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Abstract

A classical approach in multi-class pattern classificaigaie following. Estimate the probability
distributions that generated the observations for eactl lelass, and then label new instances by
applying the Bayes classifier to the estimated distribstiofihat approach provides more useful
information than just a class label; it also provides estiz®af the conditional distribution of class
labels, in situations where there is class overlap.

We would like to know whether it is harder to build accuratessifiers via this approach, than
by techniques that may process all data with distinct latmgether. In this paper we make that
guestion precise by considering it in the context of PACHahility. We propose two restrictions
on the PAC learning framework that are intended to corredpmith the above approach, and
consider their relationship with standard PAC learning.r @ain restriction of interest leads to
some interesting algorithms that show that the restricidonot stronger (more restrictive) than
various other well-known restrictions on PAC learning. Atemanative slightly milder restriction
turns out to be almost equivalent to unrestricted PAC |eayni

Keywords: computational learning theory, computational complexpbttern classification

1. Introduction

We present some PAC learning algorithms for various learning problemsnwaithew restriction
of the PAC setting. We begin by explaining the motivation for studying the neticdon, and
continue with some general results about it, followed by the algorithms.

1.1 Background and Motivation

A standard approach to classification problems (see for example (Ddd4eat) 1973), page 17) is
the following. For each class, finddiascriminant functiorthat maps elements of the input domain
to real values. These functions can be used to label any eleroétiie domain with the class label
whose associated discriminant function takes the largest valxeTmre discriminant functions are
usually estimates of the probability densities of points in each class, weighttk lofass prior
(relative frequency of that class), in which case we are usin@#yes classifier

If it is possible to obtain good estimates of the probability distributions that geagbthe label
classes, then (for reasons we explain below) these are often moug thsef just an accurate clas-
sification rule. However, this raises the question of how much harderadnbes to learn to classify
data well, if we actually insist on learning the distributions. This motivates oniceho study this
general question in the context of PAC learning, since PAC learning gifeamework for results
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giving lower bounds on sample-size or computational requirements. Tessks allow different
models of the learning process to be provably distinguished from eacdh iotterms of the learning
problems that are tractable within each model.

Most recent work on pattern classification (for example work on suppmtors (Cristianini
and Shawe-Taylor, 2000)) of course does not try to learn label digsgbutions, but rather to
find decision boundaries that optimize some performance guarantedy usisalassification rate.
Performance guarantees are derived from observed classificatifmmmpance in conjunction with
other features of the boundary such as syntactic or combinatorial cotgplexthe number of
support vectors and margin of separation. The general approaathyalequires examples with
different labels to be taken in conjunction with each other when finding sidadooundary. By
contrast, discriminant functions are constructed from individual lalaskes in isolation. It seems
clearly “easier” to find a good classifier by considering all data togeiea$ to apply empirical
risk minimisation), than by insisting that each label class must be independentlgrted into a
discriminant function. Noting Vapnik's observation ((Vapnik, 2000)g®&0) that one should not
try to solve a problem via solving a more general problem, why exactly woald/ant to estimate
the distributions of label classes?

The answer is that when the distributions can be found, the extra infornh#ors obtained is
often very useful in practice. In contrast with decision boundariegbtain for a domain element
X, the values of the probability densities of label classes athich provide a conditional distri-
bution over the class label of A predicted class label for can then take into account variable
misclassification penalties, or changes in the assumed class priors. Tdefecaurse other ways
to obtain such distributions, for example using logistic regression, or marergiéy (fork-class
classification) neural networks witk real-valued outputs re-scaled using the softmax activation
function (see (Bishop, 1995) for details). However, unsupervisathileg for each class—if it can
be done successfully—has other advantages over these techniggreasshe following.

1. Label classes can be added without re-training the system. So fopkxd a new symbol
were added to a character set, then given a good estimate of the probahitibutien over
images of the new symbol, this can be used in conjunction with pre-existing nfodalaw
the other symbols are generated.

2. Outlying instances are those that lie in regions of the domain where the distributioas hav
low weight. We usually cannot assign a sensible label to such instaneesydérahey may at
least be recognised as a result of all class label distributions havipgmel weight around
such an instance.

3. For applications such as handwritten digit recognition, it is arguably materal—from
the perspective of cognitive modeling—to model the data generation grotésms of 10
separate probability distributions, than as a collection of thresholds betigemrent digits.
This is because a handwritten zero (say) is nearly always the resulpmfcass that first
chooses the label “0” and then creates the image. It is not the resultrotags that first
generates a character and then assigns it the label “0” based ontcapigearance or other
criteria.

Another difficulty with decision boundaries arises specifically in the comteriulticlass clas-
sification. It has been noted (Allwein et al., 2000) that multiclass classdier®ften constructed
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using multiple 2-class classifiers. How to combine them is a challenging topic dkatdelf re-
ceived much recent attention, see for example (Guruswami and SaB8i,Al8vein et al., 2000).
In practical studies such as (Platt et al., 2000) that build a multi-class aadgifin a collection of
2-class classifiers, a distinction is made between separating each ctagbdranion of the others
(1-v-r classifiers, where 1-v-r stands for one-versus-rest) and paisgjsgration1-v-1classifiers).
Neither is entirely satisfactory—for example it may be possible to performrliheal separation
for all pairs of classes, but not linear 1-v-r separation, while 1-lagsification (as studied in (Platt
et al., 2000)) raises the problem of combining the collection of pairwiseifitassn a principled
way to get an overall classification, for example ensuring that all classeseated the same way.
In (Platt et al., 2000), the first test for any unlabeled input is to applyaparstor that distinguishes
0 from 9. Thus 0 and 9 are being treated differently from other digits (wimi¢urn are also treated
differently from each other.)

With regard to PAC learning, the approach of applying unsupervisegitepio each label class,
can treat situations where class overlap occurs (as is usually the casecticg). Standard PAC
algorithms do not address this problem (although there have been exteasith as “probabilistic
concepts” (Kearns and Schapire, 1994) that do so, and methodssugipgrt vectors that also allow
decision boundaries that do not necessarily agree with all observay diais not hard to verify
(see (Palmer and Goldberg, 2005)) that when we have good estimatesctdgh label distributions
(in a sense described below in Section 1.3) then the associated class{fi@misimately optimal in
the agnostic PAC sense. For large data set sizes, it becomes feasiblegodthestimates of these
distributions, and obtain this more useful “summary” of the data.

The algorithms described in this paper are given in the context of simples@-classification,
as opposed to multi-class classification. This is because we aim to exploreotilerps arising
from an insistence upon treating each label class independently. Théhatgowould however
apply in a multi-class context where each pair of classes is separateddunddry belonging to
the given set of boundaries.

1.2 Formal Definition of the Learning Framework

In PAC learning (see for example (Anthony and Biggs, 1992) for a detaileoduction) there is

a source of data consisting of instances generated by a probability distniBuover a domairX,
labeled using an unknown “target function? X — {0,1}. The objective is to find a classifier
h: X — {0,1} which is a good approximation tovith respect to probability measuiie As usual
we will let € denote a misclassification rate (probability thandh disagree on random) andd
denote the uncertainty (probability that error rates not attained). We refer to the members of
t=1(1) as the “positive examples” and the membersdf0) as the “negative examples”.

