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Abstract
The consistency of classification algorithm plays a central role in statistical learning theory. A
consistent algorithm guarantees us that taking more samples essentially suffices to roughly recon-
struct the unknown distribution. We consider the consistency of ERM scheme over classes of
combinations of very simple rules (base classifiers) in multiclass classification. Our approach is,
under some mild conditions, to establish a quantitative relationship between classification errors
and convex risks. In comparison with the related previous work, the feature of our result is that
the conditions are mainly expressed in terms of the differences between some values of the convex
function.
Keywords: multiclass classification, classifier, consistency, empirical risk minimization, con-
strained comparison method, Tsybakov noise condition

1. Introduction

We consider the consistency of empirical risk minimization (ERM) algorithm in multiclass classifi-
cation.

Given an input vector x ∈ X ⊆R
d , we would like to predict its corresponding label y ∈ {1,2, . . . ,

K}. A classifier f is a function defined on X with values in {1,2, . . . ,K}. The quality of this
classifier can be measured by the classification error

R ( f ) = EX ,Y I{ f (X)6=Y},

where IA is the characteristic function of set A, and X ,Y are drawn from an unknown underlying
distribution D. It is clear that R ( f ) = P{Y 6= f (X)}. If we know the conditional density P{Y =
c|X = x}, then the classifier φB given by

φB(x) := arg max
c∈{1,2,...,K}

P{Y = c|X = x},

referred to as Bayes rule, minimizes R ( f ) over all classifiers: R (φB) = infR ( f ). Henceforth,
let R ∗ stand for the number infR ( f ). However, the conditional density is unknown in practice.
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Instead, we are given n samples {(X1,Y1), . . . ,(Xn,Yn)} of independent random variable drawn from
the underlying distribution D. The goal of statistical learning is to find a classifier based on the
samples and a pre-chosen set F of vector functions with K-components. For this purpose, a very
successful method used in binary classification is to solve a minimization problem of a risk based
on a convex loss φ. Main examples of φ include the exponential loss φ(x) = e−x used in AdaBoost,
the logit loss φ(x) = ln(1+e−x) and the hinge loss φ(x) = (1−x)+ used in support vector machine,
where (u)+ = max{0,u} for a number u ∈ R.

Probably since one can solve a multiclass classification problem (K > 2) by solving several
binary classification problems, there are much fewer studies on multiclass classification algorithms
based directly on minimizing empirical risk with convex loss. Recently, Zhang (2004b) proposes a
natural version of EMR scheme in solving a multiclass problem:

f̂ = argmin
f∈F

1
n

n

∑
i=1

ΨYi(f(Xi)), (1)

where Ψc is a mapping from R
K to R, which is usually constructed by some convex loss function

φ. In the following, we use bold symbols such as f and q to denote vectors, and fc and qc to denote
their c-th component. We also use f(·) to denote a vector function. Once obtaining f̂, we have a
classifier C(f̂), where C(f) is defined by

C(f)(x) = argmax
c

fc(x), ∀f = ( f1(x), . . . , fK(x)).

A natural question is how close the optimal Bayes error R ∗ can be approximately reached by
R (C(f̂)). A very desirable property is the consistency of algorithm: the excess error R (C(f̂))−
R ∗ → 0 in some sense, as the size n of samples increases to ∞. A consistent algorithm guarantees
us that taking more samples essentially suffices to roughly reconstruct the unknown distribution. A
good learning algorithm should be consistent.

In recent years, a large part of research has been focused on classifiers which base their decision
on a certain combination of (base) classifiers. Suppose that H is a set of classifiers and λ is a
positive number. Let F = Fλ be the following set of vector functions

Fλ =
{

f =
( J

∑
j=1

β jTc(h j(·))
)K

c=1
: β j > 0,h j ∈ H ,J = 1,2, . . . ,

J

∑
j=1

β j = λ
}

,

where Tc,c = 1, . . . ,K, are functions defined on {1,2, . . . ,K} by

Tc(h) =

{

K −1, if h = c,
−1 if h 6= c.

