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Abstract
We study the problem of classifying data in a given taxonomy when classifications associated

with multiple and/or partial paths are allowed. We introduce a new algorithm that incrementally
learns a linear-threshold classifier for each node of the taxonomy. A hierarchical classification is
obtained by evaluating the trained node classifiers in a top-down fashion. To evaluate classifiers
in our multipath framework, we define a new hierarchical lossfunction, the H-loss, capturing the
intuition that whenever a classification mistake is made on anode of the taxonomy, then no loss
should be charged for any additional mistake occurring in the subtree of that node.

Making no assumptions on the mechanism generating the data instances, and assuming a linear
noise model for the labels, we bound the H-loss of our on-linealgorithm in terms of the H-loss of
a reference classifier knowing the true parameters of the label-generating process. We show that,
in expectation, the excess cumulative H-loss grows at most logarithmically in the length of the data
sequence. Furthermore, our analysis reveals the precise dependence of the rate of convergence on
the eigenstructure of the data each node observes.

Our theoretical results are complemented by a number of experiments on texual corpora. In
these experiments we show that, after only one epoch of training, our algorithm performs much
better than Perceptron-based hierarchical classifiers, and reasonably close to a hierarchical support
vector machine.

Keywords: incremental algorithms, online learning, hierarchical classification, second order per-
ceptron, support vector machines, regret bound, loss function

1. Introduction

In this paper, we investigate the problem of classifying data based on the knowledge that the graph of
dependencies between the classes is a tree forest. The trees in this forest are collectively interpreted
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as a taxonomy. That is, we assume that every data instance is labelled with a (possibly empty) set
of class nodes and, whenever an instance is labelled with a certain nodei, then it is also labelled
with all the nodes on the path from the root of the tree wherei occurs down to nodei. A distinctive
feature of our framework is that we also allow multiple-path labellings (instances can be labelled
with nodes belonging to more than one path in the forest), and partial-path labellings (instances can
be labelled with nodes belonging to a path that does not end on a leaf).

We introduce a new algorithm that incrementally learns a linear-threshold classifier for each
node of the taxonomy. A hierarchical classification is then obtained by evaluating the node classi-
fiers in a top-down fashion, so that the final labelling is consistent with the taxonomy.

The problem of hierarchical classification, especially of textual information, has been exten-
sively investigated in past years (see, e.g., Dumais and Chen, 2000; Dekel et al., 2004, 2005; Gran-
itzer, 2003; Hofmann et al., 2003; Koller and Sahami, 1997; McCallum et al.,1998; Mladenic, 1998;
Ruiz and Srinivasan, 2002; Sun and Lim, 2001, and references therein). The on-line approach to
hierarchical classification, which we analyze here, seems well suited when dealing with scenarios in
which new data are produced frequently and in large amounts (e.g., data produced by newsfeeds—
considered in this paper, or the speech data considered in Dekel et al., 2005).

An important ingredient in a hierarchical classification problem is the loss function used to
evaluate the classifier’s performance. In pattern classification the zero-one loss is traditionally used.
In a hierarchical setting this loss would simply count one mistake each time, on a given data instance,
the set of class labels output by the hierarchical classifier is not perfectly identical to the set of true
labels associated to that instance. Loss functions able to reflect the taxonomy structure have been
proposed in the past (e.g., Dekel et al., 2004; Hofmann et al., 2003; Sunand Lim, 2001), but none
of these losses works well in our framework where multiple and partial pathsare allowed. In this
paper we define a new loss function, the H-loss (hierarchical loss), whose simple definition captures
the following intuition: “if a mistake is made at nodei of the taxonomy, then further mistakes
made in the subtree rooted ati are unimportant”. In other words, we do not require the algorithm
be able to make fine-grained distinctions on tasks where it is unable to make coarse-grained ones.
For example, if an algorithm failed to label a document with the classSPORTS, then the algorithm
should not be charged more loss because it also failed to label the same document with the subclass
SOCCERand the sub-subclassCHAMPIONS LEAGUE.

We bound the theoretical performance of our algorithm using the H-loss. In our analysis, we
make no assumptions on the mechanism generating the data instances; that is, we bound the H-loss
of the algorithm for any arbitrary sequence of data instances. The hierarchical labellings associated
to the instances, instead, are assumed to be independently generated according to a parametric
stochastic process defined on the taxonomy.

Following a standard approach in the analysis of on-line algorithms, we measure the predictive
performance using the cumulative regret, a quantity measuring the difference between the cumula-
tive H-loss of the classifiers incrementally generated by the on-line algorithmduring its run and the
cumulative H-loss of a fixed reference classifier. Our main theoretical result is a bound on the regret
of our hierarchical learning algorithm with respect to a reference hierarchical classifier based on the
true parameters of the label-generating process. More specifically, we bound the contribution to the
cumulative regret of each node classifier in terms of quantities related to the position of the node
in the taxonomy and the data process parameters. This interaction between node position and data
process parameters captures the hierarchical nature of the classification problem since the contribu-
tion of each node to the overall cumulative regret decreases as we proceed downward from a root
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in the forest. In general, the overall cumulative regret is seen to grow atmost logarithmically in the
lengthT of the data sequence.

From the theoretical point of view, the novelty of this line of research is twofold:

1. The use of hierarchically trained linear-threshold classifiers is common toseveral of the pre-
vious approaches to hierarchical classification (e.g., Dumais and Chen, 2000; Dekel et al.,
2004, 2005; Granitzer, 2003; Hofmann et al., 2003; Koller and Sahami, 1997; McCallum
et al., 1998; Mladenic, 1998; Ruiz and Srinivasan, 2002; Sun and Lim, 2001). However, to
our knowledge, this research is the first one to provide a rigorous performance analysis of hi-
erarchical classification algorithms in the presence of multiple and partial pathclassifications.

2. The core of our analysis is a local cumulative regret bound showing that the instantaneous
regret of each node classifier vanishes at a rate 1/T. The precise dependence of the rate
of convergence on the eigenstructure of the data each node observesis a major contribution
of this paper. This turns out to be similar in spirit to early (and classical) workin least-
squares linear regression (e.g., Lai et al., 1979; Lai and Wei, 1982).But unlike these previous
investigations, our analysis is not asymptotic in nature and studies a specific classification
setting, instead of a regression one.

To support our theoretical findings we also describe some experiments concerning a more practical
variant of the algorithm we actually analyze. These experiments use large corpora of textual data
on which we test different batch and incremental classifiers. The experiments show that our on-line
algorithm performs significantly better than Perceptron-based hierarchical classifiers. Furthermore,
after only one epoch of training, our algorithm achieves a performance close to that of a hierar-
chical support vector machine, the popular batch learning algorithm for which, to the best of our
knowledge, no theoretical performance bounds are known in hierarchical classification frameworks.

The paper is organized as follows. Section 2 defines the notation used throughout the paper. In
Section 3 we introduce the H-loss function. Our hierarchical algorithm is described in Section 4.
In Section 5 and 6 we define the data model, the learning model, and our theoretical performance
measure: the cumulative regret. The analysis of our algorithm is carried out in Section 7, while in
Section 8 we report on the experiments. Finally, in Section 9 we summarize our results and mention
a few open questions.

