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Abstract

Given a matrix of values in which the rows correspond to objects and the columns correspond
to features of the objects, rearrangement clustering is theproblem of rearranging the rows of the
matrix such that the sum of the similarities between adjacent rows is maximized. Referred to by
various names and reinvented several times, this clustering technique has been extensively used in
many fields over the last three decades. In this paper, we point out two critical pitfalls that have been
previously overlooked. The first pitfall is deleterious when rearrangement clustering is applied to
objects that form natural clusters. The second concerns a similarity metric that is commonly used.
We present an algorithm that overcomes these pitfalls. Thisalgorithm is based on a variation of
the Traveling Salesman Problem. It offers an extra benefit asit automatically determines cluster
boundaries. Using this algorithm, weoptimallysolve four benchmark problems and a 2,467-gene
expression data clustering problem. As expected, our new algorithm identifies better clusters than
those found by previous approaches in all five cases. Overall, our results demonstrate the benefits
of rectifying the pitfalls and exemplify the usefulness of this clustering technique. Our code is
available at our websites.

Keywords: clustering, visualization of patterns in data, bond energyalgorithm, traveling salesman
problem, asymmetric clustering

1. Introduction

Science is organized knowledge. Wisdom is organized life.
- Immanuel Kant

Clustering is aimed at discovering structures and patterns of a given data set. As a fundamental
problem and technique for data analysis, clustering has become increasingly important, especially
with the explosion of data on the World Wide Web and the advent of massive quantities of genomic
data.
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A given set of objects can be clustered in a variety of ways, depending on three criteria: the
degree of granularity desired, the distance measure that is employed, andthe objective that is stated
as the goal for the clustering.

The degree of granularity affects clustering results. There is usually a range of values for the
number of clustersk that are of interest. The desired degree of granularity is problem specific.
Consider for example, clustering the population of a large geographical region. A company wishing
to determine the location of a few distribution centers would desire a smallk value, while a utility
company may have applications requiring several thousand clusters. Once a range of values is
established fork, it is frequently useful to determine clustering results for several valuesof k within
this range and use domain knowledge to determine the best solution.

The choice of a distance measure also impacts clustering results. A distance measure is a means
of quantifying the pair-wise dissimilarities between objects. Alternatively, a similarity measure
is used to quantify pair-wise similarities. When objects can be accurately characterized as points
residing within a metric space, the Euclidean distance is frequently employed. Distance functions
are sometimes assumed to be symmetric (i.e., d(i, j) = d( j, i)), obey the triangle inequality, and
require thatd(i, i) = 0. In this paper, we do not assume that any of these properties necessarily
hold as there exist applications when effective distance measures do notobey these properties. For
instance, in the realm of document clustering, thecosine distanceis frequently employed, although
this measure does not obey the triangle inequality (Steinbach et al., 2000).

Finally, the objective that is stated as the goal guides the clustering results. Clustering problems
are interesting as there is no single objective that is universally applicable.Many objective functions
have been proposed and used throughout the history of clustering. Some objectives optimize with
respect to distances of objects to their respective cluster centers. Some base their optimizations
on diameters, or maximum pair-wise distances of each cluster. These objectives tend to assume
somewhat regular cluster configurations and can lead to undesirable results when cluster boundaries
are complex as in Figure 1. Intuitive clustering using the Euclidean distance measure is shown in
Figure 1(b). In this case, many objects are closer to the center of a different cluster than their own
and the diameters are not minimized.

One clustering problem that has been studied extensively is the problem ofidentifying and
displaying groups of similar objects that occur in complex data arrays (McCormick et al., 1972;
Arabie and Hubert, 1990; Arabie et al., 1988; Alpert, 1996; Johnson et al., 2004; Torres-Velzquez
and Estivill-Castro, 2004). The problem can be represented as a matrix where the rows correspond
to the objects to be clustered and the columns are their features. Similar objects can be identified
and displayed by rearranging the rows so that the overall similarity betweenall adjacent objects is
maximized. After rearranging the rows, the clusters are identified either manually or automatically
in a second step.

This clustering problem actually consists of two objectives. The first objective is consistently
used for a number of applications and requires either the maximization of the sum of similarities
between adjacent rows or the minimization of the sum of distances between adjacent rows. The
second objective varies in the literature, however, the general goal is toidentify clusters among the
rearranged objects.

In 1972, McCormick, Schweitzer, and White introduced thebond energy algorithm(BEA)
which yields an approximate solution for the first objective of this clustering problem. Since that
time, a “fast-growing literature” (Marcotorchino, 1987, p. 73) has appeared on this subject. This
problem has been applied to a number of different applications in diverseareas, such as database
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Figure 1: (a) A data set with Euclidean distance used for the distance measure. (b) Intuitive clus-
tering of the data set. Many objects are closer to the center of a different cluster than their
own and the diameters are not minimized.

design (Ozsu and Valduriez, 1999), data mining (Dunham, 2003), factorization of sparse matrices
(Alpert, 1996), matrix compression (Johnson et al., 2004), information retrieval (March, 1983),
manufacturing (Kusiak, 1985), imaging (Kusiak, 1984), marketing (Arabieet al., 1988), software
engineering (Gorla and Zhang, 1999), VLSI circuit design (Alpert, 1996), clustering of web-users
(Torres-Velzquez and Estivill-Castro, 2004), shelf space allocation (Lim et al., 2004), and clustering
of genes (Liu et al., 2004).

For some of these applications, it is useful to also rearrange the columns. Since the rearrange-
ment of the columns is independent of the rearrangement of rows, the columns can be rearranged in
a separate step, using the same technique that is used for the rows.

The core problem does not seem to have been given a consistent name and has been reinvented
several times1 (McCormick et al., 1972; Alpert and Kahng, 1997; Johnson et al., 2004; Torres-
Velzquez and Estivill-Castro, 2004). It has been referred to as “structuring of matrices” (Punnen,
2002), “data reorganization” (McCormick et al., 1972), “clustering of data arrays” (Lenstra, 1974),
“restricted partitioning” (Alpert and Kahng, 1997), and “matrix reordering” (Johnson et al., 2004).
Due to its nature and for the convenience of our discussion, we call this clustering problemrear-
rangement clustering.