A classifier C(f) with f ∈ Fλ may be thought as one that, upon observing x, takes a weighted
vote of classifiers h1, . . . ,hJ , using weights β1, . . . ,βJ .

For K = 2, the vector function f = ( f1, f2) ∈ Fλ satisfies f1 + f2 = 0. Therefore Fλ is usually
regarded as the set of functions f = ∑J

j=1 β jT1(h j(·)),h j ∈ H ,∑J
j=1 β j = λ. In different versions of

boosting, bagging and arcing algorithms, the output classifiers are constructed by weighted voting
schemes. Their consistency is established in Lugosi and Vayatis (2004) under the assumption that
the Bayes classifier can be approximated by Fλ and H has a finite VC dimension.
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The computational feasibility of schemes (1) has been recognized all along. Moreover, in binary
classification, as revealed recently in binary classification problem, a striking feature of ERM (1)
using a convex loss is that one can upper bound the excess error by the excess {Ψc}c-risk E(f̂)−E∗,
where E(f) = EX ,Y ΨY (f(X)) is the expectation of ΨY (f(X)), referred to as the {Ψc}-risk, and E∗ is
the infimum inff E(f) of E(f) over an appropriate set (not restricted to F ). Consequently, we have
a very important implication relation (e.g., Bartlett et al., 2005; Lugosi and Vayatis, 2004; Chen et
al., 2004; Zhang, 2004a)

E(f̂) → E∗ ⇒ R (C(f̂)) → R ∗.

The notion of classification calibrated in Bartlett et al. (2005) is extended to multiclass classi-
fication problem and is used to characterize above implication in Tewari and Bartlett (2005). Such
an implication is also established under the so called infinite-sample-consistency (ISC) condition
on {Ψc}c (see Zhang, 2004b). Moreover, an quantitative relation between the excess error and the
excess {Ψc}-risk is obtained for One-versus-All method in Zhang (2004b).

In this paper we consider the constrained comparison method in multiclass classification prob-
lem. One of our goals is to generalize the results of consistency for weighted voting schemes in
Lugosi and Vayatis (2004) to multiclass case. We first establish an inequality concerning with the
excess error and the excess {Ψc}-risk. The inequality is interesting in its own right.

The paper is organized as following. In Section 2, we upper bound the excess error by the excess
{Ψc}-risk under some mild conditions. In comparison with the previous work, our conditions are
mainly expressed in terms of the differences between some values of function φ. On the other hand,
the sufficient conditions ensuring the quantitative relationships, even in case K = 2, are expressed
previously in terms of the infimum inff E(ΨY (f(X))|X = x). In Section 3, we apply the results in
Section 2 to establish a consistency result in multiclass case, similar to that of Lugosi and Vayatis
(2004).

2. Bounding Classification Error by Convexity

In this section, we upper bound, under some conditions on convex loss φ, the excess classification
error R (C(f))−R ∗ by the excess {Ψc}-risk E(f)−E∗ for the constrained comparison method.
Similar result is established for the One-versus-All method (see Zhang, 2004b). The two meth-
ods are different: in the One-versus-All method, one can deal with each component of the vector
function separately. The conditions and proofs here are different from those in Zhang (2004b).
Moreover, a tighter upper bound is given under Tsybakov noise condition.

Recall that P{Y = c|X = x} is the conditional probability. Let

q(x) = (qc(x))
K
c=1, qc(x) = P{Y = c|X = x}.

Suppose that φ is a convex function on R. The constrained comparison method proposed in
Zhang (2004b) uses Ψc below.

Ψc(f) =
K

∑
k=1,k 6=c

φ(− fk), f ∈ Ω :=
{

f ∈ R
K : ∑

c
fc = 0

}

.

Then the risk E(f) may by expressed as

E(f) = EXW (q(X), f(X)), (2)
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with W (q, f) = ∑K
c=1(1−qc)φ(− fc).

