Journal of Machine Learning Research 7 (2006) 1385-1407 mitdd 9/05; Revised 1/06; Published 7/06

Learning Sparse Representations by
Non-Negative Matrix Factorization and
Sequential Cone Programming

Matthias Heiler HEILER@UNI-MANNHEIM .DE
Christoph Schnorr SCHNOERRQUNI-MANNHEIM .DE
Computer Vision, Graphics, and Pattern Recognition Group

Department of Mathematics and Computer Science

University of Mannheim

D-68131 Mannheim, Germany

Editors: Kristin P. Bennett and Emilio Parrado-Hémdez

Abstract

We exploit the biconvex nature of the Euclidean non-negatiatrix factorization (NMF) optimiza-
tion problem to derive optimization schemes based on se@liguadratic and second order cone
programming. We show that for ordinary NMF, our approactqrers as well as existing state-
of-the-art algorithms, while for sparsity-constrained RMs recently proposed by P. O. Hoyer in
JMLR 5 (2004)it outperforms previous methods. In addition, we show howxtend NMF learn-
ing within the same optimization framework in order to make of class membership information
in supervised learning problems.

Keywords: non-negative matrix factorization, second-order congamming, sequential convex
optimization, reverse-convex programming, sparsity

1. Introduction

Originally proposed to model physical and chemical processes (Shemsel, 1989; Paatero
and Tapper, 1994 on-negative matrix factorization (NMMFas become increasingly popular for
feature extraction in machine learning, computer vision, and signal mioceé.g., Hoyer and
Hyvarinen, 2002; Xu et al., 2003; Smaragdis and Brown, 2003). Onemdas this popularity is
that NMF codes naturally favor sparse, parts-based representftEmand Seung, 1999; Donoho
and Stodden, 2004) which in the context of recognition can be moretrtifarsnon-sparse, global
features. In some application domains, researchers suggested \&diensions of NMF in order
to enforce very localized representations (Li et al., 2001; Hoyer22Wang et al., 2004; Chi-
chocki et al., 2006). For example, Hoyer (2004) recently propoddé Subject to additional con-
straints that allow particularly accurate control over sparseness alidtly, over the localization
of features—see Figure 1 for an illustration.

From the viewpoint of optimization, NMF amounts to solving a difficult non-eneptimiza-
tion problem. So far, learning NMF codes relied on variations of the gradastent scheme which
tend to be less efficient in the presence of additional sparsity constraimesefore, in this work,
we exploit both the biconvex nature of the Euclidean NMF optimization critenwhtle reverse-
convex structure of the sparsity constraints to derive efficient optimizatbemes using convex
guadratic and second order cone programming (Lobo et al., 1998yasuwbroutines. We show
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Figure 1: Motivation of NMF with sparseness constraints.Five basis functions (columns) with
sparseness constraints ranging from 0.1 (first row, left) to 0.8 (lastright) onW were
trained on the CBCL face database. A moderate amount of sparsecessages local-
ized, visually meaningful base functions.

that for ordinary NMF our schemes perform as well as existing stathes&rt algorithms, while
for sparsity-constrained NMF they outperform previous methods. diitiad, our approach easily
extends to supervised settings similar to Fisher-NMF (Wang et al., 2004).

Organization. In Section 2, we introduce various versions of the NMF optimization problem.
Then, we first consider the unconstrained case in Section 3. Thesespagion of the sparsity
constraints and the corresponding optimality conditions are described tioiséc Using convex
optimization problems as basic components, we suggest algorithms for soleiggtieral NMF
problem in Section 5. Numerical experiments validate our approach in Séctife conclude in
Section 7.

Notation. For anym x n-matrix A, we denote columns b = (A.1,...,A.n) and rows by
A= (Ate,..-,Ane) . V € RT"" is a non-negative matrix afi data samples, and/ € RT*" a
corresponding basis with loadingse R'*". Furthermore, we denote the column vector with
all entries set to 1]/, represents thé,-norm for vectors, ||x||p = (3; |%|P)¥/P, and||A||¢ the
Frobenius norm for matrices: [|A|Z = 5 ; Af =tr(ATA). veqA) = (A];,...,A],) " is the vector
obtained by concatenating the columns of the mairix'he Kronecker product of two matricés
andB is writtenA® B (see, e.g., Graham, 1981). As usual, relations between vectors andasatric
like x> 0,A> 0, are understood elementwise.

2. Variations of the NMF Optimization Problem

In this section we introduce a number of optimization problems related to NMFe§mwnding
optimization algorithms are developed in Sections 3 to 5.
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2.1 Unconstrained NMF

The original NMF problem reads with a non-negative matrix dfata sample¥ € RT*", a matrix
of basis function®Vv € RT*", and corresponding loadings € R'*":

min IV —WHIZ
’ 1)
st 0<W,H

This problem is non-convex. There are algorithms that computgltiel optimum for such prob-
lems (Floudas and Visweswaran, 1993), however, they do not yket gpao the large problems
common in, e.g., machine learning, computer vision, or engineering. As H, resuwill con-
fine ourselves to efficiently computel@cal optimum by solving a sequence of convex programs
(Section 3.2).

2.2 Sparsity-Constrained NMF

Although NMF codes tend to be sparse (Lee and Seung, 1999), it lkeassbhggested to control
sparsity by more direct means. A particularly attractive solution was peapbg Hoyer (2004)
where the following sparseness measure for veotar®" , x # 0, was used:

HM?
Sp(X) := <ﬁ— —= . (2)
vn—-1 [[X[I2
Because of the relations
L < X2 < 1] @)
\/ﬁ l i 2 i l b

the latter being a consequence of the Cauchy-Schwarz inequality, tréespas measure is bounded:
0<spx) <1. (4)

The bounds are attained for minimal sparse vectors with equal non-@engonents where $p) =
0 and for maximal sparse vectors with all but one vanishing component®wf@) = 1. These
bounds are useful from a practical viewpoint since they make it relatintuitive to estimate
sparseness for a given vectar In addition, we found that (2) can conveniently be represented
in terms of second order cones (Section 4), allowing efficient numebzdis to be applied.

