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Abstract
In many pattern recognition/classification problem the true class conditional model and class prob-
abilities are approximated for reasons of reducing complexity and/or of statistical estimation. The
approximated classifier is expected to have worse performance, here measured by the probability
of correct classification. We present an analysis valid in general, and easily computable formulas
for estimating the degradation in probability of correct classification when compared to the optimal
classifier. An example of an approximation is the Naı̈ve Bayes classifier. We show that the perfor-
mance of the Naı̈ve Bayes depends on the degree of functional dependence between the features
and labels. We provide a sufficient condition for zero loss of performance, too.

Keywords: Bayesian networks, naı̈ve Bayes, plug-in classifier, Kolmogorov distance of variation,
variational learning

1. Introduction

Classification procedures based on probability models are widely used in data mining and machine
learning (Hand et al., 2001), since such models often lead to effective algorithms and modularity
in computation and have a conceptual foundation in statistical learning theory. For tractable com-
putation and learning these models may still in many cases require steps of approximation by less
complex model families (Jordan et al., 1999).

By classification we mean procedures that group items represented by a feature vector into dif-
ferent predefined classes. We consider classification procedures based on class conditional probabil-
ities that belong to a model family that does not necessarily contain the true probability distribution,
and analyze how the probability of correct classification is affected.

One straightforward procedure is known as a plug-in function. By this we refer to the formal
operation performed by the optimal classifier based on Bayes’ formula of posterior probabilities
of classes, but now plugging in the modeling or approximate class conditional densities as well as
approximated class probabilities. There are still a lot of unresolved issues concerning the effects of
plug-in functions in the context of classification with high-dimensional feature vectors.

A well known plug-in procedure in classification is modeling by independence, which is usually
called the ’Naı̈ve Bayes’ classifier. We will review, extend and sharpen the theoretical justification
for this procedure while connecting it to the general approximation theory. Friedman (1997) studies
also the Naı̈ve Bayes, when the optimal classifier is estimated from training data. He shows that the
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bias and variance components of the estimation error affect classification error in a different way
under the Gaussian approximation than the error in the estimated probabilities. This can help Naı̈ve
Bayes to perform better than expected in case the variance of the estimates of posterior probabilities
is low. Our analysis in the sequel will not involve the variance − bias decomposition.

Bayesian networks is a widely used class of models for probabilistic reasoning and for clas-
sification, see for example (Korb and Nicholson, 2004; Friedman et al., 1997). As the network
topologies increase in size and complexity, the run-time complexity of probabilistic inference and
classification procedures becomes prohibitive. In general, exact inference on Bayesian networks is
known to be NP-hard (Cooper, 1990). One way of approximating or simplifying the model is to
enforce additional conditional independencies or by removing edges in the graph, see van Engelen
(1997) and the references therein.

Here we analyze a simplification of Bayesian networks by a strategy of approximating factors of
the joint probability, and give a bound for the probability of correct classification under the ensuing
plug-in function. This corresponds to some degree to the general heuristics in the work by Lewis
(1959); Brown (1959); Chow and Liu (1968); Ku and Kullback (1969), who developed the idea of
approximating multivariate discrete probability distributions by a product of lower order marginal
distributions. The set of marginal distributions applied needs not be the full set of margins of some
order, the requirements are that the product is an extension of the lower order distributions which
are compatible.

2. Organization

We will start by introducing notation and basic definitions in Section 3. Section 4 provides ratio-
nales and examples of approximating models and plug-in classifiers. These will be used to illustrate
the mathematical results in the following sections. Section 5 introduces results about the degrada-
tion of classifier performance with respect to the optimal probability of correct classification. The
results are phrased in terms of a distance between probabilities known as the Kolmogorov variation
distance. There are several well known bounds for the Kolmogorov variation distance by other dis-
tances between probability measures, quoted in Section 5, which in many examples yield explicit
and computable bounds for the plug-in classifier performance. We give also a novel bound that con-
nects the work to variational learning theory (Jordan et al., 1999). Section 6 gives a rule for potential
reduction of the number of dimensions needed for evaluating the degradations, and presents more
easily computable bounds. Section 7 discusses the Naı̈ve Bayes classifier by sharpening a bound
for Naı̈ve Bayes and connecting it to one of the general approximation bounds in Section 6. Section
8 gives sufficient conditions on the margin (explained later) between two classes, which is used to
generalize the possible problems where Naı̈ve Bayes can be argued as optimal.

3. Notation, Bayes and Plug-In Classifiers

Let (Ω,F ,P) be a probability space, such that (C,X) is a F -measurable stochastic variable, s.v.
Let X = (Xi)

d
i=1, that is X is d-dimensional. When denoting a sample (observation) of X with no

missing components we use x, that is x = (xi)
d
i=1 (x can be called a feature vector). When referring

to the range of X we use X , which for completeness of presentation is assumed to be a Borel space
(Schervish, 1995). This assumption is needed to justify the use of results such as the Fubini theorem
and the existence of conditional densities.
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In the context of classification a sample x is assumed to have a source, one of a family of entities
called classes or labels, denoted by c, which is regarded as an outcome of the random variable C.
In classification C has range C = {1, . . . ,k}, that is, k is the number of classes. We assume, as
is common in much of classification theory, that the space of labels {1, . . . ,k} is without relevant
additional structure except whether two labels are equal or not. In order to resolve ties, it may, on
the other hand, be useful to think of the labels as ordered by 1 < 2 < .. . < k.

Definition 1 A classifier is a measurable function ĉ : X → C such that given x, ĉ(x) is an estimate
of c.

In classification we do not deal directly with the whole sample (c,x), but the class c is a hidden
variable. Hence we will deal with the class conditional probability. In

P(X ∈ A|C = c) =
Z

A
f (x|c)dµ(x)

we call f (x|c) the conditional density of a sample x given that the random variable C equals the label
c with respect to the σ-finite measure µ. We assume in other words that µ dominates, see Schervish
(1995), the probability measure P(·|C = c) for every c, that is, the same measure µ can be used
for all P(X · |C = c) to define the corresponding class conditional density f (x|c). The assumption
of domination justifies the validity of a number of formulas of distances between probability mea-
sures. P(c) is the short notation for the marginal probability P(C = c). We also encounter P(c|x),
the probability of the class c given the sample x. P(c|x) is used to define a classifier which is the
cornerstone of probabilistic classification. For example, the procedure known as proportional pre-
diction chooses the label for x by drawing c from the probability mass function P(c|x) (Goodman
and Kruskal, 1954). We study only deterministic classifiers ĉ.

Definition 2 Bayes classifier for a sample x is

ĉB(x) = argmax
c∈C

P(c|x).

Ties are resolved in some fixed manner, for example, by taking ĉB(x) the smallest of the tied labels
in (the ordered) C .

The posterior P(c|x) can be modeled directly (’the diagnostic paradigm’) but this may often
involve difficult computations (Ripley, 1996). Bayes’ formula gives effectively

ĉB(x) = argmax
c∈C

f (x|c)P(c). (1)

Thus we base Bayes classifier on f (x|c) as well as on P(c), the prior probability (or the prevalence)
of class c. In essence f (x|c) allows us to think of each class as generating x.

We evaluate the performance of a classifier by the probability of correct classification and assess
the effect of approximating f (x|c) by f̂ (x|c) and P(c) by P̂(c).

Definition 3 For a classifier ĉ(X) the probability of correct classification is P(ĉ(X) = C).
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There is a good reason for using Bayes classifier (Definition 2), since for every ĉ(X) it holds
that

P(ĉ(X) = C) 6 P(ĉB(X) = C).

A simple way of constructing a classifier given f̂ (x|c) and P̂(c) is to use these to replace the
respective target probabilities in (1).

Definition 4 ĉB̂(x) is a plug-in classifier with respect to the pair
(

f̂ (x|c), P̂(c)
)

if it is defined by

ĉB̂(x) = argmax
c∈C

f̂ (x|c)P̂(c). (2)

Ties are resolved as in Definition 2.

The question studied here can now be stated as that of computing or bounding the difference

P(ĉB(X) = C)−P(ĉB̂(X) = C).

It is for many P difficult or even impossible to compute explicitly P(ĉB(X) = C). Hence there
exists a literature for bounding the optimal probability of error, P∗

e = 1−P(ĉB(X) = C). If we set
Pe = 1−P(ĉB̂(X) = C), then

P(ĉB(X) = C)−P(ĉB̂(X) = C) = Pe −P∗
e .

