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Abstract

We study the problem of classifying data in a given taxononhemvclassifications associated
with multiple and/or partial paths are allowed. We introd@cnew algorithm that incrementally
learns a linear-threshold classifier for each node of thertarny. A hierarchical classification is
obtained by evaluating the trained node classifiers in adtayn fashion. To evaluate classifiers
in our multipath framework, we define a new hierarchical fsgtion, the H-loss, capturing the
intuition that whenever a classification mistake is made owde of the taxonomy, then no loss
should be charged for any additional mistake occurring énstlibtree of that node.

Making no assumptions on the mechanism generating therttances, and assuming a linear
noise model for the labels, we bound the H-loss of our ondilgerithm in terms of the H-loss of
a reference classifier knowing the true parameters of thel-igdnerating process. We show that,
in expectation, the excess cumulative H-loss grows at nagstrithmically in the length of the data
sequence. Furthermore, our analysis reveals the preqgmsmdence of the rate of convergence on
the eigenstructure of the data each node observes.

Our theoretical results are complemented by a number ofrempats on texual corpora. In
these experiments we show that, after only one epoch ofitgiour algorithm performs much
better than Perceptron-based hierarchical classifieds;easonably close to a hierarchical support
vector machine.

Keywords: incremental algorithms, online learning, hierarchicalksification, second order per-
ceptron, support vector machines, regret bound, lossifumct

1. Introduction

In this paper, we investigate the problem of classifying data based ondladddye that the graph of
dependencies between the classes is a tree forest. The trees in thiarfeslectively interpreted
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as a taxonomy. That is, we assume that every data instance is labelled witss@b(p empty) set
of class nodes and, whenever an instance is labelled with a certain,nbéea it is also labelled
with all the nodes on the path from the root of the tree wheecurs down to node A distinctive
feature of our framework is that we also allow multiple-path labellings (inst&naa be labelled
with nodes belonging to more than one path in the forest), and partial-patlingb¢instances can
be labelled with nodes belonging to a path that does not end on a leaf).

We introduce a new algorithm that incrementally learns a linear-thresholsif@agor each
node of the taxonomy. A hierarchical classification is then obtained by &waduthe node classi-
fiers in a top-down fashion, so that the final labelling is consistent with trantary.

The problem of hierarchical classification, especially of textual informati@s been exten-
sively investigated in past years (see, e.g., Dumais and Chen, 2008, &el., 2004, 2005; Gran-
itzer, 2003; Hofmann et al., 2003; Koller and Sahami, 1997; McCallum t%98; Mladenic, 1998;
Ruiz and Srinivasan, 2002; Sun and Lim, 2001, and referencesrthefidhe on-line approach to
hierarchical classification, which we analyze here, seems well suite ddsding with scenarios in
which new data are produced frequently and in large amounts (e.g., datacpd by newsfeeds—
considered in this paper, or the speech data considered in Dekel €04), 2

An important ingredient in a hierarchical classification problem is the losstifon used to
evaluate the classifier's performance. In pattern classification theorertess is traditionally used.
In a hierarchical setting this loss would simply count one mistake each time jeeredata instance,
the set of class labels output by the hierarchical classifier is not pigriéentical to the set of true
labels associated to that instance. Loss functions able to reflect the tax@twcture have been
proposed in the past (e.g., Dekel et al., 2004; Hofmann et al., 2003ai8uhim, 2001), but none
of these losses works well in our framework where multiple and partial @athallowed. In this
paper we define a new loss function, the H-loss (hierarchical losgsewimple definition captures
the following intuition: “if a mistake is made at nodeof the taxonomy, then further mistakes
made in the subtree rootediadre unimportant”. In other words, we do not require the algorithm
be able to make fine-grained distinctions on tasks where it is unable to maise-@yained ones.
For example, if an algorithm failed to label a document with the cts3RTS then the algorithm
should not be charged more loss because it also failed to label the saumeeddavith the subclass
soccERand the sub-subclagsi{AMPIONS LEAGUE

We bound the theoretical performance of our algorithm using the H-lossui analysis, we
make no assumptions on the mechanism generating the data instances; tedtdang the H-loss
of the algorithm for any arbitrary sequence of data instances. The¢héral labellings associated
to the instances, instead, are assumed to be independently generatetingctma parametric
stochastic process defined on the taxonomy.

Following a standard approach in the analysis of on-line algorithms, we mesthsupredictive
performance using the cumulative regret, a quantity measuring the diffeebetween the cumula-
tive H-loss of the classifiers incrementally generated by the on-line algodthing its run and the
cumulative H-loss of a fixed reference classifier. Our main theoretisaltris a bound on the regret
of our hierarchical learning algorithm with respect to a reference tuei@al classifier based on the
true parameters of the label-generating process. More specificallypuvallthe contribution to the
cumulative regret of each node classifier in terms of quantities related ta#itop of the node
in the taxonomy and the data process parameters. This interaction betvekepasition and data
process parameters captures the hierarchical nature of the classiffipatxdem since the contribu-
tion of each node to the overall cumulative regret decreases as weeprdownward from a root
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in the forest. In general, the overall cumulative regret is seen to gravost logarithmically in the
lengthT of the data sequence.
From the theoretical point of view, the novelty of this line of research isaidof

1. The use of hierarchically trained linear-threshold classifiers is commsevaral of the pre-
vious approaches to hierarchical classification (e.g., Dumais and Cb@@; Rekel et al.,
2004, 2005; Granitzer, 2003; Hofmann et al., 2003; Koller and Sah&®fi7;1IMcCallum
et al., 1998; Mladenic, 1998; Ruiz and Srinivasan, 2002; Sun and LOG1)2 However, to
our knowledge, this research is the first one to provide a rigorousnnesthce analysis of hi-
erarchical classification algorithms in the presence of multiple and partiatjeetifications.

2. The core of our analysis is a local cumulative regret bound showatghle instantaneous
regret of each node classifier vanishes at a rdfe. 1The precise dependence of the rate
of convergence on the eigenstructure of the data each node obiseavesjor contribution
of this paper. This turns out to be similar in spirit to early (and classical) woilkast-
squares linear regression (e.g., Lai et al., 1979; Lai and Wei, 1882 )unlike these previous
investigations, our analysis is not asymptotic in nature and studies a spéa#féification
setting, instead of a regression one.

To support our theoretical findings we also describe some experimertsroormy a more practical
variant of the algorithm we actually analyze. These experiments use largera of textual data
on which we test different batch and incremental classifiers. The iexpets show that our on-line
algorithm performs significantly better than Perceptron-based hieratcéssifiers. Furthermore,
after only one epoch of training, our algorithm achieves a performalose ¢o that of a hierar-
chical support vector machine, the popular batch learning algorithm ficehwto the best of our
knowledge, no theoretical performance bounds are known in hiecafctassification frameworks.

