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Abstract

Given a matrix of values in which the rows correspond to dsjemd the columns correspond
to features of the objects, rearrangement clustering igtbelem of rearranging the rows of the
matrix such that the sum of the similarities between adjapams is maximized. Referred to by
various names and reinvented several times, this clugtegthnique has been extensively used in
many fields over the last three decades. In this paper, wé qatitwo critical pitfalls that have been
previously overlooked. The first pitfall is deleterious whearrangement clustering is applied to
objects that form natural clusters. The second concernsitasity metric that is commonly used.
We present an algorithm that overcomes these pitfalls. algigrithm is based on a variation of
the Traveling Salesman Problem. It offers an extra benefit @stomatically determines cluster
boundaries. Using this algorithm, veptimally solve four benchmark problems and a 2,467-gene
expression data clustering problem. As expected, our ngarithm identifies better clusters than
those found by previous approaches in all five cases. Oyerallresults demonstrate the benefits
of rectifying the pitfalls and exemplify the usefulness bistclustering technique. Our code is
available at our websites.

Keywords: clustering, visualization of patterns in data, bond enatggrithm, traveling salesman
problem, asymmetric clustering

1. Introduction

Science is organized knowledge. Wisdom is organized life.
- Immanuel Kant

Clustering is aimed at discovering structures and patterns of a givenalatsssa fundamental
problem and technique for data analysis, clustering has become inglgasiportant, especially
with the explosion of data on the World Wide Web and the advent of massamitjas of genomic
data.
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A given set of objects can be clustered in a variety of ways, dependirtgree criteria: the
degree of granularity desired, the distance measure that is employeticastgjective that is stated
as the goal for the clustering.

The degree of granularity affects clustering results. There is usua#ipgerof values for the
number of cluster& that are of interest. The desired degree of granularity is problem specifi
Consider for example, clustering the population of a large geograpkigialr. A company wishing
to determine the location of a few distribution centers would desire a $mwalue, while a utility
company may have applications requiring several thousand clusterse @©range of values is
established fok, it is frequently useful to determine clustering results for several vaitikesvithin
this range and use domain knowledge to determine the best solution.

The choice of a distance measure also impacts clustering results. A distea@renis a means
of quantifying the pair-wise dissimilarities between objects. Alternatively, a dityileneasure
is used to quantify pair-wise similarities. When objects can be accuratelgatbezed as points
residing within a metric space, the Euclidean distance is frequently employistnbe functions
are sometimes assumed to be symmeire, d(i, j) = d(j,i)), obey the triangle inequality, and
require thatd(i,i) = 0. In this paper, we do not assume that any of these properties nélgessa
hold as there exist applications when effective distance measures dbeythese properties. For
instance, in the realm of document clustering,¢bsine distancés frequently employed, although
this measure does not obey the triangle inequality (Steinbach et al., 2000).

Finally, the objective that is stated as the goal guides the clustering reslulse@g problems
are interesting as there is no single objective that is universally appliddbley objective functions
have been proposed and used throughout the history of clusteringe Slgjectives optimize with
respect to distances of objects to their respective cluster centers. Smmeheir optimizations
on diameters or maximum pair-wise distances of each cluster. These objectives tesduma
somewhat regular cluster configurations and can lead to undesirablis relsen cluster boundaries
are complex as in Figure 1. Intuitive clustering using the Euclidean distanasumeis shown in
Figure 1(b). In this case, many objects are closer to the center of aediffeluster than their own
and the diameters are not minimized.

One clustering problem that has been studied extensively is the probléterdffying and
displaying groups of similar objects that occur in complex data arrays (kuiCk et al., 1972;
Arabie and Hubert, 1990; Arabie et al., 1988; Alpert, 1996; Johnsah,e2004; Torres-Velzquez
and Estivill-Castro, 2004). The problem can be represented as a mate\the rows correspond
to the objects to be clustered and the columns are their features. Similar olajedis entified
and displayed by rearranging the rows so that the overall similarity betaleadjacent objects is
maximized. After rearranging the rows, the clusters are identified eitheratiaion automatically
in a second step.

This clustering problem actually consists of two objectives. The first tibagets consistently
used for a number of applications and requires either the maximization of th@fssimilarities
between adjacent rows or the minimization of the sum of distances betweemtdiaws. The
second objective varies in the literature, however, the general goaideritify clusters among the
rearranged objects.

In 1972, McCormick, Schweitzer, and White introduced bund energy algorithn{BEA)
which yields an approximate solution for the first objective of this clusteriodgplpm. Since that
time, a “fast-growing literature” (Marcotorchino, 1987, p. 73) has appe on this subject. This
problem has been applied to a number of different applications in dieeeses, such as database

920
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(@) (b)

Figure 1: (a) A data set with Euclidean distance used for the distance raeglsyIntuitive clus-
tering of the data set. Many objects are closer to the center of a diffdusteicthan their
own and the diameters are not minimized.

design (Ozsu and Valduriez, 1999), data mining (Dunham, 2003), fzatian of sparse matrices
(Alpert, 1996), matrix compression (Johnson et al., 2004), informatitreval (March, 1983),
manufacturing (Kusiak, 1985), imaging (Kusiak, 1984), marketing (Arabial., 1988), software
engineering (Gorla and Zhang, 1999), VLSI circuit design (Alper86)9clustering of web-users
(Torres-Velzquez and Estivill-Castro, 2004), shelf space allocattiom ¢t al., 2004), and clustering
of genes (Liu et al., 2004).

For some of these applications, it is useful to also rearrange the colurimi® t8e rearrange-
ment of the columns is independent of the rearrangement of rows, tharelktan be rearranged in
a separate step, using the same technique that is used for the rows.

