
Journal of Machine Learning Research 7 (2006) 2125-2148 Submitted 12/05; Revised 5/06; Published10/06

©2006 Fu Chang, Chin-Chin Lin and Chi-Jen Lu

Adaptive Prototype Learning Algorithms:
Theoretical and Experimental Studies

Fu Chang FCHANG @IIS.SINICE.EDU.TW
Institute of Information Science
Academia Sinica
Taipei, Taiwan

Chin-Chin Lin ERIKSON@IIS.SINICA.EDU.TW
Department of Electrical Engineering
National Taipei University of Technology
Taipei, Taiwan

Chi-Jen Lu CJLU@IIS.SINICA.EDU.TW
Institute of Information Science
Academia Sinica
Taipei, Taiwan

Editor: Rocco Servedio

Abstract
In this paper, we propose a number of adaptive prototype learning (APL) algorithms. They employ
the same algorithmic scheme to determine the number and location of prototypes, but differ in the
use of samples or the weighted averages of samples as prototypes, and also in the assumption of
distance measures. To understand these algorithms from a theoretical viewpoint, we address their
convergence properties, as well as their consistency under certain conditions. We also present a
soft version of APL, in which a non-zero training error is allowed in order to enhance the
generalization power of the resultant classifier. Applying the proposed algorithms to twelve UCI
benchmark data sets, we demonstrate that they outperform many instance-based learning
algorithms, the k-nearest neighbor rule, and support vector machines in terms of average test
accuracy.
Keywords: adaptive prototype learning, cluster-based prototypes, consistency, instance-based
prototype, pattern classification

1 Introduction
We divide this section into two parts, with the first part addressing the background of all related
methods and the second part discussing our contributions.

1.1 Background
In pattern cognition, one method for classifying objects, expressed as feature vectors, is to
compute the distance between the vectors and certain labeled vectors, called prototypes. This
approach selects the k nearest prototypes for each test object and classifies the object in terms of
the labels of the prototypes and a voting mechanism. Prototypes are vectors that reside in the
same vector space as feature vectors and can be derived from training samples in various ways.
The simplest way is to use all training samples as prototypes (Fix and Hodges, 1951, 1952,
1991a, 1991b). Besides not incurring any training costs, this approach has two major advantages.

CHANG, LIN AND LU

 2126

First, for a finite set of training samples S, the error rate using all samples as prototypes does not
exceed twice the Bayes risk (Cover and Hart, 1967). Second, it ensures consistency, or
asymptotic Bayes-risk efficiency (Stone, 1977; Devroye and Györfi, 1985; Zhao, 1987; Devroye
et al., 1994).
However, recruiting all training samples as prototypes can incur a high computational cost during
the test procedure, which is prohibitive in applications with large corpora. Consequently, certain
editing rules have been proposed to reduce the number of prototypes. The condensed nearest
neighbor (CNN) rule (Hart, 1968) was the first, and perhaps simplest, proposal among many
subsequent ones, all of which try to extract a subset from a collection of samples. These
algorithms execute a process iteratively to check the satisfaction of certain criteria for the current
set of prototypes, and add or drop prototypes until a stop condition is met. Wilson and Martinez
(2000) collected and compared many algorithms of this type (in particular, DROP1 to DROP5),
and categorized them as instance-based learning (IBL) algorithms. More recently, an alternative
IBL algorithm called the Iterative Case Filtering (ICF) algorithm (Brighton and Mellish, 2002)
was proposed. ICF runs faster than most IBL algorithms, which drop rather than add samples
(this point is discussed further in Section 7.2), yet it achieves comparable accuracy to the latter
algorithms.

Another method for finding prototypes can be categorized as cluster-based learning (CBL)
algorithms, in which prototypes are not samples per se, but can be derived as the weighted
averages of samples. The k-means clustering algorithm (Lloyd, 1982; Max, 1960; Linde et al.
1980), the fuzzy c-means algorithm (Bezdek, 1981; Höppner et al., 1999), and the learning vector
quantization algorithm (Kohonen, 1988, 1990) are examples of this method. Instead of
representing prototypes as the weighted averages of samples, they can be represented as centroids
of clusters (Devi and Murty, 2002), or as hyperrectangles (high-dimensional rectangles)
(Salzberg, 1991). In the latter case, the distance between a sample and a hyperrectangle not
containing the sample is defined as the Euclidean distance between the sample and the nearest
face of the hyperrectangle.

In their guidelines for the design of prototype learning algorithms, Devroye et al. (1996,
Chapter 19) propose some sufficient conditions for the consistency of this kind of algorithm. The
conditions stipulate that: (a) the algorithm should minimize the empirical error, which is the error
in classifying training samples; and (b) the number of prototypes should grow as a lower order of
the number of training samples.

Support vector machines (SVM) can also be used for pattern classification. In this approach,
objects are classified by maximizing the margins between samples with different labels, where
the margin is defined as the gap between two parallel hyperplanes (Figure 1a). The consistency of
SVM is assured if the samples are bounded and the margin between samples with different labels
holds (Vapnik, 1995; Schölkopf et al. 1999; Cristianini and Shawe-Taylor, 2000).

1.2 Our Contributions
The requirement that data should be bounded is reasonable, since it is a common practice in
applications to normalize feature values to a certain bounded interval (between 0 and 1, for
example). The margin assumption, on the other hand, is unique to SVM. However, we can prove
the consistency of CNN under a more relaxed assumption (Figure 1b). For convenience, we say
that two labeled entities (that is, samples or prototypes) are homogeneous if they have the same
label; otherwise, they are heterogeneous. We require a non-zero distance between heterogeneous
samples.

Despite its consistency, CNN could be improved in two ways. First, its criterion for prototype
satisfaction is rather weak and could be strengthened. Second, it is not difficult to develop an
alternative process by using a cluster-based rule to construct prototypes. Experiments show that

ADAPTIVE PROTOTYPE LEARNING ALGORITHMS

 2127

the latter process often achieves better test accuracy than CNN. Another issue with this algorithm
is its theoretical standing. The consistency of CNN derives from the fact that its prototypes are
samples and thus always keep a certain distance from each other. The cluster centers, on the other
hand, are not samples but the weighted averages of samples, so it is difficult to control the
distances between them. To resolve this problem, we adopt a hybrid solution that combines
cluster centers and certain selected samples to maintain a desirable separation between all the
resultant prototypes.

 (a) (b)

Figure 1. (a) A margin exists between two data sets. (b) A positive distance exists between two
data sets.

Note that it is not always appropriate to minimize training errors for SVM. Sometimes, a
higher number of training errors should be tolerated so that prediction errors can be reduced. Such
flexibility, which is built into the “soft-margin” version of SVM (Cortes and Vapnik, 1995;
Bartlett and Shaw-Taylor, 1999), yields better test accuracy than the “hard-margin” version.
Fortunately, this flexibility also exists in adaptive prototype learning (APL) algorithms, and can
be derived by a tradeoff between the number of prototypes and their predictive power. However,
although APL reduces training errors by adding prototypes, it increases the risk of overfitting. A
balance between these two factors is made possible by a cross-validation study, similar to that
used for SVM. We discuss this point further in Section 6.

In summary, we propose two types of prototype learning algorithm. The first is an instance-
based algorithm, which adds samples as prototypes according to an enhanced absorption criterion.
The advantage of this approach (discussed in Section 7.2) is that it achieves substantially higher
test accuracy at a relatively low training cost, compared to other instance-based algorithms,
whose major merit is a lower ratio of prototypes to training samples. Although our algorithm
achieves higher test accuracy at the expense of a somewhat higher ratio of prototypes to training
samples, we believe this is acceptable, since it enables the proposed classifier to even outperform
the k-nearest neighbor (k-NN) rule in terms of accuracy. The second approach is a hybrid method
that constructs prototypes as either samples or the weighted averages of samples. Compared to
SVM, the hybrid prototype learning method yields higher test accuracy, at the expense of a higher
training cost (discussed in Section 7.3).

The remainder of the paper is organized as follows. In the next section, we present the
Vapnik-Chervonenkis (VC) theory of multiclass classification. In Section 3, we provide proof of
the consistency of CNN under certain conditions. In Section 4, the extension of CNN to APL is
discussed, along with the convergence of APL and its consistency under the same conditions. In
Sections 5 and 6, respectively, we describe a kernelized version and a soft version of APL.
Section 7 contains experimental studies of APL and comparisons with some instance-based

CHANG, LIN AND LU

 2128

learning algorithms, namely, k-NN, CNN and SVM. Finally, in Section 8, we present our
conclusions.

