite bound. To move all n1 + n−1

components ofα to their opposite bound using working sets that contain one sample from each
class requires n−1 iterations (since n−1 > n1) and this is exactly what the algorithms did for all five
pair selection methods on every training set. This is a quintessential exampleof a problem where
the number of iterations must be (at least) a significant fraction of the number of training samples
regardless of which algorithm is used. The resulting solution has the simple interpretation that its
normal vector is the difference in class means. The wallclock times of the max–lp2, Composite–I
and max–vps algorithms are roughly 5 times faster than the Composite–II algorithm because of the
extra computation per iteration employed by Composite–II. The relationshipbetween the number
of iterations and the training set size is demonstrably linear, and the relationship between the wall-
clock times and the training set size is demonstrably quadratic. These relations coincide with the
linear and quadratic forms predicted by the analysis in Section 3.

Experiment 3 This experiment is similar to the previous experiment except that the algorithms are
applied to theSpambasedata. With accuracyε = 10−6, parameter values(λ∗,σ∗) = (10−6,10−3)
and(λ̄, σ̄)= (10−2,10−3), and seven different problem sizes n= 1000,1500,2000,2500,3000,3500,
4000we employed the decomposition algorithm with Stopping Rule 2 and pair selectionmethods
max–lp2, Composite–I, Composite–II, max–vps and max–qp2. We ranthe decomposition algorithm
on ten different training sets for each problem size and recorded the number of iterations and the
wallclock time of the main loop. The minimum, maximum and average values ofthese quantities for
runs with parameter values(λ∗,σ∗) = (10−6,10−3) are shown in Figure 5. Once again it is easy to
verify that for all pair selection methods the numbers of iterations in the left plotare several orders
of magnitude smaller than the worst case bound given in Example 1. In addition the convergence
rate is fastest for the Composite–II and max–qp2 methods, followed by the Composite–I and max–
vps methods, and then the max–qp2 method. In this case it appears that the max–vps method has
a slight edge on the Composite–I method. On a typical run of the Composite–I method we found
that, among the 64% of the iterations where the max–lp2 and max–violating pairs were different, a
max–violating pair was chosen 3.9 times as often. The variation in the number of iterations, which
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ranges from 2x to 4x across the different sample sizes and methods, is smallest for Composite–II
and max–qp2, followed by Composite–I and max–vps, and then max–lp2. Quantitatively the aver-
age number of iterations for max–lp2, Composite–I and max–vps is roughly 92, 13 and 11 times that
of Composite–II respectively. In addition the average wallclock times of themax–lp2, Composite–I
and max–vps are roughly 23.6, 3.8 and 2.5 times that of Composite–II respectively. Once again the
plot on the right does not show the wallclock times for the max–qp2 method, but they are roughly
n/4 times that of the Composite–II method.
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Figure 5: Main loop computation forSpambasedata:(λ∗,σ∗) = (10−6,10−3).
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Figure 6: Main loop computation forSpambasedata:(λ̄, σ̄) = (10−2,10−3). The number of itera-
tions in the left plot is similar for all three methods. The wallclock time in the right plot
is nearly indistinguishable for the Composite–I and max–lp2 methods.

The results for parameter values(λ̄, σ̄) = (10−2,10−3) are shown in Figure 6 and indicate a
significant decrease in the computational requirements. This decreasein computation as a result
of a larger λ is opposite to what we observed in Experiment 2. We attribute this to the fact that
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the switch from(λ∗,σ∗) to (λ̄, σ̄) did not yield a big change in the initial criterion gap as it did
in Experiment 2. However most other characteristics of the solutions produced here are similar to
those in Experiment 2. Indeed the number of iterations is roughly the samefor all five pair selec-
tion methods and the wallclock times for the max–lp2, Composite–I and max–vps algorithms are
approximately 5 times faster than Composite–II. In addition the relationships between the number
of iterations, the wallclock times, and the training set size coincide with the linearand quadratic
forms predicted by the analysis in the previous section.

