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Abstract

We show how the concave-convex procedure can be applied to transductive SVMs, which tradition-
ally require solving a combinatorial search problem. This provides for the first time a highly scal-
able algorithm in the nonlinear case. Detailed experimentsverify the utility of our approach. Soft-
ware is available athttp://www.kyb.tuebingen.mpg.de/bs/people/fabee/transduction.
html.
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1. Introduction

Transductive support vector machines (TSVMs) (Vapnik, 1995) area method of improving the
generalization accuracy of SVMs (Boser et al., 1992) by using unlabeled data. TSVMs, like SVMs,
learn a large margin hyperplane classifier using labeled training data, but simultaneously force this
hyperplane to be far away from the unlabeled data.

One way of justifying this algorithm, in the context ofsemi-supervised learningis that one is
finding a decision boundary that lies in a region of low density, implementing the so-called cluster
assumption (see e.g. Chapelle and Zien, 2005). In this framework, if you believe the underlying
distribution of the two classes is such that there is a “gap” or low density region between them,
then TSVMs can help because it selects a rule with exactly those properties.Vapnik (1995) has a
different interpretation for the success of TSVMs, rooted in the idea thattransduction (labeling a
test set) is inherently easier than induction (learning a general rule). In either case, experimentally
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it seems clear that algorithms such as TSVMs can give considerable improvement in generalization
over SVMs, if the number of labeled points is small and the number of unlabeledpoints is large.

Unfortunately, TSVM algorithms (like other semi-supervised approaches)are often unable to
deal with a large number of unlabeled examples. The first implementation of TSVM appeared
in (Bennett and Demiriz, 1998), using an integer programming method, intractable for large prob-
lems. Joachims (1999b) then proposed a combinatorial approach, knownas SVMLight-TSVM, that
is practical for a few thousand examples. Fung and Mangasarian (2001) introduced a sequential op-
timization procedure that could potentially scale well, although their largest experiment used only
1000 examples. However, their method was for the linear case only, and used a special kind of
SVM with a 1-norm regularizer, to retain linearity. Finally, Chapelle and Zien (2005) proposed a
primal method, which turned out to show improved generalization performanceover the previous
approaches, but still scales as(L +U)3, whereL andU are the numbers of labeled and unlabeled
examples. This method also stores the entire(L +U)× (L +U) kernel matrix in memory. Other
methods (Bie and Cristianini, 2004; Xu et al., 2005) transform the non-convex transductive problem
into a convex semi-definite programming problem that scales as(L+U)4 or worse.

In this article we introduce a large scale training method for TSVMs using the concave-convex
procedure (CCCP) (Yuille and Rangarajan, 2002; Le Thi, 1994), expanding on the conference pro-
ceedings paper (Collobert et al., 2006). CCCP iteratively optimizes non-convex cost functions that
can be expressed as the sum of a convex function and a concave function. The optimization is car-
ried out iteratively by solving a sequence of convex problems obtained bylinearly approximating
the concave function in the vicinity of the solution of the previous convex problem. This method is
guaranteed to find a local minimum and has no difficult parameters to tune. Thisprovides what we
believe is the best known method for implementing transductive SVMs with an empirical scaling of
(L+U)2, which involves training a sequence of typically 1-10 conventional convexSVM optimiza-
tion problems. As each of these problems is trained in the dual we retain the SVM’s linear scaling
with problem dimensionality, in contrast to the techniques of Fung and Mangasarian (2001).

2. The Concave-Convex Procedure for TSVMs
Notation We consider a set ofL training pairsL = {(x1,y1), . . . ,(xL,yL)}, x ∈ R

n, y∈ {1,−1}
and an (unlabeled) set ofU test vectorsU = {xL+1, . . . ,xL+U}. SVMs have a decision functionfθ(.)
of the form

fθ(x) = w·Φ(x)+b,

whereθ = (w, b) are the parameters of the model, andΦ(·) is the chosen feature map, often imple-
mented implicitly using the kernel trick (Vapnik, 1995).

TSVM Formulation The original TSVM optimization problem is the following (Vapnik, 1995;
Joachims, 1999b; Bennett and Demiriz, 1998). Given a training setL and a test setU , find among
the possible binary vectors

{Y = (yL+1, . . . ,yL+U)}

the one such that an SVM trained onL ∪ (U ×Y ) yields the largest margin.

This is a combinatorial problem, but one can approximate it (see Vapnik, 1995) as finding an
SVM separating the training set under constraints which force the unlabeled examples to be as far
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Figure 1: Three loss functions for unlabeled examples, from left to right(i) the Symmetric Hinge
H1(|t|) = max(0, 1−|t|) , (ii) Symmetric SigmoidS(t) = exp(−3t2) ; and (iii) Symmetric
Ramp loss,Rs(|t|) = min(1+ s,max(0,1− |t|)). The last loss function has a plateau of
width 2|s| wheres∈ (−1,0] is a tunable parameter, in this cases= −0.3.

as possible from the margin. This can be written as minimizing

1
2
‖w‖2 +C

L

∑
i=1

ξi +C∗
L+U

∑
i=L+1

ξi

subject to
yi fθ(xi) ≥ 1−ξi , i = 1, . . . ,L

| fθ(xi)| ≥ 1−ξi , i = L+1, . . . ,L+U

This minimization problem is equivalent to minimizing

J(θ) =
1
2
‖w‖2 +C

L

∑
i=1

H1(yi fθ(xi))+C∗
L+U

∑
i=L+1

H1(| fθ(xi)|), (1)

where the functionH1(·) = max(0, 1− ·) is the classical Hinge Loss (Figure 2, center). The loss
function H1(| · |) for the unlabeled examples can be seen in Figure 1, left. ForC∗ = 0 in (1) we
obtain the standard SVM optimization problem. ForC∗ > 0 we penalize unlabeled data that is
inside the margin. This is equivalent to using the hinge loss on the unlabeled data as well, but where
we assume the label for the unlabeled example isyi = sign( fθ(xi)).

Losses for transduction TSVMs implementing formulation (1) were first introduced in SVM-
Light (Joachims, 1999b). As shown above, it assigns a Hinge LossH1(·) on the labeled examples
(Figure 2, center) and a “Symmetric Hinge Loss”H1(| · |) on the unlabeled examples (Figure 1, left).
More recently, Chapelle and Zien (2005) proposed to handle unlabeled examples with a smooth ver-
sion of this loss (Figure 1, center). While we also use the Hinge Loss for labeled examples, we use
for unlabeled examples a slightly more general form of the Symmetric Hinge Loss, that we allow to
be “non-peaky” (Figure 1, right). Given an unlabeled examplex and using the notationz= fθ(x),
this loss can be written as

z 7→ Rs(z)+Rs(−z)+const.1 , (2)

where−1 < s≤ 0 is a hyper-parameter to be chosen andRs = min(1−s,max(0,1− t)) is what we
call the “Ramp Loss”, a “clipped” version of the Hinge Loss (Figure 2, left).