We say that a sef of functions fromX to {0, 1} (the “concept class”) is PAC learnable if there
exists an algorithn# that for anyt € C, with probability at least + & outputsh : X — {0,1}
having misclassification rate at mast4 is required to run in time polynomial ier* andd~* and
other parameters (usually, the syntactic description lengtlaiefl members of the training dateg.
may sample from D in unit time, and obtairix, t(x)). In this standard definition, we assume that
andD may be worst-case (chosen by an adversary).
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Notation. For ¢ € {0,1} let D, denote the restriction d tot~(¢). Let p, denote the class prior
for label?, p; = Pr.p(t(x) = ¢). We assume throughout that > 0. Thus

Phep, (X) = 3 Php(X)  fort(x) =¢
Prp,(X) =0 fort(x) =1—/¢

For any probability distributio® overX (for exampleD or D), an algorithmwith access to Pnay
in unit time draw an unlabeled sample frdtn

It is shown in (Haussler et al., 1991) that the standard PAC frameworkuisaent to a “two-
button” version, where an algorithm has access to a “positive exampiebi@nd a “negative
example oracle”. (The two-button version conceals the class priors@pdyives the algorithm
access to the distribution as restricted to each class label. Thus the oewbeatg examples from
D1 andDg respectively.) We define a restriction of “two-button” learning as follows.

Definition 1 Suppose algorithrd has access to a distribution P over X, and the outpu#ias
a function f: X — R. Execute4 twice, using O (respectively [g) for P. Let f and § be the
functions obtained respectively. FoexXX let

h(x) =1 if fi(x)
h(x) =0 if fi(X)
h(x) undefined if fi(x)

> fo(X)

< fo(X)

= fo(x)

If 4 takes time polynomial in~! and &%, and h is PAC with respect toandd, then we will say
that 4 PAC-learns via discriminant functions.

Itis clear that if4 can be found such that the resultings PAC, then we have PAC learnability
in the two-button setting, and hence standard PAC learnability.

In specifying the restriction above, we are keeping it both simple and fg&va the sense of
making it difficult to find algorithms within the restricted framework. This is with awte getting
strong positive results, and also to maximizing the potential for negativétsd8AC learnable
problems that are hard within the restricted setting). One could devise le=® sestrictions to
capture the general idea of learning via discriminant functions. Alteestive discussed at the end
of this section.

We also consider the following slightly less severe variant related to POS&Kakility as
introduced in (Denis, 1998), in whicA has access t® (in (Denis, 1998) the “EX” oracle), in
addition toD1 (in (Denis, 1998) the “POS” oracle). This is formalized as Definition 2,iatutns
out that we can be much more specific about learnability in this sense, nanmintérmediate
between PAC learnability with uniform misclassification noise and basic PAGdedity.

Definition 2 Suppose algorithrd has access to D in addition to distribution P over X, and the
output of 4 is a function f: X — R. Executeq twice, using Q3 (respectively ) for P. Let §
and § be the functions obtained respectively. Far X let

h(X) =1 if fl(X) > fo(X)
h(x) =0 if fi(X) < fo(x)
h(x) undefined if fi(x) = fo(X)

If 4 takes time polynomial in—! and &1, and h is PAC with respect and 8, then we will say
that 4 PAC-learns via discriminant functions with access to D.
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POSEX learnability requires th&t be a (/' 1-valued function that constitutes a PAC hypothesis.
We discuss the relationship in more detail in the next section.

Notation. We refer to the two instances of the unsupervised learning algorithm asd 4y, so
that 4; consists of4 with the (unlabeled) positive data as input, afgis 4 with the (unlabeled)
negative data as input. (Note however that learning according to Defiditioi2 does not allowd,
to use the value of.) We letS, denote the sample of unlabeled data drawnaby

Let us conclude this section by considering alternative restrictions to R&x@dbility that cap-
ture the informal notion of learning via discriminant functions. We could f@meple ask thaf;
and fp should be probability distributions. Our reason for not doing so is that, wiglbelieve that
the functions produced by our algorithms can be re-scaled on an dubkiscto become probability
distributions, there is no guarantee in the distribution-free PAC setting thatitieesimilar to the
unknown distribution®; andDg.

Another natural candidate is a variant in whigh and 4y are two distinct agents that know
their class labels. Equivalently, we would be seeking two algoritiinand 4, that respectively
have access to the positive and negative data (equivalently, an algctittimt may use the value
£). Observe however that this relaxation is not helpful for any conclags that is closed under
complement (meaning that for @k C, we also hav& \ c € (). Consequently, any algorithms that
require this relaxation would need to exploit additional prior information abata from different
classes. There’s nothing wrong with that of course, but it depants énar focus on the approach of
independently processing each label class.

1.3 Related Work

There has been much work on the comparison of alternative notions ofilé2k@ing with each
other, with the criterion for distinguishability being that some learning taskogoinclass) should
be tractablein one variant but not in the other. The early paper of (Haussler et31)Ishowed
that various alternative definitions of PAC learnability are equivalent indéisse. Examples of
distinctions that have been found between different restrictions to theetvark include learning
with a restricted focus of attention (Ben-David and Dichterman, 1998,)1@84h is shown to
be more severe that learnability in the presence of uniform misclassificatiea. nLearnability
with Statistical Queries (Kearns, 1998) is also known to be at least aesgwdearnability with
uniform misclassification noise. Perhaps the most important result of thisisiie equivalence
between PAC learnability and “weak” PAC learnability found by (Schagi@90) which led to
the development of boosting techniques. The paper (Blum, 1994) exhibiteicept class that
distinguishes PAC learnability from mistake-bound learning, and that is g€ithere since we use
the same concept class (in Section 3.3) to show that our restriction of PAGlgity is likewise
distinct from mistake-bound learnability.

We noted that learning under the constraint of Definition 2 is related to PO&EXNg. Specif-
ically we have:

Observation 1 If a concept class and its complement are POSEX learnable, then théseanable
under Definition 2.

Proof (sketch; the following technique is used in more detail in Theorem 4)4edbe a POSEX
algorithm for C and let4;, be a POSEX algorithm fof”, the class of sets whose complements are

1. The word “tractable” is usually taken to mean that the computational amgls-size requirements for learning,
should be polynomial in the parameters of the task.
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members ofC. An algorithm4 in the sense of Definition 2 works as followd. can sample from
D, and it uses samples froBy as “positive” examples4 applies4p and 4y to this data, and at
least one of the two hypothesbgY is PAC, since the “positive” data really is positive from the
perspective of one oflp and 4.

handh’ are then tested on further data; the chosen hypothesis should contaih@lrsamples
from Dy, and if bothh andh’ do so, choose the one that contains fewer samples BonThat
hypothesis with high probability maps samples frBmto 1 and samples frord;_, to 0. Let4;
and A4, be the two runs of4 having access t®; andDg respectively. The overall hypothesis is
obtained from two functions found h§; and .4y, and its misclassification rate is at most the sum
of their error rates. |

In Section 2 we show that if a concept class is learnable in the presemmésef then it and
its complement are POSEX learnable, and hence by the above obserstioaple under Defini-
tion 2. The result of Section 2 answers a question raised by (Letouzy 2000) (the hierarchies
of inclusions given in Equations (4,5) of (Letouzey et al., 2000) can brgeakg.