2 Vapnik-Chervonenkis Theory of Multiclass Classification
In this section, we develop a basic theory of prototype-learning algorithms. In particular, we
derive an asymptotic result for generalization errors of prototype learning algorithms. For the case
of binary classification, in which an object is classified as one of two class types, the standard
Vapnik-Chervonenkis (VC) theory provides such a bound. This theory, however, is not sufficient
for our purpose, since we deal with multiclass classifications in which we want to classify an
object into one of m classes, with 2≥m . Here, we focus on extending the standard VC theory to
such a case.

The standard VC theory is a probabilistic theory that has great breadth and depth. To present
a complete version of the theory in a journal paper is impossible. In fact, it is also unnecessary,
since a comprehensive treatment can be found in the book A Probabilistic Theory of Pattern
Recognition (Devroye et al., 1996). For this reason, we follow its notations closely (with some
minor changes to suit our purpose) and quote those theorems that are relevant to our task.

We assume there are n training samples (x1, y1), …, (xn, yn), and a test sample (x, y) drawn
independently from the set Rd×Λ according to the same distribution, where Λ = {1, 2,…, m} is a

set of labels or class types. Then, for a classifier g: Rd →Λ, we define its training error)(ˆ gLn and
testing error L(g) as follows.

Definition 1 The training error of a classifier g is defined as the fraction of training samples
misclassified by g, that is, ∑ = ≠= n

i ygn ii
IngL 1 })({)/1()(ˆ

x , where I is the indicator function such that
1})({ =≠ ii ygI x if and only if ii yg ≠)(x . The testing error of a classifier g is defined as the

probability that a test sample has been misclassified by g, that is, L(g) = Pr{g(x)≠y}.
Typically, from the training samples, a learning algorithm tries to build a classifier g of a

generic class C, with the objective that g can generalize well in the sense that it has a small testing
error. The standard VC theory provides a bound for the testing error of binary classifiers. This
bound can be expressed in terms of the following complexity measure of C.

Definition 2 Let C be a collection of binary classifiers of the form g : Rd → {0, 1}. For any n, the
nth shatter coefficient of C is defined as

|,}:{|max),(
|| ,

CggnCS T
nTRT d

∈=
=⊆

where gT is the function obtained by restricting g to the domain T, and |X| for any set X is the
number of elements of X.

Intuitively, the nth shatter coefficient of C is the maximum number of ways that an n-element
subset can be partitioned by the classifiers in C. The following well-known result of Vapnik and
Chervonenkis (1971, 1974a, 1974b) provides a bound for the testing error of classifiers in C,
which we denote as the VC-bound. We adopt this result from Theorem 12.6 in Devroye et al.
(1996).

Theorem 3 Let C be a collection of binary classifiers. Then, for any n and any 0>ε ,

.),(8|)()(ˆ|supPr 32/2εε n
n

Cg
enCSgLgL −

∈
≤

⎭
⎬
⎫

⎩
⎨
⎧

>−

ADAPTIVE PROTOTYPE LEARNING ALGORITHMS

 2129

Next, we explain how to obtain an analogous result for multiclass classifiers. For a collection
C of multiclass classifiers g: Rd → Λ, let CB be the class of binary classifiers gi: Rd → {0, 1} such
that gi(x) = 1 if and only if g(x) = i, for g∈C and i = 1, 2, …, m.

Theorem 4 Let C be a collection of multiclass classifiers of the form g: Rd →Λ. Then, for any n
and any 0>ε ,

.),(8|)()(ˆ|supPr)8/(22 mnB
n

Cg
enCSgLgL εε −

∈
≤

⎭
⎬
⎫

⎩
⎨
⎧

>−

Proof: First, consider any classifier g: Rd →Λ. A sample (x, y)∈ Rd×Λ is misclassified by g if and

only if it is misclassified by both gy and gg(x). Thus, ∑ == m
i

i
nn gLgL 1)(ˆ)(ˆ2 and

.)()(2 1∑ == m
i

igLgL Then, by triangle inequality, the condition ε>− |)()(| gLgLn implies that

ε2 |)(2)(ˆ2| |)()(ˆ| |)()(ˆ| 1 11 >−=−≥− ∑ ∑∑ = == gLgLgLgLgLgL n
m
i

m
i

ii
n

m
i

ii
n ,

and mgLgL ii
n /2|)()(ˆ| ε>− for some i. Therefore,

⎭
⎬
⎫

⎩
⎨
⎧

>−≤
⎭
⎬
⎫

⎩
⎨
⎧

>−
∈∈

mgLgLgLgL ii
n

Cg
n

Cg Bi
/2|)()(ˆ|supPr|)()(ˆ|supPr εε .

This theorem follows from the previous theorem with ε replaced by m/2ε . 
As stated in the above theorem, the VC-bound is the product of two terms. The first is just the

shatter coefficient, whose magnitude depends on the collection of classifiers C. The second term
decays exponentially to zero as ∞→n . To obtain an asymptotic result from this product, we
need to know how fast the shatter coefficient grows as ∞→n . If its growth is slower than the
decay of the second term, then the VC-bound approaches zero as ∞→n .

Let us now define some terms. A prototype data pair (p, y) consists of a prototype dR∈p
and its label y. We say that a classifier uses the 1-NN rule based on prototype data pairs if g
assigns to each dR∈x the label of the nearest prototype to x. The collection of all multiclass
classifiers using the1-NN rule based on k prototype data pairs is denoted by C(k), while the
collection of binary classifiers using the 1-NN rule based on k prototype data pairs is denoted by
B(k). We want to derive a result for C(k) in terms of a known result of B(k). To do this, we adopt the
following lemma from Devroye et al. (1996, p. 305), which provides a bound for S(B(k), n).

Lemma 5 S(B(k), n) ≤ (ne/(d+1))(d+1)(k-1).
From Theorem 4 and Lemma 5, we derive the following result for C(k).

Theorem 6 For any n and any 0>ε ,

.))1/((8|)()(ˆ|supPr)8/()1)(1(22

)(

mnkd
n

Cg
ednegLgL

k

εε −−+

∈
+≤

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

>−

Proof: In order to apply Theorem 4, we need to find a bound for),()(nCS B
k , where B

kC)(derives

from C(k) in the same way as CB derives from C. Since)()(k
B
k BC ⊆ , we have

),(),()()(nBSnCS k
B
k ≤ , which follows easily from the definition of the shatter coefficient.

CHANG, LIN AND LU

 2130

Therefore, by Lemma 5, we have S(B
kC)(, n) ≤ (ne/(d+1))(d+1)(k-1). Combining this inequality and

Theorem 4, we obtain the desired result. 
For a given sequence of training data Dn = {(x1, y1), …, (xn, yn)}, a classification rule is a

sequence of classifiers {gn} such that gn is built on Dn. Such a rule is said to be consistent, or
asymptotically Bayes-risk efficient, if

,0})(inf)(Pr{lim =>−
∞→

εgLgL
gnn

for any 0>ε , where)(inf gL
g

is the infimum (i.e., the greatest lower bound) of the testing errors

of all classifiers of the form g: Rd → Λ. A prototype classification rule, on the other hand, is a
sequence {gn} such that gn uses the 1-NN rule based on kn prototypes for some kn. The following
corollary provides a sufficient condition for the consistency of a prototype classification rule.
Note that, in stating the corollary, we use o(f(n)) to denote a quantity whose ratio to f(n)
approaches zero as ∞→n .

Corollary 7 Suppose that {gn} is a prototype classification rule such that 0)(ˆ =nn gL and kn = o(
nε2/(m2dlogn)) for all n. Then, for any 0>ε ,

.0})(Pr{lim})(inf)(Pr{lim =>=>−
∞→∞→

εε nngnn
gLgLgL

Proof: Since 0)(ˆ =nn gL , the condition that ε)(>ngL implies that ε |)()(ˆ| >− nnn gLgL and

thus ε |)()(ˆ|sup
)(

>−
∈

gLgLn
Cg nk

 as well. Hence, .|)()(ˆ|supPr})(Pr{
)(⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

>−≤>
∈

εε gLgLgL n
Cg

n
nk

Also, since kn = o(nε2/(m2dlog n)), by Theorem 6, we have 0})(Pr{ →> εngL as ∞→n .
Finally, ε>−)(inf)(gLgL

gn implies that ε)(>ngL , so the probability of the former inequality

also approaches zero as ∞→n . 

3 The Condensed Nearest Neighbor Rule
Following the notations defined in Section 2, we assume that a set of observed data, or samples,
(x1, y1), (x2, y2), ..., (xn, yn) is given. Our goal here is to extract a subset Un from n

iinX 1}{ == x in
such a way that if u is the nearest member of Un to ix , then iyl =)(u , where)(ul is the label of
u. Members of Un are called prototypes, and samples whose labels match those of their nearest
prototypes are said to be absorbed.

The CNN rule (Hart, 1968) is a simple way of solving the above problem. Starting with
}{ 0x=nU , where 0x is randomly chosen from Xn, CNN scans all members of Xn. It then adds to

Un a member x of Xn whose nearest prototype’s label does not match that of x. The algorithm
scans Xn as many times as necessary, until all members of Xn have been absorbed or, equivalently,
no more prototypes can be added to Un.

