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Abstract
A classical approach in multi-class pattern classificationis the following. Estimate the probability
distributions that generated the observations for each label class, and then label new instances by
applying the Bayes classifier to the estimated distributions. That approach provides more useful
information than just a class label; it also provides estimates of the conditional distribution of class
labels, in situations where there is class overlap.

We would like to know whether it is harder to build accurate classifiers via this approach, than
by techniques that may process all data with distinct labelstogether. In this paper we make that
question precise by considering it in the context of PAC learnability. We propose two restrictions
on the PAC learning framework that are intended to correspond with the above approach, and
consider their relationship with standard PAC learning. Our main restriction of interest leads to
some interesting algorithms that show that the restrictionis not stronger (more restrictive) than
various other well-known restrictions on PAC learning. An alternative slightly milder restriction
turns out to be almost equivalent to unrestricted PAC learning.

Keywords: computational learning theory, computational complexity, pattern classification

1. Introduction

We present some PAC learning algorithms for various learning problems, within a new restriction
of the PAC setting. We begin by explaining the motivation for studying the new restriction, and
continue with some general results about it, followed by the algorithms.

1.1 Background and Motivation

A standard approach to classification problems (see for example (Duda and Hart, 1973), page 17) is
the following. For each class, find adiscriminant functionthat maps elements of the input domain
to real values. These functions can be used to label any elementx of the domain with the class label
whose associated discriminant function takes the largest value onx. The discriminant functions are
usually estimates of the probability densities of points in each class, weighted bythe class prior
(relative frequency of that class), in which case we are using theBayes classifier.

If it is possible to obtain good estimates of the probability distributions that generated the label
classes, then (for reasons we explain below) these are often more useful than just an accurate clas-
sification rule. However, this raises the question of how much harder it becomes to learn to classify
data well, if we actually insist on learning the distributions. This motivates our choice to study this
general question in the context of PAC learning, since PAC learning gives a framework for results
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giving lower bounds on sample-size or computational requirements. Theseresults allow different
models of the learning process to be provably distinguished from each other, in terms of the learning
problems that are tractable within each model.

Most recent work on pattern classification (for example work on support vectors (Cristianini
and Shawe-Taylor, 2000)) of course does not try to learn label classdistributions, but rather to
find decision boundaries that optimize some performance guarantee, usually misclassification rate.
Performance guarantees are derived from observed classification performance in conjunction with
other features of the boundary such as syntactic or combinatorial complexity, or the number of
support vectors and margin of separation. The general approach clearly requires examples with
different labels to be taken in conjunction with each other when finding a decision boundary. By
contrast, discriminant functions are constructed from individual label classes in isolation. It seems
clearly “easier” to find a good classifier by considering all data together (so as to apply empirical
risk minimisation), than by insisting that each label class must be independently converted into a
discriminant function. Noting Vapnik’s observation ((Vapnik, 2000), page 30) that one should not
try to solve a problem via solving a more general problem, why exactly would we want to estimate
the distributions of label classes?

The answer is that when the distributions can be found, the extra informationthat is obtained is
often very useful in practice. In contrast with decision boundaries, weobtain for a domain element
x, the values of the probability densities of label classes atx, which provide a conditional distri-
bution over the class label ofx. A predicted class label forx can then take into account variable
misclassification penalties, or changes in the assumed class priors. There are of course other ways
to obtain such distributions, for example using logistic regression, or more generally (for k-class
classification) neural networks withk real-valued outputs re-scaled using the softmax activation
function (see (Bishop, 1995) for details). However, unsupervised learning for each class—if it can
be done successfully—has other advantages over these techniques, such as the following.

1. Label classes can be added without re-training the system. So for example if a new symbol
were added to a character set, then given a good estimate of the probability distribution over
images of the new symbol, this can be used in conjunction with pre-existing modelsfor how
the other symbols are generated.

2. Outlying instances are those that lie in regions of the domain where the distributions have
low weight. We usually cannot assign a sensible label to such instances, however they may at
least be recognised as a result of all class label distributions having very small weight around
such an instance.

3. For applications such as handwritten digit recognition, it is arguably morenatural—from
the perspective of cognitive modeling—to model the data generation process in terms of 10
separate probability distributions, than as a collection of thresholds betweendifferent digits.
This is because a handwritten zero (say) is nearly always the result of aprocess that first
chooses the label “0” and then creates the image. It is not the result of a process that first
generates a character and then assigns it the label “0” based on context, appearance or other
criteria.

Another difficulty with decision boundaries arises specifically in the contextof multiclass clas-
sification. It has been noted (Allwein et al., 2000) that multiclass classifiersare often constructed
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using multiple 2-class classifiers. How to combine them is a challenging topic that has itself re-
ceived much recent attention, see for example (Guruswami and Sahai, 1999; Allwein et al., 2000).
In practical studies such as (Platt et al., 2000) that build a multi-class classifier from a collection of
2-class classifiers, a distinction is made between separating each class from the union of the others
(1-v-r classifiers, where 1-v-r stands for one-versus-rest) and pairwiseseparation (1-v-1classifiers).
Neither is entirely satisfactory—for example it may be possible to perform linear 1-v-1 separation
for all pairs of classes, but not linear 1-v-r separation, while 1-v-1 classification (as studied in (Platt
et al., 2000)) raises the problem of combining the collection of pairwise classifiers in a principled
way to get an overall classification, for example ensuring that all classesare treated the same way.
In (Platt et al., 2000), the first test for any unlabeled input is to apply the separator that distinguishes
0 from 9. Thus 0 and 9 are being treated differently from other digits (which in turn are also treated
differently from each other.)

With regard to PAC learning, the approach of applying unsupervised learning to each label class,
can treat situations where class overlap occurs (as is usually the case in practice). Standard PAC
algorithms do not address this problem (although there have been extensions such as “probabilistic
concepts” (Kearns and Schapire, 1994) that do so, and methods usingsupport vectors that also allow
decision boundaries that do not necessarily agree with all observed data). It is not hard to verify
(see (Palmer and Goldberg, 2005)) that when we have good estimates of the class label distributions
(in a sense described below in Section 1.3) then the associated classifier is approximately optimal in
the agnostic PAC sense. For large data set sizes, it becomes feasible to findgood estimates of these
distributions, and obtain this more useful “summary” of the data.

The algorithms described in this paper are given in the context of simple 2-class classification,
as opposed to multi-class classification. This is because we aim to explore the problems arising
from an insistence upon treating each label class independently. The algorithms would however
apply in a multi-class context where each pair of classes is separated by a boundary belonging to
the given set of boundaries.

1.2 Formal Definition of the Learning Framework

In PAC learning (see for example (Anthony and Biggs, 1992) for a detailed introduction) there is
a source of data consisting of instances generated by a probability distribution D over a domainX,
labeled using an unknown “target function”t : X −→ {0,1}. The objective is to find a classifier
h : X −→{0,1} which is a good approximation tot with respect to probability measureD. As usual
we will let ε denote a misclassification rate (probability thatt andh disagree on randomx) andδ
denote the uncertainty (probability that error rateε is not attained). We refer to the members of
t−1(1) as the “positive examples” and the members oft−1(0) as the “negative examples”.

We say that a setC of functions fromX to {0,1} (the “concept class”) is PAC learnable if there
exists an algorithmA that for anyt ∈ C , with probability at least 1− δ outputsh : X −→ {0,1}
having misclassification rate at mostε. A is required to run in time polynomial inε−1 andδ−1 and
other parameters (usually, the syntactic description length oft and members of the training data).A

may samplex from D in unit time, and obtain(x, t(x)). In this standard definition, we assume thatt
andD may be worst-case (chosen by an adversary).
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Notation. For ` ∈ {0,1} let D` denote the restriction ofD to t−1(`). Let p` denote the class prior
for label`, p` = Prx∼D(t(x) = `). We assume throughout thatp` > 0. Thus

Prx∼D`(x) = 1
p`

Prx∼D(x) for t(x) = `

Prx∼D`(x) = 0 for t(x) = 1− `

For any probability distributionP overX (for exampleD or D`), an algorithmwith access to Pmay
in unit time draw an unlabeled sample fromP.