This can be bounded downwards by, for example, the upper bounds for P∗
e in Bhattacharyya and

Toussaint (1982). We shall not pursue the lower bounds for P(ĉB(X) = C)−P(ĉB̂(X) = C) any
further.

4. Examples of Plug-In Approximations of the Bayes Classifier

As outlined in the introduction, there are several reasons for approximating f (x|c) in classifica-
tion. These include the problem of digitally storing probability tables, the topic introduced in Lewis
(1959), and the complexity, or even infeasibility, of computing ĉB(x). Therefore we could call f
the target density and f̂ the tractable density (Wainwright and Jordan, 2003). In block transmission
systems a tractable density is found for fast computation of the signal classifier (detector) (Kaleh,
1995). In this section we present some examples of plug-in classifiers motivated by these consider-
ations in pattern recognition and detection.

Example 1 We consider X = {0,1}d known as the binary hypercube in d dimensions. For the
binary hypercube we need in general 2d −1 parameters to specify each class conditional probability
mass function. Hence we may encounter a difficulty with storing of the tables of probabilities.

There are several canonical representations of the generic probability distribution on X and of
the 2d −1 parameters. Examples of these are given in Bahadur (1961b), Devroye et al. (1996), Ott
and Kronmal (1976), and Teugels (1990). We recapitulate the representation by Bahadur (1961b)
in the form given by Brunk and Pierce (1974). Let f (x|c) be a probability mass function on X such
that f (x|c) > 0 for all x ∈ X . Let

fic = ∑
x∈X ,xi=1

f (x|c), yic = yic (x) =
xi − fic√
fic (1− fic)

. (3)
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Let w = (w1,w2, . . . ,wd) ∈ {0,1}d be a binary vector of zeros and ones. Then we denote by Uw,c (x)
products of a subset of y1c, . . . ,ydc

Uw,c (x) =
d

∏
i=1

yic (x)wi , U0,c (x) = 1.

We set

f1(x|c) =
d

∏
i=1

f (xi|c) =
d

∏
i=1

f xi
ic (1− fic)

1−xi . (4)

Hence f1(x|c) is another probability mass function, which is positive on {0,1}d . Its marginal dis-
tributions coincide with those of f (x|c). With respect to f1 any binary random vector X = (Xi)

d
i=1

consists of independent components Xi.
We shall next regard the set V of real-valued functions on {0,1}d as a vector space of dimension

2d . Let us equip V with the scalar product defined for φ ∈V,ψ ∈V as

(φ,ψ) = ∑
x∈{0,1}d

φ(x)ψ(x) f1(x|c). (5)

Next we show that the functions {Uw,c (x)}w∈{0,1}d constitute an orthonormal basis with respect to
this scalar product. In fact

(Uw,c,Uw∗,c) = ∑
x∈{0,1}d

Uw,c(x)Uw∗,c(x) f1(x|c) =

= ∑
x∈{0,1}d

d

∏
i=1

yic (x)wi yic (x)w∗
i f1(x|c).

The sum in the right hand side is nothing but the expectation

E f1

[
d

∏
i=1

yic (X)wi yic (X)w∗
i

]
=

d

∏
i=1

E f1

[
yic (X)wi yic (X)w∗

i

]
, (6)

where we used the aforementioned independence of the components of X under f1, which yields the
independence of the yic (X) as defined by (3), too. We now show that the product in (6) equals zero,
if w 6= w∗. In this case there is at least one i such that wi 6= w∗

i , and for this i we get

E f1

[
yic (X)wi yic (X)w∗

i

]
= E f1 [yic (X)] =

E f1 [Xi]− fic√
fic (1− fic)

= 0,

since by the definitions above E f1 [Xi] = 1 ·P1 (Xi = 1) = fic. Hence the whole product in (6) is zero,
and we have shown that (Uw,c,Uw∗,c) = 0, if w 6= w∗. If w = w∗, then we get from (6) that

(Uw,c,Uw,c) = ∏
i=1:wi=1

E f1

[
yic (X)2

]
.

Here

E f1

[
yic (X)2

]
=

1
fic (1− fic)

E f1

[
(Xi − fic)

2
]
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But since Xi is a binary random variable (or, a Bernoulli random variable) with respect to f1, we
have

E f1

[
(Xi − fic)

2
]

= fic − f 2
ic = fic (1− fic) .

Hence (Uw,c,Uw,c) = 1, and we have shown that {Uw,c (x)}w∈{0,1}d is an orthonormal set in V with
respect to the scalar product in (5). Since the number of functions in {Uw,c (x)}w∈{0,1}d equals the

dimension of V (=2d), {Uw,c (x)}w∈{0,1}d must be an orthonormal basis in V .

Hence every function φ ∈V has a unique expansion in terms of the 2d coordinates (φ,Uw,c) with
respect to this basis written as

φ(x) = ∑
w∈{0,1}d

(φ,Uw,c)Uw,c (x) . (7)

If we take φ(x) = f (x|c)/ f1(x|c) we obtain
(

f
f1

,Uw,c

)
= ∑

x∈{0,1}d

f (x|c)Uw,c (x) = E f (Uw,c(X)) .

In other words the coordinate
(

f
f1
,Uw,c

)
equals the expectation of Uw,c(X) w.r.t. to the probability

mass function f (x|c). For this we introduce the standard notation

βw,c = E f (Uw,c(X)) . (8)

By substitution of (8) in (7) we obtain

f (x|c)
f1(x|c)

= ∑
w∈{0,1}d

βw,cUw,c (x) .

This gives us the the (Bahadur-Lazarsfeld) representation of any positive probability mass function
f (x|c) on {0,1}d as

f (x|c) = f1(x|c) fc,interactions(x), (9)

where we have written
fc,interactions(x) = ∑

w∈{0,1}d

βw,cUw,c (x) . (10)

The rank R(w) of the polynomial Uw,c is defined as

R(w) =
d

∑
i=1

wi.

Here β0,c = 1, and if R(w) = 1, then βw,c = 0. The probability mass function f1(x|c) in (4) is known
as the first order term. For R(w) = 2 the coefficients {βw} are correlations. We can think of the
coefficients β as interactions of order R(w) minus one.

One can define a family of probability mass functions called kth order Bahadur distributions as
the set of all probabilities on the binary hypercube in d dimensions such that βw = 0 for R(w) > k.
Anoulova et al. (1996) prove, simplifying their statement, that there is an algorithm that, given
enough samples, computes for any ε > 0 a plug-in classifier ĉB̂(x) such that P(ĉB(X) = C)−
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P(ĉB̂(X) = C) 6 ε, when the conditional distributions of X |C are in the class of kth order Bahadur
distributions.

If we expand log f (x|c)
f1(x|c) with respect to the basis {Uw,c (x)}w∈{0,1}d we obtain the following

canonical form

f (x|c) = f1(x|c)e∑w∈{0,1}d αw,cUw,c(x), (11)

where it follows similarly as above that

αw,c = E f1

[
log

f (X |c)
f1(X |c) ·Uw,c(X)

]
. (12)

The two canonical forms (10) and (11) above are of interest in the sequel for defining structures
of approximations and for evaluating the effect of a plug-in classifier on probability of correct
classification. First, the plug-in classifier

ĉB̂(x) = argmax
c∈C

f1(x|c)P̂(c)

is an instance of the Naı̈ve Bayes procedure to be treated in more generality in Section 7 below. In
the setting of the binary hypercube the Naı̈ve Bayes is said to take into account only the first order
term. A survey of the Naı̈ve Bayes in supervised and unsupervised learning of bacterial taxonomies
using binary features is found in Gyllenberg and Koski (2001). Further structures of plug-in clas-
sifiers can be defined by adding sets of higher order interactions to the first order term. Examples
of this are found in Bahadur (1961a), Chow and Liu (1968), Moore (1973), and Ott and Kronmal
(1976). Here the trade-off is between the additional complexity and the more accurate statistical
description, and, as it will turn out in the sequel, higher probability of correct classification with
the plug-in classifier.

A successful empirical application of the Bahadur representation in classification or diagnosis
of six diseases using eleven features or symptoms is reported in Scheinck (1972). The underlying
requirement f (x|c) > 0 for all x ∈ {0,1}11 is possibly overlooked in Scheinck (1972).

