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Abstract
We exploit the biconvex nature of the Euclidean non-negative matrix factorization (NMF) optimiza-
tion problem to derive optimization schemes based on sequential quadratic and second order cone
programming. We show that for ordinary NMF, our approach performs as well as existing state-
of-the-art algorithms, while for sparsity-constrained NMF, as recently proposed by P. O. Hoyer in
JMLR 5 (2004), it outperforms previous methods. In addition, we show how to extend NMF learn-
ing within the same optimization framework in order to make use of class membership information
in supervised learning problems.
Keywords: non-negative matrix factorization, second-order cone programming, sequential convex
optimization, reverse-convex programming, sparsity

1. Introduction

Originally proposed to model physical and chemical processes (Shen and Isräel, 1989; Paatero
and Tapper, 1994),non-negative matrix factorization (NMF)has become increasingly popular for
feature extraction in machine learning, computer vision, and signal processing (e.g., Hoyer and
Hyvärinen, 2002; Xu et al., 2003; Smaragdis and Brown, 2003). One reason for this popularity is
that NMF codes naturally favor sparse, parts-based representations(Lee and Seung, 1999; Donoho
and Stodden, 2004) which in the context of recognition can be more robust than non-sparse, global
features. In some application domains, researchers suggested variousextensions of NMF in order
to enforce very localized representations (Li et al., 2001; Hoyer, 2002; Wang et al., 2004; Chi-
chocki et al., 2006). For example, Hoyer (2004) recently proposed NMF subject to additional con-
straints that allow particularly accurate control over sparseness and, indirectly, over the localization
of features—see Figure 1 for an illustration.

From the viewpoint of optimization, NMF amounts to solving a difficult non-convex optimiza-
tion problem. So far, learning NMF codes relied on variations of the gradient descent scheme which
tend to be less efficient in the presence of additional sparsity constraints.Therefore, in this work,
we exploit both the biconvex nature of the Euclidean NMF optimization criterion and the reverse-
convex structure of the sparsity constraints to derive efficient optimizationschemes using convex
quadratic and second order cone programming (Lobo et al., 1998) as core subroutines. We show
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Figure 1: Motivation of NMF with sparseness constraints.Five basis functions (columns) with
sparseness constraints ranging from 0.1 (first row, left) to 0.8 (last row, right) onW were
trained on the CBCL face database. A moderate amount of sparseness encourages local-
ized, visually meaningful base functions.

that for ordinary NMF our schemes perform as well as existing state-of-the-art algorithms, while
for sparsity-constrained NMF they outperform previous methods. In addition, our approach easily
extends to supervised settings similar to Fisher-NMF (Wang et al., 2004).

Organization. In Section 2, we introduce various versions of the NMF optimization problem.
Then, we first consider the unconstrained case in Section 3. The representation of the sparsity
constraints and the corresponding optimality conditions are described in Section 4. Using convex
optimization problems as basic components, we suggest algorithms for solving the general NMF
problem in Section 5. Numerical experiments validate our approach in Section6. We conclude in
Section 7.

Notation. For anym× n-matrix A, we denote columns byA = (A•1, . . . ,A•n) and rows by
A = (A1•, . . . ,Am•)⊤. V ∈ R

m×n
+ is a non-negative matrix ofn data samples, andW ∈ R

m×r
+ a

corresponding basis with loadingsH ∈ R
r×n
+ . Furthermore, we denote bye the column vector with

all entries set to 1.‖x‖p represents theℓp-norm for vectorsx, ‖x‖p = (∑i |xi |p)1/p, and‖A‖F the
Frobenius norm for matricesA: ‖A‖2F = ∑i, j A

2
i j = tr(A⊤A). vec(A) = (A⊤•1, . . . ,A

⊤
•n)
⊤ is the vector

obtained by concatenating the columns of the matrixA. The Kronecker product of two matricesA
andB is writtenA⊗B (see, e.g., Graham, 1981). As usual, relations between vectors and matrices,
like x≥ 0,A≥ 0, are understood elementwise.

2. Variations of the NMF Optimization Problem

In this section we introduce a number of optimization problems related to NMF. Corresponding
optimization algorithms are developed in Sections 3 to 5.
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2.1 Unconstrained NMF

The original NMF problem reads with a non-negative matrix ofn data samplesV ∈ R
m×n
+ , a matrix

of basis functionsW ∈ R
m×r
+ , and corresponding loadingsH ∈ R

r×n
+ :

min
W,H

‖V−WH‖2F
s.t. 0≤W,H.

(1)

This problem is non-convex. There are algorithms that compute theglobal optimum for such prob-
lems (Floudas and Visweswaran, 1993), however, they do not yet scale up to the large problems
common in, e.g., machine learning, computer vision, or engineering. As a result, we will con-
fine ourselves to efficiently compute alocal optimum by solving a sequence of convex programs
(Section 3.2).

2.2 Sparsity-Constrained NMF

Although NMF codes tend to be sparse (Lee and Seung, 1999), it has been suggested to control
sparsity by more direct means. A particularly attractive solution was proposed by Hoyer (2004)
where the following sparseness measure for vectorsx∈ R

n
+, x 6= 0, was used:

sp(x) :=
1√

n−1

(√
n− ‖x‖1‖x‖2

)

. (2)

Because of the relations
1√
n
‖x‖1≤ ‖x‖2≤ ‖x‖1 , (3)

the latter being a consequence of the Cauchy-Schwarz inequality, this sparseness measure is bounded:

0≤ sp(x)≤ 1. (4)

The bounds are attained for minimal sparse vectors with equal non-zero components where sp(x) =
0 and for maximal sparse vectors with all but one vanishing components where sp(x) = 1. These
bounds are useful from a practical viewpoint since they make it relatively intuitive to estimate
sparseness for a given vectorx. In addition, we found that (2) can conveniently be represented
in terms of second order cones (Section 4), allowing efficient numerical solvers to be applied.

In this text, we will sometimes write sp(M) ∈ R
n, meaning sp(·) is applied to each column

of matrix M ∈ R
m×n and the results are stacked in a column vector. Using this convention, the

following constrained NMF problem was proposed in (Hoyer, 2004):

min
W,H

‖V−WH‖2F
s.t. 0≤W,H

sp(W) = sw

sp(H⊤) = sh ,

(5)

wheresw,sh are user parameters. The sparsity constraints control (i) to what extentbasis functions
are sparse, and (ii) how much each basis function contributes to the reconstruction of only a subset
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of the dataV. In a pattern recognition application the sparsity constraints effectively weight the
desired generality over the specificity of the basis functions.