It is shown in (Haussler et al., 1991) that the standard PAC framework is equivalent to a “two-
button” version, where an algorithm has access to a “positive example oracle” and a “negative
example oracle”. (The two-button version conceals the class priors and only gives the algorithm
access to the distribution as restricted to each class label. Thus the oracles generate examples from
D1 andD0 respectively.) We define a restriction of “two-button” learning as follows.

Definition 1 Suppose algorithmA has access to a distribution P over X, and the output ofA is
a function f : X −→ IR. ExecuteA twice, using D1 (respectively D0) for P. Let f1 and f0 be the
functions obtained respectively. For x∈ X let

h(x) = 1 if f1(x) > f0(x)
h(x) = 0 if f1(x) < f0(x)

h(x) undefined if f1(x) = f0(x)

If A takes time polynomial inε−1 andδ−1, and h is PAC with respect toε andδ, then we will say
that A PAC-learns via discriminant functions.

It is clear that ifA can be found such that the resultingh is PAC, then we have PAC learnability
in the two-button setting, and hence standard PAC learnability.

In specifying the restriction above, we are keeping it both simple and “severe”, in the sense of
making it difficult to find algorithms within the restricted framework. This is with a view to getting
strong positive results, and also to maximizing the potential for negative results (PAC learnable
problems that are hard within the restricted setting). One could devise less severe restrictions to
capture the general idea of learning via discriminant functions. Alternatives are discussed at the end
of this section.

We also consider the following slightly less severe variant related to POSEX learnability as
introduced in (Denis, 1998), in whichA has access toD (in (Denis, 1998) the “EX” oracle), in
addition toD1 (in (Denis, 1998) the “POS” oracle). This is formalized as Definition 2, andit turns
out that we can be much more specific about learnability in this sense, namely itis intermediate
between PAC learnability with uniform misclassification noise and basic PAC learnability.

Definition 2 Suppose algorithmA has access to D in addition to distribution P over X, and the
output ofA is a function f: X −→ IR. ExecuteA twice, using D1 (respectively D0) for P. Let f1
and f0 be the functions obtained respectively. For x∈ X let

h(x) = 1 if f1(x) > f0(x)
h(x) = 0 if f1(x) < f0(x)

h(x) undefined if f1(x) = f0(x)

If A takes time polynomial inε−1 andδ−1, and h is PAC with respect toε andδ, then we will say
that A PAC-learns via discriminant functions with access to D.
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POSEX learnability requires thatf1 be a 0/1-valued function that constitutes a PAC hypothesis.
We discuss the relationship in more detail in the next section.
Notation. We refer to the two instances of the unsupervised learning algorithm asA1 andA0, so
thatA1 consists ofA with the (unlabeled) positive data as input, andA0 is A with the (unlabeled)
negative data as input. (Note however that learning according to Definition1 or 2 does not allowA`

to use the value of̀.) We letS̀ denote the sample of unlabeled data drawn byA`.
Let us conclude this section by considering alternative restrictions to PAC learnability that cap-

ture the informal notion of learning via discriminant functions. We could for example ask thatf1
and f0 should be probability distributions. Our reason for not doing so is that, whilewe believe that
the functions produced by our algorithms can be re-scaled on an ad-hocbasis to become probability
distributions, there is no guarantee in the distribution-free PAC setting that they are similar to the
unknown distributionsD1 andD0.

Another natural candidate is a variant in whichA1 andA0 are two distinct agents that know
their class labels. Equivalently, we would be seeking two algorithmsA1 andA0 that respectively
have access to the positive and negative data (equivalently, an algorithmA` that may use the value
`). Observe however that this relaxation is not helpful for any conceptclassC that is closed under
complement (meaning that for allc∈ C , we also haveX \c∈ C ). Consequently, any algorithms that
require this relaxation would need to exploit additional prior information about data from different
classes. There’s nothing wrong with that of course, but it departs from our focus on the approach of
independently processing each label class.

1.3 Related Work

There has been much work on the comparison of alternative notions of PAClearning with each
other, with the criterion for distinguishability being that some learning task (concept class) should
be tractable1 in one variant but not in the other. The early paper of (Haussler et al., 1991) showed
that various alternative definitions of PAC learnability are equivalent in thissense. Examples of
distinctions that have been found between different restrictions to the framework include learning
with a restricted focus of attention (Ben-David and Dichterman, 1998, 1994) which is shown to
be more severe that learnability in the presence of uniform misclassification noise. Learnability
with Statistical Queries (Kearns, 1998) is also known to be at least as severe as learnability with
uniform misclassification noise. Perhaps the most important result of this kindis the equivalence
between PAC learnability and “weak” PAC learnability found by (Schapire,1990) which led to
the development of boosting techniques. The paper (Blum, 1994) exhibits aconcept class that
distinguishes PAC learnability from mistake-bound learning, and that is of interest here since we use
the same concept class (in Section 3.3) to show that our restriction of PAC learnability is likewise
distinct from mistake-bound learnability.

We noted that learning under the constraint of Definition 2 is related to POSEXlearning. Specif-
ically we have:

Observation 1 If a concept class and its complement are POSEX learnable, then they are learnable
under Definition 2.

Proof (sketch; the following technique is used in more detail in Theorem 4) LetAP be a POSEX
algorithm forC and letA ′

P be a POSEX algorithm forC ′, the class of sets whose complements are

1. The word “tractable” is usually taken to mean that the computational and sample-size requirements for learning,
should be polynomial in the parameters of the task.

287



GOLDBERG

members ofC . An algorithmA in the sense of Definition 2 works as follows.A can sample from
D, and it uses samples fromD` as “positive” examples.A appliesAP andA ′

P to this data, and at
least one of the two hypothesesh,h′ is PAC, since the “positive” data really is positive from the
perspective of one ofAP andA ′

P.
h andh′ are then tested on further data; the chosen hypothesis should contain almost all samples

from D`, and if bothh andh′ do so, choose the one that contains fewer samples fromD. That
hypothesis with high probability maps samples fromD` to 1 and samples fromD1−` to 0. LetA1

andA0 be the two runs ofA having access toD1 andD0 respectively. The overall hypothesis is
obtained from two functions found byA1 andA0, and its misclassification rate is at most the sum
of their error rates.

In Section 2 we show that if a concept class is learnable in the presence ofnoise, then it and
its complement are POSEX learnable, and hence by the above observation,learnable under Defini-
tion 2. The result of Section 2 answers a question raised by (Letouzey etal., 2000) (the hierarchies
of inclusions given in Equations (4,5) of (Letouzey et al., 2000) can be merged).

There are some interesting algorithms having PAC-like performance guarantees for learning
probability distributions; the topic was introduced in (Kearns et al., 1994), see also (Cryan et al.,
2001; Freund and Mansour, 1999; Frieze et al., 1996; Dasgupta, 1999). The criterion for learning a
distributionD is to obtain a hypothesis distribution which is withinε of D under some measure of
similarity. The KL distance and the variation distance are usually considered.We noted above that
when distributions are learned under these criteria, the Bayes classifier achieves agnostic PAC-ness.
However, the algorithms we describe here differ substantially from these previous ones (as well
as from the algorithms in the much more extensive general literature on unsupervised learning).
The reason is that our aim is not really to approximate a distribution over inputs. Rather, it is to
construct a discriminant function in such a way that we expect it to work well in conjunction with
the corresponding discriminant function constructed on data with the opposite class label.