In this text, we will sometimes write $M) € R", meaning sp) is applied to each column
of matrix M € R™" and the results are stacked in a column vector. Using this convention, the
following constrained NMF problem was proposed in (Hoyer, 2004):

min [V —WH]||2

)

0<W,H )
spW) = sy
spH') = s,

wheres,, s, are user parameters. The sparsity constraints control (i) to what desistfunctions
are sparse, and (ii) how much each basis function contributes to thesteemion of only a subset
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of the dataV. In a pattern recognition application the sparsity constraints effectiveighivéhe
desired generality over the specificity of the basis functions.

Instead of using equality constraints we will slightly generalize the constraititss work to
intervalssii" < spW) < sf® ands™ < spH ") < §™ This disburdens the user from choosing
exact parameter valueg, s,, which can be difficult to find in realistic scenarios. In particular, it
allows forg)'® = g7 = 1, which may often be useful.

Consequently, we define tisparsity-constrained NMF probleas follows:

min |V -WH]||2

0<W,H

s.t. g < spW) < g (6)
inin < Sp(HT) < ér'?ax’

wheresﬂ,“”,s‘\;,‘ax,q}"”,ﬁ}‘ax are user parameters. See Figure 1 and Section 6 for illustrations.
Efficient algorithms for solving (6) are developed in Section 5.

2.3 Supervised NMF

When NMF bases are used for recognition, it can be beneficial to irteddiormation about class
membership in the training process. Doing so encourages NMF codesothartly describe the
input data well, but also allow for good discrimination in a subsequent cleatsifn stage. We
propose a formulation, similar to Fisher-NMF (Wang et al., 2004), that legplarticularly efficient
algorithms in the training stage.

The basic idea is to restrict, for each classd for each of its vectorg the coefficientdd;, to
a cone around the class centiewhich is implicitly computed in the optimization process:

min [V —WH]||2

W,H

st. 0<W,H (7)
[l —Hjell2 < Mlpillz Vi,V] € classi) .

As will be explained in Section 5.4, these additional constraints are no morutiffom the view-
point of optimization than are the previously introduced constraints in (6)h®wther hand, they
offer greatly increased classification performance for some probleesi¢8 6). Of course, if the
application suggests, supervised NMF (7) can be conducted with the addlgjgarsity constraints
from (6).

2.4 Assumptions

Throughout the remainder of this paper, the following assumptions are: made
1. The matricev "W andHH " are positive definite.
2. g < gMaxgndgin < I in (6).

3. The min-sparsity constraints in (6) are essential in the sense thatleaahaptimum of the
problem with min-sparsity constraints removed violates at least one sustr@iohorW and
H.
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The first assumption is introduced to simplify reasoning about conveegémapplications, it will
regularly be satisfied as long as the number of basis functiodiogs not exceed size or dimension
of the training datar < m,n. Assumption two has been discussed above in connection with (6).
Finally, assumption three is natural, because without the min-sparsity dohpt@blem (6) would
essentially correspond to (1) which is less involved.

3. Solving Unconstrained NMF Problems

We introduced various forms of the NMF problem in the previous sectiorxt,Nee concentrate
on practical algorithms to find locally optimal solutions. Unlike previous workerghvariations
of the gradient descent scheme were applied (Paatero, 1997; 20, our algorithms’ basic
building blocks are convex programs for which fast and robust selerist. As a side effect, we
avoid introducing additional optimization parameters like step-sizes or danspimgfants, which
is convenient for the user and increases robustness. As a resulikgustth Lee and Seung’s fast
NMF algorithm (Lee and Seung, 2000), there is no artificial step sizeTtes to be determined,
removing a potential source of errors and inefficiencies.

We next recall briefly the definition of quadratic programs, and then &xplar approach to
unconstrained NMF. Comparisons to existing work are reported in Section 6

3.1 Convex Quadratic Programs (QP)

Convex quadratic programs (QRYye optimization problems involving convex quadratic objectives
functions and linear constraints. In connection with unconstrained NYJEh@ QPs to be defined
in the next section take the following general form:

mXin%xTAx— b'x, 0<x, Apositive semidefinite. (8)

We denote the quadratic program (8) with parametebs

QM(A,b) (9)

Note, that for QPs efficient and robust algorithms exist (e.g., Wright6)L88d software for large-
scale problems is available.

3.2 NMF by Quadratic Programming

The unconstrained NMF problem (1) reads:
min [V —WH]||2
W,H
st. O<W,H.
Let us fixW and expand the objective function:
IV —WHI|Z =tr[(V -WH) " (V —~WH)]

=tr(H"W WH) — 2tr(V "WH) +tr(V'V) .
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Algorithm 3.1 QP-based NMF algorithm in pseudocode.
1: initialize W°, HY > 0 randomlyk — O
repeat
Hk+1  QP-resulfwX,V) using egn. (10)
Wk+l  QP-resultH**1,V) using eqgn. (12)
k—k+1
until [V —WKIHK2| — v —wWkHK||| <e

Together with the non-negativity constraintsi(H, this amounts to solving the QPs:
QPW ' WW'V,i), i=1,...n, (10)
for He1,...,Hen. Conversely, fixingd we obtain:
IV -WH|Z =tr((WHH"WT") —2tr(VH'WT) +tr(V'V), (11)
which amounts to solve the QPs:
QPHH'" HVi,), i=1,....,m, (12)

for Wi, ..., Whe.

We emphasize that by using a batch-processing scipeoftems of almost arbitrary sizean
be handled: The only hard limitation is the number of basis vectaitse dimension of the basis
vectorsm can, in principle, grow almost arbitrarily large. This is particularly importantifinage
processing applications whemerepresents the number of pixels which can be large.

The algorithm is summarized in Alg. 3.1. Note, thia¢ samearget function (1) is optimized
alternately with respect td andW. As a result, the algorithm performséock coordinate descent
(cf. Bertsekas, 1999). Furthermore, we may assume that the QPs emd (02) are strictly convex,
because typically < m,n (c.f. Section 2.4).