The core problem does not seem to have been given a consistent nainasabeen reinvented
several time’s(McCormick et al., 1972; Alpert and Kahng, 1997; Johnson et al., 2004 es-
Velzquez and Estivill-Castro, 2004). It has been referred to asctsiing of matrices” (Punnen,
2002), “data reorganization” (McCormick et al., 1972), “clustering atledarrays” (Lenstra, 1974),
“restricted partitioning” (Alpert and Kahng, 1997), and “matrix reomdgt (Johnson et al., 2004).
Due to its nature and for the convenience of our discussion, we call thstedig problenrear-
rangement clustering

Almost all of the existing rearrangement clustering algorithms have focnsedranging the
objects to approximately maximize the overall similarity (or minimize the overall dissimiarity
between adjacent objects, while few methods have been developed to acatiynalentify the
clusters of objects that form natural groups. An exception is the wohlipefrt and Kahng (1997), in
which they identified optimal partitioning for a given number of cluskersor many rearrangement
clustering algorithms, the objects are first rearranged, then a domairt eepermines the cluster
intervals.

Although rearrangement clustering has been extensively used forthar&0 years, there are
two serious pitfalls that have been previously overlooked. The firstligifdeleterious when the
objects to be rearranged form natural clusters; which is the case éoy application we have

1. In fact, we also reinvented it ourselves at the beginning of this relsear
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observed. The second pitfall concerns the use ofrtbasure of effectivene@dE) metric, which is
employed by the bond energy algorithm.

In this paper, we first briefly summarize background material. Then weiigdéwo pitfalls
of previous approaches. In Section 4 we present techniques fdyireg these pitfalls. Section 5
describes the implementation of rearrangement clustering without the pitfalssuwimarize the
results of using this implementation for four benchmark problems and a 2,4&7%egeression data
clustering problem in Section 6. We conclude this paper with a brief diseusgigoreliminary
report on this work appeared in an earlier paper (Climer and Zhang)200

2. Background

Given a matrix in which each row corresponds to an object and each calomasponds to a feature
of the objects, rearrangement clustering is the problem of shuffling theawound until the sum of
the similarities between adjacent rows is maximized. The similarity of two objectsecareasured
by a similarity score defined on their features.

More formally, letP represent the set of all possible permutations of rows for a given matrix
ands(i, j) represent a non-negative similarity measure for objects (royys) Then an optimal
permutationp € P for the given similarity measure is

V(P) = max(hgs(i,ijtl)) 1)

for n objects. Conversely, given a non-negatilresimilarity function,d(i, j), an optimal permuta-
tionpePis

W(P) = min (r']zlld(i,iJrl)) . 2

2.1 Bond Energy Algorithm

One of the first algorithms to tackle rearrangement clustering was the benglyealgorithm (BEA)
(McCormick et al., 1972). BEA uses the measure of effectiveness (Mihich the similarity
measure for two rows,and j, is

.’ . _ m . . 3
s(i, j) kzlaka,k 3)

wheremis the number of features aig is the (non-negativelth feature of object? Hence, each
element in the matrix, except those in the last row, is multiplied by the element dibettly it, and
ME is equal to the sum of these products. The intuition behind this similarity meastirat large
values will be drawn to other large values, and small values to other smadisyada as to increase
the overall sum of the products. The tebond energyexpresses this concept. BEA computes an
approximate solution that attempts to maximize ME.

BEA has gained wide recognition and remains the algorithm of choice fomdeuof applica-
tions. One such use arises in manufacturing. In these applications, pargchines with similar
features are grouped into families in a process referred telhgormation Chu and Tsai (1990)

2. McCormick et al. used a single ME function to simultaneously quantify siitia of adjacent columns as well as
adjacent rows.
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compared three rearrangement algorithms for this application: rank drd#ering (ROC) (King,
1980), direct clustering analysis (DCA) (Chan and Milner, 1982),BIE4. They ran trials for var-
ious manufacturing applications and found that BEA outperformed the ttlealgorithms in all
of their tests.

BEA is also popular for database design. The goal here is to determired aéir$butes that are
accessed by distinct sets of applications, using a process referrededieal fragmentatior{fOzsu
and Valduriez, 1999). BEA has been promoted for this use (HofferSavarance, 1975; Navathe
et al., 1984). Furthermore, BEA is included in textbooks on databasend@igu and Valduriez,
1999) and data mining (Dunham, 2003).

BEA has also been used for analyzing program structure in the fieldftofege engineering
(Gorla and Zhang, 1999). The locations of all of the components, thepentive calls, and the
depth of nested calls all contribute to the difficulties that can be expectéugdine debugging
and maintenance phases of a program’s life. Due to the fact that thesespr@ generally much
more expensive than the other phases, structural improvements arel@aBBA has been used to
determine the placement of components with good results (Gorla and Zie894), 1

A recent application of BEA was the clustering of gene expression daia(lal., 2004). The
current microarray gene expression profiling technology (Baldi aatfiéid, 2002; Eisen et al.,
1998) is able to examine the expressions of hundreds, thousandsideesef thousands of genes
at once. A large amount of microarray data has been collected on nusrsggecies and organisms,
ranging from microbial organisms to plants to animals. The results of a set abamiay experi-
ments on a collection of genes under different conditions are typicallpgechas a matrix of gene
expression levels in real values, where the rows represent the tgpdmesnalyzed and the columns
corresponds to experimental conditions (Baldi and Hatfield, 2002; [eis&n 1998). The objective
is to identify and display clusters of genes that have similar expressionmsatBEA was shown to
outperformk-means for the clustering of 44 yeast genes (Liu et al., 2004).

2.2 Traveling Salesman Problem

It has been pointed out that rearrangement clustering is equivalerg Todtieling Salesman Prob-
lem (TSP) and can be solved aptimality by solving the TSP (Lenstra, 1974; Lenstra and Kan,
1975). The TSP fon cities is the problem of finding a tour visiting all the cities and returning to
the starting city such that the sum of the distances between consecutivesattiegmized. In other
words, the TSP is to find a cyclic permutation of the cities so that the total disthadgcent cities
under the permutation is minimized. It is well known that TSP is NP-hard (KI&p2).

The mapping from a rearrangement clustering problem instance to a TtaRdess straight-
forward (Lenstra, 1974; Lenstra and Kan, 1975). We first vievhedgject as a city and transform
the dissimilarity between two objects to the distance between the correspoitiksg The TSP
tour, which must have the minimum distance among all complete tours, is an optanamge-
ment of the objects with the minimum dissimilarity. (We use the walidsanceanddissimilarity
synonymously in this paper.) Thus, the TSP is the same problem as findingisralopermutation
p, except that the TSP finds a cycle through the cities and rearrangelmstietiog finds a path.