2. Notation

We assume data elements are encoded as unit-norm vectorsx ∈ R
d, which we callinstances. A

multilabel for an instancex is any subset of the set{1, . . . ,N} of all labels, including the empty
set. We represent the multilabel ofx with a vectorv = (v1, . . . ,vN) ∈ {0,1}N, wherei ∈ {1, . . . ,N}
belongs to the multilabel ofx if and only if vi = 1.

A taxonomyG is a forest whose trees are defined over the set of labels. A multilabelv∈ {0,1}N

is said torespecta taxonomyG if and only if v is the union of one or more paths inG, where each
path starts from a root but need not terminate on a leaf, see Figure 1. We assume the data-generating
mechanism produces examples(x,v) such thatv respects some fixed underlying taxonomyG with
N nodes (see Section 5). The set of roots inG is denoted byROOT(G). We usePAR(i) to denote the
unique parent of nodei, ANC(i) to denote the set of ancestors ofi, SUB(i) to denote the set of nodes
in the subtree rooted ati (including i), andCHILD(i) to denote the set of children of nodei.
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Figure 1: A forest made of two disjoint trees. The nodes are tagged with thename of the la-
bels, so that in this caseN = 11. According to our definition, the multilabelv =
(1,1,1,0,0,1,0,1,0,1,0) respects this taxonomy (since it is the union of paths 1→ 2,
1 → 3 and 6→ 8 → 10), while the multilabelv = (1,1,0,1,0,0,0,0,0,0,0) does not,
since 1→ 2 → 4 is not a path in the forest. Associated with each nodei is a {0,1}-
valued random variableVi distributed according to a conditional probability function
P(Vi |VPAR(i), x) —see Section 5.

We denote by{φ} the Bernoulli random variable which is 1 if and only if predicateφ is true. In
our analysis, we repeatedly use simple facts such as{φ∨ψ} = {φ}+ {ψ∧¬φ} ≤ {φ}+ {ψ} and
{φ} = {φ∧ψ}+{φ∧¬ψ} ≤ {φ∧ψ}+{¬ψ}, whereψ is another predicate.

3. The H-Loss

Two very simple loss functions, measuring the discrepancy between the prediction multilabel̂y =
(ŷ1, . . . , ŷN) and the true multilabelv = (v1, . . . ,vN), are the zero-one loss̀0/1(ŷ,v) = {∃i : ŷi 6= vi}
and the symmetric difference loss`∆(ŷ,v) = {ŷ1 6= v1}+ . . .+{ŷN 6= vN}. Note that the definition of
these losses is based on the set{1, . . . ,N} of labels without any additional structure. A loss function
that takes into account a taxonomical structure defined over the set of labels is

`H(ŷ,v) =
N

∑
i=1

{ŷi 6= vi ∧ ŷ j = v j , j ∈ ANC(i)} .

This loss, which we call H-loss (hierarchical loss), can also be definedas follows: all paths inG
from a root down to a leaf are examined and, whenever a nodei is encountered such thatŷi 6= vi ,
then 1 is added to the loss, while all the loss contributions in the subtree rooted at i are discarded.
Note that, with this definition,̀0/1 ≤ `H ≤ `∆. A graphical representation of the H-loss and related
concepts is given in Figure 2.

In the next lemma we show an important (and intuitive) property of the H-loss:when the mul-
tilabel v to be predicted respects a taxonomyG then there is no loss of generality in restricting to
predictions which respectG. Formally, given a multilabel̂y∈ {0,1}N, we define theG-truncation
of ŷ as the multilabel̂y′ = (ŷ′1, . . . , ŷ

′
N) ∈ {0,1}N where, for eachi = 1, . . . ,N, ŷ′i = 1 if and only if

ŷi = 1 andŷ j = 1 for all j ∈ ANC(i). Note that theG-truncation of any multilabel always respects
G. The next lemma states that ifv respectsG, then`H(ŷ,v) cannot be smaller thaǹH(ŷ′,v).
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(a) (b) (c) (d)

Figure 2: A one-tree forest (repeated four times). Each node corresponds to a class in the taxonomy
G, hence in this caseN = 12. Gray nodes are included in the multilabel under consid-
eration, white nodes are not. (a) A generic multilabel whichdoes notrespectG; (b) its
G-truncation. (c) A second multilabel that respectsG. (d) Superposition of multilabel (b)
on multilabel (c): Only the checked nodes contribute to the H-loss between (b) and (c).
Hence the H-loss between multilabel (b) and multilabel (c) is 3. Here the zero-one loss
between (b) and (c) is 1, while the symmetric difference loss equals 4.

Lemma 1 Let G be a taxonomy, v, ŷ∈ {0,1}N be two multilabels such that v respects G, andŷ′ be
the G-truncation of̂y. Then

`H(ŷ′,v) ≤ `H(ŷ,v) .

Proof. Since`H(ŷ′,v) = ∑N
i=1{ŷ′i 6= vi ∧ ŷ′j = v j , j ∈ ANC(i)} and`H(ŷ,v) = ∑N

i=1{ŷi 6= vi ∧ ŷ j =
v j , j ∈ ANC(i)}, it suffices to show that, for eachi = 1, . . . ,N, ŷ′i 6= vi andŷ′j = v j for all j ∈ ANC(i)
implies ŷi 6= vi andŷ j = v j for all j ∈ ANC(i).

Pick somei and supposêy′i 6= vi andŷ′j = v j for all j ∈ ANC(i). Now supposêy′j = 0 (and thus
v j = 0) for somej ∈ ANC(i). Thenvi = 0 sincev respectsG. But this implieŝy′i = 1, contradicting
the fact that theG-truncation̂y′ respectsG. Therefore, it must be the case thatŷ′j = v j = 1 for all
j ∈ ANC(i). Hence theG-truncation of̂y left each nodej ∈ ANC(i) unchanged, implyinĝy j = v j for
all j ∈ ANC(i). But, since theG-truncation of̂ydoes not change the value of a nodei whose ancestors
j are such that̂y j = 1, this also implieŝyi = ŷ′i . Thereforêyi 6= vi and the proof is concluded. �

4. A New Hierarchical Learning Algorithm

In this section we describe our on-line algorithm for hierarchical classification. Its theoretical per-
formance is analyzed in Section 7.

The on-line learning model we consider is the following. In the generic time stept = 1,2, . . .
instancext is revealed to the algorithm which outputs the predictionŷt = (ŷ1,t , . . . , ŷN,t) ∈ {0,1}N.
This is viewed as a guess for the multilabelvt = (v1,t ,v2,t , . . . ,vN,t) associated with the current
instancext . After each prediction, the algorithm observes the true multilabelvt and adjusts its
parameters for the next prediction.

Our algorithm computes ˆy1,t , . . . , ŷN,t usingN linear-threshold classifiers, one for each node in
the taxonomy. These node classifiers are evaluated, starting from each root, in the following top-
down fashion: the root is labelled by evaluating its node classifier; if a nodehas been labelled 1,
then each child is labelled by evaluating its node classifier. On the other hand,if a node is labelled
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Algorithm H-RLS.
Initialization: Weight vectorswi,1 = (0, . . . ,0), i = 1, . . . ,N.