The paper is organized as follows. Section 2 defines the notation usedhiod the paper. In
Section 3 we introduce the H-loss function. Our hierarchical algorithmssrd®ed in Section 4.
In Section 5 and 6 we define the data model, the learning model, and ourtitelgrerformance
measure: the cumulative regret. The analysis of our algorithm is carrigd 8ection 7, while in
Section 8 we report on the experiments. Finally, in Section 9 we summarizesultsrand mention
a few open questions.

2. Notation

We assume data elements are encoded as unit-norm veatoRs!, which we callinstances A
multilabel for an instancex is any subset of the sétl,...,N} of all labels, including the empty
set. We represent the multilabelxofvith a vectorv = (vy,...,w) € {0, 1}N, wherei € {1,...,N}
belongs to the multilabel ofif and only if v; = 1.

A taxonomyG is a forest whose trees are defined over the set of labels. A multitabgd, 1}N
is said torespecta taxonomyG if and only if v is the union of one or more paths @ where each
path starts from a root but need not terminate on a leaf, see Figure lssmathe data-generating
mechanism produces examplesv) such thatv respects some fixed underlying taxono@yvith
N nodes (see Section 5). The set of root&iis denoted byroOT(G). We userAR(i) to denote the
unique parent of nodie ANC(i) to denote the set of ancestors ofus(i) to denote the set of nodes
in the subtree rooted a(includingi), andCcHILD(i) to denote the set of children of node
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Figure 1: A forest made of two disjoint trees. The nodes are tagged withahmee of the la-
bels, so that in this casM = 11. According to our definition, the multilabel =
(1,1,1,0,0,1,0,1,0,1,0) respects this taxonomy (since it is the union of paths 2,

1 — 3 and 6— 8 — 10), while the multilabel = (1,1,0,1,0,0,0,0,0,0,0) does not,
since 1— 2 — 4 is not a path in the forest. Associated with each nottea {0,1}-
valued random variabl¥; distributed according to a conditional probability function
P(Vi | Vear(i), X) —see Section 5.

We denote by @} the Bernoulli random variable which is 1 if and only if predicatis true. In
our analysis, we repeatedly use simple facts sucfpasp} = {@} + {W A @} < {@} + {Y} and
{0} = {ony} + {on Y} < {oAy} + {—}, wherey is another predicate.

3. The H-Loss

Two very simple loss functions, measuring the discrepancy between thiete multilabely =
(Y1,---,¥n) and the true multilabel = (vy,...,w), are the zero-one logg,1(V,v) = {Ji : i # Vvi}
and the symmetric difference l0&§(Y,v) = {V1 #V1} +...+{Yn # Wn}. Note that the definition of
these losses is based on the{det .., N} of labels without any additional structure. A loss function
that takes into account a taxonomical structure defined over the seets lab

N
bh(Y,v) = _;{ﬁ #Vi AV =V;j, j € ANC(i)} .

This loss, which we call H-loss (hierarchical loss), can also be defisddllows: all paths irG
from a root down to a leaf are examined and, whenever a na&encountered such th@t+ v,
then 1 is added to the loss, while all the loss contributions in the subtree rdatadeadiscarded.
Note that, with this definition{y/; < ¢4 < ¢a. A graphical representation of the H-loss and related
concepts is given in Figure 2.

In the next lemma we show an important (and intuitive) property of the H-lwksn the mul-
tilabel v to be predicted respects a taxonofayhen there is no loss of generality in restricting to
predictions which respe&. Formally, given a multilabey € {0,1}N, we define theG-truncation
of ¥ as the multilabey/ = (¥;,...,9) € {0,1}N where, for each=1,...,N, ¥ = 1 if and only if
yi =1 andy; =1 for all j € ANC(i). Note that theG-truncation of any multilabel always respects
G. The next lemma states thatifespectss, then/y (V,v) cannot be smaller thafy (¥, V).
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(@) (b) (©) (d)

Figure 2: A one-tree forest (repeated four times). Each node pamés to a class in the taxonomy
G, hence in this cash = 12. Gray nodes are included in the multilabel under consid-
eration, white nodes are not. (a) A generic multilabel whdoles notrespectG; (b) its
G-truncation. (c) A second multilabel that respe@tqd) Superposition of multilabel (b)
on multilabel (c): Only the checked nodes contribute to the H-loss betwgam(c).
Hence the H-loss between multilabel (b) and multilabel (c¢) is 3. Here thearexdess
between (b) and (c) is 1, while the symmetric difference loss equals 4.

Lemma 1 Let G be a taxonomy,y € {0, 1}N be two multilabels such that v respects G, ghtle
the G-truncation ofj. Then

EH (/yl’v) < KH 677\/) .

Proof. Sinceln(Y,v) = S {Vi #Vi AV, =Vj, j € ANC(I)} andly (F,v) = SLi{Ti A Vi A Y} =
Vj, j € ANC(i)}, it suffices to show that, for eaéh=1,...,N, ¥ # vi andy| = v; for all j € ANC(i)
impliesy; # vi andy; = v; for all j € ANC(i).

Pick some and supposg # vi andy; = v; for all j € ANC(i). Now supposg; = 0 (and thus
vj = 0) for somej € ANC(i). Theny; = 0 sincev respect$s. But this impliesy, = 1, contradicting
the fact that thes-truncationy’ respect<G. Therefore, it must be the case tlé%f\t: vj =1 for all
j € ANC(i). Hence theG-truncation ofy left each nodg € ANC(i) unchanged, implying; = v; for
all j € ANc(i). But, since th&-truncation ofy does not change the value of a nogdénose ancestors
j are such tha§j = 1, this also implie§; = y.. Thereforey; # v; and the proof is concluded. [

4. A New Hierarchical Learning Algorithm

In this section we describe our on-line algorithm for hierarchical classific. Its theoretical per-
formance is analyzed in Section 7.

The on-line learning model we consider is the following. In the generic timetstep, 2, ...
instancex is revealed to the algorithm which outputs the predicfios: (Y1, ...,9nt) € {0, 1}N.
This is viewed as a guess for the multilabel= (vit,voy,...,Vnt) associated with the current
instancex;. After each prediction, the algorithm observes the true multilapaind adjusts its
parameters for the next prediction.