Almost all of the existing rearrangement clustering algorithms have focusedon arranging the
objects to approximately maximize the overall similarity (or minimize the overall dissimilarity)
between adjacent objects, while few methods have been developed to automatically identify the
clusters of objects that form natural groups. An exception is the work ofAlpert and Kahng (1997), in
which they identified optimal partitioning for a given number of clustersk. For many rearrangement
clustering algorithms, the objects are first rearranged, then a domain expert determines the cluster
intervals.

Although rearrangement clustering has been extensively used for morethan 30 years, there are
two serious pitfalls that have been previously overlooked. The first pitfall is deleterious when the
objects to be rearranged form natural clusters; which is the case for every application we have

1. In fact, we also reinvented it ourselves at the beginning of this research.
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observed. The second pitfall concerns the use of themeasure of effectiveness(ME) metric, which is
employed by the bond energy algorithm.

In this paper, we first briefly summarize background material. Then we identify two pitfalls
of previous approaches. In Section 4 we present techniques for rectifying these pitfalls. Section 5
describes the implementation of rearrangement clustering without the pitfalls. We summarize the
results of using this implementation for four benchmark problems and a 2,467 gene expression data
clustering problem in Section 6. We conclude this paper with a brief discussion. A preliminary
report on this work appeared in an earlier paper (Climer and Zhang, 2004).

2. Background

Given a matrix in which each row corresponds to an object and each columncorresponds to a feature
of the objects, rearrangement clustering is the problem of shuffling the rows around until the sum of
the similarities between adjacent rows is maximized. The similarity of two objects can be measured
by a similarity score defined on their features.

More formally, letP represent the set of all possible permutations of rows for a given matrix
and s(i, j) represent a non-negative similarity measure for objects (rows)i, j. Then an optimal
permutationp∈ P for the given similarity measure is

V(P) = max

(

n−1

∑
i=1

s(i, i +1)

)

(1)

for n objects. Conversely, given a non-negativedissimilarity function,d(i, j), an optimal permuta-
tion p∈ P is

W(P) = min

(

n−1

∑
i=1

d(i, i +1)

)

. (2)

2.1 Bond Energy Algorithm

One of the first algorithms to tackle rearrangement clustering was the bond energy algorithm (BEA)
(McCormick et al., 1972). BEA uses the measure of effectiveness (ME)in which the similarity
measure for two rows,i and j, is

s(i, j) =
m

∑
k=1

aika jk (3)

wherem is the number of features andaik is the (non-negative)kth feature of objecti.2 Hence, each
element in the matrix, except those in the last row, is multiplied by the element directlybelow it, and
ME is equal to the sum of these products. The intuition behind this similarity measure is that large
values will be drawn to other large values, and small values to other small values, so as to increase
the overall sum of the products. The termbond energyexpresses this concept. BEA computes an
approximate solution that attempts to maximize ME.

BEA has gained wide recognition and remains the algorithm of choice for a number of applica-
tions. One such use arises in manufacturing. In these applications, parts or machines with similar
features are grouped into families in a process referred to ascell formation. Chu and Tsai (1990)

2. McCormick et al. used a single ME function to simultaneously quantify similarities of adjacent columns as well as
adjacent rows.
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compared three rearrangement algorithms for this application: rank orderclustering (ROC) (King,
1980), direct clustering analysis (DCA) (Chan and Milner, 1982), andBEA. They ran trials for var-
ious manufacturing applications and found that BEA outperformed the othertwo algorithms in all
of their tests.

BEA is also popular for database design. The goal here is to determine setsof attributes that are
accessed by distinct sets of applications, using a process referred to asvertical fragmentation(Ozsu
and Valduriez, 1999). BEA has been promoted for this use (Hoffer andSeverance, 1975; Navathe
et al., 1984). Furthermore, BEA is included in textbooks on database design (Ozsu and Valduriez,
1999) and data mining (Dunham, 2003).

BEA has also been used for analyzing program structure in the field of software engineering
(Gorla and Zhang, 1999). The locations of all of the components, their respective calls, and the
depth of nested calls all contribute to the difficulties that can be expected during the debugging
and maintenance phases of a program’s life. Due to the fact that these phases are generally much
more expensive than the other phases, structural improvements are valuable. BEA has been used to
determine the placement of components with good results (Gorla and Zhang, 1999).

A recent application of BEA was the clustering of gene expression data (Liu et al., 2004). The
current microarray gene expression profiling technology (Baldi and Hatfield, 2002; Eisen et al.,
1998) is able to examine the expressions of hundreds, thousands or even tens of thousands of genes
at once. A large amount of microarray data has been collected on numerous species and organisms,
ranging from microbial organisms to plants to animals. The results of a set of microarray experi-
ments on a collection of genes under different conditions are typically arranged as a matrix of gene
expression levels in real values, where the rows represent the genesto be analyzed and the columns
corresponds to experimental conditions (Baldi and Hatfield, 2002; Eisenet al., 1998). The objective
is to identify and display clusters of genes that have similar expression patterns. BEA was shown to
outperformk-means for the clustering of 44 yeast genes (Liu et al., 2004).

2.2 Traveling Salesman Problem

It has been pointed out that rearrangement clustering is equivalent to the Traveling Salesman Prob-
lem (TSP) and can be solved tooptimality by solving the TSP (Lenstra, 1974; Lenstra and Kan,
1975). The TSP forn cities is the problem of finding a tour visiting all the cities and returning to
the starting city such that the sum of the distances between consecutive citiesis minimized. In other
words, the TSP is to find a cyclic permutation of the cities so that the total distanceof adjacent cities
under the permutation is minimized. It is well known that TSP is NP-hard (Karp,1972).

The mapping from a rearrangement clustering problem instance to a TSP instance is straight-
forward (Lenstra, 1974; Lenstra and Kan, 1975). We first view each object as a city and transform
the dissimilarity between two objects to the distance between the corresponding cities. The TSP
tour, which must have the minimum distance among all complete tours, is an optimal rearrange-
ment of the objects with the minimum dissimilarity. (We use the wordsdistanceanddissimilarity
synonymously in this paper.) Thus, the TSP is the same problem as finding an optimal permutation
p, except that the TSP finds a cycle through the cities and rearrangement clustering finds a path.