There are some interesting algorithms having PAC-like performance daasafor learning
probability distributions; the topic was introduced in (Kearns et al., 19%8,adso (Cryan et al.,
2001; Freund and Mansour, 1999; Frieze et al., 1996; Dasgu@8).1Bhe criterion for learning a
distributionD is to obtain a hypothesis distribution which is withdrof D under some measure of
similarity. The KL distance and the variation distance are usually considérfechoted above that
when distributions are learned under these criteria, the Bayes classifieves agnostic PAC-ness.
However, the algorithms we describe here differ substantially from theseops ones (as well
as from the algorithms in the much more extensive general literature onaem&equ learning).
The reason is that our aim is not really to approximate a distribution over inRather, it is to
construct a discriminant function in such a way that we expect it to wotkiweonjunction with
the corresponding discriminant function constructed on data with the ieptsss label.

1.4 Summary of Results

The rest of the paper is organized as follows. In Section 2 we consatig under Definition 2
in which 4, has access tD in addition toD,. We show that PAC learnability with uniform misclas-
sification noise implies PAC learnability with discriminant functions and acceBs This gives us
a good understanding of how learning under Definition 2 fits in with othéricdens.

In Section 3 we move to the trickier issue of learning according to Definition &.eX¥ibit
algorithms that show that the restriction is not more severe than variousresiigctions of PAC
learning. In Section 3.1 we show that parity functions are learnable in ttiisgsewhich dis-
tinguishes it from learnability in the presence of noise (subject to the “naisiyypassumption”,
which is the widespread assumption that parity functions are hard to leara prékence of uni-
form misclassification noise) as well as Statistical Query (SQ) learnabilitsr(iee 1998) (since it
is known from (Kearns, 1998) that parity functions are not learnasileguSQs.) In Section 3.2 we
distinguish the setting from learnability from positive data only (or negatata only) by study-
ing the class of unions of intervals on the real line. In Section 3.3 we distimglgssetting from
mistake-bound learning, using a concept class from (Blum, 1994).

The two remaining algorithms indicate some limits to our success at finding algorithiimes in
restricted setting. Section 3.4 shows how to learn linear separators in tlee psamg an approach
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that we have not been able to extend to three or more dimensions. In Seétie 8how how to
learn monomials provided that the input distributidns an unknown product distribution. Learn-
ing under this sort of assumption is in a sense intermediate between learningogéhs tdD
(Definition 2) and learning via discriminant functions in the sense of Definition

2. Learning via Discriminant Functions with Access toD

In this section we show that given a standard noise-tolerant PAC leaailgogthm, we may use it
to construct an algorithm for POSEX learning and hence learning in tkrcties of Definition 2.
We do this in two stages—Proposition 3 shows how this is achieved provideaitleatimate of the
class priorpy is provided to4,, and Theorem 4 extends the result to the setting in which the class
priors are unknown.

Here is an overview of the proofs in this section. Proposition 3 analysaesrgawith a given
noise rate. This uses a standard definition of noise-tolerant PAC leamivitich an algorithma"
has parameter. n is the probability that an example is mislabeleds @ < % A" should then be
polynomial in(% —n)~tin addition to other parameters. Given the class ppiofthe probability
that a random instance has lalfglve can generate random samples from a fixed distribution that
is a mixture ofD andDy, such that they have uniform misclassification rate, which all@Vso be
used. In fact, we show that an additive approximagican be used in place @f. This is done by
exhibiting a coupling of the two labeled sample distributions (one ugirand the other usingy),
in which they are very likely to generate the same data.

In Theorem 4 we exploit the fact that an approximatigncan be used. The algorithm of
Figure 2 tries out a sequence of valuesiigrat least one of which is a good approximatiornpto
The previous algorithm is used for each of these values, which gesaratdlection of hypotheses,
and the empirically best hypothesis is shown to be PAC.

Proposition 3 Let2" be an algorithm with parametey, 0 <n < % that has access to labeled data,
where elements of X are distributed according to D, with a uniform label maigeofn. Suppose
that2" uses time (e~2,572, (2 —n)~?1) (where p is some polynomial), and with probability at least
1—dreturns a hypothesis having error at meswith respect to D).

For ¢ € {0,1} let py = Pr.p(t(x) = £). Suppose thalp; — p,| < A/p(e 1,87, (3 —n)~ ).
(A € [0,1].) Suppose that the algorithm of Figure 1 is executed with ifp@tnd access to pand
D. Then with probabilityl — & — A, the algorithm outputs,f. X — {0, 1} satisfying

PrXN%(D+Dﬁ)(fg(x)7ét(x))ge for /=1
Prw%(mm)(fg(x);«él—t(x))gs for ¢=0

X:

Comment. The fact thatf, has error at most for x ~ %(D + Dy) implies thatf, has error at most
2¢ for x ~ D.
Proof We may assume that the concept clgss closed under complementation, sinceCifis
learnable with misclassification noise then its closure under complementationlisaalsable under
misclassification noise.

Since( is closed under complementation, it suffices by symmetry to showf {lsattisfies: with
probability at least -0 —A, Pr,_, (D+Dl)(f1(x) #1(x)) <e.

1
2
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Input Py, an estimate off,’s class prior p (¢ € {0,1}).

Letn = g N=p(e 1,8, (3-n) ).

1. Construct a labeled sample &s follows. Form=1... N do:

(a) Let G, be a “fair coin” random variable; ¢, = 0 or 1 with proba-

bility %; let /m be a0/1 random variable/m = 1 with probability

1o
2p+1°

(b) If cyy=1, sample x from D and ldi, /) € S.
(c) If cm=0, sample x from and let(x,1) € S.

2. Input $ to 4" usingn = 2%1 to obtain a hypothesissh X — {0,1}.

3. fi(x) = hy(x) for all x € X.

Figure 1: Learning in the sense of Definition 2 using noise-tolerant PA@ittign and estimates of
class priors

Let (X, j) be the element d; constructed on therth iteration.

Prit(x) =0) = Pr(cm=1)Pr.p(t(x)=0)=2(1—p)
Prit(x)=1) = 1-3(1-p1)=3(1+p)

Next we give expressions for misclassification ratdg PrO | t(x) = 1) and Pfj = 1| t(x) =0).
Consider first the case thgk) = 1. Note that

(1)

Pr(j=0|t(x)=1)= Pr(j=0|t(x) =1Acm=0)Prlchn=0]t(x)=1)
+Pr(j=0|t(X) =1Acm=1)Pricm=1]|t(x) =1).

