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Abstract

We show how the concave-convex procedure can be applieaitsductive SVMs, which tradition-
ally require solving a combinatorial search problem. Thisvjzles for the first time a highly scal-
able algorithm in the nonlinear case. Detailed experimeattify the utility of our approach. Soft-
ware is available altt p: // ww. kyb. t uebi ngen. npg. de/ bs/ peopl e/ f abee/ t ransduct i on.
htm .
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1. Introduction

Transductive support vector machines (TSVMs) (Vapnik, 1995)aareethod of improving the
generalization accuracy of SVMs (Boser et al., 1992) by using unldigela. TSVMs, like SVMs,
learn a large margin hyperplane classifier using labeled training datapmultameously force this
hyperplane to be far away from the unlabeled data.

One way of justifying this algorithm, in the context sémi-supervised learning that one is
finding a decision boundary that lies in a region of low density, implementingafeaided cluster
assumption (see e.g. Chapelle and Zien, 2005). In this framework, if glevbd the underlying
distribution of the two classes is such that there is a “gap” or low density mndzpdween them,
then TSVMs can help because it selects a rule with exactly those propafiesik (1995) has a
different interpretation for the success of TSVMs, rooted in the ideattaasduction (labeling a
test set) is inherently easier than induction (learning a general rule}thkr ease, experimentally
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it seems clear that algorithms such as TSVMs can give considerable impgoven generalization
over SVMs, if the number of labeled points is small and the number of unlapelatt is large.

Unfortunately, TSVM algorithms (like other semi-supervised approadcirespften unable to
deal with a large number of unlabeled examples. The first implementation oMT&)peared
in (Bennett and Demiriz, 1998), using an integer programming method, ifttadta large prob-
lems. Joachims (1999b) then proposed a combinatorial approach, las@®wMLight-TSVM, that
is practical for a few thousand examples. Fung and Mangasarian)(2®@bluced a sequential op-
timization procedure that could potentially scale well, although their largegrienent used only
1000 examples. However, their method was for the linear case only, a&addauspecial kind of
SVM with a 1-norm regularizer, to retain linearity. Finally, Chapelle and ZRO0B) proposed a
primal method, which turned out to show improved generalization performarerethe previous
approaches, but still scales éls+U)3, whereL andU are the numbers of labeled and unlabeled
examples. This method also stores the erffire-U) x (L +U) kernel matrix in memory. Other
methods (Bie and Cristianini, 2004; Xu et al., 2005) transform the nomexamansductive problem
into a convex semi-definite programming problem that scalék adJ )* or worse.

In this article we introduce a large scale training method for TSVMs using thease-convex
procedure (CCCP) (Yuille and Rangarajan, 2002; Le Thi, 1994 aming on the conference pro-
ceedings paper (Collobert et al., 2006). CCCP iteratively optimizes aovex cost functions that
can be expressed as the sum of a convex function and a concatieriufihe optimization is car-
ried out iteratively by solving a sequence of convex problems obtaindithdgrly approximating
the concave function in the vicinity of the solution of the previous conveklpro. This method is
guaranteed to find a local minimum and has no difficult parameters to tuneprbvisles what we
believe is the best known method for implementing transductive SVMs with anieaigicaling of
(L-+U)?, which involves training a sequence of typically 1-10 conventional co®xdM optimiza-
tion problems. As each of these problems is trained in the dual we retain thé&s3x&ar scaling
with problem dimensionality, in contrast to the techniques of Fung and Marigag2001).

2. The Concave-Convex Procedure for TSVMs

Notation We consider a set df training pairsc = {(x1,y1),...,(xL,Y)}, ¢ € R", y e {1,-1}
and an (unlabeled) set bftest vectorss = {X_1,...,X+u }- SVMs have a decision functiofy(.)
of the form

fo(X) =w-®(x)+b,

wheref = (w, b) are the parameters of the model, @) is the chosen feature map, often imple-
mented implicitly using the kernel trick (Vapnik, 1995).

TSVM Formulation  The original TSVM optimization problem is the following (Vapnik, 1995;
Joachims, 1999b; Bennett and Demiriz, 1998). Given a training setd a test setz, find among
the possible binary vectors

{7 = (Yis1,-- 5 y40)}

the one such that an SVM trained onJ (u x 97) yields the largest margin.

This is a combinatorial problem, but one can approximate it (see Vapnils) E¥9finding an
SVM separating the training set under constraints which force the unthbrtamples to be as far
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Figure 1: Three loss functions for unlabeled examples, from left to (iythe Symmetric Hinge
H1(|t|) = max0, 1—|t|), (i) Symmetric Sigmoid(t) = exp(—3t?) ; and (iij) Symmetric
Ramp lossRs(Jt|) = min(1+s,max0,1— [t|)). The last loss function has a plateau of
width 2|s| wheres € (—1,0] is a tunable parameter, in this case —0.3.

as possible from the margin. This can be written as minimizing

1 5 L L+U

Slwl*+C &+C" 5 &

AT CQ T 2
subject to

Yife(iL‘i)Zl—Eh |:1,,L

|fo(xi)| >1-&, i=L+1,...,L+U
This minimization problem is equivalent to minimizing

1 L L+U
3(6) = 3wl +C S Hut u(a) +C° 3 H(lfo(en) )
i= i-T

where the functiorH;(-) = max0, 1 —-) is the classical Hinge Loss (Figure 2, center). The loss
function Hy(| - |) for the unlabeled examples can be seen in Figure 1, left.CFet 0 in (1) we
obtain the standard SVM optimization problem. Edr> 0 we penalize unlabeled data that is
inside the margin. This is equivalent to using the hinge loss on the unlabetedsaell, but where
we assume the label for the unlabeled exampigissign( fy(x;)).