1. The constant does not affect the optimization problem we will later describe.
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Losses similar to the Ramp Loss have been already used for different purposes, like in the
Doom II algorithm (Mason et al., 2000) or in the context of “Ψ-learning” (Shen et al., 2003). Thes
parameter controls where we clip the Ramp Loss, and as a consequence it also controls the wideness
of the flat part of the loss (2) we use for transduction: whens= 0, this reverts to the Symmetric
HingeH1(| · |). Whens 6= 0, we obtain a non-peaked loss function (Figure 1, right) which can be
viewed as a simplification of Chapelle’s loss function. We call this loss function(2) the “Symmetric
Ramp Loss”.
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Figure 2: The Ramp Loss functionRs(t) = min(1− s,max(0,1− t)) = H1(t)−Hs(t) (left) can be
decomposed into the sum of the convex Hinge Loss (center) and a concave loss (right),
whereHs(t) = max(0,s− t). The parameterscontrols the cutoff point of the usual Hinge
loss.

Training a TSVM using the loss function (2) is equivalent to training an SVM using the Hinge
lossH1(·) for labeled examples, and using the Ramp lossRs(·) for unlabeled examples, where each
unlabeled example appears as two examples labeled with both possible classes. More formally, after
introducing

yi = 1 i ∈ [L+1. . .L+U ]
yi = −1 i ∈ [L+U +1. . .L+2U ]
xi = xi−U i ∈ [L+U +1. . .L+2U ] ,

we can rewrite (1) as

Js(θ) =
1
2
‖w‖2 +C

L

∑
i=1

H1(yi fθ(xi))+C∗
L+2U

∑
i=L+1

Rs(yi fθ(xi)) . (3)

This is the minimization problem we now consider in the rest of the paper.
Balancing constraint One problem with TSVM as stated above is that in high dimensions with
few training examples, it is possible to classify all the unlabeled examples as belonging to only one
of the classes with a very large margin, which leads to poor performance. To cure this problem, one
further constrains the solution by introducing a balancing constraint that ensures the unlabeled data
are assigned to both classes. Joachims (1999b) directly enforces that the fraction of positive and
negatives assigned to the unlabeled data should be the same fraction as found in the labeled data.
Chapelle and Zien (2005) use a similar but slightly relaxed constraint, which we also use in this
work:

1
U

L+U

∑
i=L+1

fθ(xi) =
1
L

L

∑
i=1

yi . (4)
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Concave-Convex Procedure (CCCP) Unfortunately, the TSVM optimization problem as given
above is not convex, and minimizing a non-convex cost function is often considered difficult. Gra-
dient descent techniques, such as conjugate gradient descent or stochastic gradient descent, often
involve delicate hyper-parameters (LeCun et al., 1998). In contrast, convex optimization seems
much more straight-forward. For instance, the SMO algorithm (Platt, 1999) locates the SVM solu-
tion efficiently and reliably.

We propose to solve this non-convex problem using the “Concave-Convex Procedure” (CCCP)
(Yuille and Rangarajan, 2002). The CCCP procedure is closely related tothe “Difference of Con-
vex” (DC) methods that have been developed by the optimization community during the last two
decades (Le Thi, 1994). Such techniques have already been applied for dealing with missing values
in SVMs (Smola et al., 2005), for improving boosting algorithms (Krause and Singer, 2004), and
in the “Ψ-learning” framework (Shen et al., 2003).

Assume that a cost functionJ(θ) can be rewritten as the sum of a convex partJvex(θ) and
a concave partJcav(θ). Each iteration of the CCCP procedure (Algorithm 1) approximates the
concave part by its tangent and minimizes the resulting convex function.

Algorithm 1 : The concave-convex procedure (CCCP)

Initialize θ0 with a best guess.
repeat

θt+1 = argmin
θ

(
Jvex(θ)+J′cav(θ

t) ·θ
)

(5)

until convergence ofθt

One can easily see that the costJ(θt) decreases after each iteration by summing two inequalities
resulting from (5) and from the concavity ofJcav(θ).

Jvex(θ
t+1)+J′cav(θ

t) ·θt+1 ≤ Jvex(θ
t)+J′cav(θ

t) ·θt (6)

Jcav(θ
t+1) ≤ Jcav(θ

t)+J′cav(θ
t) ·
(
θt+1−θt) (7)

The convergence of CCCP has been shown by Yuille and Rangarajan (2002) by refining this argu-
ment. The authors also showed that the CCCP procedure remains valid ifθ is required to satisfy
some linear constraints. Note that no additional hyper-parameters are needed by CCCP. Further-
more, each update (5) is a convex minimization problem and can be solved using classical and
efficient convex algorithms.

CCCP for TSVMs Interestingly, the Ramp Loss can be rewritten as the difference between two
Hinge losses (see Figure 2):

Rs(z) = H1(z)−Hs(z) . (8)

Because of this decomposition, the TSVM minimization problem as stated in (3) is amenable to
CCCP optimization. The costJs(θ) can indeed be decomposed into a convexJs

vex(θ) and concave
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Js
cav(θ) part as follows:

Js(θ) =
1
2
‖w‖2 +C

L

∑
i=1

H1(yi fθ(xi))+C∗
L+2U

∑
i=L+1

Rs(yi fθ(xi))

=
1
2
‖w‖2 +C

L

∑
i=1

H1(yi fθ(xi))+C∗
L+2U

∑
i=L+1

H1(yi fθ(xi))

︸ ︷︷ ︸

Js
vex(θ)

−C∗
L+2U

∑
i=L+1

Hs(yi fθ(xi))

︸ ︷︷ ︸

Js
cav(θ)

.

(9)

This decomposition allows us to apply the CCCP procedure as stated in Algorithm1. The convex
optimization problem (5) that constitutes the core of the CCCP algorithm is easily reformulated into
dual variablesα using the standard SVM technique.

After some algebra, we show in Appendix A that enforcing the balancing constraint (4) can be
achieved by introducing an extra Lagrangian variableα0 and an examplex0 implicitely defined by

Φ(x0) =
1
U

L+U

∑
i=L+1

Φ(xi) ,

with labely0 = 1. Thus, if we noteK the kernel matrix such that

Ki j = Φ(xi) ·Φ(x j) ,

the column corresponding to the examplex0 is computed as follow:

Ki0 = K0i =
1
U

L+U

∑
j=L+1

Φ(x j) ·Φ(xi) ∀i . (10)

The computation of this special column can be achieved very efficiently by computing it only once,
or by approximating the sum (10) using an appropriate sampling method.