1.4 Summary of Results

The rest of the paper is organized as follows. In Section 2 we consider learning under Definition 2
in whichA` has access toD in addition toD`. We show that PAC learnability with uniform misclas-
sification noise implies PAC learnability with discriminant functions and access toD. This gives us
a good understanding of how learning under Definition 2 fits in with other restrictions.

In Section 3 we move to the trickier issue of learning according to Definition 1. We exhibit
algorithms that show that the restriction is not more severe than various otherrestrictions of PAC
learning. In Section 3.1 we show that parity functions are learnable in this setting, which dis-
tinguishes it from learnability in the presence of noise (subject to the “noisy parity assumption”,
which is the widespread assumption that parity functions are hard to learn in the presence of uni-
form misclassification noise) as well as Statistical Query (SQ) learnability (Kearns, 1998) (since it
is known from (Kearns, 1998) that parity functions are not learnable using SQs.) In Section 3.2 we
distinguish the setting from learnability from positive data only (or negative data only) by study-
ing the class of unions of intervals on the real line. In Section 3.3 we distinguish the setting from
mistake-bound learning, using a concept class from (Blum, 1994).

The two remaining algorithms indicate some limits to our success at finding algorithms inthe
restricted setting. Section 3.4 shows how to learn linear separators in the plane, using an approach
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that we have not been able to extend to three or more dimensions. In Section 3.5 we show how to
learn monomials provided that the input distributionD is an unknown product distribution. Learn-
ing under this sort of assumption is in a sense intermediate between learning withaccess toD
(Definition 2) and learning via discriminant functions in the sense of Definition1.

2. Learning via Discriminant Functions with Access toD

In this section we show that given a standard noise-tolerant PAC learningalgorithm, we may use it
to construct an algorithm for POSEX learning and hence learning in the restriction of Definition 2.
We do this in two stages—Proposition 3 shows how this is achieved provided that an estimate of the
class priorp` is provided toA`, and Theorem 4 extends the result to the setting in which the class
priors are unknown.

Here is an overview of the proofs in this section. Proposition 3 analyses learning with a given
noise rate. This uses a standard definition of noise-tolerant PAC learningin which an algorithmAη

has parameterη. η is the probability that an example is mislabeled; 0≤ η < 1
2. Aη should then be

polynomial in(1
2 −η)−1 in addition to other parameters. Given the class priorp` (the probability

that a random instance has label`) we can generate random samples from a fixed distribution that
is a mixture ofD andD`, such that they have uniform misclassification rate, which allowsAη to be
used. In fact, we show that an additive approximationp` can be used in place ofp`. This is done by
exhibiting a coupling of the two labeled sample distributions (one usingp` and the other usingp`),
in which they are very likely to generate the same data.

In Theorem 4 we exploit the fact that an approximationp` can be used. The algorithm of
Figure 2 tries out a sequence of values forp`, at least one of which is a good approximation top`.
The previous algorithm is used for each of these values, which generates a collection of hypotheses,
and the empirically best hypothesis is shown to be PAC.

Proposition 3 LetAη be an algorithm with parameterη, 0≤η < 1
2, that has access to labeled data,

where elements of X are distributed according to D, with a uniform label noiserate ofη. Suppose
thatAη uses time p(ε−1,δ−1,(1

2−η)−1) (where p is some polynomial), and with probability at least
1−δ returns a hypothesis having error at mostε (with respect to D).

For ` ∈ {0,1} let p̀ = Prx∼D(t(x) = `). Suppose that|p` − p`| ≤ ∆/p(ε−1,δ−1,(1
2 −η)−1).

(∆ ∈ [0,1].) Suppose that the algorithm of Figure 1 is executed with inputp` and access to D̀and
D. Then with probability1−δ−∆, the algorithm outputs f` : X −→ {0,1} satisfying

Prx∼ 1
2(D+D`)

( f`(x) 6= t(x)) ≤ ε for ` = 1

Prx∼ 1
2(D+D`)

( f`(x) 6= 1− t(x)) ≤ ε for ` = 0

Comment. The fact thatf` has error at mostε for x∼ 1
2(D+D`) implies that f` has error at most

2ε for x∼ D.
Proof We may assume that the concept classC is closed under complementation, since ifC is
learnable with misclassification noise then its closure under complementation is alsolearnable under
misclassification noise.

SinceC is closed under complementation, it suffices by symmetry to show thatf1 satisfies: with
probability at least 1−δ−∆, Prx∼ 1

2(D+D1)
( f1(x) 6= t(x)) ≤ ε.
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Input p`, an estimate ofA`’s class prior p̀ (` ∈ {0,1}).
Let η = p`

2p`+1; N = p(ε−1,δ−1,(1
2 −η)−1).

1. Construct a labeled sample S` as follows. For m= 1. . . ,N do:

(a) Let cm be a “fair coin” random variable; cm = 0 or 1 with proba-
bility 1

2; let `m be a0/1 random variable,̀ m = 1 with probability
p`

2p`+1.

(b) If cm = 1, sample x from D and let(x, `m) ∈ S̀ .

(c) If cm = 0, sample x from D̀and let(x,1) ∈ S̀ .

2. Input S̀ to Aη usingη = p`
2p`+1 to obtain a hypothesis h` : X −→ {0,1}.

3. f̀ (x) = h`(x) for all x ∈ X.

Figure 1: Learning in the sense of Definition 2 using noise-tolerant PAC algorithm and estimates of
class priors

Let (x, j) be the element ofS1 constructed on them-th iteration.

Pr(t(x) = 0) = Pr(cm = 1)Prx∼D(t(x) = 0) = 1
2(1− p1)

Pr(t(x) = 1) = 1− 1
2(1− p1) = 1

2(1+ p1)
(1)

Next we give expressions for misclassification rates Pr( j = 0 | t(x) = 1) and Pr( j = 1 | t(x) = 0).
Consider first the case thatt(x) = 1. Note that

Pr( j = 0 | t(x) = 1) = Pr( j = 0 | t(x) = 1∧cm = 0)Pr(cm = 0 | t(x) = 1)
+Pr( j = 0 | t(x) = 1∧cm = 1)Pr(cm = 1 | t(x) = 1).

Pr( j = 0 | t(x) = 1∧cm = 0) = 0, since ifcm = 0 then Step (1c) assigns label 1. Hence

Pr( j = 0 | t(x) = 1) = Pr( j = 0 | t(x) = 1∧cm = 1)Pr(cm = 1 | t(x) = 1). (2)

Whencm = 1, we havej = `m where`m = 1 with probabilityp1/(2p1 +1), so

Pr( j = 0 | t(x) = 1∧cm = 1) = 1− p1

2p1 +1
=

p1 +1
2p1 +1

. (3)

Pr(cm = 1 | t(x) = 1) =
Pr(cm = 1)Pr(t(x) = 1 | cm = 1)

Pr(t(x) = 1)
=

1
2 p1

Pr(t(x) = 1)
.

Pr(t(x) = 1) = 1
2(1+ p1) by Equation (1), hence

Pr(cm = 1 | t(x) = 1) =
1
2 p1

1
2(1+ p1)

=
p1

1+ p1
. (4)
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Hence from Equations (2) and (3) and (4),

Pr( j = 0 | t(x) = 1) =
( p1 +1

2p1 +1

)( p1

1+ p1

)
.

Now consider the case thatt(x) = 0 (where(x, j) is the labeled exampled constructed on the
m-th iteration ofA1); note that

Pr( j = 1 | t(x) = 0) = Pr( j = 1 | t(x) = 0∧cm = 0)Pr(cm = 0 | t(x) = 0)
+Pr( j = 1 | t(x) = 0∧cm = 1)Pr(cm = 1 | t(x) = 0).