Proposition 1 Under the assumptions of Section 2.4, the algorithm stated in Alg. 3.1 cesvierg
a local minimum of probler{d).

Proof See Bertsekas (1999), Prop. 2.7.1. |

4. Sparsity Constraints and Optimality

In this section we develop a geometric formulation of problem (6) in terms @fskeorder cones
that fits into the framework of reverse-convex programming (Section V&) note that from the
viewpoint of optimization problem (6) is considerably more involved than €dalise the lower
sparsity bound imposed in termsgjf", sT" destroys convexity.

4.1 Second Order Cone Programms (SOCP) and Sparsity

Thesecond order cone "1 c R™ s the convex set (Lobo et al., 1998):
et (3) = b0l <t} (13
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The problem of minimizing a linear objective function, subject to the constrtiatsseveral affine
functions of the variables are required to liefifi*1, is called asecond order cone program (SOCP)

min f'x
XeRN
AiX+ D n+1 .
s.t. (CiTX+di> eL"m, i=1....m. (14)

Note, that efficient and robust solvers for solving SOCPs exist in so\iGturm, 2001; Mittel-
mann, 2003; Mosek 2005). Furthermore, additional linear constraidtsraparticular, the condi-
tion x € R are admissible, as they are special cases of constraints of the fornQU#approach
to sparsity-constrained NMF, to be developed below, is based on thisoflasavex optimization
problems.

Motivated by the sparseness measure (2) and our goal to computegative representations,
we consider the family ofonvexsets parametrized by a sparsity paramster

c(s):= {XGR” (1;)() GL”+1} , Cns:=+vN—(yN-1)s. (15)

Chs
Inserting the bounds (4) f& we obtain from (3):

c(0)={Ae,0<AeR} and R} cCc(l). (16)
This raises the question as to when non-negativity constraints must be ingqdiedly.

Proposition 2 The setc (s) contains non-positive vectorsAO if:

\m\%_nl_lqgl, n>3. (17)

Proof We observe that ik € ¢(s), thenAx € ¢(s) for arbitrary 0< A € R, because|Ax||2 —
e’ (AX)/cns = A(||Ix]|l2 — e"x/cns) < 0. Hence it suffices to consider vectorsvith [|x||2 = 1. Ac-
cording to definition (15), such vectors tend to berifs) the more they are aligned with There-
fore, w.l.0.g., sek, =0 andx = (n—1)"Y2 i=1,...,n—1. Thenx € ¢(s) if chs < v/n—1, and
the result follows from the definition af, s in (15). Finally, forn = 2 the lower bound fos equals
1, that is no non-positive vectors exist for all admissible values of |

The arguments above show that:

c(§)Cc(s) for §<s. (18)

Thus, to represent the feasible set of problem (6), we combine thexoin-negativity condition
with the convex upper bound constraint

{xeR] |spx) <s} = RINc(s (19)
and impose theeverse-convelower bound constraint by subsequently remowing):

{xeR | <spx)<s, s <s} = (RTNc(9))\c(s). (20)
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To reformulate (6), we define accordingly, based on (15):
cw(s) == {WeR™" |W,jec(s),i=1...r}, (21)
ch(s)i={HeR" " |H,ec(s),i=1...r}. (22)
As a result, the sparsity-constrained NMF problem (6) now reads:
min [V -WH]Z
st We (R™ N cw(SI™) \ cw(sSh™) (23)
H e (RN Ch(s™) \ cn(si™) .
This formulation makes explicit that enforcing sparse NMF solutions intreslacsingle additional

reverse-convegonstraint folW andH, respectively. Consequently, not only the joint optimization
of W, H is non-convex, but individual optimization @ andH is also.

4.2 Optimality Conditions

We state the first-order optimality conditions for problem (23). They will bedu® verify the
algorithms in Section 5.
To this end, we define in view of (15) and (23):

f(W,H) := |V -WH| (24a)
Q:=QuwxQh, Qui=R™ Ncy(Sh™), Qn:=R"Ncn(Sre), (24b)
T
Gu(W) := (Hw.luz— —Wallz, -y [Warll2— _\W-rh> : (24c)
Cn’%nn Cn./ﬂln
1 1 T
Gh(H) := { [[Hiallz— =——IH1all1, -, [Hrello— ——Hrall2 ) - (24d)
Cn¢$‘1ln C”?#?m

Note thatQ represents the convex constraints of problem (23) w&iléW) andGp(H) are non-
negative exactly when sparsity is at legf' andg!"". For non-negativiéV andH computing the/;
norm is a linear operation, that M/ > 0= |[W,1|[1 = (W, 1, €).

Problem (23) then can be rewritten so as to directly apply standard resartsvariational
analysis (Rockafellar and Wets, 1998):

(era'i)réQf(W,H) , GwW)eR' , Gp(H)eR|. (25)
With the corresponding Lagrangiarand multipliershy, An,

L(W,H, Aw,An) = f(W,H) + A, Gw(W) + A Gn(H) (26)

the first-order conditions for a locally optimal poifw*,H*) are:

T

- (;,b,gb) € No(W*,H") = Ng,(W") x Ng,(H") , (27a)
Gw(W*) e R, Gp(H*) e R, (27b)
A Ay eRD (27¢)
(AN, Gu(W")) =0, (Aj,Gn(H")) =0, (27d)

whereNx (x) denotes the normal cone to a ¥eat pointx (see, e.g., Rockafellar and Wets, 1998).
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5. Algorithms

In this section, we present two algorithms for solving problem (23). Therilgn discussed in
Section 5.2 is very efficient and computes a good local optimum if it congergewever, it may
oscillate in rare cases. Therefore, Section 5.3 presents a slightly lessrgfbiut “save” and con-
vergent algorithm. Both algorithms can also be applied to the supervised getitriogy adding
additional convex constraints—see Sections 2.3 and 5.4.