This discrepancy can easily be rectified by adding adummy city. A dummy city is an added city
whose distance to each of the other cities is equal to a constantC. The location of the dummy city
is the optimal point for breaking the TSP cycle into a path (Lenstra and Kan, 1975). The TSP path
is defined as the TSP tour with the dummy city and its two incident edges excluded.The length of
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this path is equal to the length of the tour minus 2C. Following are two critical observations on the
above extended TSP.

Lemma 1 The direct distance between the two cities that are separated by the dummy city is greater
than or equal to any of the distances between adjacent pairs of cities on theTSP tour, and the total
distance of the TSP path is the smallest possible.

Proof: We prove the first part of the Lemma by contradiction. Assume that the distanced(x,y)
between an adjacent pair of cities,x andy, on the TSP tourT is greater than the direct distance
d(u,v) of the two cities,u andv, which are spanned by the dummy city. That is,d(u,v) < d(x,y).
Then we can directly connect citiesu andv, and insert the dummy city between citiesx andy, with
a net difference ofd(u,v)−d(x,y) < 0 to the final tour length. This contradicts the fact thatT is a
minimum-distance complete tour.

We prove the second part of the Lemma by contradiction also. Assume the length of the TSP
path isD and that there exists a path with a lengthD′ whereD′ < D. A cycle that includes the
dummy city can be constructed using the new path and its length isD′+2C. This cycle is a feasible
solution to the original TSP, but has a length that is shorter than the original TSP solution ofD+2C.
This contradicts the fact that the original cycle has the minimum possible length.⊓⊔

2.3 Restricted Partitioning

A well-known approximation algorithm for solving the Euclidean TSP was introduced by Karp
(1977) and uses the rule of thumb that every city within the current cluster isvisited before moving
out of the cluster. This work was cited two decades later and it was proposed that the “inverse” of
Karp’s algorithm be used to determine clustersi.e., solve the TSP to find the clusters (Alpert and
Kahng, 1997). In other words, Alpert and Kahng reinvented rearrangement clustering and referred
to it asrestricted partitioning(RP). They took rearrangement clustering a step further, however, as
they introduced an algorithm for automatically determining the locations of clusterboundaries for a
given TSP solution and a given number of clustersk. This algorithm computes the boundaries that
will yield a set of clusters in which the largest diameter is as small as possible. This partitioning
algorithm is based on dynamic programming and runs inO(kn3) time when applied after solving a
TSP tour andO(kn2) time when applied after solving a TSP path.

Alpert and Kahng applied rearrangement clustering to various problems,including cluster-
ing of flower types and clustering cities according to their average temperatures throughout the
year (Alpert and Kahng, 1997). However, the main focus of their workwas on partitioning circuits
for use in the computer-aided design of VLSI circuits (Alpert, 1996).

2.4 Matrix Reordering

Rearrangement clustering was recently reinvented by David Johnson etal. and referred to asmatrix
reordering(Johnson et al., 2004). This work presents a lossless compression strategy for effective
storage and access of large, but sparse, boolean matrices on disk. The columns of these matrices are
rearranged so as to bring together the one’s in the rows. In their paper,the problem was identified
as a TSP. This work was demonstrated by compressing matrices within the domains of interactive
visualization and telephone call data.

As with Alpert and Kahng’s work, rearrangement clustering was taken astep further in Johnson
et al.’s paper. For the problems they addressed, finding even an approximate solution for the TSP
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was obstructed as many of these problems were too large to fit into main memory. To address this
obstacle, they devised a multi-faceted approach that blends classical TSPheuristics with instance-
partitioning and sampling. Their approach resulted in significant improvementsin access time as
well as compression.

2.5 Rearrangement Clustering

Just prior to the work done by Johnson et al., we reinvented rearrangement clustering ourselves
(Climer and Zhang, 2004). We were motivated by the need to cluster gene expression data and
inspired by the work of Eisen et al. (1998). In their work, Eisen et al. clustered a 2,467 yeast
gene set using hierarchical clustering, then arranged the results in a linear order, creating a matrix
in which each row corresponded to a gene and each column to an experimental condition. After
creating this matrix, they examined it and manually determined cluster boundaries.

Given that the objective was to derive a matrix from which clusters could beidentified, we set
out to optimize such a matrix. That is when we reinvented rearrangement clustering and identified
it as the TSP. However, we soon realized there was a flaw in our approach. This pitfall is described
in the next section.

3. Pitfalls

Although rearrangement clustering has been extensively studied and used over the last three decades,
there is a serious flaw in previous approaches when applied to data that falls into natural clusters.
Consider the example illustrated in Figure 2, where objects have only two features (their horizontal
and vertical coordinates) and the dissimilarity between objects is the Euclideandistance. When
these objects are rearranged according to the objective in (2), the largecluster on the bottom is bro-
ken in half and placed at each end of the ordering. Although objectsx andy are very similar, they
are separated by 16 objects in two different clusters. We use this simple example as the optimal
solution is obvious. However, it is clear that in general, clusters may be broken in pieces in order to
minimize the “jumps” to adjacent clusters.

When natural clusters occur, the inter-cluster distances are much greater than the intra-cluster
distances. Therefore, the sum of distances between adjacent objects inobjective (2) is dominated
by the inter-cluster distances. The rearrangement may skew itself in orderto minimize these large
distances. In the next section, we propose an alternative objective function that addresses this defect
and present a technique for resolving this new objective.

The second pitfall applies to the measure of effectiveness (ME) that is used by BEA. ME uses
the similarity measure that is defined in equation (3). Two problems associated with ME are that
it can fail to ascertain the quality of clustering of non-maximal values and it tends to push small
values to the top and bottom of the rearranged matrix. Consider the following examples. Table
1 shows three arrangements of a binary matrix that have the same ME= 0, which is the highest
value possible. ME fails to distinguish between the levels of clustering of the pairs of zeros. This
behavior is not limited to zeros. Table 2 shows three arrangements of a ternary matrix. The first two
have ME values of 16, which is optimal. However, the first fails to bring together any of the three
identical rows, each containing all ones. Moreover, note how the small values are pushed to the top
and bottom of the array. The third arrangement is more likely to be of use formost applications, but
it has a sub-optimal ME value of 15.
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Figure 2: (a) Three clusters. (b) The TSP path specifying the optimal rearrangement. Althoughx
andy are very close, their placement in the rearrangement is far apart.