For t = 1,2, . . . do

1. Observe instancext ∈ {x∈ R
d : ||x|| = 1};

2. For eachi = 1, . . . ,N compute predictions ˆyi,t ∈ {0,1} as follows:

ŷi,t =






{w>
i,txt ≥ 0} if i is a root node,

{w>
i,txt ≥ 0} if i is not a root node and ˆy j,t = 1 for j = PAR(i),

0 if i is not a root node and ˆy j,t = 0 for j = PAR(i),

where

wi,t = (I +Si,Q(i,t−1)S
>
i,Q(i,t−1) +xtx

>
t )−1×

×Si,Q(i,t−1) (vi,i1,vi,i2, . . . ,vi,iQ(i,t−1)
)>

Si,Q(i,t−1) = [xi1 xi2 . . . xiQ(i,t−1)
] i = 1, . . . ,N.

3. Observe multilabelvt and update weights.

Figure 3: The hierarchical learning algorithmH-RLS.

0 thenall of its descendants are labelled 0. Note that this evaluation scheme can only generate
multilabels that respect the underlying taxonomy.

Let w1, . . . ,wN be the weight vectors defining the linear-threshold classifiers used by thealgo-
rithm. A feature of the learning process, which is also important for its theoretical analysis, is that
the classifier at nodei is only trained on the examples that are positive for its parent node. In other
words,wi is considered for update only on those instancesxt such thatvPAR(i),t = 1.

Let Q(i, t) denote the number of times theparentof nodei observes a positive label up to time
t, i.e., Q(i, t) = |{1 ≤ s≤ t : vPAR(i),s = 1}|. The weight vectorwi,t stored at timet in nodei is a
(conditional) regularized least squares estimator given by

wi,t =
(

I +Si,Q(i,t−1)S
>
i,Q(i,t−1) +xtx

>
t

)−1
Si,Q(i,t−1) (vi,i1, . . . ,vi,iQ(i,t−1)

)>, (1)

whereI is thed×d identity matrix,Si,Q(i,t−1) is thed×Q(i, t −1) matrix whose columns are the
instancesxi1, . . . ,xiQ(i,t−1)

, and(vi,i1, . . . ,vi,iQ(i,t−1)
)> is theQ(i, t −1)-dimensional (column) vector of

the corresponding labels observed by nodei.
The estimator in (1) is a slight variant of the regularized least squares estimator for classifi-

cation (Cesa-Bianchi et al., 2002; Rifkin et al., 2003) where we include the current instancext in
the computation ofwi,t (see, e.g., Azoury and Warmuth, 2001; Vovk, 2001, for analyses of simi-
lar algorithms in different contexts). Efficient incremental computations of the inverse matrix and
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dual variable formulations of the algorithm are extensively discussed by Cesa-Bianchi et al. (2002)
and Rifkin et al. (2003).

The pseudocode of our algorithm, which we callH-RLS (Hierarchical Regularized Least Squares)
is given in Figure 3.

5. A Stochastic Model for Generating Labels

While no assumptions are made on the mechanism generating the sequencex1,x2, . . . of instances,
we base our analysis on the following stochastic model for generating the multilabel associated to
an instancext .

A probability distribution fG over the set of multilabels is associated to a taxonomyG as fol-
lows. Each nodei of G is tagged with a{0,1}-valued random variableVi distributed according to
a conditional probability functionP(Vi |VPAR(i), x). To model the dependency between the labels of
nodesi and j = PAR(i) we assume

P(Vi = 1 |Vj = 0, x) = 0 (2)

for all nonroot nodesi and all instancesx. For example, in the taxonomy of Figure 1 we have
P(V4 = 1 |V3 = 0, x) = 0 for all x∈ R

d. The quantity

fG(v | x) =
N

∏
i=1

P(Vi = vi |Vj = v j , j = PAR(i), x)

thus defines a joint probability distribution onV1, . . . ,VN conditioned onx being the current instance.
This joint distribution puts zero probability on all multilabelsv∈ {0,1}N which do not respectG.

Through fG we specify an i.i.d. process{V1,V2, . . .} as follows. We assume that an arbitrary
and unknown sequence of instance vectorsx1,x2, . . . is fixed in advance, where‖xt‖ = 1 for all
t. The multilabelVt is distributed according to the joint distributionfG(· | xt). We call each pair
(xt ,vt), wherevt is a realization ofVt , anexample.

Let us now introduce a parametric model forfG. With each nodei in the taxonomy, we associate
a unit-norm weight vectorui ∈ R

d. Then, we define the conditional probabilities for a nonroot node
i with parentj as follows:

P(Vi = 1 |Vj = 1, x) =
1+u>i x

2
. (3)

If i is a root node, the above simplifies to

P(Vi = 1 | x) =
1+u>i x

2
.

Our choice of a linear model for Bernoulli random variables, as opposed to a more standard log-
linear model, is mainly motivated by our intention of proving regret bounds with no assumptions on
the way the sequence of instances is generated. Indeed, we are not aware of any analysis of logistic
regression holding in a similar classification setup.

Note also that, in this model, the labels of the children of any given node are independent ran-
dom variables. This is motivated by the fact that, unlike previous investigations, we are expliciteply
modelling labellings involving multiple paths. A more sophisticated analysis could introduce arbi-
trary negative correlations among the labels of the children nodes. In this paper, however, we do not
follow this route.
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6. Regret and the Reference Classifier

Assuming the stochastic model described in Section 5, we compare the performance of our algo-
rithm to the performance of the fixed hierarchical classifier built on the trueparametersu1, . . . ,uN

governing the label-generating process. This reference hierarchical classifier has the same form as
the classifiers generated byH-RLS. More precisely, let the multilabely= (y1, . . . ,yN) for an instance
x be computed as follows:

yi =






{u>i x≥ 0} if i is a root node,

{u>i x≥ 0} if i is not a root andy j = 1 for j = PAR(i),

0 if i is not a root andy j = 0 for j = PAR(i).

(4)

To evaluate our algorithm against the reference hierarchical classifierdefined in (4), we use the
cumulative regret. Given any loss function` (such as one of the three defined in Section 3), we
define the (instantaneous)regretof a classifier assigning labelŷt to instancext as

E`(ŷt ,Vt)−E`(yt ,Vt) ,

whereyt is the multilabel assigned by classifier (4), and the expectation is with respectthe random
draw ofVt (as specified in Section 5). We measure the performance ofH-RLS through its cumulative
regret on a sequence ofT examples:

T

∑
t=1

(
E`(ŷt ,Vt)−E`(yt ,Vt)

)
. (5)

The regret bound we prove in Section 7 holds when` = `H , and is shown to depend on the interaction
between the spectral structure of the data generating process and the structure of the taxonomy on
which the process is applied.

7. Analysis

We now prove a bound on the cumulative regret ofH-RLS with respect to the H-loss functioǹH .
Our analysis hinges on proving that for any nodei, the estimated marginw>

i,txt is an asymptotically
unbiased estimator of the true marginu>i xt , and then on using known large deviation arguments to
obtain the stated bound. For this purpose, we bound the variance of the margin estimator at each
node and prove a bound on the rate at which the bias vanishes.

Theorem 2 Consider a taxonomy G with N nodes. Pick any set of model parameters u1, . . . ,uN ∈
R

d such that‖ui‖= 1 for i = 1, . . . ,N, and pick any sequence of instance vectors x1,x2, . . .∈R
d such

that ‖xt‖ = 1 for all t. Then the cumulative regret of theH-RLS algorithm (described in Figure 3)
satisfies, for each T≥ 1,

T

∑
t=1

(
E`H(ŷt ,Vt)−E`H(yt ,Vt)

)
≤ 16(1+1/e)

N

∑
i=1

Ci

∆2
i

E

[
d

∑
j=1

log(1+λi, j)

]
,

where
∆i,t = u>i xt , ∆2

i = min
t=1,...,T

∆2
i,t , Ci = |SUB(i)|,

λi,1, . . . ,λi,d are the eigenvalues of matrix Si,Q(i,T) S>i,Q(i,T), and e is the base of natural logarithms.
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Before delving into the proof, it is worth making a few comments.