5.1 Reverse-Convex Programs (RCP)

The computational framework of our algorithms is reverse-convex progning (RCP) which con-
siders problems of the form

mXinf(x) , g(x)<0, 0<h(x), (28)

wheref, g, andh are convex (Singer, 1980; Tuy, 1987; Horst and Tuy, 1996).n@&ocally, the
feasible seX has the formX = G\ H whereG andH are convex sets.

RPCs are closely related to the class of d.c. programs (Toland, 1979tHriaity, 1985; Tuy,
1995; Yuille and Rangarajan, 2003). In fact, a d.c. program in stdrfdan can be written as RCP:

mxin f1(X) — f2(x) nglzn fi(x)—z
stt. g(x) <0 = stt. gx) <0 (29)
0 < fo(x) —z.

Existing strategies for globally optimizing RPCs (Horst and Tuy, 1996) @aory applied for
small or medium-sized problems. Accordingly, our algorithms below focus @netilistic goal to
efficiently compute a local minimum for larger learning problems.

5.2 Cone Programming with Tangent-Plane Constraints

In this section, we present an optimization scheme for sparsity-controllel WMch relies on
linear approximation of the reverse-convex constraint in (23). As indke of unconstrained NMF,
we alternately minimize (23) with respectWWdandH. It thus suffices to concentrate on tHestep:

min  f(H) = |V -WH]
st. He (RPN eh(s™) \ cn(s$™) -

Recall the assumptions made in Section 2.4.

(30)

5.2.1 TANGENT-PLANE CONSTRAINT (TPC) ALGORITHM

The tangent-plane constraint algorithm solves a sequence of SOCRstivaeonvex max-sparsity
constraints are modeled as second order cones and the min-sparsity lboe@rized: In an initial-
ization step we solve a SOCP ignoring the min-sparsity constraint and examigelthion. For
the rows ofH that violate the min-sparsity constraint we compute tangent planes to the nngitgpa
cone and solve the SOCP again with additional tangent-plane constraintsén Plas is repeated
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Algorithm 5.1 Tangent-plane approximation algorithm in pseudocode.

1: HO — solution of (32),J° — 0,k — 0
2: repeat

3

9

4
5
6
7
8

|:|k - Hk

repeat
Fe—Ju{jet,...,r:AK e c(sPm}
t—De(siM(mAf) vied
HK — solution of (33) replacindd® by A

until HX is feasible

HkHL — Fk gkl gK ke k41

10: until [f(HX) — f(HK1)| <&

until all necessary tangent-planes are identified. During iteration wetegly solve this SOCP
where the tangent planes are permanently updated to follow their condiegaentries irH: This
ensures that they constrain the feasible set no more than necessarypradess of updating the
tangent planes and computing new estimatesifa repeated until the objective function no longer
improves.

The TPC algorithm consists of the following steps:

e Initialization. The algorithm starts by settirﬂ1in = 0in (30), and by computing the global

optimum of the convex problem: mir{H), H € cn(s'®), denoted byH®. Rewriting the
objective function:

f(H)=[IVT —H W[
= veaV") — (Wa)veqH )|z, (31)

we observe thafi? solves the SOCP:

veqV') - (W®l)veqH")

rniznz, H e RN en(si™) , ( , ) AL (32)

Note thatH® will be infeasible w.r.t. the original problem because the reverse-corwex

straint of (30) is not imposed in (32). We determine the index)8et {1,...,r} of those

vectorsl:ljo, violating the reverse-convex constraint, thatflij% € c(snm).

Let i(H?,) denote the projections ¢17, ontodc (§]'), Vj € J° (Hoyer, 2004). Further, let

t? denote the tangent plane normalscids]™) at these points, and® « 1(H°) a feasible
starting point. We initialize the iteration counter— 0.

lteration. GivenJ¥, k=0,1,2,..., we once more solve (32) with additional linear constraints
enforcing feasibility of eachi}‘,, jedk

vV T) ~WB AN ¢

H rxn ax
minz, HeRFING(E™), ( .

(t,Hje —T(HK,)) >0, Vjel*. (33)
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Let us denote the solution By**1. It may occur that because of the additional constraints
new rowsH}‘,+1 of H**1 became infeasible for indicgis¢ J¥. In this case we augmedt
accordingly, and solve (33) again until the solution is feasible.

Note that we never remove indices fraifi Instead, we permanently re-adjust the corre-
sponding tangent plane constraititssettingt «— Oc (s™)(m(HX,)),vj € J¥. This ensures
that the constraints are not active at termination unless a compSl‘jfgm actually on the
boundary of the min-sparsity cone.

Finally, we rectify the vectorl§ljk,+1 by projection, as in the initialization, provided this further

minimizes the objective functiofi. The result is denoted by*** and the corresponding
index set by]k“. At last, we increment the iteration count&r— k+ 1

e Termination criterion. We check whethd*1 satisfies the termination criterigh(H+1) —
f(HY)| < &. If not, we continue the iteration.

The algorithm is summarized in pseudocode in Alg. 5.1.

Remark 3 The projection operatommapping a point x R onto the boundary of the min-sparsity
cone can be implemented using either the method of Hoyer (2004) or apjaistximation. In the
approximation, used exclusively in our experiments (Section 6), eadleetein x is exponentiated
and replaced by ex, with a > 1 chosen such that the min-sparsity constraint is not violated. The
factor c= c(x,a) ensures that thé,-norm of x is not affected by this transformation.

Remark 4 Problems(32) and (33) are formulated in terms of theows of H, complying with the
sparsity constraint§22). Unfortunatly, matrix W& | in (32) is not block-diagonal, so we cannot
separately solve for eachjkl Nevertheless, the algorithm is efficient (cf. Section 6).

Remark 5 Multiple tangent-planes with reversed signs can also be used to approxiheat®n-
vex max-sparsity constraints. Then problé38) reduces to a QP. Except for solvers for linear
programs, QP solvers are usually among the most efficient matheiaticgamming codes avail-
able. Thus, for a given large-scale problem additional speed might beeddy using QP instead
of SOCP solvers. In particular, this holds for the important special casenmo non-trivial max-
sparsity constraints are specified at all (i.g]?8= sy = 1).