In some of the contributions referred to in the above the approximating structure is not neces-
sarily a probability, since an arbitrary truncation of a representation of a probability mass function
with respect to a basis is not always a probability mass function.

In case the support of f is a true subset of X = {0,1}d , a canonical representation (an interpo-
lator) of f has been reported in Pistone et al. (2001). This is based on the monomials ∏d

i=1 xwi
i and

the properties of Gröbner bases.

Example 2 One model of intersymbol interference (ISI) channels in digital communication theory,
see Kaleh (1995); Barbosa (1989), can be formulated as observing a d ×1 vector X with the class
conditional normal distribution

X |C = b ∼ N (Hb,Σ) ,
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where b is N × 1 vector such that bi ∈ {−1,+1}, and Σ is a positive definite d × d matrix, and H
represents a linear, time-invariant and causal ISI channel by the d ×N matrix

H =




h0 0 . . . 0

h1 h0
. . .

...
... h1

. . . 0

hL−1
...

. . . h0

0 hL−1
. . . h1

...
. . . . . .

...
0 . . . 0 hL−1




.

Here L is the length of the channel memory, if h0 6= 0 and hL−1 6= 0. Hence d = L +N −1. The set
of labels C equals in this case a subset of {−1,+1}N . C might be called a codebook. If all b are
equally likely a priori, we have (the optimal detector)

ĉB(x) = argmin
b∈C

‖Σ−1 (x−Hb)‖2,

where ‖x‖ =
√

xT x.
A suboptimal detector may be introduced, for example, for the purpose of reducing run time

complexity, see Barbosa (1989), by a d×N matrix M of the same structure as H, but with a shorter
memory and the plug-in classifier

ĉB̂(x) = argmin
b∈C

‖Σ−1 (x−Mb)‖2.

Here explicit expressions for both P(ĉB(X) = C) and P(ĉB̂(X) = C) are readily found, and the ques-
tion of developing techniques for estimating the loss of performance incurred by the introduction of
the suboptimal detector has been studied extensively for a number of designs of the matrices M.

5. A Performance Bound

There are several representations of the exact difference P(ĉB(X) = C)−P(ĉB̂(X) = C).
For typographical and readability reasons we will use the notation ĉB(x) = b as well as ĉB̂(x) = b̂.
We can write P(ĉB(X) = C)−P(ĉB̂(X) = C) as

P(ĉB(X) = C)−P(ĉB̂(X) = C) =
Z

{b̂6=b}

(
P(b) f (x|b)−P(b̂) f (x|b̂)

)
dµ(x). (13)

We may also re-write this as

=
Z

{b̂6=b}

(
P(b) f (x|b)− P̂(b) f̂ (x|b)

)
dµ(x)−

Z

{b̂6=b}

(
P(b̂) f (x|b̂)− P̂(b̂) f̂ (x|b̂)

)
dµ(x)

−
Z

{b̂6=b}

(
P̂(b̂) f̂ (x|b̂)− P̂(b) f̂ (x|b)

)
dµ(x) (14)

since
=

Z

{b̂6=b}
P(b) f (x|b)dµ(x)−

Z

{b̂6=b}
P̂(b) f̂ (x|b)dµ(x)
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−
Z

{b̂6=b}
P(b̂) f (x|b̂)dµ(x)+

Z

{b̂6=b}
P̂(b̂) f̂ (x|b̂)dµ(x)

−
Z

{b̂6=b}
P̂(b̂) f̂ (x|b̂)dµ(x)+

Z

{b̂6=b}
P̂(b) f̂ (x|b)dµ(x),

where 4 integrals cancel each other and (13) is formed. The difficulty with these expressions is to
find the set {x|ĉB(x) 6= ĉB̂(x)} and to compute the integrals above.

We give next a first upper bound for P(ĉB(X) = C)−P(ĉB̂(X) = C). The result for the specific
case of k = 2 is presented in Ryzin (1966). When k > 2 the result in Theorem 5 can basically be
found inside a proof in Glick (1972). A proof is included here for completeness and readability. For
the specific approximation, where f̂ and P̂ are the maximum likelihood estimators, and samples are
discrete, rates of convergence are provided in Glick (1973), as the sample size increases to infinity.

Theorem 5

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6 E f̂ P̂

∣∣∣∣
f (X |C)P(C)

f̂ (X |C)P̂(C)
−1

∣∣∣∣ . (15)

Proof From (14) P(ĉB(X) = C)−P(ĉB̂(X) = C) =

Z

{x|b̂6=b}

(
P(b) f (x|b)− P̂(b) f̂ (x|b)

)
dµ(x)

−
Z

{x|b̂6=b}

(
P(b̂) f (x|b̂)− P̂(b̂) f̂ (x|b̂)

)
dµ(x)−

Z

{x|b̂6=b}

(
f̂ (x|b̂)P(b̂)− f̂ (x|b)P(b)

)
dµ(x).

Definition 4 implies that f̂ (x|b̂)P̂(b̂) > f̂ (x|b)P̂(b), hence

6

Z

{x|b̂6=b}

(
P(b) f (x|b)− P̂(b) f̂ (x|b)

)
dµ(x)−

Z

{x|b̂6=b}

(
P(b̂) f (x|b̂)− P̂(b̂) f̂ (x|b̂)

)
dµ(x).

To simplify further
R

a− e 6 |R a− e| 6 |R a|+ |R e| 6 R |a|+ R |e| is used, resulting in

6

Z

{x|b̂6=b}

∣∣P(b) f (x|b)− P̂(b) f̂ (x|b)
∣∣dµ(x)+

Z

{x|b̂6=b}

∣∣P(b̂) f (x|b̂)− P̂(b̂) f̂ (x|b̂)
∣∣dµ(x).

Then divide into cases where b as well as b̂ are constant (they both depend on x)

=
k

∑
c=1

[
Z

{x|b6=b̂
T

b=c}
∣∣P(c) f (x|c)− P̂(c) f̂ (x|c)

∣∣dµ(x)

+
Z

{x|b6=b̂
T

b̂=c}
∣∣P(c) f (x|c)− P̂(c) f̂ (x|c)

∣∣dµ(x)

]
.

Now b 6= b̂
T

b = c and b 6= b̂
T

b̂ = c are disjoint sets so we can write both integrals as one integral,

=
k

∑
c=1

Z

{x|b6=b̂
T

(b=c
S

b̂=c)}
∣∣P(c) f (x|c)− P̂(c) f̂ (x|c)

∣∣dµ(x)
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We want an approximation that does not depend on b, b̂, such as

6

k

∑
c=1

Z

X

∣∣P(c) f (x|c)− P̂(c) f̂ (x|c)
∣∣dµ(x) =

k

∑
c=1

Z

X
P̂(c) f̂ (x|c)

∣∣∣∣
P(c) f (x|c)
P̂(c) f̂ (x|c)

−1

∣∣∣∣dµ(x).

The right hand side of the inequality (15) is, when multiplied by the factor 1/2, an instance of
what is being called the Kolmogorov distance of variation, see for example Ali and Silvey (1966).
We shall resort to this terminology in order to be able to refer concisely to the quantity in the
right hand side of (15) (or of (16) below). The basic mathematical properties of this distance are
found in Strasser (1985). Probabilistically the size of the quantity P(ĉB(X) = C)−P(ĉB̂(X) = C)

in (15) is thus interpreted as the expected dispersion of f (X |C)P(C)

f̂ (X |C)P̂(C)
around unity with respect to the

approximating distribution f̂ P̂.
The result above is the starting point of our development of approximations of probability to

find plug-in classifiers for Bayesian networks and in particular to evaluate Naı̈ve Bayes. We note
that

E f̂ P̂

∣∣∣∣
f (X |C)P(C)

f̂ (X |C)P̂(C)
−1

∣∣∣∣=
k

∑
c=1

Z

X
f̂ (x|c)P̂(c)

∣∣∣∣
f (x|c)P(c)

f̂ (x|c)P̂(c)
−1

∣∣∣∣dµ(x)

=
k

∑
c=1

Z

X

∣∣ f (x|c)P(c)− f̂ (x|c)P̂(c)
∣∣dµ(x), (16)

which is the bound in (15) written as in Ryzin (1966) and Glick (1972). We shall, next present
examples of evaluating the bound directly.