For the L1–SVM the gap between the lower and upper iteration bounds is smaller whenλ is
larger. Indeed, for largeλ and largen the lower bound isn2(R∗− ε) and the upper bound is 2nln R∗

ε .
WhenR∗ is large these two values may differ by no more than a factor of 10. This partially explains
why the computational requirements for the strongly regularized problem instances in Experiments
2 and 3 exhibit such a low variance and coincide so well with the predicted linear and quadratic
forms. In these cases the max–lp2, Composite–I and max–vps algorithms are fastest because they
require less computation per iteration. On the other hand, in instances where(λ,σ) give near–
optimal performance the values ofλ are smaller and so the gaps between the lower and upper bounds
are often much larger. In these cases the actual computation is often not close to either bound,
the variance is higher, and the Composite–II algorithm is the fastest because it requires far fewer
iterations. In addition these near–optimal values ofλ can give a smaller value forR∗, especially
when they yield a solution that separates the training data. In such cases theinitial criterion gap is
smaller and the run times are often faster. This is the most likely explanation for the significantly
lower computational requirements for theCyber–Securityexperiments.

5. Summary

We have described SVM classifier design algorithms that allow a different weight for each training
sample. These algorithms accept an accuracyεp of a primal QP problem as input and are guaran-
teed to produce an approximate solution that satisfies this accuracy in low order polynomial time.
They employ a two–stage process where the first stage produces an approximate solution to a dual
QP problem and the second stage maps this approximate dual solution to an approximate primal
solution. For the second stage we have described a simpleO(nlogn) algorithm that maps an ap-
proximate dual solution with accuracy(2

√
2K +8

√
λ)−2λε2

p to an approximate primal solution with
accuracyεp. For the first stage we have presented new results for decomposition algorithms and we
have described decomposition algorithms that employ new pair selection methodsand new stopping
rules.

Forτ–rate certifyingdecomposition algorithms we have established the optimality ofτ = 1/(n−
1) and described several pair selection methods (max–qp2, max–lp2, Composite–I, Composite–II)
that achieve theτ = 1/(n−1) iteration bound. We have also introduced new stopping rules that are
computationally efficient and that guarantee a specified accuracy for theapproximate dual solution.
While these stopping rules can be used by any decomposition algorithm they are especially attractive
for the algorithms developed here because they add a negligible amount of computation to the main
loop.

Since the pair selection methods (max–lp2, Composite–I, Composite–II) requireO(n) computa-
tion they yieldW2decomposition algorithms that require onlyO(n) computation in the main loop.
In addition, for the L1–SVM dual QP problem we have described operational conditions for which
theseW2 decomposition algorithms possess an upper bound ofO(n) on the number of iterations.
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For this same problem we have presented a lower bound forany W2decomposition algorithm and
we have described general conditions for which this bound isΩ(n). Combining the bounds on main
loop computation with the bounds on number of iterations yields an overall run timeof O(n2). Our
experiments suggest that the pair selection algorithms with the most promise are the Composite–I
and Composite–II algorithms which were obtained through a simple extension ofSimon’s algo-
rithm.

Once the run time of the decomposition algorithm has been established it is straightforward to
determine the run time of the main routine in Procedure 1. Letck be an upper bound on the time it
takes to perform a kernel evaluation. For an instance of L1–SVM whereK̄ is finite and operational
choices are made forεp andλ Procedure 1 takesO(ckn2) time to compute the parameters for the
canonical dual on lines 7-8,O(n) time to setα0 on line 9,O

(

n2
)

time to compute an approximate
dual solution on line 10, andO(nlogn) time to compute the offsetb̂ on line 11. Thus, the overall run
time isO(n2(ck+1)). This run time analysis assumes that the matrixQ is computed once and stored
in main memory for fast (constant time) access. However the storage requirements for this matrix
may exceed the size of main memory. If this issue is resolved by computing a kernel evaluation
each time an element ofQ is accessed then the time to compute an approximate dual solution is
multiplied byck. On the other hand if the elements ofQ are cached in a block of main memory so
that the average access time for an element ofQ is βck, where 0< β ≤ 1 is determined by the size
and replacement strategy for the cache, then the multiplier is reduced toβck for the average case. It
is an interesting topic of future research to determine how the different pairselection methods affect
the efficiency of the cache.

We note that algorithmic enhancements such as the shrinking heuristic in (Joachims, 1998) can
easily be adapted to the algorithms presented here. In addition, the algorithms inthis paper have
been developed for the SVM formulation in (1), but similar algorithms with the samerun time
guarantees can be developed for the 1-CLASS formulation of Schölkopf et al. (2001) which has a
similar form for the dual.