Pr(j=0]t(x) =1Acm=0) =0, since ifcy, = 0 then Step (1c) assigns label 1. Hence

Pr(j=0|t(x)=1)=Pr(j=0]|t(x) =1ACn=1)Pr(icm=1]t(x) =1). (2)
Whenc,, = 1, we havej = ¢, where/,, = 1 with probabilitypr/(2p1 + 1), so
[ !

Pr(j:0\t(x):1/\cm:1):1—2m+1_2m+l. (3)
_ . Prleca=1)Prt)=1|cn=1  3p
Pren=1[t(0 =1) = PIt(x) = 1) = Prit) = 1)
Pr(t(x) = 1) = 3(1+ pa) by Equation (1), hence
1
Pricm=1]t(x) = 1) = -2 u @)
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Hence from Equations (2) and (3) and (4),

Pr(j=0][t(x)=1) = (;i:rll) (1£1|01)'

Now consider the case thiix) = 0 (where(x, j) is the labeled exampled constructed on the
m-th iteration of4;); note that

Pr(j =1[t() =0) = Pr(j=1](
+Pr(j=1|t(xX) =0Acm=1)Pr(cy

X) =0ACm=0)Pr(cnh=0]t(x) =0)
=1[t(x)=0).

If ¢y =0 then from Step (1c}(x) = 1. Hence

Prlcm=1|t(x)=0) = 1
Pricm=0|t(x)=0) = 0.
Consequently,
Pr(j=1|t(x)=0)=Pr(j=1]|t(x) =0Acn=1). (5)

Whency, = 1 we havej = ¢y, wherely,, = 1 with probabilitypr/(2p1 + 1), so

. P1
Pr(j=1[t(x) =0Acn=1) = : 6
(=110 =0Aen=1) = 5o ©)
From (5) and (6),
- PO &1
Pr(j=1|t(x)=0) = SRR

Based on the above expressions for the misclassification ratps=Rr| t(x) = 1) and P(j =
1| t(x) = 0), and noting thal is defined in Figure 1, Step (1) of the algorithm of Figure 1 is
equivalent to the following:

1. Form=1...N do:

(a) Samplex from the mixture3(D +Dy).

(b) Sample, uniformly at random froni0, 1].
(c) Ift(x) =1, then ifry < (;’;ifl)(
(d) Ift(x) =0, thenifry <

1+p1) labelx incorrectly else labet correctly.

ZW ~ labelxincorrectly else labet correctly.

Let D4 be the above distribution over samples of dizeLet Dy, be the following distribution
over samples of sizH:

1. Form=1...Ndo:

(a) Samplex from the mixture3(D +Dy).
(b) Samplery, uniformly at random from0, 1].
(c) frm< % labelx incorrectly else labet correctly.
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Let Sy denote the set of labeled samples of dize Define a distributiorDoy over Sy x Sy
by using the same sequencexs andr,, and the above procedures for constructing the labeled
samples, so that the two marginal distributions dqgrareD 4 andD,,. For (S, S) ~ Do,

E—l—l)( P1

PUSAS)<N-  Pr (0 =1)| (557 1+p1)_2‘rrfil"

XN:—ZL(D+D1)
This is because there axeopportunities foiSto differ from S, and this occurs whexsampled
from 3(D + D') satisfieg(x) = 1. In that case, the labels will differ when lies between, 25 and

Pi+l
(3557)(z5%5;)- Consequently,

[P pa(EE)

<N- 1)1 o1 = pol < NP = pil.
el (2p1+1) " [pz— p1| < N|p1— Py

Pr(S#S) <N

By definition of 2", for S~ D, N=p(e 1,871, (3 —n) 1), n= 2%1, with probability 1— 3,
4" on inputSreturnsh’ having error P (x) # t(x)) < € for x ~ 3(D+ D).

Hence forS~ D4, N = p(e 1,871, (3 —n)~1), with probability 1—&— N(|py — Pzl), 4 on
input Sreturnsh’ having error P (x) # t(x)) < & for x ~ 3(D+ D1). Given our assumption that

lp1—P1| <A/N=24A/p(e 2,87, (3—n)1), the result follows. u

1. Let pe,8) = MaXen<1/ap(e 1,8 L, (2 —n)1); where [f-,-,-) is the
sample size in terms of error, uncertainty and noise rate used'byn
Figure 1; LetA = 8/32p(g,8); N = (16/¢)?log(128p(e, d) /8%); H = 0.

2. For all p7 € [0,1] such thatp; = kA for k € N do:

(a) Apply the algorithm of Figure 1 with parametefse, 2.
(b) Ifh:X — {0,1} is returned, add h tcH.

3. Draw an unlabeled sample 8f size N using R

4. For each he #, if [{x€ § : h(x) = 1}| < (1— &)|S/| then remove K
from 7.

5. Draw a unlabeled sample S of size N using D.
6. LetH=argmin, [{xeS: h(x)=1}|.

7. f,(x) =h'(x) forx € X.

Figure 2: Learning in the sense of Definition 2 using noise-tolerant PAQritigh and unknown
class priors
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Theorem 4 Let 4" be a noise-tolerant algorithm as defined in Proposition 3.

For ¢ € {0,1}, the Algorithm of Figure 2 given access to Bnd D, with probability at least
1 -3 outputs (in polynomial time), fwith Pry_p(f/(X) # t(x)) < € for £ = 1, and Prp(f,(X) #
1-t(x)) <eforl=0.

Comment. As a consequence we have learnability in the sense of Definition 2, sinee wé
derive classifieh from f; and fg, the error ofh is at most the sum of the errors &f and fo. (By

the error offo we mean the probability thdp(x) is not equal to - t(x).)

Proof Let Prcg(Ti(X)) denote the empirical probability thatsatisfies propertyt, with respect to
sampleS. We show first that the expression fdrused by the algorithm of Figure 2 guarantees that
with probability at least 1- 1,

whe 2L | Pr(h(x) = 1)~ Pres (h(x) = 1)‘ < 1—163 @)
vhe o | Pr(h(x) = 1)~ Pres(hix) = 1)| < o (8)

We are asking that the relative frequencies (dVabservations) of a set of at mogt#Z| events
should be Within%e of their probabilities. Taking a union bound, it is sufficient tihashould
satisfy: Given anyf : X — {0, 1}, with probability at least - 6/(4|#])

Pr(f(x) = 1) — Pres(f(x) = 1)

X~D

< —¢
— 16

Recall Hoeffding's inequality: LeYi,...,Yn be Bernoulli trials with probabilityp of success.
LetT ; Y1+ ...+ Yn denote the total number of successes. Theg &0, 1], Pr(|T — pN| > yN) <
262NV,

This means thalll is sufficiently large ifN satisfiesd/ (4| #|) > 2e-2NE/16° Since|#| < 1/A,
it is sufficient forN to satisfydA/4 > 2e-2N(E/16)?,

ForA =93/32p(g,d),

52/128p(g, &) > 2e 2N(E/16)”
The equation is satisfied by puttihg= (16/¢)?-log(128p(¢,8)/8%), polynomial in the parameters.