Losses for transduction TSVMs implementing formulation (1) were first introduced in SVM-
Light (Joachims, 1999b). As shown above, it assigns a Hinge He&$ on the labeled examples
(Figure 2, center) and a “Symmetric Hinge Lo - |) on the unlabeled examples (Figure 1, left).
More recently, Chapelle and Zien (2005) proposed to handle unlabedetpdes with a smooth ver-
sion of this loss (Figure 1, center). While we also use the Hinge Loss felddlexamples, we use
for unlabeled examples a slightly more general form of the Symmetric Hingg, Lizet we allow to
be “non-peaky” (Figure 1, right). Given an unlabeled exampknd using the notation= f,(x),
this loss can be written as

Z+ Rs(2) + Rs(—2) +const?, (2)

where—1 < s< 0 is a hyper-parameter to be chosen &e- min(1—s,max0,1—t)) is what we
call the “Ramp Loss”, a “clipped” version of the Hinge Loss (Figure 2)lef

1. The constant does not affect the optimization problem we will laterritesc
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Losses similar to the Ramp Loss have been already used for differgmbgas; like in the
Doom Il algorithm (Mason et al., 2000) or in the context 8f-fearning” (Shen et al., 2003). Tt
parameter controls where we clip the Ramp Loss, and as a consequdsaedrdrols the wideness
of the flat part of the loss (2) we use for transduction: wkenO, this reverts to the Symmetric
HingeHi(|-|). Whens# 0, we obtain a non-peaked loss function (Figure 1, right) which can be
viewed as a simplification of Chapelle’s loss function. We call this loss fun¢Bpthe “Symmetric
Ramp Loss”.

-1 15=-0.3 -1 -1 15=-0.3

0 0
z z

No

Figure 2: The Ramp Loss functid®(t) = min(1—s,max0,1—t)) = Hy(t) — Hs(t) (left) can be
decomposed into the sum of the convex Hinge Loss (center) and a eolesav(right),
whereHs(t) = max0,s—t). The parametes controls the cutoff point of the usual Hinge
loss.

Training a TSVM using the loss function (2) is equivalent to training an S\sivigithe Hinge
lossH;(+) for labeled examples, and using the Ramp Rgs) for unlabeled examples, where each
unlabeled example appears as two examples labeled with both possible. démseormally, after
introducing

yi = 1 i€[L+1...L+U]
i = -1 ielL+U+1...L+2U]
xi = xiy ie[lL+U+1...L+2U],
we can rewrite (1) as
1 L L+2U
J%(0) = *”"UH2+CZLH1(Yi fo(zi)) +C° 5 Rs(i folxi))- ®3)
2 i= i=C+1

This is the minimization problem we now consider in the rest of the paper.

Balancing constraint One problem with TSVM as stated above is that in high dimensions with
few training examples, it is possible to classify all the unlabeled exampledawbe to only one

of the classes with a very large margin, which leads to poor performanauré this problem, one
further constrains the solution by introducing a balancing constraint tisares the unlabeled data
are assigned to both classes. Joachims (1999b) directly enforcesdHeddtion of positive and
negatives assigned to the unlabeled data should be the same fractiomésnfolie labeled data.
Chapelle and Zien (2005) use a similar but slightly relaxed constraint, whéchlso use in this

work:
1 L+U

1
g3 @) = 3w @
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Concave-Convex Procedure (CCCP) Unfortunately, the TSVM optimization problem as given
above is not convex, and minimizing a non-convex cost function is oftasidered difficult. Gra-
dient descent technigues, such as conjugate gradient descentlmastto gradient descent, often
involve delicate hyper-parameters (LeCun et al., 1998). In contrasvegooptimization seems
much more straight-forward. For instance, the SMO algorithm (Platt, 1988)de the SVM solu-
tion efficiently and reliably.

We propose to solve this hon-convex problem using the “Concavee&2dProcedure” (CCCP)
(Yuille and Rangarajan, 2002). The CCCP procedure is closely relatibe tifference of Con-
vex” (DC) methods that have been developed by the optimization communitygciineénlast two
decades (Le Thi, 1994). Such techniques have already been agplahbling with missing values
in SVMs (Smola et al., 2005), for improving boosting algorithms (Krause ange$, 2004), and
in the “W-learning” framework (Shen et al., 2003).

Assume that a cost functiof(@) can be rewritten as the sum of a convex phei(0) and
a concave parf,,(6). Each iteration of the CCCP procedure (Algorithm 1) approximates the
concave part by its tangent and minimizes the resulting convex function.

Algorithm 1 : The concave-convex procedure (CCCP)

Initialize #° with a best guess.
repeat

6" = argmin(Jyex(0) + J(6") - 0) (5)
2]

until convergence of!

One can easily see that the ca&#') decreases after each iteration by summing two inequalities
resulting from (5) and from the concavity @f,(0).

Jex(07h) + Xa(0) -0 < Jex(0') + Xa(6') - 6" (6)
Jear( ') < JcaV(et)+Jéav(9t)‘(0t+1—9t) (7)

The convergence of CCCP has been shown by Yuille and Rangar&jap) Ry refining this argu-
ment. The authors also showed that the CCCP procedure remains \&lisl iequired to satisfy
some linear constraints. Note that no additional hyper-parameters atednbg CCCP. Further-
more, each update (5) is a convex minimization problem and can be solveyl alagsical and
efficient convex algorithms.

CCCP for TSVMs Interestingly, the Ramp Loss can be rewritten as the difference between two
Hinge losses (see Figure 2):

Rs(2) = H1(2) —Hs(2) . (8)

Because of this decomposition, the TSVM minimization problem as stated in (3) isadheeto
CCCP optimization. The cosf(€) can indeed be decomposed into a condgy0) and concave
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J2.(0) part as follows:

1 L L+2U

F(O) = 3 IwlP+CY i fo(@) +C' 5 Ry f(an)
1= =L+

— L) CLH i fo (i C*L+2UH i fo (i

= EHU’H + i; 1(Yi fo(xi)) + 1(Yi fo(xi))

i=T31

9
%) ©)
L+-2U

—C Hs(Yi fo (i) -
i=TH1

Joa(0)

This decomposition allows us to apply the CCCP procedure as stated in Algdritfime convex
optimization problem (5) that constitutes the core of the CCCP algorithm is eafilynrulated into
dual variablesx using the standard SVM technique.