Instead of using equality constraints we will slightly generalize the constraintsin this work to
intervalssmin

w ≤ sp(W) ≤ smax
w andsmin

h ≤ sp(H⊤) ≤ smax
h . This disburdens the user from choosing

exact parameter valuessw,sh, which can be difficult to find in realistic scenarios. In particular, it
allows forsmax

h = smax
w = 1, which may often be useful.

Consequently, we define thesparsity-constrained NMF problemas follows:

min
0≤W,H

‖V−WH‖2F

s.t. smin
w ≤ sp(W)≤ smax

w

smin
h ≤ sp(H⊤)≤ smax

h ,

(6)

wheresmin
w ,smax

w ,smin
h ,smax

h are user parameters. See Figure 1 and Section 6 for illustrations.
Efficient algorithms for solving (6) are developed in Section 5.

2.3 Supervised NMF

When NMF bases are used for recognition, it can be beneficial to introduce information about class
membership in the training process. Doing so encourages NMF codes that not only describe the
input data well, but also allow for good discrimination in a subsequent classification stage. We
propose a formulation, similar to Fisher-NMF (Wang et al., 2004), that leadsto particularly efficient
algorithms in the training stage.

The basic idea is to restrict, for each classi and for each of its vectorsj, the coefficientsH j • to
a cone around the class centerµi which is implicitly computed in the optimization process:

min
W,H

‖V−WH‖2F
s.t. 0≤W,H

‖µi−H j •‖2≤ λ‖µi‖1 ∀i,∀ j ∈ class(i) .

(7)

As will be explained in Section 5.4, these additional constraints are no more difficult from the view-
point of optimization than are the previously introduced constraints in (6). Onthe other hand, they
offer greatly increased classification performance for some problems (Section 6). Of course, if the
application suggests, supervised NMF (7) can be conducted with the additional sparsity constraints
from (6).

2.4 Assumptions

Throughout the remainder of this paper, the following assumptions are made:

1. The matricesW⊤W andHH⊤ are positive definite.

2. smin
h < smax

h andsmin
w < smax

w in (6).

3. The min-sparsity constraints in (6) are essential in the sense that each global optimum of the
problem with min-sparsity constraints removed violates at least one such constraint onW and
H.
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The first assumption is introduced to simplify reasoning about convergence. In applications, it will
regularly be satisfied as long as the number of basis functionsr does not exceed size or dimension
of the training data:r ≤ m,n. Assumption two has been discussed above in connection with (6).
Finally, assumption three is natural, because without the min-sparsity constraint problem (6) would
essentially correspond to (1) which is less involved.

3. Solving Unconstrained NMF Problems

We introduced various forms of the NMF problem in the previous section. Next, we concentrate
on practical algorithms to find locally optimal solutions. Unlike previous work, where variations
of the gradient descent scheme were applied (Paatero, 1997; Hoyer,2004), our algorithms’ basic
building blocks are convex programs for which fast and robust solvers exist. As a side effect, we
avoid introducing additional optimization parameters like step-sizes or damping-constants, which
is convenient for the user and increases robustness. As a result, justlike with Lee and Seung’s fast
NMF algorithm (Lee and Seung, 2000), there is no artificial step size parameter to be determined,
removing a potential source of errors and inefficiencies.

We next recall briefly the definition of quadratic programs, and then explain our approach to
unconstrained NMF. Comparisons to existing work are reported in Section 6.

3.1 Convex Quadratic Programs (QP)

Convex quadratic programs (QP)are optimization problems involving convex quadratic objectives
functions and linear constraints. In connection with unconstrained NMF (1), the QPs to be defined
in the next section take the following general form:

min
x

1
2

x⊤Ax−b⊤x , 0≤ x , A positive semidefinite. (8)

We denote the quadratic program (8) with parametersA,b:

QP(A,b) (9)

Note, that for QPs efficient and robust algorithms exist (e.g., Wright, 1996) and software for large-
scale problems is available.

3.2 NMF by Quadratic Programming

The unconstrained NMF problem (1) reads:

min
W,H

‖V−WH‖2F
s.t. 0≤W,H .

Let us fixW and expand the objective function:

‖V−WH‖2F = tr
[

(V−WH)⊤(V−WH)
]

= tr(H⊤W⊤WH)−2tr(V⊤WH)+ tr(V⊤V) .
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Algorithm 3.1 QP-based NMF algorithm in pseudocode.

1: initialize W0, H0≥ 0 randomly,k← 0
2: repeat
3: Hk+1←QP-result(Wk,V) using eqn. (10)
4: Wk+1←QP-result(Hk+1,V) using eqn. (12)
5: k← k+1
6: until

∣

∣‖V−Wk−1Hk−1‖−‖V−WkHk‖
∣

∣≤ ε

Together with the non-negativity constraints 0≤ H, this amounts to solving the QPs:

QP(W⊤W,W⊤V• i) , i = 1, . . .n , (10)

for H•1, . . . ,H•n. Conversely, fixingH we obtain:

‖V−WH‖2F = tr(WHH⊤W⊤)−2tr(VH⊤W⊤)+ tr(V⊤V) , (11)

which amounts to solve the QPs:

QP(HH⊤,HVi •) , i = 1, . . . ,m , (12)

for W1•, . . . ,Wm•.
We emphasize that by using a batch-processing schemeproblems of almost arbitrary sizecan

be handled: The only hard limitation is the number of basis vectorsr; the dimension of the basis
vectorsm can, in principle, grow almost arbitrarily large. This is particularly important for image
processing applications wherem represents the number of pixels which can be large.

The algorithm is summarized in Alg. 3.1. Note, thatthe sametarget function (1) is optimized
alternately with respect toH andW. As a result, the algorithm performs ablock coordinate descent
(cf. Bertsekas, 1999). Furthermore, we may assume that the QPs in (10)and (12) are strictly convex,
because typicallyr ≪m,n (c.f. Section 2.4).

Proposition 1 Under the assumptions of Section 2.4, the algorithm stated in Alg. 3.1 converges to
a local minimum of problem(1).

Proof See Bertsekas (1999), Prop. 2.7.1.

4. Sparsity Constraints and Optimality

In this section we develop a geometric formulation of problem (6) in terms of second order cones
that fits into the framework of reverse-convex programming (Section 5.1).We note that from the
viewpoint of optimization problem (6) is considerably more involved than (1) because the lower
sparsity bound imposed in terms ofsmin

w , smin
h destroys convexity.