Example 3 Let again as in Example 1 take X as the binary hypercube in d dimensions. We assume
that the true density (with respect to the counting measure µ) f (x|c) > 0 for all x ∈ X and P(c) =
P̂(c). When we approximate this density by its first order term f1(x|c) in (4) we get from (9) and
(10) that

∣∣ f (x|c)P(c)− f̂ (x|c)P̂(c)
∣∣= P(c) f1(x|c)

∣∣∣∣∣∑w6=0
βw,cUw,c (x)

∣∣∣∣∣ .

In words, here the bound in Theorem 5 expresses the deterioration of the classifier performance
by means of a sum of all interactions of order higher than one. Since the measure µ is the counting
measure we have the bound

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6

k

∑
c=1

P(c) ∑
x∈X

f1(x|c)
∣∣∣∣∣∑w6=0

βw,cUw,c (x)

∣∣∣∣∣ .

Example 4 The Kolmogorov distance of variation is very effectively evaluated and bounded for the
class of two dimensional densities having an expansion with respect to an orthonormal system of
polynomials. A diagonal expansion is possible, for example, for Gaussian, sinusoidal and Pearson
type II distributions, see McGraw and Wagner (1968), which also contains an extensive list of
references on the subject.
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We take as an illustration the two dimensional Gaussian density. Hence X = (Xi)
2
i=1, and X =

� × �
. The density f (x) is determined by the respective variances σ2

1 and σ2
2, the respective means

m1 and m2, and the coefficient of correlation ρ. Let f̂ (x) = f1(x1) f2(x2) be the product of the two
Gaussian marginal densities for X1 and X2. This corresponds again to an instance of the Naı̈ve
Bayes procedure. Then the classical Mehler expansion (Cramér, 1966) says for |ρ| < 1 that

f (x) = f1(x1) · f2(x2) ·
∞

∑
n=0

Hn

(
x1 −m1

σ1

)
·Hn

(
x2 −m2

σ2

)
· ρn

n!
,

where Hn (x) is the Hermite polynomial of order n, defined as Hn (x) = (−1)nex2 dn

xn e−x2
for n =

0,1, . . .,. If we assume P(c) = P̂(c), then Theorem 5 entails, since H0 (x) = 1,

P(ĉB(X) = C)−P(ĉB̂(X) = C)

6

k

∑
c=1

P(c)
Z

� × � f1(x1|c) f2(x2|c)
∣∣∣∣∣

∞

∑
n=1

Hn

(
x1 −m1(c)

σ1

)
·Hn

(
x2 −m2(c)

σ2

)
· ρn(c)

n!

∣∣∣∣∣dx1dx2,

where the means and coefficient of correlation are chosen to depend on c. The bound on the differ-
ence between the probabilities of correct classification is seen to be a power series in the absolute
value of the coefficient of correlation. There are computational routines for the Hermite polyno-
mials, and in addition integrals of the form

R

� | xi − mi |k fi(xi)dxi involved here are explicitly
computable. There is an extension of the Mehler expansion for n-variate densities (Slepian, 1972),
which could be used in some of the examples below, but we will not expand on this due to the
extensive notational machinery thereby required.

There are certain well known inequalities between the Kolmogorov distance of variation and
other distances or divergences between probability measures. These distances are often readily
computable in an explicit form, a compendium is recapitulated in Kailath (1967). An up-to-date
discussion of the inequalities to be presented below and several others is found in Topsoe (2000).
Nguyen et al. (2005) have presented techniques of replacing the Bayesian probability of error by
more general risk functions and analyzing them with corresponding divergences, which are surveyed
in Topsoe (2000).

For two probability densities f and f̂ we have the inequality due to Ch. Kraft, see Hoeffding
and Wolfowitz (1958); Pitman (1979),

1
2

Z

X

∣∣ f (x)− f̂ (x)
∣∣dµ(x) 6

√

1−
[

Z

X

√
f (x) · f̂ (x)dµ(x)

]2

. (17)

The quantity
R

X

√
f (x) · f̂ (x)dµ(x) is known as the affinity or as the Bhattacharyya coefficient or as

the Hellinger integral.
We note next that (17) yields in (16)

k

∑
c=1

Z

X

∣∣ f (x|c)P(c)− f̂ (x|c)P̂(c)
∣∣dµ(x)

6 2

√√√√1−
[

k

∑
c=1

√
P(c)P̂(c)

Z

X

√
f (x|c) · f̂ (x|c)dµ(x)

]2

. (18)
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The Kullback-Leibler divergence (in natural logarithm) (Kullback, 1997; Cover and Thomas, 1991)
defined as

D
(

f , f̂
)

=
Z

X
f (x|c) log

(
f (x|c)
f̂ (x|c)

)
dµ(x).

We have

−1
2

D( f , f̂ ) =
Z

X
f (x|c) log

(
f̂ (x|c)
f (x|c)

) 1
2

dµ(x).

By Jensen’s inequality

6 log
Z

X
f (x|c)

(
f̂ (x|c)
f (x|c)

) 1
2

dµ(x) = log
Z

X

√
f (x|c) f̂ (x|c)dµ(x).

Hence
Z

X

√
f (x|c) f̂ (x|c)dµ(x) > e−

1
2 D( f , f̂ ).

Hoeffding and Wolfowitz (1958) were probably the first to observe this inequality. Furthermore,
√

1−
[

Z

X

√
f (x) · f̂ (x)dµ(x)

]2

6

√
1− e−D( f , f̂ ). (19)

In hypothesis testing and pattern classification it is desirable that D( f1, f2) is large, or, the affinity is
small. The opposite is desirable for plug-in classifiers. By symmetry of the affinity in (19) we get
(D( f , f̂ ) need not be equal to D( f̂ , f )) that

√

1−
[

Z

X

√
f (x) · f̂ (x)dµ(x)

]2

6

√
1− e−D( f̂ , f ).

Brown (1959) and Ku and Kullback (1969) developed a convergent iteration that finds f̂ min-
imizing D( f̂ , f ) in the class of all densities on discrete X that have some given set of lower order
marginals. The iteration may in several situations be computationally infeasible without constrain-
ing f to some suitably simplified model family.

Example 5 In Example 3 we get by (17) the bound

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6 2
k

∑
c=1

P(c)

√√√√1−
[

∑
x∈X

f1(x|c)
√

∑
w6=0

βw,cUw,c (x)

]2

.

Since we shall need the generic formula in the sequel, we note that the Kullback-Leibler diver-
gence involved in this context is for discrete X

D
(

f (x|c)P(c), f1(x|c)P̂(c)
)

=
k

∑
c=1

∑
x∈X

f (x|c)P(c) log
f (x|c)P(c)

f1(x|c)P̂(c)

=
k

∑
c=1

P(c) ∑
x∈X

f (x|c) log
f (x|c)
f1(x|c)

+
k

∑
c=1

P(c) log
P(c)

P̂(c)
(20)
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=
k

∑
c=1

P(c)D( f (x|c), f1(x|c))+D
(
P(c), P̂(c)

)
.

Example 6 We continue with Example 3 but omit the assumption that P(c) = P̂(c). We consider
the plug-in classifier with the first order term f1(x|c) in (4). In view of (11) we get

∑
x∈X

f (x|c) log
f (x|c)
f1(x|c)

= ∑
x∈X

f (x|c) ∑
w∈{0,1}d

αw,cUw,c (x)

= ∑
w∈{0,1}d

αw,c ∑
x∈X

f (x|c)Uw,c (x) = ∑
w∈{0,1}d

αw,cE f [Uw,c(X)]

= ∑
w∈{0,1}d

αw,cβw,c, (21)

where we evoked (8). Hence we have by (19) and (20) obtained the following bound for the perfor-
mance of the Naı̈ve Bayes classifier for binary feature vectors

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6 2

√
1− e

−
{

∑k
c=1 P(c)∑w∈{0,1}d αw,cβw,c+∑k

c=1 P(c) log P(c)
P̂(c)

}

.

For f in a kth order Bahadur class in (9) we can often, at least for relatively low d, readily evaluate
the bounds above. An observation concerning the expression obtained in (21) is that U0,c = 1 gives
by (8) that β0,c = 1, and by (12) that

α0,cβ0,c = −D( f1(x|c), f (x|c)) .