0 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 0 0
0 1 0 1 0 1 1 0 1

(a) (b) (c)

Table 1: Three rearrangements of a matrix with an optimal ME. (a) One pair, (b) two pairs, (c) three
pairs of zeros are aligned.

4. Remedies

The second pitfall can be easily rectified by using a different similarity measure. There are a number
of similarity measures that are available, including simple Euclidean distances and somewhat more
complicated correlation coefficients. In general, the measure that is used can have a profound effect
on clustering results and should be selected to suit the problem that is addressed.

We now turn our attention to the first pitfall. A remedy to this pitfall is to omit the inter-cluster
distances from the sum in objective (2). We redefine our objective as follows:

W(p,k) = min

(

k

∑
i=1

vi−1

∑
j=ui

d( j, j +1)

)

(4)

whereui is the first item andvi is the last item of clusteri, andk is the number of clusters. The inner
summation of objective (4) is the sum of distances between adjacent rows within a cluster and the
outer summation is over all the clusters. In this way, we minimize the intra-cluster distances while
disregarding the inter-cluster distances. The inter-cluster distances will assume whatever values best
suit the minimization of intra-cluster distances.

This revised problem can be solved using the TSP with a twist. The key to solving this problem
lies in Lemma 1. What if we introducek dummy cities to the TSP representation of the clustering
problem? Just as one dummy node cuts the TSP cycle into a path, these dummy citiesvirtually
cut the tour intok segments and form the cluster borders. The distances between pairs of dummy
cities are set to infinity, to ensure that no two dummy cities are adjacent on the tour. After this
“TSP+k” problem is solved, the dummy cities and their incident edges are removed andreplaced
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0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0
1 2 1 1 2 1 1 1 1
1 1 1 2 1 1 1 1 1
2 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 2 1
0 0 0 0 0 0 2 1 1

(a) (b) (c)

Table 2: Three rearrangements of a matrix. (a) ME= 16, which is optimal. The three identical
rows of ones are all separated. (b) ME= 16. Two of the rows of ones are adjacent, but
the third is separated by two intervening rows. (c) A clustering that would probably be
preferred, but ME= 15.

by cluster borders. The lengths of the edges that span the borders, orborderlineedges, are not of
any consequence in the solution of TSP+k. In this way, the TSP+k solution optimizes the intra-
cluster distances, while disregarding inter-cluster distances. As a bonus, the cluster boundaries are
automatically identified.

Theorem 2 When there exist k dummy cities, the sum of the lengths of the k paths that aredefined
by the TSP+k tour is minimized, and every edge in these paths has a distance that is no longer than
any of the resulting k borderline edge lengths.

Proof: No two dummy cities are adjacent on the TSP+k tour, as the distance between them is
infinity. Therefore, every TSP+k tour has 2k edges of costC that are adjacent to the dummy cities.
The rest of the proof is similar to the proof of Lemma 1.⊓⊔

In Figure 3, an example of the use of this new objective function is shown. Aset of color samples
are rearranged, using the intensities of their red, green, and blue components as their features. BEA
finds a suboptimal solution as shown in the figure. Solving the TSP with objective (2) leads to
splitting the large color cluster in half and inserting the gray color cluster in order to reduce the
inter-cluster distance. Note that the color immediately above the gray cluster is very similar to the
color immediately below the gray cluster, yet they are far apart in the rearrangement. Moreover,
none of the gray colors separating them are nearly as similar to either of themas the two are to each
other. This solution is optimal for objective (2). Restricted partitioning (RP) automatically identifies
the cluster boundaries as shown in Figure 3(d). RP yields the same linear ordering as TSP+k with
k = 1. The partitioning minimizes the maximum diameter of the clusters. Notice that this goalsplits
the gray colors between the two clusters. Finally, by using the new objectivein (4) and adding a
second dummy city, the inter-cluster distance is ignored and the two clusters are correctly formed
as shown in Figure 3(e).

Theorem 2 guarantees the optimality of identifyingk clusters for a givenk, based on the objec-
tive function (4). Assuming that a range ofk values is specified, determining the best value fork
within this range is the next consideration.
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Figure 3: Rearrangement clustering of a set of color samples using their red, green, and blue compo-
nents as their features. (To view this figure in color, please see the on-lineversion of this
paper.) (a) The initial arrangement. (b) Rearrangement using BEA. (c)Rearrangement
using TSP. This rearrangement is optimal for objective (2). (d) Restricted partitioning
with k = 2. The black line indicates the cluster boundary. This algorithm yields the same
ordering as TSP+k with k = 1. The gray cluster is split as the partitioning minimizes
the maximum diameter. (e) Rearrangement using TSP+k with k = 2. The clusters are
correctly identified as indicated by the black line.
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Theorem 3 Let

dmean=
∑k

i=1 ∑vi−1
j=ui

d( j, j +1)

(n−k)
. (5)

As k increases, dmeanis non-increasing.

Proof: dmeanis the average intra-cluster distance. In general, ask increases, the membership of
clusters may be rearranged to provide the current optimal solution. Let usconsider the special case
in which the number of clusters is increased fromk to k+1 and the only change in the TSP tour is
that a single edge is replaced by two edges with costsC and the new dummy node. From Theorem
2, we know that the deleted edge must have the maximum distance. Thus, the average distance
of the edges cannot increase with this change. Since the TSP finds the minimumtour distance,
this property holds when the tour undergoes more than just this one minor change. Therefore, the
average distance within clusters is non-increasing.⊓⊔

The TSP+k algorithm guarantees an optimal rearrangement clustering for a givenk. However,
as shown by Theorem 3, we must consider desirable qualities other than average intra-cluster dis-
tance when determining the best value fork. One approach to handling this problem is to run the
algorithm for each value ofk in the desired range and use problem-specific information to deter-
mine the best clustering result. Another approach is based on the observation that a clustering in
which the clusters are well-defined will tend to have large distances betweenclusters. Therefore, an
analysis of the changes in inter-cluster distances may be useful in determining the bestk.

