Journal of Machine Learning Research 7 (2006) 1205-1230 mitgddl 10/05; Revised 3/06; Published 7/06

Worst-Case Analysis of Selective Sampling
for Linear Classification

Nicolo Cesa-Bianchi CESA-BIANCHI @DSI.UNIMI .IT
DSI, Universia di Milano

via Comelico, 39

20135 Milano, Italy

Claudio Gentile CLAUDIO.GENTILE@UNINSUBRIA.IT
DICOM, Universit dell'Insubria

via Mazzini, 5

21100 Varese, Italy

Luca Zaniboni ZANIBONI @DTI.UNIMI.IT
DTI, Universit di Milano

via Bramante, 65

26013 Crema, Italy

Editor: Manfred Warmuth

Abstract

A selective sampling algorithm is a learning algorithm féassification that, based on the past
observed data, decides whether to ask the label of each m¢anae to be classified. In this pa-
per, we introduce a general technique for turning lineeeghold classification algorithms from
the general additive family into randomized selective damgmalgorithms. For the most popular
algorithms in this family we derive mistake bounds that Holdndividual sequences of examples.
These bounds show that our semi-supervised algorithmsatdeve, on average, the same accu-
racy as that of their fully supervised counterparts, bubgdewer labels. Our theoretical results
are corroborated by a number of experiments on real-woxtl#a data. The outcome of these
experiments is essentially predicted by our theoreticallts: Our selective sampling algorithms
tend to perform as well as the algorithms receiving the talell after each classification, while
observing in practice substantially fewer labels.

Keywords: selective sampling, semi-supervised learning, on-lirzenimg, kernel algorithms,
linear-threshold classifiers

1. Introduction

A selective sampling algorithm (see, e.g., Cohn et al., 1990; Cesa-Biairahji2003; Freund et al.,
1997) is a learning algorithm for classification that receives a sequdnodabelled instances and
decides whether to query the label of the current instance based ocasthehserved data. The idea
is to let the algorithm determine which labels are most useful to its inferenceamisaln, and thus
achieve a good classification performance while using fewer labels.

Natural real-world scenarios for selective sampling are all those apiphsawhere labels are
scarce or expensive to obtain. For example, collecting web pages idyaafaiomated process,
but assigning them a label (e.g., from a set of posdifyécs) often requires time-consuming and
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costly human expertise. For this reason, it is clearly important to devisergaalgorithms having
the ability to exploit the label information as much as possible. An additional ntiotivéor using
selective sampling arises from the widespread use of kernel-basedhatgo(Vapnik, 1998; Cris-
tianini and Shawe-Taylor, 2001; Si@lkopf and Smola, 2002). In this case, saving labels implies
using fewer support vectors to represent the hypothesis, which iritais a more efficient use of
the memory and a shorter running time in both training and test phases.

Many algorithms have been proposed in the literature to cope with the brdadftesarning
with partially labelled data, working under both probabilistic and worst-casemaptions for either
on-line or batch settings. These range from active learning algorithrmall et al., 2000; Tong
and Koller, 2000), to the query-by-committee algorithm (Freund et al., )1967he adversarial
“apple tasting” and label efficient algorithms investigated by Helmbold et @0qRand Helmbold
and Panizza (1997), respectively. More recent work on this sulnjelcides (Bordes et al., 2005;
Dasgupta et al., 2005; Dekel et al., 2006).

In this paper we present a mistake bound analysis for selective sampigignseof Perceptron-
like algorithms. In particular, we study the standard Perceptron algoritlasefidlatt, 1958; Block,
1962; Novikov, 1962) and the second-order Perceptron algoritlesg®ianchi et al., 2005). Then,
we argue how to extend the above analysis to the general additive familyeafihreshold algo-
rithms introduced by Grove et al. (2001) and Warmuth and Jagota (186&)also Cesa-Bianchi
and Lugosi, 2003; Gentile, 2003; Gentile and Warmuth, 1999; Kivinenvdadnuth, 2001), and
we provide details for a specific algorithm in this family, i.e., the (zero-thde3hinnow algo-
rithm (Littlestone, 1988, 1989; Grove et al., 2001).

Our selective sampling algorithms use a simple randomized rule to decide wttethery the
label of the current instance. This rule prescribes that the label sheuttained with probability
b/(b+|p|), wherep is the (signed) margin achieved by the current linear hypothesis on threntur
instance, and > 0 is a parameter of the algorithm acting as a scaling factop.oNote that
a label is queried with a small probability whenever the mafiis large in magnitude. If the
label is obtained, and it turns out that a mistake has been made, then th#haigooceeds with its
standard update rule. Otherwise, the algorithm’s current hypothesisusitdgfanged. It is important
to remark that in our model we evaluate algorithms by counting their predictionkasstdso on
those time steps when the true labels remain unknown. For each of the algorthomnsider a
bound is proven on the expected number of mistakes made in an arbitragedatnce, where the
expectation is with respect to the randomized sampling rule.

Our analysis reveals an interesting phenomenon. In all algorithms we analpzoper choice
of the scaling factob in the randomized rule yields the same mistake bound as the one achieved
by the original algorithm before the introduction of the selective sampling emésim. Hence, in
some sense, our technique exploits the margin information to select thoselateign be ignored
without increasing (in expectation) the overall number of mistakes.

One may suspect that this gain is not real: it might very well be the case thairimg ofb
preserving the original mistake bound forces the algorithm to query aliburisignificant number
of labels. In the last part of the paper we present some experimentadiotitrg this conjecture. In
particular, by running our algorithms on real-world textual data, we shatnitsignificant decrease
in the predictive performance is suffered even whénset to values that leave a significant fraction
of the labels unobserved.

The paper is organized as follows. In the remainder of this introductioniveetige notation
and the basic definitions used throughout the paper. In Section 2 weh#eaad analyze our
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Perceptron-like selective sampling algorithms. In Section 3 we extend oginrtzased argument
to the zero-threshold Winnow algorithm. Empirical comparisons are reportgection 4. Finally,
Section 5 is devoted to conclusions and open problems.

Notation and basic definitions

An exampleis a pair(x,y), wherex € RY is aninstancevector andy ¢ {—1,+1} is the associated
binary label.