Note that we use qc to denote the c-th component of a K-dimensional vector q ∈ ΛK , where ΛK

is the set of possible conditional probability vectors:

ΛK =
{

q ∈ R
K :

K

∑
c=1

qc = 1,qc ≥ 0
}

.

Denote by B the set of all K-dimensional vectors of Borel measurable functions on X and
BΩ = {f ∈ B : ∀x ∈ X , f(x) ∈ Ω}. Let E ∗ = inff∈BΩ E(f).

For any q ∈ ΛK , let W ∗(q) := inff∈ΩW (q, f). It is easily seen that

E∗ = EW ∗(q(X)).

Lemma 2.1 Assume that φ is a decreasing and convex function on R. Let W (q, f) be given as
above. Suppose that q ∈ ΛK and f ∈ BΩ satisfy that there are i, j such that qi < q j and f j < fi. Then

W (q, f′) ≤W (q, f), where f′ = ( f ′1, · · · , f ′K) is given by f ′i = f ′j =
fi+ f j

2 , and f ′c = fc, c 6= i, j.

Proof. Without loss of generally, we can assume that q1 < q2 and f2 < f1. Then

f1 + f2

2
≤ (1−q1) f1 +(1−q2) f2

2−q1 −q2
.

By assumption, we have

(2−q1 −q2)φ
(

− f1+ f2
2

)

≤ (2−q1 −q2)φ
(

− (1−q1) f1+(1−q2) f2
2−q1−q2

)

≤ (1−q1)φ(− f1)+(1−q2)φ(− f2).

Therefore the proof is complete by

W (q, f)−W (q, f′)
= (1−q1)φ(− f1)+(1−q2)φ(− f2)− (2−q1 −q2)φ(− f1+ f2

2 ) ≥ 0.

Lemma 2.2 Assume that φ is a decreasing and convex function on R. Suppose that there exist
positive constants k > 0 and α ≥ 1 such that for any q ∈ ΛK ,

k(q j −qi)
α ≤W ∗(q′)−W ∗(q), (3)

where j = argmaxc qc and qi < q j, and q′ is given by q′ = (q′1, · · · ,q′K), where q′i = q′j =
qi+q j

2 , and
q′c = qc,c 6= i, j. Then for any f ∈ BΩ,

k(R (C(f))−R ∗) ≤ E(f)−E∗)
1
α .

Proof. Recall that qc(x) is the conditional probability P{Y = c|X = x}. For any f we have by
definition of R (C(f))

R (C(f))−R ∗ =
Z

X

(

qφB(x)(x)−qC(f)(x)(x)
)

dρX . (4)
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Let q(x) = (qc(x))K
c=1. Also by (2)

E(f)−E∗ =
Z

X

(

W (q(x), f(x))−W ∗(q(x))
)

dρX . (5)

Let x∈X be given such that qC(f)(x)(x) 6= qφB(x)(x). Denote j = φB(x) and i =C(f)(x). We regard
q(x), f(x) and f′(x) as q , f and f′ in Lemma 2.1 respectively.

By assumption, we have W (q(x), f′(x)) = W (q′(x), f′(x)) ≥W ∗(q′(x)). It follows from Lemma
2.1 that W ∗(q′(x)) ≤W (q(x), f(x)). Therefore by (3)

k(q j(x)−qi(x))
α ≤W (q(x), f(x))−W ∗(q(x)).

Integrating the above inequality over the set X ′ = {x ∈ X : C(f)(x) 6= φB(x)}, we have

k
Z

X ′

(

qφB(x)(x)−qC(f)(x)(x)
)α

dρX ≤
Z

X ′

(

W (q(x), f(x))−W ∗(q(x))
)

dρX .

By Hölder inequality, for α ≥ 1
(

Z

X ′

(

qφB(x)(x)−qC(f)(x)(x)
)

dρX

)α
≤

Z

X ′

(

qφB(x)(x)−qC(f)(x)(x)
)α

dρX .

Then we have the desired inequality by the definition of X ′, (4) and (5). The proof is complete.

In the following we impose some conditions on φ.