4.1 Second Order Cone Programms (SOCP) and Sparsity

Thesecond order coneL n+1⊂ R
n+1 is the convex set (Lobo et al., 1998):

L n+1 :=

{(

x
t

)

= (x1, . . . ,xn, t)
⊤
∣

∣

∣
‖x‖2≤ t

}

, (13)
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The problem of minimizing a linear objective function, subject to the constraintsthat several affine
functions of the variables are required to lie inL n+1, is called asecond order cone program (SOCP):

min
x∈Rn

f⊤x

s.t.

(

Aix+bi

c⊤i x+di

)

∈ L n+1 , i = 1, . . . ,m . (14)

Note, that efficient and robust solvers for solving SOCPs exist in software (Sturm, 2001; Mittel-
mann, 2003; Mosek 2005). Furthermore, additional linear constraints and, in particular, the condi-
tion x∈ R

n
+ are admissible, as they are special cases of constraints of the form (14). Our approach

to sparsity-constrained NMF, to be developed below, is based on this classof convex optimization
problems.

Motivated by the sparseness measure (2) and our goal to compute non-negative representations,
we consider the family ofconvexsets parametrized by a sparsity parameters:

C (s) :=

{

x∈ R
n
∣

∣

∣

(

x
1

cn,s
e⊤x

)

∈ L n+1

}

, cn,s :=
√

n− (
√

n−1)s . (15)

Inserting the bounds (4) fors, we obtain from (3):

C (0) =
{

λe, 0 < λ ∈ R
}

and R
n
+ ⊂ C (1) . (16)

This raises the question as to when non-negativity constraints must be imposedexplicitly.

Proposition 2 The setC (s) contains non-positive vectors x6= 0 if:

√
n−
√

n−1√
n−1

< s≤ 1 , n≥ 3 . (17)

Proof We observe that ifx ∈ C (s), then λx ∈ C (s) for arbitrary 0< λ ∈ R, because‖λx‖2−
e⊤(λx)/cn,s = λ(‖x‖2−e⊤x/cn,s) ≤ 0. Hence it suffices to consider vectorsx with ‖x‖2 = 1. Ac-
cording to definition (15), such vectors tend to be inC (s) the more they are aligned withe. There-
fore, w.l.o.g., setxn = 0 andxi = (n−1)−1/2 , i = 1, . . . ,n−1. Thenx∈ C (s) if cn,s <

√
n−1, and

the result follows from the definition ofcn,s in (15). Finally, forn = 2 the lower bound fors equals
1, that is no non-positive vectors exist for all admissible values ofs.

The arguments above show that:

C (s′)⊆ C (s) for s′ ≤ s . (18)

Thus, to represent the feasible set of problem (6), we combine the convex non-negativity condition
with the convex upper bound constraint

{

x∈ R
n
+

∣

∣ sp(x)≤ s
}

= R
n
+∩C (s) (19)

and impose thereverse-convexlower bound constraint by subsequently removingC (s′):
{

x∈ R
n
+

∣

∣ s′ ≤ sp(x)≤ s, s′ < s
}

=
(

R
n
+∩C (s)

)

\C (s′) . (20)
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To reformulate (6), we define accordingly, based on (15):

Cw(s) :=
{

W ∈ R
m×r

∣

∣W• i ∈ C (s) , i = 1, . . . , r
}

, (21)

Ch(s) :=
{

H ∈ R
r×n
∣

∣ H⊤i • ∈ C (s) , i = 1, . . . , r
}

. (22)

As a result, the sparsity-constrained NMF problem (6) now reads:

min
W,H

‖V−WH‖2F

s.t. W ∈
(

R
m×r
+ ∩Cw(smax

w )
)

\Cw(smin
w )

H ∈
(

R
r×n
+ ∩Ch(smax

h )
)

\Ch(smin
h ) .

(23)

This formulation makes explicit that enforcing sparse NMF solutions introduces a single additional
reverse-convexconstraint forW andH, respectively. Consequently, not only the joint optimization
of W,H is non-convex, but individual optimization ofW andH is also.

4.2 Optimality Conditions

We state the first-order optimality conditions for problem (23). They will be used to verify the
algorithms in Section 5.

To this end, we define in view of (15) and (23):

f (W,H) := ‖V−WH‖2F , (24a)

Q := Qw×Qh , Qw := R
m×r
+ ∩Cw(smax

w ) , Qh := R
r×n
+ ∩Ch(smax

h ) , (24b)

Gw(W) :=

(

‖W•1‖2−
1

cn,smin
w

‖W•1‖1 , . . . , ‖W• r‖2−
1

cn,smin
w

‖W• r‖1
)⊤

, (24c)

Gh(H) :=

(

‖H1•‖2−
1

cn,smin
h

‖H1•‖1 , . . . , ‖Hr •‖2−
1

cn,smin
h

‖Hr •‖1
)⊤

. (24d)

Note thatQ represents the convex constraints of problem (23) whileGw(W) andGh(H) are non-
negative exactly when sparsity is at leastsmin

w andsmin
h . For non-negativeW andH computing theℓ1

norm is a linear operation, that is,W ≥ 0⇒‖W•1‖1≡ 〈W•1,e〉.
Problem (23) then can be rewritten so as to directly apply standard results from variational

analysis (Rockafellar and Wets, 1998):

min
(W,H)∈Q

f (W,H) , Gw(W) ∈ R
r
+ , Gh(H) ∈ R

r
+ . (25)

With the corresponding LagrangianL and multipliersλw,λh,

L(W,H,λw,λh) = f (W,H)+λ⊤wGw(W)+λ⊤h Gh(H) , (26)

the first-order conditions for a locally optimal point(W∗,H∗) are:

−
(

∂L
∂W

,
∂L
∂H

)⊤
∈ NQ(W∗,H∗) = NQw(W∗)×NQh(H

∗) , (27a)

Gw(W∗) ∈ R
r
+ , Gh(H

∗) ∈ R
r
+ , (27b)

λ∗w,λ∗h ∈ R
r
− , (27c)

〈

λ∗w,Gw(W∗)
〉

= 0,
〈

λ∗h,Gh(H
∗)
〉

= 0 , (27d)

whereNX(x) denotes the normal cone to a setX at pointx (see, e.g., Rockafellar and Wets, 1998).
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5. Algorithms

In this section, we present two algorithms for solving problem (23). The algorithm discussed in
Section 5.2 is very efficient and computes a good local optimum if it converges. However, it may
oscillate in rare cases. Therefore, Section 5.3 presents a slightly less efficient but “save” and con-
vergent algorithm. Both algorithms can also be applied to the supervised settingjust by adding
additional convex constraints—see Sections 2.3 and 5.4.