Given the decomposition of the cost (9) and the trick of the special extra example (10) to enforce
the balancing constraint, we can easily apply Algorithm 1 to TSVMs. To simplifiy the first order
approximation of the concave part in the CCCP procedure (5), we denote

βi = yi
∂Js

cav(θ)

∂ fθ(xi)
=

{
C∗ if yi fθ(xi) < s
0 otherwise

, (11)

for unlabeled examples (that isi ≥ L + 1).2 The concave partJs
cav does not depend on labeled

examples (i ≤ L) so we obviously haveβi = 0 for all i ≤ L. This yields Algorithm 2, after some
standard derivations detailed in Appendix A.

Convergence of Algorithm 2 in finite timet∗ is guaranteed because variableβ can only take
a finite number of distinct values, becauseJ(θt) is decreasing, and because inequality (7) is strict
unlessβ remains unchanged.

2. Note thatJs
cav(·) is non-differentiable atz= s, becauseHs(·) is not. It can be shown that the CCCP remains valid

when using any super-derivative of the concave function. Alternatively, the functionHs(·) could be made smooth in
a small interval[s− ε,s+ ε].
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Algorithm 2 : CCCP for TSVMs

Initialize θ0 = (w0,b0) with a standard SVM solution on the labeled points.

Computeβ0
i =

{
C∗ if yi fθ0(xi) < sandi ≥ L+1
0 otherwise

Setζi = yi for 1≤ i ≤ L+2U andζ0 = 1
L ∑L

i=1yi

repeat
• Solvethe following convex problem ( withKi j = Φ(xi) ·Φ(x j) )

max
α

(

α ·ζ−
1
2

αT K α

)

subject to







α ·1 = 0
0≤ yi αi ≤C ∀1≤ i ≤ L
−βi ≤ yi αi ≤C∗−βi ∀i ≥ L+1

• Computebt+1 using fθt+1(xi) =
L+2U

∑
j=0

αt+1
j Ki j + bt+1 and

∀i ≤ L : 0 < yi αi < C =⇒ yi fθt+1(xi) = 1
∀i > L : −βi < yi αi < C∗−βi =⇒ yi fθt+1(xi) = 1

• Compute βt+1
i =

{
C∗ if yi fθt+1(xi) < s andi ≥ L+1
0 otherwise

until βt+1 = βt

Complexity The main point we want to emphasize in this paper is the advantage in terms of
training time of our method compared to existing approaches. Training a CCCP-TSVM amounts
to solving a series of SVM optimization problems withL +2U variables. Although SVM training
has a worst case complexity ofO ((L+2U)3) it typically scales quadratically (see Joachims, 1999a;
Platt, 1999), and we find this is the case for our TSVM subproblems as well. Assuming a constant
number of iteration steps, the whole optimization of TSVMs with CCCP should scalequadratically
in most practical cases (see Figure 3, Figure 8 and Figure 9). From ourexperience, around five
iteration steps are usually sufficient to reach the minimum, as shown in the experimental section of
this paper, Figure 4.

3. Previous Work

SVMLight-TSVM Like our work, the heuristic optimization algorithm implemented in SVM-
Light (Joachims, 1999b) solves successive SVM optimization problems, but on L +U instead of
L + 2U data points. It improves the objective function by iteratively switching the labels of two
unlabeled pointsxi andx j with ξi + ξ j > 2. It uses two nested loops to optimize a TSVM which
solves a quadratic program in each step. The convergence proof of the inner loop relies on the fact
that there is only a finite number 2U of labelings ofU unlabeled points, even though it is unlikely
that all of them are examined. However, since the heuristic only swaps the labels of two unlabeled
examples at each step in order to enforce the balancing constraint, it might need many iterations to
reach a minimum, which makes it intractable for big data set sizes in practice (cf.Figure 3).
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SVMLight uses annealing heuristics for the selection ofC∗. It begins with a small value ofC∗

(C∗ = 1e−5), and multipliesC∗ by 1.5 on each iteration until it reachesC. The numbers 1e−5 and
1.5 are hard coded into the implementation. On each iteration the tolerance on the gradients is also
changed so as to give more approximate (but faster) solutions on earlier iterations. Again, several
heuristics parameters are hard coded into the implementation.

∇TSVM The∇TSVM of Chapelle and Zien (2005) is optimized by performing gradient descent
in the primal space: minimize

1
2
‖w‖2 +C

L

∑
i=1

H2(yi fθ(xi))+C∗
L+U

∑
i=L+1

H∗(yi fθ(xi)),

whereH2(t) = max(0,1− t)2 and H∗(t) = exp(−3t2) (cf. Figure 1, center). This optimization
problem can be considered a smoothed version of (1).∇TSVM also has similar heuristics forC∗ as
SVMLight-TSVM. It begins with a small value ofC∗ (C∗ = bC), and iteratively increasesC∗ over
l iterations until it finally reachesC. The valuesb = 0.01 andl = 10 are default parameters in the
code available at:http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/lds.

Since the gradient descent is carried out in the primal, to learn nonlinear functions it is necessary
to perform kernel PCA (Scḧolkopf et al., 1997). The overall algorithm has a time complexity equal
to the square of the number of variables times the complexity of evaluating the cost function. In this
case, evaluating the objective scales linearly in the number of examples, so the overall worst case
complexity of solving the optimization problem for∇TSVM isO ((U +L)3). The KPCA calculation
alone also has a time complexity ofO ((U +L)3). This method also requires one to store the entire
kernel matrix in memory, which clearly becomes infeasible for large data sets.

CS3VM The work of Fung and Mangasarian (2001) is algorithmically the closest TSVM approach
to our proposal. Following the formulation of transductive SVMs found in Bennett and Demiriz
(1998), the authors consider transductive linear SVMs with a 1-norm regularizer, which allow them
to decompose the corresponding loss function as a sum of a linear functionand a concave function.
Bennett proposed the following formulation which is similar to (1): minimize

||w||1 +C
L

∑
i=1

ξi +C∗
U

∑
i=L+1

min(ξi ,ξ∗i )

subject to
yi fθ(xi) ≥ 1−ξi , i = 1, . . . ,L

fθ(xi) ≥ 1−ξi , i = L+1, . . . ,L+U

−(w ·xi +b) ≥ 1−ξ∗i , i = L+1, . . . ,L+U

ξi ≥ 0,ξ∗i ≥ 0.

The last term of the objective function is nonlinear and corresponds to theloss function given in
Figure 1, left. To deal with this, the authors suggest to iteratively approximate the concave part
as a linear function, leading to a series of linear programming problems. This can be viewed as
a simplified subcase of CCCP (a linear function being convex) applied to a special kind of SVM.
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Note also that the algorithm presented in their paper did not implement a balancing constraint for the
labeling of the unlabeled examples as in (4). Our transduction algorithm is nonlinear and the use of
kernels, solving the optimization in the dual, allows for large scale training with high dimensionality
and number of examples.