Assume that = 1. We assume as before that the concept class is closed under compteamenta
so that the proof fof = 0 is similar but using the complementtoin place oft.

Note that the algorithm of Figure 1 constructs a noise matethe ranggo0, %} based orpy, so
each application of Algorithm 1 in Step (2a) uses sample size at p@ég*l, ‘—116*1). (Polynomial
p(-,-) is defined in Figure 2.)

One of the values of; used in Step (2a) as input to Algorithm 1 satisfipg— p/| < A. As a
result, applying Proposition 3 we have that with probability 36, there existh* € # satisfying

1
Pr h*(x) #£t(X)) < —¢.
b (N0 #100) < 7

We may deduce that
Pre.p, (h*(x) #t < )
Prp(h*(x) #t(x)) < z€.

We show that with probability + &
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1. forh e A, if Pry.p(h(x) = 0At(x) = 1) > 1e thenhis eliminated in Step 4.
2. h* is not eliminated in Step 4.
3. Forhe 4, if Pry.p(h(x) = LAt(x) = 0) > 3& thenh s eliminated in Step 6.

Suppose that Rrp(h(x) = 0At(x) = 1) > 2e. Then Pg.p,(h(X) = 0At(x) = 1) > 1e/p; > Ze.
Hence by (7),

S 1 1 3
From (7) and (9),
Pries, (h*(X) =0At(X) = 1) < }e+ is—is
XeS - Y8 16 16

Hence Step 4 does not elimindtebut it eliminates alh with Pr._p(h(X) = 0At(X) = 1) > ze.

Now suppose that Rep(h”(X) = LAt(X) = 0) > e for someh” € % after Step 4. We have
just shown that” satisfies Re.p(h(x) = 0At(x) = 1) < z&. Consequently, Rep(h/(x) = 1) —
Prp(t(x) = 1) > 3¢ — 2e = ze. Meanwhile note from (9) that Rrp(h*(x) = 1) — Prp(t(x) =
1) < %e. Asaresult, Bep(h’(x) = 1) — Prp(h*(X) = 1) > 76 — & = &. From (8),

Pries(h"(X) = 1) — Pres(h*(x) = 1) > 0.

Henceh’ is eliminated at Step 6.

Hence allh € # with error at least are eliminated with probability + %6. With probability
at least 1- %6 there existd* € A with error less that. Putting these together, with probability at
least 1— 0 we are left withh’ having error less than |

3. Learning via Discriminant Functions without Access toD

We exhibit algorithms that show that learnability in the sense of Definition 1 is distiom various
well-known restrictions of PAC learnability. We also study a special caieeqiroblem of learning
monomials (in whiclD is known to belong to a particular class of distributions), for which we have
no algorithm in the distribution-independent setting.

Our algorithms are mostly proven to have the PAC property in a standardbywasguing that the
hypothesis is consistent with the data, and furthermore that it belongs tesaoflaypotheses that
have description length polynomial in the parameters of the problem, ankhgalpin the sample
size. (This is the “Occam algorithm” property (Blumer et al., 1987)). FatiSes 3.2 and 3.4 we
use the (more generally applicable) Vapnik-Chervonenkis dimension (Bletatr, 1989; Vapnik,
2000) of the class of hypotheses.

3.1 Parity Functions

The following result distinguishes our learning setting from learnability witlfoum misclassifica-
tion noise, or learnability with a restricted focus of attention.

An instance is an element §0, 1}", representing a sequence of values bbolean variables. A
parity function(Helmbold et al., 1992) has an associated subset of the variables, asdauiated
“target parity” (even or odd), and evaluates to 1 provided that the pefitile number of “true”
elements of that subset agrees with the target parity, otherwise the fuactiates to 0.
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Theorem 5 The class of parity functions is PAC learnable via discriminant functions.

Proof Observe that the class is closed under complementation.

To learn a parity function from positive examples only, in an essentially siméarte/the algo-
rithm of (Helmbold et al., 1992)4, finds the affine subspace 6 (2)" spanned by its examples,
and f; assigns a value of 1 to elements of that subspace and a value of O to alelstiments of
the domain. (By “span” we mean with respectG@& (2)", as opposed to R GF(2), the generic
field with two elements 0 and 1, has addition modulo 2, so that the sum of tlvee:tors is their
bitwise exclusive-or. Generally the positive examples of a parity functiomavspan all of R.)

In more detalil, let; be thei-th entry of bit vectox. The positive examples of a parity function
satisfy 3; cix; = b (all addition and multiplication modulo 2), whem b € GF(2). Letx be an
arbitrary positive example; positive examplesatisfy 3 ¢i(x; —x) = 0, and negative examples do
not satisfy this. Hence, the subspace constructedibwill be a subset ofy; ci(xi — %) = 0, and
will contain no negative examplesgly constructs a subspace that contains all the negative data and
no positive examples.

We have thatf,(x) = 0 for all x with t(x) = 1— ¢, and f,(x) = 1 for all x € & (the unlabeled
sample obtained byi).

The overall hypothesik has description lengt®(n?) (a spanning set has at maswectors,
each of lengtm) andh is consistent with the training data; thus we have PAC-ness by the standard
Occam-algorithm argument. |

3.2 Unions of Intervals

LetX =R, and lett : X — {0,1} be the indicator function of a union &fintervals in R. We show
that the class of all such functions, is learnable by discriminant functiotisng polynomial in
g1, 81 andk. A union of more than one interval cannot be PAC-learned from justipesr just
negative data, simply because it is impossible to guess where the data wittptistegabel may
lie. Learnability via discriminant functions is thus distinct from learnability frpositive examples
only, or from negative examples only.

Theorem 6 The class of unions of k intervals on the real line is learnable via discrintifuarc-
tions.

Proof Construct discriminant functionf and f; as follows. Given an (unlabeled) sample, and a
pointx € R, our discriminant function mapsto the negation of its distance to its nearest neighbor
in the sample. (Intuitively, it makes sense thahould get a higher value if it is close to a data point
in the sample.) We show furthermore that this rule creates a classifier thahjdés (a union ofk
intervals) and consistent with the data.

More precisely, given (unlabeled) sam@@eC R of sizeO(klog(d~1e~1)/¢), letdun(x, &) =
minycs {|X—x¢|}. Let f,(X) = —dnn(X,S). Recall thath(x) = 1 if f1(x) > fo(x) andh(x) = 0 if
f1(x) < fo(X). We show thahis PAC.

Forx, X € S, suppose, X belong to the same interval of!(¢). Then[x,xX] C h=1(¢), since any
point betweerx andx is closer to at least one a&for X' than to any poink” for whicht(x”) # t(x).

Supposeg € S, X1 € S, Xo < X1, and there does not exisE U S with Xg < X< X1. For areal
numberx such thako < X < X, if X € (Xo, 3 (Xo+X1)) thendun(x, So) < dun(X, St), so fo(X) > f1(X)
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andh(x) = 0 for h constructed according to Definition 1. Similarly, $o€ (3 (Xo+X1),%1), h(x) = 1.
h(3(xo+x1)) is undefined.