After some algebra, we show in Appendix A that enforcing the balancingtcaint (4) can be
achieved by introducing an extra Lagrangian variahj@nd an example implicitely defined by

1 L+U
®(x0) = 0 O(xi),
i1

with labelyp = 1. Thus, if we not&K the kernel matrix such that
Kij = ®(xi) - (),
the column corresponding to the examgplgis computed as follow:

1 L+U
Kio =Ko = D(xzj) - P(xi) Vi. (10)
Uifn
The computation of this special column can be achieved very efficientlytmpating it only once,
or by approximating the sum (10) using an appropriate sampling method.
Given the decomposition of the cost (9) and the trick of the special exaraghe (10) to enforce
the balancing constraint, we can easily apply Algorithm 1 to TSVMs. To simpliéifitist order
approximation of the concave part in the CCCP procedure (5), we denote

B = 0%a(0) Cr if yifo(zi) <s
T Y9t @) ~ 0 otherwise

; (11)

for unlabeled examples (that is> L 4-1)2 The concave pards,, does not depend on labeled
examplesi(< L) so we obviously hav@; = 0 for alli < L. This yields Algorithm 2, after some
standard derivations detailed in Appendix A.

Convergence of Algorithm 2 in finite timg is guaranteed because varialflecan only take
a finite number of distinct values, becaulé') is decreasing, and because inequality (7) is strict
unlessB remains unchanged.

2. Note thatl3,(-) is non-differentiable az = s, becausés(+) is not. It can be shown that the CCCP remains valid
when using any super-derivative of the concave function. Alterelgtithe functiorHs(-) could be made smooth in
a small intervals—€,s+€].
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Algorithm 2 : CCCP for TSVMs

Initialize 8° = (w°, b°) with a standard SVM solution on the labeled points.
C* if yifgo(xi) <sandi>L+1
0__ ilo i
Computefiy = { 0 otherwise
Set{j=yifor1<i<L+2U and{o= %51V
repeat
e Solvethe following convex problem ( witk; = ®(x;i) - ®(x;) )

1 a-1=0
max(“‘c—zaTKa> subjectto{ 0<yia;<C V1<i<L
) —Bi <y <C"—fB Vi>L+1

L+2U
e Compute b+ using fgu1 (%) = % o(tj+1 Kij + b and
j=

Vi<L : O<yio<C = VYyifgu(x)=1
Vi>L: —Bi<yiai<C*'—fBi = Vifgu(x)=1

C* if yifga(xi) <sandi>L+1

* ComputeB}*l—{ 0 otherwise

until g+l =gt

Complexity The main point we want to emphasize in this paper is the advantage in terms of
training time of our method compared to existing approaches. Training a OGR4 amounts

to solving a series of SVM optimization problems with- 2U variables. Although SVM training

has a worst case complexity of (L +2U )3) it typically scales quadratically (see Joachims, 1999a;
Platt, 1999), and we find this is the case for our TSVM subproblems as wadlurAing a constant
number of iteration steps, the whole optimization of TSVMs with CCCP should goalgratically

in most practical cases (see Figure 3, Figure 8 and Figure 9). Frorexperience, around five
iteration steps are usually sufficient to reach the minimum, as shown in theregpéal section of

this paper, Figure 4.

3. Previous Work

SVMLIight-TSVM  Like our work, the heuristic optimization algorithm implemented in SVM-
Light (Joachims, 1999b) solves successive SVM optimization problenigrbu+ U instead of
L+ 2U data points. It improves the objective function by iteratively switching thel$abietwo
unlabeled pointg; andx; with & +-&; > 2. It uses two nested loops to optimize a TSVM which
solves a quadratic program in each step. The convergence pro@ imindr loop relies on the fact
that there is only a finite numbel 2f labelings ofU unlabeled points, even though it is unlikely
that all of them are examined. However, since the heuristic only swapstils laf two unlabeled
examples at each step in order to enforce the balancing constraint, it reigghnmany iterations to
reach a minimum, which makes it intractable for big data set sizes in practideédafe 3).
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SVMLight uses annealing heuristics for the selectiol€of It begins with a small value &&*
(C* = 1e—5), and multiplie<C* by 1.5 on each iteration until it reach€s The humbersd—5 and
1.5 are hard coded into the implementation. On each iteration the tolerance omadiengs is also
changed so as to give more approximate (but faster) solutions on earigios. Again, several
heuristics parameters are hard coded into the implementation.

OTSVM  TheOTSVM of Chapelle and Zien (2005) is optimized by performing gradientelgsc
in the primal space: minimize

1 L L+U
éHwHZJrCZlHZ(yi fo(xi)) +C* H*(yi fo (i),
= i1

whereH?(t) = max(0,1 —t)? andH*(t) = exp(—3t?) (cf. Figure 1, center). This optimization
problem can be considered a smoothed version of (TEVM also has similar heuristics f@* as
SVMLIight-TSVM. It begins with a small value &Z* (C* = bC), and iteratively increases" over

| iterations until it finally reache€. The valued = 0.01 andl = 10 are default parameters in the
code available att t p: / / wwv. kyb. t uebi ngen. npg. de/ bs/ peopl e/ chapel | e/ | ds.

Since the gradient descent is carried out in the primal, to learn nonlineaiduos it is necessary
to perform kernel PCA (Sdiikopf et al., 1997). The overall algorithm has a time complexity equal
to the square of the number of variables times the complexity of evaluating thieieogon. In this
case, evaluating the objective scales linearly in the number of examples ewvetall worst case
complexity of solving the optimization problem faiTSVM is o ((U +L)3). The KPCA calculation
alone also has a time complexity of (U + L)3). This method also requires one to store the entire
kernel matrix in memory, which clearly becomes infeasible for large data sets.

CS*VM  The work of Fung and Mangasarian (2001) is algorithmically the closegM&pproach
to our proposal. Following the formulation of transductive SVMs found imrigdt and Demiriz
(1998), the authors consider transductive linear SVMs with a 1-nagoiagzer, which allow them
to decompose the corresponding loss function as a sum of a linear fuanticenconcave function.
Bennett proposed the following formulation which is similar to (1): minimize

L U
Hw\|1+C_ZlEi+C*_ 1min(5i,5i*)
i= i=[+

subject to
Yifo(xi) >1-¢&, i=1...,L

fo(xi)>1-&, i=L+1,...,.L+U
—(w-xi+b)>1-¢, i=L+1,....L+U
& >0& >0.

The last term of the objective function is nonlinear and corresponds tlms$sefunction given in
Figure 1, left. To deal with this, the authors suggest to iteratively apprdgithe concave part
as a linear function, leading to a series of linear programming problems. @hibe viewed as
a simplified subcase of CCCP (a linear function being convex) applied te@asixind of SVM.
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Note also that the algorithm presented in their paper did not implement a baaocistraint for the
labeling of the unlabeled examples as in (4). Our transduction algorithm imeanand the use of

kernels, solving the optimization in the dual, allows for large scale training withdiigensionality
and number of examples.