This discrepancy can easily be rectified by addimiyamy city A dummy city is an added city
whose distance to each of the other cities is equal to a corBtartie location of the dummy city
is the optimal point for breaking the TSP cycle into a path (Lenstra and K&ts)1 The TSP path
is defined as the TSP tour with the dummy city and its two incident edges excliledength of
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this path is equal to the length of the tour min& Zollowing are two critical observations on the
above extended TSP.

Lemmal The direct distance between the two cities that are separated by the dutyisygeeater
than or equal to any of the distances between adjacent pairs of cities drsth¢our, and the total
distance of the TSP path is the smallest possible.

Proof. We prove the first part of the Lemma by contradiction. Assume that the destiir,y)
between an adjacent pair of citiesandy, on the TSP toufT is greater than the direct distance
d(u,v) of the two citiesu andv, which are spanned by the dummy city. Thatd&y,v) < d(x,y).
Then we can directly connect citiesandv, and insert the dummy city between citieandy, with
a net difference ofl(u,v) — d(x,y) < 0 to the final tour length. This contradicts the fact tiias a
minimum-distance complete tour.

We prove the second part of the Lemma by contradiction also. Assume thh [&rihpe TSP
path isD and that there exists a path with a lenf@fhwhereD’ < D. A cycle that includes the
dummy city can be constructed using the new path and its lenfth#iC. This cycle is a feasible
solution to the original TSP, but has a length that is shorter than the origg#kdlution oD + 2C.
This contradicts the fact that the original cycle has the minimum possible lemgth.

2.3 Restricted Partitioning

A well-known approximation algorithm for solving the Euclidean TSP was intced by Karp
(1977) and uses the rule of thumb that every city within the current clustesiisd before moving
out of the cluster. This work was cited two decades later and it was pedgbat the “inverse” of
Karp’s algorithm be used to determine clustees solve the TSP to find the clusters (Alpert and
Kahng, 1997). In other words, Alpert and Kahng reinvented regament clustering and referred
to it asrestricted partitioning(RP). They took rearrangement clustering a step further, howewver, a
they introduced an algorithm for automatically determining the locations of closterdaries for a
given TSP solution and a given number of cluster3his algorithm computes the boundaries that
will yield a set of clusters in which the largest diameter is as small as possihle.p@rtitioning
algorithm is based on dynamic programming and rur@®(kn®) time when applied after solving a
TSP tour andD(kr?) time when applied after solving a TSP path.

Alpert and Kahng applied rearrangement clustering to various problemsiding cluster-
ing of flower types and clustering cities according to their average tempesatioroughout the
year (Alpert and Kahng, 1997). However, the main focus of their weak on partitioning circuits
for use in the computer-aided design of VLSI circuits (Alpert, 1996).

2.4 Matrix Reordering

Rearrangement clustering was recently reinvented by David Johnabreet referred to amatrix
reordering(Johnson et al., 2004). This work presents a lossless compressimygtiar effective
storage and access of large, but sparse, boolean matrices on distollimns of these matrices are
rearranged so as to bring together the one’s in the rows. In their ghpgrroblem was identified
as a TSP. This work was demonstrated by compressing matrices within the darhaiteractive
visualization and telephone call data.

As with Alpert and Kahng's work, rearrangement clustering was talsta@further in Johnson
et al.’s paper. For the problems they addressed, finding even aoxappte solution for the TSP
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was obstructed as many of these problems were too large to fit into main memagdress this
obstacle, they devised a multi-faceted approach that blends classichlel@Btics with instance-
partitioning and sampling. Their approach resulted in significant improvenreatscess time as
well as compression.

2.5 Rearrangement Clustering

Just prior to the work done by Johnson et al., we reinvented reamsmgeclustering ourselves
(Climer and Zhang, 2004). We were motivated by the need to cluster ggmession data and
inspired by the work of Eisen et al. (1998). In their work, Eisen et alsteled a 2,467 yeast
gene set using hierarchical clustering, then arranged the results iraadirter, creating a matrix
in which each row corresponded to a gene and each column to an expefic@mdition. After
creating this matrix, they examined it and manually determined cluster boundaries

Given that the objective was to derive a matrix from which clusters coulddgified, we set
out to optimize such a matrix. That is when we reinvented rearrangemetsgrabgsand identified
it as the TSP. However, we soon realized there was a flaw in our approhis pitfall is described
in the next section.

3. Pitfalls

Although rearrangement clustering has been extensively studied edidver the last three decades,
there is a serious flaw in previous approaches when applied to datalthattia natural clusters.
Consider the example illustrated in Figure 2, where objects have only twadsedtheir horizontal
and vertical coordinates) and the dissimilarity between objects is the Euclilistamce. When
these objects are rearranged according to the objective in (2), theclasger on the bottom is bro-
ken in half and placed at each end of the ordering. Although objeatsly are very similar, they
are separated by 16 objects in two different clusters. We use this simpigkxas the optimal
solution is obvious. However, it is clear that in general, clusters may bebrio pieces in order to
minimize the “jumps” to adjacent clusters.

When natural clusters occur, the inter-cluster distances are muchrdiesiethe intra-cluster
distances. Therefore, the sum of distances between adjacent objebijsdtive (2) is dominated
by the inter-cluster distances. The rearrangement may skew itself intordeénimize these large
distances. In the next section, we propose an alternative objectistdnithat addresses this defect
and present a technique for resolving this new objective.

The second pitfall applies to the measure of effectiveness (ME) thaeslmsBEA. ME uses
the similarity measure that is defined in equation (3). Two problems associdgte¥w are that
it can fail to ascertain the quality of clustering of non-maximal values and dstém push small
values to the top and bottom of the rearranged matrix. Consider the followag@es. Table
1 shows three arrangements of a binary matrix that have the same MBEwvhich is the highest
value possible. ME fails to distinguish between the levels of clustering of ting @lzeros. This
behavior is not limited to zeros. Table 2 shows three arrangements of eyteratix. The first two
have ME values of 16, which is optimal. However, the first fails to bring togresimy of the three
identical rows, each containing all ones. Moreover, note how the snavare pushed to the top
and bottom of the array. The third arrangement is more likely to be of ugaedst applications, but
it has a sub-optimal ME value of 15.
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Figure 2: (a) Three clusters. (b) The TSP path specifying the optimabregement. Although
andy are very close, their placement in the rearrangement is far apart.