ForSU S sorted in ascending order, there are at méagidrs of consecutive pointsX’ in the
sequence whergx) # t(X).

Henceh is undefined on at mostk2lements of R, anti—1(1) is a union of at mosk inter-
vals, andh~1(0) is a union of at mosk + 1 intervals. The VC dimension of unions kiintervals
is 2k, so using the results of (Blumer et al., 1987), the sample size required@idarning is
O(klog(d~ e~ 1) /). [ |

Comment. This nearest-neighbour rule does not work in more than one dimensi@m thiat the
input distributionD is closen by an adversary. Suppose we wish to learn a linear threshokl in th
plane K. Suppos® is uniform over two parallel line segments that are very close but on @ppos
sides of the classification threshold. Then the probability is only a§®|mat the nearest neighbour

of a data poink will have the same label as In Section 3.4 we show how to learn linear thresholds
in the plane using a more sophisticated rule.

3.3 Distinguishing the Model from the Mistake-bound Setting

In (Blum, 1994), Blum exhibits a concept class that is PAC learnable, bot iSn polynomial time)
learnable using membership and equivalence queries, assuming thaapfigactions exist. In this
section we show that the concept class is PAC learnable via discriminanticius in the sense of
Definition 1. We review the concept class introduced in (Blum, 1994) XLet{0,1}".

If Ais a probabilistic polynomial-time algorithm that computes a function ffém}* to {0, 1},
andgis some function frord0,1}* to {0, 1}*, let B (A, g(s)) denote the probability tha#(g(s)) = 1
for stringss of lengthk generated uniformly at random.

Let G be a Cryptographically Strong Pseudorandom Bit (CSB) generator tnaticisp(k) = 2k.
For polynomialp a CSB generator is defined as follows.

Definition 7 A deterministic polynomial-time program G is a CSB generator with stretch p if on
input se {0,1}¥ it produces an output if0,1}P®) and for all probabilistic polynomial-time algo-
rithms A, for all polynomials Q, for sufficiently large k (k depending on A@id

1
|B(A,G(5)) — o) (A, S)| < o

Thus, no polynomial-time algorithm can distinguish between strings generattmnly at
random from{0, 1}, and strings obtained by taking the output@®for a random input string of
lengthk. (Technically, the definition allowA to be a circuit family.)

For stringsx andy, let xoy denote their concatenation. For a bit strinfpt LSBX| denote the
rightmost bit ofx. LetA denote the empty string. For bit strisgf lengthk, G(s) is a bit string of
length %, and we define the following notation.

1. LetGq(s) be the leftmosk bits of G(s).
2. LetG(s) be the rightmosk bits of G(s).
3. LetGp(s) be the rightmosk bits of G(s).
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4. LetG)(s) =A.
5. Ifi =iy---ig (Where thdj are binary digits), leGi(s) = Gi,(Gi, ,(---Gi,(9))).
The concept class is defined as follows:

Definition 8 Letk= |\/n|] —1and letC = {Cs}s (g1« Where g is defined as follows.
e Gsis the indicator function ofx, : i € {0,1}X and LSBG;,..., (s)] = 1}

where fori=ip---iy,
o X,=i0G| (5)0G,(Gi,(5) 0 G, (Giyi,(9)) 0. ..0 G (Giy.i_, (5)) 0 0"

where w is chosen to ensure thaf = n.

Definition 8 is slightly different from the corresponding definition of (Blurd94), wherek = | ,/n]|.
We usek = |/n| — 1 so that the length of, is always less that, and we can then “pad it out” to a
length of exactlyn using the string @ on the right-hand side.

Note that for any fixeds, a bit string of lengthn of the formx. is determined entirely by,
its first k bits. We will let theindex of a bit string of lengt refer to its firstk bits, viewed as
a binary number (to give the natural ordering on indices). For a skrilegjindexx) denote this
number, regardless of whethers well-formed according to Definition 8. (Kis not well-formed,
X is a negative example @, i.e. cs(x) = 0.) Algorithm Compute-Forward (Figure 3) shows how
to take any positive examphé, together with an index > i, and construct the paixd, cs(x{)) in
polynomial time.

The following notation is used in Algorithm Compute-Forward:

1. LetZ be the correctly labeled example,, cs(X.)).
2. LetZ be the incorrectly labeled example, 1 — cs(X.)).
3. Foriy,...,ig € {0,1}9, letG'*Y(s) = G{ (s) 0 G[,(Gi,(S)) 0. 0 G, (Giy--ig_4 (9))-

Sox, = ioG1ik(s) o 0%,

From (Blum, 1994) we know thaf is not learnable (in time polynomial in) in the mistake-
bound model. We review the PAC learning algorithm of (Blum, 1994) and $tmwto adapt it to
the constraint of Definition 1.

We noted that Algorithm Compute-Forward, given a positive exardpéd j > i, produces a
correctly-labeled exampled, cs(xd)). Based on this observation, we assign values to examples as
shown in Figure 4.

Theorem 9 The concept class of (Blum, 1994) is learnable via discriminant functions

Proof We use the algorithm of Figure 4 to construct discriminant functions.
Recall that forx € {0,1}", indexx) denotes thd bit binary number forming a prefix of, for
k= |v/n] —1. For/ € {0,1}, 4, denotes the instance of the algorithm that is given acceBs.to
As in (Blum, 1994), we will argue that what we have is an “Occam Algorithmthe sense
of (Blumer et al., 1987) which is consistent with the training data. Specificgllgnd. 4o memorize

297



GOLDBERG

Algorithm Compute-Forward (Blum, 1994)
On input X and j> i,

1. Sayi=ii---ixand j= j1--- jk- Letr be the least index such that# j;.
Since j>iwe haveji=0and j = 1.
2. Extract from & the portions:
u = Gill (S) o Gilz(Gil(S)) ° Gilg(Giiiz(s)) ©...0 Gi/r,l(Gil“'ir—z (S))

= Giir(s).
V. = G (Gipir1(9) = Gj (Gjyjrs(9))-

3. Notice that G (Gj,...j, ,(S)) =A. Since v=G;j,(Gj,...j, ,(S)), we can use v
as an intermediate point in the computation of those partg tfat differ
from 2,

4. If r =k, output: (jouoA,LSB[V]). Otherwise, output: (jouoAo
Glrrlk(v), LSB[Gjyejr.a (V)])-

Figure 3: Algorithm from (Blum, 1994)

at most 2 training examples eacHiy(possibly memorizes none) and their combined hypothesis (the
hin Definition 1) is consistent with the training data.

In particular,4; (and possibly alscd) just retainsx™ andx¥, since for any unlabeleg, the
label assigned to it is computed (in polynomial time) usifgandx¥. (In the case of4,, the
sampleSy may fail the tesConsistency-Checlkn which case no examples are memorized.) Hence
the description length of the rule that labels example®iy).

Note thatf; from 4; will now give a value of 1 to any positive example whose index is between
the largest and smallest indices it has seen so far, and will give value@fillother examples. If an
examplex € X is either negative or is ill-formed (“bad” in the terminology of (Blum, 1994)grth
Step 4 will ensurd(x) = 0, even ifindexx) is betweerm andM.