4. Small Scale Experiments

This section presents small scale experiments appropriate for compariredgouthm with ex-
isting TSVM approaches. In order to provide a direct comparison witHighdd results, these
experiments use the same setup as (Chapelle and Zien, 2005). All methdtie standard RBF
kernel,®(x) - ®(z') = exp(—yl|z — | |?).

dataset classes dims points labeled

g50c 2 50 500 50
Coail20 20 1024 1440 40
Text 2 7511 1946 50
Uspst 10 256 2007 50

Table 1: Small-Scale Data Sets. We used the same data sets and experimgnialtbese exper-
iments as found in Chapelle and Zien (2005).

(number of
Coil20 g50c Text Uspst hyperparameters)
SVM 24.64 832 1886 23.18 2
SVMLight-TSVM 26.26 6.87 7.44 26.46 2
OTSVM 1756 580 571 17.61 2
CCCP-TSVM%,. 1669 5.62 7.97 16.57 2
CCCP-TSVMycr—c 16.06 5.04 559 16.47 3
CCCP-TSVM 1592 392 492 16.45 4

Table 2: Results on Small-Scale Data Sets. We report the best test esradhewhyperparameters
of the algorithms, as in the methodology of Chapelle and Zien (2005). SVM§VM
is the implementation in SVMLightOTSVM is the primal gradient descent method of
Chapelle and Zien (2005). CCCP-TS\i# . reports the results of our method using the
heuristicUC* = LC with the Symmetric Hinge Loss, that is with= 0. We also report
CCCP-TSVMyc+_.c Where we allow the optimization & and CCCP-TSVM where we
allow the optimization of botl* ands.

Table 1 lists the data sets we have used. g5t data set is an artificial data set where the
labels correspond to two Gaussians in a 50-dimensional space. The ofidhase Gaussians are
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placed in such a way that the Bayes error is 5%. ddie 20 data is a set of gray-scale images of 20
different objects taken from different angles, in steps of 5 degfedésNene et al., 1996). Thext
data set consists of the classssi ndows andmac of theNewsgr oup20 data set preprocessed as in
Szummer and Jaakkola (2001a). Tuspst data set is the test part of thSPS hand written digit
data. All data sets are split into ten parts with each part having a small anfdabeted examples
and using the remaining part as unlabeled data.

4.1 Accuracies

Consistent with (Chapelle and Zien, 2005), all hyperparameters are tumihe test set. Chapelle
and Zien (2005) argue that, in order to perform algorithm comparisoisssifficient to be thter-
ested in the best performance and simply select the parameter valueszinigithe test errof.
However we should be more cautious when comparing algorithms that hésedifsets of hyper-
parameters. For CCCP-TSVMs we have two additional paramé&@éemds. Therefore we report
the CCCP-TSVM error rates for three different scenarios:

e CCCP-TSVM, where all four parameters are tuned on the test set.

e CCCP-TSVMyc+_.c Wwhere we choos€* using a heuristic method. We use heuristic* =
LC because it decreas€s when the number of unlabeled data increases. Otherwise, for large
enoughU no attention will be paid to minimizing the training error. Further details on this
choice are given in Section 4.3.

e CCCP-TSVM32, . where we chooss= 0 andC* using heuristitC* = LC. This setup has
the same free parametef3 4ndy) as the competing TSVM implementations, and therefore
provides the most fair comparison.

The results are reported in Table 2. CCCP-TSVM in all three scenarinsvas approximately
the same error rates &8TSVM and appears to be superior to SVMLight-TSVM. Section 4.3 pro-
vides additional results using different hyperparameter selection sestmgd discusses more pre-
cisely the impact of each hyperparameter.

4.2 Training Times

At this point we ask the reader to simply assume that all authors have ctiedehyperparameter
selection method as well as they could. We now compare the computation timeseftiinee
algorithms.

The CCCP-TSVM algorithm was implemented in C3#¥he successive convex optimizations
are performed using a state-of-the-art SMO implementation. Without fuothteénization, CCCP-
TSVMs run orders of magnitude faster than SVMLight-TSVMs dfiiiSVM.* Figure 3 shows
the training time org50c andtext for the three methods as we vary the number of unlabeled
examples. For each method we report the training times for the hyperparautinetegive optimal
performance as measured on the test set on the first split of the datad@CP-TSVNEL . in
these experiments). Using all 2000 unlabeled data on Text, CCCP-TSkévigpparoximatelyl 33
times fastethan SVMLight-TSVM andb0 times fastethanOTSVM.

3. Source code available fatt p: / / www. kyb. t uebi ngen. npg. de/ bs/ peopl e/ f abee/ t ransduction. htm .
4. OTSVM was implemented by adapting the Matlab LDS code of Chapelle and Z@85) available dit t p: / / www.
kyb. t uebi ngen. npg. de/ bs/ peopl e/ chapel | e/ | ds.

1696



LARGE SCALE TRANSDUCTIVE SVMs

50 T 4000 I
—= SVMLight TSVM -8~ SVMLight TSVM
OTSVM 3500 aTsvm
40 —©— CCCP TSVM —-6- CCCP TSVM
3000
’_8\30 L ’@2500
3 3
2 ~2000
£ £
=201 F 1500
1000
10t
500
& 2 D O i = n o D
00 200 400 500 0 500 1000 1500 2000

300
Number Of Unlabeled Examples

Figure 3: Training times fog50c (left) andt ext (right) for SVMLight-TSVMs, OTSVMs and
CCCP-TSVMs using the best parameters for each algorithm as measutiee ®@st set
in a single trial. For the Text data set, using 2000 unlabeled examples CSERM S are
133xfaster than SVMLight-TSVMs, anB0x faster tharidTSVMs.
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Figure 4: Value of the objective function and test error during the CCQtibes of training
TSVM on two data sets (single triaj50c (left) andt ext (right). CCCP-TSVM tends
to converge after only a few iterations.