We consider the following selective sampling variant of the standard omelimeing model (An-
gluin, 1988; Littlestone, 1988). Learning proceeds in a sequentéats In the generic triat the
algorithm observes instaneg outputs a predictiof; € {—1,+1} for the labely; associated with
X, and decides whether or not to ask the lapeNo matter what the algorithm decides, we say that
the algorithm has made @rediction mistakaf ¥ # y;. We measure the performance of a linear-
threshold algorithm by the total number of mistakes it makes on a sequenxanoples (including
the trials where the true labgl remains unknown). The goal of the algorithm is to bound, on an
arbitrary sequence of examples, the amount by which this total number of mistakesdexite
performance of the best linear predictor in hindsight.

In this paper we are concerned with selective sampling versions of linesshitid algorithms.
When run on a sequendei,yi), (X2,Y2),... of examples, these algorithms compute a sequence
Wo, Wi, ... of weight vectorsy, € RY, wherew; can only depend on the past examplesyi), ...,

(X, Yt) but not on the future onesxs,ys) for s> t. In each trialt = 1,2,... the linear-threshold
algorithm predicts; using' §i = SGN(pt) wherep, = w, ;% is the margin ofx_1 on the instance
x. If the labely; is queried, then the algorithm (possibly) useso compute a new weighty; on
the other hand, if; remains unknown thew, = w;_1.

We identify an arbitrary linear-threshold classifier with its coefficient veote RY. For a
fixed sequencéxy,y1),..., (X, Yn) Of examples and a given margin threshpld 0, we measure the
performance ofi by its cumulativehinge loss(Freund and Schapire, 1999; Gentile and Warmuth,
1999)

_ < < T
Lyn(u) —tzlgv,t(u) —t;(v VU % )4

where we used the notatidr), = max{0,x}. In words, the hinge loss, also calledft marginin

the statistical learning literature (Vapnik, 1998; Cristianini and ShawdsTa3001; Scblkopf and
Smola, 2002), measures the extent to which the hyperplasparates the sequence of examples
with margin at leasy.

We represent the algorithm’s decision of querying the label at tirteough the value of a
Bernoulli random variabl&;, whose parameter is determined by the specific selection rule used by
the algorithm under consideration. Though we make no assumptions onuttee generating the
sequenceéxi,y1), (X2,Y2), ..., we require that each exampl®,y;) be generated before the value
of Z; is drawn. In other words, the source cannot use the knowledgetofdetermine andy.

We useE;_4[-| to denote the conditional expectatiBh | Z, ..., Z;_1] andM; to denote the indicator
function of the eveny; # y;, wherey; is the prediction at timeof the algorithm under consideration.

1. Here and throughow®GN denotes the signum functidGnN(x) = 1 if x > 0 andsGN(x) = —1, otherwise.
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Selective sampling Perceptron.
Parameters: b > 0.
Initialization: wo = (0,...,0)".
For each triat = 1,2, ...
(1) observe an instance vectere RY, and sef; = W, 1%

(2) predict withy; = SGN(f);

(3) draw a Bernoulli random variabl& < {0,1} of parametelﬁw;

(4) if Z = 1then query labely; € {—1,+1} and perform the standard Perceptron
updatew; = W1 -+ M Yt %;

(5) else(z; = 0) setwy =w;_1.

Figure 1: A selective sampling version of the classical Perceptron algorith

Finally, whenever the distribution laws df, Z,,... andM1,M>, ... are clear from the context,
we use the abbreviation

Ey7n(u) = ]:E

t; Mt Zt £y (u)

Note thatly(u) < Lyn(u) trivially holds for all choices of, n, andu.

2. Selective Sampling Algorithms and Their Analysis

In this section we describe and analyze three algorithms: a selective sawgigign of the clas-
sical Perceptron algorithm (Rosenblatt, 1958; Block, 1962; Novik€82}, a variant of the same
algorithm with a dynamically tuned parameter, and a selective sampling vefdlumsecond-order
Perceptron algorithm (Cesa-Bianchi et al., 2005). It is worth pointindha, like any Perceptron-
like update rule, each of the algorithms presented in this section can berglficien in any given
reproducing kernel Hilbert space once the update rule is expressedeaguivalent dual-variable
form (see, e.g., Vapnik, 1998; Cristianini and Shawe-Taylor, 20@hoI®opf and Smola, 2002).
Note that, in the case of kernel-based algorithms, label efficiency pmtdeadditional benefit
of a more compact representation of the trained classifiers. The exp&ineeorted in Section 4
were indeed obtained using a dual-variable implementation of our algorithms.

2.1 Selective Sampling Perceptron

Our selective sampling variant of the classical Perceptron algorithm csilded in Figure 1. The
algorithm maintains a vectar € RY (whose initial value is zero). In each trialthe algorithm
observes an instance vectere RY and predicts the binary labgl through the sign of the margin
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valuepr =w,_;%. Then the algorithm decides whether to query the Igptiirough the randomized
rule described in the introduction: a coin with blagb+ | |) is flipped,; if the coin turns up heads
(Z: =1 in Figure 1), then the labe{ is queried. If a prediction mistake is observgds£ y;), then
the algorithm updates vectwog according to the usual Perceptron additive rule. On the other hand,
if either the coin turns up tails gt = y; (M; = 0 in Figure 1), then no update takes place.

The following theorem shows that our selective sampling Perceptrorcbéva, in expectation,
the same mistake bound as the standard Perceptron’s, but using feelsr lab

Theorem 1 If the algorithm of Figure 1 is run with input parameterb0 on a sequencéxs, y1),
(%2,¥2), ... € RY x {—1,41} of examples, then forallr 1, allu € RY, and ally > 0,

n 2 — 2 5 2
> M < (14 ) B Jul? (2b+ X?)
t= 2

b y 8by?
where X=max-1__n||x%||. Furthermore, the expected number of labels queried by the algorithm

equalsy! , E [ﬁ] .