Remark 3 Since H-RLS can be cast in dual variables, we can run it in any reproducing kernel
Hilbert space (e.g., Schölkopf and Smola, 2002). The regret bound contained in Theorem 2 remains
true once we observe that the nonzero eigenvalues ofSi,Q(i,T) S>i,Q(i,T) coincide with the nonzero

eigenvalues of the Gram matrixS>i,Q(i,T) Si,Q(i,T), and we replace the sum over all input dimensions

d with the sum over the (at mostT) nonzero eigenvalues ofS>i,Q(i,T) Si,Q(i,T). We refer the reader to
the work by Cesa-Bianchi et al. (2002) for additional details.

Remark 4 It is important to emphasize the interplay between the taxonomy structure and the
process generating the examples, as expressed by the above regret bound. Recall that we de-
note byλi,1, . . . ,λi,d the eigenvalues of matrixSi,Q(i,T) S>i,Q(i,T). From the previous remark we have

∑d
j=1 λi, j = trace

(
S>i,Q(i,T) Si,Q(i,T)

)
= Q(i,T) since‖xt‖ = 1 ∀t, and

d

∑
j=1

log(1+λi, j) ≤ max

{
d

∑
j=1

log(1+µj) :
d

∑
j=1

µj = Q(i,T)

}
= d log

(
1+

Q(i,T)

d

)
.

Moreover,Q(i,T) is the sum ofT Bernoulli random variables, where thet-th variable takes value
1 when the parent of thei-th node in the taxonomy observes labelVPAR(i),t = 1 at time t. The
probability of this event clearly equals

∏
j∈ANC(i)

(
1+∆ j,t

2

)
.

Thus

E

[
d

∑
j=1

log(1+λi, j)

]
≤ dE

[
log

(
1+

Q(i,T)

d

)]
(6)

≤ d log

(
1+

EQ(i,T)

d

)

(from Jensen’s inequality)

= d log



1+
∑T

t=1 ∏ j∈ANC(i)

(
1+∆ j,t

2

)

d



 . (7)

Bound (6) is obviously a logT cumulative regret bound, sinceQ(i,T) ≤ T anyway. It is important,
however, to see how the regret bound depends on the taxonomy structure. Let us focus on (7). Ifi
is a root node thenEQ(i,T) = Q(i,T) = T (since a root node observes all labels). As we descend
along a path,EQ(i,T) tends to decrease with a rate depending on the margins achieved by the
ancestors of nodei. Bound (7) thus makes explicit the contribution of nodei to the overall regret.
If i is a root node, then its contribution to the overall regret is roughly logT. On the other hand, the
deeper is nodei within the taxonomy the smaller is the contribution of nodei to the overall regret.
A very deep leaf node observes a possibly small subset of the instances, but it is also required to
produce only a small subset of linear-threshold predictions, i.e., the associated weight vectorwi,t

might be an unreliable estimator, but is also used less often. Therefore, thecontribution of leaf node
i is smaller than logT because the hierarchical nature of the problem (as expressed by the H-loss)
lowers the relative importance of the accuracy of estimatorwi,t when computing the overall regret.
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Remark 5 Nothing prevents us from generalizing the H-loss by associating fixed cost coefficients
to each taxonomy node:

`H(ŷ,v) =
N

∑
i=1

ci {ŷi 6= vi ∧ ŷ j = v j , j ∈ ANC(i)} ,

where the cost coefficientsci are positive real numbers. It is straightforward to see that with this
definition of H-loss, the statement of Theorem 2 still holds, once we generalize the regret factors
Ci asCi = ∑k∈SUB(i) ck. Note that this would involve changes neither in our learning algorithm nor
in our reference predictor. In fact, we are measuring regret againsta reference predictor that is not
Bayes optimal for the data model at hand. This is not immediate to see when the cost coefficientsci

defining the H-loss are all set to 1 but, as we mentioned, it is generally evinced by the fact that both
the reference predictor (4) and our learning algorithm do not depend on theci .

Remark 6 From the proof of Theorem 2 below, the reader can see that there are several ways
one can improve the bounds. In fact, we made no special effort to minimize themain constant
16(1+ 1/e) and, in general, we disregarded quite a lot of constant factors throughout. Moreover,
though we decided to cast the bounds in terms of the worst-case margin∆2

i = mint=1,...,T ∆2
i,t , it is

straighforward to modify the proof to obtain a bound depending on some sort of average squared
margin. Since this sharper bound would hide the clean dependence on the eigenstructure of the data,
we decided not to pursue this optimization any further.

We are now ready to prove Theorem 2.

Proof of Theorem 2.We fix a nodei and upper bound its contribution to the total instantaneous
regret. Since for any four predicatesφ,ψ,χ,ζ we have{φ∧ψ}−{χ∧ζ} ≤ {φ∧ψ∧¬χ}+{φ∧ψ∧
χ∧¬ζ}, we see that

{ŷi,t 6= Vi,t , ∀ j ∈ ANC(i) : ŷ j,t = Vj,t}−{yi,t 6= Vi,t , ∀ j ∈ ANC(i) : y j,t = Vj,t}
≤
{

ŷi,t 6= Vi,t , yi,t = Vi,t , ∀ j ∈ ANC(i) : ŷ j,t = Vj,t
}

(8)

+
{

ŷi,t 6= Vi,t , yi,t 6= Vi,t , ∀ j ∈ ANC(i) : ŷ j,t = Vj,t , ∃ j ∈ ANC(i) : y j,t 6= Vj,t
}

. (9)

We bound the two terms (8) and (9) separately. We can write:

(8) = {ŷi,t 6= Vi,t , yi,t = Vi,t , ∀ j ∈ ANC(i) : ŷ j,t = Vj,t = 1}
(sinceŷ j,t = Vj,t = 0 for some ancestorj implies ŷi,t = Vi,t = 0)

≤ {ŷi,t 6= yi,t , Ki,t} ,

where we have introduced the short-handKi,t = “∀ j ∈ ANC(i) : Vj,t = 1”. By the same token, we
have

(9) = {ŷi,t 6= Vi,t , yi,t 6= Vi,t , ∀ j ∈ ANC(i) : ŷ j,t = Vj,t = 1, ∃ j ∈ ANC(i) : y j,t 6= Vj,t}
= {ŷi,t 6= Vi,t , yi,t 6= Vi,t , ∀ j ∈ ANC(i) : ŷ j,t = Vj,t = 1, ∃ j ∈ ANC(i) : ŷ j,t 6= y j,t}
≤ {∃ j ∈ ANC(i) : ŷ j,t 6= y j,t , Ki,t}
≤ ∑

j∈ANC(i)

{ŷ j,t 6= y j,t , Ki,t}

≤ ∑
j∈ANC(i)

{ŷ j,t 6= y j,t , K j,t} ,
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where the last inequality holds becauseKi,t impliesK j,t for all j ∈ ANC(i). Using our bounds for (8)
and (9), and summing overi yields

`H(ŷt ,Vt)− `H(yt ,Vt)

=
N

∑
i=1

(
{ŷi,t 6= Vi,t , ∀ j ∈ ANC(i) : ŷ j,t = Vj,t}−{yi,t 6= Vi,t , ∀ j ∈ ANC(i) : y j,t = Vj,t}

)

≤
N

∑
i=1

∑
j∈ANC(i)∪{i}

{ŷ j,t 6= y j,t , K j,t}

=
N

∑
i=1

{ŷi,t 6= yi,t , Ki,t} ∑
j∈SUB(i)

1

=
N

∑
i=1

Ci {ŷi,t 6= yi,t , Ki,t} .