Assumption 2.3 1. φ is a differentiable, convex and decreasing function on R such that
lim

x→+∞
φ(x) = 0 and lim

x→−∞
φ(x) = +∞.

2. For any q = (qc)
K
c=1 ∈ ΛK with all qc < 1,c ∈ {1, . . . ,K}, there is a minimizer f∗ = ( f ∗c )K

c=1 of
W (q, f). Moreover, φ is twice differentiable at points − f ∗c ,c = 1, . . . ,K, and φ′′(− f ∗c ) > 0,c ∈
{1, . . . ,K}.

For any q = (qc)
K
c=1, let j = argmaxc qc and i ∈ {1, . . . ,K} with qi < q j. We introduce qt =

(qt
c)

K
c=1 ∈ ΛK for 0 ≤ t ≤ q j−qi

2 as following.

qt
i = qi + t, qt

j = q j − t, and qt
c = qc, c 6= i, j.

Clearly, qt
c < 1 for 0 < t <

q j−qi

2 and any 1 ≤ c ≤ K. Therefore, for any t, there is a ft,∗ = ( f t,∗
c )K

c=1
minimizing W (qt , f), that is, W ∗(qt) = W (qt , ft,∗).

Under a condition weaker than Assumption 2.3, Zhang (2004b) proves that the excess error
R (C(f))−R ∗ is small whenever the excess {Ψ}-risk E(f)−E ∗ is small. Our goal however is,
under Assumption 2.3, to establish an inequality between the above two quantities. We give a
sufficient condition for (3) in terms of the differences between any pair of φ(− f t,∗

c ),c ∈ {1, . . . ,K}.

Theorem 2.4 Assume that φ satisfies Assumption 2.3. Suppose that there exist positive constants
k1 > 0 and β ≥ 0 such that for any q ∈ ΛK ,

k1(q j −qi −2t)β ≤ φ(− f t,∗
j )−φ(− f t,∗

i ), 0 < t <
q j −qi

2
, (6)
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whenever j = argmaxc qc, qi < q j and ft,∗ = ( f t,∗
c )K

c=1 is a minimizer of W (qt , f). Then for any vector
f ∈ BΩ,

R (C(f))−R ∗ ≤ 2(β+1)

k1
(E(f)−E∗)

1
β+1 .

Proof. We establish condition (3) with α = β + 1 and k = k1
2(β+1) . As above, let ft,∗ = ( f t,∗

c )K
c=1 be

the minimizer of W (qt , f). The first-order optimality condition is the set of equations

(1−qt
c)φ

′(− f t,∗
c ) = µ, c = 1, . . . ,K,

where µ, independent of c, is the Lagrangian multiplier. Assumption 2.3 implies that fc,t is differen-
tiable with respect to t,c = 1, . . . ,K. Moreover, the constraint ∑K

c=1 f t,∗
c = 0(∀t ∈ (0, q2−q1

2 )) yields

∑K
c=1

d f t,∗
c

dt = 0. Consequently,

dW ∗(qt)

dt

= φ(− f t,∗
j )−φ(− f t,∗

i )−
K
∑

c=1
(1−qt

c)φ′(− f t,∗
c )d f t,∗

c
dt

= φ(− f t,∗
j )−φ(− f t,∗

i ).

Therefore, we have by (6)

dW ∗(qt)

dt
≥ k1(q j −qi −2t)β, 0 < t <

q j −qi

2
.

Integrating the above inequality over [0,
q j−qi

2 ] gives (3) with α = β+1 and k = k1
2(β+1) . Our conclu-

sion follows from Lemma 2.2. The proof is complete.

We consider the exponential loss as the first example.

Example 2.5 Let φ(x) = e−x. Then for any vector f ∈ BΩ, we have

R (C(f))−R ∗ ≤ 4 K
√

K −1

K

√

( 2K
2K−1)2K−2

√

E(f)−E∗.