E

The above bound depends on the choice of paranbetir generalb might be viewed as a noise
parameter ruling the extent to which a linear threshold model fits the datact Imgprinciple, the
optimal tuning ofb is easily computed. Choosing

b:X—Z 4 Lyn(u)
2 |u[2X2

in Theorem 1 gives the following bound on the expected number of mistakes

Cyn(U)  [Ju? X2 ||u\x\/Lyn<u> Jul]® X2
—— 4 + — : 1
y 2y? y y 4y? @)

This is an expectation version of the mistake bound for the standard Bercefgorithm (Freund
and Schapire, 1999; Gentile, 2003; Gentile and Warmuth, 1999). Notentllaé special case
when the data are linearly separable with masgithe optimal tuning simplifies tb = X2/2 and
yields the familiar Perceptron bour{gjul| X)Z/(y*)z. Hence, in the separable case, we obtain the
somewhat counterintuitive result that the standard Perceptron boucties@d by an algorithm
whose label rate does not (directly) depend on how big the separatigmmnear

As it turns out, (1) might be even sharper than its deterministic counterpa#d, sas already
noted,Lyn(u) can be much smaller than,,(u). However, sinceb is an input parameter of the
selective sampling algorithm, the above setting implies that, at the beginning ofttietfom pro-
cess, the algorithm needs some extra information on the sequence of exampaddition, unlike
the bound of Theorem 1, which holds simultaneously foyalhdu, this refined bound can only be
obtained for fixed choices of these quantities. Finally, observe that I&ttingo in Figure 1 yields
the standard Perceptron algorithm but, as a shortcoming, the correspdiudind in Theorem 1
gets vacuous. This is due to the fact that our simple proof produces a entstaikd where the
constant ruling the (natural) trade-off between hinge loss term and ntarginis directly related to
the label sampling rate.
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All of the above shortcomings will be fixed in Section 2.2, where we preseradaptive pa-
rameter version of the algorithm in Figure 1. Via a more involved analysishoe that it is still
possible to achieve a bound having the same form as (1) with no prior infiorma

That said, we are ready to prove Theorem 1.

Proof of Theorem 1. The proof extends the standard proof of the Perceptron mistake bseead (
e.g., Duda et al., 2000, Chap. 5) which is based on estimating the influereeugdate on the
distanceHu—wt_lu2 between the current weight vectey_; and an arbitrary “target” hyperplane
u. Our analysis uses a tighter estimate on this influence, and then uses hilstbanalysis to
turn this increased tightness into an expected saving on the number ofedbéavels. Since this
probabilistic analysis only involves the terms that are brought about by thewag estimate, we
are still able to recover (in expectation) the original Perceptron bound.

Fix an arbitrary sequendey, y1), ..., (%, Yn) € RY x {—1, 41} of examples. Let be an update
trial, i.e., a trial such tha¥l; Z; = 1. We can write

y—li(u) = y—(y—yiu'x):

W UTX{
= y(u—wWe1+wW 1) %

IN

1 1 1
= YW+ = Ju— w2 — S flu—we][P 4 S [ — we]|?
2 2 2
1 , 1 , 1 ,
- Slu—=we_g |l = = lu—w |2+ = [[weg — w||? .
Ytpt+2\| =1 2H t||+2|| -1 — W |

Since the above inequality holds for apy 0 and anyu € RY, we can replacg by ay andu by au,
wherea is a constant to be optimized.
Rearranging, and using p; < 0 implied byM; = 1, yields

o 1 1 1
QY-+ [Br] < oty () + 5 [l —wh | — 5 flaru—wel[? 45 ey —wh [ .

Note that, instead of discarding the tefm|, as in the original Perceptron proof, we keep it around.
This yields a stronger inequality which, as we will see, is the key to achievin§ral result.

If t is such thaM; Z; = 0 then no update occurs amg=w;_;. Hence we conclude that, for any
trial t,

M Zi(ay+ [Pi]) < MiZ o by (u)
Mt Z¢
2

1 1
o=l - S fau—w 2+ S w2 @)

We now sum the above overuse||w_; —w||? < X2 and recall thatvy = 0. We get
n R X2 n GZ
> Mz (ay =% ) <o 3 MZ b+ G ul?.
t= t=

Now choosex = (2b+X?)/(2y), whereb > 0 is the algorithm’s parameter. The above then becomes

n . _2b+x2n ul? (2b+X2)?
M b+ < M Z; ¢ + 3
t; 1 Z (b+|])< 2y t; t Zy Lyt (U) 872 (3
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A similar inequality is also obtained in the analysis of the standard Perceptroritiatg. Here,
however, we have added the random variahleassociated with the selective sampling, and kept
the term|p;|. Note that this term also appears in the conditional expectatiah, aince we have
definedE:;_1 Z; asb/(b+|pt|). This fact is exploited now, when we take expectations on both sides
of (3). On the left-hand side we obtain

’

ZlMtZt b+[pt|)

ZLMt (b+[pt|) Er-1Z

n
t;b My

where the first equality is proven by observing tNqtand p; are determined by, ...,Z;_1 (that
is, they are both measurable with respect todkagebra generated 1%, ...,Z;_1). Dividing by b
we obtain the claimed inequality on the expected number of mistakes.

The value off [3{; Z] (the expected number of queried labels) trivially follows from

E tiz( =K tiEtlzt] .

This concludes the proof. |

2.2 Selective Sampling Perceptron: Adaptive Version

In this section we show how to learn the best trade-off paranhdtean on-line fashion. Our goal
is to devise a time-changing expression for this parameter that achievesd oo the expected
number of mistakes having the same form as (1)—i.e., with constant 1 in frehé @umulative
hinge loss term—nbut relying on no prior knowledge whatsoever on theeseguof examples.

We follow the “self-confident” approach introduced by Auer et al. @0&nd Gentile (2001)
though, as pointed out later, our self-confidence tuning here is tedligrdégerent, since it does
not rely on projections to control the norm of the weight (as in, e.g., Herlasxd Warmuth, 2001;
Auer et al., 2002; Gentile, 2001, 2003).

Our adaptive version of the selective sampling Perceptron algorithm asiloed in Figure 2.
The algorithm still has a paramet@r> 0 but, as we will see, any constant value fleads to
bounds of the form (1). ThuB has far less influence on the final bound thanlth@arameter in
Figure 1.

The adaptive algorithm is essentially the same as the one in Figure 1, butifdaimiag two
further variables) andK;. At theendof trial t, variableX; stores the maximal norm of the instance
vectors involved in updates up to and including titpevhile K; just counts the number of such
updates. Observe thhtincreases with (the square root of) this number, thereby implementing the
easy intuition that the more updates are made by the algorithm the harderblenptooks, and the
more labels are needed on average. However the reader shoulchohtd=ofrom this observation
that the label raté;_1/(b—1+ |pt|) converges to 1 as— o, sinceb; does not scale with timebut
with the number ofipdatesmade up to time, which can be far smaller than At the same time,
the margin ;| might have an erratic behavior whose oscillations can also grow with the mahbe
updates.