6. Proofs

The following lemma is used in the proofs of Theorems 5 and 8. It provides upper and lower bounds
on the improvement in criterion value obtained by solving the restricted QP problem determined by
a feasible pointα and anarbitrary working setWq.

Lemma 14 Consider the canonical dual QP problem in (4) with Gram matrix Q, constraint vector
u, feasible setA , criterion function R, and optimal criterion value R∗. For α ∈ A and a size q
working set Wq let

αq ∈ arg max
γ∈A (α,Wq)

R(γ)

be a solution to the QP problem at(α,Wq). Then

R(αq)−R(α) ≤ σ(α|Wq). (18)

Furthermore, for(σ̄,L,Uq) satisfyingσ̄≤ σ(α|Wq), L≥maxiQii , and

sup
{Vq:Vq⊆Wn}

∑
i∈Vq

u2
i ≤ Uq
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where the supremum is over all size p subsets of Wn, the following bound holds,

R(αq)−R(α) ≥
{

σ̄/2, σ̄≥ qLUq
σ̄2

2qLUq
, σ̄ < qLUq

. (19)

Proof First we prove the upper bound. From the positivity ofQ and the definition ofσ we obtain

R(αq)−R(α) = g(α) · (αq−α)− 1
2
(αq−α) ·Q(αq−α) ≤ g(α) · (αq−α) ≤ σ(α|Wq).

Now we prove the lower bound. Let

άq ∈ arg max
γ∈A (α,Wq)

g(α) · (γ−α)

be a solution to the LP problem at(α,Wq) and consider the directiondq := άq−α. The improvement
in criterion value for any feasible point in this direction cannot be larger than the improvement for
αq, i.e.

R(αq)−R(α)≥ R(α+ωdq)−R(α), 0≤ ω≤ 1. (20)

To obtain a lower bound for the right side we start by writing

R(α+ωdq)−R(α) = ωg(α) ·dq−
ω2

2
dq ·Qdq = ωσ(α|Wq)−

ω2

2
dq ·Qdq ≥ ωσ̄− ω2

2
dq ·Qdq.

Note thatdq has at mostq nonzero components determined by the members ofWq. Let Qq be the
q×q matrix formed from the elementsQi j : i, j ∈Wq, and letλmax(Qq) and trace(Qq) be the largest
eigenvalue and the trace ofQp. SinceQ≥ 0⇒Qp≥ 0 we haveλmax(Qq)≤ trace(Qq)≤ qL. Thus

dq ·Qdq ≤ λmax(Qq)(dq ·dq) ≤ qL ∑
i∈Wq

u2
i ≤ qLUq

and therefore

R(α+ωdq)−R(α) ≥ ωσ̄− ω2

2
qLUq.

Choosingω ∈ [0,1] to maximize the right side gives

ω∗ =

{

1, σ̄≥ qLUq
σ̄

qLUq
, σ̄ < qLUq

so that

R(α+ω∗dq)−R(α)≥
{

σ̄− qLUq

2 , σ̄≥ qLUq
σ̄2

2qLUq
, σ̄ < qLUq

. (21)

The first case satisfies

σ̄− qLUq

2
≥ σ̄/2

so that

R(α+ω∗dq)−R(α)≥
{

σ̄/2, σ̄≥ qLUq
σ̄2

2qLUq
, σ̄ < qLUq

.
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Combining this result with (20) gives the result in (19).

Proof [Proof of Theorem 5] This proof is a slight modification of the proof in (List and Simon,
2005, Section 3.3) so we describe only the main differences. The basic approach is to obtain an
upper bound on the number of iterations by deriving a lower bound on the stepwise improvement.
The first difference is based on an idea from the proof of Hush and Scovel (2003, Theorem 5). Let
Wm

2 ⊆Wm be aτ–rate certifying pair forαm. The stepwise improvement withWm is at least as good
as the stepwise improvement withWm

2 and therefore

R(αm+1)−R(αm)≥ R(άm+1)−R(αm) (22)

whereάm+1 is a solution to the two–variable QP problem at(αm,Wm
2 ). Define

∆m := R∗−R(αm).