Proof. For q = (qc)
K
c=1 ∈ ΛK with all qc < 1, the unique minimizer f∗ = ( f ∗c )K

c=1 is determined by
(1− qc)exp( f ∗c ) = µ,c = 1, · · · ,K, with µ the Lagrangian multiplier. Assumption 2.3 holds for φ.

By ∑c f ∗c = 0 we have µ = K

√

∏K
c=1(1−qc). Therefore

φ(− f ∗k ) =

K

√

∏K
c=1(1−qc)

1−qk
, k = 1, . . . ,K.

Let j = argmaxc qc and i ∈ {1, . . . ,K} such that qi < q j. Recall that qt and ft,∗ be defined as
before. We apply the above equality and obtain

φ(− f t,∗
j )−φ(− f t,∗

i ) =

K

√

∏
c6=i, j

(1−qc)

((1−q j + t)(1−qi − t))
K−1

K

(q j −qi −2t).
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If K = 2, ∏
c6=i, j

(1− qc) is understood as 1. If K > 2, the K − 2 nonnegative numbers qc,c 6=

i, j, may be arranged in the decreasing order, so that it is easily seen that they are not larger than
1
2 , . . . , 1

K−1 respectively. Therefore

∏
c6=i, j

(1−qc) ≥
K−1

∏
c=2

(1− 1
c
) =

1
K −1

.

On the other hand, (1−q j +t)(1−qi−t)≤ (1− qi+q j

2 )2 for 0≤ t ≤ qi−q j

2 . Note qi+q j

2 ≥ q j

2 ≥ 1
2K .

Consequently,

φ(− f t,∗
j )−φ(− f t,∗

i ) ≥
K

√

( 2K
2K−1)2K−2

K
√

K −1
(q j −qi −2t).

This is (6) with β = 1 and k1 =
K
√

( 2K
2K−1 )2K−2

K√K−1
. The conclusion follows from Theorem 2.4.

Let p≥ 1 and φ(x) = ( 1
K−1 −x)p

+, where (x)+ = max{x,0}. The resulting risk is just the one used
in p-norm Support vector machine (SVM). Chen and Xiang (2004) have established the inequality
for p = 1

R (C(f))−R ∗

K −1
≤ E(f)−E∗.

Example 2.6 Let φ(x) = ( 1
K−1 − x)2

+. Then for any vector f ∈ BΩ, we have

R (C(f))−R ∗ ≤ 4(K−1
K )2

k2

√

E(f)−E∗,

where k2 = 2( 2K−1
2K )2 +( 2K−1

2K )4
((

1
2

)2
+ · · ·+

(

K−2
K−1

)2)

for K > 2 and k2 = 1
8 for K = 2.

Proof. For q = (qc)
k
c=1 with all qc < 1, by the method of Lagrange multiplier we conclude that the

minimizer f∗ = ( f ∗c )K
c=1 satisfies − f ∗c < 1

K−1 ,c ∈ {1, . . . ,K}. Thus, Assumption 2.3 is satisfied by
φ. Moreover, we have

φ(− f ∗k ) =
( K

K −1

)2 1

(1−qk)2
K
∑

c=1

1
(1−qc)2

, k = 1, . . . ,K.

Let j = argmaxc qc and i ∈ {1, . . . ,K} such that qi < q j. Moreover, qt and ft,∗ are defined as
before. An application of the above equality to qt and ft,∗ yields

φ(− f t,∗
j )−φ(− f t,∗

i )

=
(

K
K−1

)2 (q j −qi −2t)(2−qi −q j)

(1−qi − t)2(1−q j + t)2
(

1
(1−qi+t)2 + 1

(1−q j+t)2 + ∑
c6=i, j

1
(1−qc)2

) ,

where ∑c6=i, j
1

(1−qc)2 is understood as 0 for K = 2. It is easily seen that

(1−qi − t)2(1−q j + t)2
( 1

(1−qi + t)2 +
1

(1−q j + t)2

)

≤ 2(1− q j +qi

2
)2 ≤ 2(

2K −1
2K

)2, ∀ t ∈ [0,
q j −qi

2
],
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where the second inequality holds by 1/K ≤ q j.
As in Example 2.5, again we arrange qc,c 6= i, j, in decreasing order so that they are not larger

than 1
2 , . . . , 1

K−1 respectively. It follows that, for 0 ≤ t ≤ q j−qi

2 ,

(1−qi − t)2(1−q j + t)2 ∑
c6=i, j

1
(1−qc)2 ≤

(2K −1
2K

)4((1
2

)2
+ · · ·+

(K −2
K −1

)2)

.