We expect these differences to increase as the number of unlabetaglezancreases further.
In particular,0TSVM requires the storage of the entire kernel matrix in memory, and is treref
clearly infeasible for some of the large scale experiments we attempt in Section 5

Finally, Figure 4 shows the value of the objective function and test emwdng the CCCP
iterations of training TSVM on two data sets. The CCCP-TSVM objectivetfianconverges after
five to ten iterations.
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Figure 5: Computation times for different choices of hyperparameteratansgg50c (first split
only) for the three TSVM implementations tested (top three figures). The bdttom
figures show the computation time for all three algorithms with respect to thenptea
C only, where the time is the mean training time taken over the possible valugs of
The bottom right figure is a scale up of the bottom left figure, as SVMLIgh¥W is
so slow it hardly appears on the left figure. In general, SVMLight-TSttvhputation
time appears very sensitive to parameter choices, with small values ofydesulting in
computation times around 2250 seconds, whereas large valGesnaly are much faster.
0 TSVM has almost the opposite trend on this data set: it is slower for largesval @z
ory, although even the slowest time is still only around 20 seconds. Our CEMRAT
takes only around 1 second for all parameter choices.

4.3 Hyperparameters

We now discuss in detail how the hyperparameterS, C* ands affect the performance of the
TSVM algorithms.

Effect of the parametersyand C. The parametengandC have similar effects on generalization

as in the purely supervised SVM approach (see Keerthi and Lin. JZ00Zn empirical study).
However, during model selection, one has to try many choices of paramedeme algorithms
have different computational behaviour across different paramiedéces. Therefore we have stud-
ied how different choices df andy affect the computation times of all three TSVM algorithms.
Figure 5 compares these computation times foiggte data set. SVMLight-TSVM is particularly
slow for smally andC, taking up to 2250 seconds, whereas the other two algorithms are relatively
more stable. In particular, CCCP-TSVM takes only around 1 secondréoy @ossible parameter
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choice. This means that during cross validation the CCCP-TSVM spee@uBvMLight-TSVM

is even larger than the 133x speedup observed for the relatively belmigee of hyperparameters
in Figure 3.

Effect of the parameter C* As mentioned before, both SVMLight-TSVM andl SVM use an
annealing heuristic for hyperparame@t. They start their optimization using a small valueGsf
and slowly increas€* until it reaches the final desired val@ = C. CCCP-TSVM solves the
optimization problem for the desired value@f without an annealing heuristic. When one wishes
to avoid optimizingC*, we suggest the heuristi¢C* = LC.

Comparing the heuristicsC=C and UC =LC  Table 3 compares theé* = C andUC* = LC
heuristics on the small scale data sets. Results are provided for the-eadsand the case where
we allow the optimization o6. Although the heuristi€€* = C gives reasonable results for small
amounts of unlabeled data, we prefer the heurist® = LC. When the number of unlabeled
exampledJ becomes large, settig® = C will mean the third term in the objective function (1)
will dominate, resulting in almost no attention being paid to minimizing the training dirdhese
experiments the heuristidC* = LC is close to the best possible choiceGif whereal* =Cis a
little worse.

We also conducted an experiment to compare these two heuristics fordatgbeled data sizes
U. We took the samaspst data set (that is, the test part of the USPS data set) and we increased
the number of unlabeled examples by adding up to 6000 additional unlab&leghkes taken from
the original USPS training set. Figure 6 reports the best test error thrsuristics over possible
choices ofy andC, taking the mean of the same 10 training splits with 50 labeled examples as
before. The results indicate that = C works poorly for largeJ.

(number of
Coil20 g50c Text Uspst hyperparameters)
CCCP-TSVMS2 22.33 4.68 7.76 20.09 2
CCCP-TSVM3?,. 16.69 562 7.97 16.57 2
CCCP-TSVM3=° 16.67 456 7.76 16.55 3
CCCP-TSVMc_c 19.02 4.28 522 1833 3
CCCP-TSVMycr—c  16.06 5.04 5.59 16.47 3
CCCP-TSVM 1592 392 492 16.45 4

Table 3: Comparison of* = C andC* = 50 heuristics on on Small-Scale Data Sets with the
best optimized value &&* (CCCP-TSVMS= or CCCP-TSVM, depending on whether
is fixed). The heuristi€C* = 50 maintains the balance between unlabeled pdinend
labeled pointd. asU andL change, and is close to the best possible choid& ofThe
C* = C heuristic also works for relatively small valueslfas in this case. We report all
methods with and without the optimization ®f

Iteratively increasing C — lteratively increasingC* during the optimization can be interpreted as
starting from a convex problen@{ = 0) and gradually making it more non-convex, which may be a
good strategy to solve such non-convex problems. However, we bti@ine annealing procedure
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Figure 6: Comparison of the* = C andUC* = LC heuristics on thaspst data set as we increase
the number of unlabeled examples by adding extra unlabeled data fronmigheabusps
training set. We report the best test error for both heuristics oveitppess choices ofy
andC, taking the mean of the same 10 training splits with 50 labeled examples as before.
As the number of unlabeled examples increasesCthe C heuristic gives too much
weight to the unlabeled data, resulting in no improvement in performancéively the
UC* = LC heuristic balances the weight of the unlabeled and labeled data and empirically
performs better.

also has a regularizing effect. The optimization is more likely to get stuck in Adocamum that
appears whee* has a value much smaller th@n This may be why th€* = C heuristic works
well for algorithms that also use the annealing trick.

We conducted an experiment to see the performance of SVMLight-TSVMaamidhwithout the
annealing heuristic. Og50c, we chose a linear kernel and computed the optimal val@amf the
test set using* = C. With the annealing heuristic, we obtain a test error of 7.6%. For the same
parameters without the annealing procedure, we obtain 12.4%. Clearlgprikalang heuristic has
a strong effect on the results of SVMLight-TSVM. CCCP-TSVM has nthdueuristic.

Effect of the parameters The parametesin CCCP-TSVM controls the choice of loss function to
minimize over. It controls the size of the plateau of the Symmetric Ramp functioar@~ig right).
Training our algorithm with a tuned value sfappears to give slightly improved results over using
the Symmetric Hinge lossE 0, see Figure 1, left), especially on thext data set, as can be seen
in Tables 2 and 3. Furthermore, Figure 7 highlights the importance of thenptees of the loss
function (2) by showing the best test error over different choicesfof two data sets, ext and
g50c.