Example 7 In Example 2 above the true and plug-in densities correspond to the distributions
N (Hb,Σ) and N (Mb,Σ), respectively. Since C ⊆ {−1,+1}N is a codebook of equally likely vec-
tors {b}, we modify the general notation for this example by denoting a label in C by b. Hence
P̂(b) = P(b) = 1

|C | , where |C | is the cardinality of the codebook.
In this example we use the bound (18). The expression for the required affinity is well known

(Kailath, 1967) and equals
Z

� d

√
f (x|b) · f̂ (x|b)dµ(x) = e−

1
4 D(N(Hb,Σ),N(Mb,Σ)), (22)

where D(N (Hb,Σ) ,N (Mb,Σ)) is in fact the Kullback-Leibler divergence

D(N (Hb,Σ) ,N (Mb,Σ)) =
1
2

((H −M)b)T Σ−1 ((H −M)b) , (23)

see Kullback (1997)). Therefore we obtain for the plug-in classifier (suboptimal detector) defined in
Example 2 by (18) that

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6 2

√
1− 1

|C | ∑
b∈C

e−
1
8 ((H−M)b)T Σ−1((H−M)b). (24)

This expression can be used to compare different designs of suboptimal detectors represented by
their respective matrices M.

We want a way to calculate P(ĉB(X) = C)−P(ĉB̂(X) = C) in terms of (only) f̂ (x|c)P̂(c). We
will generalize the result in Theorem 5 (15) in the sense that it can be used when only certain parts in
a factorization of f̂ (x|c) are approximations. What we mean by ’components’ will be made precise
later.
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6. Approximating Bayesian Networks in Classification

While (14) is an exact expression of P(ĉB(X) =C)−P(ĉB̂(X) =C) it might be infeasible to calculate
it in practice. Thus we introduce more easily computable bounds in Corollary 8 and Theorem 11.
To avoid making these approximations, or bounds upwards too loose, we also take into account
the case where we have not approximated all of P(c|x) (Theorem 7). If the factor of P(c|x) that is
not approximated is not functionally dependent of the factor that is approximated, we can develop
sharper bounds on the degradation of the approximated classifier performance. Here we consider a
class of general approximations, applicable to Bayesian networks (Cowell et al., 1999). For ease of
reference we recapitulate first the definition of Bayesian networks.

Definition 6 Given a directed acyclic graph G = (V,E) with {Xi}d
i=1 designating (the random vari-

ables at) the vertices, Πi denotes the set of parents of Xi in the graph G. We use πi to denote the
parents states. The pair (G,P), is called a Bayesian network and satisfies

f (x|c,G) =
d

∏
i=1

f (xi|πi,c,G). (25)

Williamson (2005) suggests the following method of approximation. f (x|c) denotes a generic target
probability mass function and G is a directed acyclic graph. In principle one can compute the
probabilities f (xi|πi,c) on G using f . Then f̂ (x|c) is an approximating probability obtained by
taking

f̂ (xi|πi,c,G) = f (xi|πi,c), (26)

and multiplying f̂ (xi|πi,c,G) according to (25). The best approximating G (in some family of
directed acyclic graphs) is found by maximizing

∑
x∈X

f (x|c)
d

∑
i=1

log
f (xi,πi|c)

f (xi|c) f (πi|c)
,

which is shown to minimize D
(

f , f̂
)
. This constitutes also a method of learning network structures,

in case there is an effective algorithmic implementation.
We give next a few examples of Bayesian networks, which will also be used to illustrate some

of the results in the sequel.

Example 8 As in Example 1 we take X = {0,1}d and assume that G is a rooted tree. We order the
variables so that x1 is the state at the root. Direction is defined from parent to child. In a rooted
tree any node i, except for the root, has exactly one parent node π(i) < i. We write the parent state
as πi = xπ(i). Then the factorization in (25) becomes

f (x|c,G) = f (x1|c)
d

∏
i=2

f (xi|xπ(i),c,G). (27)

In other words this is a joint probability factorized along a rooted tree. This is in the sense of Lewis
(1959), as discussed above, a product approximation of a density with d variables with at most two
components per factor. We can also talk about a tree dependence. This dependence was introduced
in Chow and Liu (1968).
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We will use the form in Definition 6, (25) to express partial approximations. Let S = (S1, . . . ,S4)
be a partition of {Xi}d

i=1, where s = (s1, . . . ,s4) denotes the resulting partition of {xi}d
i=1.

We designate by f (si|G) the class conditional density of all s.v.’s that are in Si given its parents,
that is f (si|G) is short notation for

∏
{i|Xi∈Si}

f (xi|πi,c,G).

When referring to the range of Si we use Si. Next we describe an efficient choice of S. We make
some relevant definitions.

Xi is an proper ancestor of X j in G and X j is a proper descendent of Xi in G if there exist a
path from Xi to X j in G for i 6= j. A path is a sequence A0, ...,An of distinct vertices such that
(Ai−1,Ai) ∈ E for all i = 1, ...,n. Given a Bayesian network (G,P) and P̂, the partition S is defined
for a class conditional density as follows:

• Xi ∈ S1 if f (xi|πi,c) 6= f̂ (xi|πi,c).

• Xi ∈ S2 if for all xi,πi we have f (xi|πi,c) = f̂ (xi|πi,c) and for all j 6= i such that X j ∈ S1 we
have Xi 6∈ π j.

• Xi ∈ S3 if for all xi,πi, we have f (xi|πi,c) = f̂ (xi|πi,c), there exists j 6= i such that X j ∈ S1 and
Xi ∈ π j. Furthermore no proper ancestor Xk of Xi in GS\S2 is such that Xk ∈ S1.

• Xi ∈ S4 if Xi 6∈ S1, Xi 6∈ S2 and Xi 6∈ S3.

Example 9 We consider the rooted and directed tree in the Example 8. We approximate the joint
density in (27) by the product of marginal densities. This corresponds to removing all the edges
from the tree, the resulting set of nodes is a degenerate special case of a DAG.

Then S1 = {2,3, . . . ,d} and S3 = {1} = the root. The partitioning sets S2 and S4 are empty.

Example 10 Context-Specific Independence in Bayesian networks (Boutilier et al., 1996). In this
example Xi ∈ {0,1} and the graph for the Bayesian network is as in Figure 1. Then X9 is a context
in the sense that

f (x1|x5, . . . ,x9) =

{
f (x1|x5,x6) x9 = 0
f (x1|x7,x8) x9 = 1

. (28)

1

2 3 4

5 6 7 8 9

Figure 1: Original Bayesian network
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1

2 3 4

5

1011

67 8

9

(a) Transformed Bayesian network

1

2 3 4

5

10

6 7

11

8

9

(b) Transformed Bayesian network with the CSI assump-
tion

Figure 2: Transformed Bayesian networks with and without the CSI assumption

To encode this in a Bayesian network we transform the original Bayesian network into the net-
work in Figure 2(a). Figure 2(b) describes the graph, where the assumption in (28) holds, where
f (x10|x5,x6) = f (x1|x5,x6), f (x11|x7,x8) = f (x1|x7,x8) and

f (x1|x9,x10,x10) x9 x10 x11

0 0 0 0
0 0 0 1
1 0 1 0
1 0 1 1
0 1 0 0
1 1 0 1
0 1 1 0
1 1 1 1 .

If the context specific assumption is introduced as an approximation this would yield




S1 = {X10,X11}
S2 = {X1,X2,X3,X4,X9}
S3 = {X5,X6,X7,X8}
S4 = {∅}

.

Example 11 In this example we depict a graph G given a partition s, with some abuse of notation.
In Figure 3 if Xi ∈ S1 we label the vertex Xi as 1.

Theorem 7
R

X
∣∣P(c) f (x|c)− P̂(c) f̂ (x|c)

∣∣dµ(x) =

Z

S3

Z

S1×S4

∣∣P(c) f (s1 × s4|G)− P̂(c) f̂ (s1 × s4|G)
∣∣dµ(s1 × s4)d f (s3|G).