If cm = 0 then from Step (1c),t(x) = 1. Hence

Pr(cm = 1 | t(x) = 0) = 1
Pr(cm = 0 | t(x) = 0) = 0.

Consequently,
Pr( j = 1 | t(x) = 0) = Pr( j = 1 | t(x) = 0∧cm = 1). (5)

Whencm = 1 we havej = `m where`m = 1 with probabilityp1/(2p1 +1), so

Pr( j = 1 | t(x) = 0∧cm = 1) =
p1

2p1 +1
. (6)

From (5) and (6),

Pr( j = 1 | t(x) = 0) =
p1

2p1 +1
.

Based on the above expressions for the misclassification rates Pr( j = 0 | t(x) = 1) and Pr( j =
1 | t(x) = 0), and noting thatN is defined in Figure 1, Step (1) of the algorithm of Figure 1 is
equivalent to the following:

1. Form= 1. . .N do:

(a) Samplex from the mixture1
2(D+D1).

(b) Samplerm uniformly at random from[0,1].

(c) If t(x) = 1, then ifrm < ( p1+1
2p1+1)( p1

1+p1
) labelx incorrectly else labelx correctly.

(d) If t(x) = 0, then ifrm < p1
2p1+1 labelx incorrectly else labelx correctly.

Let DA be the above distribution over samples of sizeN. Let Dη be the following distribution
over samples of sizeN:

1. Form= 1. . .N do:

(a) Samplex from the mixture1
2(D+D1).

(b) Samplerm uniformly at random from[0,1].

(c) If rm < p1
2p1+1 labelx incorrectly else labelx correctly.
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Let SN denote the set of labeled samples of sizeN. Define a distributionD2N over SN ×SN

by using the same sequence ofx’s and rm and the above procedures for constructing the labeled
samples, so that the two marginal distributions overSN areDA andDη. For(S,S′) ∼ D2N,

Pr(S 6= S′) ≤ N · Pr
x∼ 1

2(D+D1)
(t(x) = 1) ·

∣∣∣
( p1 +1

2p1 +1

)( p1

1+ p1

)
− p1

2p1 +1

∣∣∣.

This is because there areN opportunities forSto differ fromS′, and this occurs whenx sampled
from 1

2(D+D′) satisfiest(x) = 1. In that case, the labels will differ whenrm lies between p1
2p1+1 and

( p1+1
2p1+1)( p1

1+p1
). Consequently,

Pr(S 6= S′) ≤ N ·
|p1− p1(

1+p1
1+p1

)|
2p1 +1

≤ N · (2p1 +1)−1 · |p1− p1| ≤ N|p1− p1|.

By definition ofAη, for S∼ Dη, N = p(ε−1,δ−1,(1
2 −η)−1), η = p1

2p1+1, with probability 1−δ,

Aη on inputSreturnsh′ having error Pr(h′(x) 6= t(x)) ≤ ε for x∼ 1
2(D+D1).

Hence forS∼ DA , N = p(ε−1,δ−1,(1
2 −η)−1), with probability 1− δ−N(|p1− p1|), Aη on

input S returnsh′ having error Pr(h′(x) 6= t(x)) ≤ ε for x∼ 1
2(D+D1). Given our assumption that

|p1− p1| ≤ ∆/N = ∆/p(ε−1,δ−1,(1
2 −η)−1), the result follows.

1. Let p(ε,δ) = max0≤η≤1/3 p(ε−1,δ−1,(1
2 − η)−1); where p(·, ·, ·) is the

sample size in terms of error, uncertainty and noise rate used byAη in
Figure 1; Let∆ = δ/32p(ε,δ); N = (16/ε)2 log(128p(ε,δ)/δ2); H = /0.

2. For all p` ∈ [0,1] such thatp` = k∆ for k∈ IN do:

(a) Apply the algorithm of Figure 1 with parameters116ε, 1
4δ.

(b) If h : X −→ {0,1} is returned, add h toH .

3. Draw an unlabeled sample S` of size N using D̀.

4. For each h∈ H , if |{x ∈ S̀ : h(x) = 1}| < (1− 3
16ε)|S̀ | then remove h

from H .

5. Draw a unlabeled sample S of size N using D.

6. Let h′ = argminh∈H |{x∈ S : h(x) = 1}|.

7. f̀ (x) = h′(x) for x∈ X.

Figure 2: Learning in the sense of Definition 2 using noise-tolerant PAC algorithm and unknown
class priors
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Theorem 4 Let Aη be a noise-tolerant algorithm as defined in Proposition 3.
For ` ∈ {0,1}, the Algorithm of Figure 2 given access to D` and D, with probability at least

1− δ outputs (in polynomial time) f` with Prx∼D( f`(x) 6= t(x)) ≤ ε for ` = 1, andPrx∼D( f`(x) 6=
1− t(x)) ≤ ε for ` = 0.

Comment. As a consequence we have learnability in the sense of Definition 2, since when we
derive classifierh from f1 and f0, the error ofh is at most the sum of the errors off1 and f0. (By
the error off0 we mean the probability thatf0(x) is not equal to 1− t(x).)
Proof Let P̂rx∈S(π(x)) denote the empirical probability thatx satisfies propertyπ, with respect to
sampleS. We show first that the expression forN used by the algorithm of Figure 2 guarantees that
with probability at least 1− 1

2δ,

∀h∈ H
∣∣∣ Pr
x∼D`

(h(x) = 1)− P̂rx∈S̀ (h(x) = 1)
∣∣∣ ≤ 1

16
ε (7)

∀h∈ H
∣∣∣ Pr
x∼D

(h(x) = 1)− P̂rx∈S(h(x) = 1)
∣∣∣ ≤ 1

16
ε (8)

We are asking that the relative frequencies (overN observations) of a set of at most 2|H | events
should be within 1

16ε of their probabilities. Taking a union bound, it is sufficient thatN should
satisfy: Given anyf : X −→ {0,1}, with probability at least 1−δ/(4|H |)

∣∣∣ Pr
x∼D

( f (x) = 1)− P̂rx∈S( f (x) = 1)
∣∣∣ ≤ 1

16
ε.

Recall Hoeffding’s inequality: LetY1, . . . ,YN be Bernoulli trials with probabilityp of success.
Let T =Y1+ . . .+YN denote the total number of successes. Then forγ ∈ [0,1], Pr(|T− pN|> γN)≤
2e−2Nγ2

.
This means thatN is sufficiently large ifN satisfiesδ/(4|H |) ≥ 2e−2N(ε/16)2

. Since|H | ≤ 1/∆,
it is sufficient forN to satisfyδ∆/4≥ 2e−2N(ε/16)2

.
For ∆ = δ/32p(ε,δ),

δ2/128p(ε,δ) ≥ 2e−2N(ε/16)2

The equation is satisfied by puttingN = (16/ε)2 · log(128p(ε,δ)/δ2), polynomial in the parameters.

Assume that̀ = 1. We assume as before that the concept class is closed under complementation,
so that the proof for̀ = 0 is similar but using the complement oft in place oft.

Note that the algorithm of Figure 1 constructs a noise rateη in the range[0, 1
3] based onp`, so

each application of Algorithm 1 in Step (2a) uses sample size at mostp( 1
16ε−1, 1

4δ−1). (Polynomial
p(·, ·) is defined in Figure 2.)

One of the values ofp` used in Step (2a) as input to Algorithm 1 satisfies|p` − p`| < ∆. As a
result, applying Proposition 3 we have that with probability 1− 1

2δ, there existsh∗ ∈ H satisfying

Pr
x∼ 1

2(D+D1)
(h∗(x) 6= t(x)) ≤ 1

16
ε.