Sinceσ(αm|Wm
2 )≥ τ∆m (see Hush and Scovel, 2003; List and Simon, 2005) we can bound the right

side of (22) by applying the lower bound in (Lemma 14, Equation (19)) withq = 2, σ̄ = τ∆m, and
U2 = 2S to obtain

R(άm+1)−R(αm) ≥
{

τ∆m

2 , ∆m≥ 4LS2

τ
(τ∆m)2

8LS , ∆m < 4LS2

τ
.

Combining this result with (22) and usingR(αm+1)−R(αm) = ∆m−∆m+1 we obtain

∆m+1≤
(

1− τ
2

)

∆m, when∆m≥ 4LS2

τ

∆m+1≤ ∆m− γ(∆m)2, when∆m <
4LS2

τ

whereγ = τ2/8LS2. This is essentially the same result obtained in (List and Simon, 2005, p. 316)
except that here we have 4L in place of the termqLmax in (List and Simon, 2005) whereq is the
size of the working setWm andLmax is the largest among the eigenvalues of all the principleq×q
submatrices ofQ. To complete the proof we follow the steps in (List and Simon, 2005, Section 3.3)
until the bottom of page 317 where we retain the (slightly) tighter bound

δm≥ δm0 + γ(m−m0)

where, in our case,δm0 ≥ τ/4LS2. This gives a bound on the criterion gap

∆m≤ 1
δm0 + γ(m−m0)

(23)

which leads to the “-1” term in the second part of our expression for ´m and ensures that the expres-
sions in first and second parts match at the boundary whereε = 4LS2

τ .

Proof [Proof of Theorem 6:] We start by proving the first assertion. To simplifynotation we write
g as a shorthand forg(α). Since settinǵα = α givesg · (ά−α) = 0 it follows thatσ(α|Wn) ≥ 0.
Similarly σ(α|W2)≥ 0 for allW2⊆Wn. Thus whenσ(α|Wn) = 0 it follows that the assertion is true.
Therefore let us assumeσ(α|Wn) > 0.
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Let
W∗2 ∈ arg max

W2⊆Wn

σ(α|W2).

We start by deriving an expression forσ(α|W∗2 ). A two–variable problem with working setW2 =
{ j,k} satisfies

σ(α|W2) = sup
ά∈A (α,W2)

g· (ά−α) = sup
α+d∈A (α,W2)

g·d

= sup
d j =−dk

−α j ≤ d j ≤ u j −α j

−αk ≤ dk ≤ uk−αk

d jg j +dkgk

= sup
−α j ≤ d j ≤ u j −α j

αk−uk ≤ d j ≤ αk

d j(g j −gk)

= ∆ jk(g j −gk)

where

∆ jk =







min(u j −α j ,αk), g j > gk

−min(α j ,uk−αk), g j < gk

0, g j = gk

.

The expression forσ(α|W∗2 ) is obtained by maximizing over all pairs,

σ(α|W∗2 ) = max
{ j,k}⊆Wn

∆ jk(g j −gk). (24)

Now write
σ(α|Wn) = sup

ά∈A
g· (ά−α) = sup

α+d∈A
g·d = sup

d∈D
g·d

where
D = {d : d ·1 = 0,−αi ≤ di ≤ ui−αi}.

Let d∗ be a solution so that
σ(α|Wn) = g·d∗.

The intuition for what follows is that we will (implicitly) decomposed∗ into

d∗ = d̄1 + . . .+ d̄p

such thatp≤ n−1, and for everyi ∈ {1, . . . , p} d̄i has only two non-zero components andα + d̄i

is feasible atα. Define the index sets

I+ = {i : d∗i > 0}, I− = {i : d∗i < 0}

760



QP ALGORITHMS

and write
σ(α|Wn) = ∑

i∈I+

d∗i gi + ∑
i∈I−

d∗i gi .

Note thatσ(α|Wn) 6= 0 andd∗ ·1 = 0 imply that bothI+ andI− are non–empty. We decompose the
right hand side into a sum of two–variable terms by applying the following recursion. Initialize with
m= 0, d0

i = d∗i , I0
+ = I+, I0

− = I−, and

h0 = ∑
i∈I0

+

d0
i gi + ∑

i∈I0
−

d0
i gi .