4. Small Scale Experiments

This section presents small scale experiments appropriate for comparing our algorithm with ex-
isting TSVM approaches. In order to provide a direct comparison with published results, these
experiments use the same setup as (Chapelle and Zien, 2005). All methods usethe standard RBF
kernel,Φ(x) ·Φ(x′) = exp(−γ||x−x′||2).

data set classes dims points labeled
g50c 2 50 500 50
Coil20 20 1024 1440 40
Text 2 7511 1946 50
Uspst 10 256 2007 50

Table 1: Small-Scale Data Sets. We used the same data sets and experimental setup in these exper-
iments as found in Chapelle and Zien (2005).

(number of
Coil20 g50c Text Uspst hyperparameters)

SVM 24.64 8.32 18.86 23.18 2
SVMLight-TSVM 26.26 6.87 7.44 26.46 2
∇TSVM 17.56 5.80 5.71 17.61 2

CCCP-TSVM|s=0
UC∗=LC 16.69 5.62 7.97 16.57 2

CCCP-TSVM|UC∗=LC 16.06 5.04 5.59 16.47 3
CCCP-TSVM 15.92 3.92 4.92 16.45 4

Table 2: Results on Small-Scale Data Sets. We report the best test error over the hyperparameters
of the algorithms, as in the methodology of Chapelle and Zien (2005). SVMLight-TSVM
is the implementation in SVMLight.∇TSVM is the primal gradient descent method of
Chapelle and Zien (2005). CCCP-TSVM|s=0

UC∗=LC reports the results of our method using the
heuristicUC∗ = LC with the Symmetric Hinge Loss, that is withs= 0. We also report
CCCP-TSVM|UC∗=LC where we allow the optimization ofs, and CCCP-TSVM where we
allow the optimization of bothC∗ ands.

Table 1 lists the data sets we have used. Theg50c data set is an artificial data set where the
labels correspond to two Gaussians in a 50-dimensional space. The meansof those Gaussians are
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placed in such a way that the Bayes error is 5%. Thecoil20 data is a set of gray-scale images of 20
different objects taken from different angles, in steps of 5 degrees (S.A.Nene et al., 1996). Thetext
data set consists of the classesmswindows andmac of theNewsgroup20 data set preprocessed as in
Szummer and Jaakkola (2001a). Theuspst data set is the test part of theUSPS hand written digit
data. All data sets are split into ten parts with each part having a small amount of labeled examples
and using the remaining part as unlabeled data.

4.1 Accuracies

Consistent with (Chapelle and Zien, 2005), all hyperparameters are tuned on the test set. Chapelle
and Zien (2005) argue that, in order to perform algorithm comparisons, itis sufficient to be “inter-
ested in the best performance and simply select the parameter values minimizing the test error”.
However we should be more cautious when comparing algorithms that have different sets of hyper-
parameters. For CCCP-TSVMs we have two additional parameters,C∗ ands. Therefore we report
the CCCP-TSVM error rates for three different scenarios:

• CCCP-TSVM, where all four parameters are tuned on the test set.

• CCCP-TSVM|UC∗=LC where we chooseC∗ using a heuristic method. We use heuristicUC∗ =
LC because it decreasesC∗ when the number of unlabeled data increases. Otherwise, for large
enoughU no attention will be paid to minimizing the training error. Further details on this
choice are given in Section 4.3.

• CCCP-TSVM|s=0
UC∗=LC where we chooses= 0 andC∗ using heuristicUC∗ = LC. This setup has

the same free parameters (C andγ) as the competing TSVM implementations, and therefore
provides the most fair comparison.

The results are reported in Table 2. CCCP-TSVM in all three scenarios achieves approximately
the same error rates as∇TSVM and appears to be superior to SVMLight-TSVM. Section 4.3 pro-
vides additional results using different hyperparameter selection strategies and discusses more pre-
cisely the impact of each hyperparameter.

4.2 Training Times

At this point we ask the reader to simply assume that all authors have chosentheir hyperparameter
selection method as well as they could. We now compare the computation times of these three
algorithms.

The CCCP-TSVM algorithm was implemented in C++.3 The successive convex optimizations
are performed using a state-of-the-art SMO implementation. Without furtheroptimization, CCCP-
TSVMs run orders of magnitude faster than SVMLight-TSVMs and∇TSVM.4 Figure 3 shows
the training time ong50c and text for the three methods as we vary the number of unlabeled
examples. For each method we report the training times for the hyperparameters that give optimal
performance as measured on the test set on the first split of the data (we use CCCP-TSVM|s=0

UC∗=LC in
these experiments). Using all 2000 unlabeled data on Text, CCCP-TSVMs are approximately133
times fasterthan SVMLight-TSVM and50 times fasterthan∇TSVM.

3. Source code available athttp://www.kyb.tuebingen.mpg.de/bs/people/fabee/transduction.html.
4. ∇TSVM was implemented by adapting the Matlab LDS code of Chapelle and Zien (2005) available athttp://www.

kyb.tuebingen.mpg.de/bs/people/chapelle/lds.
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Figure 3: Training times forg50c (left) andtext (right) for SVMLight-TSVMs, ∇TSVMs and
CCCP-TSVMs using the best parameters for each algorithm as measured on the test set
in a single trial. For the Text data set, using 2000 unlabeled examples CCCP-TSVMs are
133xfaster than SVMLight-TSVMs, and50x faster than∇TSVMs.
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Figure 4: Value of the objective function and test error during the CCCP iterations of training
TSVM on two data sets (single trial),g50c (left) andtext (right). CCCP-TSVM tends
to converge after only a few iterations.

We expect these differences to increase as the number of unlabeled examples increases further.
In particular,∇TSVM requires the storage of the entire kernel matrix in memory, and is therefore
clearly infeasible for some of the large scale experiments we attempt in Section 5.

Finally, Figure 4 shows the value of the objective function and test error during the CCCP
iterations of training TSVM on two data sets. The CCCP-TSVM objective function converges after
five to ten iterations.
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Figure 5: Computation times for different choices of hyperparameters on data setg50c (first split
only) for the three TSVM implementations tested (top three figures). The bottomtwo
figures show the computation time for all three algorithms with respect to the parameter
C only, where the time is the mean training time taken over the possible values ofγ.
The bottom right figure is a scale up of the bottom left figure, as SVMLight-TSVM is
so slow it hardly appears on the left figure. In general, SVMLight-TSVMcomputation
time appears very sensitive to parameter choices, with small values of C andγ resulting in
computation times around 2250 seconds, whereas large values ofC andγ are much faster.
∇ TSVM has almost the opposite trend on this data set: it is slower for large values ofC
or γ, although even the slowest time is still only around 20 seconds. Our CCCP-TSVM
takes only around 1 second for all parameter choices.