Therefore, the condition (6) holds with β = 1 and k1 =
(

K
K−1

)2
k2. The conclusion follows from

Theorem 2.4.

Remark 2.7 For φ(x) = ( 1
K−1 − x)p

+ with p > 1, we can also apply Theorem 2.4 and get an in-

equality R (C(f))−R ∗ ≤ k′
√

E(f)−E∗, where k′ is a constant. The argument is similar to that of
Example 2.8. We point out that − f ∗c < 1

K−1 for any q = (qc)
K
c=1 with all qc < 1,c = 1, . . . ,K, which

ensures that φ satisfies Assumption 2.3. Moreover, by simple computation,

φ(− f ∗k ) =
( K

K −1

)
p

p−1 1

∑K
c=1

(

1−qk
1−qc

)
p

p−1
, k = 1, . . . ,K.

The bounds in Lemma 2.2 and Theorem 2.4 may be improved under the so-called Tsybakov
noise condition. For any x ∈ X , let

m(x) = qφB(x)(x)−max{qi(x) : qi(x) < qφB(x)(x), i = 1 . . . ,K}

if the set {qi(x) : qi(x) < qφB(x)(x), i = 1 . . . ,K} is not empty, and m(x) = 0 otherwise.

Definition 2.8 Let s ∈ [0,1]. We say that P satisfies Tsybakov noise condition with exponent s, if
there is a constant c such that

P{X ∈ X : 0 < m(X) < t} ≤ ct
s

1−s , 0 < t ≤ 1.

As in binary classification (see Bartlett and Mendelson, 2002), Tsybakov noise condition with
exponent s implies that there is a constant c such that, for any f ∈ BΩ,

P{x : x ∈ X ,qφB(x)(x) 6= qC(f)(x)(x)} ≤ c(R (C(f))−R ∗)s. (7)

In fact, Tsybakov noise condition and (4) tell us

R (C(f))−R ∗

≥
Z

X

(

qφB(x)(x)−qC(f)(x)(x)
)

I{t≤m(x)}dρX

≥ t
(

P{x : x ∈ X , qφB(x)(x) 6= qC(f)(x)(x)}− ct
s

1−s

)

.

.

Minimizing the last term over t establishes (7).
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Theorem 2.9 Suppose that P satisfies Tsybakov noise condition with exponent s. If the conditions
of Lemma 2.2 are satisfied, then for any vector f ∈ BΩ we have

R (C(f))−R ∗ ≤ kφ(E(f)−E∗)
1

α−(α−1)s , (8)

where kφ is a constant.
Consequently, under Tsybakov noise condition with exponent s and conditions of Theorem 2.4,

we have for any vector f ∈ BΩ

R (C(f))−R ∗ ≤ kφ(E(f)−E∗)
1

β+1−βs .

Proof. For f ∈ BΩ and t ∈ (0,1] set X1 = {x : x ∈ X ,0 < qφB(x)(x)− qC(f)(x)(x) < t} and X2 = {x :
x ∈ X , t ≤ qφB(x)(x)− qC(f)(x)(x)}. Clearly, X1 ⊆ {x : x ∈ X ,qφB(x)(x) 6= qC(f)(x)(x)}, which implies
P(X1) ≤ c(R (C(f)(x))−R ∗)s by (7). On the other hand,

Z

X2

(

qφB(x)(x)−qC(f)(x)(x)
)

dρX

≤ t−α+1
Z

X

(

qφB(x)(x)−qC(f)(x)(x)
)α

dρX

≤ 1
ktα−1 (E(f)−E∗),

where the last inequality follows from the proof of Lemma 2.2. Therefore we have by (4) that

R (C(f))−R ∗ ≤ tc(R (C(f))−R ∗)s +
1

ktα−1 (E(f)−E∗).