Our algorithm computeg t, ..., 9nt usingN linear-threshold classifiers, one for each node in
the taxonomy. These node classifiers are evaluated, starting froma#cinrthe following top-
down fashion: the root is labelled by evaluating its node classifier; if a hadébeen labelled 1,
then each child is labelled by evaluating its node classifier. On the otherihanthde is labelled
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Algorithm H-RLS.
Initialization: Weight vectorswy; 1 = (0,...,0),i=1,...,N.
Fort=1,2,...do

1. Observe instance € {x€ RY : ||x|| = 1};

2. Foreach =1,...,N compute predictiong ; € {0, 1} as follows:

{w!x >0} ifiisarootnode,
Vit =q {w'x >0} if i is nota root node ang { = 1 for j = PAR(i),

0 if i is not a root node ang ¢ = O for j = PAR(i),
where
Wi = (I1+Sqit-Sgie 1 X% ) X
X §,Q(it-1) (Viiips Viigy - - ,Vi7iQ(i¢,1))T
Saqit-1) = XX - Xigge o] i=1,...,N.

3. Observe multilabel; and update weights.

Figure 3: The hierarchical learning algorittihRLS.

0 thenall of its descendants are labelled 0. Note that this evaluation scheme can ophatge
multilabels that respect the underlying taxonomy.

Letws,...,wn be the weight vectors defining the linear-threshold classifiers used @algbe
rithm. A feature of the learning process, which is also important for its thieat@nalysis, is that
the classifier at nodeeis only trained on the examples that are positive for its parent node. In othe
words,w; is considered for update only on those instangesich that/pag()t = 1.

Let Q(i,t) denote the number of times tiparentof nodei observes a positive label up to time
t,i.e.,Qi,t) = {1 <s<t: Vpri)s = 1}|. The weight vectow stored at timé in nodei is a
(conditional) regularized least squares estimator given by

-1
Wit = (l +S.0it-1S Qi 1) +XtXtT> S.00t-2) Mgy -+ Viigue ) s 1)

wherel is thed x d identity matrix,§ q(it—1) is thed x Q(i,t — 1) matrix whose columns are the
instancesql,...,ximel), and(vi_,il,...,vi,iQ(i,tfl))T is theQ(i,t — 1)-dimensional (column) vector of
the corresponding labels observed by node

The estimator in (1) is a slight variant of the regularized least squares &stifoa classifi-
cation (Cesa-Bianchi et al., 2002; Rifkin et al., 2003) where we includectirent instancg; in
the computation ofv;; (see, e.g., Azoury and Warmuth, 2001; Vovk, 2001, for analysesvof s
lar algorithms in different contexts). Efficient incremental computations @fritierse matrix and
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dual variable formulations of the algorithm are extensively discussedebg-Bianchi et al. (2002)
and Rifkin et al. (2003).

The pseudocode of our algorithm, which we ealkLs (Hierarchical Regularized Least Squares)
is given in Figure 3.

5. A Stochastic Model for Generating Labels

While no assumptions are made on the mechanism generating the seguepce. of instances,
we base our analysis on the following stochastic model for generating the ieillEasociated to
an instance.

A probability distributionfg over the set of multilabels is associated to a taxon@mgs fol-
lows. Each nodeé of G is tagged with &0, 1}-valued random variabM distributed according to
a conditional probability functiof?(V; | Vpariiy, X). To model the dependency between the labels of
nodes andj = PAR(i) we assume

P(Vi=1|V;=0,x)=0 2

for all nonroot nodes and all instances. For example, in the taxonomy of Figure 1 we have
P(V4=1|V3=0,x) =0 for allx € RY. The quantity

fo(v]X) = ﬁw —Vi |V} = vy, j = PAR(i), X

thus defines a joint probability distribution &, . . ., Viy conditioned orx being the current instance.
This joint distribution puts zero probability on all multilabels {0,1}N which do not respeds.
Through fg we specify an i.i.d. procesd/1,V, ...} as follows. We assume that an arbitrary
and unknown sequence of instance vectarsp, ... is fixed in advance, whergx| = 1 for all
t. The multilabelV; is distributed according to the joint distributidig(- | ). We call each pair
(X, V), wherev; is a realization oV, anexample
Let us now introduce a parametric model fgr. With each nodéin the taxonomy, we associate
a unit-norm weight vectan; € RY. Then, we define the conditional probabilities for a nonroot node
i with parentj as follows:

14+ u'x
P(Vizl\vjzl,x):%. @3)
If i is a root node, the above simplifies to
14+ u'x
PV =1|x) = +2u' .

Our choice of a linear model for Bernoulli random variables, as opgpts@ more standard log-
linear model, is mainly motivated by our intention of proving regret bounds vathssumptions on
the way the sequence of instances is generated. Indeed, we areanetad\any analysis of logistic
regression holding in a similar classification setup.

Note also that, in this model, the labels of the children of any given node agpéndent ran-
dom variables. This is motivated by the fact that, unlike previous investigatiemare expliciteply
modelling labellings involving multiple paths. A more sophisticated analysis coulddunteoarbi-
trary negative correlations among the labels of the children nodes. Inapés,dhowever, we do not
follow this route.
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6. Regret and the Reference Classifier

Assuming the stochastic model described in Section 5, we compare thenpenfoer of our algo-
rithm to the performance of the fixed hierarchical classifier built on thegewametersly, ..., Uy
governing the label-generating process. This reference hierarclassifier has the same form as
the classifiers generated ByRrLS. More precisely, let the multilabgl= (yi, ..., yn) for an instance
x be computed as follows:

{u'x>0} ifiisarootnode,
yi=< {u'x>0} ifiisnotarootang;=1forj=PAR(), 4)
0 if i is not a root ang; = O for j = PAR(i).

To evaluate our algorithm against the reference hierarchical classédfered in (4), we use the
cumulative regret. Given any loss functiér(such as one of the three defined in Section 3), we
define the (instantaneouggretof a classifier assigning lab@! to instanceg as

Eg(ytvvt) _Eg(ytvvt) ’

wherey, is the multilabel assigned by classifier (4), and the expectation is with reteecindom
draw ofV; (as specified in Section 5). We measure the performaneerafs through its cumulative
regret on a sequence dfexamples:

T
t;(Ee(/yUVt)_Eg(yt?Vt)) . (5)

The regret bound we prove in Section 7 holds wher?y, and is shown to depend on the interaction
between the spectral structure of the data generating process anditterstof the taxonomy on
which the process is applied.

7. Analysis

We now prove a bound on the cumulative regreHeRLs with respect to the H-loss functiofy.

Our analysis hinges on proving that for any nodine estimated margiwﬂxt is an asymptotically
unbiased estimator of the true marginx, and then on using known large deviation arguments to
obtain the stated bound. For this purpose, we bound the variance of tgegraatimator at each
node and prove a bound on the rate at which the bias vanishes.