At the same time, we claim thdy from 4 gives a value of< % to all positive examples.
Suppose for a contradiction thd gives a value of 1 to positive exampté Then 4, must have
in its collection an unlabeled exampl andx{ must predic) as being positive. But that implies
thatx must be positive, and since it belongs3git is negative, a contradiction.

Ay ensures thafp(x) > Lforallxe . 4; ensures that; (x) > 1 for allx € §; and fy(x) = 0 for
all negativex (including allx € §). Hence the combined classifieis consistent with the training
data. |
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Input S, a sample of unlabeled elements 040, 1}".
1. Apply algorithm Consistency-Check tg B S, fails the test, then for al

x€ X, f(x) = 3. Else:

2. Letm and M be the minimum and maximum indices of elements@alb
these elementgand R respectively; since Consistency-Check has been
passed, they are unique. ForexX, indexx) = j, if ] > M or j < m then
fy(x) = 0.

3. Ifxe § then f(x) = 1.

4. Otherwise, if <xé 1) =Compute-Forward(®, j) and furthermore,
(xM 1) =Compute-Forward(k M) then let §(x{) = 1.

5. Otherwise, let Ax") = 0.

Algorithm Consistency-Check

1. If there exist x, X2 € & with X1 # X2, but indexx;) = indexxz), then fail.

2. Ifthere existx, xo € § such that indef,) > indexx1), yet with Compute
Forward(x,indexXx2))# (X2, 1), then fail.

Figure 4: Assigning values to unlabeled data for concept class of (Bl2@4)1

3.4 Linear Separators in the Plane

For X = R?, suppose eack € X is labeled 0 or 1 according to whether its coordinates satisfy
some linear inequality; that is, a concept is a half-spacein His problem is well-known to be
PAC-learnable in the standard setting; generally¥oes R" it reduces to linear programming.

Given a samplé& of points int~1(¢), note that points within their convex h@ihught to receive
a “high” value fromf,, since the convex hull must be a subsetdf¢). We need to be able to deal
with the case when the convex hull has most or alhdt its vertices, as would happen for an input
distributionD, whose domain is the boundary of a circle, for example. Our generabagipiis to
start out by computing the convex hilland give maximal value to points insi® Then give an
intermediate value to points in a polyg@containingP, whereQ has fewer edges. We argue that
the wayQ is chosen ensures that most pointQiare indeed given the correct label.

Theorem 10 Linear separators in the plane are learnable via discriminant functions.

2. Theconvex hullof a finite setS of points is the smallest convex polygon (more generally, polytope) tiraamnsS.
Any vertex of the convex hull oBis a member o&.
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1. Draw a sample Sof size N= O(log(1/8¢)/€?).
2. Let polygon Pbe the convex hull of,S
3. Let Q be a polygon having at mo§t/N| edges such that

(a) Every edge of Qintersects pPat a single vertex, and
(b) Adjacent edges of Qontain vertices of Pthat are at most/N
apart in the adjacency sequence @EPRrertices.
4. Define discriminant functiory fis follows.

(a) Forall x in the interior or boundary of R f,(x) = 1.

(b) For each connected region R iy QF, let A(R) denote its area. For
x € Rlet f(x) = (A(R)+1)~L. If A(R) is infinite let f(x) = 0.

(c) Forx¢& Qlet f,(x) = —1.

Figure 5: Assigning values to unlabeled data for linear separators in the pla

Proof Figure 5 shows the algorithm we use to construct discriminant functionsndti®ard to
check that the steps can be carried out in polynomial time. Figure 6 illustraestistruction on
an example.

Leth: R2 — {0,1} be the hypothesis constructed fraigmand f;. We show below that for
¢ € {0,1}, h~1(¢) is a region bounded b®(+/N) line segments. We also show this consistent
with the data, i.e. that fox € S (the unlabeled sample drawn I8y), we haveh(x) = ¢. As before,
PAC-ness follows from an Occam-algorithm argument; the class of hypetheas VC dimension
O(+/N), sublinear in the sample size.

To show consistency of the hypothesis, supprse$S,, i.e. X is a positive example. Then
f1(X) = 1 sincex lies in the interior or on the boundary & (rule 4a). By contrast, whefy is
constructedx lies strictly outside the convex hull of the negative data, so either rule 4ioc & 4
applied, givingfp(x) a value less than 1. By symmetry, member§pére also correctly labeled.

Next we prove our claim that the boundary between the points labeledhQ dnyd the points
labeled 1, is indeed simple. (Specificaty,*(0) andh~—(1) are bounded b@(1/N) line segments.)
Let L be the line that defines the target linear threshold fundtidret R, be the set of connected
regions constructed by, that lie betwee?, andQ,. ForR C R? let CH(R) denote the convex hull
of R. Observe that

1. no straight line may pass through more than 2 elemenss.ofif that occurred, suppose the
line passes througR,R,R’ € &, in that order. Note tha® URUR" is convex. That makes it
impossible for the line to cU®, which is outsidé® URUR".)
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2. at most one element &y (respectively,R;) may intersect. (If two of them intersectedl,
there would be an edge @J; on the opposite side &f from P, hence a vertex d® on the

wrong side ofL.)

3. forRe Ry, CH(R) is a region bounded by three line segmenishés two “outer” edges and
a concave sequence of edges frBntonnecting them.)

Suppose thaRy € Ry intersectR; € R1. ThenCH(Ry) intersectCH(Ry). From Observation 3
above, the boundary @H(Rp) has only 2 line segments on the opposite sidé éfom Py, and
from Observation 1 the boundary 6GH(Ry) intersects at most 4 elements®f. For all remaining
regionsR; € Ry, eitherR| C Ry (so that forx € Ry, f1(x) > fo(x)) or Ry "Ry = 0 (so that again, for

xe€ R, fi(x) > fo(x)).
For¢ e {0,1} letP, = P, U{R, : h(R/) = ¢}. Note thatP) C h~1(¢) and has at most[3/N]

edges.
The portion oft=1(0) not in P, U P; is divided intoO(/N) regions by the remaining edges of
Qo and the two edges @ that intersect—%(0). his constant within each of these regions, which
allows us to deduce that(0) is indeed bounded by a set of line segments of €ig¢/N). By a
|

similar argumenth~1(1) is bounded byD(+/N) lines.
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Figure 6: Illustration of algorithm for learning linear separators in two direrss
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3.5 Monomials over Attribute Vectors having a Product Distribution.

Recall that a monomial is a boolean function consisting of the conjunctioneifad Bterals (where
a literal is either a boolean attribute or its negation). Despite the simplicity of this ofafsinc-
tions, we have not resolved its learnability under the restriction of Definiti@vén for monotone
(negation-free) monomials. My and 4; are allowed to be different algorithmsi (is allowed to
treat the positive data differently from the negative data), then the protidees have a simple solu-
tion (a property of any class of functions that is learnable from eithatippgxamples only or else
negative examples only)fp from 4 assigns a value @} to all boolean vectors4; uses its data
to find a PAC hypothesis, and assigns a value of 1 to examples satisfyingyfiahesis, and 0 to
other examples.