We have the following result.
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Selective sampling Perceptron with adaptive parameter.
Parameters: 3 > 0.

Initialization: wp = (0,...,0)", Xo=0,Ko=0.

For each triat = 1,2, ...

(1) observe an instance vectere RY, and sef; = W, 1%

(2) predict withy; = SGN(f);

(3) setX’ = max{X_1,||%||};

(4) draw a Bernoulli random variabi € {0,1} of parameter
Pt here by = B(X)? I K
bt—1+ |t

(5) if Z =1then

(a) query labey; € {—1,+1},
(b) if % #v; (i.e.,M; = 1) then update

We = We—1 + Wt %
Ki=Ki-1+1
X =X,

(6) else(Z; =0) setwy = W1, Ki=Ki 1, X =X_1.

Figure 2: Adaptive parameter version of the selective sampling Peroegdtforithm.

Theorem 2 If the algorithm of Figure 2 is run with input parametr> 0 on a sequenceéxy, yi),
(X2,¥2)... € RY x {1, +1} of examples, then for all & 1, all u € RY, and ally > 0,

_Low R B2 \/Ly,n(u) R B2

n
+ +5 +B +ort
Z y 28 y 28 4
where
sop LHR2 ol (maxes alls])
B y
Moreover, the expected number of labels queried by the algorithm e§{lal& [b[i[i:\ﬁl] :

Before delving into the proof, it is worth observing the role of param@teAs we have already
said, if we sef3 to any constant value (no matter how small), we obtain a bound of the form (1)
On the other hand, fg8 — o the algorithm reduces to the classical Perceptron algorithm, and the
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bound (unlike the one in Theorem 1) becomes the Perceptron bouniyeasby Gentile (2003).
Clearly, the larger i the more labels are queried on average over the trials. Bhas also an
indirect influence on the hinge loss tefyy(u). In particular, we might expect that a small value
of 3 makes the number of updates shrink (note that in the limit when0 this number goes to 0).

Proof of Theorem 2. Fix an arbitrary sequendey, y1), ..., (%, Yn) € RY x {—1,41} of examples
and letX = max-1__n|%||. The proof is a more involved version of the proof of Theorem 1. We
start from the one-trial equation (2) established there, where we eefliac(constant) stretching
factor a by the time-varying factoc;_1/y, wherec;_; > O will be set later ang/ > O is the free
margin parameter of the hinge loss. This yields

M Ze (G 1+ |Pr]) < Me Z Eéy.t(u)

1
w2

From the update rule in Figure 2 we halhd; Z/2) w1 —w [ < (M¢Z/2) ||%||*>. We rearrange
and divide byb,_;. This yields

Ma<q1+mr4nWm> <z, St e

b1 b1 Y

2 2
+ o 1<H u—w s ) )

We now transform the difference of squared norms in (4) into a pair ddefgng differences,

“——u—w
Y

1 Ct—1 2 Hct—l 2
TS U-Wg|| ([ u—w
2bt—1< Y ot y
1 e 2 o ?
=g | ]
1 || 21 |laa 2
+ o || SU—W —U—W 5
2thv bl y - ©)

If we set

o1 = 5 (maxX 1, [x )+ b 1

we can expand the difference of norms (5) as follows
Jul? Ct Ct 1 u’w (Ct—l 0t> w12 ( 1 )
5 = + —— |+
)= 2 \b bg y \b-1 b 2 \b b

Wiz (@ L) il lwl (22-2)
<o (a bt1>+ v \bs b ©)

where in the last step we uskd> b;_1 and the inequality

> &
"B

g1
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which follows frome;_1 /b1 = 1/(2B/I+Ki—1) + 1.
Recall now the standard way of bounding the norm of a Perceptron tweggtor in terms of
the number of updates,

Well® = [[Weea]® + MeZeywe_ g% + MeZe || ]|

< w4 MeZe x|
< g+ Mz X3

which, combined wittwg = 0, implies

Iwe|| <XVKe  foranyt. @)
Applying inequality (7) to (6) yields
lul® (¢ <y IIUIX\/E<ctlct>
5= 22 (bt bt 1)jL y b1 b/ ®

We continue by bounding from above the last term in (8).t i§ such thatvi;Z; = 1 we have
Ki = Ki_1+ 1. Thus we can write

w(8) - % (e )

= (& vw)
1 VItK-VvK

2B JItK
1 1

4B VRVITK
(usingv1+x— /X< 27%)
11

PK

IN

<

On the other hand, ¥1;Z; = 0 we havey, = b;_1 and¢; = ¢;_1. Hence, for any trial we obtain

CG-1 G MiZ 1
Vi (m‘n)ﬁ B K

Putting together as in (4) and using1 — ||%||* /2 > b,_1 on the left-hand side yields

bt—1+|ﬁt> Cr—1 Lyt (U)
MtZt( b1 <Mtht1 Y

Ct1
—U—Wt_1

2 2

1 1
2bt 1 2by

M &_Ctz—l ul X Miz; 1
TP (bt be) Y 4B K
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holding for any trialt, anyu € RY, and anyy > 0.
Now, as in the proof of Theorem 1, we sum over 1,...,n, usewg = 0, and simplify

ZLM Z((bt 1+pt!> letzt 2L 4(u) ©)

2

G ul® 1 e,

bn 2y2 2bn y n (10)
1 HUHX n MtZt

4B Y t= Kt '

We now proceed by bounding separately the terms in the right-hand side abtve inequality.
For (9) we get

1c-1 1( 1 )

/ = —| ————=—+4+1]4(u
voo W =y T
1 1
vm(wllu\lxﬂ
(sincelyt (u) <y+ [Jul[ X)

_ 1 <1+ ||U|X> 1 +£v,t(u) .
2B Y ) VI+Kig y

Ly (U)
Y

For (10) we obtain

2
¢ llul® 1

bn 22 2bn

Cn

Cnu'Wn  [lwal®
A _
Y

b7n Y 2bn

Ch u'w,

bh Y

Co U]l fwall

bh Y

(16 gy ) LU
2Bv/1+Kq y

where in the last step we used (7). Using these expressions to bountt-thenie side of (9) yields