Theorem 2 Consider a taxonomy G with N nodes. Pick any set of model paramaters,uy €
RY such that|u;|| = 1fori=1,...,N, and pick any sequence of instance vectgrgx. .. € RY such
that ||x || = 1 for all t. Then the cumulative regret of theRrLs algorithm (described in Figure 3)
satisfies, for each T 1,

T N N CI

3 (B3 V0 ~Elu(. V)< 161+1/0) 5 75 E

t= i i

)

d
Z Iog(1+)\i7j)
=1

where
Ai,t :uiTXta AizztiTinTAiz.,ta Cl = |SUB(i)|>

Ai1-.-,Aig are the eigenvalues of matrix&; 1) SiTQ(i,Ty and e is the base of natural logarithms.
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Before delving into the proof, it is worth making a few comments.

Remark 3 SinceH-RLS can be cast in dual variables, we can run it in any reproducing kernel
Hilbert space (e.g., Sétkopf and Smola, 2002). The regret bound contained in Theorem dnema
true once we observe that the nonzero eigenvalue$ f 1 STQ(LT) coincide with the nonzero

eigenvalues of the Gram matrﬁ?Q i) S,qi,T)» and we replace the sum over all input dimensions

d with the sum over the (at mo3t) nonzero eigenvalues Q‘Q i) S.qqi,T)- We refer the reader to
the work by Cesa-Bianchi et al. (2002) for additional detalls

Remark 4 It is important to emphasize the interplay between the taxonomy structure and the
process generating the examples, as expressed by the above mgrdt bRecall that we de-
note byA1,...,Aiq the eigenvalues of matri§ o 1) STQU ) From the previous remark we have

3§ 1Aij = tracg(Sly; 1) S.qim) = Q(i, T) since|x || = 1 vt, and

d

z g(1+Ai)) <max{§log 1+) :iuj=Q(i,T)}:dlog<l+Q(ic;T)>.
=1

Moreover,Q(i, T) is the sum ofT Bernoulli random variables, where th¢h variable takes value
1 when the parent of theth node in the taxonomy observes labglgi) = 1 at timet. The
probability of this event clearly equals

I_l <1+Aj7t>
jEANC(i) 2

Thus
d iT
E leog(1+7\i,j) < dE [Iog <1+ %)] (6)
< dlog <1+ %)
(from Jensen’s inequality)
T ] (1A
— dlog (1+ Zt_lH’eAN;(')( : >) . ™

Bound (6) is obviously a lo§f cumulative regret bound, sin€i, T) < T anyway. It is important,
however, to see how the regret bound depends on the taxonomy strucgtiius focus on (7). lif

is a root node theLQ(i,T) = Q(i,T) =T (since a root node observes all labels). As we descend
along a path[EQ(i, T) tends to decrease with a rate depending on the margins achieved by the
ancestors of node Bound (7) thus makes explicit the contribution of nade the overall regret.

If i is a root node, then its contribution to the overall regret is roughlyff logn the other hand, the
deeper is nodewithin the taxonomy the smaller is the contribution of nade the overall regret.

A very deep leaf node observes a possibly small subset of the instdnutesis also required to
produce only a small subset of linear-threshold predictions, i.e., theiassbeaveight vectom; ¢
might be an unreliable estimator, but is also used less often. Therefomrttrébution of leaf node

i is smaller than lod because the hierarchical nature of the problem (as expressed byltiss)H
lowers the relative importance of the accuracy of estimatpwhen computing the overall regret.
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Remark 5 Nothing prevents us from generalizing the H-loss by associating fixddcoefficients
to each taxonomy node:

N
i (Y,v) = Zci {§#Vi AV =Vj, j € Anc(i)},

where the cost coefficients are positive real numbers. It is straightforward to see that with this
definition of H-loss, the statement of Theorem 2 still holds, once we gizeethe regret factors

Ci asCi = Y kesug(i) Ck- Note that this would involve changes neither in our learning algorithm nor
in our reference predictor. In fact, we are measuring regret agaiegerence predictor that is not
Bayes optimal for the data model at hand. This is hot immediate to see wherstlwmeticients;
defining the H-loss are all setto 1 but, as we mentioned, it is generally eMiycthe fact that both
the reference predictor (4) and our learning algorithm do not depe tigea;.

Remark 6 From the proof of Theorem 2 below, the reader can see that thereeaeabways
one can improve the bounds. In fact, we made no special effort to minimizenaire constant
16(1+1/e) and, in general, we disregarded quite a lot of constant factors thratghtwreover,
though we decided to cast the bounds in terms of the worst-case ndgrgimine_; 1A%, it is
straighforward to modify the proof to obtain a bound depending on somefkaverage squared
margin. Since this sharper bound would hide the clean dependence dégehstricture of the data,
we decided not to pursue this optimization any further.

We are now ready to prove Theorem 2.

Proof of Theorem 2\We fix a nodei and upper bound its contribution to the total instantaneous
regret. Since for any four predicat@g, X, { we have{A Y} —{X A} < {@AWA-X}+{OAWA
XA -}, we see that

{Yie #Vie, Vi€ ANC(i) 1 ¥jr = Vi) —{¥ie #Vie, Vi € ANC(i) 1 yje = Vji}
< {Git # Vit Yig =M, Vi € ANC(i) = P =V} ®)
+ {9t #Vit, Yig # Vi, Vj € ANC(i) & §j1 = Vi, 3) € ANC(i) : Yji # Vi) (9)
We bound the two terms (8) and (9) separately. We can write:
(8) = {Vit #Vit, Vit =Vit, Vj € ANC(i) @ ¥jt = Vjr = 1}
(sinceyj: =Vjt = 0 for some ancestgrimpliesyi; = Vit = 0)
<{Vit # Yit, Kit}

where we have introduced the short-hakid = “Vj € ANC(i) : Vj; = 1". By the same token, we
have

(9) ={¥it #Vit, ¥it #Vit, Vj € ANC(i) : ¥jt =Vjr =1, 3] € ANC(i) : Yjt # Vj1}
= {fit #Vit, Vit #Vir, Vj € ANC(i) : Jix = Vit = 1, 3j € ANC(i) : ¥t # Yt}
<{3jeANc(i) : Vit #VYjt, Kt}
< Z Vit # Vit Kt}

JEANC(i)

< > Vit #Vie Kt}

JEANC(i)
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where the last inequality holds becaugg implies K] ; for all j € ANC(i). Using our bounds for (8)
and (9), and summing oveyields

Iy (/ytavt) — 4y (yt7vt)