Remark 6 A final remark concerns the termination criterion (Step 10 in Alg. 5.1). Whif&in-

ciple it can be chosen almost arbitrarily rigid, an overly smalmight not help in the overall
optimization w.r.t. WandH. As long as, e.g., W is known only approximately, we need not compute
the corresponding H to the last digit. In our experiments we chose relatiaglg € so that the
outer loop (steps 2 to 10 in Tab. 5.1) was executed only once or twice hb&okariable under
optimization was switched.

5.2.2 GONVERGENCEPROPERTIES

In the following discussion we use matricB$= (t¥)jc1
column whenj € JX and zeros elsewhere.

r that have tangent plane vect{élasj—th

{RRES)

Proposition 7 Under the assumptions stated in Section 2.4 Algorithm 5.1 yields a sequésdé H.
of feasible points, every cluster point of which is a local optimum.
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Proof Our proof follows (Tuy, 1987, Prop. 3.2). First, note that for eviery 0 the solutionH¥
of iterationk is a feasible point for the SOCP solved in iteratiom 1. Therefore{f(H*)}-1..
is a decreasing sequence, bounded from below and thus conveBenhe first assumption in
Section 2.4, the objective function (31) is strictly convex, becdwse )" (W 1) = (W'W®1)
has positive eigenvalueg(W ™W)A;(1) = Aj(W W), Vi, j (Graham, 1981). Consequentlj :
f(H) < f(H¥)} is bounded for eack. Let {H*},_;  denote a subsequence of solutions to (33)
converging to a cluster poiit, and |et{Tk"}v:1w resp.T denote the corresponding tangent planes.
We have

f(HY) < f(H), VYHe (S withTVTH >0, (34)

and in the limitv — o

f(H)<f(H), VHec(S™) withT H>0. (35)
Note that the constraints activeﬁcorrgspond to entrielsTj. €dc(sM"M), j € J. According to (35)
there is no feasible descent directiorthatind, thus, it must be a stationary point. Since the target
function is quadratic positive-semidefinite by assumptiénis an optimum. |

Thus, the TPC algorithm yields locally optimi& andH. However, this holds for thedividual
optimizations oW andH only. The same cannot be claimed for @ileernating sequencef opti-
mizations inW andH necessary to solve (6). Because of the intervening optimization of\é,g.,
we cannot derive a bound di{H) from a previously found locally optimadi. In rare cases, this
can lead to undesirable oscillations. When this happens, we must introdueedsonping term or
simply switch to the convergent sparsity maximization algorithm described in 8dc8o

On the other hand, if the TPC algorithm converges it does in fact yield #y@gzimal solution.

Proposition 8 If the TPC algorithm converges to a poifiv*,H*) and the assumptions stated
in Section 2.4 hold thefW* ,H*) satisfies the first-order necessary optimality conditions 4.2 of
problem(23).

Proof ForH* we have from (33) using the notation from Sec. 4.2

H*:argHr?ithl IV —W*H|2 (36a)
st (t Hj.—m(H%)) >0, vjelk (36b)

Sincet}‘ = Dsp(n(Hj""f)T) constraint (36b) ensures that the min-sparsity constraint is enfotré¢d a
when necessary (c.f. Prop. 7). Applyimgon each column ol *K simultaneously and introducing
Lagrange parameteds, A}, for this convex problem yields that the result of (36) adheres to the
first-order condition

* a * * ~* a * * * *
N FOW,H) = R OSp(H™) V) (H” = (H™)) € No,(H")
& —)\’]ia(;f(W*,H*)—i\’ﬁDsp(T[(H*k)T) € Ng,(H") (37)

& —%(A’Ff(w*,H*)+<X*7Gh(H*)>) € Nou(H")

which coincides with the condition df in (27a). Thew-part can be treated in the same wayll
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5.3 Sparsity-Maximization Algorithm

In this section we present an optimization scheme for sparsity-controlled fdlwhich global
convergence can be proven, even wiéandH are optimized alternately. Here, global convergence
means that the algorithmlways converget alocal optimum. As in the previous sections, we
assume our standard scenario (Section 2.4) and independently optimiieafod forH. Thus, it
suffices to focus on the-step.

Our algorithm is inspired by the reverse-convex optimization scheme segdasTuy (1987).
This scheme is global optimization algorithm in the sense that it finds a true global optimum.
However, as already pointed out in Tuy (1987), it does so at a caabigecomputational cost.
Furthermore, it does not straightforwardly generalizemoltiple reverse-convex constraints that
are essential for sparsity-controlled NMF. We avoid these difficultiesobyiing ourselves with a
locally optimal solution.

The general idea of our algorithm is as follows: After an initialization steptatrzates between
two convex optimization problems. One maximizes sparsity subject to the cohtegithe objec-
tive value must not increase. Dually, the other optimizes the objective fungtider the condition
that the min-sparsity constraint may not be violated.

5.3.1 SARSITY-MAXIMIZATION ALGORITHM (SMA)

The sparsity-maximization algorithm is described below. A summary in pseddasmutlined in
Alg. 5.2

e Initialization. For initialization we start with any poi® ¢ ac(ﬁ“”) on the boundary of the
min-sparsity cone. It may be obtained by solving (30) without the min-spassitgtraints
and projecting the solution onfir (5""). We setk — 0.

e First step. Given the current iteratel®, we solve the SOCP

max t

H.t

sit. He RN con() (38a)
f(H) < f(HY) (38h)
t <sp(HK) + (O spHE) Hje —HE) . =1, (38¢)

where constraint (38b) ensures that the objective value will not dedggioln standard form
this constraint translates to

(vec(vT) - f(\(/:g %) | )vec(HT)> c L (39)

We denote the result BySP. Note that this step maximizes sparsity in the sense thit‘gp<
sp(H®P), due to (38c) and the convexity of Sp

e Second stepWhile the intermediate solutidd P satisfies the min-sparsity constraint, it may
not be an optimal local solution to the overall problem. Therefore, in angksi®p, we solve
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the SOCP
min f(H)
st He RN on(9) (40a)
IHje —=HZl2< min [la=HZl2, j=1,....r (40b)
qec(s)

which reads in standard form

min t
H.t

s.t. (veo(VT) B (V\{@I)V%(HT)) e Mt (41)

Hje —H;¥ _
AL KPR ]
mmqec(#}““) Hq_ jo||2

H e RN cn(sr™).