We may deduce that
Prx∼D1(h

∗(x) 6= t(x)) ≤ 1
8ε

Prx∼D(h∗(x) 6= t(x)) ≤ 1
8ε. (9)

We show that with probability 1− 1
2δ
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1. for h∈ H , if Prx∼D(h(x) = 0∧ t(x) = 1) > 1
4ε thenh is eliminated in Step 4.

2. h∗ is not eliminated in Step 4.

3. Forh∈ H , if Prx∼D(h(x) = 1∧ t(x) = 0) > 1
2ε thenh is eliminated in Step 6.

Suppose that Prx∼D(h(x) = 0∧ t(x) = 1) > 1
4ε. Then Prx∼D1(h(x) = 0∧ t(x) = 1) > 1

4ε/p1 ≥ 1
4ε.

Hence by (7),

P̂rx∈S1(h(x) = 0∧ t(x) = 1) >
1
4

ε− 1
16

ε =
3
16

ε.

From (7) and (9),

P̂rx∈S1(h
∗(x) = 0∧ t(x) = 1) ≤ 1

8
ε+

1
16

ε =
3
16

ε.

Hence Step 4 does not eliminateh∗ but it eliminates allh with Prx∼D(h(x) = 0∧ t(x) = 1) > 1
4ε.

Now suppose that Prx∼D(h′′(x) = 1∧ t(x) = 0) > 1
2ε for someh′′ ∈ H after Step 4. We have

just shown thath′′ satisfies Prx∼D(h′′(x) = 0∧ t(x) = 1) ≤ 1
4ε. Consequently, Prx∼D(h′′(x) = 1)−

Prx∼D(t(x) = 1) > 1
2ε− 1

4ε = 1
4ε. Meanwhile note from (9) that Prx∼D(h∗(x) = 1)−Prx∼D(t(x) =

1) ≤ 1
8ε. As a result, Prx∼D(h′′(x) = 1)−Prx∼D(h∗(x) = 1) > 1

4ε− 1
8ε = 1

8ε. From (8),

P̂rx∈S(h
′′(x) = 1)− P̂rx∈S(h

∗(x) = 1) > 0.

Henceh′′ is eliminated at Step 6.
Hence allh∈ H with error at leastε are eliminated with probability 1− 1

2δ. With probability
at least 1− 1

2δ there existsh∗ ∈ H with error less thatε. Putting these together, with probability at
least 1−δ we are left withh′ having error less thanε.

3. Learning via Discriminant Functions without Access toD

We exhibit algorithms that show that learnability in the sense of Definition 1 is distinct from various
well-known restrictions of PAC learnability. We also study a special case ofthe problem of learning
monomials (in whichD is known to belong to a particular class of distributions), for which we have
no algorithm in the distribution-independent setting.

Our algorithms are mostly proven to have the PAC property in a standard way,by arguing that the
hypothesis is consistent with the data, and furthermore that it belongs to a class of hypotheses that
have description length polynomial in the parameters of the problem, and sub-linear in the sample
size. (This is the “Occam algorithm” property (Blumer et al., 1987)). For Sections 3.2 and 3.4 we
use the (more generally applicable) Vapnik-Chervonenkis dimension (Blumeret al., 1989; Vapnik,
2000) of the class of hypotheses.

3.1 Parity Functions

The following result distinguishes our learning setting from learnability with uniform misclassifica-
tion noise, or learnability with a restricted focus of attention.

An instance is an element of{0,1}n, representing a sequence of values ofn boolean variables. A
parity function(Helmbold et al., 1992) has an associated subset of the variables, and anassociated
“target parity” (even or odd), and evaluates to 1 provided that the parityof the number of “true”
elements of that subset agrees with the target parity, otherwise the functionevaluates to 0.
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Theorem 5 The class of parity functions is PAC learnable via discriminant functions.

Proof Observe that the class is closed under complementation.
To learn a parity function from positive examples only, in an essentially similar way to the algo-

rithm of (Helmbold et al., 1992),A` finds the affine subspace ofGF(2)n spanned by its examples,
and f` assigns a value of 1 to elements of that subspace and a value of 0 to all otherelements of
the domain. (By “span” we mean with respect toGF(2)n, as opposed to IRn. GF(2), the generic
field with two elements 0 and 1, has addition modulo 2, so that the sum of two 0/1 vectors is their
bitwise exclusive-or. Generally the positive examples of a parity function would span all of IRn.)

In more detail, letxi be thei-th entry of bit vectorx. The positive examples of a parity function
satisfy∑i cixi = b (all addition and multiplication modulo 2), whereci ,b ∈ GF(2). Let x′ be an
arbitrary positive example; positive examplesx satisfy∑i ci(xi −x′i) = 0, and negative examples do
not satisfy this. Hence, the subspace constructed byA1 will be a subset of∑i ci(xi − x′i) = 0, and
will contain no negative examples.A0 constructs a subspace that contains all the negative data and
no positive examples.

We have thatf`(x) = 0 for all x with t(x) = 1− `, and f`(x) = 1 for all x ∈ S̀ (the unlabeled
sample obtained byA`).

The overall hypothesish has description lengthO(n2) (a spanning set has at mostn vectors,
each of lengthn) andh is consistent with the training data; thus we have PAC-ness by the standard
Occam-algorithm argument.

3.2 Unions of Intervals

Let X = IR, and lett : X −→{0,1} be the indicator function of a union ofk intervals in IR. We show
that the class of all such functions, is learnable by discriminant functions intime polynomial in
ε−1, δ−1 andk. A union of more than one interval cannot be PAC-learned from just positive or just
negative data, simply because it is impossible to guess where the data with the opposite label may
lie. Learnability via discriminant functions is thus distinct from learnability frompositive examples
only, or from negative examples only.

Theorem 6 The class of unions of k intervals on the real line is learnable via discriminant func-
tions.

Proof Construct discriminant functionsf0 and f1 as follows. Given an (unlabeled) sample, and a
point x∈ IR, our discriminant function mapsx to the negation of its distance to its nearest neighbor
in the sample. (Intuitively, it makes sense thatx should get a higher value if it is close to a data point
in the sample.) We show furthermore that this rule creates a classifier that is “simple” (a union ofk
intervals) and consistent with the data.

More precisely, given (unlabeled) sampleS̀ ⊂ IR of sizeO(k log(δ−1ε−1)/ε), let dNN(x, S̀ ) =
minx`∈S̀ {|x− x`|}. Let f`(x) = −dNN(x, S̀ ). Recall thath(x) = 1 if f1(x) > f0(x) andh(x) = 0 if
f1(x) < f0(x). We show thath is PAC.

Forx,x′ ∈ S̀ , supposex,x′ belong to the same interval oft−1(`). Then[x,x′]⊆ h−1(`), since any
point betweenx andx′ is closer to at least one ofx or x′ than to any pointx′′ for which t(x′′) 6= t(x).

Supposex0 ∈S0, x1 ∈S1, x0 < x1, and there does not existx∈S0∪S1 with x0 < x< x1. For a real
numberx such thatx0 < x< x1, if x∈ (x0,

1
2(x0+x1)) thendNN(x,S0) < dNN(x,S1), so f0(x) > f1(x)

295



GOLDBERG

andh(x) = 0 for h constructed according to Definition 1. Similarly, forx∈ (1
2(x0+x1),x1), h(x) = 1.

h(1
2(x0 +x1)) is undefined.
ForS0∪S1 sorted in ascending order, there are at most 2k pairs of consecutive pointsx,x′ in the

sequence wheret(x) 6= t(x′).
Henceh is undefined on at most 2k elements of IR, andh−1(1) is a union of at mostk inter-

vals, andh−1(0) is a union of at mostk+ 1 intervals. The VC dimension of unions ofk intervals
is 2k, so using the results of (Blumer et al., 1987), the sample size required for PAC learning is
O(k log(δ−1ε−1)/ε).