N

= 3 ({510 Vie: ¥J € ANCLD) £ i = Vi) = (e #Vhas Vi € ANCID) : e = Vi)
=
N

SiZ\ Z Vit # Vit Kt}

=1jeanc(i)U{i}

N
_;{Vi,t#yi,t,?ﬁ,t} > 1

jesus(i)
N
= Ci{Vit #Vit, Kt} -
I; (| | |

We then take expectations and sum aver

T

T N
Ely (W 7V —Ef 7V < i P AI ity 2\,
t;( H (Y, Vi) H(Y:Vt)) t;i;CI (it # Vit, Kit)

NOOT
—SC S PG £y Ky 10
i; t; Vit #ZYit Kit) (10)

Equation (10) is a conveniently simple upper bound on the cumulative reghes. allows us to
focus on bounding from above the one-node cumulative expectgfjgp(ﬁt #VYit, Kit)-

For brevity, in the rest of this proof we use the notatidns= ux (the target margin om)
andﬁm = wiTtxt (the algorithm margin o). As we said earlier, our argument centers on proving

that for any node, Eii is an asymptotically unbiased estimator/gf, and then on using known
large deviation techniques to obtain the stated bound. For this purposeeddmnstudy both the
conditional bias and the conditional variance&gf.

Recall Figure 3. Since the sequengexy,... is fixed, the multilabel vector¥; are statisti-
cally independent. Also, for any= 1,2,... and for any nodé with parentj, the child’s labels
Vi s Viguy @re independent when conditioned on the parent’s laljels ..,Vjt—1. We use
the notation

it—1

Eit =E[- |Vj1,...,Vjt-1] -

By definition of our parametric model (3) we haklg[(Vi i, ,- - - ,\/iAQ(LH))T] = STQO ¢ gt Recall-
ing the definition (1) ofw 1, this implies (for conciseness we wriginstead ofQ(i,t — 1))

Eis[Dig] = 4 S.0S'0( +S.0S0 +x% ) X .
Note that
Dt = Eig[Bid] +u (1 4+%% ) (1 +S.0S'0 +x% ) "% = Eit[Bid] +Big,

whereBi; = u (I +xx' ) (I +S|7QSTQ+xtxtT)—lxt is the conditional bias ofvi;. It is useful to
introduce the short-hand notation

e =% (I +S0S0+%% ) % .
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Also, in order to stress the depende’noérm onQ=Q(i,t —1), we denote it by o.
The conditional bias is bounded in the following lemma (proven in the appendix)

Lemma 7 With the notation introduced so far, we have
Bit < Mito+|Qit|rito-
As far as the conditional variance Eiﬁt is concerned, from Figure 3 we see that

- Q
Aiy =Y ViiZitk,
2,

where
Z\y = (Zi11,---.ZitQ) =S (' + S,QSTQ*’XIX’(T)ilxt : (11)
The next lemma (proven in the appendix) handles the conditional varjm,cléz.
Lemma 8 With the notation introduced so far, we have
1Zitll® <Tiro-

Armed with these two lemmas, we proceed through our large deviation argument.
We can write

{Vit # Vi, Kt}
< {Bi,tAi,t <0, i7ﬁ,t}
< {1 -0l = 1), %
< {’Ei,t—i-Bi,t —Diy| > |Diy| — |Bigl, i7ﬁ,t}
< {1+ BBl > 180l/2, K+ (1Bl > I8l /2, %} (12)

We can further bound the second term of (12) by using Lemma 7. We obtain

(Bl = 8l/2 %o} < {Viice+IBidrice > 18idl/2, %}
< {(rigo>|Ait?/16Vrig > 1/4), K}
{ri,t,Q > |Ai,t’2/167 'Kt}

A

1. As it turns out, many of the quantities appearing in the present pradddimg the bias ternB;; and the variance
vectorZ;; defined later on, are algorithm-dependent, hence they do actuallydiepén= Q(i,t — 1). However, this
dependence is made notationally explicit only for the quanmtity= r;; o since, we believe, this specific dependence
is key to the proof.
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the equality following from the fact thaty¢|?/16 < 1/16 < 1/4. We plug back into (12), take
expectations, and sum oveWe have

E

.
Z{yi,t #Yits Kt }]
=

T ~
= B [t;({mLtJFBLt =it > |Ait]/2, %,t} +{rito > |0it?/16, Kt})]

T ~
E L;{:m} By { Big +Bio — B > |Ai,t|/2}] (13)

+E

;
Z\{ri,t,Q > |02 [?/186, Kt}] , (14)
t=

where in (13) we used the fact thaf; is determined giveNpar(i) 1, - - - , Vear(i)t—1-

We now bound the two expectations (13) and (14) separately.j kebAR(i). To bound the
first expectation, we exploit the fact thd; ;... ,Viio are independent under the ld&y = ]P’(‘ |
Vj71,...,Vj7t,1), andZ,...,Zq defined in (11) are determined givéf1,...,Vjt_1. Hence,
we can apply Chernoff-Hoeffding inequality (Hoeffding, 1963) to thmsﬁm =Viidita1+...+
ViioZitq of independent random variables, whéig [Ei,t] = Ay —Bj; and (\47ilzi7t,1)2 + ...+
(MiigZi1,Q)? < rir.q by Lemma 8. Recalling thalt? = min_y 7 A?, we can write

T N T AZ
30 (B Bl 81/2) <23 {iahenp g )

This quantity can be further upper bounded using the following lemma (priovilne appendix).
Lemma 9 Leta, M be positive constants. Then

n n
max{zle‘o‘/’"t : alzo,...,anzo,zlat:M} <
t= t=

M
.

D

If we let

.
Mizt;{fit}ri,t,Q:t. Z rit,Q

H{&Ki)=1

we immediately see that Lemma 9 implies

T Aiz Ai2 8
3 (st en( i) A "(“arna) <o

16

Therefore,
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To bound (14) we can argue as follows (note that, by definitigry > 0, since it is the value of a
guadratic form with a positive definite matrix):

Mi = Z{Kt}ﬂtQ

Zl{rl 10 >02/16, K} riro+ Zl{r. 1Q <A?/16, K1}t
t=

v

Zl{ri’t’Q > N?/16, K1} A?/16.
t=

Hence

Z\{MQ>A/16 Kt}] IEM|.

We have thus obtained the following bound

.
1
P(Yit # Vit Kit) <
t; t t t

To conclude, we need to upper bouii¥;. Observe thall; is a sum only over time stepsuch that
{%it} = 1;i.e., over thosé such that the weight vectow ; gets actually updated. Therefore, since
we would like to relateVi; to the spectral structure of the data correlation mat@@ng)STQ(i_’T),

we can proceed through the standard upper bounding argumentrgfarodi \Warmuth, 2001; Cesa-
Bianchi et al., 2002) given below.