ZlMtZt(bt 1+!pt|>

IN

IN

1 ||U||X> L Mz
< =S MiZily(u)+ = | 1+ 11
Vt; t Zi by (U) ZB( v ) A VIR (11)
1 U XKy 1 lul|X & MZ
+ 11+ + — . 12
( 2W+Kn) vy T3y &K (12)

Next, we focus on the second sum in (11) and the sumin (12). $ipge= 1 implieskK; = K;_1+1
we can write

Mz S,
t= VI1+Kia t: 1\F Zl\/_
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Similarly for the other sum, but using a more crude bound,

- Mtzt

& MZ. Kt ;MZ. 1T§2\ﬁ

Recalling the short-hanB = (||u|| X)/y, we apply these bounds to (11) and (12). After a simple
overapproximation this gives

ZiMZ((bt 1+!pt|> ZMtaﬁyt +F(R+1+;R/2>+2[3

We are now ready to take expectations on both sides. As in the proof ofdmel, sincét; 17 =
— and bothVl; andb;_; are measurable with respect to thalgebra generated 1%, ...,Z; 1,

ZML(Q 1+|m> ZMt

In taking the expectation on the right-hand side, we first bagne: zt”:l M; Z; asK, < z{‘:l M,
then exploit the concavity of the square root. This results in

ZEMt LV” <R 1+3R/2>,/21E|\/|t+

Solving the above inequality fag{'; EM; gives the stated bound on the expected number of mis-
takes.
Finally, as in the proof of Theorem 1, the expected number of labels guieyi¢he algorithm

trivially follows from
n n
E let] =E ZEt,lzt
t= t=

concluding the proof. [ |

The proof of Theorem 2 is reminiscent of the analysis of the “self-centiddynamical tuning
used in Auer et al. (2002) and Gentile (2001). In those papers, lemywée variable learning rate
was combined with a re-normalization step of the weight. Here we use a diftexdhnique based
on a time-changing stretching factey_1 = ¢;_1/y for the comparison vectar. This alternative
approach is made possible by the boundedness of the hinge loss terimswady the inequality
£y (W) < Y+ Ul X.

2.3 Selective Sampling Second-Order Perceptron

We now consider a selective sampling version of the second-ordegftena algorithm introduced
by Cesa-Bianchi et al. (2005). The second-order Perceptromithigomight be seen as running
the standard (first-order) Perceptron algorithm as a subroutinev; Letenote the weight vector
computed by the standard Perceptron algorithm. In trighstead of using the sign of ;X to
predict the current instancg, the second-order algorithm predicts through the sign of the margin

P = (Mfl/zvt_l)T(Mfl/zxt) =v M 1x.
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HereM = | + $XsXd + XX is a (full-rank) positive definite matrix, wheteis thed x d identity
matrix, and the sunzsxsxsT runs over the mistaken trialsup to timet — 1. If, when using the
above prediction rule, the algorithm makes a mistake in trithenv;_; is updated according to
the standard Perceptron rule and included in the set of mistaken trials. Hence the second-order
algorithm differs from the standard Perceptron algorithm in that, befacé erediction, a linear
transformatiorM~1/2 is applied to both the current Perceptron weight and the current instance

X. This linear transformation depends on the correlation matrix defined ovéakmisinstances,
including the current one. As explained in Cesa-Bianchi et al. (2@0iS)linear transformation has
the effect of reducing the number of mistakes whenever the instanagatan matrixy sXsxJ +

%% has a spectral structure that causes an eigenvector with small eigetovatreelate well with

a good linear approximatar of the entire data sequence. In such situations, the mistake bound of
the second-order Perceptron algorithm can be shown to be significatitgy than the one for the
first-order algorithm.

In what follows, we useX_; to denotel + SsxsXJ Where the sum ranges over the mistaken
trials between trial 1 and tridl— 1. We derive a selective sampling version of the second-order
algorithm in much the same way as we did for the standard Perceptron algoiitemselective
sampling second-order Perceptron algorithm predicts and then dedig¢isento ask for the label
y: using the same randomized rule as the one in Figure 1. In Figure 3 we peyisieudo-code
description and introduce the notation used in the analysis.

The analysis follows the same pattern as the proof of Theorem 1. A keyisstepne-trial
progress equation developed by Forster (1999) for a regressiorefork. See also Azoury and
Warmuth (2001). As before, the comparison between the second®edegptron’s bound and the
one contained in Theorem 3 reveals that the selective sampling algorithech#ve, in expecta-
tion, the same mistake bound using fewer labels.

Theorem 3 If the algorithm of Figure 3 is run with parameterb0 on a sequenceé, y1), (X2,¥2),
.. € RYx {—1,+1} of examples, then for all r 1, all u € RY, and ally > 0,
+ U E[AJu+ = ZEIn (14+N)

DR 2

wherelq, ..., Aq are the eigenvalues of the (random) correlation mag{k; M Zixx' and A, =
I+ 1MtthtxtT (thusl+A; is the i-th eigenvalue of &. Moreover, the expected number of labels

queried by the algorithm equajg | E [bﬂpll]

Lyn b

Again, the above bound depends on the algorithm’s pararhesstting

34 EIn(1+A)
b= y\/ uTE[A]u

in Theorem 3 we are led to the bound

|3 <
This is an expectation version of the mistake bound for the (deterministichdexder Percep-
tron algorithm, as proven by Cesa-Bianchi et al. (2005). As for thédinder algorithms, this

Lyn 1\/(UTE[An] u) S ElIn(1+A) . (13)
- Y iZl
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Selective sampling second-order Perceptron.
Parameter: b > 0.

Initialization: Ag=1,vo = (0,...,0)".

For eachtriat = 1,2, ...

(1) observe an instance vectere RY, and sef; = vtT_l(Aq_l + xtx[T)*lxt;

(2) predict withy; = SGN(f);

(3) draw a Bernoulli random variabl& € {0,1} of parametelﬁw;

(4) if Z =1thenquery label; € {—1,+1} and perform the standard second-order
Perceptron update:

Vi = Vici+Miwx,
A = A 1+Mixx

(5) else(z; =0) setvy =v;_1 andA; = A¢_1.

Figure 3: A selective sampling version of the second-order Percepligorithm.

bound might be sharper than its deterministic counterpart, since the magnittigetbree quan-
tities Lyn(u), u'E[AsJu, and T4, EIn(1+ \j) is ruled by the size of the random set of updates
{t: MiZ; = 1}, which is typically smaller than the set of mistaken trials of the deterministic algo-
rithm.