When using TSP+k, the resulting clusters are randomly ordered. For some of our experiments,
we applied TSP to the border cities to determine an ordering of the clusters. The resulting ordering
minimizes the distances between clusters. While this is not necessary for identifying the clusters,
it yields useful information about the average distance between clusters,may aid the evaluation of
variousk values, and may be advantageous for displaying the clustering result. It isalso useful if it
is desirable to merge small clusters in a post-processing step.

5. Implementation

Our code is composed of two programs and is available on-line.3 The first program converts a data
matrix into a TSP problem, and the second rearranges the rows of the data according to the TSP
solution. Any TSP solver can be used. Our method is usable for large clustering problems thanks to
recent advances in TSP research.

The TSP has been extensively studied for many decades. A plethora of papers have been written,
books have been published (Gutin and Punnen, 2002; Lawler et al., 1985), and websites have been
devoted to this problem (Cook, web; Moscato, web; Johnson, web).

There has been a vast amount of research devoted to solving TSPs to guaranteed optimality. For
all of our experiments, we used Concorde (Applegate et al., 2001), an award winning TSP solver
that has successfully solved a record 24,978-city TSP instance to optimality.The Concorde code is
publicly available athttp://www.tsp.gatech.edu//concorde.html.

There are many applications in which computation time is critical. Fortunately, a great deal of
research has been devoted to quickly finding high-quality approximate solutions for the TSP, yield-
ing a wealth of available code (Lodi and Punnen, 2002). These implementations vary drastically in

3. Please find the code athttp://www.climer.usor http://www.cse.wustl.edu/∼zhang/projects/software.html.
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running time and quality of solutions. The fastest compute solutions almost as quickly as the input
can be read.

Others run more slowly but yield more accurate solutions. For instance, Helsgaun’s method
(2000), which is based on the Lin-Kernighan heuristic (Lin and Kernighan, 1973), has produced the
optimal solution for every optimally solved problem Helsgaun has obtained, including a 15,112-
city TSP instance. It has also improved upon the best known solutions for anumber of large-scale
instances, including a 1,904,711-city problem. Useful comparisons of time versus quality for a
number of approximate algorithms are available (Johnson and McGeoch, 2002; Arora, 2002).

In some cases there are an extremely large number of objects that need to beclustered. Pro-
pitiously, TSP research has explored the problem of solving very large instances. For example,
Johnson et al. presented an algorithm for solving TSP instances that aretoo large to fit into main
memory (Johnson et al., 2004).

In some applications, there may exist a distance function that is not strictly symmetric. That
is, d(i, j) may not necessarily be equal tod( j, i). For example, the affinities between amino acid
sequences are frequently

asymmetric due to different lengths of the sequences and/or asymmetries in theamino acid
substitution matrix. In these cases, TSP+k is still viable. Instead of solving a symmetric TSP, an
asymmetric TSP (ATSP) would be computed. There are a number of approximation algorithms
for the ATSP and comparisons of these algorithms are available (Johnson et al., 2002). Optimal
solutions can be found using branch-and-bound (Carpaneto et al., 1995), branch-and-cut (Fischetti
et al., 2002), or cut-and-solve (Climer and Zhang, 2006). Furthermore, symmetric TSP (STSP)
codes such as Concorde could be used by converting the ATSP instanceinto an STSP instance. One
way to make this conversion is the2-nodetransformation (Jonker and Volgenant, 1983), in which
the number of cities is doubled.

6. Experimental Comparisons and Applications

In this section, we describe four benchmark problems as well as a 2,467-gene expression data clus-
tering problem. The benchmark problems were previously solved using BEAwith the ME metric.
The clusters were manually identified by domain experts. We present comparisons with TSP+k
using the ME metric. We did not compare these results with restricted partitioning (RP). Such a
comparison would be misleading as RP minimizes with respect to cluster diameters. In the final
part of this section, we present the results of clustering a yeast gene data set. Yeast genes have been
extensively studied and functionally related groups have been identified.This research allows ob-
jective evaluation of cluster quality. We used these evaluations to compare results from hierarchical
clustering, RP, and TSP+k.

6.1 Testbed

Four examples from diverse application domains have been previously presented in the literature.
The first three were compared by McCormick et al. (1972) and Lenstra and Kan (1975). They
include an airport design example, an aircraft types and functions example, and a marketing ap-
plications and techniques example. The fourth example was used by March (1983) for clustering
personnel database records.

We also tackled rearrangement clustering of a large set of gene expression data. The data set
consists of 2,467 genes in the budding yeastSaccharomyces cerevisiaethat were studied during the
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diauxic shift (DeRisi et al., 1997), mitotic cell division cycle (Spellman et al., 1998), sporulation
(Chu et al., 1998), and temperature and reducing shocks (P.T. Spellman,P.O. Brown, and D. Bot-
stein, unpublished results), yielding 79 measurements that are used as the features for the genes.
These genes were previously clustered (Eisen et al., 1998) and the datais available at the PNAS
website (http://www.pnas.org).

6.2 Results for Benchmark Problems

In this section, we first compare the old and new objective functions for four problems that have been
presented in work by McCormick et al. (1972), Lenstra and Kan (1975), and March (1983). We
based our comparisons on the quality of the individual clusters that are identified. Since McCormick
et al. and March manually determined clusters based on the ME metric, we also used ME and
compared cluster quality using the ME metric for these four problems.

The clusters identified by McCormick et al. (1972) do not strictly partition the objects. There
is some overlapping and some objects are left unclustered. Overlapping ofclusters is not allowed
in most applications and is not addressed by our new objective. For thesereasons, our comparisons
are based on non-overlapping results.