0 0 O 0 0 O 0 1 0

1 0 1 0 1 o0 O 0 0

0 1 o0 1 0 1 1 0 1
(@) (b) ()

Table 1: Three rearrangements of a matrix with an optimal ME. (a) One ppiw¢ pairs, (c) three
pairs of zeros are aligned.

4. Remedies

The second pitfall can be easily rectified by using a different similarity nrea3inere are a number
of similarity measures that are available, including simple Euclidean distandesarewhat more
complicated correlation coefficients. In general, the measure that is asdthee a profound effect
on clustering results and should be selected to suit the problem that isseldire

We now turn our attention to the first pitfall. A remedy to this pitfall is to omit the intaster
distances from the sum in objective (2). We redefine our objectivellas/i

k v
mm(ZlJzuld i, J+1> (4)

whereu; is the first item and; is the last item of clustdar andk is the number of clusters. The inner
summation of objective (4) is the sum of distances between adjacent rows witfuster and the
outer summation is over all the clusters. In this way, we minimize the intra-clustandées while
disregarding the inter-cluster distances. The inter-cluster distancessuiliree whatever values best
suit the minimization of intra-cluster distances.

This revised problem can be solved using the TSP with a twist. The key to gahigiproblem
lies in Lemma 1. What if we introdudedummy cities to the TSP representation of the clustering
problem? Just as one dummy node cuts the TSP cycle into a path, these dumnyirtitily
cut the tour intdk segments and form the cluster borders. The distances between pains wiyd
cities are set to infinity, to ensure that no two dummy cities are adjacent on theAtar this
“TSP+K” problem is solved, the dummy cities and their incident edges are removectpladed
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0 0 O 0 0 O 0O 0 0
1 1 1 1 1 1 0O 0 0
1 2 1 1 2 1 1 1 1
1 1 1 2 1 1 1 1 1
2 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 2 1
0 0 O 0 0 O 2 1 1
(@) (b) ()

Table 2: Three rearrangements of a matrix. (a) MEG6, which is optimal. The three identical
rows of ones are all separated. (b) MEL6. Two of the rows of ones are adjacent, but
the third is separated by two intervening rows. (c) A clustering that wowbably be
preferred, but ME= 15.

by cluster borders. The lengths of the edges that span the bordé&xsderlineedges, are not of

any consequence in the solution of TSR In this way, the TSRk solution optimizes the intra-

cluster distances, while disregarding inter-cluster distances. As a jabeuduster boundaries are
automatically identified.

Theorem 2 When there exist k dummy cities, the sum of the lengths of the k paths thiafiaed
by the TSR-k tour is minimized, and every edge in these paths has a distance that is ko fbag
any of the resulting k borderline edge lengths.

Proof. No two dummy cities are adjacent on the FSetour, as the distance between them is
infinity. Therefore, every TSPk tour has R edges of cost that are adjacent to the dummy cities.
The rest of the proof is similar to the proof of Lemmarl.

In Figure 3, an example of the use of this new objective function is shoveet &f color samples
are rearranged, using the intensities of their red, green, and blue nentpa@s their features. BEA
finds a suboptimal solution as shown in the figure. Solving the TSP with olge@jvleads to
splitting the large color cluster in half and inserting the gray color cluster ierax reduce the
inter-cluster distance. Note that the color immediately above the gray clustnyisimilar to the
color immediately below the gray cluster, yet they are far apart in the reggnaent. Moreover,
none of the gray colors separating them are nearly as similar to either obthtma two are to each
other. This solution is optimal for objective (2). Restricted partitioning (RRYmatically identifies
the cluster boundaries as shown in Figure 3(d). RP yields the same limeaingras TSRk with
k= 1. The partitioning minimizes the maximum diameter of the clusters. Notice that thisgdal
the gray colors between the two clusters. Finally, by using the new objacti#) and adding a
second dummy city, the inter-cluster distance is ignored and the two clustecsraectly formed
as shown in Figure 3(e).

Theorem 2 guarantees the optimality of identifylinglusters for a givelk, based on the objec-
tive function (4). Assuming that a range k#alues is specified, determining the best valuekfor
within this range is the next consideration.
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color color red green  blue color red green  blue

(=)

red gresn blue

{d) e}

Figure 3: Rearrangement clustering of a set of color samples usingddegreen, and blue compo-
nents as their features. (To view this figure in color, please see the ovelisien of this
paper.) (a) The initial arrangement. (b) Rearrangement using BEARdajrangement
using TSP. This rearrangement is optimal for objective (2). (d) Resirigéetitioning
with k = 2. The black line indicates the cluster boundary. This algorithm yields the same
ordering as TSPk with k = 1. The gray cluster is split as the partitioning minimizes
the maximum diameter. (e) Rearrangement using-fiSRith k = 2. The clusters are
correctly identified as indicated by the black line.
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Theorem 3 Let

3 sYndah i+
dmean— (n . k) . (5)

As Kk increases, fhaniS Non-increasing.

Proof. dmneanis the average intra-cluster distance. In generdk iasreases, the membership of
clusters may be rearranged to provide the current optimal solution. loeinssder the special case
in which the number of clusters is increased frkmo k+ 1 and the only change in the TSP tour is
that a single edge is replaced by two edges with d0stad the new dummy node. From Theorem
2, we know that the deleted edge must have the maximum distance. Thusgthgeadistance
of the edges cannot increase with this change. Since the TSP finds the mindmudistance,
this property holds when the tour undergoes more than just this one minogeh@herefore, the
average distance within clusters is non-increasing.

The TSRk algorithm guarantees an optimal rearrangement clustering for a kivdawever,
as shown by Theorem 3, we must consider desirable qualities other theyavntra-cluster dis-
tance when determining the best value korOne approach to handling this problem is to run the
algorithm for each value df in the desired range and use problem-specific information to deter-
mine the best clustering result. Another approach is based on the diisetbat a clustering in
which the clusters are well-defined will tend to have large distances bethestars. Therefore, an
analysis of the changes in inter-cluster distances may be useful in detagrthinibesk.