Then whilehm 6= 0 choose an index pair( jm,km) ∈ Im
+ × Im

−, defineδ jmkm = min(dm
jm,−dm

km
), and

define
hm+1 = ∑

i∈Im+1
+

dm+1
i gi + ∑

i∈Im+1
−

dm+1
i gi

where

dm+1
i =







dm
i −δ jmkm, i = jm

dm
i +δ jmkm, i = km

dm
i , i 6= jm or km

(25)

and
Im+1
+ = {i : dm+1

i > 0}, Im+1
− = {i : dm+1

i < 0}.
This gives the recursion

hm+1 = hm−δ jmkm(g jm−gkm).

From equation (25) it follows that

dm∈ D ⇒ dm+1 ∈ D.

Thus if hm+1 6= 0 then bothIm+1
+ andIm+1

− are non–empty verifying the existence of an index pair
for the next iteration. Furthermore, the definition ofδ jmkm implies that eitherdm+1

jm = 0 or dm+1
km

= 0
(or both) so that the size of the index sets decreases by at least one at each iteration, i.e.

|Im+1
+ ∪ Im+1

− | ≤ |Im
+ ∪ Im

−|−1.

Therefore at least one of the index sets becomes empty after at mostn−1 iterations. Furthermore
dm · 1 = 0 implies that both index sets become empty at the same iteration. Thus this recursion
decomposes the original sum as follows

σ(α|Wn) = h0 = δ j1k1(g j1−gk1) + δ j2k2(g j2−gk2) + ... + δ jpkp(g jp−gkp) (26)

where p≤ n− 1. Let q be the index corresponding to the largest of these terms and letσ jqkq =
δ jqkq(g jq−gkq) be its value. Then (26) implies

σ jqkq ≥
σ(α|Wn)

p
≥ σ(α|Wn)

n−1
. (27)

Furthermore if we combine the fact thatσ jqkq > 0 impliesg jq−gkq > 0 with the definitions ofdq

and∆ jqkq we obtain

δ jqkq = min(dq
jq,−dq

kq
)≤min(u jq−α jq,αkq) = ∆ jqkq.
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Finally, combining this result with (27) and (24) gives

σ(α|Wn)

n−1
≤ σ jqkq = δ jqkq(g jq−gkq) ≤ ∆ jqkq(g jq−gkq) = σ(α|{ jq,kq})≤ σ(α|W∗2 )

which completes the proof of the first assertion.
To prove the second assertion it suffices to give an example of a probleminstance and a valueα∈

A such that the equality holds. For the primal problem in (1) lety = (y+,y−) wherey+ = (1, ...,1)
andy− = (−1, ...,−1) are vectors whose lengths are not yet specified. Letu be decomposed into
corresponding components so thatu = (u+,u−). For the corresponding canonical dual problem
consider the feasible valueα = (0,u−) (which is the initial value ofα in Procedure 1). This gives
g = y. If u+ ·1 = u− ·1 then it is easy to verify that

σ(α|Wn) = sup
ά∈A (α,Wn)

g· (ά−α) = y·
((

u+,0
)

−
(

0,u−
))

=
(

y+,y−
)

·
(

u+,−u−
)

= 1·u = 1 ,

and
max

W2⊆Wn

σ(α|W2) = max
( j,k)

(

min(u j −α j ,αk)(g j −gk)
)

= 2min(u+
∗ ,u−∗ )

whereu+
∗ is the largest component value ofu+, andu−∗ is the largest component value ofu−. Thus

any problem whereu+ ·1= u− ·1 and min(u+
∗ ,u−∗ ) = 1

2(n−1) yields the relationship we seek and fin-

ishes the proof. For example this condition is satisfied byu+ = (1/2) andu− =
(

1
2(n−1) , ...,

1
2(n−1)

)

.

Proof [Proof of Corollary 7:] This proof follows directly from the proof of Theorem 5 since by
assumption the stepwise improvement ofDECOMP satisfies (22) and the rest of the proof follows
without modification.

Proof [Proof of Theorem 8:] Letαp andαn be solutions to the QP problem at(α,Wp) and(α,Wn)
respectively. SinceR(αp)≤ R∗ andR(αn) = R∗ we obtain

R(αp)−R(α) ≤ R∗−R(α) = R(αn)−R(α).