The marketing example is shown in Figure 4. The rows represent applications and the columns
represent various techniques. This is a binary matrix, where a one indicates that a technique has
been shown to be useful for an application and a zero indicates that it hasnot been useful. This is
the only example we present in which it is desirable to find clusters for both thecolumns and the
rows. The ME for the entire matrix is equal whether approximately solved by BEA or optimally
solved as a TSP withk = 1. When clustering was performed on the techniques (columns), TSP+k
with k = 17 identified the same three clusters that were identified by McCormick et al. (1972).
When TSP+k was used to cluster the applications (rows), it identified clusters with two, three,
and four elements, respectively. Notice that McCormicket al. identified three clusters, which
overlapped for the applications (rows) clustering. We used the four- and three-element clusters that
were not overlapping for comparisons. The four-element cluster was the same for both algorithms.
However, the three-element clusters differed by one application,i.e. BEA grouped together ‘sales
forecasting’, ‘brand strategy’, and ‘advertising research’ while TSP+k substituted ‘pricing strategy’
for ‘sales forecasting’. Computing the ME for the three applications yieldeda value of 8 for BEA
and 10 for TSP+k, revealing that, based on ME, the cluster identified by TSP+k is of higher quality.

The airport design example was presented by McCormick et al. (1972) to demonstrate how
BEA can be used for problem decomposition, reducing a large project intoa set of small projects
with minimal interdependency. The values in the matrix were set to 0, 1, 2, or 3 toindicate no,
weak, moderate, or strong dependencies respectively. Figure 5 shows the results for this data. The
ME for the entire matrix is 577 for BEA and improved to 580 for TSP withk = 1. McCormick et
al. (1972) identified eight clusters, with three pairs of clusters overlapping by one object. To make
comparisons, we eliminated these overlaps by including the overlapped object in only one cluster,
the one that increased the ME value the most. In order to compare the quality ofthe clusters, we
only considered the intra-cluster similarities and ignored the similarities between adjacent clusters.
The ME for each cluster was computed and the sum of ME values for the eight clusters is 464 for
BEA and 503 for TSP+k with k = 8, yielding an improvement in the quality of the clusters.

Figure 6 shows the results for rearrangement clustering of aircraft types based on their functions.
Values in the matrix were set from zero to two reflecting the extent that the aircraft can perform the
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Figure 4: Marketing techniques and applications example. (a) Initial matrix. (b) BEA clustering.
The gray rectangles indicate the clusters identified by McCormick et al. (1972). The
black horizontal lines indicate the two non-overlapping clusters that are compared. (c)
Optimal clustering withk = 1. (d) TSP+k solution. The horizontal lines indicate the two
clusters that are compared with the BEA solution. The 4-element cluster is the same for
both algorithms. The 3-element clusters differ by one item, yielding ME = 8 for BEA and
ME = 10 for TSP+k.

Figure 5: Airport design example. (a) Initial array. (b) BEA clustering with ME = 577 for the entire
matrix. The sum of the ME values for the 8 clusters is 464. (c) Optimal clustering with
k = 1, yielding ME = 580 for the entire matrix. (d) Optimal clustering withk = 8. The
sum of the ME values for the 8 clusters is 503.

function. The ME for the entire matrix is 1930 for BEA and 1961 for TSP withk = 1. The clusters
identified by McCormick et al. (1972) had substantial overlapping. We compared the two largest
clusters, containing 24 and 14 aircraft, respectively. The two largest clusters for TSP+k with k = 17
also contained 24 and 14 aircraft. The sum of the ME values for the two clusters is 1545 for BEA
and is 1616 for TSP+k.

Figure 7 shows the results for the personnel database records examplefrom March (1983). The
values in this matrix range from one to one hundred. The ME for the entire matrix is 1,791,870 for
BEA and 1,836,260 for TSP withk = 1. March identified six clusters with no overlapping. The sum
of the ME values for these clusters using BEA is 1,533,034 and for TSP+k with k = 6 is 1,645,207.
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Figure 6: Aircraft types and functions example. (a) Initial array. (b) BEA clustering with ME =
1930 for the entire matrix. The sum of the ME values for the two largest clusters of
aircraft is 1545. (c) Optimal clustering withk = 1, with ME = 1961 for the entire matrix.
(d) Optimal clustering withk = 17. The sum of the ME values of the two largest clusters
is 1616. These clusters contain the same number of aircraft as the BEA clusters with 24
and 14 aircraft respectively.

Figure 7: Personnel database records example. (a) Initial array. (b) BEA clustering with ME =
1,791,870 for the entire matrix. The sum of the ME values for the 6 clusters is 1,533,034.
(c) Optimal clustering withk = 1 and ME = 1,836,260 for the entire matrix. (d) Optimal
clustering withk = 6. The sum of the ME values for the 6 clusters is 1,645,207.

6.3 Gene Expression Data

In this section we compare rearrangement clustering methods for yeast gene expression data. Yeast
genes have been extensively researched and annotated, allowing objective evaluation of the quality
of clusters found by each method.
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6.3.1 METRICS

In our gene clustering tests, we used the Pearson correlation coefficient (PCC) for the similarity
measure. The PCC is defined as follows:

s(x,y) =
∑XY− ∑X ∑Y

N
√

(

∑X2−
(∑X)2

N

)(

∑Y2−
(∑Y)2

N

)

(6)

whereX andY are the feature vectors for genesx andy, respectively, andN is the number of features
for which bothx andy have data tabulated. PCC has been extensively used for gene expression
data clustering and was used for comparisons of gene clustering algorithmsby Shamir and Sharan
(2002). After finding the similarities, we scaled and applied an additive inverse to translate the
similarities to nonnegative integral distances.

To objectively evaluate the performance of the various algorithms on gene expression data, we
used Gene Ontology (GO) Term Finder (http://www.yeastgenome.org/), a tool for finding function-
ally related groups of yeast genes in a given cluster. This tool calculatesa p-value that indicates
the likelihood of observing a group ofu genes with a particular functional annotation in a cluster
containingv genes, given thatM genes have this annotation in the total population ofN genes. More
specifically, thep-value is equal to

1−
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(
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)

.

(7)

Notice that the size of the cluster is reflected in calculating thep-value. For instance, if a small and
a large cluster both contain a group ofu genes with a particular functional annotation, thep-value
will be greater for the group in the large cluster as the probability of findingu genes with the given
functional annotation is greater in a larger cluster.