4.3 Hyperparameters

We now discuss in detail how the hyperparametersγ, C, C∗ ands affect the performance of the
TSVM algorithms.

Effect of the parametersγ and C. The parametersγ andC have similar effects on generalization
as in the purely supervised SVM approach (see Keerthi and Lin. (2003) for an empirical study).
However, during model selection, one has to try many choices of parameters. Some algorithms
have different computational behaviour across different parameter choices. Therefore we have stud-
ied how different choices ofC andγ affect the computation times of all three TSVM algorithms.
Figure 5 compares these computation times for theg50c data set. SVMLight-TSVM is particularly
slow for smallγ andC, taking up to 2250 seconds, whereas the other two algorithms are relatively
more stable. In particular, CCCP-TSVM takes only around 1 second for every possible parameter
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choice. This means that during cross validation the CCCP-TSVM speedup over SVMLight-TSVM
is even larger than the 133x speedup observed for the relatively benignchoice of hyperparameters
in Figure 3.

Effect of the parameter C∗ As mentioned before, both SVMLight-TSVM and∇TSVM use an
annealing heuristic for hyperparameterC∗. They start their optimization using a small value ofC∗

and slowly increaseC∗ until it reaches the final desired valueC∗ = C. CCCP-TSVM solves the
optimization problem for the desired value ofC∗ without an annealing heuristic. When one wishes
to avoid optimizingC∗, we suggest the heuristicUC∗ = LC.

Comparing the heuristics C∗ = C and UC∗ = LC Table 3 compares theC∗ = C andUC∗ = LC
heuristics on the small scale data sets. Results are provided for the cases= 0 and the case where
we allow the optimization ofs. Although the heuristicC∗ = C gives reasonable results for small
amounts of unlabeled data, we prefer the heuristicUC∗ = LC. When the number of unlabeled
examplesU becomes large, settingC∗ = C will mean the third term in the objective function (1)
will dominate, resulting in almost no attention being paid to minimizing the training error.In these
experiments the heuristicUC∗ = LC is close to the best possible choice ofC∗, whereasC∗ = C is a
little worse.

We also conducted an experiment to compare these two heuristics for largerunlabeled data sizes
U . We took the sameuspst data set (that is, the test part of the USPS data set) and we increased
the number of unlabeled examples by adding up to 6000 additional unlabeled examples taken from
the original USPS training set. Figure 6 reports the best test error for both heuristics over possible
choices ofγ andC, taking the mean of the same 10 training splits with 50 labeled examples as
before. The results indicate thatC∗ = C works poorly for largeU .

(number of
Coil20 g50c Text Uspst hyperparameters)

CCCP-TSVM|s=0
C∗=C 22.33 4.68 7.76 20.09 2

CCCP-TSVM|s=0
UC∗=LC 16.69 5.62 7.97 16.57 2

CCCP-TSVM|s=0 16.67 4.56 7.76 16.55 3
CCCP-TSVM|C∗=C 19.02 4.28 5.22 18.33 3
CCCP-TSVM|UC∗=LC 16.06 5.04 5.59 16.47 3
CCCP-TSVM 15.92 3.92 4.92 16.45 4

Table 3: Comparison ofC∗ = C andC∗ = L
U C heuristics on on Small-Scale Data Sets with the

best optimized value ofC∗ (CCCP-TSVM|s=0 or CCCP-TSVM, depending on whethers
is fixed). The heuristicC∗ = L

U C maintains the balance between unlabeled pointsU and
labeled pointsL asU andL change, and is close to the best possible choice ofC∗. The
C∗ = C heuristic also works for relatively small values ofU as in this case. We report all
methods with and without the optimization ofs.

Iteratively increasing C∗ — Iteratively increasingC∗ during the optimization can be interpreted as
starting from a convex problem (C∗ = 0) and gradually making it more non-convex, which may be a
good strategy to solve such non-convex problems. However, we believethat the annealing procedure
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Figure 6: Comparison of theC∗ = C andUC∗ = LC heuristics on theuspst data set as we increase
the number of unlabeled examples by adding extra unlabeled data from the original usps
training set. We report the best test error for both heuristics over possible of choices ofγ
andC, taking the mean of the same 10 training splits with 50 labeled examples as before.
As the number of unlabeled examples increases, theC∗ = C heuristic gives too much
weight to the unlabeled data, resulting in no improvement in performance. Intuitively, the
UC∗ = LC heuristic balances the weight of the unlabeled and labeled data and empirically
performs better.

also has a regularizing effect. The optimization is more likely to get stuck in a local minimum that
appears whenC∗ has a value much smaller thanC. This may be why theC∗ = C heuristic works
well for algorithms that also use the annealing trick.

We conducted an experiment to see the performance of SVMLight-TSVM withand without the
annealing heuristic. Ong50c, we chose a linear kernel and computed the optimal value ofC on the
test set usingC∗ = C. With the annealing heuristic, we obtain a test error of 7.6%. For the same
parameters without the annealing procedure, we obtain 12.4%. Clearly the annealing heuristic has
a strong effect on the results of SVMLight-TSVM. CCCP-TSVM has no such heuristic.

Effect of the parameters The parameters in CCCP-TSVM controls the choice of loss function to
minimize over. It controls the size of the plateau of the Symmetric Ramp function (Figure 1, right).
Training our algorithm with a tuned value ofs appears to give slightly improved results over using
the Symmetric Hinge loss (s= 0, see Figure 1, left), especially on thetext data set, as can be seen
in Tables 2 and 3. Furthermore, Figure 7 highlights the importance of the parameters of the loss
function (2) by showing the best test error over different choices ofs for two data sets,text and
g50c.

We conjecture that the peaked loss of the Symmetric Hinge function forces early decisions for
theβ variables and might lead to a poor local optimum. This effect then disappearsas soon as we
clip the loss. That is, the flat part of the loss far inside the margin prevents our algorithm from
making erroneous early decisions regarding the labels of the unlabeled data that may be hard to
undo later in the optimization.
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Figure 7: Effect of the parametersof the Symmetric Ramp loss (see Figure 1 and equation (2) ) on
thetext data set (left) and theg50c data set (right). The peaked loss of the Symmetric
Hinge function (s= 0) forces early decisions for theβ variables and might lead to a poor
local optimum. This effect then disappears as soon as we clip the loss.

In fact, the∇TSVMauthors make a similar argument to explain why they prefer their algorithm
over SVMLight: “(SVMLight) TSVM might suffer from the combinatorial nature of its approach.
By deciding, from the very first step, the putative label of every point (even with low confidence), it
may lose important degrees of freedom at an early stage and get trapped in a bad local minimum”.