However, as for the algorithm in Figure 1, this parameter tuning turns ou¢ tonpealistic,
since it requires preliminary information on the structure of the sequeneranfiples. Unlike the
first-order algorithm, we have been unable to devise a meaningful adagatiameter version for
the algorithm in Figure 3.

Proof of Theorem 3. The proof proceeds along the same lines as the proof of Theorem ly¢hus
only emphasize the main differences. In addition to the notation given theréefined; to be the
(random) function

1 ' MsZ
W)= Jul*+ 5 ==’
S=

The quantity®; (u), which is the regularized cumulative square losa ofi the past mistaken trials,
plays a key role in the proof. Indeed, we now show that the algorithm snenreach mistaken
trial a square losgy; — ﬁt)z bounded by the difference i®;,1(v) —inf, ®(v) plus a quadratic
term involvingAr L. When we sum over mistaken trials, the difference telescopes and thefsum o
quadratic terms can be bounded using known results. Finally, the margisenm the probabilistic
analysis is obtained as cross-term when the square loss is expanded.
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When trialt is such thatM; Z; = 1 we can exploit a result proven by Forster (1999) for lin-
ear regression (proof of Theorem 3 therein), where it is essentiatiwrshihat choosings; =
v, 1 (A—1+%% )" (as in Figure 3) yields

. . . 1 _ 1 _ .
(F-w)’= inf 4 (v) —infd(v) + EXtTAt X — > (XITAtfllXt) pr

NI

On the other hand, if tridl is such that; Z; = 0 we have infcga Pry1(V) = infycra Pr(V). Hence
the equality

MiZ:

2 AT MtZt (X

7(ﬁt_yt)2:ir\1/fq>t+1(v)—ir\]/fqlt(V)—i— % A 1Xt)

holds for all trialst. We drop the term-M:Z; (x' A}%) P?/2, which is nonpositive (sinc&_1 is
positive definite), and sum over= 1,...,n. Observing that inf®,(v) = 0, we obtain

10 . .
ZZMtZt(Q—yt)z < infdp (V) — |nfq31 lettht A%
& v
< ®ni1(u Z\Mtztxt At Xt
<

*||UH +5 ZlMtZt u'x — yt ZlMtZtXtAt Xt

holding for anyu € RY.

Expanding the squares and performing trivial simplifications we arritteedfiollowing inequal-
ity

I\) \

i — 2% )

IIUH +21MtZt u'x ] ZlMtZIYIU X+ = ZlMtZtXtAt X - (14)

<

We focus on the right-hand side of (14). We rewrite the first term anddbdom above the last
term. For the first term we have

n
P+ M Z (u'x 2
t; tZ (u'x)

_1+ e T _ 14
=5u <I+t;xtxt MtZt>u_2u Anu. (15)
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For the third term, we use a property of the inverse matriges(see, e.g., Lai and Wei, 1982;
Azoury and Warmuth, 2001; Forster, 1999; Cesa-Bianchi et al.,)2005

10 _ d |Ac_1]
uainn - 504
2;1 1% AL % 221 A
12, A
= ZZL A1

An|
— ni
Aol

1
= ZIn|Ay
Zn‘ |

1 d
= éi;|n(l+)\i)

where we recall that 4 A; is thei-th eigenvalue of,.
Replacing back, observing thaty;p; < 0 wheneveiM; = 1, dropping the term involvingy?,
and rearranging yields

n 1 1 d
M Ze (1P +yeu %) < Zu'Au+= S In(1+A) .
t; tZ (Pt +yu' %) 5 zi; (14+Ni)

At this point, as in the proof of Theorem 1, we introduce hinge loss termstagidh the comparison
vectoru to %u, whereb is the algorithm’s parameter. We obtain

ZMtZt Ipt| +b) < ZMtZtﬁyt TAnu+ Zln (1+A)

We take expectations on both sides. Recallinghat Z; = b/(b+ |pt|), and proceeding similarly
to the proof of Theorem 1 we get the claimed bound§fn EM; ands{ ;EZ. [ ]

3. Selective Sampling Winnow

The techniques used to prove Theorem 1 can be readily extended tazeasalgctive sampling
versions of algorithms in the general additive family of Grove et al. (200Brmuth and Jagota
(1997), and Kivinen and Warmuth (2001). The algorithms in this family—wlnctudes Win-
now (Littlestone, 1988), thp-norm Perceptron (Grove et al., 2001; Gentile, 2001), and others—ar
parametrized by a strictly convex and differentiapteential function¥ : RY — R obeying some
additional regularity properties. We now show a concrete example byznglhe selective sam-
pling version of the Winnow algorithm (Littlestone, 1988), a member of thergéadditive family
based on the exponential potenti&lu) = €t + - - - + e,

In its basic version, Winnow uses weights that belong to the probability simpl&%.inThe
update rule for the weights is multiplicative, and is followed by a normalizationvetégh projects
the updated weight vector back to the simplex. Introducing the intermediat&étweigve define
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Selective sampling Winnow.
Parameters:n,b > 0.

Initialization: wo = (1/d,...,1/d)".
For each triat = 1,2, ...

(1) observe an instance vectere RY, and sefr = w, ;%

(2) predict withy; = SGN(f);

(3) draw a Bernoulli random variabl& < {0,1} of parametelﬁw;

(4) if Zt = 1 then query labely; € {—1,+1} and perform the standard Winnow
update:

V\/it — Wi’t_leMtnthi,[ ,

)

Wit = W/(Wpp+--+Wyy) i=1...,d

(5) else(z; = 0) setwy =w;_1.

Figure 4: A selective sampling version of the Winnow algorithm.

the update rule as follows:

W = Wy
Wi ¢ fori=1,...,d.
Wi,t — d V\/
2i=1Wijt

The theory behind the analysis of general additive family of algorithms shbat, notwithstand-
ing their apparent diversity, Winnow and Perceptron are actually instaotthe same additive
algorithm.

To obtain a selective sampling version of Winnow we proceed exactly asdwe the previous
cases: we query the labglwith probabilityb/(b+ |p|), where| | is the margin computed by the
algorithm. The complete pseudo-code is described in Figure 4.