We then take expectations and sum overt:

T

∑
t=1

(
E`H(ŷt ,Vt)−E`H(yt ,Vt)

)
≤

T

∑
t=1

N

∑
i=1

Ci P(ŷi,t 6= yi,t , Ki,t)

=
N

∑
i=1

Ci

T

∑
t=1

P(ŷi,t 6= yi,t , Ki,t) . (10)

Equation (10) is a conveniently simple upper bound on the cumulative regret.This allows us to
focus on bounding from above the one-node cumulative expectation∑T

t=1P(ŷi,t 6= yi,t , Ki,t).
For brevity, in the rest of this proof we use the notations∆i,t = u>i xt (the target margin onxt)

and∆̂i,t = w>
i,txt (the algorithm margin onxt). As we said earlier, our argument centers on proving

that for any nodei, ∆̂i,t is an asymptotically unbiased estimator of∆i,t , and then on using known
large deviation techniques to obtain the stated bound. For this purpose, we need to study both the
conditional bias and the conditional variance of∆̂i,t .

Recall Figure 3. Since the sequencex1,x2, . . . is fixed, the multilabel vectorsVt are statisti-
cally independent. Also, for anyt = 1,2, . . . and for any nodei with parent j, the child’s labels
Vi,i1, . . . ,Vi,iQ(i,t−1)

are independent when conditioned on the parent’s labelsVj,1, . . . ,Vj,t−1. We use
the notation

Ei,t = E[ · |Vj,1, . . . ,Vj,t−1] .

By definition of our parametric model (3) we haveEi,t [(Vi,i1, . . . ,Vi,iQ(i,t−1)
)>] = S>i,Q(i,t−1)ui . Recall-

ing the definition (1) ofwi,t , this implies (for conciseness we writeQ instead ofQ(i, t −1))

Ei,t [∆̂i,t ] = u>i Si,QS>i,Q(I +Si,QS>i,Q +xtx
>
t )−1xt .

Note that

∆i,t = Ei,t [∆̂i,t ]+u>i (I +xtx
>
t )(I +Si,QS>i,Q +xtx

>
t )−1xt = Ei,t [∆̂i,t ]+Bi,t ,

whereBi,t = u>i (I + xtx>t )(I + Si,QS>i,Q + xtx>t )−1xt is the conditional bias ofwi,t . It is useful to
introduce the short-hand notation

r i,t = x>t (I +Si,QS>i,Q +xtx
>
t )−1xt .
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Also, in order to stress the dependence1 of r i,t onQ = Q(i, t −1), we denote it byr i,t,Q.
The conditional bias is bounded in the following lemma (proven in the appendix).

Lemma 7 With the notation introduced so far, we have

Bi,t ≤
√

r i,t,Q + |∆i,t | r i,t,Q .

As far as the conditional variance of∆̂i,t is concerned, from Figure 3 we see that

∆̂i,t =
Q

∑
k=1

Vi,ik Zi,t,k ,

where

Z>
i,t = (Zi,t,1, . . . ,Zi,t,Q) = S>i,Q

(
I +Si,QS>i,Q +xtx

>
t

)−1
xt . (11)

The next lemma (proven in the appendix) handles the conditional variance‖Zi,t‖2.

Lemma 8 With the notation introduced so far, we have

‖Zi,t‖2 ≤ r i,t,Q .

Armed with these two lemmas, we proceed through our large deviation argument.
We can write

{ŷi,t 6= yi,t ,Ki,t}
≤

{
∆̂i,t ∆i,t ≤ 0, Ki,t

}

≤
{
|∆̂i,t −∆i,t | ≥ |∆i,t |, Ki,t

}

≤
{
|∆̂i,t +Bi,t −∆i,t | ≥ |∆i,t |− |Bi,t |, Ki,t

}

≤
{
|∆̂i,t +Bi,t −∆i,t | ≥ |∆i,t |/2, Ki,t

}
+{|Bi,t | ≥ |∆i,t |/2, Ki,t} . (12)

We can further bound the second term of (12) by using Lemma 7. We obtain

{
|Bi,t | ≥ |∆i,t |/2, Ki,t

}
≤ {√r i,t,Q + |∆i,t | r i,t,Q ≥ |∆i,t |/2, Ki,t}

≤
{(

r i,t,Q ≥ |∆i,t |2/16∨ r i,t,Q ≥ 1/4
)
, Ki,t

}

=
{

r i,t,Q ≥ |∆i,t |2/16, Ki,t
}

1. As it turns out, many of the quantities appearing in the present proof, including the bias termBi,t and the variance
vectorZi,t defined later on, are algorithm-dependent, hence they do actually depend onQ= Q(i, t−1). However, this
dependence is made notationally explicit only for the quantityr i,t = r i,t,Q since, we believe, this specific dependence
is key to the proof.
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the equality following from the fact that|∆i,t |2/16≤ 1/16 < 1/4. We plug back into (12), take
expectations, and sum overt. We have

E

[
T

∑
t=1

{ŷi,t 6= yi,t , Ki,t}
]

≤ E

[
T

∑
t=1

({
|∆̂i,t +Bi,t −∆i,t | ≥ |∆i,t |/2, Ki,t

}
+
{

r i,t,Q ≥ |∆i,t |2/16, Ki,t
})
]

= E

[
T

∑
t=1

{Ki,t} Ei,t

{
|∆̂i,t +Bi,t −∆i,t | ≥ |∆i,t |/2

}]
(13)

+ E

[
T

∑
t=1

{
r i,t,Q ≥ |∆i,t |2/16, Ki,t

}
]

, (14)

where in (13) we used the fact thatKi,t is determined givenVPAR(i),1, . . . ,VPAR(i),t−1.
We now bound the two expectations (13) and (14) separately. Letj = PAR(i). To bound the

first expectation, we exploit the fact thatVi,i1, . . . ,Vi,iQ are independent under the lawPi,t = P
(
· |

Vj,1, . . . ,Vj,t−1
)
, andZi,t,1, . . . ,Zi,t,Q defined in (11) are determined givenVj,1, . . . ,Vj,t−1. Hence,

we can apply Chernoff-Hoeffding inequality (Hoeffding, 1963) to the sum ∆̂i,t = Vi,i1Zi,t,1 + . . .+

Vi,iQZi,t,Q of independent random variables, whereEi,t [∆̂i,t ] = ∆i,t − Bi,t and (Vi,i1Zi,t,1)
2 + . . . +

(Vi,iQZi,t,Q)2 ≤ r i,t,Q by Lemma 8. Recalling that∆2
i = mint=1,...,T ∆2

i,t , we can write

T

∑
t=1

{Ki,t}Pi,t

(
|∆̂i,t +Bi,t −∆i,t | ≥ |∆i,t |/2

)
≤ 2

T

∑
t=1

{Ki,t}exp

(
− ∆2

i

8r i,t,Q

)
.