Here, the objective functiohis minimized subject to the constraint that the solution must not
be too distant frontHSP. To this end, the non-convex min-sparsity constraint is replaced by a
convex max-distance constraint (40b), in effect defining a sphdrigstl region The radius
MiNge - gm) [|0— Hj%l|2 of the trust region is computed by a small SOCP.

e Termination. As long as the termination criterioff (H¥) — f(Hk"1)| < € is not met we
continue with the first step.

When the algorithm terminates a locally optintalfor the current configuration diV is found.

In subsequent runs we will not initialize the algorithm with an arbitidfy but simply continue
alternating between step one and step two using the current best estintatasar starting point

This way, we can be sure that the sequencelbis monotonous, even whak is occasionally
changed in between.

Remark 9 The requirement that the feasible set has an non-empty interior is impottag]®* =
gnin, the approximate approach i(88) breaks down, and each iteration just yield$§ H HSP =
Hk*1. In this situation, it is necessary to temporarily weaken the max-sparsityti@int. Fortu-
nately, max-sparsity constraints seem to be less important in many apptiatio

5.3.2 GONVERGENCEPROPERTIES

We check the convergence properties of the SMA.

Proposition 10 Under the assumptions stated in Section 2.4 and 4.2, the SMA (Alg. 5.2)gesve
to a point(W*,H*) satisfying the first-order necessary optimality conditions of prol(23j

1. Note that while such a scheme could be implemented with TPC as well, it wetflskm poorly in practice: Without
proper initialization TPC locks too early onto bad local optima.
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Algorithm 5.2 Sparsity-maximization algorithm in pseudocode.
1: HO « solution of (32) projected 0dch(S™), k « O
2: repeat
3:  HSP« solution of (38)
4:  H¥1 — solution of (40)
5
6

k—k+1
- until [f(HK) — f(H1)| <e

Proof Under the assumptions stated in Section 2.4, the feasible set is boundetierirore,
Alg. 5.2, alternately applied to the optimization \&f andH, respectively, computes a sequence
of feasible pointW*, HK} that steadily decreases the objective function value. Thus, by taking a
convergent subsequence, we obtain a cluster §@iftH*) whose components separately optimize
(38) when the other component is held fixed. It remains to check thaitmorel(27) are satisfied
after convergence.

We focus onH without loss of generality. Taking into account the additional non-neigativ
condition, condition (38c) is equivalent te< sp(H;. ), because gp) is convex. Moreovet, = §'"
because after convergence of iterating (38) and (40), the min-spaosistraint will be active for
some of the indice$ € {1,...,r}. Therefore, using the notation (24), the solution to problem (38)
satisfies _

twgét*:ﬂq‘"”, f(H) = f(H*) >0, Gu(H")eR" . (42)

Using multipliers)\",~ &, the relevant first-order condition with respecttas:

_9
oH

This corresponds to the condition bhin (27a). TheN-part can be handled the same way. W

(M F(H) + (A, Ga(H) ) € Noy(H") . (43)

Remark 11 While convergence is guaranteed and high-quality results are obtainscti¢s 6),
SMA can be slower than the TPC method presented in the previous sedtisris €specially the
case when {3“”‘% g;ﬂi”. Then, in order to solve a problem most efficiently, one will start with the
tangent-plane method and only if it starts oscillating switch to sparsity-maxiimizenode.

5.4 Solving Supervised NMF

The supervised NMF problem (7) is solved either by the tangent-plarsreart or the sparsity-
maximization algorithm presented above. We merely add constraints ensuairigetcoefficients
belonging to clasg abbreviated ;) € R'*™ below, stay in a cone centered at mgas: 1/niHge.
Then, the supervised constraint in (7) translates to

1/nHge—Hi. M1 s .
<)\/nieTH(i)e e L™ Vi,Vjeclassi). (44)

It is an important advantage that the algorithms above can easily be augrbgntadous convex
constraints (e.g., Heiler and Sdirmn, 2005).
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r=2 r=5 r=10 r=15 r=20 r=25
MU e£=101 013 0.15 0.17 0.30 0.49 0.68
MU €=102 021 044 0.60 0.71 0.82 0.91
MU e£=10°2% 036 029 0.33 0.37 0.41 0.45
MU €=10% 069 246 3.18 3.77 4.47 5.11
MU £=10° 264 429 5099 8.08 9.70 11.83
QP £=10! 020 035 0.67 1.14 1.74 2.53
QP £=10% 0.17 0.36 0.67 1.13 1.74 2.52
QP £=10° 026 045 0.79 1.27 1.97 2.60
QP £=10* 036 125 1.57 2.54 3.88 5.61
QP £=10° 146 205 256 4.55 762 12.21

Table 1: Unconstrained NMF. Comparison between QP algorithm and multiplicative updates
(MU). A medium-sized computer vision data sgt,c R1290<150 was factorized using
multiplicative updates and the QP algorithm (Alg. 3.1) using different numbfebasis
functionsr and different accuracies Average run time in seconds over 10 repeated runs
is reported. Overall, the QP algorithm shows similar performance to multiplicafive
dates.

6. Experiments

In this section we perform comparisons with established algorithms on artdintabn real-world
data sets to validate our results from a practical point of view. We alsade@vidence that the
local sparsity maximization seems not prone to end in bad local optima. Finalsheve that the
supervised constraints from egn. (7) can lead to NMF codes that areuseful for recognition.