Let)}()(and ,,||: min{|| jjnjijin llX xxxxxx ≠∈−=δ , that is, nδ is the minimal distance

between heterogeneous samples. Since }{ nδ is a decreasing sequence, there exists a δ such that
δδ →n as ∞→n . The consistency of the CNN rule can be proved under the following two

conditions. 1) Boundedness: all samples are included in a bounded set; that is, there exists a

ADAPTIVE PROTOTYPE LEARNING ALGORITHMS

 2131

region H of radius R such that 1} Pr{ =∈ Hx . 2) Non-zero separation: the limit δ of }{ nδ is
non-zero.

Lemma 8 Under the conditions of boundedness and non-zero separation, the number of CNN
prototypes cannot exceed dR)1/2(+δ , where R is the radius of H and δ is the limit of }{ nδ .
Proof: We want to prove that all prototypes are δ-separated, that is, their distance is at least δ.
This is true for any two prototypes with different labels, since all prototypes are samples and
heterogeneous samples are δ -separated. Therefore, we only have to prove that all prototypes of
the same label are also δ -separated.

We assume that p and q are prototypes of the same label. As CNN is a sequential process, its
prototypes are constructed in linear order. Without loss of generality, we assume that p is
constructed before q; hence, there must be a prototype m that is constructed before q,

)()(qm ll ≠ , and . |||| |||| mqpq −≥− Now, since q and m have different labels, . |||| δ≥− mq
Combining these two facts, we obtain . |||| δ≥− pq

We define a ball of radius r centered at w as rrB <−= |||| :{),(wxxw }. Let the prototypes be
k
ii 1}{ =p . Since they are δ -separated from each other, all the balls)2/,(δiB p are non-overlapping.

Moreover, the union of these balls is contained in a ball of radius 2/δ+R (Figure 2). So, we
must have dd Rk)2/()2/(δδ +< , or .)1/2(dRk +< δ 

Rδ /2

R+δ /2

Figure 2. If all samples are contained in a ball of radius R, then all balls of radius δ /2 centered at

a sample are included in a ball of radius R+δ /2.

From this lemma and the corollary to Theorem 6, we derive the following.

Theorem 9 Let {gn} be a sequence of classifiers using the 1-NN rule based on CNN prototype
data pairs. The boundedness and non-zero separation conditions ensure the consistency of {gn}.

4 Adaptive Prototype Learning Algorithms
An adaptive prototype learning algorithm is similar to CNN in that it adds as many prototypes as
necessary until all samples have been absorbed. APL, however, differs from CNN in two
respects: the absorption criterion and the nature of prototypes. In CNN, all prototypes are
samples, whereas prototypes in APL can be samples or the weighted averages of samples. We
denote prototypes that are samples as instance-based prototypes (IBPs) to differentiate them from
cluster-based prototypes (CBPs), which are the weighted averages of samples. First, we develop a
special type of APL algorithm for IBPs and prove its consistency under the conditions that ensure
the consistency of CNN. We then propose a more complex type of APL that combines IBPs and
CBPs, after which we address APL’s convergence and consistency properties.

CHANG, LIN AND LU

 2132

4.1 Generalized CNN
The instance-based APL includes CNN as a special case. For this reason, we denote it as a
generalized CNN, or GCNN. The difference is that GCNN employs a strong absorption criterion,
in contrast to the weak criterion employed by CNN. According to CNN, a sample x is absorbed if

0 |||||||| >−−− pxqx , (1)

where p and q are prototypes, p is the nearest homogeneous prototype to x, and q is the nearest
heterogeneous prototype to x. For GCNN, however, we adopt the following criterion:

nρδ |||||||| >−−− pxqx ,)1,0[∈ρ . (2)

We say that a sample is weakly absorbed if it satisfies (1), and strongly absorbed if it satisfies
(2). Note that (1) corresponds to the case where ρ = 0 in (2). Adopting (2) makes it possible to
improve the classifier by optimizing ρ . The question of how to optimize ρ is addressed in
Section 6.

We now describe the steps of GCNN.
G1 Initiation: For each label y, select a y-sample as an initial y-prototype.
G2 Absorption Check: Check whether each sample is strongly absorbed (absorbed, for

short). If all samples are absorbed, terminate the process; otherwise, proceed to the next
step.

G3 Prototype Augmentation: For each y, if any unabsorbed y-samples exist, select one as a
new y-prototype; otherwise, no new prototype is added to label y. Return to G2 to
proceed.

In G1, a y-sample is selected as follows. We let each y-sample cast a vote to its nearest y-
sample, and select the one that receives the highest number of votes. In G3, an unabsorbed y-
sample is selected as follows. Let Ψy = {xi: l(xi)=y & xi is unabsorbed}. We let each member of Ψy
cast a vote for the nearest member in this set. The selected y-sample is the member of Ψy that
receives the highest number of votes.

Lemma 10 GCNN prototypes satisfy the following properties. (a) For each prototype p, no
heterogeneous sample can be found in),(nB δp . (b) For any two heterogeneous prototypes p and
q, nδ≥− |||| qp . (c) For any two homogeneous prototypes m and n, nδρ)1(|||| −>− nm .
Proof: Propositions (a) and (b) follow from the fact that GCNN prototypes are samples and the
separation between any two heterogeneous samples is at least nδ . To prove (c), let two
homogeneous prototypes m and n be given, and let m be constructed before n. Since n is not
absorbed by the time it is taken as a prototype, there exists a heterogeneous prototype q such that

nρδ≤−−− |||||||| mnqn or, equivalently,

nρδ−−≥− |||| |||| qnmn . (3)

Since n and q are heterogeneous, by (a), n cannot lie in),(nB δq . Thus,

nδ |||| ≥− qn . (4)

Combining (3) and (4), we obtain nnn δρρδδ)1(|||| −=−≥− mn . 

We define the number of iterations as the number of times G2 has been executed. The
following lemma states that the number of iterations cannot exceed a certain magnitude. Let nR
be the radius of the smallest ball containing all samples in Xn.

ADAPTIVE PROTOTYPE LEARNING ALGORITHMS

 2133

Lemma 11 The number of GCNN prototypes cannot exceed .])1/()2[(d
nnnR δρδ −+ Moreover,

GCNN converges within a finite number of iterations.
Proof: Lemma 10 ensures that homogeneous and heterogeneous GCNN prototypes are separated
by certain constants. Using this fact and a similar argument to that in the proof of Lemma 8, we
conclude that the number of GCNN prototypes cannot exceed .])1/()2[(d

nnR δρδ −+ Since at
least one prototype is created at each iteration, the number of iterations cannot exceed this
number either. 

Now, under the conditions of boundedness and non-zero separation, we can also show that
the number of GCNN prototypes is bounded from above by d

nnR])1/()2[(δρδ −+ , with R
replacing nR . Since dd

nn RR])1/()2[(])1/()2[(δρδδρδ −+≤−+ , the number of GCNN
prototypes is bounded from above by a constant independent of n. The consistency of GCNN
follows from the same argument that demonstrates the consistency of CNN.

Theorem 12 Under the conditions of boundedness and non-zero separation, GCNN is consistent.

4.2 Linear Adaptive Prototype Learning
Having explained GCNN, we are ready to describe a more complex type of APL that can take a
mixture of IBPs and CBPs as its prototypes. To differentiate it from GCNN, and from another
version of APL to be described later, we denote this algorithm as linear APL (LAPL).

Recall that the consistency of GCNN derives from the separation of prototypes. We wish to
obtain a similar separation between LAPL prototypes, but the addition of CBPs raises some
problems.

The first problem is the separation required for heterogeneous prototypes. While a nδ
separation can be easily maintained by any two heterogeneous IBPs, it may not be maintained so
easily by two heterogeneous CBPs. Therefore, we require the separation to be nfδ , where

]1,0[∈f . How we determine the optimal value of f is discussed in Section 6.
The next problem is the absorption criterion. For LAPL, we adopt the following:

nfδρ |||||||| >−−− pxqx , for)1,0[∈ρ . (5)

How to optimize ρ is also addressed in Section 6.
The third problem is how to maintain a positive separation between all LAPL prototypes. To

achieve this objective, we specify the following requirements.
(C1) For each prototype p, no heterogeneous sample exists in),(nfB δp .

(C2) For any two heterogeneous prototypes p and q, nfδ≥− |||| qp .

(C3) For any two homogeneous prototypes m and n, nfδρ)1(|||| −>− nm .