This quantity can be further upper bounded using the following lemma (proven in the appendix).

Lemma 9 Let α, M be positive constants. Then

max

{
n

∑
t=1

e−α/at : a1 ≥ 0, . . . ,an ≥ 0,
n

∑
t=1

at = M

}
≤ M

eα
.

If we let

Mi =
T

∑
t=1

{Ki,t}r i,t,Q = ∑
t :{Ki,t}=1

r i,t,Q

we immediately see that Lemma 9 implies

T

∑
t=1

{Ki,t}exp

(
− ∆2

i

8r i,t,Q

)
= ∑

t :{Ki,t}=1

exp

(
− ∆2

i

8r i,t,Q

)
≤ 8

e∆2
i

Mi .

Therefore,

(13) ≤ 16

e∆2
i

EMi .
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To bound (14) we can argue as follows (note that, by definition,r i,t,Q ≥ 0, since it is the value of a
quadratic form with a positive definite matrix):

Mi =
T

∑
t=1

{Ki,t} r i,t,Q

=
T

∑
t=1

{r i,t,Q ≥ ∆2
i /16, Ki,t} r i,t,Q +

T

∑
t=1

{r i,t,Q < ∆2
i /16, Ki,t}r i,t,Q

≥
T

∑
t=1

{r i,t,Q ≥ ∆2
i /16, Ki,t}∆2

i /16 .

Hence

(14) = E

[
T

∑
t=1

{r i,t,Q ≥ ∆2
i /16, Ki,t}

]
≤ 16

∆2
i

EMi .

We have thus obtained the following bound

T

∑
t=1

P(ŷi,t 6= yi,t , Ki,t) ≤
16(1+1/e)

∆2
i

EMi .

To conclude, we need to upper boundEMi . Observe thatMi is a sum only over time stepst such that
{Ki,t} = 1; i.e., over thoset such that the weight vectorwi,t gets actually updated. Therefore, since
we would like to relateMi to the spectral structure of the data correlation matricesSi,Q(i,T)S

>
i,Q(i,T),

we can proceed through the standard upper bounding argument (Azoury and Warmuth, 2001; Cesa-
Bianchi et al., 2002) given below.

Mi =
T

∑
t=1

{Ki,t}r i,t,Q

=
T

∑
t=1

(
1−

det(I +Si,Q(i,t−1)S
>
i,Q(i,t−1))

det(I +Si,Q(i,t)S>i,Q(i,t))

)

(using Lemma 2, part 1, in Lai and Wei, 1982)

≤
T

∑
t=1

log
det(I +Si,Q(i,t)S

>
i,Q(i,t))

det(I +Si,Q(i,t−1)S>i,Q(i,t−1))
(since 1−x≤− logx for all x > 0)

= log
det(I +Si,Q(i,T)S

>
i,Q(i,T))

det(I)

=
d

∑
j=1

log(1+λi, j) .

Putting together as in (10) concludes the proof. �

Our analysis of Theorem 2 is similar in spirit to the work of Lai et al. (1979) on least-squares
regression. In particular, they also assume the sequencex1,x2, . . . be arbitrary while the real-valued
labelsyt are defined asyt = u>xt + εt , whereεt are i.i.d. random variables with finite variance.

A regret bound similar to the one established by Theorem 2 can be proven for the zero-one
loss using the fact that this loss can be crudely upper bounded by the H-loss (with all cost coeffi-
cients set to 1). Indeed, a more direct (and sharper) analysis could beperformed for the zero-one
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loss, following the same lines as the proof of Theorem 2. As far as the symmetric difference loss
`∆ is concerned, a regret analysis might be obtained through a method we developed in earlier
work (Cesa-Bianchi et al., 2004). As a matter of fact, the analysis by Cesa-Bianchi et al. (2004)
rests on several side assumptions about the way datax1, . . . ,xT are generated. We have been unable
to apply the theoretical arguments employed in the present paper to`∆. In any case, since these two
loss functions are unable to capture the hierarchical nature of our classification problem, we believe
the resulting bounds are less relevant to this paper.

8. Experimental Results

We tested the empirical performance of our on-line algorithm on data sets extracted from two pop-
ular corpora of free-text documents. The first data set consists of thefirst (in chronological order)
100,000 newswire stories from the Reuters Corpus Volume 1 (Reuters, 2000). The associated tax-
onomy of labels, which are the document topics, contains 101 nodes organized in a forest of 4
trees. The forest is shallow: the longest path has length 3 and the distribution of nodes, sorted by
increasing path length, is{0.04,0.53,0.42,0.01}. The average number of paths in the multilabel
of an instance is 1.5. For this data set we used the bag-of-words vectorization performed by Xerox
Research Center Europe within the EC project KerMIT (see Cesa-Bianchi et al., 2003, for details).
The 100,000 documents were divided into 5 equally sized groups of chronologicallyconsecutive
documents. We then used each adjacent pair of groups as training and test set for an experiment
(here the fifth and first group are considered adjacent), and then averaged the test set performance
over the 5 experiments.

The second data set includes the documents classified in the nodes of the subtree rooted in
“Quality of Health Care” (MeSH code N05.715) of the OHSUMED corpus ofmedical abstracts (Hersh,
1994). Since OHSUMED is not quite a tree but a directed acyclic graph, and since the H-loss is
defined for trees only, we removed from this OHSUMED fragment the few nodes that did not
have a unique path to the root. This produced a hierarchy with 94 classes and a data set with
55,503 documents. The choice of this specific subtree was motivated by its structure only; in
particular: the subtree depth is 4, the distribution of nodes (sorted by increasing path length) is
{0.26,0.37,0.22,0.12,0.03}, and there is a reasonable number of partial and multiple path multil-
abels (the average number of paths per instance is 1.53). The vectorization of the documents was
carried out similarly to RCV1. After tokenization, we removed all stopwords and also those words
that did not occur at least 3 times in the corpus. Then, we vectorized the documents using the BOW
library (McCallum, 2004) with a log(1+TF) log(IDF) encoding. We ran 5 experiments by randomly
splitting the corpus in a training set of 40,000 documents and a test set of 15,503 documents. Test
set performances are averages over these 5 experiments. In the training set we kept more docu-
ments than in the RCV1 splits since the OHSUMED corpus turned out to be a harder classification
problem than RCV1. In both data sets instances have been normalized to unitlength.

Since the space complexity ofH-RLS grows linearly with training time, due to the need of
storing each training instance in the matricesSi,t —see (1), we had to make some modifications
to the algorithm in order to be able to carry out experiments on data sets of this size. For this
purpose, we have developedSH-RLS, a space-efficient variant ofH-RLS that we used in all of our
experiments.

The performance ofSH-RLS is compared against five baseline algorithms: a flat and a hierarchi-
cal version of the Perceptron algorithm (Novikov, 1962; Rosenblatt, 1958), a flat and a hierarchical
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version of Vapnik’s support vector machine (see, e.g., Vapnik, 1998;Scḧolkopf and Smola, 2002),
and a flat version ofSH-RLS. Note that support vector machines are not trained incrementally;
we include them in our pool of baseline algorithms to show that on-line learners, processing each
training example only once, can have a performance level close to that of batch learners.

Note also that, unlike our theoretical analysis based on cumulative regret, inthe experiments
we distinguish a training phase, where the hierarchical classifiers are built, and a test phase, where
the performance of the hierarchical classifiers obtained in the training phase is measured on fresh
data. This allows us to use a single measure, the test error, to compare both batch and incremental
learners.