5.1 Reverse-Convex Programs (RCP)

The computational framework of our algorithms is reverse-convex programming (RCP) which con-
siders problems of the form

min
x

f (x) , g(x)≤ 0 , 0≤ h(x) , (28)

where f , g, andh are convex (Singer, 1980; Tuy, 1987; Horst and Tuy, 1996). Geometrically, the
feasible setX has the formX = G\H whereG andH are convex sets.

RPCs are closely related to the class of d.c. programs (Toland, 1979; Hiriart-Urruty, 1985; Tuy,
1995; Yuille and Rangarajan, 2003). In fact, a d.c. program in standard form can be written as RCP:

min
x

f1(x)− f2(x) min
x,z

f1(x)−z

s.t. g(x)≤ 0 ⇒ s.t. g(x)≤ 0 (29)

0≤ f2(x)−z .

Existing strategies for globally optimizing RPCs (Horst and Tuy, 1996) can be only applied for
small or medium-sized problems. Accordingly, our algorithms below focus on the realistic goal to
efficiently compute a local minimum for larger learning problems.

5.2 Cone Programming with Tangent-Plane Constraints

In this section, we present an optimization scheme for sparsity-controlled NMF which relies on
linear approximation of the reverse-convex constraint in (23). As in the case of unconstrained NMF,
we alternately minimize (23) with respect toW andH. It thus suffices to concentrate on theH-step:

min
H

f (H) = ‖V−WH‖2F
s.t. H ∈

(

R
r×n
+ ∩Ch(smax

h )
)

\Ch(smin
h ) .

(30)

Recall the assumptions made in Section 2.4.

5.2.1 TANGENT-PLANE CONSTRAINT (TPC) ALGORITHM

The tangent-plane constraint algorithm solves a sequence of SOCPs where the convex max-sparsity
constraints are modeled as second order cones and the min-sparsity coneis linearized: In an initial-
ization step we solve a SOCP ignoring the min-sparsity constraint and examine the solution. For
the rows ofH that violate the min-sparsity constraint we compute tangent planes to the min-sparsity
cone and solve the SOCP again with additional tangent-plane constraints in place. This is repeated
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Algorithm 5.1 Tangent-plane approximation algorithm in pseudocode.

1: H0← solution of (32),J0← /0, k← 0
2: repeat
3: H̃k← Hk

4: repeat
5: Jk← Jk∪{ j ∈ 1, . . . , r : H̃k

j • ∈ C (smin
h )}

6: tk
j ← ∇C (smin

h )(π(H̃k
j •)) ∀ j ∈ Jk

7: H̃k← solution of (33) replacingHk by H̃k

8: until H̃k is feasible
9: Hk+1← H̃k, Jk+1← Jk, k← k+1

10: until | f (Hk)− f (Hk−1)| ≤ ε

until all necessary tangent-planes are identified. During iteration we repeatedly solve this SOCP
where the tangent planes are permanently updated to follow their corresponding entries inH: This
ensures that they constrain the feasible set no more than necessary. This process of updating the
tangent planes and computing new estimates forH is repeated until the objective function no longer
improves.

The TPC algorithm consists of the following steps:

• Initialization. The algorithm starts by settingsmin
h = 0 in (30), and by computing the global

optimum of the convex problem: minf (H), H ∈ Ch(smax
h ), denoted byH̃0. Rewriting the

objective function:

f (H) = ‖V⊤−H⊤W⊤‖2F
= ‖vec(V⊤)− (W⊗ I)vec(H⊤)‖22 , (31)

we observe that̃H0 solves the SOCP:

min
H,z

z , H ∈ R
r×n
+ ∩Ch(smax

h ) ,

(

vec(V⊤)− (W⊗ I)vec(H⊤)
z

)

∈ L r×n+1 . (32)

Note thatH̃0 will be infeasible w.r.t. the original problem because the reverse-convexcon-
straint of (30) is not imposed in (32). We determine the index setJ0 ⊆ {1, . . . , r} of those
vectorsH̃0

j • violating the reverse-convex constraint, that isH̃0
j • ∈ C (smin

h ).
Let π(H̃0

j •) denote the projections of̃H0
j • onto∂C (smin

h ), ∀ j ∈ J0 (Hoyer, 2004). Further, let
t0
j denote the tangent plane normals toCh(smin

h ) at these points, andH0← π(H̃0) a feasible
starting point. We initialize the iteration counterk← 0.

• Iteration. GivenJk, k= 0,1,2, . . . , we once more solve (32) with additional linear constraints
enforcing feasibility of eachHk

j • , j ∈ Jk:

min
H,z

z , H ∈ R
r×n
+ ∩Ch(smax

h ) ,

(

vec(V⊤)− (W⊗ I)vec(H⊤)
z

)

∈ L r×n+1

〈

tk
j ,H j •−π(Hk

j •)
〉

≥ 0 , ∀ j ∈ Jk . (33)
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Let us denote the solution bỹHk+1. It may occur that because of the additional constraints
new rowsH̃k+1

j • of H̃k+1 became infeasible for indicesj 6∈ Jk. In this case we augmentJk

accordingly, and solve (33) again until the solution is feasible.

Note that we never remove indices fromJk. Instead, we permanently re-adjust the corre-
sponding tangent plane constraintstk

j , settingtk
j ← ∇C (smin

h )(π(H̃k
j •)),∀ j ∈ Jk. This ensures

that the constraints are not active at termination unless a componentH̃k
j • is actually on the

boundary of the min-sparsity cone.

Finally, we rectify the vectors̃Hk+1
j • by projection, as in the initialization, provided this further

minimizes the objective functionf . The result is denoted byHk+1 and the corresponding
index set byJk+1. At last, we increment the iteration counter:k← k+1

• Termination criterion. We check whetherHk+1 satisfies the termination criterion| f (Hk+1)−
f (Hk)|< ε. If not, we continue the iteration.

The algorithm is summarized in pseudocode in Alg. 5.1.

Remark 3 The projection operatorπ mapping a point x∈R
m
+ onto the boundary of the min-sparsity

cone can be implemented using either the method of Hoyer (2004) or a fastapproximation. In the
approximation, used exclusively in our experiments (Section 6), each element xi in x is exponentiated
and replaced by c·xα

i , with α≥ 1 chosen such that the min-sparsity constraint is not violated. The
factor c= c(x,α) ensures that theℓ2-norm of x is not affected by this transformation.