Thus, in the transition from GCNN to LAPL, we have systematically changed nδ to nfδ . We
now state the LAPL algorithm, and prove that the prototypes derived from it satisfy (C1), (C2),
and (C3). We first describe the general scheme of the algorithm, and then provide the technical
details. The steps of LAPL are:

H1 Initiation: For each label y, initiate a y-prototype as the average of all y-samples. If this
prototype does not satisfy (C1), (C2), and (C3), we apply the prototype adjustment
module (described later in this section).

H2 Absorption Check: Check whether each sample has been absorbed. If all samples have
been absorbed, terminate the process; otherwise, proceed to the next step.

CHANG, LIN AND LU

 2134

H3 Prototype Refreshment: For each un-satiated label y (i.e., some y-samples are
unabsorbed), select an unabsorbed y-sample. We then apply a clustering algorithm to
construct clusters, using the selected y-sample and all existing y-prototypes as seeds.
The centers of the resultant clusters are new y-prototypes. If these prototypes do not
satisfy (C1), (C2), and (C3), we apply the prototype adjustment module (described later
in this section). Return to H2 to proceed.

We now provide the technical details.
Selection of Unabsorbed Samples in H1 and H3. The selection procedures in H1 and H3

are the same as those in G1 and G3.
Clustering Algorithms in H3. Any clustering algorithm can be used. For the experiment

described in this paper, we use the k-means (KM) and the fuzzy c-means (FCM) clustering
algorithms, both of which are applied to training samples of the same label. Thus, if there are m
labels in the training data, we apply the algorithms m times. Details of the methods are as follows.

The KM method (Lloyd, 1982; Max, 1960; Linde et al. 1980) derives a locally optimal
solution to the problem of finding a set of cluster centers p

ii 1}{ =c that minimizes the objective
function

2
1 ,...,1

||||min j
n
j ipi

xc −∑ = =
. (6)

KM’s iterative process is performed as follows. Setting seeds as the initial cluster centers, we
add each sample to the cluster whose center is nearest to it. We then reset the center of each
cluster as the average of all the samples that fall in that cluster. To ensure rapid convergence of
KM, we require that the process stops when the number of iterations reaches 30, or the
membership of the clusters remains unchanged after the previous iteration.

In FCM (Bezdek, 1981; Höppner et al., 1999), the objective function to be minimized is

∑ ∑= = −n
j

p
i ji

m
iju1 1

2|||| xc , for),1(∞∈m (7)

under the constraint

∑ = =p
i iju1 1 , for j = 1, 2, ..., n, (8)

where iju is the membership grade of sample jx to prototype ic . Using the Lagrangian method,
we can derive the following equations:

()
()∑ = −

−

−

−
=

p
k mjk

mji
iju

1 1
2

1
2

||||/1

||||/1

xc

xc
, (9)

∑
∑

=

== n
j

m
ij

n
j j

m
ij

i u

u

1

1 x
c , (10)

for i = 1, 2, …, p, and j = 1, 2, …, n respectively. FCM is a numerical method that finds a locally
optimal solution for (9) and (10). Using a set of seeds as the initial solution for p

ii 1}{ =c , the
algorithm computes np

jiiju ,
1,}{ = and p

ii 1}{ =c iteratively. To ensure rapid convergence of FCM, we

require that the process stops when the number of iterations reaches 30, or ∑ = =−p
i

new
i

old
i1 0|||| cc .

The prototype adjustment module is used to adjust the location of prototypes if they do not
satisfy the separation conditions (C1), (C2), and (C3).

ADAPTIVE PROTOTYPE LEARNING ALGORITHMS

 2135

Prototype Adjustment in H1. The purpose of this module is to replace prototypes that
violate (C1) or (C2) with those that do not. Note that there is only one prototype per label in H1,
so we do not need to worry about (C3). There are two steps in this stage.

Step 1: If we find a CBP p that violates (C1), which requires that no heterogeneous sample
exists in),(nfB δp , we replace p with a sample of the same label. The replacement
sample is an IBP and is selected in exactly the same way as a seed is selected in G1.

Step 2: If we find a CBP p that violates (C2), which requires that nfδ≥− |||| qp for any
other prototype q, we replace p with an IBP of the same label. We perform this
operation iteratively, until the desired separations hold between CBPs, and between
CBPs and IBPs.

We now prove that after these two steps, all prototypes satisfy (C1) and (C2). We first prove
that, after Step 1, all prototypes satisfy (C1). By assumption, all CBPs satisfy (C1) after this step.
Also, all IBPs satisfy (C1), since all heterogeneous samples are nδ -separated from them and

nn fδδ ≥ . We now prove that, after Step 2, all prototypes satisfy both (C1) and (C2). It is clear
that all prototypes satisfy (C1) at the end of this step; and each CBP maintains nfδ -separations
from other prototypes by assumption. Also, since each IBP maintains nδ -separations from other
IBPs and nn fδδ ≥ , each IBP maintains nfδ -separations from other IBPs.

Prototype Adjustment in H3. This module adjusts prototypes in two steps.
Step I: A set of prototypes of the same label is called a pack. When a pack consists of CBPs

that satisfy (C1) and they are nfδρ)1(− -separated from each other, as required by
(C3), we preserve that pack. Otherwise, we replace it with the set of seeds from which
the CBPs were derived.

Step II: Two packs are said to be nfδ -separated if any two prototypes drawn from them are

nfδ -separated. When we find two packs that are not nfδ -separated, we replace one of
them with the set of seeds from which its prototypes were derived. We perform this
operation iteratively until the remaining packs are nfδ -separated.

We now show that, after Step I, all prototypes satisfy (C1) and (C3). For convenience, we call
preserved packs P-packs and replacement packs R-packs. An R-pack consists of existing
prototypes, called X-prototypes, and an unabsorbed sample, called a U-prototype. By induction,
all X-prototypes meet (C1) and (C3). The U-prototype, denoted as u, also satisfies (C1), because
heterogeneous samples are nδ -separated from each other. It remains to show that u is nfδρ)1(− -
separated from all X-prototypes. This fact follows from a similar argument to that for Lemma
10(c), so we omit the proof. We conclude that all the prototypes satisfy (C1) and (C3).

We now prove that, after Step II, all prototypes satisfy (C1), (C2), and (C3). It is clear that all
prototypes satisfy (C1) and (C3) at the end of this step. It remains to prove that they also satisfy
(C2), that is, heterogeneous prototypes are nfδ -separated. We want to show that all
heterogeneous prototypes in the R-packs are nfδ -separated. As noted earlier, these prototypes
consist of X-prototypes and U-prototypes. By induction, heterogeneous X-prototypes are nfδ -
separated. Heterogeneous U-prototypes are also nfδ -separated, as noted before. U-prototypes are
also nfδ -separated from heterogeneous X-prototypes, since all X-prototypes satisfy (C1). Thus,
at the end of Step II, all prototypes satisfy (C2).

The nfδ -separation between heterogeneous prototypes and the nfδρ)1(− -separation between
homogeneous prototypes imply the convergence of LAPL and also its consistency under the

CHANG, LIN AND LU

 2136

conditions of boundedness and non-zero separation. Note that the above conclusions do not hold
for the case where f = 0, which we deal with in Section 5.

Theorem 13 The LAPL terminates within a finite number of iterations, provided that]1,0(∈f ,
)1,0[∈ρ , and),1(∞∈m .

Theorem 14. Let {gn} be a sequence of classifiers using the 1-NN rule based on LAPL prototype
data pairs. The conditions of boundedness and non-zero separation ensure the consistency of
{gn}, provided that]1,0(∈f ,)1,0[∈ρ , and),1(∞∈m .

5 Kernelized Adaptive Prototype Learning Algorithms
Let HRd →Φ : be a function that maps from the d-dimensional Euclidean space to a Hilbert
space, whose dimension dim(H) may be infinite. In a kernelized adaptive prototype learning
algorithm, the goal is to build prototypes in H. To this end, we first transform the given observed
data n

jj 1}{ =x into n
jj 1)}({ =Φ x . When either KM or FCM is used to compute prototypes, each

prototype in H is of the form

∑∑ == Φ= n
j

m
ij

n
j j

m
iji uu 11 /)(xc ,

where ci and uij were introduced in (6), (7), and (8). When KM is used, ≡m 1. Moreover, uij = 1/ni
provided that the jth sample falls in the ith cluster, whose population size is ni; otherwise, uij = 0.
When FCM is used, we compute uij according to (9) in which the distance now becomes a kernel-
based distance, to be defined below.

If ,)dim(∞=H ic cannot be expressed in vector form. Even when dim(H) < ∞ , it can be
computationally expensive to find an explicit form of ic . Fortunately, we can compute the
distance between)(jxΦ and ic directly, provided there exists a kernel function (Mercer, 1909;
Girosi, 1998)

)(),(),(yxyx ΦΦ=K , for dR∈yx, .