The first algorithm we consider,H-PERC, is a simple hierarchical version of the Perceptron.
Its functioning differs fromH-RLS described in Figure 3 only in the way weights are updated. In
particular,H-PERC learns a hierarchical classifier by training a linear-threshold classifier ateach
node via the Perceptron algorithm. At the beginning, the weight vector of each node classifier is
set to the zero vector,wi,1 = (0, . . . ,0) for i = 1, . . . ,N. Upon receiving an example(xt ,vt), H-PERC

considers for an update only those classifiers sitting at nodesi satisfying eitheri ∈ ROOT(G) or
vPAR(i),t = 1. If {w>

i,txt ≥ 0} 6= vi,t for such a nodei, then the weight vectorwi,t is updated using the
Perceptron rulewi,t+1 = wi,t + vi,txt ; on the other hand, if{w>

i,txt ≥ 0} = vi,t , thenwi,t+1 = wi,t (no
update takes place at nodei).

During the test phase,H-PERCcomputes the multilabel̂y= (ŷ1, . . . , ŷN) of a test instancex using
the same top-down process described in Figure 3,

ŷi =






{w>
i x≥ 0} if i is a root node,

{w>
i x≥ 0} if i is not a root node and ˆy j = 1 for j = PAR(i),

0 if i is not a root node and ˆy j = 0 for j = PAR(i).

(15)

The second incremental algorithm considered isSH-RLS, our sparse variant ofH-RLS. The two
algorithms,H-RLS and SH-RLS operate in the same way (see Figure 3) with the only difference
that SH-RLS performs fewer updates in the training phase. In particular, given a training example
(xt ,vt), both algorithms consider for an update only those classifiers sitting at nodes i satisfying
either i ∈ ROOT(G) or vPAR(i),t = 1. However, whereasH-RLS would update the weightwi,t of
all such nodesi, SH-RLS also requires the margin condition|w>

i,txt | ≤
√

(5lnt)/Ni,t , whereNi,t is
the number of instances stored at nodei up to timet − 1. The choice of the margin threshold√

(5lnt)/Ni,t is motivated by Cesa-Bianchi et al. (2003) via a large deviation analysis.
We also tested a hierarchical version of SVM (denoted byH-SVM) in which each node is an

SVM classifier trained using a batch version of our hierarchical learningprotocol. More precisely,
each nodei was trained only on those examples(xt ,vt) such thatvPAR(i),t = 1. The resulting set
of linear-threshold functions was then evaluated on the test set using the hierarchical classification
scheme (15). We tried both theC andν parametrizations (Schölkopf et al., 2000) for SVM and found
the settingC = 1 to work best2 for our data (recall that all instancesxt are normalized,‖xt‖ = 1).

We finally tested the “flat” variants ofH-PERC, SH-RLS andH-SVM, denoted byPERC, S-RLS

andSVM, respectively. In these variants, each node is trained and evaluated independently of the
others, disregarding all taxonomical information. All SVM experiments werecarried out using the
libSVM implementation (Chang and Lin, 2004) and all the algorithms ran with a linearkernel. The

2. It should be emphasized that this tuning ofC was actually chosen in hindsight across the interval [0.1,10] with no
cross-validation.
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RCV1
Algorithm zero-one loss uniform H-loss ∆-loss
PERC 0.702(±0.045) 1.196(±0.127) 1.695(±0.182)
H-PERC 0.655(±0.040) 1.224(±0.114) 1.861(±0.172)
S-RLS 0.559(±0.005) 0.981(±0.020) 1.413(±0.033)
SH-RLS 0.456(±0.010) 0.743(±0.026) 1.086(±0.036)
SVM 0.482(±0.009) 0.790(±0.023) 1.173(±0.051)
H-SVM 0.440(±0.008) 0.712(±0.021) 1.050(±0.027)

OHSUMED
Algorithm zero-one loss uniform H-loss ∆-loss
PERC 0.899(±0.024) 1.938(±0.219) 2.639(±0.226)
H-PERC 0.846(±0.024) 1.560(±0.155) 2.528(±0.251)
S-RLS 0.873(±0.004) 1.814(±0.024) 2.627(±0.027)
SH-RLS 0.769(±0.004) 1.200(±0.007) 1.957(±0.011)
SVM 0.784(±0.003) 1.206(±0.003) 1.872(±0.005)
H-SVM 0.759(±0.002) 1.170(±0.005) 1.910(±0.007)

Table 1: Experimental results on two hierarchical text classification tasks under various loss func-
tions. We report average test errors along with standard deviations (in parentheses). In
bold are the best performance figures among the incremental algorithms (allincremental
algorithms were run for one epoch over the training data).

performance of these algorithms was evaluated against three different loss measures (see Table 1).
The first two losses are the zero-one loss and the H-loss with cost coefficients set to 1 (denoted by
uniform H-loss in Table 1). The third loss is the symmetric difference loss (∆-loss in Table 1).

A few remarks on Table 1 are in order at this point. As expected,H-SVM performs best, but the
good performance ofSVM (flat support vector machine) is surprising. As for the incremental algo-
rithms, SH-RLS performs better than its flat variantSH-RLS, and far better than bothH-PERCand
PERC. In addition, and perhaps surprisingly, after a single epoch of trainingSH-RLS performs gen-
erally better thanSVM and comes reasonably close to the performance ofH-SVM. Finally, note that
the running times of bothS-RLS andSH-RLS scale quadratically in the number of stored instances,
whereas the running time of Perceptrons scales only linearly. Thus, as usual, the performance ben-
efit has to be traded-off against computational cost.

To give an idea of how flat and hierarchical algorithms compare in terms of running times, we
mention that hierarchical algorithms turned out to be roughly four times fasterthan the correspond-
ing flat algorithms running on the same data sets.

The (uniform) H-loss does not provide any information on the distribution ofmistakes across
the different hierarchy levels. Therefore, we counted the “H-loss mistakes” made at each level,
distinguishing between false positive (FP) and false negative (FN) mistakes. Fix an example(x,v)
and let̂y be the guessed multilabel. Then nodei makes an H-loss mistake on(x,v) if

ŷi 6= vi ∧ ŷ j = v j = 1, j ∈ ANC(i) .
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RCV1
Depth H-PERC SH-RLS H-SVM

FP 4144(±2431) 1449(±79) 1769(±163)
0

FN 2690(±851) 2436(±112) 2513(±148)

FP 6769(±2509) 1361(±108) 1317(±81)
1

FN 7961(±838) 8135(±476) 7260(±450)

FP 1161(±261) 413(±32) 380(±28)
2

FN 1513(±833) 937(±51) 624(±23)

FP 161(±314) 14(±16) 20(±26)
3

FN 88(±44) 115(±31) 94(±24)

OHSUMED
Depth H-PERC SH-RLS H-SVM

FP 7916(±2638) 3192(±88) 3062(±60)
0

FN 12639(±1418) 12888(±64) 12587(±49)

FP 1816(±730) 828(±14) 839(±11)
1

FN 1606(±373) 1594(±33) 1542(±25)

FP 88(±20) 30(±6) 37(±7)
2

FN 86(±31) 54(±4) 55(±2)

FP 10(±5) 2(±1) 3(±1)
3

FN 16(±11) 13(±3) 14(±1)

FP 3(±2) 1(±1) 4(±1)
4

FN 5(±6) 1(±1) 2(±1)

Table 2: Distribution across the hierarchy levels of false positive (FP) andfalse negative (FN) H-
loss mistakes on the two hierarchical text classification tasks RCV1 and OHSUMED. We
report the average number of mistakes at each level of the hierarchy trees with standard
deviation in parentheses (recall that we made 5 experiments on different splits of the two
data set).
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Thus, nodei makes a false positive mistake if

ŷi = 1∧ vi = 0∧ ŷ j = v j = 1, j ∈ ANC(i)

and makes a false negative mistake if

ŷi = 0∧ vi = 1 ∧ ŷ j = v j = 1, j ∈ ANC(i) .