The following problem arises whefl is oblivious to whether it is receiving the positive data.
The distribution over the negative examples could in fact produce boweéars that satisfy some
monomialf that differs from target monomia) but if D(f~1(1) Nt=%(1)) > € this may give exces-
sive error.

In view of the importance of the concept class of monomials, we considetheththey are
learnable given that the input distributi@ belongs to a given class of probability distributions.
This situation is intermediate between knowibgxactly (in which case by Theorem 4 the prob-
lem would be solved since monomials are learnable in the presence of umifmetassification
noise (Angluin and Laird, 1988)) and the distribution-independent setting

1. Draw a sample Sof size N= O((n%/¢)2log(})).

2. Forxe X let lTJé(X) denote the fraction of elements ofv@hose j-th entry
is equal to the j-th entry of x.

3. Forxe X, fiy(x) = n?:l‘TJ};(X)-

Figure 7: Algorithm for learning monomials

Theorem 11 Monomials over the boolean domain are learnable via discriminant functioms
vided that the input distribution D is known to be a product distribution.

Comments.We use the algorithm of Figure 7 which simply fits a product distribution to its data a
assigns a value to unlabeled vecxdahat is the estimated likelihood af The proof that it works
heavily exploits the assumption thatis a product distribution, and does not appear to extend to
larger class of distributions (for example, mixtures of product distribut{@rgan et al., 2001;
Freund and Mansour, 1999)) or more general classes of booleatidios.
Proof We show that the algorithm given in Figure 7 constructs discriminant furgctidrich, when
combined to geh according to Definition 1, ensure thats PAC.

Forx~ D, X=X1X2...X, wherex; is a 0/ 1 random variable which is independenixpfor k # j.
By arelevant attributeof t we mean anx; whose value is fixed for ak that satisfyt. Lett; denote
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that value. LetR denote the set of relevant attributes and/letenote the remaining (irrelevant)
attributes.

We say that an exampbé = x;x,...x;, with t(X') = ¢ is ordinary if for all b € {0,1} and j €
{1,...,n} such that Re.p, (xj = b) > 1 £, we havex| = b. (Thus, an ordinary example is one that
does not have any “very unusual” attribute values in comparison wittorarekamples having the
same label. If there happen to be no bit positions that are very “reliableafmom examples with
the same label, then the property becomes vacuous, or true for all bitss}ring

Note that for¢ € {0,1}, Pr.p,(x is ordinary > 1—¢. Consequently, Rep(x is ordinary >
1—&. We will show that with probability at least-1 9§, all ordinary examples end up correctly
labeled.

Let ﬁrxe&(xj = b) denote the empirical probability that = b, and we show that sample sikie
is large enough to ensure that with probability &, forb € {0,1}, j € {1,...,n},

—~ €
|Prx€&(xj =b)— Pr (Xj =Dh)

< —.
x~Dy = 8n3 (10)

Applying the same Hoeffding bound as in Theorem 4, it is sufficient Mhathould satisfy
26~ 2N(e/8n%)7 < 2> which is satisfied by as prescribed in Figure 7.

For¢ e {0,1}, x € X let wé(x) denote the probability that a random vector with lababrees
with x on thej-th entry. Note that if(x) = ¢ theanJ};(x) (as defined in the algorithm of Figure 7) is
an empirical estimate co,l'l},(x).

Let Yy (x) = njw;(X). Note thatf,(x) is an estimate o, (X) (in the sense thaf(x) converges
to W, (x) as the sample size increases). We know from (10) that

B0 € (W00 — 55 W0 + 55 .

If w};(x) > ¢g/n, then
i i
oo e [1- e ). 1)
Supposeis ordinary and negative. Observe tHatx) = 0. (This is because must have an at-
tribute value that disagrees with all corresponding attribute values in titevpakata.) Furthermore,
Equation (11) holds fof = 0 and allj, implying that

Bo(x)/Wo(x) € [1- 501+ 7). (12)

So with probability 1— &, fo(x) > 0, sincefp(x) = 0 would contradict Equation (12) taken with
the observation thapo(x) > 0. Hence with probability + &, all ordinary negative examples are
correctly labeled.

Suppose is ordinary and positive. We will show that with probability-15, f1(x)/ fo(x) > 1
for all ordinary positive examples. Observe that far &, W (x) = §1(x) = 1. (This is because all
positive examples must agree on all the relevant attributes.) We have

f1(x) = MjePlx)
foX) = Mje B Mjeg Py(x).
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Forj eI, w{(x) = L|J(j)(x) (for a product distributiorD, the value of an irrelevant attribute is
selected independently of the label class of a bit string). Hence Equafipaplies fo =0 or 1,
jel.

>

f1(x) <1—<1/8n2>>”< 1 )
fo(x) = (1+(1/8m))"\ M4 BI(x)/

There existsj* € ® such that for a fraction at Iea%t of elementX’ € &, x’j* # Xj=. (Each
negative example must disagree witbn at least one relevant attribute.) Hence,

1-(1/n)
1—(1/n)+(g/8n°) < 1—(1/2n).

€ ©

0 (%)
J*
0

(X)

VANVAN

Hence

f1(x) _ (1—(1/8n2))" 1
o = (@ (/e (1 a/zm) ~

as required. Hence with probability-19, all ordinary positive examples are correctly labeledl

4. Conclusion and Open Problems

The algorithms we have given differ significantly from previous PAC atgors, which usually

work by minimizing the empirical error rate, and arguing that the way a hypisth® constructed
ensures that the true error is close to the empirical error. The congtraiwe expressed in Defi-
nition 1 forces the positive data and the negative data to be processedigatly—an algorithm
does not have access to the empirical error.

This lack of access to the empirical error appears to be quite a sevesteaiot) one that might
render certain learning problems intractable in the context of PAC learmdgetl, we have so far
failed to find an algorithm in this setting which learns monomials over the booleaaidpassum-
ing no knowledge of the input distribution. We have also not obtained amitgofor learning
linear threshold functions in more than two dimensions. Despite those limitationpositive re-
sults have distinguished learnability subject to this constraint from varitwes oonstraints on PAC
learnability that have been studied in the past.

Clearly, the main open question raised by this paper is to elucidate the reltidrestveen
learnability via discriminant functions (Definition 1), and basic PAC learnabikyrthermore, if
they are not equivalent, can they be distinguished using a well-knownirgaproblem, such as
monomials over the boolean domain?

We have a relatively good understanding of learnability subject to the sliggsttysevere con-
straint of Definition 2. Namely, it is intermediate between learnability with unifornclassifi-
cation noise, and standard PAC learnability. Furthermore, subject to tisg Rarity Assumption
(that it is hard to learn parity functions in the presence of random misctzgifi noise given the
uniform distribution over input vectors) it is strictly a less severe condtthat learnability with
uniform misclassification noise, since we have shown (Section 3.1) howno peaity functions
using the more severe constraint of Definition 1.
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