We conjecture that the peaked loss of the Symmetric Hinge function fordgdeaisions for
the 3 variables and might lead to a poor local optimum. This effect then disapas&@on as we
clip the loss. That is, the flat part of the loss far inside the margin prevemtalgorithm from
making erroneous early decisions regarding the labels of the unlabetedhdd may be hard to
undo later in the optimization.
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Figure 7: Effect of the parametsof the Symmetric Ramp loss (see Figure 1 and equation (2) ) on
thet ext data set (left) and thg50c data set (right). The peaked loss of the Symmetric
Hinge function § = 0) forces early decisions for th@variables and might lead to a poor
local optimum. This effect then disappears as soon as we clip the loss.

In fact, theT SV Mauthors make a similar argument to explain why they prefer their algorithm
over SVMLight: “(SVMLight) TSVM might suffer from the combinatorial nature of its apgroac
By deciding, from the very first step, the putative label of every poisn(aith low confidence), it
may lose important degrees of freedom at an early stage and get ttappebad local minimurh

Here, the authors are refering to the way SVMLight TSVM has a discagtierthan continuous
approach of assigning labels to unlabeled data. However, we think thatibethed loss function
of OTSVM may help it to outperform the Symmetric Hinge loss of SVMLight TSVM, makiin
similar to the clipped loss when we use: 0. Indeed, thé ] TSVM smoothed loss, e>(p3t2), has
small gradients whenis close to O.

A potential issue of the Symmetric Ramp loss is the fact that the gradient is eQdotlyoints
lying on the plateau. Points are not updated at all in this region. This maybbeimal: if we are
unlucky enough that all unlabeled points lie in this region, we perform watgs at all. Performing
model selection on parameteeliminates this problem. Alternatively, we could use a piece-wise
linear loss with two different slopes foff (x)| > s and for|f(x)| < s. Although it is possible to
optimize such a loss function using CCCP, we have not evaluated this ahproa

5. Large Scale Experiments

In this section, we provide experimental results on large scale experingante other methods are
intractable on such data sets, we only compare CCCP-TSVM against SVMs.

5.1 RCV1 Experiments

The first large scale experiment that we conducted was to separate therdest top-level cate-
gories CCAT CORPORATHINDUSTRIAL) and GCAT GOVERNMENT/SOCIAL) of the training part
of the Reuters data set as prepared by Lewis et al. (2004). The tetsef two categories consists
of 17754 documents. The features are constructed using the bagas teehnique, weighted with
a TF.IDF scheme and normalized to length one. We performed experimergsl@§irand 1000 la-
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Method Train Unlabeled Parameters Test
size size Error
SVM 100 0 C = 25297, 0= 1581 16.61%

TSVM 100 500 C=2597C* =10, 5= 02,6 =395 11.99%
TSVM 100 1000 C=2597,C* =10,5= -0.2,0=3.95 11.67%
TSVM 100 2000 C=2597C* =10, 5= —02,6=395 11.47%
TSVM 100 5000 c=2507C" =25297s= 02,0=395 10.65%
TSVM 100 10000  c-2597¢c'=252975=040=-395 10.64%

SVM 1000 0 C=25297,6=791 11.04%
TSVM 1000 500 c=2507c"=10s= -040=395  11.09%
TSVM 1000 1000 c=25097C" =25297s= -04,0=395 11.06%
TSVM 1000 2000 c=2597C"=10s-04=0=395  10.77%
TSVM 1000 5000 c=2507C" =25297s=-02,0-395 10.81%
TSVM 1000 10000 c-2s07c —2520705= -04,0-395 10.72%

Table 4. Comparing CCCP-TSVMs with SVMs on the RCV1 problem for déffiernumber of
labeled and unlabeled examples. See text for details.

beled examples. For model selection we use a validation set with 2000 added@led examples
for the two experiments. The remaining 12754 examples were used asettest s

We chose the paramet€rand the kernel parametgi(using an RBF kernel) that gave the best
performance on the validation set. This was done by training a TSVM usingatltation set as
the unlabeled data. These values were then fixed for every experiment.

We then varied the number of unlabeled exampleand reported the test error for each choice
of U. In each case we performed model selection to find the paran@targds. A selection of the
results can be seen in Table 4.

The best result we obtained for 1000 training points was8% test error, when using 10500
unlabeled points, and for 100 training points wasAP9 when using 9500 unlabeled points. Com-
pared to the best performance of an SVM of(Ps for the former and 161% for the latter,
this shows that unlabeled data can improve the results on this problem. Thpedatly true in
the case of few training examples, where the improvement in test erroruedhfb%. However,
when enough training data is available to the algorithm, the improvement is onlyandéeof one
percent.

Figure 8 shows the training time of CCCP optimization as a function of the numbetaijeled
examples. On a 64 bit Opteron processor the optimization time for 12500 ledadbeamples was
approximately 18 minutes using the 1000 training examples and 69 minutes usirtgaiiing
examples. Although the worst case complexity of SVMs is cubic and the optimizatie seems
to be dependent on the ratio of the number of labeled to unlabeled examplagjting times show
a quadratic trend.
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Figure 8: Optimization time for the Reuters data set as a function of the numbelatieled data.
The algorithm was trained on 1,000 points (left) and on 100 points (right®. deished
lines represent a parabola fitted at the time measurements.

Method Training Unlabeled Parameters Test
size size Error
SVM 100 0 C=10,y=0.0128 23.44%
TSVM 100 2000 C'=1,s=-01 16.81%
SVM 1000 0 C=10,y=0.0128 7.77%
TSVM 1000 2000 C'=5s=-01 7.13%
TSVM 1000 5000 C'=1,s=-01 6.28%

TSVM 1000 10000 C*=0.5,s=-0.1 5.65%
TSVM 1000 20000 C*=0.3,s=-01 5.43%
TSVM 1000 40000 C*=0.2,5s=-01 5.31%
TSVM 1000 60000 C*=0.1,s=-01 5.38%

Table 5;: Comparing CCCP-TSVMs with SVMs on the MNIST problem for défé number of
labeled and unlabeled examples. See text for details.