When such a function exists, we obtain the kernel-based distance as

)(),(||)(|| 2
jijiKerji xcxcxc Φ−Φ−=Φ−

)(),()(,2, jjjiii xxxccc ΦΦ+Φ−= . (11)

Moreover,

,
),(

, 2

1

1 1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∑

∑∑

=

= =

n

k

m
ik

n

k

n

l
lk

m
il

m
ik

ii

u

Kuu xx
cc (12)

,
),(

)(,

1

1

∑

∑

=

==Φ n

k

m
ik

n

k
jk

m
ik

ji

u

Ku xx
xc (13)

ADAPTIVE PROTOTYPE LEARNING ALGORITHMS

 2137

and

),()(),(jjjj K xxxx =ΦΦ . (14)

From np
jiKerji
,

1,
2 }||)({|| =Φ− xc , we derive np

jiiju ,
1,}{ = according to the appropriate formula in the

clustering algorithm being used. Since we do not want to express the prototypes explicitly, we use
np
jiiju ,

1,}{ = to represent them instead. From the prototypes, we can compute np
jiKerji
,

1,
2 }||)({|| =Φ− xc

again, using (11)-(14). This iterative process stops if the number of iterations reaches 30, or
001.0 ||max

,
<− new

ij
old

ji
uu

ij
. These steps represent the kernelized versions of KM and FCM,

depending on which definition of np
jiiju ,

1,}{ = is used. The kernelized version of FCM was proposed
and studied by Wu, Xie and Yu (2003) and Kim et al. (2005).

There is also a kernelized version of GCNN, but we do not consider it in this paper, for the
reason to be given in Section 7. We denote the kernelized version of LAPL simply as KAPL,
which is derived from LAPL by replacing KM or FCM with an appropriate kernelized version. In
addition, we make the following changes. First, the initial y-prototype in KAPL should be the
average of all })(:)({ yl =Φ xx . Using (11)-(14), we compute the distance of each)(xΦ to this
prototype. Second, we apply the prototype adjustment module in KAPL to separate prototypes.
Prototype separation, however, does not imply the convergence of KAPL, since it may have to
deal with data in a space of infinite dimensions.

To ensure the convergence of KAPL, we modify the prototype adjustment module as follows.
As in LAPL, we adopt the necessary operations to create the desired prototype separation.
However, prior to these operations we check if each prototype in a pack has a non-empty domain
of attraction (DOA), where the DOA of a y-prototype p is the set of all y-samples)(xΦ for which
p is the nearest prototype. Recall that we employ a clustering algorithm to create a pack of
prototypes, using an unabsorbed sample)(uΦ and some other prototypes as seeds. If any
prototype in a pack has an empty DOA, we replace that pack with the pack of prototypes
constructed earlier. In this case,)(uΦ is called a futile sample. If a sample is declared futile in an
iteration, it will not be taken as a sample in any later iteration.

Theorem 12 The KAPL algorithm converges within a finite number of iterations.
Proof: The number of futile samples is bounded from above, since it cannot exceed n, that is, the
number of samples. We assume that the last futile sample is created at iteration i, with i ≤ n. If all
samples are absorbed at the end of i, the proof is complete; otherwise, more prototypes will be
created, all with non-empty DOAs. The number of unabsorbed samples must decrease to zero, or
else the number of DOAs would eventually exceed the number of samples, which would be an
absurd result. 

Note that if we treat futile samples in LAPL in the same way, we can prove the convergence
of LAPL in the setting where there is no guarantee of prototype separation.
Theorem 13 Adopting the prototype adjustment module used in KAPL, LAPL converges for

0=f and),1(∞∈m .

6 Soft Adaptive Prototype Learning Algorithms
The versions of APL proposed thus far are designed to continue constructing prototypes until all
training samples are absorbed or, equivalently, the training error declines to zero. These could be
called hard versions of APL. Insistence on a zero training error, however, runs the risk of
overfitting. Another approach, called the soft alternative, maintains the error rate at a level that

CHANG, LIN AND LU

 2138

enhances the generalization power of the resultant classifier. The optimal error rate can be
determined in a cross validation task, which is also needed to find the optimal values of the
parameters. All versions of APL involve some parameters; for example, they all involve f and ρ ,
which regulate prototype separation (cf. (2), (5), (C1), (C2), and (C3)). Moreover, if FCM is used
to compute cluster centers, there is another parameter m (cf. (7), (9), and (10)) to consider. In
addition, some parameters in KAPL are used to define the kernel-based distance. For example,
when the RBF kernel

)||||exp(),(2yxyx −−= γK (15)

is used to define the distance, there is an additional parameterγ , whose range is assumed to be
),0(∞ .

To search for the optimal values of the parameters, we perform cross-validation. As all the
parameters are assumed to be independent, we must evaluate all combinations of them and
determine which one is the most suitable for the task. When a combination of parameter values Q
is given, we build prototypes on K-1 folds of data, which serves as the training data, and measure
the test accuracy on the remaining fold of data, which serves as the validation data. We determine
the optimal training error rate associated with Q as follows.

Given a set of training data and a set of validation data and assuming that the latter is the kth
fold of the data, k = 1, 2, …, K, we construct prototypes and record the following information.
First, for a given level of e, we record the lowest number of iterations),(Qenk at which the
training error rate falls below e. We also compute the validation accuracy rate),(Qevk for all the

prototypes obtained at the end of iteration),(Qenk . Let ./),(),(1 KQevQev K
k k∑ == The optimal

training error rate is then

).,(maxarg)(QevQe
e

opt =

Note that once we have constructed prototypes to achieve a training error e1, we do not need
to start from the scratch to obtain a lower training error e2. Instead, we continue to construct more
prototypes until e2 is reached. At the end of this process, we obtain),(Qev for all e and thus

).),((QQev opt When we have done this for all Q, we obtain the optimal Q as

)),((maxarg QQevQ opt
Q

opt = .

One additional parameter that needs be optimized is the number of k nearest prototypes,
which we use in a voting mechanism to determine the label of a test sample. If a tie occurs, we
classify the sample according to the nearest prototype. The optimal value of k should be evaluated
in the cross-validation applied to the other parameters.

7 Experimental Results
To evaluate the APL algorithms and compare their performance with that of alternative methods,
we use 12 benchmark data sets retrieved from the UCI databases (Newman et al., 1998). The
results are described in three subsections. The first describes the four types of APL. In the second
subsection, we compare the performance of GCNN with six instance-based prototype algorithms
proposed in the literature. Then, in the third subsection, we compare the performance of the four
APLs with SVM and k-NN. Note that many of the methods, including ours, require that the data
must be bounded. One way to meet this requirement is to normalize all the feature values to
[0,255], which can be done by the following linear transformation:

ADAPTIVE PROTOTYPE LEARNING ALGORITHMS

 2139

vV
vxx

−
×− 255)(

a ,

where x is a given feature value, V is the maximum value of the feature, and v is the minimum
value. All experimental results reported in this section were obtained using an Intel Pentium 4
CPU 3.4GHz with a 1GB RAM.

7.1 Evaluation of APLs
The four types of APL are listed in Table 1. The first one is GCNN. The other three types of APL
are: fuzzy linear APL (f-LAPL), crisp kernelized APL (c-KAPL), and fuzzy kernelized APL (f-
KAPL). We use “f-” to indicate that the clustering algorithm employed is FCM, and “c-” to
indicate that the technique is KM. In the experiments, the soft versions of the four APLs are used.
Although we can consider the kernelized version of GCNN using RBF as the kernel function, this
version of GCNN gains only slightly higher testing accuracy, at the expense of a much higher
number of prototypes, than GCNN. So we choose not to discuss it. We do not discuss c-LAPL
either, since it usually has a lower performance than f-LAPL.

In Table 2, we show the parameters used in the four types of APL and also the values of the
parameters whose combinations are considered in our experiments. The values result from a
trade-off between the demand for accuracy and the need to reduce the computation time. When a
combination, Q, of parameter values is given, we have to record),(Qev for certain values of e. In
our experiments, the values of e, at which we record),(Qev , are percentages that start from 0%
and increase by some increments until they reach 30%. All the percentages are listed in Table 3.
The 12 benchmark data sets retrieved from the UCI databases are listed in Table 4, which also
shows the number of labels, the number of samples, the number of features per sample, and the
number of folds into which we divide the samples during cross validation.

 Assumed Distance
GCNN Euclidean
f-LAPL Euclidean
c-KAPL RBF
f-KAPL RBF

Table 1. The four types of APL studied in our experiments.

 Values GCNN f-LAPL c-KAPL f-KAPL
f 0., .1, .25, .5, .75, 1. √ √ √
ρ 0., .1, .25, .5, .75, .99 √ √ √ √
m 1.05, 1.1, 1.2, 1.3, 1.4 √ √
γ a×10-b; a = 1, 2, ..., 9; b = 4, 5, ..., 7 √ √

Table 2. Parameters: their value range, and the types of APL that involve them; “√” indicates
that the parameter is used in that type of APL. The parameters f and ρ appear in (2),
(5), (C1), (C2), and (C3); m appears in (7); and γ appears in (15).