Proof We use S to write
R

X
∣∣P(c) f (x|c)− P̂(c) f̂ (x|c)

∣∣dµ(x) as

=
Z

X

∣∣P(c) f (s1|G)− P̂(c) f̂ (s1|G)
∣∣
[

4

∏
j=2

f (s j|G)

]
dµ(x). (29)
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1

4

1

2

1

1

2

1

42

3

4

1

3

3

2

1

Figure 3: Bayesian network

Now we use the definition of S2 and the Fubini theorem to write (29) as

Z

S1×S3×S4

∣∣P(c) f (s1|G)− P̂(c) f̂ (s1|G)
∣∣
Z

S2

[
4

∏
j=2

f (s j|G)

]
dµ(s2)dµ(s1 × s4)dµ(s3). (30)

We can express the innermost integral as
Z

S2

f (s2 × s3 × s4|s1,G)dµ(s2) = f (s3 × s4|s1,G).

We continue with (30). Since for all Xi ∈ S3 there exists no X j ∈ S1
S

S4 such that X j ∈ πi we can
write this as

Z

S3

f (s3|G)
Z

S1×S4

∣∣P(c) f (s1 × s4|G)− P̂(c) f̂ (s1 × s4|G)
∣∣dµ(s1 × s4)dµ(s3).

Since this result is an equality, it seems to indicate that isolated approximations are stable in the
sense that the classification error they introduce does only depend on a local neighborhood in the
original Bayesian network.

There exist several algorithms that can be used for finding an approximation of a BN such as
the ones described in Chow and Liu (1968) and Chickering (2002). If an approximation has been
constructed, Theorem 7 makes it possible to evaluate its effect depending on the approximations
made, rather than on the original problem.

Next we extend the result in Theorem 5, (15) by specifying the difference in probability of
correct classification in terms of the partial structure specific difference through combining Theorem
7 and Theorem 5.

Corollary 8
P(ĉB(X) = C)−P(ĉB̂(X) = C) 6

k

∑
c=1

Z

S3

Z

S1×S4

∣∣P(c) f (s1 × s4|G)− P̂(c) f̂ (s1 × s4|G)
∣∣dµ(s1 × s4)d f (s3|G). (31)
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Of course, it might still be computationally difficult to calculate the bound in Corollary 8. When
combining (31), (17) and (19) we obtain the following corollary.

Corollary 9 If P̂(c) = P(c) for all c ∈ C ,

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6

2
k

∑
c=1

P(c)
Z

S3

√
1− e−D( f (s1×s4|c,G), f̂ (s1×s4|c,G))d f (s3|G).

The following examples demonstrate computable expressions for this bound.

Example 12 We consider the approximation in Example 9, where S1 = {2,3, . . . ,d} and S3 = {1}=
the root, and the other partitioning sets are empty. We have from (27)

f (s1|c,G) =
d

∏
i=2

f (xi|xπ(i),c,G),

which is a probability mass function on S1 and

f̂ (s1|c,G) =
d

∏
i=2

f (xi|c,G),

which is a probability mass function on S1. Then in view of (19) and (20) we compute

D
(

f (s1|c,G), f̂ (s1|c,G)
)

= ∑
s1∈S1

f (s1|c,G) log
f (s1|c,G)

f̂ (s1|c,G)

=
d

∑
i=2

∑
xi,xπ(i)

f
(
xi,xπ(i)|c,G

)
log

f
(
xi,xπ(i)|c,G

)

f (xi|c,G) · f
(
xπ(i)|c,G

) .

Here we recognize, see Cover and Thomas (1991), the mutual informations Ic,G
(
xi,xπ(i)

)
between

xi and xπ(i) so that the expression in the right hand side of the preceding equation equals

=
d

∑
i=2

Ic,G
(
xi,xπ(i)

)
.

It should be noted that this depends on S3 = {1} through those nodes i that have π(i) = 1. Chow
and Liu (1968) developed an algorithm for finding the tree from data that maximizes sum of the
mutual informations between a variable and its parents shown above.

Example 13 The conditionally Gaussian regressions are useful probability models for
Bayesian networks with both continuous and discrete variables, see Lauritzen (1990). In order to
fit the framework above to these distributions, we suppose that (X 1,X4) is a vector of r continuous
random variables, and that the variables in X 3 are decomposed into the discrete ones in X 3(4)
and into the t continuous variables X 3(γ). In order not to overburden the notation we omit here the
dependence on c in the expressions below.
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The conditionally Gaussian regressions are defined as follows. The conditional distribution of
(X1,X4) given X3 is a multivariate normal distribution

(X1,X4) |
(
X3(4) = π4,X3(γ) = πγ

)
∼ Nr

(
A(π4)+B(π4)πγ,Σ(π4)

)
,

where π4 the state of the discrete parents, πγ is the state of the continuous parents, and A(π4) is
a r× 1 vector, B(π4), is an r× t matrix, Σ(π4) is a positive definite symmetric matrix. The Naı̈ve
Bayes classifiers approximate Σ(π4) by a diagonal matrix.

We illustrate, however, the simplest of the upper bounds with the Kullback-Leibler divergence
by taking the plug-in distribution

N̂r
(
A+B(π4)πγ,Σ(π4)

)
.

Similarly to what has been done above, or more precisely, using Theorem 7, (18), and (22) above it
follows that for X = (X i)

4
i=1 corresponding to the decomposition S = (S1, . . . ,S4)

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6

2
Z

S3




√√√√1−
(

k

∑
c=1

√
P(c)P̂(c)e

− 1
8

[
(A(π4)−A)

T Σ−1(π4)(A(π4)−A)
])2


d f (s3|G),

where, as noted above, some of the dependencies on c are not explicitly accounted for. Here f (s3|G)
is not in general a Gaussian density, as S3 may, for example, involve discrete states.

A way of further simplification of the bound in Corollary 8 is to bound the density upwards by the
following quantity.

Definition 10 Let

ε(c) := max
s1,s3,s4

∣∣P(c) f (s1 × s4|G)− P̂(c) f̂ (s1 × s4|G)
∣∣ .

With this quantity we can simplify the computation of the bound in Theorem 8.

Theorem 11 P(ĉB(X) = C)−P(ĉB̂(X) = C) 6 ∑k
c=1 ε(c)µ(s1 × s4) .

Proof From Corollary 8 (31) we have that P(ĉB(X) = C)−P(ĉB̂(X) = C) 6

k

∑
c=1

Z

S3

Z

S1×S4

∣∣P(c) f (s1 × s4|G)− P̂(c) f̂ (s1 × s4|G)
∣∣dµ(s1 × s4)d f (s3|G).

6

k

∑
c=1

max
s3

[
Z

S1×S4

∣∣P(c) f (s1 × s4|G)− P̂(c) f̂ (s1 × s4|G)
∣∣dµ(s1 × s4)

]
.

We finish by using the definition of ε(c), which yields

6

k

∑
c=1

ε(c)
Z

S1×S4

dµ(s1 × s4) =
k

∑
c=1

ε(c)µ(s1 × s4) .

In the next section, 7, we will be able to use the bound in Theorem 11 as a way of motivating
the ’Naı̈ve Bayes’ approximation.
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7. Bounding the Kolmogorov Distance of Variation with Respect to Naı̈ve Bayes

In this section we assume that the feature space is finite and discrete, that is, X = ×d
i=1Xi and

Xi = {1, . . . ,ri}. A popular plug-in classifier is the Nav̈e Bayes, already defined for three special
cases in Examples 1, 4 and 13.

Definition 12 A Naı̈ve Bayes plug-in classifier is a classifier that assumes that the features of X are
independent given c,

f̂ (x|c) =
d

∏
i=1

f (xi|c).

In order not to overburden the notation we avoid symbols like fX i(xi|c) for marginal densities.
In spite of this we are not restricted to the case where all marginal densities are identical.

There are several practical reasons for the popularity of the Naı̈ve Bayes. For example, Toussaint
(1972) has shown that if Xi is the same for every i, then f̂ (x|c) is a polynomial.

There exist statistical tests for whether independence holds or not. In practice, however, we
often exclude independence of features by domain knowledge.

When c ∈ {1,2} (that is k = 2) and we have n samples (x,c)(n) = {(x,c)l}n
l=1, we define

ĉERM(x|x(n)) as the classifier that minimizes the empirical error on this sample. Without the Naı̈ve
Bayes assumption we can use bounds such as the following in (Devroye et al., 1996, Page 462) (for
k = 2)

E
[
P
(

ĉERM

(
X |(X ,C)(n)

)
6=C|(X ,C)(n)

)]
6 P(ĉB(X) 6= c)+ ε1,

but with Naı̈ve Bayes we have 0 6 ε2 6 ε1 such that for k = 2 see Devroye et al. (1996, Chapter
27.3)

E
[
P
(

ĉERM

(
X |(X ,C)(n)

)
6=C|(X ,C)(n)

)]
6 P(ĉB(X) 6= c)+ ε2.