5.2 MNIST Experiments

In the second large scale experiment, we conducted experiments on tr&ET\Nidhdwritten digit
database, as a 10-class problem. The original data has 60,000 traiamgleg and 10,000 testing
examples. We subsampled the training set for labeled points, and usedtthetties unlabeled
examples (or the test set plus remainder of the training set when using moro0@0 unlabeled
examples). We performed experiments using 100 and 1000 labeled exaWplpsrformed model
selection for 1-vs-the-rest SVMs by trying a grid of valuesd@ndC, and selecting the best ones by
using a separate validation set of size 1000. For TSVMs, for efficiszasons we fixed the values
of o andC to be the same ones as chosen for SVMs. We then performed model setesitign
2000 unlabeled examples to find the best choice&s*ainds using the validation set. When using
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Figure 9: Optimization time for the MNIST data set as a function of the numbemlabeled data.
The algorithm was trained on 1,000 labeled examples and up to 60,000 udlakeate-
ples. The dashed lines represent a polynomial of degree two with a dpestdit on the
algorithm’s time measurements.

more unlabeled data, we only reperformed model selectid®*as it appeared that this parameter
was the most sensitive to changes in the unlabeled set, and kept the otmeefsas fixed. For the
larger labeled set we took 2000, 5000, 10000, 20000, 40000 ar@DGdfabeled examples. We
always measure the error rate on the complete test set. The test eramrdgtarameter choices for
each experiment are given in the Table 5, and the training times are giveguireP.

The results show an improvement over SVM for CCCP-TSVMs which isggateadily as the
number of unlabeled examples increases. Most experiments in semiisegddearning only use
a few labeled examples and do not use as many unlabeled examples #seddsere. It is thus
reassuring to know that these methods do not apply just to toy examples withda®0 training
points, and that gains are still possible with more realistic data set sizes.

6. Discussion and Conclusions

TSVMs are not the only means of using unlabeled data to improve generalipatiftbrmance on
classification tasks. In the following we discuss some competing algorithmslining unlabeled
data, and also discuss the differences between the transductivaairsLipervised learning frame-
works. Finally, we conclude with some closing remarks.

6.1 Cluster Kernels and Manifold-Learning

Transductive SVMs are not the only method of leveraging unlabeled dataupervised learning
task. In recent years this has become a popular research topic, atbry lof techniques have
been proposed. One popular class of methods, which we refer to & damels, do not change
the learning algorithm at all, but merely the representation of the data aspaquessing step. In
a purely unsupervised fashion, these methods learn cluster or manifadtusér from the data, and
produce a new representation of it such that distances between poingsrievitspace are small if
they are in the same cluster or on the same manifold. Some of the main methods (@tiagelle
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et al., 2002; Chapelle and Zien, 2005; Sindhwani et al., 2005; Szumrdeltaakkola, 2001b); and
(Weston et al., 2003).

Other notable methods include generalizations of nearest-neighborzemRaindow type ap-
proaches to learning manifolds given labeled data (Zhu et al., 2003; BaeikiiNiyogi, 2002; Zhou
et al., 2004). Finally, Bayesian approaches have also been puGtespgl et al., 2000; Lawrence
and Jordan, 2005).

We note that some cluster kernel methods (Chapelle and Zien, 2005) darmpsignificantly
better than TSVM on some data sets. In fact, Chapelle and Zien (2005)tkhtwas these methods
provide a new representation, one can just as easily run TSVM on theemesentation. The
combination of TSVM and cluster kernels then provides state-of-thesutts.

6.2 Semi-Supervised Versus Transductive Learning

From a theoretical point of view, there is much ideological debate ovehwdriderlying theory that
explains TSVM is correct. The argument here is largely about which fremmie semi-supervised
learning or transductive, is interesting to study theoretically or to appltipedly.

Semi-supervised school The majority of researchers appear to be ingbmi-supervisedchool

of thought, which claims that TSVMs help simply because of a regularizerdfiatts prior knowl-
edge, see e.g. (Chapelle and Zien, 2005). That is, one is given fasdabeled data, and one uses
it to improve an inductive classifier to improve its generalization on an unssesete

Transductive school Vapnik (1982) describasansductioras a mathematical setup for describing
learning algorithms that benefit from the prior knowledge of the unlabekdotdterns. Vapnik
claims that transduction is an essentially easier task than first learning eagemkictive rule
and then applying it to the test examples. Transductive bounds addeegerfiormance of the
trained system on these test patterns only. They do not apply to test patiatrwere not given
to the algorithm in the first place. As a consequence, transductive bavegsirely derived from
combinatorial arguments (Vapnik, 1982) and are more easily made datadiay (Bottou et al.,
1994; Derbeko et al., 2004). Whether this is a fundamental propertyemhaical issue is a matter
of debate.

Experiments The following experiments attempt to determine whether the benefits of TS\&Ms ar
solelycaused by the prior knowledge represented by the distribution of thealethfata. If this is
the case, the accuracy should not depend on the presence of tHaesttpatterns in the unlabeled
data.

The following experiments consider three distinct subsets: a small labeleith¢graet and two
equally sized sets of unlabeled examples. Generalization accuracigsvays aneasured on the
third set. On the other hand, we run CCCP-TSVM using either the secottteahird set as
unlabeled data. We respectively name these results “Semi-Superviséd &8 “Transductive
TSVM”. Experiments were carried out on both the Text and MNIST datéctzss 8 vs rest) using
ten splits. For Text, we fixed to a linear kern€l= 1000, ands = —0.3. For MNIST-8 we fixed
y=0.0128 andC = 10. We report the best test error over possible valu€s offable 6 shows that
transductive TSVMs perform slightly better than semi-supervised TSUMMb@se data sets.

Transductive TSVMs are only feasible when the test patterns are kibefsre training. In that
sense, its applicability is more limited than that of Semi-Supervised TSVMs. Ortltee lmand,
when the test and training data are not identically distributed, we believeticemioof transduction
could be particularly worthwhile.
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Text MNIST-8
SVM 18.86% 6.68%
semi-supervised TSVM  6.60%  5.27%
transductive TSVM 6.12% 4.87%

Table 6: Transductive TSVM versus Semi-Supervised TSVM.