T
M = t;{ Kit}ritQ

T (1_ det(l +S,Q(i,t—1)STQ(i,tl))>
2 det(l +8 g Slqiy)
(using Lemma 2, part 1, in Lai and Wei, 1982)

T| det(I+S|Q|t3Q|t
t; det(l + S qit— 1§Q|t 1)
detl + S qi1) S,Q(i,T)
det(l)

= i log(1+Aij) -
=1

IN

(since 1- x < —logx for all x > 0)

Putting together as in (10) concludes the proof. d
Our analysis of Theorem 2 is similar in spirit to the work of Lai et al. (1979)aast-squares
regression. In particular, they also assume the sequerxe. .. be arbitrary while the real-valued
labelsy; are defined ag = u' x + &, whereg; are i.i.d. random variables with finite variance.
A regret bound similar to the one established by Theorem 2 can be prowehef zero-one
loss using the fact that this loss can be crudely upper bounded by thesHwiith all cost coeffi-
cients set to 1). Indeed, a more direct (and sharper) analysis cogldrfmed for the zero-one
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loss, following the same lines as the proof of Theorem 2. As far as the syiordigference loss

£p is concerned, a regret analysis might be obtained through a method wbmd in earlier
work (Cesa-Bianchi et al., 2004). As a matter of fact, the analysis bg-B&mnchi et al. (2004)
rests on several side assumptions about the wayxgata, xr are generated. We have been unable
to apply the theoretical arguments employed in the present papgrlimany case, since these two
loss functions are unable to capture the hierarchical nature of ouifidassn problem, we believe
the resulting bounds are less relevant to this paper.

8. Experimental Results

We tested the empirical performance of our on-line algorithm on data sets®drfrom two pop-
ular corpora of free-text documents. The first data set consists difsh¢in chronological order)
100,000 newswire stories from the Reuters Corpus Volume 1 (Reuters,.2008)associated tax-
onomy of labels, which are the document topics, contains 101 nodesizgdan a forest of 4
trees. The forest is shallow: the longest path has length 3 and the dismilofitimdes, sorted by
increasing path length, i0.04,0.53,0.42,0.01}. The average number of paths in the multilabel
of an instance is.b. For this data set we used the bag-of-words vectorization perforgn¥enox
Research Center Europe within the EC project KerMIT (see Cesaddiahal., 2003, for details).
The 100000 documents were divided into 5 equally sized groups of chronologicaiigecutive
documents. We then used each adjacent pair of groups as training tiedttés an experiment
(here the fifth and first group are considered adjacent), and theagadbthe test set performance
over the 5 experiments.

The second data set includes the documents classified in the nodes obtie= sooted in
“Quality of Health Care” (MeSH code N05.715) of the OHSUMED corpusetlical abstracts (Hersh,
1994). Since OHSUMED is not quite a tree but a directed acyclic graghsiace the H-loss is
defined for trees only, we removed from this OHSUMED fragment the feden that did not
have a unique path to the root. This produced a hierarchy with 94 clasdea data set with
55,503 documents. The choice of this specific subtree was motivated by itsuséruamly; in
particular: the subtree depth is 4, the distribution of nodes (sorted byasioge path length) is
{0.26,0.37,0.22,0.12 0.03}, and there is a reasonable number of partial and multiple path multil-
abels (the average number of paths per instanceb) .1 The vectorization of the documents was
carried out similarly to RCV1. After tokenization, we removed all stopwordsaso those words
that did not occur at least 3 times in the corpus. Then, we vectorized tuendmts using the BOW
library (McCallum, 2004) with a logL+ TF) log(IDF) encoding. We ran 5 experiments by randomly
splitting the corpus in a training set of A0 documents and a test set of 3@ documents. Test
set performances are averages over these 5 experiments. In thegtisehiwe kept more docu-
ments than in the RCV1 splits since the OHSUMED corpus turned out to be erleadsification
problem than RCV1. In both data sets instances have been normalized lengtfit.

Since the space complexity ef-RLS grows linearly with training time, due to the need of
storing each training instance in the matriG&gs—see (1), we had to make some modifications
to the algorithm in order to be able to carry out experiments on data sets ofzbis Ror this
purpose, we have developsd-RLS, a space-efficient variant ef-rLS that we used in all of our
experiments.

The performance afH-RLS is compared against five baseline algorithms: a flat and a hierarchi-
cal version of the Perceptron algorithm (Novikov, 1962; Rosenblafi8),% flat and a hierarchical
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version of Vapnik’s support vector machine (see, e.g., Vapnik, 186Rjlkopf and Smola, 2002),
and a flat version o6H-RLS. Note that support vector machines are not trained incrementally;
we include them in our pool of baseline algorithms to show that on-line legrpescessing each
training example only once, can have a performance level close to thataf kearners.

Note also that, unlike our theoretical analysis based on cumulative regtee experiments
we distinguish a training phase, where the hierarchical classifiers direalnd a test phase, where
the performance of the hierarchical classifiers obtained in the trainingeghaneasured on fresh
data. This allows us to use a single measure, the test error, to compareatmittabd incremental
learners.

The first algorithm we consideH-PERG is a simple hierarchical version of the Perceptron.
Its functioning differs fromH-RLS described in Figure 3 only in the way weights are updated. In
particular,H-PERC learns a hierarchical classifier by training a linear-threshold classifieactt
node via the Perceptron algorithm. At the beginning, the weight vectoratf made classifier is
set to the zero vectow; 1 = (0,...,0) fori =1,...,N. Upon receiving an example, \t), H-PERC
considers for an update only those classifiers sitting at nodesisfying eitheli € ROOT(G) or
Vear(iyt = L. If {vv,ﬂxt > 0} # Vi for such a nodé, then the weight vectow; ; is updated using the
Perceptron rulevi ;.1 = Wt + Vi tX; on the other hand, i{wﬂxt > 0} = Vi, thenw 11 = Wit (NO
update takes place at noije '

During the test phase,-PERCcomputes the multilab&l= (y1,...,yn) of a testinstancr using
the same top-down process described in Figure 3,

{w/x>0} ifiisarootnode,
¥i =4 {w/x>0} ifiisnotarootnode ang = 1 for j = PAR(i), (15)
0 if i is not a root node ang; = 0 for j = PAR(i).