The mistake bound we prove for selective sampling Winnow is somewhat akgpice, unlike
the Perceptron-like algorithms analyzed so far, the choice of the leaat@Eggiven in this theorem
is the same as the one suggested by the original Winnow analysis (seeitegtone, 1989; Grove
et al., 2001). Furthermore, since a meaningful bound in Winnow reqgiteschosen in terms of
y, it turns out that in the selective sampling version there is no additional tuaipgrform, and
we are able to obtain the same mistake bound as the original version. Thiks,tbe other cases,
the selective sampling mechanism does not weaken in any respect thalangtake bound, apart
from turning a deterministic bound into an expected one.
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Theorem 4 If the algorithm of Figure 4 is run with parameters

n= 2(1;;)\/ and b=ay forsomea € (0,1)

on a sequenceéxy, Y1), ..., (X, Yn) € RY x {—1,41} of examples such théji||,, < X. for all t =
1,...,n, then for all ue RY in the probability simplex,

n
2, M
=

As before, the expected number of labels queried by the algorithm egjualE [ﬁ} .

_1 Lyn(u) 1 X2ind

£ a vy Jr20((1—0() y2

Proof Similarly to the proof of Theorem 1, we estimate the influence of an update ahdiamce
between the current weigtht _; and an arbitrary “target” hyperplatnewhere in this case both vec-
tors live in the probability simplex. Unlike the Perceptron analysis, basedessqtirared Euclidean
distance, the analysis of Winnow uses the Kullback-Leibler divergenaelative entropykL (-, )

to measure the progresswf_; towardsu. The relative entropy of any two vectousv belonging
to the probability simplex oY is defined by

d

Ui
KL (u,v) = ziuiln— :
) £ Vi

Fix an arbitrary sequencg,y1),..., (%, Yn) € RY x {—1,+1} of examples. As in the proof of
Theorem 1, we have thdd;Z; = 1 implies

ny—fa() = n(y—(y—y,u'x);)
< nyu'x
= Ny (U—We1+W 1) %
= Ny(u—we_1) X +nyew 1% -

)T

Besides, exploiting a simple identity (as in the proof of Theorem 11.3 in CesaB and Lugosi,
2006, Chap. 5), we can rewrite the teryg (u—w;_1) "% as

d
NYe(U—Wwe_1) "% = KL (U,W_1) — KL (U, W) +In (Z Wj,t—lenytvj>
=1

wherev; = xj —w,_;%. This equation is similar to the one obtained in the analysis of the selective
sampling Perceptron algorithm, but for the relative entropy replacing tharedq Euclidean dis-
tance. Note, however, that the last term in the right-hand side of the @oonaion is not a relative
entropy. To bound this last term, we consider the random vardlgking valuex;; € [—Xw, Xe)

with probabilityw; 1. Then, from the Hoeffding inequality (Hoeffding, 1963) applieto

d (X—EX) n,»
In Wj 1€V | = InE |7 < X5
(gl . { ] 2
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We plug back, rearrange and note that= w;_; wheneveiM;Z; = 0. This gets

MiZin (V+ Pt — ) < My Zin by (U) + KL (U, We—1) — KL (U, W)
holding for anyt. Summing ovet = 1,...,n and dividing byn yields

KL(u Wo) KL (U,Wp)

ZMtZt<V+\pt’— ) Z\Mtztgyt n’

We drop the last term (which is nonpositive), and us€u,wp) < Ind holding for anyu in the
probability simplex whenevexy = (1/d,...,1/d). Then the above reduces to

ZlMtZt(V-Hm ) ZlMtthyt )+Innd

Substituting our choice far andb yields

; M Z; (b+|f]) < S My Z; 4 (u)+w

tZl o 7t; e 2(1-a)y
To conclude, it suffices to expldi;_1Z; = b/(b+ |pt|) and proceed as in the proof of the previous
theorems. [

4. Experiments

To investigate the empirical behavior of our algorithms we carried out sss&rexperiments on the
first (in chronological order) 4000 newswire stories from the Reuters Corpus Volume 1 (Reuters,
2000). Each story in this dataset is labelled with one or more elements fronofal€d categories.

In our experiments, we associated a binary classification task with eaaf tree50 most frequent
categories in the dataset, ignoring the remaining 51 (this was done mainly teerdgueffect of
unbalanced datasets). All results presented in this section refer to tregavgerformance over
these 50 binary classification tasks. Though all of our algorithms arenasizdd, we did not com-
pute averages over multiple runs of the same experiment, since we empiricadived that the
variances of our statistics are quite small for the sample size taken into catigide

To evaluate the algorithms we used fhemeasure (harmonic average between precision and
recall) since this is the most widespread performance index in text catetionizxperiments. Re-
placing F-measure with classification accuracy yields results that are qualitatively simitae
ones shown here.

We focused on the following three algorithms: the selective sampling Pesocegigorithm of
Figure 1 (here abbreviated asL-P), its adaptive version of Figure 2 (abbreviatedas-ADA), and
the selective sampling second-order Perceptron algorithm of Figulib8{daated asEL-2ND).

In Figure 5 we check whether our margin-based sampling technique ashagvetter perfor-
mance than the baseline sampling strategy of querying each label with dopsibability. In
particular, we fixed 7 different sampling rates (from2% to 718%) and rurseL-P each time with
the parametel chosen so as to obtain the desired sampling rate. Then we compared thve@chie
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0.75 0.75
SEL-P SEL-2ND
SEL-P-FIXED SEL-2ND-FIXED

SEL-P 100% rate -~ SEL-2ND 100% rate -~

0.7 r B 0.7 -

0.65

F-measure

0.6

0.55

. 0.5
0.292 0.438 0.533 0.600 0.649 0.688 0.718 0.292 0.438 0.533 0.600 0.649 0.688 0.718

Sampling rate Sampling rate

Figure 5: Comparison between margin-based sampling and random samflingre+specified
sampling rate for the Perceptron algorithm (left) and the second-ordeefeon algo-
rithm (right). The dotted lines show the performance obtained by querliifapals.

performance to the performance obtained by sampling each label with ocopstaability, i.e., the
case when the Bernoulli random variabksn step (3) of Figure 1 have constant parameter equal
to the desired sampling rate. We call this variaat-P-FIXED. The same experiment was repeated
usingsSEL-2ND and its fixed probability variargaEL-2ND-FIXED.

The following table shows the values of paramdtérading to the fixed sampling rates for both
experiments.