Comment. This nearest-neighbour rule does not work in more than one dimension, given that the
input distributionD is closen by an adversary. Suppose we wish to learn a linear threshold in the
plane IR2. SupposeD is uniform over two parallel line segments that are very close but on opposite
sides of the classification threshold. Then the probability is only about1

2 that the nearest neighbour
of a data pointx will have the same label asx. In Section 3.4 we show how to learn linear thresholds
in the plane using a more sophisticated rule.

3.3 Distinguishing the Model from the Mistake-bound Setting

In (Blum, 1994), Blum exhibits a concept class that is PAC learnable, but isnot (in polynomial time)
learnable using membership and equivalence queries, assuming that one-way functions exist. In this
section we show that the concept class is PAC learnable via discriminant functions in the sense of
Definition 1. We review the concept class introduced in (Blum, 1994). LetX = {0,1}n.

If A is a probabilistic polynomial-time algorithm that computes a function from{0,1}∗ to{0,1},
andg is some function from{0,1}∗ to{0,1}∗, letPk(A,g(s)) denote the probability thatA(g(s)) = 1
for stringss of lengthk generated uniformly at random.

Let G be a Cryptographically Strong Pseudorandom Bit (CSB) generator with stretchp(k) = 2k.
For polynomialp a CSB generator is defined as follows.

Definition 7 A deterministic polynomial-time program G is a CSB generator with stretch p if on
input s∈ {0,1}k it produces an output in{0,1}p(k) and for all probabilistic polynomial-time algo-
rithms A, for all polynomials Q, for sufficiently large k (k depending on A andQ),

|Pk(A,G(s))−Pp(k)(A,s)| < 1
Q(k)

.

Thus, no polynomial-time algorithm can distinguish between strings generated uniformly at
random from{0,1}2k, and strings obtained by taking the output ofG for a random input string of
lengthk. (Technically, the definition allowsA to be a circuit family.)

For stringsx andy, let x◦ y denote their concatenation. For a bit stringx let LSB[x] denote the
rightmost bit ofx. Let λ denote the empty string. For bit strings of lengthk, G(s) is a bit string of
length 2k, and we define the following notation.

1. LetG0(s) be the leftmostk bits ofG(s).

2. LetG1(s) be the rightmostk bits ofG(s).

3. LetG′
0(s) be the rightmostk bits ofG(s).
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4. LetG′
1(s) = λ.

5. If i = i1 · · · id (where thei j are binary digits), letGi(s) = Gid(Gid−1(· · ·Gi1(s))).

The concept class is defined as follows:

Definition 8 Let k= b√nc−1 and letC = {cs}s∈{0,1}k where cs is defined as follows.

• cs is the indicator function of{xi
s : i ∈ {0,1}k and LSB[Gi1···ik(s)] = 1}

where for i= i1 · · · ik,

• xi
s = i ◦G′

i1(s)◦G′
i2(Gi1(s))◦G′

i3(Gi1i2(s))◦ . . .◦G′
ik(Gi1···ik−1(s))◦0w

where w is chosen to ensure that|xi
s| = n.

Definition 8 is slightly different from the corresponding definition of (Blum, 1994), wherek= b√nc.
We usek = b√nc−1 so that the length ofxi

s is always less thatn, and we can then “pad it out” to a
length of exactlyn using the string 0w on the right-hand side.

Note that for any fixeds, a bit string of lengthn of the formxi
s is determined entirely byi,

its first k bits. We will let theindexof a bit string of lengthn refer to its firstk bits, viewed as
a binary number (to give the natural ordering on indices). For a stringx let index(x) denote this
number, regardless of whetherx is well-formed according to Definition 8. (Ifx is not well-formed,
x is a negative example ofcs, i.e. cs(x) = 0.) Algorithm Compute-Forward (Figure 3) shows how
to take any positive examplexi

s, together with an indexj > i, and construct the pair〈x j
s,cs(x

j
s)〉 in

polynomial time.
The following notation is used in Algorithm Compute-Forward:

1. Letzi
s be the correctly labeled example〈xi

s,cs(xi
s)〉.

2. Letzi
s be the incorrectly labeled example〈xi

s,1−cs(xi
s)〉.

3. Fori1, . . . , id ∈ {0,1}d, let Gi1···id(s) = G′
i1(s)◦G′

i2(Gi1(s))◦ . . .◦G′
id(Gi1···id−1(s)).

Soxi
s = i ◦Gi1···ik(s)◦0w.
From (Blum, 1994) we know thatC is not learnable (in time polynomial inn) in the mistake-

bound model. We review the PAC learning algorithm of (Blum, 1994) and showhow to adapt it to
the constraint of Definition 1.

We noted that Algorithm Compute-Forward, given a positive examplexi
s and j > i, produces a

correctly-labeled example〈x j
s,cs(x

j
s)〉. Based on this observation, we assign values to examples as

shown in Figure 4.

Theorem 9 The concept class of (Blum, 1994) is learnable via discriminant functions.

Proof We use the algorithm of Figure 4 to construct discriminant functions.
Recall that forx∈ {0,1}n, index(x) denotes thek bit binary number forming a prefix ofx, for

k = b√nc−1. For` ∈ {0,1}, A` denotes the instance of the algorithm that is given access toD`.
As in (Blum, 1994), we will argue that what we have is an “Occam Algorithm” inthe sense

of (Blumer et al., 1987) which is consistent with the training data. Specifically,A1 andA0 memorize
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Algorithm Compute-Forward (Blum, 1994)
On input xis and j> i,

1. Say i= i1 · · · ik and j= j1 · · · jk. Let r be the least index such that ir 6= jr .
Since j> i we have ir = 0 and jr = 1.

2. Extract from xis the portions:

u = G′
i1(s)◦G′

i2(Gi1(s))◦G′
i3(Gi1i2(s))◦ . . .◦G′

ir−1
(Gi1···ir−2(s))

= Gi1···ir−1(s).
v = G′

ir (Gi1···ir−1(s)) = G jr (G j1··· jr−1(s)).

3. Notice that G′jr (G j1··· jr−1(s)) = λ. Since v= G jr (G j1··· jr−1(s)), we can use v

as an intermediate point in the computation of those parts of zj
s that differ

from zis.

4. If r = k, output: 〈 j ◦ u ◦ λ,LSB[v]〉. Otherwise, output: 〈 j ◦ u ◦ λ ◦
G jr+1··· jk(v),LSB[G jk··· jr+1(v)]〉.

Figure 3: Algorithm from (Blum, 1994)

at most 2 training examples each (A0 possibly memorizes none) and their combined hypothesis (the
h in Definition 1) is consistent with the training data.

In particular,A1 (and possibly alsoA0) just retainsxm
s andxM

s , since for any unlabeledx, the
label assigned to it is computed (in polynomial time) usingxm

s and xM
s . (In the case ofA0, the

sampleS0 may fail the testConsistency-Check, in which case no examples are memorized.) Hence
the description length of the rule that labels examples, isO(n).

Note thatf1 from A1 will now give a value of 1 to any positive example whose index is between
the largest and smallest indices it has seen so far, and will give value of 0to all other examples. If an
examplex∈ X is either negative or is ill-formed (“bad” in the terminology of (Blum, 1994)), then
Step 4 will ensuref1(x) = 0, even ifindex(x) is betweenmandM.

At the same time, we claim thatf0 from A0 gives a value of≤ 1
2 to all positive examples.

Suppose for a contradiction thatA0 gives a value of 1 to positive examplex j
s. ThenA0 must have

in its collection an unlabeled examplexM
s andx j

s must predictxM
s as being positive. But that implies

thatxM
s must be positive, and since it belongs toS0 it is negative, a contradiction.