6.1 Unconstrained NMF

In a first experiment, we validated that the quadratic programming algoritaimn 8T1) yields results
similar to the fast and stablaultiplicative updatgMU) algorithm by Lee and Seung (2000). To
this end, we factorized a data set from facial expression classific&ianu and Pitas, 2004; Lyons
et al., 1998) using both algorithms on subproblems of different sizesiiackdt requirements for
accuracy. To make a fair comparison, we ensured that the reconstrectar f (W,H) = ||V —
WH]||r of the QP algorithm was at least as small as the corresponding erroraffan@vious run
of the MU algorithm. We performed 10 repeated runs, each time starting framd@mmly chosen
initialization W,H that was identical for both methods. The resulise summarized in Tab. 1.
Both methods perform well on the data set. MU has an edge with the smalldemlwhile QP
has advantages when high accuracies are required. Overall, bothdsmetieopractical for solving
real-world problems.

2. All run times are reported in seconds using a 3 GHz Pentium IV runnimgxl-Matlab, and the Mosek 3.1 solvers
(Mosek 2005). In preliminary experiments we found that the SeDuMCB@olver (Sturm, 2001) and the CPLEX
QP solver (Cplex 2001) can be used as well.
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(c) Recovered bases usig§"™ = 0.0. (d) Recovered bases usig§" = 0.6.

Figure 2: Paatero experiments.The entries of the factoM/ andH are displayed (Figure 2(a)) as
well as the resulting data matrk (Figure 2(b)). In the experiments, a small amount of
Gaussian noisg ~ A (0,0.1) is added to the factors. The results for different values of
the min-sparsity constraint are shown in Figure 2(c) and 2(d): Only weamonstraint
allows to correctly recovel andH.

6.2 Sparsity-Controlled NMF

To examine the performance of the sparsity-controlled NMF algorithms veateg an experiment
suggested by Paatero (1997). Here, a synthetic data set consistingdot{s of Gaussian and
exponential distributions is analyzed using NMF. This data set (Figujig(@esigned to resemble
data from spectroscopic experiments in chemistry and physics arad é&asily analyzed: without
prior knowledge, NMF is reported to fail to recover the original factorthedata set. As a remedy,
Paatero hints that a “target shape” extension to NMF is beneficial. We will #iat for this data set
imposing an additional min-sparsity constraintWris sufficient to lead to correct factorizations.
In Tab. 2 we report the results for 10 repeated runs of the tangerg-plamstraints and the
sparsity-maximization algorithm using different choices of the min-sparsitgtcaint. The most
important figure is the number of correct recoveries of the basis fursctigve counted a NMF-
result correct if it showed the correct number of modes at the colweations. First note that,
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sy 0.0 0.2 04 06 0.8

TPC # correct results 0 0 0 7 4
TPC medruntime(sec.) 20.7 16.8 145 53.7 117.2
TPC min obj. value 0.26 0.26 0.24 0.25 21057
SMA # correct results 0 0 0 9 0
SMA medruntime (sec.) 142.0 113.3 60.3 54.1 14.0
SMA  min obj. value 0.25 026 024 0.26 1615

Table 2: Sparsity-controlled NMF. Statistics of the Paatero experiment collected over 10 runs for
the tangent-plane constraints (TPC) and the sparsity-maximization algoritif) (She
number of correct reconstructions (see text), the median run time, an@sheljective
value obtained are reported for different choices of the sparsitytrednts Correct recon-
structions are found in seven resp. nine out of ten trials for a sufficistriyg sparsity
constraint:s1"" = 0.6. This quota can be increased at the expense of longer running times.

consistent with Paatero (1997), the basis functions are not recowerezttly without additional
prior information in the form of constraints. Also, the objective vafu®/,H) = ||V —WH||r
is not indicative of correct results. Only for the extremely sparse case sfjith= 0.8 did we
obtain noticeably worse objective values. However, not shown in the, tiablthe interesting case
snin — 0.6 the objective values of the correct recoveries were all beldwile from the remaining
incorrect recoveries each was abov8.5Thus, while the objective value is not useful for model
selection purposes it seems to indicate good solutions once a suitable modiglad .de

Finally, we point out that for the correct value of the sparsity consttamihumber of correct
recoveries is essentially a function of the stopping parameters. With morereatige stopping
parameters one can ensure that in every single case bases areagcove=ctly. But then running
times increase. In our experiment we favored a short run time oveigpstiecess rate. Accordingly,
the best combination & andH was found after just 9 seconds of computation.

6.3 Global Approaches

A potential source of difficulties with the sparsity-maximization algorithm is thatdaver bound
on sparsity is optimized only locally in (38). Through the proximity constrainé®) the amount
of sparsity obtained in effect limits the step size of the algorithm. Insufficigatsity optimization
may, in the worst case, lead to convergence to a bad local optimum.

To see if this worst-case scenario is relevant in practice, we discretiggudblem by sampling
the sparsity cones using rotated and scaled version of the current egtithatel then evaluated
f(W,H) using samples from each individual sparsity cone. Then we pickedampls from each
cone and computed (38) replacing the starting pelifiby the sampled coordinates. For an exhaus-
tive search om cones each sampled wigtpoints we haves' starting points to consider.

For demonstration we used the artificial data set from Paatero (1993isting of products of
Gaussian and exponential functions (Figure 2). This data set is suitabéeiis not overly large
and sparsity control is crucial for its successful factorization.