Here, the authors are refering to the way SVMLight TSVM has a discrete rather than continuous
approach of assigning labels to unlabeled data. However, we think that thesmoothed loss function
of ∇TSVM may help it to outperform the Symmetric Hinge loss of SVMLight TSVM, making it
similar to the clipped loss when we uses< 0. Indeed, the∇TSVM smoothed loss, exp(−3t2), has
small gradients whent is close to 0.

A potential issue of the Symmetric Ramp loss is the fact that the gradient is exactly0 for points
lying on the plateau. Points are not updated at all in this region. This may be sub-optimal: if we are
unlucky enough that all unlabeled points lie in this region, we perform no updates at all. Performing
model selection on parameters eliminates this problem. Alternatively, we could use a piece-wise
linear loss with two different slopes for| f (x)| > s and for | f (x)| < s. Although it is possible to
optimize such a loss function using CCCP, we have not evaluated this approach.

5. Large Scale Experiments

In this section, we provide experimental results on large scale experiments.Since other methods are
intractable on such data sets, we only compare CCCP-TSVM against SVMs.

5.1 RCV1 Experiments

The first large scale experiment that we conducted was to separate the twolargest top-level cate-
gories CCAT (CORPORATE/INDUSTRIAL) and GCAT (GOVERNMENT/SOCIAL) of the training part
of the Reuters data set as prepared by Lewis et al. (2004). The set ofthese two categories consists
of 17754 documents. The features are constructed using the bag of words technique, weighted with
a TF.IDF scheme and normalized to length one. We performed experiments using 100 and 1000 la-
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Method Train Unlabeled Parameters Test
size size Error

SVM 100 0 C = 252.97, σ = 15.81 16.61%
TSVM 100 500 C = 2.597,C∗ = 10, s= −0.2, σ = 3.95 11.99%
TSVM 100 1000 C = 2.597,C∗ = 10, s= −0.2, σ = 3.95 11.67%
TSVM 100 2000 C = 2.597,C∗ = 10, s= −0.2, σ = 3.95 11.47%
TSVM 100 5000 C = 2.597,C∗ = 2.5297, s= −0.2, σ = 3.95 10.65%
TSVM 100 10000 C = 2.597,C∗ = 2.5297, s= −0.4, σ = 3.95 10.64%
SVM 1000 0 C = 25.297, σ = 7.91 11.04%

TSVM 1000 500 C = 2.597,C∗ = 10, s= −0.4, σ = 3.95 11.09%
TSVM 1000 1000 C = 2.597,C∗ = 2.5297, s= −0.4, σ = 3.95 11.06%
TSVM 1000 2000 C = 2.597,C∗ = 10, s−0.4 =, σ = 3.95 10.77%
TSVM 1000 5000 C = 2.597,C∗ = 2.5297, s= −0.2, σ = 3.95 10.81%
TSVM 1000 10000 C = 2.597,C∗ = 25.2970, s= −0.4, σ = 3.95 10.72%

Table 4: Comparing CCCP-TSVMs with SVMs on the RCV1 problem for different number of
labeled and unlabeled examples. See text for details.

beled examples. For model selection we use a validation set with 2000 and 4000 labeled examples
for the two experiments. The remaining 12754 examples were used as a test set.

We chose the parameterC and the kernel parameterγ (using an RBF kernel) that gave the best
performance on the validation set. This was done by training a TSVM using thevalidation set as
the unlabeled data. These values were then fixed for every experiment.

We then varied the number of unlabeled examplesU , and reported the test error for each choice
of U . In each case we performed model selection to find the parametersC∗ ands. A selection of the
results can be seen in Table 4.

The best result we obtained for 1000 training points was 10.58% test error, when using 10500
unlabeled points, and for 100 training points was 10.42% when using 9500 unlabeled points. Com-
pared to the best performance of an SVM of 11.04% for the former and 16.61% for the latter,
this shows that unlabeled data can improve the results on this problem. This is especially true in
the case of few training examples, where the improvement in test error is around 5.5%. However,
when enough training data is available to the algorithm, the improvement is only in theorder of one
percent.

Figure 8 shows the training time of CCCP optimization as a function of the number ofunlabeled
examples. On a 64 bit Opteron processor the optimization time for 12500 unlabeled examples was
approximately 18 minutes using the 1000 training examples and 69 minutes using 100 training
examples. Although the worst case complexity of SVMs is cubic and the optimization time seems
to be dependent on the ratio of the number of labeled to unlabeled examples, the training times show
a quadratic trend.
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Figure 8: Optimization time for the Reuters data set as a function of the number ofunlabeled data.
The algorithm was trained on 1,000 points (left) and on 100 points (right). The dashed
lines represent a parabola fitted at the time measurements.

Method Training Unlabeled Parameters Test
size size Error

SVM 100 0 C = 10,γ = 0.0128 23.44%
TSVM 100 2000 C∗ = 1, s= −0.1 16.81%
SVM 1000 0 C = 10,γ = 0.0128 7.77%

TSVM 1000 2000 C∗ = 5, s= −0.1 7.13%
TSVM 1000 5000 C∗ = 1, s= −0.1 6.28%
TSVM 1000 10000 C∗ = 0.5, s= −0.1 5.65%
TSVM 1000 20000 C∗ = 0.3, s= −0.1 5.43%
TSVM 1000 40000 C∗ = 0.2, s= −0.1 5.31%
TSVM 1000 60000 C∗ = 0.1, s= −0.1 5.38%

Table 5: Comparing CCCP-TSVMs with SVMs on the MNIST problem for different number of
labeled and unlabeled examples. See text for details.

5.2 MNIST Experiments

In the second large scale experiment, we conducted experiments on the MNIST handwritten digit
database, as a 10-class problem. The original data has 60,000 training examples and 10,000 testing
examples. We subsampled the training set for labeled points, and used the test set for unlabeled
examples (or the test set plus remainder of the training set when using more than 10,000 unlabeled
examples). We performed experiments using 100 and 1000 labeled examples. We performed model
selection for 1-vs-the-rest SVMs by trying a grid of values forσ andC, and selecting the best ones by
using a separate validation set of size 1000. For TSVMs, for efficiencyreasons we fixed the values
of σ andC to be the same ones as chosen for SVMs. We then performed model selectionusing
2000 unlabeled examples to find the best choices ofC∗ ands using the validation set. When using
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Figure 9: Optimization time for the MNIST data set as a function of the number of unlabeled data.
The algorithm was trained on 1,000 labeled examples and up to 60,000 unlabeled exam-
ples. The dashed lines represent a polynomial of degree two with a least square fit on the
algorithm’s time measurements.

more unlabeled data, we only reperformed model selection onC∗ as it appeared that this parameter
was the most sensitive to changes in the unlabeled set, and kept the other parameters fixed. For the
larger labeled set we took 2000, 5000, 10000, 20000, 40000 and 60000 unlabeled examples. We
always measure the error rate on the complete test set. The test error rateand parameter choices for
each experiment are given in the Table 5, and the training times are given in Figure 9.