The second incremental algorithm consideredHsRLS, our sparse variant afi-rRLS. The two
algorithms,H-RLS and SH-RLS operate in the same way (see Figure 3) with the only difference
that SH-RLS performs fewer updates in the training phase. In particular, given arigaglxample
(%, V), both algorithms consider for an update only those classifiers sitting at nadgisfying
eitheri € ROOT(G) Of Vpugii)y = 1. However, whereas-RLs would update the weighty; of
all such nodes, sH-RLS also requires the margin conditigw;', x| < 1/(5Int)/Nit, whereN;; is
the number of instances stored at nodgp to timet — 1. The choice of the margin threshold
\/(5Int) /N« is motivated by Cesa-Bianchi et al. (2003) via a large deviation analysis.

We also tested a hierarchical version of SVM (denotedibyvM) in which each node is an
SVM classifier trained using a batch version of our hierarchical leanmiatpcol. More precisely,
each node was trained only on those exampleg, i) such thatvpsgi)t = 1. The resulting set
of linear-threshold functions was then evaluated on the test set usingetiaechical classification
scheme (15). We tried both tlieandv parametrizations (Séitkopf et al., 2000) for SVM and found
the settingC = 1 to work best for our data (recall that all instancgsare normalized||x| = 1).

We finally tested the “flat” variants of-PERC SH-RLS andH-SvM, denoted byPERC S-RLS
andsvM, respectively. In these variants, each node is trained and evaluatggkmdkntly of the
others, disregarding all taxonomical information. All SVM experiments wareied out using the
libSVM implementation (Chang and Lin, 2004) and all the algorithms ran with a likerael. The

2. It should be emphasized that this tuningdivas actually chosen in hindsight across the interval [0.1,10] with no
cross-validation.
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RCV1

Algorithm  zero-one loss  uniform H-loss A-loss

PERC 0.702(+0.045 1.196(+0.127) 1.695+0.182)
H-PERC  0.655+0.040) 1.224(+0.114) 1.861(+0.172)
S-RLS 0.559+0.005 0.981(+0.020) 1.413(+0.033
SH-RLS 0.456(+0.010) 0.743(+0.026) 1.086(+0.036)
SVM 0.482(+0.009) 0.790(+0.023) 1.173(+0.051)
H-SVM 0.440(+0.008) 0.712(+0.021) 1.050(+0.027)

OHSUMED

Algorithm  zero-one loss  uniform H-loss  A-loss

PERC 0.899(+£0.024) 1.938+0.219) 2.639+0.226)
H-PERC  0.846(+0.024) 1.560(+0.155 2.528+0.251)
S-RLS 0.873(£0.004) 1.814(+0.024) 2.627(+0.027)
SH-RLS 0.769+0.004) 1.200(+0.007) 1.957(+0.011)
SVM 0.784(+0.003) 1.206(+0.003) 1.872(+0.005)
H-SVM 0.759+0.002) 1.170(+0.005 1.910(+0.007)

Table 1. Experimental results on two hierarchical text classification tas#srwarious loss func-
tions. We report average test errors along with standard deviationgi@ngheses). In
bold are the best performance figures among the incremental algorithrirectathental
algorithms were run for one epoch over the training data).

performance of these algorithms was evaluated against three diffessnhleasures (see Table 1).
The first two losses are the zero-one loss and the H-loss with costooeetfi set to 1 (denoted by
uniform H-loss in Table 1). The third loss is the symmetric difference ladsgs in Table 1).

A few remarks on Table 1 are in order at this point. As expecategyM performs best, but the
good performance afvm (flat support vector machine) is surprising. As for the incremental algo-
rithms, sH-RLS performs better than its flat variaet-RLS, and far better than both-PERCand
PERC In addition, and perhaps surprisingly, after a single epoch of tramigLs performs gen-
erally better tharsvm and comes reasonably close to the performanee %M. Finally, note that
the running times of botB-RLS andsH-RLS scale quadratically in the number of stored instances,
whereas the running time of Perceptrons scales only linearly. Thusuak the performance ben-
efit has to be traded-off against computational cost.

To give an idea of how flat and hierarchical algorithms compare in termsnoiimg times, we
mention that hierarchical algorithms turned out to be roughly four times féstarthe correspond-
ing flat algorithms running on the same data sets.

The (uniform) H-loss does not provide any information on the distributiomistakes across
the different hierarchy levels. Therefore, we counted the “H-loss k@stamade at each level,
distinguishing between false positive (FP) and false negative (FN) méstédoe an exampléx, v)
and lety be the guessed multilabel. Then nadeakes an H-loss mistake ¢r,v) if

Vi#ViAYj=Vvj=1,]jeANC().
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RCV1
Depth H-PERC SHRLS H-SVM
0 FP 4144+2431) 1449479) 1769+163
FN 269Q0+851) 2436+112) 25134148
1 FP 6769+2509 1361(+108) 1317+81)
FN 7961+838  8135+476) 7260 +450)
5 FP 1161+261) 413+32) 380(+28)
FN 1513+833 937(+51) 624(+23)
3 FP  161+314) 14(+16) 20(+26)
FN 88(+44) 115(+31) 94(+24)
OHSUMED
Depth H-PERC SHRLS H-SVM
0 FP  7916+2638 3192+88) 3062 +60)
FN 12639+1418 12888+64) 12587+49)
1 FP  1816+730) 828+14) 839+11)
FN  1606+373 15944+33) 1542+25)
5 FP 8§+20) 30(+6) 37(£7)
FN 86(+31) 54(+4) 55(+2)
3 FP 1q+5) 2(+1) 3(+1)
FN 16(+11) 13(+3) 14(+1)
4 FP 3+2) 1(+1) 4(+1)
FN 5(+6) 1(+1) 2(+1)

Table 2: Distribution across the hierarchy levels of false positive (FP¥aled negative (FN) H-
loss mistakes on the two hierarchical text classification tasks RCV1 and ®EHSUWe
report the average number of mistakes at each level of the hierardsywith standard
deviation in parentheses (recall that we made 5 experiments on diff@laatda the two

data set).
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Thus, nodeé makes a false positive mistake if
Yi=1AVvi=0A¥j=vVj=1 j€ANC(i)

and makes a false negative mistake if
Vi=0AVvi=1AYj=vVvj=1j€ANC(i).

Table 2 shows the H-loss mistake distribution for RCV1 and OHSUMED oveatuby levels.

The average values contained in Table 2 are also plotted in Figure 4. Asicd comparison
reveals the close similarity between the distributions obtainesiHbrLs andH-svM, whereas the
behavior ofH-PERCIoOKS quite different.

9. Conclusions, Ongoing Research, and Open Problems

We have introducedi-RLS, a new on-line algorithm for hierarchical classification that maintains
and updates regularized least-squares estimators on the nodes of@gxdine linear-threshold
classifications, obtained from the estimators, are combined to producda sieigrchical multil-
abel through a simple top-down evaluation model.