A0 ensures thatf0(x)≥ 1
2 for all x∈S0. A1 ensures thatf1(x)≥ 1 for all x∈S1 and f1(x) = 0 for

all negativex (including allx∈ S0). Hence the combined classifierh is consistent with the training
data.
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Input S̀, a sample of unlabeled elements of X= {0,1}n.

1. Apply algorithm Consistency-Check to S`; if S` fails the test, then for all
x∈ X, f̀ (x) = 1

2. Else:

2. Let m and M be the minimum and maximum indices of elements of S`. Call
these elements xm

s and xMs respectively; since Consistency-Check has been
passed, they are unique. For x∈ X, index(x) = j, if j > M or j < m then
f`(x) = 0.

3. If x∈ S̀ then f̀ (x) = 1.

4. Otherwise, if 〈x j
s,1〉 =Compute-Forward(xms , j) and furthermore,

〈xM
s ,1〉 =Compute-Forward(xjs,M) then let f̀(x j

s) = 1.

5. Otherwise, let f̀(xm
s ) = 0.

Algorithm Consistency-Check

1. If there exist x1,x2 ∈ S̀ with x1 6= x2, but index(x1) = index(x2), then fail.

2. If there exist x1,x2∈ S̀ such that index(x2) > index(x1), yet with Compute-
Forward(x1, index(x2)) 6= 〈x2,1〉, then fail.

Figure 4: Assigning values to unlabeled data for concept class of (Blum, 1994)

3.4 Linear Separators in the Plane

For X = IR2, suppose eachx ∈ X is labeled 0 or 1 according to whether its coordinates satisfy
some linear inequality; that is, a concept is a half-space in IR2. This problem is well-known to be
PAC-learnable in the standard setting; generally forX = IRn it reduces to linear programming.

Given a sampleS̀ of points int−1(`), note that points within their convex hull2 ought to receive
a “high” value from f`, since the convex hull must be a subset oft−1(`). We need to be able to deal
with the case when the convex hull has most or all ofS̀ at its vertices, as would happen for an input
distributionD` whose domain is the boundary of a circle, for example. Our general approach is to
start out by computing the convex hullP and give maximal value to points insideP. Then give an
intermediate value to points in a polygonQ containingP, whereQ has fewer edges. We argue that
the wayQ is chosen ensures that most points inQ are indeed given the correct label.

Theorem 10 Linear separators in the plane are learnable via discriminant functions.

2. Theconvex hullof a finite setSof points is the smallest convex polygon (more generally, polytope) that containsS.
Any vertex of the convex hull ofS is a member ofS.
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1. Draw a sample S̀of size N= Θ(log(1/δε)/ε2).

2. Let polygon P̀be the convex hull of S`.

3. Let Q̀ be a polygon having at mostd
√

Ne edges such that

(a) Every edge of Q̀intersects P̀at a single vertex, and

(b) Adjacent edges of Q̀contain vertices of P̀that are at most
√

N
apart in the adjacency sequence of P`’s vertices.

4. Define discriminant function f` as follows.

(a) For all x in the interior or boundary of P̀, f`(x) = 1.

(b) For each connected region R in Q` \ P̀ let A(R) denote its area. For
x∈ R let f̀ (x) = (A(R)+1)−1. If A(R) is infinite let f̀ (x) = 0.

(c) For x 6∈ Q` let f`(x) = −1.

Figure 5: Assigning values to unlabeled data for linear separators in the plane

Proof Figure 5 shows the algorithm we use to construct discriminant functions; it isnot hard to
check that the steps can be carried out in polynomial time. Figure 6 illustrates the construction on
an example.

Let h : IR2 −→ {0,1} be the hypothesis constructed fromf0 and f1. We show below that for
` ∈ {0,1}, h−1(`) is a region bounded byO(

√
N) line segments. We also show thath is consistent

with the data, i.e. that forx∈ S̀ (the unlabeled sample drawn byA`), we haveh(x) = `. As before,
PAC-ness follows from an Occam-algorithm argument; the class of hypotheses has VC dimension
O(

√
N), sublinear in the sample size.

To show consistency of the hypothesis, supposex ∈ S1, i.e. x is a positive example. Then
f1(x) = 1 sincex lies in the interior or on the boundary ofP1 (rule 4a). By contrast, whenf0 is
constructed,x lies strictly outside the convex hull of the negative data, so either rule 4b or 4c is
applied, givingf0(x) a value less than 1. By symmetry, members ofS0 are also correctly labeled.

Next we prove our claim that the boundary between the points labeled 0 byh, and the points
labeled 1, is indeed simple. (Specifically,h−1(0) andh−1(1) are bounded byO(

√
N) line segments.)

Let L be the line that defines the target linear threshold functiont. Let R` be the set of connected
regions constructed byA` that lie betweenP̀ andQ`. ForR⊆ IR2 letCH(R) denote the convex hull
of R. Observe that

1. no straight line may pass through more than 2 elements ofR`. (If that occurred, suppose the
line passes throughR,R′,R′′ ∈ R` in that order. Note thatP̀ ∪R∪R′′ is convex. That makes it
impossible for the line to cutR′, which is outsideP̀ ∪R∪R′′.)
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2. at most one element ofR0 (respectively,R1) may intersectL. (If two of them intersectedL,
there would be an edge ofQ` on the opposite side ofL from P̀ , hence a vertex ofP̀ on the
wrong side ofL.)

3. for R∈ R`, CH(R) is a region bounded by three line segments. (R has two “outer” edges and
a concave sequence of edges fromP̀ connecting them.)

Suppose thatR0 ∈ R0 intersectsR1 ∈ R1. ThenCH(R0) intersectsCH(R1). From Observation 3
above, the boundary ofCH(R0) has only 2 line segments on the opposite side ofL from P0, and
from Observation 1 the boundary ofCH(R0) intersects at most 4 elements ofR1. For all remaining
regionsR′

1 ∈ R1, eitherR′
1 ⊂ R0 (so that forx∈ R′

1, f1(x) > f0(x)) or R′
1∩R0 = /0 (so that again, for

x∈ R′
1, f1(x) > f0(x)).

For ` ∈ {0,1} let P′
` = P̀ ∪{R̀ : h(R̀ ) = `}. Note thatP′

` ⊆ h−1(`) and has at most 3d
√

Ne
edges.

The portion oft−1(0) not in P′
0∪P′

1 is divided intoO(
√

N) regions by the remaining edges of
Q0 and the two edges ofQ1 that intersectt−1(0). h is constant within each of these regions, which
allows us to deduce thath−1(0) is indeed bounded by a set of line segments of sizeO(

√
N). By a

similar argument,h−1(1) is bounded byO(
√

N) lines.

L

P

Q

P

Q

1

1

0

0

shaded regions are
subsets of       andP’         P’

1             0

Figure 6: Illustration of algorithm for learning linear separators in two dimensions
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3.5 Monomials over Attribute Vectors having a Product Distribution.

Recall that a monomial is a boolean function consisting of the conjunction of a set of literals (where
a literal is either a boolean attribute or its negation). Despite the simplicity of this class of func-
tions, we have not resolved its learnability under the restriction of Definition 1, even for monotone
(negation-free) monomials. IfA0 andA1 are allowed to be different algorithms (A is allowed to
treat the positive data differently from the negative data), then the problem does have a simple solu-
tion (a property of any class of functions that is learnable from either positive examples only or else
negative examples only).f0 from A0 assigns a value of12 to all boolean vectors.A1 uses its data
to find a PAC hypothesis, and assigns a value of 1 to examples satisfying thathypothesis, and 0 to
other examples.