When using TSRk, the resulting clusters are randomly ordered. For some of our experiments
we applied TSP to the border cities to determine an ordering of the clustegsestiting ordering
minimizes the distances between clusters. While this is not necessary foryigenttie clusters,
it yields useful information about the average distance between clustaysaid the evaluation of
variousk values, and may be advantageous for displaying the clustering resulaldoisiseful if it
is desirable to merge small clusters in a post-processing step.

5. Implementation

Our code is composed of two programs and is available orilifiee first program converts a data
matrix into a TSP problem, and the second rearranges the rows of the datdiag to the TSP
solution. Any TSP solver can be used. Our method is usable for largerahgspeoblems thanks to
recent advances in TSP research.

The TSP has been extensively studied for many decades. A plethapex§have been written,
books have been published (Gutin and Punnen, 2002; Lawler et ah), 8 websites have been
devoted to this problem (Cook, web; Moscato, web; Johnson, web).

There has been a vast amount of research devoted to solving TSRsantged optimality. For
all of our experiments, we used Concorde (Applegate et al., 2001 wardavinning TSP solver
that has successfully solved a record 24,978-city TSP instance to optim&é&yConcorde code is
publicly available ahttp.//www.tsp.gatech.edu//concorde.html

There are many applications in which computation time is critical. Fortunately,zh deal of
research has been devoted to quickly finding high-quality approximatéeswdor the TSP, yield-
ing a wealth of available code (Lodi and Punnen, 2002). These implemerstatioy drastically in

3. Please find the code hitp://www.climer.usor http://www.cse.wustl.edu/zhang/projects/software.html
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running time and quality of solutions. The fastest compute solutions almost dyogscthe input
can be read.

Others run more slowly but yield more accurate solutions. For instancegaiel’s method
(2000), which is based on the Lin-Kernighan heuristic (Lin and Kernigh873), has produced the
optimal solution for every optimally solved problem Helsgaun has obtaineltliding a 15,112-
city TSP instance. It has also improved upon the best known solutionsiamaer of large-scale
instances, including a 1,904,711-city problem. Useful comparisons of timseiveuality for a
number of approximate algorithms are available (Johnson and McGedidr, Rtbra, 2002).

In some cases there are an extremely large number of objects that needltistbeed. Pro-
pitiously, TSP research has explored the problem of solving very lagjarices. For example,
Johnson et al. presented an algorithm for solving TSP instances thabdegge to fit into main
memory (Johnson et al., 2004).

In some applications, there may exist a distance function that is not strictly syimmehat
is, d(i, j) may not necessarily be equaldgj,i). For example, the affinities between amino acid
sequences are frequently

asymmetric due to different lengths of the sequences and/or asymmetriesamihe acid
substitution matrix. In these cases, FS€is still viable. Instead of solving a symmetric TSP, an
asymmetric TSP (ATSP) would be computed. There are a number of apptminadgorithms
for the ATSP and comparisons of these algorithms are available (Johhatn 2002). Optimal
solutions can be found using branch-and-bound (Carpaneto et @b), Ianch-and-cut (Fischetti
et al., 2002), or cut-and-solve (Climer and Zhang, 2006). Furthernsgrametric TSP (STSP)
codes such as Concorde could be used by converting the ATSP instamaa STSP instance. One
way to make this conversion is tlZenodetransformation (Jonker and Volgenant, 1983), in which
the number of cities is doubled.

6. Experimental Comparisonsand Applications

In this section, we describe four benchmark problems as well as a 2et&/expression data clus-
tering problem. The benchmark problems were previously solved usingvidtAhe ME metric.
The clusters were manually identified by domain experts. We present ceomakvith TSR-k
using the ME metric. We did not compare these results with restricted partitioRiRg Such a
comparison would be misleading as RP minimizes with respect to cluster diametdte final
part of this section, we present the results of clustering a yeast gemealaYeast genes have been
extensively studied and functionally related groups have been identiftdd.research allows ob-
jective evaluation of cluster quality. We used these evaluations to compaitesrieom hierarchical
clustering, RP, and TSHFk.

6.1 Testbed

Four examples from diverse application domains have been previowesgmied in the literature.
The first three were compared by McCormick et al. (1972) and Lensglakan (1975). They
include an airport design example, an aircraft types and functions dgaamd a marketing ap-
plications and techniques example. The fourth example was used by M#&@&8)(for clustering
personnel database records.

We also tackled rearrangement clustering of a large set of gene sixpreata. The data set
consists of 2,467 genes in the budding ye&stcharomyces cerevisitd®at were studied during the
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diauxic shift (DeRisi et al., 1997), mitotic cell division cycle (Spellman et #98), sporulation

(Chu et al., 1998), and temperature and reducing shocks (P.T. Spef@arBrown, and D. Bot-

stein, unpublished results), yielding 79 measurements that are used asatived for the genes.
These genes were previously clustered (Eisen et al., 1998) and this datdlable at the PNAS
website @ttp://www.pnas.org

6.2 Resultsfor Benchmark Problems

In this section, we first compare the old and new objective functions tmifimblems that have been
presented in work by McCormick et al. (1972), Lenstra and Kan (1,9 March (1983). We
based our comparisons on the quality of the individual clusters that aréfidd. Since McCormick
et al. and March manually determined clusters based on the ME metric, wessddME and
compared cluster quality using the ME metric for these four problems.

The clusters identified by McCormick et al. (1972) do not strictly partition thieas. There
is some overlapping and some objects are left unclustered. Overlappohgstdrs is not allowed
in most applications and is not addressed by our new objective. Forrtesens, our comparisons
are based on non-overlapping results.