SAMPLING RATE b (SEL-P) b (SEL-2ND)

0.292 0.250 0.040
0.438 0.500 0.085
0.533 0.750 0.125
0.600 1.000 0.168
0.649 1.250 0.210
0.688 1.500 0.236
0.718 1.750 0.240

Note that in both cases the margin-based sampling technique is clearly dominalog as ex-
pected, the difference between the two techniques tends to shrink agiplénggrate gets larger. In
Figure 6 we illustrate the sensitivity of performance and sampling rate toeliffehoices of the in-
put parameteb for the two algorithmsEL-P andSEL-2ND. This experiment supports Theorems 1
and 3 in two ways: First, it shows that the choicebachieving a performance comparable to the
one obtained by sampling all labels can save a significant fraction of la®zend, this choice is
not unique. Indeed, in a sizeable interval of values for parantetdre sampling rate decreases
significantly with b while the performance level is essentially constant. In Figure 7 we directly
compare the performance eEL-P, SEL-2ND, andSEL-ADA for different values of their average
sampling rate (obtained, as before, via suitable choices of their inputnpteesb and8). This
experiment confirms th&eL-2ND is the algorithm offering the best trade-off between performance
and sampling rate. On the other hand, the fact #smtADA performs slightly worse thasgL-P,
together with the results of Figure 6, appears to indicate that our adaptieecofb can only be
motivated on theoretical grounds.
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Figure 6: Dependence of performance and sampling rate ob tresameter for the Perceptron
algorithm (left) and the second-order Perceptron algorithm (right).
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Figure 7: Performance level sEL-P, SEL-2ND, andSEL-ADA at different sampling rates.

In the last experiment we fixed a target values@) for theF-measure averaged over all 50 cate-
gories and we tuned all algorithms to achieve that performance after trainitige entire sequence
of 40,000 examples. Then, we compared the sampling rates that each algoritthed neattain the
target performance. To get a more accurate picture of the behaviacbfatdgorithm, each time a
block of 4000 training examples was completed, we plotted the avedfageasure and sampling
rate achieved over that block. The results are reported in Figure 8.tNtigEL-P uses an average
sampling rate of about 60%, whieL-ADA needs a larger (and growing with time) sampling rate
of about 74%. On the other hanglgL-2ND uses only about 9% of the labels. Note also that the
sampling rate o§EL-P andSEL-2ND decreases with time, thus indicating that in both cases the mar-
gin tends to grow in magnitude. The small sampling rate exhibitesEhy2ND compared tGEL-P
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Figure 8: The right plot shows the sampling rates required by differigatrithms to achieve a
given target performance value (shown in the left plot).

(andseL-ADA) might be an indication that the second-order Perceptron tends to aehlaxger
margin than the standard Perceptron, but we do not have a clear eiqidioathis phenomenon.

5. Conclusions and Open Problems

We have introduced a general technique for turning linear-threshotditligns from the general
additive family into selective sampling algorithms. We have analyzed thesathigserin a worst-
case on-line learning setting, providing bounds on the expected numiméstakes. Our theoretical
investigation naturally arises from the traditional way margin-based algorighenanalyzed in the
mistake bound model of on-line learning (Littlestone, 1988; Grove et all;286ntile and War-
muth, 1999; Freund and Schapire, 1999; Gentile, 2003; Cesa-Biahelhi 2005). This investi-
gation suggests that our semi-supervised algorithms can achieve, age@vimle same accuracy as
that of their fully supervised counterparts, but allowing a substantiaghgai labels. When applied
to (kernel-based) Perceptron-like algorithms, label saving directly implgdseh sparsity for the
computed classifier which, in turn, yields a running time saving in both trainiddest phases.

Our theoretical results are corroborated by an empirical comparisorxturakelata. In these
experiments we have shown that proper choices of the scaling paramegedd a significant re-
duction in the rate of queried labels without causing an excessive agegnawdf the classification
performance. In addition, we have also shown that by fixing ahead of timéothl number of
label observations, the margin-driven way of distributing these obisengaover the training set is
largely more effective than a random one.

The choice of the scaling parametemight affect performance in a significant way. Thus
we have also provided a theoretical analysis for an adaptive paraneessorv of the (first-order)
selective sampling Perceptron algorithm. This analysis shows that it is sslilpd@$o obtain, with
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no prior information, a bound on the expected number of mistakes havingthe form as the
one achieved by choosing the “bedt'in hindsight. Now, it is intuitively clear that the number
of prediction mistakes and the number of queried labels can be somehow-ttidgainst each
other. Within this trade-off, the above “best” choice is only aimed at minimizing kestarather
than queried labels. In fact, the practical utility of this adaptive algorithrmseat present, fairly
limited.

There are many ways this work could be extended. Perhaps the most imp®iiaing able to
guantify the expected number of requested labels as a function of thieprplarameters (margin
of the data and so on). It is worth observing that for the adaptive veddithe selective sampling
Perceptron (Figure 2) we can easily derivevaer bound on the label sampling rate. Assume for
simplicity that||x|| = 1 for allt. Then we can write

b1 B BvI+Ki_1
ba (Bl  BYIFK 1+ W x|
S BvI+Ki1
T BVIFKe 1w
Bv1+Ki 1
~ BVI+Ki i+ VKo
B
- B+1

(using Inequality (7))

holding for any trialt. Is it possible to obtain a meaningfupperbound? At first glance, this
requires a lower bound on the mardigi|. But since there are no guarantees on the margin the
algorithm achieves (even in the separable case), this route does natriafdkble. Would such

an argument work for on-line large margin algorithms, such as those bgd.Lang (2002) and
Gentile (2001)?

As arelated issue, our theorems do not make any explicit statement abauttber of weight
updates (i.e., support vectors) computed by our selective sampling atgsrittVe would like to
see a theoretical argument that enables us to combine the bound on the néimisakes with a
bound on the number of labels, resulting in an informative upper boundeamumber of updates.

Finally, the adaptive parameter version of Figure 2 centers on inequalitbsas (7) to deter-
mine the current label request rate. It seems these inequalities are tee tmeake the algorithm
effective in practice. Our experiments basically show that this algorithnstenguery more labels
than needed. It turns out there are many ways one can modify this algaathrake it less “cau-
tious”, though this gives rise to algorithms which seem to escape a crisp mdittedranalysis. We
would like to devise an adaptive parameter version of the selective samgingron algorithm
that both lends itself to formal analysis and is competitive in practice.
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