The results show an improvement over SVM for CCCP-TSVMs which increases steadily as the
number of unlabeled examples increases. Most experiments in semi-supervised learning only use
a few labeled examples and do not use as many unlabeled examples as described here. It is thus
reassuring to know that these methods do not apply just to toy examples with around 50 training
points, and that gains are still possible with more realistic data set sizes.

6. Discussion and Conclusions

TSVMs are not the only means of using unlabeled data to improve generalization performance on
classification tasks. In the following we discuss some competing algorithms for utilizing unlabeled
data, and also discuss the differences between the transductive and semi-supervised learning frame-
works. Finally, we conclude with some closing remarks.

6.1 Cluster Kernels and Manifold-Learning

Transductive SVMs are not the only method of leveraging unlabeled data ina supervised learning
task. In recent years this has become a popular research topic, and a battery of techniques have
been proposed. One popular class of methods, which we refer to as cluster kernels, do not change
the learning algorithm at all, but merely the representation of the data as a pre-processing step. In
a purely unsupervised fashion, these methods learn cluster or manifold structure from the data, and
produce a new representation of it such that distances between points in the new space are small if
they are in the same cluster or on the same manifold. Some of the main methods include(Chapelle
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et al., 2002; Chapelle and Zien, 2005; Sindhwani et al., 2005; Szummer and Jaakkola, 2001b); and
(Weston et al., 2003).

Other notable methods include generalizations of nearest-neighbor or Parzen window type ap-
proaches to learning manifolds given labeled data (Zhu et al., 2003; Belkinand Niyogi, 2002; Zhou
et al., 2004). Finally, Bayesian approaches have also been pursued (Graepel et al., 2000; Lawrence
and Jordan, 2005).

We note that some cluster kernel methods (Chapelle and Zien, 2005) can perform significantly
better than TSVM on some data sets. In fact, Chapelle and Zien (2005) showthat, as these methods
provide a new representation, one can just as easily run TSVM on the newrepresentation. The
combination of TSVM and cluster kernels then provides state-of-the-art results.

6.2 Semi-Supervised Versus Transductive Learning

From a theoretical point of view, there is much ideological debate over which underlying theory that
explains TSVM is correct. The argument here is largely about which framework, semi-supervised
learning or transductive, is interesting to study theoretically or to apply practically.

Semi-supervised school The majority of researchers appear to be in thesemi-supervisedschool
of thought, which claims that TSVMs help simply because of a regularizer thatreflects prior knowl-
edge, see e.g. (Chapelle and Zien, 2005). That is, one is given a set of unlabeled data, and one uses
it to improve an inductive classifier to improve its generalization on an unseen test set.

Transductive school Vapnik (1982) describestransductionas a mathematical setup for describing
learning algorithms that benefit from the prior knowledge of the unlabeled test patterns. Vapnik
claims that transduction is an essentially easier task than first learning a general inductive rule
and then applying it to the test examples. Transductive bounds address the performance of the
trained system on these test patterns only. They do not apply to test patterns that were not given
to the algorithm in the first place. As a consequence, transductive boundsare purely derived from
combinatorial arguments (Vapnik, 1982) and are more easily made data-dependent (Bottou et al.,
1994; Derbeko et al., 2004). Whether this is a fundamental property or atechnical issue is a matter
of debate.

Experiments The following experiments attempt to determine whether the benefits of TSVMs are
solelycaused by the prior knowledge represented by the distribution of the unlabeled data. If this is
the case, the accuracy should not depend on the presence of the actual test patterns in the unlabeled
data.

The following experiments consider three distinct subsets: a small labeled training set and two
equally sized sets of unlabeled examples. Generalization accuracies are always measured on the
third set. On the other hand, we run CCCP-TSVM using either the second orthe third set as
unlabeled data. We respectively name these results “Semi-Supervised TSVM” and “Transductive
TSVM”. Experiments were carried out on both the Text and MNIST data set (class 8 vs rest) using
ten splits. For Text, we fixed to a linear kernel,C = 1000, ands= −0.3. For MNIST-8 we fixed
γ = 0.0128 andC = 10. We report the best test error over possible values ofC∗. Table 6 shows that
transductive TSVMs perform slightly better than semi-supervised TSVMs on these data sets.

Transductive TSVMs are only feasible when the test patterns are knownbefore training. In that
sense, its applicability is more limited than that of Semi-Supervised TSVMs. On the other hand,
when the test and training data are not identically distributed, we believe the concept of transduction
could be particularly worthwhile.

1705



COLLOBERT, SINZ , WESTON AND BOTTOU

Text MNIST-8
SVM 18.86% 6.68%
semi-supervised TSVM 6.60% 5.27%
transductive TSVM 6.12% 4.87%

Table 6: Transductive TSVM versus Semi-Supervised TSVM.

6.3 Conclusion and Future Directions

In this article we have described an algorithm for TSVMs using CCCP that brings scalability im-
provements over existing implementation approaches. It involves the iterativesolving of standard
dual SVM QP problems, and usually requires just a few iterations. One nicething about being an
extension of standard SVM training is that any improvements in SVM scalability can immediately
also be applied to TSVMs. For example in the linear case, one could easily apply fast linear SVM
training such as in (Keerthi and DeCoste, 2005) to produce very fast linear TSVMs. For the non-
linear case, one could apply the online SVM training scheme of Bordes et al.(2005) to give a fast
online transductive learning procedure.
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Appendix A. Derivation of the Optimization Problem

We consider a set ofL training pairsL = {(x1,y1), . . . ,(xL,yL)}, x ∈ R
n, y∈ {1,−1} and a (un-

labeled) set ofU test vectorsU = {xL+1, . . . ,xL+U}. SVMs have a decision functionfθ(.) of the
form

fθ(x) = w·Φ(x)+b,

whereθ = (w, b) are the parameters of the model, andΦ(·) is the chosen feature map.
We are interested in minimizing the TSVM cost function (3), under the constraint (4). We

rewrite the problem here for convenience: minimizing

Js(θ) =
1
2
‖w‖2 +C

L

∑
i=1

H1(yi fθ(xi))+C∗
L+2U

∑
i=L+1

Rs(yi fθ(xi)) , (12)

under the constraint
1
U

L+U

∑
i=L+1

fθ(xi) =
1
L

L

∑
i=1

yi . (13)