Values of e
0%, 1%, 2%, 3%, 4%, 5%, 7.5%, 10%, 20%

Table 3. The values of e at which we record),(Qev .

CHANG, LIN AND LU

 2140

 Number of
Labels

Number of
Samples

Number of
Features

Number of
Folds

Iris 3 150 4 5
Wine 3 178 13 5
Glass 6 214 9 5

Ionosphere 2 351 34 10
Cancer 2 683 9 10

Zoo 7 101 16 5
Heart 2 270 13 5
TAE 3 151 5 5

BUPA Liver Disorders (BLD) 2 345 6 5
New Thyroid 3 215 5 5

SPECTF 2 267 44 5
Ecoli 8 336 7 5

Table 4. Information contained in the 12 data sets.

In Table 5, we show three performance measures of the four APLs, namely, the accuracy rate,
the training time, and the condensation ratio. Given that K-fold cross-validation is conducted, the
accuracy rate (AR) is the average accuracy over all validation data sets, each of which is one of
the K folds; the training time (TT) is the sum of the training times of all training data sets, each of
which consists of K-1 folds; and the condensation ratio (CR) is the average prototype-to-sample
ratios obtained from all training data. Note that for most types of APL, we drop the decimal parts
of their training times, since they are relatively insignificant to the integer parts. At the bottom of
Table 5, we also show the average of the three measures over the 12 data sets. The boldface
figures indicate that the performance of the corresponding method is the best of all the methods
applied to the given data set.

The averaged figures in Table 5 show that, in terms of training time, the four APLs are
ranked in the following order: GCNN, f-LAPL, c-KAPL, and f-KAPL. The number of all possible
combinations of parameter values is the major factor that affects the amount of training time. If
we divide the total training time by the above number, then the temporal differences among the
four algorithms are reduced drastically, as shown in Table 6. Since APL training under different
combinations of parameter values is conducted independently, some fashion of parallel
computing, such as cluster computing or grid computing, would help reduce the training time.

GCNN requires the least amount of training time because it picks samples as prototypes,
thereby avoiding the rather costly computation of clustering. The c-KAPL and f-KAPL
algorithms, on the other hand, employ kernelized versions of KM and FCM respectively, which
are relatively slow. In terms of accuracy, the order of the four APLs is exactly the opposite of that
for the training time.

ADAPTIVE PROTOTYPE LEARNING ALGORITHMS

 2141

DATA SET GCNN f-LAPL c-KAPL f-KAPL
AR 96.62 97.95 98.63 98.40
TT 0.8 30 16,225 81,334 Iris
CR 9.6 10.33 54.00 5.83
AR 98.06 99.02 99.02 99.56
TT 1 144 24,378 175,647 Wine
CR 21.7 18.40 20.22 92.98
AR 69.39 71.26 72.23 72.73
TT 1.37 314 18,906 108,891 Glass
CR 48.5 35.98 44.98 22.90
AR 89.07 91.46 95.88 95.87
TT 9.45 8,010 399,693 3,078,420 Ionosphere
CR 17.5 5.63 4.56 6.05
AR 97.5 97.79 97.50 97.79
TT 3.34 2,301 496,817 5,265,013 Cancer
CR 17.9 4.44 12.74 19.70
AR 97.66 97.66 97.66 97.66
TT 0.83 11 21,666 135,346 Zoo
CR 23.2 18.32 22.77 24.50
AR 85.57 86.90 85.83 86.43
TT 1.56 1,134 72,925 607,436 Heart Rate
CR 42.6 21.67 35.83 23.98
AR 63.21 62.47 65.22 65.61
TT 0.95 229 18,682 133,157 TAE
CR 43.2 51.82 45.86 46.85
AR 65.93 67.34 67.72 70.52
TT 2.4 3,379 232,211 1,378,124 BLD
CR 47.9 35.87 74.13 23.33
AR 97.31 97.76 98.57 99.05
TT 0.92 135 19,289 134,671 New Thyroid
CR 8.7 12.79 3.72 10.00
AR 83.55 85.63 86.13 87.04
TT 9.1 8,820 167,428 1,363,339 SPECTF
CR 28.3 30.15 50.37 28.37
AR 86.44 86.81 86.18 87.06
TT 1.32 920 35,151 216,235 Ecoli
CR 24.6 31.85 48.51 27.98

AR 85.86 86.84 87.55 88.14
TT 2.3 2,119 126,948 1,056,468 AVERAGE
CR 27.5 23.10 34.81 27.71

Table 5. The performance of the four APLs, where AR = Accuracy Rate (%), TT = Training
Time (sec), and CR = Condensation Ratio (%).

CHANG, LIN AND LU

 2142

 Number of
Combinations

Total
Training Time

Training Time
per Combination

GCNN 6 2.3 0.38
f-LAPL 155 2,119 13.67
c-KAPL 1,116 126,948 113.75
f-KAPL 5,580 1,056,468 189.33

Table 6. The number of all possible combinations of parameter values, the total training time,
and the training time per combination for the four types of APL.

 Time to Compute nδ (sec) GCNN Run Time (sec) Ratio (%)

Average 0.012 0.38 3.2

Table 7. The average amount of time to compute nδ , the average run time of GCNN, and their
ratio.

These findings suggest that the high accuracy rates of APLs are derived at the expense of a
rather high computational cost. Hence, there is a tradeoff between accuracy rates and training
costs, which allows users to choose the most suitable APL based on the size of their problems,
their computing resources, and the degree of accuracy they require. There are two reasons for this
tradeoff. First, the cluster-based approach has higher generalization power than the instance-
based approach, since it picks the weighted averages of samples as prototypes and they are
relatively immune to noise. Second, the RBF-based approach has higher generalization power
than the Euclidean-based approach. To understand why this is so, we note that for very small γ ,

the RBF distance between x and y is approximately 2||||2 yx −γ . This means that the RBF
distance covers the Euclidean distance as a special case, and using the RBF distance may allow us
to find a better-performing classifier than the one we obtain by using the Euclidean distance.

Recall that when applying any APL algorithm we must first compute nδ , the minimum
distance between heterogeneous samples. One may be curious about the ratio of the computing
time for nδ to the run time of APL. In fact, the ratio is 3.2% for GCNN (Table 7) and much less
for the other types of APL.

The reason for such a small ratio is as follows. If the number of training samples is n, then the
time complexity of computing nδ is in the order of n2, while the time complexity of conducting
APL training is in the order of n3. To confirm the latter fact, we note that APL training takes no
more than n iterations. Within each iteration, checking the absorption criterion takes no more than
n2 steps, and clustering takes no more than 30×n2 steps (if cluster-based prototypes are required),
where 30 is the maximum number of iterations allowed in a clustering algorithm. Furthermore,
the space complexity of APL training is in the order of n2 at most.

LAPL and KAPL are associated with parameters f and ρ , which appear in the absorption
criterion (5) and requirements (C1), (C2), and (C3) (cf. Section 4). We were curious to know how
the parameters’ values affect the prototypes built in the training process, so we studied the
training of f-LAPL on the 12 data sets. We assume that all parameters, except f, are fixed at
certain values. The absorption criterion requires that a training sample should be closer to its
nearest homogeneous prototype than to its heterogeneous prototype by at least nfρδ . If we raise
the value of f, we increase the likelihood of a sample becoming unabsorbed so that more
prototypes would have to be built. This fact is reflected in Table 8, which shows that the average

ADAPTIVE PROTOTYPE LEARNING ALGORITHMS

 2143

condensation ratio increases as the value of f increases. What happens when we fix the values of
all parameters except ρ ? By raising the value of ρ , we also make the absorption criterion more
difficult to satisfy and therefore increase the number of prototypes that need to be built. This fact
is reflected in Table 9.

f 0.00 0.10 0.25 0.50 0.75 1.00

Average Condensation Ratio (%) 22.18 23.26 24.56 27.83 30.70 34.92

Table 8. Average condensation ratio of f-LAPL over the 12 data sets for various values of f
when m = 1.1, ρ = 0.5, and e = 0.

ρ 0.00 0.10 0.25 0.50 0.75 0.99
Averaged Condensation Ratio (%) 22.25 23.22 24.53 27.83 30.81 34.31

Table 9. Average condensation ratio of f-LAPL over the 12 data sets for various values of ρ
when m = 1.1, f = 0.5, and e = 0.

7.2 Comparison of GCNN with Some Instance-Based Learning Algorithms
As noted earlier, GCNN differs from LAPL and KAPL in that it adopts samples as prototypes. It
is thus one of the methods, called instance-based learning algorithms, which reduce an entire set
of training samples to a subset, while maintaining as much generalization power as possible. For
this reason, we compare GCNN with some of the methods that have been proposed in the
literature.