The marketing example is shown in Figure 4. The rows represent applisaiahthe columns
represent various techniques. This is a binary matrix, where a one tiegliteat a technique has
been shown to be useful for an application and a zero indicates thatrobhagen useful. This is
the only example we present in which it is desirable to find clusters for botbdllvenns and the
rows. The ME for the entire matrix is equal whether approximately solvedB Br optimally
solved as a TSP witk = 1. When clustering was performed on the techniques (columns);-KSP
with k = 17 identified the same three clusters that were identified by McCormick et ar2)1
When TSPk was used to cluster the applications (rows), it identified clusters with twoe,thre
and four elements, respectively. Notice that McCormathkal. identified three clusters, which
overlapped for the applications (rows) clustering. We used the fodrtrare-element clusters that
were not overlapping for comparisons. The four-element cluster veasaitme for both algorithms.
However, the three-element clusters differed by one applicat@nBEA grouped together ‘sales
forecasting’, ‘brand strategy’, and ‘advertising research’ whil®F&substituted ‘pricing strategy’
for ‘sales forecasting’. Computing the ME for the three applications yietdealue of 8 for BEA
and 10 for TSRk, revealing that, based on ME, the cluster identified by F8R of higher quality.

The airport design example was presented by McCormick et al. (1973nwwmktrate how
BEA can be used for problem decomposition, reducing a large projechis&t of small projects
with minimal interdependency. The values in the matrix were set to 0, 1, 2, oirdliwate no,
weak, moderate, or strong dependencies respectively. Figure 5 shewesults for this data. The
ME for the entire matrix is 577 for BEA and improved to 580 for TSP wita 1. McCormick et
al. (1972) identified eight clusters, with three pairs of clusters overlgppyrone object. To make
comparisons, we eliminated these overlaps by including the overlapped wbgedy one cluster,
the one that increased the ME value the most. In order to compare the quadliy diisters, we
only considered the intra-cluster similarities and ignored the similarities betvagaceat clusters.
The ME for each cluster was computed and the sum of ME values for theabigters is 464 for
BEA and 503 for TSRk with k = 8, yielding an improvement in the quality of the clusters.

Figure 6 shows the results for rearrangement clustering of aircrafs tyased on their functions.
Values in the matrix were set from zero to two reflecting the extent that theftican perform the
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(b) (c) (d)

Figure 4: Marketing techniques and applications example. (a) Initial matsixBEA clustering.
The gray rectangles indicate the clusters identified by McCormick et al. 2j197he
black horizontal lines indicate the two non-overlapping clusters that anpaced. (c)
Optimal clustering withk = 1. (d) TSP+k solution. The horizontal lines indicate the two
clusters that are compared with the BEA solution. The 4-element cluster iarntefer
both algorithms. The 3-element clusters differ by one item, yielding ME = 8 ok Bnd
ME = 10 for TSPtk.

Figure 5: Airport design example. (a) Initial array. (b) BEA clusterinthWE = 577 for the entire
matrix. The sum of the ME values for the 8 clusters is 464. (c) Optimal clugt@vitin
k =1, yielding ME = 580 for the entire matrix. (d) Optimal clustering withk= 8. The
sum of the ME values for the 8 clusters is 503.

function. The ME for the entire matrix is 1930 for BEA and 1961 for TSP with 1. The clusters
identified by McCormick et al. (1972) had substantial overlapping. We emeapthe two largest
clusters, containing 24 and 14 aircraft, respectively. The two largestecs for TSR-k with k=17
also contained 24 and 14 aircraft. The sum of the ME values for the twtecdus 1545 for BEA
and is 1616 for TSRk.

Figure 7 shows the results for the personnel database records exXeonpiarch (1983). The
values in this matrix range from one to one hundred. The ME for the entirexneafr, 791,870 for
BEA and 1,836,260 for TSP with= 1. March identified six clusters with no overlapping. The sum
of the ME values for these clusters using BEA is 1,533,034 and forrkSfth k = 6 is 1,645,207.
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(d)

Figure 6: Aircraft types and functions example. (a) Initial array. (BABclustering with ME =
1930 for the entire matrix. The sum of the ME values for the two largest cluste
aircraft is 1545. (c) Optimal clustering with= 1, with ME = 1961 for the entire matrix.
(d) Optimal clustering withkk = 17. The sum of the ME values of the two largest clusters
is 1616. These clusters contain the same number of aircraft as the BEArsludgth 24
and 14 aircraft respectively.

Figure 7: Personnel database records example. (a) Initial arrdyBEA clustering with ME =
1,791,870 for the entire matrix. The sum of the ME values for the 6 clusterS38,034.
(c) Optimal clustering wittk = 1 and ME = 1,836,260 for the entire matrix. (d) Optimal
clustering withk = 6. The sum of the ME values for the 6 clusters is 1,645,207.

6.3 Gene Expression Data

In this section we compare rearrangement clustering methods for yemségjeression data. Yeast
genes have been extensively researched and annotated, allowiotivelgealuation of the quality
of clusters found by each method.
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6.3.1 METRICS

In our gene clustering tests, we used the Pearson correlation coéffieie@) for the similarity
measure. The PCC is defined as follows:

XSY
y XY — 22X

V%zxz—“%“)(ZYz—“%“)

whereX andY are the feature vectors for geneandy, respectively, anll is the number of features
for which bothx andy have data tabulated. PCC has been extensively used for gene eéxpress
data clustering and was used for comparisons of gene clustering algobsh8tsgamir and Sharan
(2002). After finding the similarities, we scaled and applied an additive sevay translate the
similarities to nonnegative integral distances.

To objectively evaluate the performance of the various algorithms on ggmession data, we
used Gene Ontology (GO) Term Findéttp://www.yeastgenome.ojgé tool for finding function-
ally related groups of yeast genes in a given cluster. This tool calcidgteslue that indicates
the likelihood of observing a group ofgenes with a particular functional annotation in a cluster
containingv genes, given tha¥l genes have this annotation in the total populatioN genes. More

SpeCiIica”y, th Iep-Vc‘ilue is equal to
j v J

G

s(x,y) = (6)

(7)

Notice that the size of the cluster is reflected in calculatingstlvalue. For instance, if a small and
a large cluster both contain a groupwgenes with a particular functional annotation, flealue
will be greater for the group in the large cluster as the probability of findiggnes with the given
functional annotation is greater in a larger cluster.