Minimizing the right hand side of above inequality over t ∈ (0,1] yields the inequality (8) for some
constant cφ.

As a consequence, the second conclusion follows from Theorem 2.4 and (8) with α = β + 1.
The proof is complete.

3. Consistency of Weighted Voting Schemes

In this section, we consider the consistency of weight voting schemes by the results of section 2.
Recall that BΩ is given in Section 2. It is easily seen that, for any set H of classifiers, Fλ ⊂ BΩ.

Assumption 3.1 Recall that E ∗ is defined in Section 2. Suppose that the set H of classifiers satisfies

lim
λ→∞

inf
f∈Fλ

E(f) = E∗.

The notion of VC dimension plays an important role in classification (see Devroye et al., 1996;
Vapnik, 1998). Recall that for a collection A of some sets A, the VC dimension VA of A is defined
to be the largest number d, when exists, such that A shatters a set of some d points (see Devroye et
al., 1996). If there exists no such an integer d we define VA = ∞.

With n samples {(Xi,Yi)}n
i=1 ⊂ Zn, the empirical {Ψc}-risk En(f) of a vector function f is defined

by

En(f) =
1
n

n

∑
i=1

ΨYi(f(Xi)).

Clearly, E(f) = EZnEn(f).
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Lemma 3.2 Suppose that φ satisfies the condition 1 of Assumption 2.3. Moreover, suppose that, for
any c ∈ {1, . . . ,K}, the collection Ac of all sets

{(x,c) : h(x) 6= c}, h ∈ H ,

has a finite VC dimension VAc . Then for any n and λ > 0 we have

E sup
f∈Fλ

|E(f)−En(f)| ≤ 4K2λ|φ′(−λ(K −1))|
√

2V ln(4n+2)

n
, (9)

where V = max
1≤c≤K

VAc . Also, for any δ > 0, with probability at least 1−δ,

sup
f∈Fλ

|E(f)−En(f)|

≤ 4K2λ|φ′(−λ(K −1))|
√

2V ln(4n+2)

n
+2exp

( −nδ2

2(K −1)2φ2(−λK)

)

.
(10)

Proof. The proof is similar to that of Lugosi and Vayatis (2004) Lemma 2. Let σ1, . . . ,σn be the
independent symmetric sign variables, that is,

P{σi = −1} = P{σi = 1} =
1
2
.

Then, by a standard symmetrization argument,

E sup
f∈Fλ

|E(f)−En(f)| ≤ 2E sup
f∈Fλ

∣

∣

∣

1
n

n

∑
i=1

σi(ΨYi(f(Xi))− (K −1)φ(0))
∣

∣

∣
.

On the other hand, it is easily seen that

sup
f∈Fλ

∣

∣

∣

1
n

n

∑
i=1

σi(ΨYi(f(Xi))− (K −1)φ(0))
∣

∣

∣

= sup
f∈F1

∣

∣

∣

1
n

n

∑
i=1

σi

K

∑
c=1,c6=Yi

(φ(− fc(Xi))−φ(0))
∣

∣

∣

≤
K

∑
c=1

sup
f∈F1

∣

∣

∣

1
n

n

∑
i=1

σi(φ(−λ fc(Xi))−φ(0))
∣

∣

∣
,

where the equality holds by the definition of Fλ.
For any c ∈ {1, . . . ,K}, let g(t) = φ(−λt)−φ(0), t ∈ [−1,K−1]. Then g(0) = 0, and g satisfies

Lipschitz condition with Lipschitz constant L = −λφ′(−λ(K − 1)). We appeal to the “contraction
principle” to conclude for any c ∈ {1, . . . ,K}