Remark 4 Problems(32) and (33) are formulated in terms of therows of H, complying with the
sparsity constraints(22). Unfortunatly, matrix W⊗ I in (32) is not block-diagonal, so we cannot
separately solve for each Hj •. Nevertheless, the algorithm is efficient (cf. Section 6).

Remark 5 Multiple tangent-planes with reversed signs can also be used to approximatethe con-
vex max-sparsity constraints. Then problem(33) reduces to a QP. Except for solvers for linear
programs, QP solvers are usually among the most efficient mathematical programming codes avail-
able. Thus, for a given large-scale problem additional speed might be gained by using QP instead
of SOCP solvers. In particular, this holds for the important special case when no non-trivial max-
sparsity constraints are specified at all (i.e., smax

h = smax
w = 1).

Remark 6 A final remark concerns the termination criterion (Step 10 in Alg. 5.1). Whilein prin-
ciple it can be chosen almost arbitrarily rigid, an overly smallε might not help in the overall
optimization w.r.t. WandH. As long as, e.g., W is known only approximately, we need not compute
the corresponding H to the last digit. In our experiments we chose relativelylarge ε so that the
outer loop (steps 2 to 10 in Tab. 5.1) was executed only once or twice beforethe variable under
optimization was switched.

5.2.2 CONVERGENCEPROPERTIES

In the following discussion we use matricesTk = (tk
j ) j∈1,...,r that have tangent plane vectortk

j as j-th
column whenj ∈ Jk and zeros elsewhere.

Proposition 7 Under the assumptions stated in Section 2.4 Algorithm 5.1 yields a sequence H1,H2, . . .
of feasible points, every cluster point of which is a local optimum.
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Proof Our proof follows (Tuy, 1987, Prop. 3.2). First, note that for everyk > 0 the solutionHk

of iterationk is a feasible point for the SOCP solved in iterationk+ 1. Therefore,{ f (Hk)}k=1,...

is a decreasing sequence, bounded from below and thus convergent.By the first assumption in
Section 2.4, the objective function (31) is strictly convex, because(W⊗ I)⊤(W⊗ I) = (W⊤W⊗ I)
has positive eigenvaluesλi(W⊤W)λ j(I) = λi(W⊤W) , ∀i, j (Graham, 1981). Consequently,{H :
f (H) ≤ f (Hk)} is bounded for eachk. Let {Hkν}ν=1,... denote a subsequence of solutions to (33)
converging to a cluster point̄H, and let{Tkν}ν=1,... resp.T̄ denote the corresponding tangent planes.
We have

f (Hkν)≤ f (H), ∀H ∈ C (smax
h ) with Tkν⊤H ≥ 0, (34)

and in the limitν→ ∞

f (H̄)≤ f (H), ∀H ∈ C (smax
h ) with T̄⊤H ≥ 0. (35)

Note that the constraints active in̄T correspond to entries̄H j • ∈ ∂C (smin
h ), j ∈ J. According to (35)

there is no feasible descent direction atH̄ and, thus, it must be a stationary point. Since the target
function is quadratic positive-semidefinite by assumption,H̄ is an optimum.

Thus, the TPC algorithm yields locally optimalW andH. However, this holds for theindividual
optimizations ofW andH only. The same cannot be claimed for thealternating sequenceof opti-
mizations inW andH necessary to solve (6). Because of the intervening optimization of, e.g.,W,
we cannot derive a bound onf (H) from a previously found locally optimalH. In rare cases, this
can lead to undesirable oscillations. When this happens, we must introduce some damping term or
simply switch to the convergent sparsity maximization algorithm described in Section 5.3.

On the other hand, if the TPC algorithm converges it does in fact yield a locally optimal solution.

Proposition 8 If the TPC algorithm converges to a point(W∗,H∗) and the assumptions stated
in Section 2.4 hold then(W∗,H∗) satisfies the first-order necessary optimality conditions 4.2 of
problem(23).

Proof ForH∗ we have from (33) using the notation from Sec. 4.2

H∗ = arg min
H∈Qh

‖V−W∗H‖2F (36a)

s.t.
〈

tk
j , H j •−π(H∗kj •)

〉

≥ 0 , ∀ j ∈ Jk. (36b)

Sincetk
j = ∇sp(π(H∗kj •)

⊤) constraint (36b) ensures that the min-sparsity constraint is enforced at H∗

when necessary (c.f. Prop. 7). Applyingπ on each column ofH∗k simultaneously and introducing
Lagrange parametersλ∗f , λ̃∗h for this convex problem yields that the result of (36) adheres to the
first-order condition

−λ∗f
∂

∂H
f (W∗,H∗)− λ̃∗h

∂
∂H

∇sp(π(H∗k)⊤)(H∗−π(H∗k)) ∈ NQh(H
∗)

⇔ −λ∗f
∂

∂H
f (W∗,H∗)− λ̃∗h∇sp(π(H∗k)⊤) ∈ NQh(H

∗)

⇔ − ∂
∂H

(

λ∗f f (W∗,H∗)+
〈

λ̃∗h,Gh(H
∗)
〉

)

∈ NQh(H
∗)

(37)

which coincides with the condition onH in (27a). TheW-part can be treated in the same way.
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5.3 Sparsity-Maximization Algorithm

In this section we present an optimization scheme for sparsity-controlled NMFfor which global
convergence can be proven, even whenW andH are optimized alternately. Here, global convergence
means that the algorithmalways convergesto a local optimum. As in the previous sections, we
assume our standard scenario (Section 2.4) and independently optimize forW and forH. Thus, it
suffices to focus on theH-step.

Our algorithm is inspired by the reverse-convex optimization scheme suggested by Tuy (1987).
This scheme is aglobal optimization algorithm in the sense that it finds a true global optimum.
However, as already pointed out in Tuy (1987), it does so at a considerable computational cost.
Furthermore, it does not straightforwardly generalize tomultiple reverse-convex constraints that
are essential for sparsity-controlled NMF. We avoid these difficulties by confining ourselves with a
locally optimal solution.

The general idea of our algorithm is as follows: After an initialization step, it alternates between
two convex optimization problems. One maximizes sparsity subject to the constraint that the objec-
tive value must not increase. Dually, the other optimizes the objective function under the condition
that the min-sparsity constraint may not be violated.

5.3.1 SPARSITY-MAXIMIZATION ALGORITHM (SMA)

The sparsity-maximization algorithm is described below. A summary in pseudocode is outlined in
Alg. 5.2

• Initialization. For initialization we start with any pointH0∈ ∂C (smin
h ) on the boundary of the

min-sparsity cone. It may be obtained by solving (30) without the min-sparsityconstraints
and projecting the solution onto∂C (smin

h ). We setk← 0.