6.3.2 RESULTS FORGENE EXPRESSIONDATA

In this section, the results of using three different algorithms for clusteringthe 2,467 yeast gene data
set are presented. The first algorithm uses a hierarchical technique and was presented by Eisen et
al. (1998). After applying hierarchical clustering, the results were illustrated in a linear fashion and
ten clusters were identified by a domain expert. The identification of clusters was the same as is
commonly used in rearrangement clustering. However, the rearrangement of the rows was not based
on finding maximum similarity between adjacent rows. Out of the 2,467 genes, 263 were selected
for the ten clusters that were identified. It was observed by Eisen et al. that each cluster contained
genes that are functionally related.

We ran TSP+k with k = 100, k = 200, andk = 300 on the 2,467-gene data set. Our results
are compared with restricted partitioning (RP) (Alpert and Kahng, 1997) and the results from Eisen
et al. (1998). We adjusted thek value for RP so as to yield the same number of non-singleton
clusters for comparisons. GO Term Finder (http://www.yeastgenome.org/) was run for each cluster
found in each trial and on the ten clusters identified by Eisen et al. Functional groups found withp-
values having orders of magnitude less than or equal to 10−7 were designated as “good” functional
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(a) (b) (c) (d) (e) (f)
TSP+k 44 56 100 13 129.6 40

RP 44 0 44 13 101.4 28
TSP+k 77 123 200 13 81.8 44

RP 77 0 77 16 42.2 34
TSP+k 109 191 300 16 63.8 41

RP 109 1 110 18 33.1 39
Eisen et al. 10 - - 9 26.3 49

Table 3: Results for 2,467 yeast gene clustering where “good” functional groups are defined as
those withp-values with orders of magnitude≤ 10−7. (a) Number of non-singleton clus-
ters. (b) Number of singleton clusters. (c) Value ofk used. (d) Number of clusters found
containing “good” functional groups. (e) Average size of these “good” clusters. (f) Num-
ber of “good” functional groups.

groups. Tables 3 and 4 contain the results of these trials. Figure 8 displaysthe reordered matrices
for TSP+k.

An interesting result of the TSP+k tests was the large number of singletons, as listed in Table
3. In all cases, more than half of the clusters contained singletons. Yet there was not a dominance
of clusters containing only two or three genes. For instance, there were only six clusters containing
two or three genes whenk = 100. However, that trial had 56 singletons. Gene expression data is
notoriously noisy, so many of the singletons that were found may correspond to outliers in the data.
This result suggests that TSP+k may be useful for identifying outliers.

For all the values ofk that we tested, the rearrangement clustering algorithms found more “good”
clusters than the nine found by Eisen et al. RP found more “good” clustersthan TSP+k for the two
larger trials. However, the TSP+k clusters were larger in all three trials and a greater number of
the 2,467 genes were placed into meaningful clusters. Note that thep-value essentially reflects the
concentrationof related genes within a cluster. Consequently, for a fixedp-value and a particular
functional relationship, a larger cluster contains more of these related genes than a smaller cluster.

Table 3 lists the number of “good” functional groups found. TSP+k found more of these groups
than RP for each run. Eisenet al. found more groups than any of the rearrangement clustering trials.
However, the rearrangement clustering algorithms found more distinct functional groups than Eisen
et al. when the results from the three trials are combined. Table 4 lists the combined results. Eisen et
al. found 49 “good” functional groups. 25 of these groups were missed by RP and 18 were missed
by TSP+k. RP found a total of 48 distinct functional groups. 24 of these were missed by Eisen et
al. and 11 were missed by TSP+k. Finally, TSP+k found 61 distinct functional groups. Eisen et al.
missed 37 of these and RP missed 33. Some of these functional groups wererelated and appeared
in the same cluster. For example, in all but one trial, TSP+k identified a “good” cluster containing
functionally related groups of genes involved in carbohydrate transporter activity and six related
functions. All seven of these functional groups were overlooked by both RP and Eisen et al.

Tables listing the functional groups for each trial can be found on the webat http://www.
climer.us/cluster/TSPX.htmandhttp://www.climer.us/cluster/RPX.htm, whereX is replaced by the
value ofk. The results for Eisen et al. can be found athttp://www. climer.us/cluster/eisen.htm.
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Figure 8: 2,467 yeast gene expression data randomly ordered (left) and rearranged using TSP+k
with k equal to 100, 200, and 300. Cluster boundaries are marked by black lines. Missing
data values are colored white.

6.3.3 CHANGES IN DOMAIN KNOWLEDGE

About a year ago, we ran GO Term Finder on the clusters found by Eisenet al. and those found
using TSP+k. The results are listed in Table 5. It can be expected that a number of additional genes
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Total number of Number missed Number missed Number missed
distinct groups by Eisen et al. by RP by TSP+k

Eisen et al. 49 - 25 18
RP 48 24 - 11

TSP+k 61 37 33 -

Table 4: Total number of distinct “good” functional groups found by each algorithm. For each
algorithm, the number of groups missed by the other algorithms are shown.

old number new number old number new number
k of clusters of clusters of groups of groups

TSP+k 100 13 13 39 40
TSP+k 200 12 13 42 44
TSP+k 300 16 16 38 41

Eisen et al. - 10 9 48 49

Table 5: Comparisons of current GO Term Finder results with those founda year ago. This table
lists the number of clusters containing “good” functional groups and the total number of
“good” functional groups.

have been annotated during the year, resulting in changes inp-values. In other words, the clusters
themselves have not changed during the year, but some of thep-values have, due to additional in-
formation found by other means. For Eisen et al., the number of “good” functional groups increased
by one. For the three TSP+k trials, the number of “good” functional groups increased by one, two,
and three groups respectively. For TSP+k, the number of “good” clusters remained the same for
k = 100 andk = 300 and increased from 12 to 13 fork = 200. However, for Eisen et al., the number
of “good” clusters decreased from 10 to 9.

Eisen’s group published their work in 1998. If they were to redetermine theclusters today,
they could use the additional information that has been found experimentally since that time to
improve their results. RP and TSP+k do not rely on prior knowledge of functionally related groups
to determine the clusters. If they were run in 1998, they would have yielded the same clusters as
they do today. Indeed, if they were run before any knowledge of yeast functions was realized, they
still would have produced these same clusters.