Applying (Lemma 14, Equation (19)) withq = p and σ̄ = σ(α|Wp) on the left, and (Lemma 14,
Equation (18)) withq = n on the right gives

σ(α|Wp)

2
min

(

1,
σ(α|Wp)

pLUp

)

≤ R∗−R(α) ≤ σ(α|Wn).

If Wp contains aτ–rate certifying pair thenσ(α|Wn)≤ σ(α|Wp)
τ and the proof is finished.

Proof [Proof of Theorem 12:] Use (3) to determine the dual variables ˆa anda0 corresponding to
α̂ andα0 respectively. This givesa0 = 0. Lets be the number of nonzero components of ˆa. Since
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a0 = 0 and aW2 decomposition algorithm can change only two components at each iteration the
number of iterationsm required to reach ˆa satisfiesm≥ s/2. Furthermore since ˆai ≤ 1/n we obtain
s/n≥ â·1 and therefore

m ≥ nâ·1
2

.

Sinceâ is anε–optimal solution

−1
2

â·Qâ+ â·1 ≥ R∗− ε

and sinceQ is positive semi–definite this implies ˆa·1 ≥ R∗− ε and thereforem ≥ n(R∗−ε)
2 .

Appendix A. Algorithms

A complete algorithm that computes anεp–optimal solution to the primal QP problem is provided
by the (Procedure 1,Section 2) and Procedures 3–8 in this appendix. Procedure 3 implements aW2
variant of the Composite–I decomposition algorithm with Stopping Rule 2. Procedure 4 implements
Simon’s algorithm where the values in (11) are stored in a list of 3–tuples of the form(µ, i,ς) whereµ
is a value from (11),i is the index of the corresponding component ofα, andς∈ {+,−} is a symbol
indicating the entry type (in particularςl = + whenµl = ui l −αi l andςl = − whenµi l = αi l ). The
algorithm scans the ordered list and saves the index pair that maximizesσ(α|{ j,k}) as described in
Section 2.1. Since this algorithm tracks the indices of the maximum and minimum gradient values it
also produces a max–violating pair when it exits the loop. Procedure 5 computes the initial gradient,
the initial list M, and an initial upper bounds0 = 1 on the criterion gapR∗−R(α0). The run time
of this procedure isO(n2) as determined by the gradient computation. Procedure 6 computes the
stepwise improvement for theWmlp2 andWmv pairs and then updatesα according to the pair with the
largest improvement. This routine runs inO(1) time. Procedure 7 shows the deletions and insertions
required to update theM–list. With the appropriate data structure each of these insert and delete
operations can be performed inO(logn) time. Procedure 8 implements theO(nlogn) algorithm
described in Section 2.3.
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Procedure 3The Composite–I Decomposition Algorithm.

1: Decomposition(Q,w,c,u,ε,α0)
2:

3: (g0,M0,s0)← Initialize (Q,w,u,α0)
4: m← 0
5: repeat
6: (Wm

mlp2,W
m
mv,σm)← Simon(gm,Mm)

7: if (σm = 0) then
8: Return(αm,gm)
9: end if

10: (αm+1,δm
R,Wm)← CompositeUpdate(αm,gm,Q,Wm

mlp2,W
m
mv)

11: gm+1← gm−Q(αm+1−αm)
12: Mm+1← UpdateMlist(Mm,Wm,αm,αm+1)
13: sm+1←min((n−1)σm,sm)−δm

R
14: m←m+1
15: until

(

sm≤ ε
)

16: Return(αm,gm)

Procedure 4This routine uses Simon’s algorithm to compute a max–lp2 pairWmlp2. It also com-
putes and returns a max–violating pairWmv and the valueσ∗ = σ(α|Wmlp2). It assumes thatM is an
sorted list arranged in nonincreasing order by the value of first component.