6.3.2 RESULTS FORGENE EXPRESSIONDATA

In this section, the results of using three different algorithms for clust¢him@,467 yeast gene data
set are presented. The first algorithm uses a hierarchical techmgqusas presented by Eisen et
al. (1998). After applying hierarchical clustering, the results were ibdstt in a linear fashion and
ten clusters were identified by a domain expert. The identification of clus@sdilve same as is
commonly used in rearrangement clustering. However, the rearrangehtlea rows was not based
on finding maximum similarity between adjacent rows. Out of the 2,467 gefi8sy@re selected
for the ten clusters that were identified. It was observed by Eisen etatledich cluster contained
genes that are functionally related.

We ran TSRk with k = 100, k = 200, andk = 300 on the 2,467-gene data set. Our results
are compared with restricted partitioning (RP) (Alpert and Kahng, 1993 }tze results from Eisen
et al. (1998). We adjusted thevalue for RP so as to yield the same number of non-singleton
clusters for comparisons. GO Term Findattp.//www.yeastgenome.ojgiias run for each cluster
found in each trial and on the ten clusters identified by Eisen et al. Funkgjongs found withp-
values having orders of magnitude less than or equal 16 ®W@re designated as “good” functional
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@ | ()| @© || (& |
TSPtk | 44 | 56 | 100 | 13 | 129.6 | 40

RP 44 0 44 | 13 | 101.4| 28
TSP+k 77 | 123 | 200 | 13 | 81.8 | 44
RP 77 0 77 | 16 | 422 | 34

TSP+k 109 | 191 | 300 | 16 | 63.8 | 41
RP 109 | 1 110| 18 | 33.1 | 39
Eisenetal.| 10 - - 9 26.3 | 49

Table 3: Results for 2,467 yeast gene clustering where “good” furadtigroups are defined as
those withp-values with orders of magnitude 10~’. (a) Number of non-singleton clus-
ters. (b) Number of singleton clusters. (c) Valuekafsed. (d) Number of clusters found
containing “good” functional groups. (e) Average size of these tjatusters. (f) Num-
ber of “good” functional groups.

groups. Tables 3 and 4 contain the results of these trials. Figure 8 dishtaysordered matrices
for TSP+k.

An interesting result of the TSFK tests was the large number of singletons, as listed in Table
3. In all cases, more than half of the clusters contained singletons. Yetwlas not a dominance
of clusters containing only two or three genes. For instance, there wbrsia clusters containing
two or three genes when= 100. However, that trial had 56 singletons. Gene expression data is
notoriously noisy, so many of the singletons that were found may corrdgpanutliers in the data.
This result suggests that TSR may be useful for identifying outliers.

For all the values df that we tested, the rearrangement clustering algorithms found more “good”
clusters than the nine found by Eisen et al. RP found more “good” clustansT SP-k for the two
larger trials. However, the TSHK clusters were larger in all three trials and a greater number of
the 2,467 genes were placed into meaningful clusters. Note thatihkie essentially reflects the
concentrationof related genes within a cluster. Consequently, for a fipeglue and a particular
functional relationship, a larger cluster contains more of these relatex$ gean a smaller cluster.

Table 3 lists the number of “good” functional groups found. F&RPound more of these groups
than RP for each run. Eiset al. found more groups than any of the rearrangement clustering trials.
However, the rearrangement clustering algorithms found more distinctidmal groups than Eisen
et al. when the results from the three trials are combined. Table 4 lists the aanwbsults. Eisen et
al. found 49 “good” functional groups. 25 of these groups were rdibyeRP and 18 were missed
by TSP+-k. RP found a total of 48 distinct functional groups. 24 of these were ohisgdEisen et
al. and 11 were missed by TS$R. Finally, TSP+k found 61 distinct functional groups. Eisen et al.
missed 37 of these and RP missed 33. Some of these functional groupselagzd and appeared
in the same cluster. For example, in all but one trial, F8Rentified a “good” cluster containing
functionally related groups of genes involved in carbohydrate tratespactivity and six related
functions. All seven of these functional groups were overlookeddily BP and Eisen et al.

Tables listing the functional groups for each trial can be found on the atétitp.//www.
climer.us/cluster/TSPX.htand http.://www.climer.us/cluster/RPX.htnwhereX is replaced by the
value ofk. The results for Eisen et al. can be foundhetp://www. climer.us/cluster/eisen.htm
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Figure 8: 2,467 yeast gene expression data randomly ordered (ldftearranged using TSHK
with k equal to 100, 200, and 300. Cluster boundaries are marked by blaskNitigsing
data values are colored white.

6.3.3 (HANGES INDOMAIN KNOWLEDGE

About a year ago, we ran GO Term Finder on the clusters found by Eisah and those found
using TSP-k. The results are listed in Table 5. It can be expected that a number of adtlgiEnes
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Total number of

Number missed

Number missed

Number missed

distinct groups | by Eisen et al. by RP by TSP+k
Eisen et al. 49 - 25 18
RP 48 24 - 11
TSPk 61 37 33 -

Table 4: Total number of distinct “good” functional groups found bghealgorithm. For each
algorithm, the number of groups missed by the other algorithms are shown.

old number| new number| old number| new number
k of clusters | of clusters | of groups of groups
TSP+k 100 13 13 39 40
TSP+k 200 12 13 42 44
TSP+k 300 16 16 38 41
Eisenetal.| - 10 9 48 49

Table 5: Comparisons of current GO Term Finder results with those fawehr ago. This table
lists the number of clusters containing “good” functional groups and thériataber of
“good” functional groups.

have been annotated during the year, resulting in changesatues. In other words, the clusters
themselves have not changed during the year, but some @fthkies have, due to additional in-
formation found by other means. For Eisen et al., the number of “goodtifumal groups increased
by one. For the three TSk trials, the number of “good” functional groups increased by one, two,
and three groups respectively. For H3E the number of “good” clusters remained the same for
k=100 andk = 300 and increased from 12 to 13 foe= 200. However, for Eisen et al., the number
of “good” clusters decreased from 10 to 9.