When using domain experts to determine cluster boundaries, the quality of the results is de-
pendent on the current knowledge of the experts. As more knowledge isacquired in a domain, the
clustering results found previously may become obsolete. Automated methods do not rely on cur-
rent domain knowledge and consequently do not suffer from this antiquation. Moreover, automated
methods can be used when there is little or noa priori knowledge or when the use of domain experts
is impractical. The latter case can occur when the cost of a domain expert is too high or the number
of objects is too large.
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6.4 Computation Time

The time required to run either TSP+k or RP depends on the algorithm used to solve the TSP. Fast
approximate TSP solvers can be used when computation time needs to be minimized.

In the experiments presented in this paper, Concorde was used to solve each instance optimally.
(During these tests Concorde aborted early several times and required restarting.) For the 2,467-
gene problem, the computation time ranged from 3 to 22 minutes on an Athlon 1.9 MHzprocessor
with two gigabytes memory. An advantage of RP over TSP+k is that a single TSP solution can be
used for various values ofk. Each partitioning of the TSP path runs inO(kn2) time.

BEA and hierarchical clustering arrange objects quickly, but both techniques require a domain
expert to identify the cluster boundaries. CPU time has become surprisingly inexpensive and a very
large number of CPU hours would be equivalent in value to a single hour ofa domain expert’s
time. Moreover, identifying clusters manually requires a fair amount of time. Wecan be certain that
Eisen’s group spent substantially more time identifying cluster boundaries than our computer spent
solving TSPs. On the other hand, a domain expert simultaneously determines the number of clusters
k while identifying cluster boundaries. For the 2,467-gene data set, we arbitrarily setk equal to 100,
200, and 300. Multiple solutions can be advantageous when attempting to maximizethe number of
functionally related groups as in this example. However, a single solution is frequently desired in
many domains. Future work to automatically determine the “best” clustering for a set of k values
would maximize the efficiency of rearrangement clustering for these cases. This determination
could be based on inter-cluster distances (as discussed in Section 4) and/or other qualities of the
clustering results.

7. Discussion

In this section, we examine a couple of considerations that may arise when using rearrangement
clustering.

7.1 Number of Features

An interesting property of TSP+k is that the number of features has little impact on the computa-
tion time. More features may increase the time required to compute the distances between cities.
However, the time required to actually solve the TSP is not directly dependenton the number of
features.

While the number of features has little effect on the computation time, it may have bearing on
the quality of the results. When the number of features is much greater than thenumber of objects,
transitivity of the similarity measure might not be upheld. The transitive property requires that if
objectx is similar to objecty, andy is similar to objectz, thenx andz are similar. In the previous
work we have examined, transitivity is apparently assumed, though it is not explicitly stated. Given
an appropriate similarity measure, transitivity might be expected when the number of objects is large
in comparison to the number of features. However, care should be used inapplying rearrangement
clustering when the converse is the case.

7.2 Linearity Requirement

Rearrangement clustering requires a linear ordering of objects. Visualization of complex data is
enhanced by arranging objects in this manner (Eisen et al., 1998; McCormicket al., 1972). For
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some applications, the objects are actually placed in a linear manner, such as shelf space allocation
(Lim et al., 2004). However, for many of the problems that have been previously solved using
rearrangement clustering, linearity is not inherently necessary for identifying clusters.

When using rearrangement clustering, there is no quality assurance requiring that the diameters
of clusters are less than a given value. This may be a concern for large clusters, in which the first and
last objects may be quite dissimilar. On the other hand, this property may be advantageous when it
is useful to identify elongated, but contiguous, clusters or irregularly shaped clusters as in Figure 1.
Although rearrangement clustering requires the objects be linearly ordered, it doesn’t suffer from
the drawbacks that can arise when the objective is based on minimizing diameters or minimizing
distances of objects from the centers of their respective clusters. In essence, rearrangement cluster-
ing yields solutions that tend to be contiguous as each object is a relatively short distance from at
least one other object in the same cluster.

Furthermore, the addition ofk dummy cities appears to increase the viability of the use of re-
arrangement clustering for general clustering problems. To gain some intuition about this, consider
a traveling salesman who is givenk free “jumps” and is required to visitn cities that fall intok
distinct clusters. It is reasonable to expect that he will frequently find it most economical to use the
free jumps for the long distances between clusters as opposed to using themfor intra-cluster hops.
When this is the case, TSP+k will correctly identify thek clusters. For example, when TSP+k with
k = 3 is applied to the example in Figure 2, the three clusters are correctly identified.

As a final note, previous experiments have shown that rearrangement clustering, despite its
pitfalls and linearity requirement, has outperformed non-linear-ordering clustering algorithms for
applications that do not require linear ordering (Alpert, 1996; Alpert and Kahng, 1997; Liu et al.,
2004).

8. Conclusion

Rearrangement clustering has been extensively used in a variety of domains over the last three
decades. Yet, the previous approaches have overlooked two seriouspitfalls: the summation in the
objective function is dominated by inter-cluster distances and the ME metric canfail to appropriately
quantify the quality of clustering. These pitfalls can be remedied by using the TSP+k algorithm and
an alternate metric. As a bonus, TSP+k provides automatic identification of cluster boundaries.

By translating rearrangement clustering into the TSP, it is possible to take fulladvantage of the
wealth of research that has been invested in optimally and approximately solving TSPs. Generally
speaking, BEA is a relatively simple greedy approximation when compared to highly-refined TSP
solvers. Moreover, rearrangement clustering can be solvedoptimallyfor many problems using TSP
solvers such as Concorde (Applegate et al., 2001), as illustrated by arranging 2,467 genes in this
paper.

Rearrangement clustering has been embraced in many diverse applications. Our new ability
to overcome previous pitfalls should result in an even greater usefulnessof this popular clustering
technique. This usefulness is further enhanced by the fact that TSP+k does not require a domain
expert to identify cluster boundaries, thus enabling its use in domains that are not well understood
or when experts are unavailable.
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