1: Simon(g, M) { M =
[

(µ, i,ς)1,(µ, i,ς)2, ...,(µ, i,ς)2n
]

}
2:

3: imax← 0, imin← 0, gmax←−∞, gmin← ∞, σ∗← 0, Wmlp2← /0
4: k← 1
5: while (µk > 0) do
6: if ((ςk = +1) and(gik > gmax)) then
7: gmax← gik, imax← ik
8: if (µk(gmax−gmin) > σ∗) then
9: Wmlp2←{imax, imin}, σ∗← µk(gmax−gmin)

10: end if
11: else if((ςk =−1) and(gik < gmin)) then
12: gmin← gik, imin← ik
13: if (µk(gmax−gmin) > σ∗) then
14: Wmlp2←{imax, imin}, σ∗← µk(gmax−gmin)
15: end if
16: end if
17: k← k+1
18: end while
19: Wmv←{imax, imin}
20: Return(Wmlp2, Wmv, σ∗)
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Procedure 5This routine accepts a feasible valueα and computes the corresponding gradientg, a
list M of 3–tuples(µ, i,ς) sorted byµ, and a trivial bounds= 1 onR∗−R(α).

1: Initialize(Q,w,u,α)
2:

3: g←−Qα+w
4: M← /0
5: for (i = 1, ...,n) do
6: M← Insert(M,(αi , i,−))
7: M← Insert(M,(ui−αi , i,+))
8: end for
9: s← 1

10: Return(g,M,s)

Procedure 6This routine computes the stepwise improvements for a max–lp2 pairWmlp2 and a
max–violating pairWmv, and then updatesα using the pair with the largest stepwise improvement.
It returns the new value ofα, and the corresponding stepwise improvement value and index pair.

1: CompositeUpdate(αold, g, Q, Wmlp2, Wmv)
2:

3: {i1, i2}←Wmlp2

4: δg← gi1−gi2, q←Qi1i1 +Qi2i2−2Qi1i2, ∆mlp2 = min
(

ui1−αold
i1 ,αold

i2

)

5: if (δg > q∆mlp2) then

6: δmlp2← ∆mlp2

(

δg− q∆mlp2

2

)

7: else
8: δmlp2←

δ2
g

2q, ∆mlp2← δg

q
9: end if

10:

11: { j1, j2}←Wmv

12: δg← g j1−g j2, q←Q j1 j1 +Q j2 j2−2Q j1 j2, ∆mv = min
(

u j1−αold
j1 ,αold

j2

)

13: if (δg > q∆mv) then

14: δmv← ∆mv

(

δg− q∆mv
2

)

15: else
16: δmv←

δ2
g

2q, ∆mv← δg

q
17: end if
18:

19: if (δmlp2 > δmv) then
20: αnew

i1 ← αold
i1 +∆mlp2, αnew

i2 ← αold
i2 −∆mlp2

21: Return(αnew, δmlp2, Wmlp2)
22: else
23: αnew

j1 ← αold
j1 +∆mv, αnew

j2 ← αold
j2 −∆mv

24: Return(αnew, δmv, Wmv)
25: end if
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Procedure 7This routine updates the sorted listM.

1: UpdateMlist (M,W,αold,αnew)
2:

3: {i1, i2}←W
4: M← Delete

(

M,(αold
i1 , i1,−)

)

5: M← Delete
(

M,(ui1−αold
i1 , i1,+)

)

6: M← Delete
(

M,(αold
i2 , i2,−)

)

7: M← Delete
(

M,(ui2−αold
i2 , i2,+)

)

8: M← Insert
(

M,(αnew
i1 , i1,−)

)

9: M← Insert
(

M,(ui1−αnew
i1 , i1,+)

)

10: M← Insert
(

M,(αnew
i2 , i2,−)

)

11: M← Insert
(

M,(ui2−αnew
i2 , i2,+)

)

12: Return(M)

Procedure 8This routine determines the offset parameter according to Theorem 2. Notethat the
inputg is the gradient vector from the canonical dual solution.

1: Offset(g,y,u)
2:

3: s+← ∑i:yi=1ui , s−← 0
4:
(

(ḡ1, ȳ1, ū1), ...,(ḡn, ȳn, ūn)
)

← SortIncreasing
(

(g1,y1,u1), ...,(gn,yn,un)
)

5: L← ∑i:ȳi=1 ūi(ḡi− ḡ1)
6: L∗← L, b← ḡ1

7: for (i = 1, ...,n−1) do
8: if (ȳi = 1) then
9: s+← s+− ūi

10: else
11: s−← s−+ ūi

12: end if
13: L← L− (ḡi+1− ḡi)(s+−s−)
14: if (L < L∗) then
15: L∗← L, b← ḡi+1

16: end if
17: end for
18: Return(b)
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