The Naı̈ve Bayes assumption for specific data sets can actually perform better than a plug-in
classifier incorporating some dependencies as shown in Titterington et al. (1981). In Friedman et al.
(1997) Naı̈ve Bayes has been reported as performing worse than taking dependence into account
(but not on all data sets), and even then the difference was in many cases not large. In Huang et al.
(2003) it is found as suboptimal in most data sets. A more in-depth Meta study on the subject is
Hand and Yu (2001).

Our own experience does not speak against the conjecture that the advantage of taking depen-
dence into account may depend on the context (Ekdahl, 2006, Section 7). Instead of running yet
another simulation or arguing for or against on ad hoc grounds, we expand the existing theory
around Naı̈ve Bayes. The motivation for this can be intuitively outlined as follows.

Let us assume P(C) = P̂(C). Then the Kolmogorov variation distance is

1
2

E f̂ ,P̂

∣∣∣∣
f (X |C)

f̂ (X |C)
−1

∣∣∣∣ ,

where now f̂ (X |C) is as in Definition 12. As the level of dependence between the components in X

increases, the dispersion of f (X |C)

f̂ (X |C)
−1 increases. In the case d = 2, or X = (X i)

2
i=1 the Kolmogorov

variation distance with respect to the product of marginal densities was first studied by Hoeffding
(1942), who discovered that there is an upper bound for the distance, which is assumed when one
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of X1 or X2 is a function of the other. This would seem to restrict the effectiveness of the Naı̈ve
Bayes classifier to those situations, where the degree of dependence between the components of X
is moderate, as was to be expected. But to get a more diverse view we recall some of Vilmansen
(1971) and Vilmansen (1973).

The Kolmogorov variation distance measuring the degree of association between X and C is in
Vilmansen (1971, 1973) defined as

K (X ,C) =
1
2

k

∑
c=1

∑
x∈X

| f (x,c)− f (x)P(c)|.

The maximum of this distance is given by the next inequality, or

K (X ,C) 6 1−
k

∑
c=1

P2(c). (32)

This is shown in Vilmansen (1973), and is also found in Hoeffding (1942).
The maximum of K (X ,C) in (32) is obtained, as soon as there is a functional dependence

between X and C in the sense that the supports of the class-conditional densities are disjoint subsets
of X . Hence, in the last mentioned case the probability of correct classification is one. This extreme
case is approached when the dependence between X and C is “very close“ to being functional, in
the sense that each f (x|c) is concentrated around its mode, say mc, so that observation of mc is an
almost noise-free message, as it were, from the source c. In such a situation it should be possible for
the Naı̈ve Bayes classifier to perform well, too. The impact of strong dependence between the labels
and feature vectors for Naı̈ve Bayes has been argued in a different manner in Rish et al. (2001).

The following theorem shows in a more precise fashion how the modes of the densities f (x|c)
control the difference between the pertinent probabilities of the correct decision. We do not really
need unimodality for our proofs, but this is a natural assumption for model based classification and
simplifies the statements. In words the result in Theorem 13 below tells that, if the class conditional
probability densities are predominantly well concentrated, the Kolmogorov variation distance with
respect to Naı̈ve Bayes is small.

Theorem 13 Assume f (x|c) is unimodal for every c ∈ C . Let for any c ∈ C ,

mc := argmax
x∈X

f (x|c).

Then we have for the Naı̈ve Bayes plug-in that

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6

k

∑
c=1

P(c)max
(

f (mc|c)− f (mc|c)d,1− f (mc|c)
)

. (33)

Proof We shall simplify notation without risk confusion by writing f (x|c) as f (x). We state first
some elementary observations. By the chain rule

f (x) = f (xi) f (x1, . . . ,xi−1,xi+1, . . . ,xn|xi)

6 f (xi), forall i, (34)
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which implies that

f (x)d =
d

∏
i=1

f (x) 6

d

∏
i=1

f (xi). (35)

The claim to be established will follow if we can show that for all x ∈ X
∣∣∣∣∣ f (x)−

d

∏
i=1

f (xi)

∣∣∣∣∣6 max
(

f (m)− f (m)d ,1− f (m)
)

. (36)

The proof of (36) is divided into three cases

1 Suppose that x = m.

1.1 If f (m) > ∏d
i=1 f (mi) ⇒ f (m)−∏d

i=1 f (mi) 6 f (m)− f (m)d by (35).

1.2 If f (m) < ∏d
i=1 f (mi) ⇒ ∏d

i=1 f (mi)− f (m) 6 1− f (m).

2 Consider next x 6= m. We have
∣∣ f (x)−∏d

i=1 f (xi)
∣∣

= max

(
f (x),

d

∏
i=1

f (xi)

)
−min

(
f (x),

d

∏
i=1

f (xi)

)
.

Since both max(a1,a2) and min(a1,a2) are positive for 0 ≤ a1,a2 ≤ 1

6 max

(
f (x),

d

∏
i=1

f (xi)

)
6 max( f (x), f (x j)) ,

where f (x) 6 ∑z 6=m f (z) = 1− f (m). Here j is chosen so that x j 6= m j, which exists since
x 6= m. By (34), f (m j) > f (m) we obtain

f (x j) 6 ∑
xi 6=m j

f (xi) = 1− f (m j) 6 1− f (m).

The inequality (36) and Theorem 5 imply (33), and thus the assertion in Theorem 13 is established
as claimed.

The inequality (36) is an improvement of a result in Rish et al. (2001). We have constructed a
tighter upper bound for

∣∣ f (x)−∏d
i=1 f (xi)

∣∣ than the one in Rish et al. (2001), which is recapitulated
in the next theorem.

Theorem 14 For all x ∈ X ,
∣∣ f (x)−∏d

i=1 f (xi)
∣∣6 d(1− f (m)).

The sharpness of Theorem 14 can be seen though a plot of maxx∈X
∣∣ f (x)−∏d

i=1 f (xi)
∣∣ as a function

of maxx∈X f (x) in two and tree dimensions in Figure 4. The plots are for a binary hypercube
(X = {0,1}d). The simulation tests several distributions and takes the worst one for each value of
simulated f (m) (the details of the simulation can be found in the simulation appendix).

It is possible to increase f (m) dividing for example multimodal class conditional densities into
many unimodal densities (Vilata and Rish, 2003), but a theoretical investigation of identification
and interpretation of such a partition scheme is lacking.
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Figure 4: Illustration of the bound in Theorem 14.

Next we verify that the inequality (36) is in fact an improvement of Theorem 14, that is,

max
(

f (m)− f (m)d,1− f (m)
)

6 d(1− f (m)).

It is enough to show that 1− f (m) 6 d(1− f (m)) and f (m)− f (m)d 6 d(1− f (m)). Here 1−
f (m) 6 d(1− f (m)) follow since 1− f (m) > 0 and d > 2. The remaining inequality can be shown
using Bernoulli’s inequality, so that

f (m)− f (m)d = f (m)− (1− (1− f (m)))d
6 f (m)− (1−d (1− f (m))) 6 d (1− f (m)) . (37)

As with Theorem 14 we plot maxx∈X
∣∣ f (x)−∏d

i=1 f (xi)
∣∣ as function of f (m) in two and three

dimensions and compare the maximal difference with the bounds in Theorem 14 and (36) (Figures
5 and 6).

From the three to five dimensional cases in Figures 5 and 6 we see that the inequality (36) is
often sharp enough, if the probability density is concentrated, that is f (m) is close to 1.

We give an additional upper bound ((39) below) readily derived from Theorem 13. We introduce
the entropy (in natural logarithm)

H (X |C = c) = − ∑
x∈X

f (x|c) ln f (x|c).

Then it is well known, see Arimoto (1971), that

1− f (mc|c) 6
H (X |C = c)

ln2
. (38)

Let us split C into two sets

C1 =
{

c| f (mc|c)− f (mc|c)d
> 1− f (mc|c)

}
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Figure 5: Illustration of the bounds in Theorem 14 and inequality (36) in two and three dimensions.
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Figure 6: Illustration of the bounds in Theorem 14 and (36) in four and five dimensions.
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and
C2 =

{
c| f (mc|c)− f (mc|c)d < 1− f (mc|c)

}
.