Two approaches can be adopted in IBL algorithms. The first is incremental, so it starts with a
null set and gradually adds samples as prototypes. Both CNN and GCNN are incremental
algorithms. For comparison purposes, we also include a primitive version of GCNN, called
pGCNN. It is similar to GCNN, except that the value of parameter f is fixed at 0. Note that
pGCNN is not the same as CNN. In pGCNN, we select unabsorbed samples through a voting
procedure (cf. Section 4) and the training error rate e is determined by cross-validation (cf.
Section 6). In CNN, however, unabsorbed samples are selected randomly and e is fixed at 0.
The second approach is decremental, so it starts with the entire set of samples and gradually
removes samples that are considered properly “protected” by the retained ones. For algorithms of
this type, we include DROP1 to DROP5 (Wilson and Martinez, 2005) and ICF (Brighton and
Mellish, 2002) for comparison. They differ from each other in the way samples are ordered for
removal, and in the criterion for removing samples. For further details, readers should refer to the
cited references. We used the code provided by Wilson and Martinez (2005) for DROP1 to
DROP5, and implemented our own codes for ICF.

For all the methods, we apply cross-validation, similar to that used for the APLs, whereby the
12 data sets are divided into the same number of folds (cf. Table 4). Moreover, in measuring the
test accuracy, we use the top-k nearest prototypes with k being determined in the cross-validation
(cf. Section 6). Table 10 shows the performance of all the instance-based methods, with the
averaged results shown at the bottom of the table. From the latter results, we observe that GCNN
achieves the best accuracy among all the compared methods. In general, the incremental methods
have lower training costs than the decremental methods. The only exception is GCNN, which is
little slower than ICF. On the other hand, the incremental methods build more prototypes than
the decremental methods. Among the incremental methods, GCNN achieves a higher accuracy
rate than the other two methods, at the expense of building more prototypes and a higher training
cost. Meanwhile, pGCNN constructs fewer prototypes and has a lower training cost than GCNN,

CHANG, LIN AND LU

 2144

Incremental Methods Decremental Methods DATA SET CNN pGCNN GCNN DROP1 DROP2 DROP3 DROP4 DROP5 ICF

AR 93.07 96.62 96.62 92.65 95.71 95.23 95.23 95.53 95.04
TT 0.08 0.11 0.8 0.11 0.19 0.16 0.16 0.14 0.11 Iris
CR 13.67 10.1 9.6 6.6 9.2 10.5 10.5 8.9 22
AR 96.02 96.31 98.06 92.97 93.15 93.42 93.42 98.06 92.81
TT 0.09 0.12 1 0.41 0.41 0.36 0.36 0.56 0.13 Wine
CR 15.31 10.3 21.7 7.5 12.6 12.1 12.1 8.1 11.1
AR 65.20 67.54 69.39 59.02 65.83 66.23 67.12 64.19 64.09
TT 0.11 0.1 1.37 0.38 0.33 0.41 0.39 0.53 0.17 Glass
CR 50.12 36.5 48.5 20.3 27.1 18.8 24.3 23.5 22.3
AR 87.76 87.16 89.07 77.13 88.16 86.70 88.06 88.06 81.20
TT 0.16 0.30 9.45 5.4 6.6 8.18 7.8 13.98 0.48 Ionosphere
CR 23.01 15 17.5 5.9 10.1 5.3 8.2 9 3.7
AR 96.47 97.21 97.5 96.32 96.47 96.03 96.47 96.32 96.47
TT 0.14 0.30 3.34 21.1 34.2 34.8 30.2 21.9 0.67 Cancer
CR 10.05 7.5 17.9 2.1 5 3 3.7 3.9 2.5
AR 97.19 96.32 97.66 94.97 93.46 92.53 93.82 90.43 90.59
TT 0.09 0.14 0.83 0.33 0.28 0.25 0.25 0.28 0.16 Zoo
CR 15.25 11.6 23.2 14.8 17 18.4 18.8 15 44.3
AR 83.88 81.95 85.57 77.36 82.10 79.73 80.31 81.09 76.41
TT 0.11 0.17 1.56 0.89 0.97 1.09 1 1.2 0.14 Heart
CR 41.11 30 42.6 11 16.1 11.1 12.8 13.5 14.3
AR 58.16 61.69 63.21 51.08 51.15 51.36 53.63 55.64 52.12
TT 0.1 0.13 0.95 0.09 0.09 0.11 0.11 0.07 0.11 TAE
CR 61.26 42.7 43.2 25.6 27.1 23 24.3 28.8 26.6
AR 65.95 65.41 65.93 57.38 60.34 59.98 62.75 63.92 60.22
TT 0.15 0.23 2.4 0.56 0.5 0.63 0.55 0.7 0.12 BLD
CR 58.84 42 47.9 23 29.9 19.3 25.2 23.4 18
AR 94.89 96.28 97.31 90.83 93.85 95.27 94.42 93.61 93.55
TT 0.09 0.13 0.92 0.27 0.36 0.33 0.33 0.45 0.14 New

Thyroid CR 13.14 9.8 8.7 6.2 11.3 7.2 8.4 7.6 8
AR 79.60 83.55 83.55 77.27 74.99 79.98 74.29 76.13 76.26
TT 0.17 0.38 9.1 2.59 3.17 3.28 2.9 3.86 0.25 SPECTF
CR 46.35 20.9 28.3 10 16.5 9.1 11.7 11.7 10.1
AR 83.97 83.58 86.44 81.22 85.94 83.53 86.64 84.36 83.17
TT 0.14 0.17 1.32 0.98 0.84 1.44 1.28 1.36 0.25 Ecoli
CR 36.01 17.5 24.6 9.5 14.6 12.00 12.7 12.2 11.3
AR 83.51 84.47 85.86 79.02 81.76 81.67 82.18 82.28 80.16
TT 0.12 0.19 2.3 2.76 4 4.25 3.78 3.75 0.23 AVERAGE
CR 32.01 21.2 27.5 11.9 16.4 12.5 14.4 13.8 16.2

Table 10. The performance of three incremental methods and six decremental methods.

and yields higher accuracy and generates fewer prototypes than CNN. Both GCNN and pGCNN
generate fewer prototypes than CNN, because their training error rate e can be non-zero, while it
is fixed at zero for CNN.

Since pGCNN is a special case of GCNN with 0=ρ , comparison of their accuracy rates
offers us an opportunity to examine the sensitivity of GCNN to the parameter values. The
difference between the average accuracy rates is 1.39%, but for the Ecoli and Heart data sets, the

ADAPTIVE PROTOTYPE LEARNING ALGORITHMS

 2145

differences increase to 2.86% and 3.62% respectively, showing that the search for the optimal
parameter values can be very useful. A similar situation is found with other types of APL.

7.3 Comparison of LAPL and KAPL with k-NN and SVM
To further evaluate the performance of the four APLs, we run two other alternative learning
methods: k-NN, and SVM. Once again, for both methods, we apply cross-validation, similar to
that used for APLs. For SVM, we employ the soft-margin version with the RBF kernel. Recall
that the RBF function involves a parameter γ . In SVM, the value range of γ is taken as {a×10-b:
a = 1, 2, …, 9 and b = 3, 4, …, 6}, which differs from that of KAPL by a factor of 10. Also, since
the soft-margin version of SVM is used, there is an additional parameter C, which serves as a
penalty factor for SVM training errors whose value range is taken as {10c: c = -1, 0, …, 5}. We
use the LIBSVM toolkit (Hsu and Lin, 2002) to train SVM. For k-NN, the optimal value of k is
determined during cross-validation, in much the same way that we optimize the k nearest
prototypes for use in the voting procedure to determine the label of a test sample (cf. Section 6).

One crucial difference between SVM and APL is the way of dealing with multiclass data sets,
that is, data sets comprised of more than two class types. Since SVM only deals with one binary
classification at a time, we need to use a decomposition scheme when applying it to multiclass
data sets. We employ one-against-others (Bottou et al., 1994) in our experiment. In other words,
if there are m class types in total, we train m SVM classifiers, each of which classifies a sample as
A or not A, where A is one of the m class types. One-against-one (Knerr et al., 1990; Platt et al.,
2000) is an alternative decomposition scheme that allows us to train m(m-1)/2 classifiers. In our
experience, the one-against-others scheme usually yields comparable or better accuracy rates than
the one-against-one approach; however, the training cost is higher. For APLs, on the other hand,
we construct prototypes for all class types simultaneously. Thus, in our experiments, there is no
decomposition scheme for APLs.

The accuracy rates and training times of all the methods are given in Table 11. The boldface
numbers have the same meaning as before, while the underlined numbers are the accuracy rates
that are lower than the corresponding SVM results. As usual, we list the averaged results over all
the 12 data sets at the bottom of the table. From the last results, we observe that all the APLs
outperform k-NN in terms of accuracy; and GCNN is faster in training than SVM, but it is less
accurate. The other three APLs incur higher training costs than SVM, but yield higher accuracy
rates.