Eisen’s group published their work in 1998. If they were to redetermineiingers today,
they could use the additional information that has been found experimentaily that time to
improve their results. RP and T$R do not rely on prior knowledge of functionally related groups
to determine the clusters. If they were run in 1998, they would have yieldedatime clusters as
they do today. Indeed, if they were run before any knowledge oftyeastions was realized, they
still would have produced these same clusters.

When using domain experts to determine cluster boundaries, the quality afshisris de-
pendent on the current knowledge of the experts. As more knowledgegisred in a domain, the
clustering results found previously may become obsolete. Automated methauts cely on cur-
rent domain knowledge and consequently do not suffer from this atibgqualoreover, automated
methods can be used when there is little oanpriori knowledge or when the use of domain experts
is impractical. The latter case can occur when the cost of a domain expeartigtoor the number
of objects is too large.
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6.4 Computation Time

The time required to run either TSR or RP depends on the algorithm used to solve the TSP. Fast
approximate TSP solvers can be used when computation time needs to be minimized.

In the experiments presented in this paper, Concorde was used to stivMastance optimally.
(During these tests Concorde aborted early several times and regestadting.) For the 2,467-
gene problem, the computation time ranged from 3 to 22 minutes on an Athlon 1.pMEgssor
with two gigabytes memory. An advantage of RP over 8K that a single TSP solution can be
used for various values & Each partitioning of the TSP path runs@tkr?) time.

BEA and hierarchical clustering arrange objects quickly, but both tqals require a domain
expert to identify the cluster boundaries. CPU time has become surprisieglyensive and a very
large number of CPU hours would be equivalent in value to a single hoardafmain expert’s
time. Moreover, identifying clusters manually requires a fair amount of timecANebe certain that
Eisen’s group spent substantially more time identifying cluster boundarie®tiracomputer spent
solving TSPs. On the other hand, a domain expert simultaneously determémesiber of clusters
k while identifying cluster boundaries. For the 2,467-gene data set, wesaailgigetk equal to 100,
200, and 300. Multiple solutions can be advantageous when attempting to mattimizember of
functionally related groups as in this example. However, a single solutiorgsiéntly desired in
many domains. Future work to automatically determine the “best” clustering fer @f k values
would maximize the efficiency of rearrangement clustering for these .caBieis determination
could be based on inter-cluster distances (as discussed in Section/d)) ather qualities of the
clustering results.

7. Discussion

In this section, we examine a couple of considerations that may arise whanraarrangement
clustering.

7.1 Number of Features

An interesting property of TSPk is that the number of features has little impact on the computa-
tion time. More features may increase the time required to compute the distamhwegmheities.
However, the time required to actually solve the TSP is not directly dependetite number of
features.

While the number of features has little effect on the computation time, it may havegen
the quality of the results. When the number of features is much greater thauarttieer of objects,
transitivity of the similarity measure might not be upheld. The transitive property resjthed if
objectx is similar to objecty, andy is similar to objectz, thenx andz are similar. In the previous
work we have examined, transitivity is apparently assumed, though it ixpbtidly stated. Given
an appropriate similarity measure, transitivity might be expected when the nofrdigects is large
in comparison to the number of features. However, care should be uapglying rearrangement
clustering when the converse is the case.

7.2 Linearity Requirement

Rearrangement clustering requires a linear ordering of objects. Viatiatizof complex data is
enhanced by arranging objects in this manner (Eisen et al., 1998; McCoetalk 1972). For
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some applications, the objects are actually placed in a linear manner, sudifapace allocation
(Lim et al., 2004). However, for many of the problems that have beeviqusly solved using
rearrangement clustering, linearity is not inherently necessary fotifijieg clusters.

When using rearrangement clustering, there is no quality assuranggngdhat the diameters
of clusters are less than a given value. This may be a concern for laggers, in which the first and
last objects may be quite dissimilar. On the other hand, this property may betageaus when it
is useful to identify elongated, but contiguous, clusters or irreguladpeti clusters as in Figure 1.
Although rearrangement clustering requires the objects be linearlyentdiérdoesn’t suffer from
the drawbacks that can arise when the objective is based on minimizing diaraetainimizing
distances of objects from the centers of their respective clusterssén@s, rearrangement cluster-
ing yields solutions that tend to be contiguous as each object is a relatiatydsstance from at
least one other object in the same cluster.

Furthermore, the addition &f dummy cities appears to increase the viability of the use of re-
arrangement clustering for general clustering problems. To gain some intafi@ut this, consider
a traveling salesman who is givdénfree “jumps” and is required to visit cities that fall intok
distinct clusters. It is reasonable to expect that he will frequently find gtmoonomical to use the
free jumps for the long distances between clusters as opposed to usinfpthatra-cluster hops.
When this is the case, TSR will correctly identify thek clusters. For example, when T$Rwith
k = 3 is applied to the example in Figure 2, the three clusters are correctly identified

As a final note, previous experiments have shown that rearrangeiostdrog, despite its
pitfalls and linearity requirement, has outperformed non-linear-ordetirgjering algorithms for
applications that do not require linear ordering (Alpert, 1996; Alped lkahng, 1997; Liu et al.,
2004).

8. Conclusion

Rearrangement clustering has been extensively used in a variety ofrdoower the last three
decades. Yet, the previous approaches have overlooked two spitialls: the summation in the
objective function is dominated by inter-cluster distances and the ME metrfaitmappropriately
guantify the quality of clustering. These pitfalls can be remedied by using3ke K algorithm and
an alternate metric. As a bonus, TSPprovides automatic identification of cluster boundaries.

By translating rearrangement clustering into the TSP, it is possible to taladftdhtage of the
wealth of research that has been invested in optimally and approximatelygdi8ins. Generally
speaking, BEA is a relatively simple greedy approximation when comparedhtytrefined TSP
solvers. Moreover, rearrangement clustering can be sagtohallyfor many problems using TSP
solvers such as Concorde (Applegate et al., 2001), as illustrated doygarg 2,467 genes in this
paper.

Rearrangement clustering has been embraced in many diverse appdicaflaon new ability
to overcome previous pitfalls should result in an even greater usefudhdésis popular clustering
technique. This usefulness is further enhanced by the fact that K8Bes not require a domain
expert to identify cluster boundaries, thus enabling its use in domains thabawell understood
or when experts are unavailable.
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