• First step. Given the current iterateHk, we solve the SOCP

max
H,t

t

s.t. H ∈ R
r×n
+ ∩Ch(smax

h ) (38a)

f (H)≤ f (Hk) (38b)

t ≤ sp(Hk
j •)+ 〈∇H j •sp(Hk

j •),H j •−Hk
j •〉 , j = 1, . . . , r (38c)

where constraint (38b) ensures that the objective value will not deteriorate. In standard form
this constraint translates to

(

vec(V⊤)− (W⊗ I)vec(H⊤)
f (Hk)

)

∈ L rn+1. (39)

We denote the result byHsp. Note that this step maximizes sparsity in the sense that sp(Hk)≤
sp(Hsp), due to (38c) and the convexity of sp(·).

• Second step.While the intermediate solutionHsp satisfies the min-sparsity constraint, it may
not be an optimal local solution to the overall problem. Therefore, in a second step, we solve
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the SOCP

min
H

f (H)

s.t. H ∈ R
r×n
+ ∩Ch(smax

h ) (40a)

‖H j •−Hsp
j •‖2≤ min

q∈C (smin
h )
‖q−Hsp

j •‖2 , j = 1, . . . , r (40b)

which reads in standard form

min
H,t

t

s.t.

(

vec(V⊤)− (W⊗ I)vec(H⊤)
t

)

∈ L rn+1 (41)

(

H j •−Hsp
j •

minq∈C (smin
h ) ‖q−Hsp

j •‖2

)

∈ L n+1 , ∀ j

H ∈ R
r×n
+ ∩Ch(smax

h ).

Here, the objective functionf is minimized subject to the constraint that the solution must not
be too distant fromHsp. To this end, the non-convex min-sparsity constraint is replaced by a
convex max-distance constraint (40b), in effect defining a sphericaltrust region. The radius
minq∈C (smin

h ) ‖q−Hsp
j •‖2 of the trust region is computed by a small SOCP.

• Termination. As long as the termination criterion| f (Hk)− f (Hk−1)| ≤ ε is not met we
continue with the first step.

When the algorithm terminates a locally optimalH for the current configuration ofW is found.
In subsequent runs we will not initialize the algorithm with an arbitraryH0, but simply continue
alternating between step one and step two using the current best estimate forH as a starting point1.
This way, we can be sure that the sequence ofHk is monotonous, even whenW is occasionally
changed in between.

Remark 9 The requirement that the feasible set has an non-empty interior is important. If smax
h =

smin
h , the approximate approach in(38) breaks down, and each iteration just yields Hk = Hsp =

Hk+1. In this situation, it is necessary to temporarily weaken the max-sparsity constraint. Fortu-
nately, max-sparsity constraints seem to be less important in many applications.

5.3.2 CONVERGENCEPROPERTIES

We check the convergence properties of the SMA.

Proposition 10 Under the assumptions stated in Section 2.4 and 4.2, the SMA (Alg. 5.2) converges
to a point(W∗,H∗) satisfying the first-order necessary optimality conditions of problem(23).

1. Note that while such a scheme could be implemented with TPC as well, it wouldperform poorly in practice: Without
proper initialization TPC locks too early onto bad local optima.
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Algorithm 5.2 Sparsity-maximization algorithm in pseudocode.

1: H0← solution of (32) projected on∂Ch(smin
h ), k← 0

2: repeat
3: Hsp← solution of (38)
4: Hk+1← solution of (40)
5: k← k+1
6: until | f (Hk)− f (Hk−1)| ≤ ε

Proof Under the assumptions stated in Section 2.4, the feasible set is bounded. Furthermore,
Alg. 5.2, alternately applied to the optimization ofW andH, respectively, computes a sequence
of feasible points{Wk,Hk} that steadily decreases the objective function value. Thus, by taking a
convergent subsequence, we obtain a cluster point(W∗,H∗) whose components separately optimize
(38) when the other component is held fixed. It remains to check that conditions (27) are satisfied
after convergence.

We focus onH without loss of generality. Taking into account the additional non-negativity
condition, condition (38c) is equivalent tot ≤ sp(H j •), because sp(·) is convex. Moreover,t = smin

h
because after convergence of iterating (38) and (40), the min-sparsityconstraint will be active for
some of the indicesj ∈ {1, . . . , r}. Therefore, using the notation (24), the solution to problem (38)
satisfies

max
t,H∈Qh

t∗ = smin
h , f (Hk)− f (H∗)≥ 0, Gh(H

∗) ∈ R
r
+ . (42)

Using multipliersλ∗f , λ̃∗h, the relevant first-order condition with respect toH is:

− ∂
∂H

(

λ∗f f (H∗)+
〈

λ̃∗h,Gh(H
∗)
〉

)

∈ NQh(H
∗) . (43)

This corresponds to the condition onH in (27a). TheW-part can be handled the same way.

Remark 11 While convergence is guaranteed and high-quality results are obtained (Section 6),
SMA can be slower than the TPC method presented in the previous section. This is especially the
case when smax

h ≈ smin
h . Then, in order to solve a problem most efficiently, one will start with the

tangent-plane method and only if it starts oscillating switch to sparsity-maximization mode.

5.4 Solving Supervised NMF

The supervised NMF problem (7) is solved either by the tangent-plane constraint or the sparsity-
maximization algorithm presented above. We merely add constraints ensuring that the coefficients
belonging to classi, abbreviatedH(i) ∈R

r×ni
+ below, stay in a cone centered at meanµi = 1/niH(i)e.

Then, the supervised constraint in (7) translates to
(

1/niH(i)e−H j∗
λ/nie⊤H(i)e

)

∈ L n+1, ∀i,∀ j ∈ class(i) . (44)

It is an important advantage that the algorithms above can easily be augmentedby various convex
constraints (e.g., Heiler and Schnörr, 2005).
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r = 2 r = 5 r = 10 r = 15 r = 20 r = 25
MU ε = 10−1 0.13 0.15 0.17 0.30 0.49 0.68
MU ε = 10−2 0.21 0.44 0.60 0.71 0.82 0.91
MU ε = 10−3 0.36 0.29 0.33 0.37 0.41 0.45
MU ε = 10−4 0.69 2.46 3.18 3.77 4.47 5.11
MU ε = 10−5 2.64 4.29 5.99 8.08 9.70 11.83
QP ε = 10−1 0.20 0.35 0.67 1.14 1.74 2.53
QP ε = 10−2 0.17 0.36 0.67 1.13 1.74 2.52
QP ε = 10−3 0.26 0.45 0.79 1.27 1.97 2.60
QP ε = 10−4 0.36 1.25 1.57 2.54 3.88 5.61
QP ε = 10−5 1.46 2.05 2.56 4.55 7.62 12.21

Table 1: Unconstrained NMF. Comparison between QP algorithm and multiplicative updates
(MU). A medium-sized computer vision data set,V ∈ R

1200×150, was factorized using
multiplicative updates and the QP algorithm (Alg. 3.1) using different numbersof basis
functionsr and different accuraciesε. Average run time in seconds over 10 repeated runs
is reported. Overall, the QP algorithm shows similar performance to multiplicativeup-
dates.