The following problem arises whenA is oblivious to whether it is receiving the positive data.
The distribution over the negative examples could in fact produce booleanvectors that satisfy some
monomial f that differs from target monomialt, but if D( f−1(1)∩ t−1(1)) > ε this may give exces-
sive error.

In view of the importance of the concept class of monomials, we consider whether they are
learnable given that the input distributionD belongs to a given class of probability distributions.
This situation is intermediate between knowingD exactly (in which case by Theorem 4 the prob-
lem would be solved since monomials are learnable in the presence of uniformmisclassification
noise (Angluin and Laird, 1988)) and the distribution-independent setting.

1. Draw a sample S̀of size N= Õ((n3/ε)2 log(1
δ)).

2. For x∈ X let ψ̂ j
`(x) denote the fraction of elements of S` whose j-th entry

is equal to the j-th entry of x.

3. For x∈ X, f̀ (x) = Πn
j=1ψ̂ j

`(x).

Figure 7: Algorithm for learning monomials

Theorem 11 Monomials over the boolean domain are learnable via discriminant functions, pro-
vided that the input distribution D is known to be a product distribution.

Comments.We use the algorithm of Figure 7 which simply fits a product distribution to its data and
assigns a value to unlabeled vectorx that is the estimated likelihood ofx. The proof that it works
heavily exploits the assumption thatD is a product distribution, and does not appear to extend to
larger class of distributions (for example, mixtures of product distributions(Cryan et al., 2001;
Freund and Mansour, 1999)) or more general classes of boolean functions.
Proof We show that the algorithm given in Figure 7 constructs discriminant functions which, when
combined to geth according to Definition 1, ensure thath is PAC.

Forx∼D, x= x1x2 . . .xn wherex j is a 0/1 random variable which is independent ofxk for k 6= j.
By a relevant attributeof t we mean anyx j whose value is fixed for allx that satisfyt. Let t j denote
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that value. LetR denote the set of relevant attributes and letI denote the remaining (irrelevant)
attributes.

We say that an examplex′ = x′1x′2 . . .x′n with t(x′) = ` is ordinary if for all b ∈ {0,1} and j ∈
{1, . . . ,n} such that Prx∼D`(x j = b) > 1− ε

n, we havex′j = b. (Thus, an ordinary example is one that
does not have any “very unusual” attribute values in comparison with random examples having the
same label. If there happen to be no bit positions that are very “reliable” for random examples with
the same label, then the property becomes vacuous, or true for all bit strings.)

Note that for` ∈ {0,1}, Prx∼D`(x is ordinary) ≥ 1− ε. Consequently, Prx∼D(x is ordinary) ≥
1− ε. We will show that with probability at least 1− δ, all ordinary examples end up correctly
labeled.

Let P̂rx∈S̀ (x j = b) denote the empirical probability thatx j = b, and we show that sample sizeN
is large enough to ensure that with probability 1−δ, for b∈ {0,1}, j ∈ {1, . . . ,n},

|P̂rx∈S̀ (x j = b)− Pr
x∼D`

(x j = b)| ≤ ε
8n3 . (10)

Applying the same Hoeffding bound as in Theorem 4, it is sufficient thatN should satisfy
2e−2N(ε/8n3)2 ≤ δ

2n2 which is satisfied byN as prescribed in Figure 7.

For ` ∈ {0,1}, x∈ X let ψ j
`(x) denote the probability that a random vector with label` agrees

with x on the j-th entry. Note that ift(x) = ` thenψ̂ j
`(x) (as defined in the algorithm of Figure 7) is

an empirical estimate ofψ j
`(x).

Let ψ`(x) = Π jψ
j
`(x). Note thatf`(x) is an estimate ofψ`(x) (in the sense thatf`(x) converges

to ψ`(x) as the sample size increases). We know from (10) that

ψ̂ j
`(x) ∈

[
ψ j

`(x)−
ε

8n3 ,ψ j
`(x)+

ε
8n3

]
.

If ψ j
`(x) > ε/n, then

ψ̂ j
`(x)/ψ j

`(x) ∈
[
1− 1

8n2 ,1+
1

8n2

]
. (11)

Supposex is ordinary and negative. Observe thatf1(x) = 0. (This is becausex must have an at-
tribute value that disagrees with all corresponding attribute values in the positive data.) Furthermore,
Equation (11) holds for̀ = 0 and all j, implying that

ψ̂0(x)/ψ0(x) ∈
[
1− 1

4n
,1+

1
4n

]
. (12)

So with probability 1− δ, f0(x) > 0, since f0(x) = 0 would contradict Equation (12) taken with
the observation thatψ0(x) > 0. Hence with probability 1− δ, all ordinary negative examples are
correctly labeled.

Supposex is ordinary and positive. We will show that with probability 1− δ, f1(x)/ f0(x) > 1
for all ordinary positive examples. Observe that forj ∈ R , ψ j

1(x) = ψ̂ j
1(x) = 1. (This is because all

positive examples must agree on all the relevant attributes.) We have

f1(x) = Π j∈I ψ̂ j
1(x)

f0(x) = Π j∈I ψ̂ j
0(x)Π j∈R ψ̂ j

0(x).
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For j ∈ I , ψ j
1(x) = ψ j

0(x) (for a product distributionD, the value of an irrelevant attribute is
selected independently of the label class of a bit string). Hence Equation (11) applies for̀ = 0 or 1,
j ∈ I .

f1(x)
f0(x)

≥ (1− (1/8n2))n

(1+(1/8n2))n

( 1

Π j∈R ψ̂ j
0(x)

)
.

There existsj∗ ∈ R such that for a fraction at least1
n of elementsx′ ∈ S0, x′j∗ 6= x j∗ . (Each

negative example must disagree withx on at least one relevant attribute.) Hence,

ψ̂ j∗

0 (x) ≤ 1− (1/n)

ψ j∗

0 (x) ≤ 1− (1/n)+(ε/8n2) < 1− (1/2n).

Hence
f1(x)
f0(x)

≥ (1− (1/8n2))n

(1+(1/8n2))n

( 1
1− (1/2n)

)
> 1,

as required. Hence with probability 1−δ, all ordinary positive examples are correctly labeled.

4. Conclusion and Open Problems

The algorithms we have given differ significantly from previous PAC algorithms, which usually
work by minimizing the empirical error rate, and arguing that the way a hypothesis is constructed
ensures that the true error is close to the empirical error. The constraintthat we expressed in Defi-
nition 1 forces the positive data and the negative data to be processed independently—an algorithm
does not have access to the empirical error.

This lack of access to the empirical error appears to be quite a severe constraint, one that might
render certain learning problems intractable in the context of PAC learning. Indeed, we have so far
failed to find an algorithm in this setting which learns monomials over the boolean domain, assum-
ing no knowledge of the input distribution. We have also not obtained an algorithm for learning
linear threshold functions in more than two dimensions. Despite those limitations, our positive re-
sults have distinguished learnability subject to this constraint from various other constraints on PAC
learnability that have been studied in the past.

Clearly, the main open question raised by this paper is to elucidate the relationship between
learnability via discriminant functions (Definition 1), and basic PAC learnability. Furthermore, if
they are not equivalent, can they be distinguished using a well-known learning problem, such as
monomials over the boolean domain?

We have a relatively good understanding of learnability subject to the slightlyless severe con-
straint of Definition 2. Namely, it is intermediate between learnability with uniform misclassifi-
cation noise, and standard PAC learnability. Furthermore, subject to the Noisy Parity Assumption
(that it is hard to learn parity functions in the presence of random misclassification noise given the
uniform distribution over input vectors) it is strictly a less severe constraint that learnability with
uniform misclassification noise, since we have shown (Section 3.1) how to learn parity functions
using the more severe constraint of Definition 1.
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