Our algorithm is suitable for learning multilabels that include multiple and/or parttakpan
the taxonomy. To properly evaluate hierarchical classifiers in this framkewe have defined the
H-loss, a new hierarchical loss function, with cost coefficients posadsgciated to each taxonomy
node—see Remark 5.

Our main theoretical result states that, on any sequence of instanceapbkative H-loss of
H-RLS is never much bigger than the cumulative H-loss of a reference classifiedt tith the pa-
rameters of the stochastic process generating the multilabels for the giyeense of instances.
Our theoretical findings are complemented by experiments on the hierdrdagsification of tex-
tual data, in which we compare the performance of a sparsified variankraef to that of standard
batch and incremental learners, such as simple hierarchical versitesRérceptron algorithm and
the SVM. The experiments show that one epoch of training of our algoritlemdagh to achieve a
performance close to that of the hierarchical SVM.

Our investigation leaves a number of open questions. The first opetigquissthe derivation
of a hierarchical algorithm especially designed to minimize the H-loss. Weuarently exploring
efficient ways to approximate the Bayes optimal classifier for the H-lossngiur data model.
Since such optimal classifier turns out to be remarkably different froninigr@rchical classifiers
produced byH-RLS, a related theoretical question is to prove any reasonable bound orgtie¢ re
with respect to the Bayes optimal classifier.

Additional open problems concern the data model. First, it would be usefubttfy the label-
generating model to introduce dependencies among the children’s labédscolild allow a better
fitting of data sets when the rate of multiple paths in multilabels is limited. Second, fumttesti-
gation, both of empirical and theoretical nature, might be devoted to thea$sising regularized
logistic regressors at each node.

Acknowledgments

The authors would like to thank Michael Collins for his timely editorial work, @&} a&s the anony-
mous reviewers, whose comments and suggestions greatly improved teetaties of this paper.

49



CESA-BIANCHI ET AL.

H-PERC mistake distribution on RCV1 H-PERC mistake distribution on OHSUMED
FP FP
12000 + FN M 4 12000 FN 4
10000 - 1 10000 1
«» 8000 - 1 » 8000 1
[} [}
X X
8 8
O 6000 - 1 o 6000 1
= =
4000 1 4000 1
2000 1 2000 1
0 . 0 . . .
3 2 3 4
Level
@) (b)
SH-RLS mistake distribution on RCV1 SH-RLS mistake distribution on OHSUMED
FP FP
12000 [ FN - 12000 [ FN -
10000 - 1 10000 - 1
«» 8000 1 «» 8000 - 1
[] (]
4 4
& &
% 6000 1 B 6000 - 1
= =
4000 1 4000 1
2000 1 2000 1
0 . 0 " . .
3 2 3 4
Level
(©) (d)
H-SVM mistake distribution on RCV1 H-SVM mistake distribution on OHSUMED
FP FP
12000 - FN 1 12000 FN 1
10000 - 1 10000 1
«» 8000 - 1 «» 8000 1
(] (]
X X
8 8
5 6000 - 1 % 6000 1
= =
4000 1 4000 1
2000 1
0 " . .
2 3 4
Level Level

(e) ®

Figure 4: Plot of the average values contained in Table 2 for the H-losskaidtstribution over
hierarchy levels.
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Appendix A

This appendix contains the proofs of Lemmas 7, 8, and 9 mentioned in the miiff egughout
this appendipA denotes the positive definite mattix- S7QST , While r denotes the quadratic form

X (A+x%x ) 1x.

Proof of Lemma 7
We have

Bir = ul(I+xx)(A+xx) %
= U (A+x ) X+ Aigr
< \/XtT(A-i- XX ) 2%+ [Dig|r
< VA
where the first inequality follows from" z < max, _1 U z= ||Z||, with z= (A+xx ) "*x, and the
second inequality follows from' (A+ xx")~2x < x" (A+xx")~1x, holding for anyx and for any

positive definite matriXA whose eigenvalues are not smaller than 1 (notice that this condition makes
(A+xx")"1 — (A+xx")~? a positive semidefinite matrix). O

Proof of Lemma 8

Setting for brevityH = §'oA~1x anda = x A"'x we can write

-1 -1
1Zel® = K (A+xx) SeSo(A+xx) x
A—lxtXtTA—l A—lxtXtTA—l
— T A1—> T <A1_>
x ( Lo A ) S50 Trx Aty ) ™
(by the Sherman-Morrison formula—e.g., Horn and Johnson, 1985, 6ha
a a .t a’

H'H H+ ———>H'H

= H'H-— ———H
1+a 1+a (1+a)?

HTH
(1+a)?
% A71S oS '0A %
(1+a)?
X{TA_l/ZA_l/ZS,QSTQA_l/ZA_l/ZXt
(1+a)?
[[AY2% || HA‘”ZS,QSTQA‘”ZH % A2]|
(1+a)?
a

-t s

N
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whereHA‘l/ S8 A Y ZH is the spectral norm of matri&—/25 oS/, A"%/2,
We continue by bounding the two factors in (16). Observe that

a < a
(1+a)2 ~ 1+a

=r

where the equality derives again from the Sherman-Morrison formuldarfas the second factor
is concerned, we just note that the two matriées/? and S=QSTQ have the same eigenvectors.

Furthermore, ifAj is an eigenvalue (ﬁQST, ,then ¥,/1+ )| is an eigenvalue oA~/2, Therefore

HA 125 6SIA™ 1/2H = max———

1
X — <1
/1 VI+EA T

Substituting into (16) yield§Z; H2 <r, as desired. O

Proof of Lemma 9

From a simple Kuhn-Tucker analy3i follows that if & is larger than 0 at the maximum, then
takes some constant valfe> 0 (independent of). Hence the maximizing vectdgy,ay, .. .,an)
has components which can take only two possible valaes:0 ora; = 3. Let us denote bl the
number oft : & = 3. At the maximum we can write

n
M:Za: > a+ ) a=BN'
= t:a—0t+

i.e.,p=M/NT. Hence, at the maximum

ieq/at - Z e /a4 Z e d/a

t tra =P t:a=0*"
- z e a/B
tra=p
_ N+e—a/[3
Nte ® Nt /M )

SinceNT is not determined by this argument, we can write

_M

n n
max{ZeO‘/at : alzo,...,anzo,zlat:M} < maxxe” ax/M _ -
t= t=

thereby concluding the proof. O

3. The functionf (a) = e %/2is not defined whea = 0. However, it is clearly possible to exteridby definingf (0) = 0,
preserving (one-sided) differentiability.
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