6.3 Conclusion and Future Directions

In this article we have described an algorithm for TSVMs using CCCP tlag$scalability im-

provements over existing implementation approaches. It involves the itesalivieag of standard
dual SVM QP problems, and usually requires just a few iterations. Onehiimg about being an
extension of standard SVM training is that any improvements in SVM scalabilityromediately
also be applied to TSVMs. For example in the linear case, one could easijyfapplinear SVM

training such as in (Keerthi and DeCoste, 2005) to produce very fastrlihRSVMs. For the non-
linear case, one could apply the online SVM training scheme of Bordes(@08b) to give a fast
online transductive learning procedure.
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Appendix A. Derivation of the Optimization Problem

We consider a set df training pairsz = {(x1,Y1),...,(xL,)}, ¢ € R", y € {1,—1} and a (un-
labeled) set ol test vectorsu = {x_ 11,...,X +u}. SVMs have a decision functiofy(.) of the
form

fo(X) =w-®(x)+b,

wheref = (w, b) are the parameters of the model, abd) is the chosen feature map.
We are interested in minimizing the TSVM cost function (3), under the constf@n We
rewrite the problem here for convenience: minimizing

1 ) L L+2U
J%(0) = S ||[w[|*+Cy Hu(Yi fo(xi)) +C* Rs(yi fo(i)), (12)
2 i= i=CF1
under the constraint L ]
1t 1
g 2 fel@) =+ 3w (13)
Uit o L& I

Assume that a cost functial(@) can be rewritten as the sum of a convex pkgk(@) and a
concave pardca (). As mentioned above in Algorithm 1, the minimizationJd®) with respect to
6 (6 being possibly restricted to a spagedefined by some linear constraints) can be achieved by
iteratively updating the paramete#ausing the following update
6" = argmin(dex(0) + Ia(6") - 6) . (14)

Oca
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In the case of our cost (12), we showed (see (9)) Jh@) can be decomposed into the sum of
sex( @) andJ3,(6) where

1 L L+2U
Jex0) = > Jwl|>+C ZHl(Yi fo(xi)) +C* Ha(yi fo(xi)) (15)
i= i=L+1
and
L+2U
Jea(@) = —C Hs(Yi fo (i) (16)
i=+1

In order to apply the CCCP update (14) we first have to calculate theatieevof the concave
part (16) with respect t:

0%au(0) _ _c V2V 035,(0) 0fy (i)
00 i 0fg(xi) 00
We introduce the notation
0J3
Bi _ y a ca(v( ))
0 otherwise

C* if yife(xi) <sandi>L+1
0 otherwise ’

Sincefy(xi) = w- P(x;) + b with 8 = (w,b), andof,(xi)/00 = (P(xi),1), each update (14)
of the CCCP procedure applied to the our minimization problem (12) consists imiziimg the
following cost

S L+2U _
o (17)
L+2U
=Lexd0)+ Y Bivi[w-®(zi)+b],
i=L+1

under the linear constraint (13).
The convex part (16) contains Hinge Losses which can be rewritten as

Hi(z) =max0,1—2z)=ming st&>0,§>1—z.

It is thus easy to see that the minimization of (17) under the constraint (18uisadent to the
following quadratic minimization problem under constraints:

1 L Li2u  L42U
argmin EHw|]2+C ZEiJrC* &+ Bivi fo(zi)
0.£ i i=[+1 i=CF1
1 L+U
st Y @) Zy, (18)
yife(m.)zl—E, vi<i<L+2U (19)
§>0 Vi<i<Lt2U (20)
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Introducing Lagrangian variables), o andv corresponding respectively to constraints (18), (19)
and (20), we can write the Lagrangian of this problem as

1, L L+2u Lt2u
£(0,¢, a,v) =;|lw|[*+C) & +C" &+ Bivi fo(xi)
2 = i1 i

1 L+U 1 L
—o Ui: +lf9(a:i)_ti;yi

L+2U

- Zl o (i fo (i) — 1+ &)

L+2U
— 21 vi&i,
i=

whereag can be positive or negative (equality constraint) end > 1 are non-negative (inequality
constraints).

Taking into account thed; = 0 fori < L, calculating the derivatives with respect to the primal
variables yields

(21)

ar L+2u ap Y
o = w— Y Yi(ai—B)P(xi) - > P=i)
dw i; i i i i U o i
or L+2U
B - 2 yi (0 —Bi) — o
0L ,
a—Ei = C—-aj—v; V1iI<i<L
gé_ = C'—aj—v; VL+1<i<L+2U.
|
For simplifying the notation, we now define an extra special exampia an implicit manner:
L+U
P(zo) = 5 (i),
i=CFH1

and we setpy = 1 andBy = 0. Setting the derivatives to zero gives us

L+2U
w = Z) yi (ai — By) P(xi) (22)
i=
and
L+2U
yi(ai—Bi)=0 (23)
i; i i i
and also
C—-aj—vi=0 Vi<i<L, C"—aj—vVvj VL+1<i<L+2U. (24)

In order to find the minimum of the minimization problem (12) we want to find a sguioilet
of the Lagrangian (21), as in classical SVMs methods. Substituting (22),and (24) into the
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Lagrangian (21) yields the following maximization problem

L+2U
argmax —z 3 ¥iyj(ai—Bi) (o) —Bj)P(zi) - P(z))
=0 (25)
L+2U 1L
+ ai+0of+ )V
2, (uZl)
under the constraints
0<a;<C Vii<L
0<0;<C* VL+1<i<L+4+2U (26)
|_+2u N
Yi (ai —Bi) =0

The parametetw is then given by (22) anH is obtained using one of the following Karush-Kuhn-
Tucker (KKT) conditions:

L+U
GO#O:>U ['w P(xi)+b] =

i=L+
VlgigL,O<ai<C:>yi[w-¢(mi) bj=1
VL+1<i<L+2U,0<0a<C" = yi[w -P(xi)+b| =1

r— \

2

If we definelj =y; for 1L <i<L+2U and{p = % ziL:1Yi, and consider the kernel mat#xsuch
that
Kij = ®(xi) - ®(z)) ,

and we perform the substitution
ai =yi(ai—Bi),

then we can rewrite the maximization problem (25) under the constraintsg2b6¢ #ollowing
~ 1. .
argmax (-a—-a Ka
& 2
under the constraints

0<yiai<C vi<i<L
—Bi <y 6 <C"—B; VL+1<i<L+4+2U (27)

L+2U dl —0.

Obviously this optimization problem is very close to an SVM optimization problem. thus
possible to optimize it with a standard optimizer for SVMs. Note that only the tmim¢27) on
thed; have to be adjusted after each updat@of
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