Assume that a cost functionJ(θ) can be rewritten as the sum of a convex partJvex(θ) and a
concave partJcav(θ). As mentioned above in Algorithm 1, the minimization ofJ(θ) with respect to
θ (θ being possibly restricted to a spaceA defined by some linear constraints) can be achieved by
iteratively updating the parametersθ using the following update

θt+1 = argmin
θ∈A

(
Jvex(θ)+J′cav(θ

t) ·θ
)

. (14)
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In the case of our cost (12), we showed (see (9)) thatJs(θ) can be decomposed into the sum of
Js

vex(θ) andJs
cav(θ) where

Js
vex(θ) =

1
2
‖w‖2 +C

L

∑
i=1

H1(yi fθ(xi))+C∗
L+2U

∑
i=L+1

H1(yi fθ(xi)) (15)

and

Js
cav(θ) = −C∗

L+2U

∑
i=L+1

Hs(yi fθ(xi)) . (16)

In order to apply the CCCP update (14) we first have to calculate the derivative of the concave
part (16) with respect toθ:

∂Js
cav(θ)

∂θ
= −C∗

L+2U

∑
i=L+1

∂Js
cav(θ)

∂ fθ(xi)

∂ fθ(xi)

∂θ

We introduce the notation

βi = yi
∂Js

cav(θ)

∂ fθ(xi)

=

{
C∗H ′

s[yi fθ(xi)] if i ≥ L+1
0 otherwise

=

{
C∗ if yi fθ(xi) < s andi ≥ L+1
0 otherwise

.

Since fθ(xi) = w ·Φ(xi)+ b with θ = (w,b), and∂ fθ(xi)/∂θ = (Φ(xi),1), each update (14)
of the CCCP procedure applied to the our minimization problem (12) consists in minimizing the
following cost

Js
vex(θ)+

∂Js
cav(θ)

∂θ
·θ = Js

vex(θ)+

(
L+2U

∑
i=L+1

yi βi
∂ fθ(xi)

∂θ

)

·θ

= Js
vex(θ)+

L+2U

∑
i=L+1

βi yi [w ·Φ(xi)+b] ,

(17)

under the linear constraint (13).
The convex part (16) contains Hinge Losses which can be rewritten as

H1(z) = max(0, 1−z) = minξ s.t ξ ≥ 0, ξ ≥ 1−z.

It is thus easy to see that the minimization of (17) under the constraint (13) is equivalent to the
following quadratic minimization problem under constraints:

argmin
θ,ξ

1
2
||w||2 +C

L

∑
i=1

ξi +C∗
L+2U

∑
i=L+1

ξi +
L+2U

∑
i=L+1

βi yi fθ(xi)

s.t.
1
U

L+U

∑
i=L+1

fθ(xi) =
1
L

L

∑
i=1

yi (18)

yi fθ(xi) ≥ 1−ξi ∀1≤ i ≤ L+2U (19)

ξi ≥ 0 ∀1≤ i ≤ L+2U (20)
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Introducing Lagrangian variablesα0, α andν corresponding respectively to constraints (18), (19)
and (20), we can write the Lagrangian of this problem as

L (θ, ξ, α,ν) =
1
2
||w||2 +C

L

∑
i=1

ξi +C∗
L+2U

∑
i=L+1

ξi +
L+2U

∑
i=L+1

βi yi fθ(xi)

−α0

(

1
U

L+U

∑
i=L+1

fθ(xi)−
1
L

L

∑
i=1

yi

)

−
L+2U

∑
i=1

αi (yi fθ(xi)−1+ξi)

−
L+2U

∑
i=1

νiξi ,

(21)

whereα0 can be positive or negative (equality constraint) andαi , i ≥ 1 are non-negative (inequality
constraints).

Taking into account thatβi = 0 for i ≤ L, calculating the derivatives with respect to the primal
variables yields

∂L
∂w

= w−
L+2U

∑
i=1

yi (αi −βi)Φ(xi)−
α0

U

L+U

∑
i=L+1

Φ(xi)

∂L
∂b

= −
L+2U

∑
i=1

yi (αi −βi)−α0

∂L
∂ξi

= C−αi −νi ∀1≤ i ≤ L

∂L
∂ξi

= C∗−αi −νi ∀L+1≤ i ≤ L+2U .

For simplifying the notation, we now define an extra special examplex0 in an implicit manner:

Φ(x0) =
1
U

L+U

∑
i=L+1

Φ(xi) ,

and we sety0 = 1 andβ0 = 0. Setting the derivatives to zero gives us

w =
L+2U

∑
i=0

yi (αi −βi)Φ(xi) (22)

and
L+2U

∑
i=0

yi (αi −βi) = 0 (23)

and also
C−αi −νi = 0 ∀1≤ i ≤ L, C∗−αi −νi ∀L+1≤ i ≤ L+2U . (24)

In order to find the minimum of the minimization problem (12) we want to find a saddlepoint
of the Lagrangian (21), as in classical SVMs methods. Substituting (22), (23) and (24) into the
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Lagrangian (21) yields the following maximization problem

argmax
α

−
1
2

L+2U

∑
i, j=0

yi y j(αi −βi)(α j −β j)Φ(xi) ·Φ(x j)

+
L+2U

∑
i=1

αi +α0

(

1
L

L

∑
i=1

yi

) (25)

under the constraints
0≤ αi ≤C ∀1≤ i ≤ L

0≤ αi ≤C∗ ∀L+1≤ i ≤ L+2U
∑L+2U

i=0 yi (αi −βi) = 0.

(26)

The parameterw is then given by (22) andb is obtained using one of the following Karush-Kuhn-
Tucker (KKT) conditions:

α0 6= 0 =⇒
1
U

L+U

∑
i=L+1

[w ·Φ(xi)+b] =
1
L

L

∑
i=1

yi

∀1≤ i ≤ L, 0 < αi < C =⇒ yi [w ·Φ(xi)+b] = 1

∀L+1≤ i ≤ L+2U, 0 < αi < C∗ =⇒ yi [w ·Φ(xi)+b] = 1

If we defineζi = yi for 1≤ i ≤ L+2U andζ0 = 1
L ∑L

i=1yi , and consider the kernel matrixK such
that

Ki j = Φ(xi) ·Φ(x j) ,

and we perform the substitution
α̃i = yi (αi −βi) ,

then we can rewrite the maximization problem (25) under the constraints (26) as the following

argmax
α̃

ζ · α̃−
1
2

α̃TKα̃

under the constraints

0≤ yi α̃i ≤C ∀1≤ i ≤ L

−βi ≤ yi α̃i ≤C∗−βi ∀L+1≤ i ≤ L+2U (27)

∑L+2U
i=0 α̃i = 0.

Obviously this optimization problem is very close to an SVM optimization problem. It isthus
possible to optimize it with a standard optimizer for SVMs. Note that only the bounds in (27) on
theα̃i have to be adjusted after each update ofβ.
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