Table 2 shows the H-loss mistake distribution for RCV1 and OHSUMED over hierarchy levels.
The average values contained in Table 2 are also plotted in Figure 4. A quickvisual comparison

reveals the close similarity between the distributions obtained bySH-RLS andH-SVM, whereas the
behavior ofH-PERClooks quite different.

9. Conclusions, Ongoing Research, and Open Problems

We have introducedH-RLS, a new on-line algorithm for hierarchical classification that maintains
and updates regularized least-squares estimators on the nodes of a taxonomy. The linear-threshold
classifications, obtained from the estimators, are combined to produce a single hierarchical multil-
abel through a simple top-down evaluation model.

Our algorithm is suitable for learning multilabels that include multiple and/or partial paths on
the taxonomy. To properly evaluate hierarchical classifiers in this framework we have defined the
H-loss, a new hierarchical loss function, with cost coefficients possiblyassociated to each taxonomy
node—see Remark 5.

Our main theoretical result states that, on any sequence of instances, the cumulative H-loss of
H-RLS is never much bigger than the cumulative H-loss of a reference classifier tuned with the pa-
rameters of the stochastic process generating the multilabels for the given sequence of instances.
Our theoretical findings are complemented by experiments on the hierarchical classification of tex-
tual data, in which we compare the performance of a sparsified variant ofH-RLS to that of standard
batch and incremental learners, such as simple hierarchical versions ofthe Perceptron algorithm and
the SVM. The experiments show that one epoch of training of our algorithm isenough to achieve a
performance close to that of the hierarchical SVM.

Our investigation leaves a number of open questions. The first open question is the derivation
of a hierarchical algorithm especially designed to minimize the H-loss. We are currently exploring
efficient ways to approximate the Bayes optimal classifier for the H-loss, given our data model.
Since such optimal classifier turns out to be remarkably different from thehierarchical classifiers
produced byH-RLS, a related theoretical question is to prove any reasonable bound on the regret
with respect to the Bayes optimal classifier.

Additional open problems concern the data model. First, it would be useful tomodify the label-
generating model to introduce dependencies among the children’s labels. This could allow a better
fitting of data sets when the rate of multiple paths in multilabels is limited. Second, further investi-
gation, both of empirical and theoretical nature, might be devoted to the issueof using regularized
logistic regressors at each node.
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Figure 4: Plot of the average values contained in Table 2 for the H-loss mistake distribution over
hierarchy levels.
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Appendix A

This appendix contains the proofs of Lemmas 7, 8, and 9 mentioned in the main text. Throughout
this appendixA denotes the positive definite matrixI +Si,QS>i,Q, while r denotes the quadratic form

x>t (A+xtx>t )−1xt .

Proof of Lemma 7

We have

Bi,t = u>i (I +xtx
>
t )(A+xtx

>
t )−1xt

= u>i (A+xtx
>
t )−1xt +∆i,t r

≤
√

x>t (A+xtx>t )−2xt + |∆i,t | r
≤

√
r + |∆i,t | r

where the first inequality follows fromu>i z≤ max‖ui‖=1u>i z= ‖z‖, with z= (A+xtx>t )−1xt , and the
second inequality follows fromx>(A+ xx>)−2x ≤ x>(A+ xx>)−1x, holding for anyx and for any
positive definite matrixA whose eigenvalues are not smaller than 1 (notice that this condition makes
(A+xx>)−1− (A+xx>)−2 a positive semidefinite matrix). �

Proof of Lemma 8

Setting for brevityH = S>i,QA−1xt anda = x>t A−1xt we can write

‖Zi,t‖2 = x>t
(

A+xtx
>
t

)−1
Si,QS>i,Q

(
A+xtx

>
t

)−1
xt

= x>t

(
A−1− A−1xtx>t A−1

1+x>t A−1xt

)
Si,QS>i,Q

(
A−1− A−1xtx>t A−1

1+x>t A−1xt

)
xt

(by the Sherman-Morrison formula—e.g., Horn and Johnson, 1985, chap. 0)

= H>H − a
1+a

H>H − a
1+a

H>H +
a2

(1+a)2H>H

=
H>H

(1+a)2

=
x>t A−1Si,QS>i,QA−1xt

(1+a)2

=
x>t A−1/2A−1/2Si,QS>i,QA−1/2A−1/2xt

(1+a)2

≤

∥∥A−1/2xt
∥∥
∥∥∥A−1/2Si,QS>i,QA−1/2

∥∥∥
∥∥x>t A−1/2

∥∥

(1+a)2

=
a

(1+a)2

∥∥∥A−1/2Si,QS>i,QA−1/2
∥∥∥ , (16)
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where
∥∥∥A−1/2Si,QS>i,QA−1/2

∥∥∥ is the spectral norm of matrixA−1/2Si,QS>i,QA−1/2.

We continue by bounding the two factors in (16). Observe that

a
(1+a)2 ≤ a

1+a
= r

where the equality derives again from the Sherman-Morrison formula. Asfar as the second factor
is concerned, we just note that the two matricesA−1/2 and Si,QS>i,Q have the same eigenvectors.

Furthermore, ifλ j is an eigenvalue ofSi,QS>i,Q, then 1/
√

1+λ j is an eigenvalue ofA−1/2. Therefore

∥∥∥A−1/2Si,QS>i,QA−1/2
∥∥∥= max

j

1√
1+λ j

×λ j ×
1√

1+λ j
≤ 1 .

Substituting into (16) yields‖Zi,t‖2 ≤ r, as desired. �

Proof of Lemma 9

From a simple Kuhn-Tucker analysis3 it follows that if at is larger than 0 at the maximum, thenat

takes some constant valueβ > 0 (independent oft). Hence the maximizing vector(a1,a2, . . . ,an)
has components which can take only two possible values:at = 0 orat = β. Let us denote byN+ the
number oft : at = β. At the maximum we can write

M =
n

∑
t=1

at = ∑
t :at=β

at + ∑
t :at→0+

at = βN+

i.e.,β = M/N+. Hence, at the maximum

n

∑
t=1

e−α/at = ∑
t :at=β

e−α/at + ∑
t :at=0+

e−α/at

= ∑
t :at=β

e−α/β

= N+e−α/β

= N+e−αN+/M .

SinceN+ is not determined by this argument, we can write

max

{
n

∑
t=1

e−α/at : a1 ≥ 0, . . . ,an ≥ 0,
n

∑
t=1

at = M

}
≤ max

x≥0
xe−αx/M =

M
eα

thereby concluding the proof. �

3. The functionf (a) = e−α/a is not defined whena= 0. However, it is clearly possible to extendf by definingf (0) = 0,
preserving (one-sided) differentiability.
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