In the sparsity-maximization algorithm we first sampled the four sparsity coressponding
to each basis function of the data gy > 0.6 sparsely, using only 10 rotations on each cone. We
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SH I I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time TPC 42.08 36.68 38.00 6523 5890 51.16 66.77 7141 111.35
time PGD 133.00 292.73 2046.92 1269.06 453.38 713.41 568.20 129.44 9463.8
quotient 3.16 7.98 53.87 19.46 7.70 1394 851 1.81 13.15
error TPC  0.19 0.17 0.18 0.19 0.43 0.72 0.89 1.01 1.07
error PGD  0.21 0.16 0.17 0.19 0.48 0.79 0.95 1.05 1.08
error quotient  1.09 0.98 0.94 0.99 1.11 1.10 1.07 1.04 1.01

Table 3: Comparison. Tangent-plane constraint (TPC) algorithm and projected gradienedesc
(PGD). The algorithms were used to find sparse decompositions of the GBE€data set.
TPC outperforms PGD w.r.t. computational effort (measured in seconki$) keeping
errors small.

then combined the samples on each cone in each possible way and evglioat@ticorresponding
starting points. In a second experiment we placed 1000 points on easftyspane, and randomly
selected 19 combinations as starting points. The best results obtained over four mdr&0ater-
ations with our local linearization method used in SMA and the sparse enunmeffatit) and the
sampling (second) strategy, are reported below:

Algorithm min-sparsity objective value
SMA 0.60 0.24
sparse enumeration 0.60 0.26
sampling 0.60 0.26

We see that the local sparsity maximization in SMA vyields results comparable tainglisg
strategies. In fact, itis better: Over four repeated runs the samplinggéstach produced outliers
with very bad objective values (not shown). This is most likely causedelsgre under-sampling
of the sparsity cones. This problem is not straightforward to circumverith #ove sampling
schemes a run over 80 iterations takes about 24h of computation, so mknggis not an option.
In comparison, the proposed algorithm finishes in few seconds.

6.4 Real-World Data and Comparison with PGD

For a test with real-world data we used the CBCL face data set (CBCI0)260r different values
of the sparsity constraints we derived NMF bases (Figure 1) and exdmgioenstruction errayand
training time. In this experiment we used the tangent-plane constraints mettiaf]}as: SIa =
I — g"¥ For comparison, we also employed thmjected gradient descePGD) algorithm
from Hoyer (2004) using the code provided on the author's homépalaile the comparison in
speed should be taken with a grain of salt—both methods use very diftopmting criteria—the
results (Tab. 3) show that the TPC method is competitive in speed and quatiysofutions.

6.5 Large-Scale Factorization of Image Data

To examine performance on a larger data set we sampled 10 000 imagespdtsize 11x 11 from
the Caltech-101 image database (Fei-Fei et al., 2004). Using a QP fRbéma(k 5) and the TPC

3. To increase speed logging to file and screen were manually remwvedHe program.

1403



HEILER AND SCHNORR

€ r=2 r=4 r==6 r=8 r=10
1.00 5.99 4932 98.91 222.01 278.76
0.50 5.97 54.67 103.93 230.45 256.98
0.25 10.22 72.75 133.23 224.62 363.62

Table 4: Large-scale performance. A matrix containingn = 10000 image patches witim =
121 pixels was factorized usingbasis functions and different stopping criteria for the
TPC/QP algorithm (see text). The median CPU time (sec.) for three repeatgdsru
shown. Even the largest experiment with over 100 000 unknown vasigb$mlved within
6 min.

algorithm we computed image bases with 2,4, ..., 10 andr = 50 basis functions usirg]/" = 0.5.
In addition, we varied the stopping criterion fraeve {1,0.5,0.25}. Note that the corresponding
QP instances contained roughly 100 000 to over half a million unknowns ssapgaing criterion
of € = 1 translates to very small changes in the entriegVoAndH. We did not use any batch
processing scheme but solved the QP instances directly, requiring lbeh®@6eVIB and 2 GB of
memory.

We show the median CPU time over three repeated runs for this experimeril@4taNhile
the stopping criterion has only minor influence on the run time the number of toaisons is
critical. All problems with up to 10 basis functions are solved within 6 min. For trgelaroblem
with 50 basis functions we measured a CPU time of 3, 5, and 7 hougssfdn, 0.5,0.25}. Mem-
ory consumption was roughly 2 GB. We conclude that factorization probleithshalf a million
unknowns can be comfortably solved on current office equipment.

6.6 Supervised NMF

We examined how supervised NMF contributes to solve a classification taskg dverall 100
training samples we trained an- 4 dimensional NMF basis for the digits 0, 3, 5, and 8 from the opt-
digits database. Subsequently, the remaining 1421 digits were classifigdhesimearest neighbor
classifier. The penalty parametein (7) was chosen as = («,5,2,1,0.75,0.5,0.4,0.3,0.2,0.1,
0.05,0.01), wherew corresponds to classical NMF without class label information. The éxpet
was repeated 30 times, and the mean classification error is depicted in Figtoe Gomparison,

a nearest-neighbor classification using a PCA basis of equal dimensieraged 109 errors on the
test data. It is evident that by strengthening the supervised label aonistie reduce the classifica-
tion error significantly, increasing recognition accuracy by a factor of tw

7. Conclusion

We have shown that Euclidean NMF with and without sparsity constraintsiéigdynwithin the
framework of sequential quadratic and second order cone programRonthese problems, progress
in numerical analysis has lead to highly efficient solvers which we exploit.

As a result, we propose efficient and robust algorithms for NMF whiehcampetitive with
or better than state-of-the-art alternatives. Besides performanaelbugtness, a key advantage of
our approach is that incorporating prior knowledge in form of additi@oalstraints will often be
possible in a controlled and systematic way. For instance, information onmotsbership avail-
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Figure 3: Supervised NMF. Reduction of classification error by supervised NMF. The letters 8,
5, 3, and 0 from the optdigits database are classified using a NMF basisefision
m = 4 and overall 100 training and 1421 test samples. From left to right \@vialues
for the supervised label constrait—= («,5,2,1,0.75,0.5,0.4,0.3,0.2,0.1,0.05,0.01),
were applied. Each experiment was repeated 30 times, mean perfornmahstadard
deviations of the nearest neighbor classificator are reportedh decreases the super-
vised label constraint is strengthened, reducing the classification greofdgtor of two.

able in supervised classification settings leads to additiomaexconstraints that do not further
complicate the optimization problem in a noteworthy way: no new algorithms neeslderived,
no suitable, typically more stringent, learning rates need to be determined.
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