6. Experiments

In this section we perform comparisons with established algorithms on artificialand on real-world
data sets to validate our results from a practical point of view. We also provide evidence that the
local sparsity maximization seems not prone to end in bad local optima. Finally, weshow that the
supervised constraints from eqn. (7) can lead to NMF codes that are more useful for recognition.

6.1 Unconstrained NMF

In a first experiment, we validated that the quadratic programming algorithm (Tab. 3.1) yields results
similar to the fast and stablemultiplicative update(MU) algorithm by Lee and Seung (2000). To
this end, we factorized a data set from facial expression classification (Buciu and Pitas, 2004; Lyons
et al., 1998) using both algorithms on subproblems of different sizes and different requirements for
accuracy. To make a fair comparison, we ensured that the reconstruction error f (W,H) = ‖V −
WH‖F of the QP algorithm was at least as small as the corresponding error froma previous run
of the MU algorithm. We performed 10 repeated runs, each time starting from arandomly chosen
initialization W,H that was identical for both methods. The results2 are summarized in Tab. 1.
Both methods perform well on the data set. MU has an edge with the smaller problems, while QP
has advantages when high accuracies are required. Overall, both methods are practical for solving
real-world problems.

2. All run times are reported in seconds using a 3 GHz Pentium IV running Linux, Matlab, and the Mosek 3.1 solvers
(Mosek 2005). In preliminary experiments we found that the SeDuMi SOCP solver (Sturm, 2001) and the CPLEX
QP solver (Cplex 2001) can be used as well.
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(c) Recovered bases usingsmin
w = 0.0.
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(d) Recovered bases usingsmin
w = 0.6.

Figure 2: Paatero experiments.The entries of the factorsW andH are displayed (Figure 2(a)) as
well as the resulting data matrixX (Figure 2(b)). In the experiments, a small amount of
Gaussian noiseη ∼ N (0,0.1) is added to the factors. The results for different values of
the min-sparsity constraint are shown in Figure 2(c) and 2(d): Only an active constraint
allows to correctly recoverW andH.

6.2 Sparsity-Controlled NMF

To examine the performance of the sparsity-controlled NMF algorithms we repeated an experiment
suggested by Paatero (1997). Here, a synthetic data set consisting of products of Gaussian and
exponential distributions is analyzed using NMF. This data set (Figure 2(a)) is designed to resemble
data from spectroscopic experiments in chemistry and physics and isnot easily analyzed: without
prior knowledge, NMF is reported to fail to recover the original factors inthe data set. As a remedy,
Paatero hints that a “target shape” extension to NMF is beneficial. We will show that for this data set
imposing an additional min-sparsity constraint onW is sufficient to lead to correct factorizations.

In Tab. 2 we report the results for 10 repeated runs of the tangent-plane constraints and the
sparsity-maximization algorithm using different choices of the min-sparsity constraint. The most
important figure is the number of correct recoveries of the basis functions. We counted a NMF-
result correct if it showed the correct number of modes at the correctlocations. First note that,
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smin
w 0.0 0.2 0.4 0.6 0.8

TPC # correct results 0 0 0 7 4
TPC med run time (sec.) 20.7 16.8 14.5 53.7 117.2
TPC min obj. value 0.26 0.26 0.24 0.25 210.57
SMA # correct results 0 0 0 9 0
SMA med run time (sec.) 142.0 113.3 60.3 54.1 14.0
SMA min obj. value 0.25 0.26 0.24 0.26 161.5

Table 2: Sparsity-controlled NMF. Statistics of the Paatero experiment collected over 10 runs for
the tangent-plane constraints (TPC) and the sparsity-maximization algorithm (SMA). The
number of correct reconstructions (see text), the median run time, and the best objective
value obtained are reported for different choices of the sparsity constraint. Correct recon-
structions are found in seven resp. nine out of ten trials for a sufficientlystrong sparsity
constraint:smin

w = 0.6. This quota can be increased at the expense of longer running times.

consistent with Paatero (1997), the basis functions are not recoveredcorrectly without additional
prior information in the form of constraints. Also, the objective valuef (W,H) = ‖V −WH‖F
is not indicative of correct results. Only for the extremely sparse case withsmin

w = 0.8 did we
obtain noticeably worse objective values. However, not shown in the table, for the interesting case
smin
w = 0.6 the objective values of the correct recoveries were all below 0.4 while from the remaining

incorrect recoveries each was above 5.0. Thus, while the objective value is not useful for model
selection purposes it seems to indicate good solutions once a suitable model is defined.

Finally, we point out that for the correct value of the sparsity constraintthe number of correct
recoveries is essentially a function of the stopping parameters. With more conservative stopping
parameters one can ensure that in every single case bases are recovered correctly. But then running
times increase. In our experiment we favored a short run time over perfect success rate. Accordingly,
the best combination ofW andH was found after just 9 seconds of computation.

6.3 Global Approaches

A potential source of difficulties with the sparsity-maximization algorithm is that thelower bound
on sparsity is optimized only locally in (38). Through the proximity constraint in (40) the amount
of sparsity obtained in effect limits the step size of the algorithm. Insufficient sparsity optimization
may, in the worst case, lead to convergence to a bad local optimum.

To see if this worst-case scenario is relevant in practice, we discretized the problem by sampling
the sparsity cones using rotated and scaled version of the current estimateHk and then evaluated
f (W,H) using samples from each individual sparsity cone. Then we picked one sample from each
cone and computed (38) replacing the starting pointHk by the sampled coordinates. For an exhaus-
tive search onr cones each sampled withspoints we havesr starting points to consider.

For demonstration we used the artificial data set from Paatero (1997) consisting of products of
Gaussian and exponential functions (Figure 2). This data set is suitable since it is not overly large
and sparsity control is crucial for its successful factorization.