Thereby we get from (38)

k

∑
c=1

P(c)max
(

f (mc|c)− f (mc|c)d,1− f (mc|c)
)

6 ∑
C1

P(c)
(

f (mc|c)− f (mc|c)d
)

+∑
C2

P(c)
H (X |C = c)

ln2
.

It was shown above, see (37), that f (mc|c)− f (mc|c)d 6 d (1− f (mc|c)). We introduce the condi-
tional entropy

H (X |C) =
k

∑
c=1

P(c)H (X |C = c) .

Then we obtain

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6 (d −1)

(
1−∑

C1

P(c) f (mc|c)
)

+
H (X |C)

ln2
. (39)

This bound needs not to be sharp in general, but it gives some additional insight. The first term in
the right hand side is of similar form as the upper bound in (32) and can therefore be thought as
measuring the degree of functional dependence between X and C. The entropy H (X |C) is known
as equivocation and measures the uncertainty about X if C is observed (Cover and Thomas, 1991).

Corollary 8 can be combined with the inequality (36). We will do that in the same way as in
Section 6, that is we will allow for a partial Naı̈ve Bayes assumption in the following sense

f (x|c) = f (s2 × s3 × s4|c,s1) ∏
{i|Xi∈S1}

f (xi|c)

leading to the abridged notation

m1 ×m4 := arg max
s1,s3,s4∈S1×S3×S4

∏
{i|Xi∈S1∪S4}

f (xi|πi,c,G).

Corollary 15 Let P(c) = P̂(c), and take the partial Naı̈ve Bayes on s1 and s4. Then

P(ĉB(X) = ς)−P(ĉ(X) = ς)

6

k

∑
c=1

P(c)max
(

f (m1 ×m4|G)− f (m1 ×m4|G)d,1− f (m1 ×m4|G)
)

∏
{i|Xi∈S1∪S4}

ri.

Example 14 Let us take k = 10, and d = 1000. Most of the features are independent; however
expert knowledge reveals that each class has exactly three features (Xi, . . . ,Xi+2) that depend on
each other in accordance with the DAG in Figure 7. These features are very concentrated in
the sense that there exists a vector a such that P((Xi, . . . ,Xi+2) = a|c) > 0.995. The expert ex-
plains that this it due to the fact that they correspond to a physical feature critical to each class.
Which features have this dependence is, however, unknown and detection is complicated since
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Xi

Xi+1

Xi+2

Figure 7: Graphical representation of dependence

P(thereexistsat leastone j 6= isuchthat(X j, . . . ,X j+2|c) = a) is large. Here it is possible to model
with independence, since Corollary 15 then yields

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6

10

∑
c=1

ε(c)µ [S1 ∪S4] = 0.048.

8. Plug-In Classifiers that Make Optimal Decisions

In this section the plug-in classifier is not necessarily Naı̈ve Bayes and X need not be discrete,
although the conditions in the results below are more difficult to satisfy in continuous settings. As
expounded above, it is easy to approximate f (x|c) f (c), when the classes are well separated, in the
sense there is almost a functional dependence between C and X . Sometimes it is possible to express
the dependence by simply observing that

f (x|c)P(c)− f (x|c̃)P(c̃)

is large for all x ∈ X and all c, c̃ ∈ C such that c 6= c̃. Here we present sufficient conditions for
this pointwise separation between classes so that the probability of correct classification does not
decrease by plugging in f̂ (x|c)P̂(c). The question is, how close must f̂ (x|c)P̂(c) be to f (x|c)P(c),
so that there should be no decrease in the probability of correct classification.

Definition 16 Let ε2(c) be any bound such that for all x ∈ X
∣∣ f (x|c)P(c)− f̂ (x|c)P̂(c)

∣∣6 ε2(c). (40)

For example, let X be discrete and finite. If ε2(x,c) = f (x|c)P(c)− f̂ (x|c)P̂(c), then we obviously
take ε2(c) = maxx∈X | ε2(x,c) |. Let us suppose that the approximation is a lower bound, that
is, f (x|c)P(c) > f̂ (x|c)P̂(c) for all x ∈ X , which is found by variation and normalization (Jordan

2474



BOUNDS IN MODEL BASED CLASSIFICATION

et al., 1999; Wainwright and Jordan, 2003). These techniques give even expressions for ε2(x,c), for
example for the exponential family of densities. We continue, however, with a lemma that involves
this kind of differences in general.

Lemma 17 Assume that ε2(c) > 0 and ε2(c̃) > 0 exist as defined in (40). If P(c|x) > P(c̃|x) and

| f (x|c)P(c)− f (x|c̃)P(c̃)| > ε2(c)+ ε2(c̃)

then P̂(c|x) > P̂(c̃|x).
Proof We prove this by contradiction. First we assume that P̂(c|x) < P̂(c̃|x). With the plug-in
classifier and (2) we get

f̂ (x|c)P̂(c) < f̂ (x|c̃)P̂(c̃).

Now we continue by applying (40), that is, increasing margin in this inequality, which gives

⇒ f (x|c)P(c)− ε2(c) < f (x|c̃)P(c̃)+ ε2(c̃)

⇔ f (x|c)P(c)− f (x|c̃)P(c̃) < ε2(c)+ ε2(c̃).

By the assumption P(c|x) > P(c̃|x) and by (1) we get that the quantity in the left hand side of the
last inequality is positive, and hence the desired contradiction follows.

Lemma 17 used to state sufficient conditions such that f (x|c) can be approximated without
affecting the probability of correct classification.

Theorem 18 If for all c, c̃ ∈ C

| f (x|c)P(c)− f (x|c̃)P(c̃)| > ε2(c)+ ε2(c̃),

then P(ĉB(X) = C) = P(ĉB̂(X) = C).

Proof From (13) we have that

P(ĉB(X) = C)−P(ĉB̂(X) = C) =
Z

{x|ĉB̂(x)6=c}
(P(c) f (x|c)−P(ĉ) f (x|ĉ))dµ(x).

Now the result follows since Lemma 17 implies (through (1)) that P(c|x) = P(ĉ|x).
We can also combine Theorem 18 with inequality (36). This gives us next corollary.

Corollary 19 When ε2(c) = max
(

f (m|c)− f (m|c)d,1− f (m|c)
)

and
|P(c|x)P(c)−P(c̃|x)P(c̃)| > ε2(c)P(c)+ ε2(c̃)P(c̃), then

P(ĉB̂(X) = C) = P(ĉB(x) = C).

In the context of Naı̈ve Bayes our Corollary 19 can be seen as a generalization of the results
in Domingos and Pazzani (1997), the finding of which is that Naı̈ve Bayes is optimal for learning
conjunctions and disjunctions of literals, as well as an extension of the more general result in Rish
et al. (2001), which says that Naı̈ve Bayes is optimal if Bayes classifier assigns only one feature
to class 1 in a two-class problem. For example Corollary 19 is more general in the sense that a
classifier that assigns more than one feature to a class can be optimal if the margin is wide enough.
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9. Summary

We have presented exact and easily computable bounds for the degradation of probability of correct
classification when Bayes classifiers are used with respect to partial plug-in conditional densities in
a Bayesian network model (Theorem 7, Corollary 8 and Theorem 11).

An example of a Bayesian network plug-in classifier is the Naı̈ve Bayes classifier (Definition
12). In the case where a Naı̈ve Bayesian classifier is used, we have sharpened a bound of evaluating
its effect (Theorem 13).

We have presented a bound on the class conditional approximation as well as the class probabil-
ities such that the probability of making a correct decision is not degraded when basing the decision
on ĉB̂(x) instead of ĉB(x) using the bound in Theorem 13, thus generalizing the theory for explaining
when Naı̈ve Bayes is optimal.
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Appendix A. Simulation

Algorithm 1 Simulate(granularity,d)

1: atom = 1
granularity

2: state is a placement of atoms on X such that for a state x, f (x) = nr atoms there
granularity

3: while not all unique placements of atoms have been searched do
4: p = maxx∈X f (x)
5: di f f = maxx∈X

∣∣ f (x)−∏d
i=1 f (xi)

∣∣
6: if di f f > maxdi f f s[p] then
7: maxdi f f s[p] = di f f
8: end if
9: state = next unique placement of atoms

10: end while
11: return maxdi f f s
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