8 Conclusion
We have proposed a number of adaptive prototype learning algorithms that construct prototypes
out of training samples. They differ in the use of samples or the weighted averages of samples as
prototypes, and in the use of the Euclidean distance or a kernel-based distance. The algorithms
can be further strenghened by allowing a non-zero training error rate, which improves the test
accuracy. Our experiments, in which four types of APL were applied to 12 benchmark data sets,
confirm the algorithms’ efficacy in terms of test accuracy compared to many instance-based
learning algorithms, the k-NN rule, and SVM.

CHANG, LIN AND LU

 2146

APL Methods Alternative
Methods DATA SET

GCNN f-LAPL c-KAPL f-KAPL k-NN SVM
AR 96.62 97.95 98.63 98.40 97.03 96.47 Iris
TT 0.8 30 16,225 81,334 70.52
AR 98.06 99.02 99.02 99.56 97.64 98.97

Wine TT 1 144 24,378 175,647 90.88
AR 69.39 71.26 72.23 72.73 70.40 69.43 Glass TT 1.37 314 18,906 108,891 299.68
AR 89.07 91.46 95.88 95.87 86.72 95.08 Ionosphere TT 9.45 8,010 399,693 3,078,420 362.20
AR 97.5 97.79 97.50 97.79 96.91 97.06 Cancer TT 3.34 2,301 496,817 5,265,013 321.92
AR 97.66 97.66 97.66 97.66 96.55 95.86 Zoo TT 0.83 11 21,666 135,346 153.64
AR 85.57 86.90 85.83 86.43 83.77 84.83 Heart TT 1.56 1,134 72,925 607,436 130.00
AR 63.21 62.47 65.22 65.61 57.78 64.23 TAE TT 0.95 229 18,682 133,157 605.24
AR 65.93 67.34 67.72 70.52 63.90 71.19 BLD TT 2.4 3,379 232,211 1,378,124 1181.68
AR 97.31 97.76 98.57 99.05 96.31 97.78 New Thyroid TT 0.92 135 19,289 134,671 78.80
AR 83.55 85.63 86.13 87.04 79.90 81.48 SPECTF TT 9.1 8,820 167,428 1,363,339 143.88
AR 86.44 86.81 86.18 87.06 87.33 88.13 Ecoli
TT 1.32 920 35,151 216,235 421.88
AR 85.86 86.84 87.55 88.14 84.52 86.71 AVERAGE
TT 2.3 2,119 126,948 1,056,468 321.72

Table 11. The performance of the four APLs, k-NN and SVM.

Acknowledgements
We wish to thank Po-Han Kuo and Chien-Hsing Chou for providing some of the experimental
results.

References

P. Bartlett and J. Shaw-Taylor. Generalization performance of support vector machines and other
pattern classifiers. In B. Schölkopf, C. Burges, and A. J. Smola, editors, Advances in Kernel
Methods: Support Vector Learning. MIT Press, 1999.

J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New
York, 1981.

L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun, U. Muller, E.
Sackinger, P. Simard, and V. Vapnik. Comparison of classifier methods: A case study in
handwriting digit recognition. In Proc. Int. Conf. Pattern Recognition, pages 77–87, 1994.

ADAPTIVE PROTOTYPE LEARNING ALGORITHMS

 2147

H. Brighton and C. Mellish. Advances in instance selection for instance-based learning
algorithms. In Data Mining and Knowledge Discovery, 6:153–172, 2002.

C. Cortes and V. Vapnik. Support vector machines. In Machine Learning, 20:1-25, 1995.

T. Cover and P. Hart. Nearest neighbor pattern classification. In IEEE Trans. Information Theory,
13:21-27, 1967.

N. Cristianini and J. Shawe-Taylor. An introduction to Support Vector Machines and other
kernel-based learning methods. Cambridge University Press, 2000.

F. Devi and M. Murty. An incremental prototype set building technique. In Pattern Recognition,
35:505–513, 2002.

L. Devroye and L. Györfi. Nonparametric Density Estimation: The L1 View. John Wiley, New
York, 1985.

L. Devroye, L. Györfi, A. Krzyżak, and G. Lugosi. On the strong consistency of nearest neighbor
regression function estimates. In Annals of Statistics, 22:1371-1385, 1994.

L. Devroye, L Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer,
New York, 1996.

E. Fix and J. L. Hodges. Discriminatory analysis. Nonparametric discrimination: Consistency
properties. Technical Report 4, Project Number 21-49-004, USAF School of Aviation
Medicine. Randolph Field, Texas, 1951.

E. Fix and J. L. Hodges. Discriminatory analysis: small sample performance. Technical Report
11, Project Number 21-49-004, USAF School of Aviation Medicine. Randolph Field, Texas,
1952.

E. Fix and J. L. Hodges. Discriminatory analysis. Nonparametric discrimination: Consistency
properties. In B. Dasarathy, editor, Nearest Neighbor Pattern Classification Techniques, pages
32-39, IEEE Computer Society Press, Los Alamitos, 1991.

E. Fix and J. L. Hodges. Discriminatory analysis: small sample performance. In B. Dasarathy,
editor, Nearest Neighbor Pattern Classification Techniques, pages 40-56, IEEE Computer
Society Press, Los Alamitos, 1991.

F. Girosi. An equivalence between sparse approximation and support vector machines. In Neural
Computation, 10(6):1455-1481, 1998.

P. Hart. The condensed nearest neighbor rule. In IEEE Trans. Information Theory, 14:515-516,
1968.

F. Höppner, F. Klawonn, R. Kruse, and T. Runkler. In Fuzzy Cluster Analysis: Methods for
Classification, Data Analysis and Image Recognition. John Wiley & Sons, New York, 1999.

C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support vector machines. In
IEEE Transactions on Neural Networks, 13(2):415-425, 2002.

D.-W. Kim, K.Y. Lee, D. Lee, K. H. Lee. Evaluation of the performance of clustering algorithms
in kernel-induced feature space. In Pattern Recognition, 38:607-611, 2005.

S. Knerr, L. Personnaz, and G. Dreyfus. Single-layer learning revisited: A stepwise procedure for
building and training a neural network. In J. Fogelman, editor, Neurocomputing: Algorithms,
Architectures and Applications, Springer-Verlag, New York, 1990.

T. Kohonen. Self-Organization and Associated Memory. Springer-Verlag, Berlin, 1988.

CHANG, LIN AND LU

 2148

T. Kohonen. Statistical pattern recognition revisited. In R. Eckmiller, editor, Advanced Neural
Computers, North-Holland, Amsterdam, pages 137-144, 1990.

Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design. In Pattern
Recognition, 19:84-95, 1980.

S. Lloyd. Least squares quantization in PCM. In IEEE Trans. Information Theory, 28:129-137,
1982.

J. Max. Quantizing for minimum distortion. In IEEE Trans. Information Theory, 6:7-12, 1960.

T. Mercer. Functions of positive and negative type and their connection with the theory of
integral equations. In Philosophical Transactions of the Royal Society of London, Series A,
209:415-446, 1909.

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI Repository of machine learning
databases, Irvine, CA: University of California, Department of Information and Computer
Science, 1998. [http://www.ics.uci.edu/~mlearn/ MLRepository.html].

J. C. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin DAG’s for multiclass classification.
In Advances in Neural Information Processing Systems, 12:547-553, MIT Press, Cambridge,
2000.

S. Salzberg. A nearest hyperrectangle learning method. In Machine Learning, 6:251-276, 1991.

B. Schölkopf, C. J. C. Burges, and A. J. Smola. In Advances in Kernel Methods — Support
Vector Learning. MIT Press, Cambridge, MA, 1999.

C. Stone. Consistent nonparametric regression. In Annals of Statistics, 5:595-645, 1977.

V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to
their probabilities. In Theory of Probability and Its Applications, 16:264-280, 1971.

V. Vapnik and A. Chervonenkis. Ordered risk minimization I. In Automation and Remote
Control, 35:1226-1235, 1974.

V. Vapnik and A. Chervonenkis. Ordered risk minimization II. In Automation and Remote
Control, 35:1403-1412, 1974.

V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

D. R. Wilson and T. R. Martinez. Reduction techniques with instance-based learning algorithms.
In Machine Learning, 38:257–286, 2000.

Z.-D. Wu, W.-X. Xie and J.-P. Yu. Fuzzy c-means clustering algorithm based on kernel method.
In Fifth Intern. Conf. Computational Intelligence and Multimedia Applications, pages 1–6,
2003.

L. Zhao. Exponential bounds of mean error for the nearest neighbor estimates of regression
functions. In Journal of Multivariate Analysis, 21:168-178, 1987.