In the sparsity-maximization algorithm we first sampled the four sparsity conescorresponding
to each basis function of the data forsw ≥ 0.6 sparsely, using only 10 rotations on each cone. We
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smin,max
w,h 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time TPC 42.08 36.68 38.00 65.23 58.90 51.16 66.77 71.41 111.35
time PGD 133.00 292.73 2046.92 1269.06 453.38 713.41 568.20 129.44 1463.89
quotient 3.16 7.98 53.87 19.46 7.70 13.94 8.51 1.81 13.15

error TPC 0.19 0.17 0.18 0.19 0.43 0.72 0.89 1.01 1.07
error PGD 0.21 0.16 0.17 0.19 0.48 0.79 0.95 1.05 1.08

error quotient 1.09 0.98 0.94 0.99 1.11 1.10 1.07 1.04 1.01

Table 3: Comparison. Tangent-plane constraint (TPC) algorithm and projected gradient descent
(PGD). The algorithms were used to find sparse decompositions of the CBCLface data set.
TPC outperforms PGD w.r.t. computational effort (measured in seconds) while keeping
errors small.

then combined the samples on each cone in each possible way and evaluatedg for all corresponding
starting points. In a second experiment we placed 1000 points on each sparsity cone, and randomly
selected 104 combinations as starting points. The best results obtained over four runs and 80 iter-
ations with our local linearization method used in SMA and the sparse enumeration (first) and the
sampling (second) strategy, are reported below:

Algorithm min-sparsity objective value
SMA 0.60 0.24

sparse enumeration 0.60 0.26
sampling 0.60 0.26

We see that the local sparsity maximization in SMA yields results comparable to the sampling
strategies. In fact, it is better: Over four repeated runs the sampling strategies each produced outliers
with very bad objective values (not shown). This is most likely caused by severe under-sampling
of the sparsity cones. This problem is not straightforward to circumvent: With above sampling
schemes a run over 80 iterations takes about 24h of computation, so more sampling is not an option.
In comparison, the proposed algorithm finishes in few seconds.

6.4 Real-World Data and Comparison with PGD

For a test with real-world data we used the CBCL face data set (CBCL, 2000). For different values
of the sparsity constraints we derived NMF bases (Figure 1) and examined reconstruction errorg and
training time. In this experiment we used the tangent-plane constraints method and smin

w = smax
w =

smin
h = smax

h . For comparison, we also employed theprojected gradient descent(PGD) algorithm
from Hoyer (2004) using the code provided on the author’s homepage3. While the comparison in
speed should be taken with a grain of salt—both methods use very differentstopping criteria—the
results (Tab. 3) show that the TPC method is competitive in speed and quality ofits solutions.

6.5 Large-Scale Factorization of Image Data

To examine performance on a larger data set we sampled 10 000 image patches of size 11×11 from
the Caltech-101 image database (Fei-Fei et al., 2004). Using a QP solver (Remark 5) and the TPC

3. To increase speed logging to file and screen were manually removed from the program.
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ε r = 2 r = 4 r = 6 r = 8 r = 10
1.00 5.99 49.32 98.91 222.01 278.76
0.50 5.97 54.67 103.93 230.45 256.98
0.25 10.22 72.75 133.23 224.62 363.62

Table 4: Large-scale performance. A matrix containingn = 10000 image patches withm =
121 pixels was factorized usingr basis functions and different stopping criteria for the
TPC/QP algorithm (see text). The median CPU time (sec.) for three repeated runs is
shown. Even the largest experiment with over 100 000 unknown variables is solved within
6 min.

algorithm we computed image bases withr = 2,4, . . . ,10 andr = 50 basis functions usingsmin
w = 0.5.

In addition, we varied the stopping criterion fromε ∈ {1,0.5,0.25}. Note that the corresponding
QP instances contained roughly 100 000 to over half a million unknowns, so astopping criterion
of ε = 1 translates to very small changes in the entries ofW andH. We did not use any batch
processing scheme but solved the QP instances directly, requiring between 100 MB and 2 GB of
memory.

We show the median CPU time over three repeated runs for this experiment in Table 4: While
the stopping criterion has only minor influence on the run time the number of basisfunctions is
critical. All problems with up to 10 basis functions are solved within 6 min. For the large problem
with 50 basis functions we measured a CPU time of 3, 5, and 7 hours forε ∈ {1,0.5,0.25}. Mem-
ory consumption was roughly 2 GB. We conclude that factorization problemswith half a million
unknowns can be comfortably solved on current office equipment.

6.6 Supervised NMF

We examined how supervised NMF contributes to solve a classification task. Using overall 100
training samples we trained anr = 4 dimensional NMF basis for the digits 0, 3, 5, and 8 from the opt-
digits database. Subsequently, the remaining 1421 digits were classified using the nearest neighbor
classifier. The penalty parameterλ in (7) was chosen asλ = (∞,5,2,1,0.75,0.5,0.4,0.3,0.2,0.1,
0.05,0.01), where∞ corresponds to classical NMF without class label information. The experiment
was repeated 30 times, and the mean classification error is depicted in Figure 3. For comparison,
a nearest-neighbor classification using a PCA basis of equal dimension generated 109 errors on the
test data. It is evident that by strengthening the supervised label constraint we reduce the classifica-
tion error significantly, increasing recognition accuracy by a factor of two.

7. Conclusion

We have shown that Euclidean NMF with and without sparsity constraints fits nicely within the
framework of sequential quadratic and second order cone programming. For these problems, progress
in numerical analysis has lead to highly efficient solvers which we exploit.

As a result, we propose efficient and robust algorithms for NMF which are competitive with
or better than state-of-the-art alternatives. Besides performance androbustness, a key advantage of
our approach is that incorporating prior knowledge in form of additionalconstraints will often be
possible in a controlled and systematic way. For instance, information on classmembership avail-
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Figure 3: Supervised NMF. Reduction of classification error by supervised NMF. The letters 8,
5, 3, and 0 from the optdigits database are classified using a NMF basis of dimension
m= 4 and overall 100 training and 1421 test samples. From left to right various values
for the supervised label constraint,λ = (∞,5,2,1,0.75,0.5,0.4,0.3,0.2,0.1,0.05,0.01),
were applied. Each experiment was repeated 30 times, mean performance and standard
deviations of the nearest neighbor classificator are reported. Asλ decreases the super-
vised label constraint is strengthened, reducing the classification error by a factor of two.

able in supervised classification settings leads to additionalconvexconstraints that do not further
complicate the optimization problem in a noteworthy way: no new algorithms need to be derived,
no suitable, typically more stringent, learning rates need to be determined.
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