E sup
f∈F1

∣

∣

∣

1
n

n

∑
i=1

σi(φ(−λ fc(Xi))−φ(0))
∣

∣

∣
≤ 2LE sup

f∈F1

∣

∣

∣

1
n

n

∑
i=1

σi fc(Xi)
∣

∣

∣
,

and consequently,

E sup
f∈Fλ

∣

∣

∣

1
n

n

∑
i=1

σi(ΨYi(f(Xi))−1)
∣

∣

∣
≤ 2L

K

∑
c=1

E sup
f∈F1

∣

∣

∣

1
n

n

∑
i=1

σi fc(Xi)
∣

∣

∣
. (11)

2444



MULTICLASS EMPIRICAL RISK MINIMIZATION METHODS

Since any fc = ∑ j α jTc(h j) is a convex combination of Tc(h j) with h j ∈ H , it follows that

sup
f∈F1

∣

∣

∣

1
n

n

∑
i=1

σi fc(Xi)
∣

∣

∣
= sup

h∈H

∣

∣

∣

1
n

n

∑
i=1

σiTc(h(Xi))
∣

∣

∣
. (12)

With Xi, i = 1, . . . ,n, fixed, ∑n
i=1 σiTc(h(Xi)) is a sum of n independent zero mean random vari-

ables bounded between −1 and K −1. The coefficients satisfy Tc(h(Xi)) = K −1−KI{h(Xi)6=c}. By
a version of the Vapnik-Chervonenkis inequality we conclude

E sup
h∈H

∣

∣

∣

1
n

n

∑
i=1

σiTc(h(Xi))
∣

∣

∣
≤ (K −1)

√

2VAc ln(4n+2)

n
, c = 1, . . . ,K.

The details are referred to Lugosi and Vayatis (2004). Summing the last inequalities for c = 1, . . . ,K
and appealing to (11) and (12) we prove (9).

It is easily seen that the random variable sup
f∈Fλ

|E(f)−En(f)| satisfies the bounded difference

assumption with constant ci = 2(K−1)φ(−λK)/n,1 ≤ i ≤ n. Now inequality (10) follows from (9)
and McDiarmid’s bounded difference inequality (see Lugosi, 2002; McDiarmid, 1989). The proof
is complete.

We are in a position to establish the consistency.

Theorem 3.3 Suppose that the condition of Theorem 2.4 hold for φ and that H satisfies VAc < ∞
for c = 1, . . . ,K. Choose λn such that λn → ∞ and λnφ′(−λn(K −1))

√

lnn
n → 0 as n → ∞. Assume

that, for any n samples {(X1,Y1), . . . ,(Xn,Yn)}, there exists an f̂n ∈ Fλn
such that

En(f̂n) ≤ inf
f∈Fλn

En(f)+ εn, (13)

where εn is a sequence of positive numbers converging to zero. Then under Assumption 3.1, we have
the consistency

lim
n→∞

ER (C(f̂n)) = R ∗.

Proof. Denote by fλn
an element of Fλn

which minimizes E(f). By (13) we have

E(f̂n)−E(fλn
)

= E(f̂n)−En(f̂n)+En(f̂n)−En(fλn
)+En(fλn

)−E(fλn
)

≤ 2 sup
f∈Fλn

|E(f)−En(f)|+ εn.

Therefore,
EE(f̂n) ≤ 2E sup

f∈Fλn

|E(f)−En(f)|+E(fλn
)+ εn.

With our choice of λn, the first term on the right-hand side converges to zero by (9). Also
E(fλn

) → E∗ by Assumption 3.1. Thus we have EE(f̂n) → E∗. The proof is complete by Theorem
2.4 and the inequality

E(E(f̂n)−E∗)
1

β+1 ≤ (EE(f̂n)−E∗)
1

β+1 .
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Example 3.4 The most important choice of φ in Theorem 3.3 is φ(x) = e−x. In this case, we thus
choose λn such that

λn → ∞ and λneλn(K−1)

√

lnn
n

→ 0.

If the set H has a finite VC dimension and, for any samples {(Xi,Yi)}n
i=1, (13) holds, then we have

the consistency stated in Theorem 3.3.
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