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Abstract

In this paper we consider a novel Bayesian interpretatidfisifer’s discriminant analysis. We re-
late Rayleigh’s coefficient to a noise model that minimisesst based on the most probable class
centres and that abandons the ‘regression to the labelshgsi®n used by other algorithms. Opti-
misation of the noise model yields a direction of discrintioia equivalent to Fisher’s discriminant,
and with the incorporation of a prior we can apply Bayes’ talenfer the posterior distribution of
the direction of discrimination. Nonetheless, we argu¢ éimeadditional constraining distribution
has to be included if sensible results are to be obtainedhdXairther, with the use of a Gaussian
process prior we show the equivalence of our model to a regathkernel Fisher’s discriminant. A
key advantage of our approach is the facility to determimaddgparameters and the regularisation
coefficient through the optimisation of the marginal lokglihood of the data. An added bonus of
the new formulation is that it enables us to link the regsktion coefficient with the generalisation
error.

1. Introduction

Data analysis typically requires a preprocessing stage to give a moimpaisus representation
of data, such preprocessing consists of selecting a group of chétictieatures according to an
optimality criterion. Tasks such as data description or discrimination commonlgmelyis prepro-
cessing stage. For example, Principal Component Analysis (PCA)ibesctata more efficiently
by projecting it onto the principal components and then by minimising the rectisin error, see
e.g. (Jolliffe, 1986). In contrast, Fisher’s linear discriminant (Fish®86) separates classes of data
by selecting the featuréshat maximise the ratio of projected class means to projected intraclass
variances.

The intuition behind Fisher’s linear discriminant (FLD) consists of lookimggfgector of com-
poundsw such that, when a set of training samples are projected on to it, the classscargrfar
apart while the spread within each class is small, consequently producinglleoserlap between
classes (Schdolkopf and Smola, 2002). This is done by maximising a casidiuknown in some
contexts as Rayleigh’s coefficiedt(w). Kernel Fisher’s discriminant (KFD) is a nonlinearisation

1. In Fisher’s terminology the features are grouped into a vector afipounds’.
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that follows the same principle but in a typically high-dimensional featureesgacin this case,
the algorithm is reformulated in terms &fa ), wherea is the new direction of discrimination. The
theory of reproducing kernels in Hilbert spaces (Aronszajn, 19&@sghe relation between vectors
w anda, see Section 5.1. In either case, the objective is to determine the most ‘fadsiection
according to the statistit.

Mika et al. (1999) demonstrated that KFD can be applied to classificatidrgons with com-
petitive results. KFD shares many of the virtues of other kernel baseditalys: the appealing
interpretation of a kernel as a mapping of an input to a high dimensiona¢ spatgood perfor-
mance in real life applications, among the most important. However, it alsers@ifbm some of the
deficiencies of kernelised algorithms: the solution will typically include a regaton coefficient
to limit model complexity and parameter estimation will rely on some form of crossataiial
Unfortunately, there is no principled approach to set the former, while tter larecludes the use
of richer models.

In this paper we introduce a novel probabilistic interpretation of Fishé&tichinant. Classical
FLD is revised in Section 2 while an alternative noise model is outlined in Sectionve8build
on the model in Section 4 by first applying priors over the direction of discation to develop a
BayesiarFisher discriminant and later we use a Gaussian process prior to refterthdgroblem.
In Section 5, we compare our model to other approaches. We explorertheations of our model
to the expected generalisation error in Section 6. Section 7 details an Ed-bigorithm for
estimating the parameters of the model (kernel and regularisation coa#)cinoptimising the
marginal log likelihood. We present the results of our approach by ampiyion toy data and by
classifying benchmark data sets, in Section 8. Finally we address futexidirs of our work in
Section 9.

2. Fisher’s Discriminant Analysis

As mentioned above, discriminant analysis involves finding a vector of congsav € R9*? for
which class separation will be maximised according to some defined statisticidéong a set

of training data and label®) = (X,y) = {x(”),y(”)}::1 e RN*(@+1) " the discriminant reduces the
dimensionality of the data through a linear combination, such that a set of s'&r@iﬁes{ (pl, 0{) ,

(1o, 03) } is produced; where we defirfgy, 07) as the sample mean and variance of each projected
group. The hope is that both groups will be distinguished from one anbyhesing this new set.
Fisher was the first to conclude that the compounds should be given hiynisiang the ratio of
between to within class variances,

2
J:M_ (1)

21 2
0%+ 0§

We will use the following definitions. A vector of projections is generated kintathe product

f = Xw € RN*1 and the sample means for each classnage- Nq*1 > neNg qu”), hence the projected
mean and variance are given by

Hg = Ny'w'mg
= Ng'flyg, (@)
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and

i g

nelNg

respectively. Abusing the notation, we have split the training data into twarmligjmups(X,y) =
(Xo,Y0)U(X1,y1), with y&”) € {0,1}. The coefficient\y is the cardinality of each group,e {0, 1}.

Modern texts on pattern recognition and machine learning (Fukunag@; D2@la and Hart,
1973; Bishop, 1995; Ripley, 1996) prefer to make explicit the deperdehthis statistic on the
vector of compounds. Hence, with some manipulation and the introductionaaffdecof matrices
we arrive at

w'Zgw
CwTE,w’

J(w) (4)
_ T _ Ng () () T

whereXg = (m; —mgp) (M1 —mp)  andZ, = > qe{01} Yot (xq — mq) (xq — mq) , are between
and within covariance matrices respectively. Matfix measures the separation between class
means while&, gives an estimation of the spread around them. A solution for this problegisten
of taking the derivative of Equation 4 w.riv and solving. This leads to a generalised eigenvalue
problem of the formE,,'Zpw = Aw, with A being the eigenvalues. A solution for the discriminant
can also be derived from geometric arguments. Given a test ygithie discriminant is a hyper-
planeD (x*) = w'x* + b, that outputs a number according to the class membership of the test point,
whereb is a bias term. In this context is a vector that represents the direction of discrimina-
tion. Following this line, the solutiow 00 =,* (mp — m;) is sometimes easier to interpret than the
eigenvalue problem.

As it was demonstrated by Mika (2001), a more detailed analysis of FLD altderbe cast as
a quadratic programming problem. In order to do so, we observe that thatodeyof the solution
is not relevant, so for example, the numerator of Equation 1 can be fixedadoarary scalar while
the denominator is minimised. In other words, the variance of the projections isisea while
the distance between projected means is kept atdsayp — ;. Rayleigh’s statistic can then be
written asJ = d? /(02 +03). The subsequent discussion will make use of this ‘average distance’
constraint to reformulate the discriminant problem.

3. Probabilistic Interpretation

We introduce some notation that will be used throughout the rest of the. pEipe set of variables
D = (X,y) € RN*(@+1) s observed or instantiatetic RN*! is a dependent or latent variable and
t ¢ RN*1 is a vector of targets that have been observed as well. The randorblearnill follow
some probability law and in this model, in particular, we study the relationship batalserved
and latent variables: the noise model. From Section 2, we know that ebsgrnation inD is
projected into a single variate that ideally can take only two values which angrdifected class
centres, where the variance around the projections tries to be minimisecefive the parameters
Cp andc; as the true class centres in the projected space. Additionally, we introgaregisionf3
that corresponds to the variance around the projected data. Bedahsenature of the mapping
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process, it is convenient to define some auxiliary variables as tyai,a vector filled withc;’s

whenevery™ = 1 and filled with zeros otherwiséy is a vector filled withcy’s whenevery™ = 0

and with zeros otherwise. We also take=y andyo = 1 —y and denote by the maximum
likelihood estimate of a vector/scalar

3.1 The Noise Model

Figure 1 models the causal relationship between the observai@ml the variablesandt, such
that the distributionp(f,t| ©,) can be decomposed into noise mog¢t|y,f) and priorp(f|X),
disregarding the paramet@r For the moment, we will ignore the prior and consider only the noise
model. In graphical notation every fully shaded circle corresponds tmbaarved variable and a
blank circle indicates a latent variable. We make use as well of partially dhaées to indicate
the binary nature of the discriminant, that is, that targets should only takefotveo different
values. In Figure 1 the variablg]) is observed whenevgt" = 1; andté”), whenever" = 0. Both
variableg andt; are discrete, with each of their elements being given by the class cesémadc;,
nevertheless, we will make a GausSiapproximation such that every elemﬁ)t ~ N ( £, B*l).
From this approximation the noise model can be defined as

P(tly.f,B) = BZNeXp{—g Z (tq—f)Tdiag(yq)(tq—f)}- (5)

Figure 1: The proposed graphical model for discriminant analysise dtaph models the joint distribution
over the latent variablesand the targets= toUty, which have been decomposed into their two
possible types. Disregarding the param@ethe joint probability is factorised as(f,t| D) =
p(tly,f) p(f|X), where the noise model is given im(t|y,f) and the prior byp(f|X). Note that
we express the labels into two different groypsandy;. Shaded nodes indicate instantiated
variables, blank ones correspond to latent variables antibiha shaded fp andt;) nodes are
only observed according to the values of the labgisandy, respectively). We assume that

every observed target is distributed accordingé%w N (f(”), B*1>, wheref3 is the precision
parameter.

As it can be observed from both the figure and Equation 5, there is atiomadl independence
assumption on the observed targets giyeandf; in other words, the noise model can be further

2. We use the notatiof\’ (x|m, %) to indicate a multivariate Gaussian distribution oxewith meanm and covariance
P
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decomposed ap(t]y,f) = p(to|Yo,f) p(t1|y1,f), where we have disregarded the dependence on
B.

We can substitute every eIeme&W by its class centreq and take the log of (5) to obtain

T L R s R

N _ B
here C= —log —.
where 51097

Tt
Note that the class centres can be made to coincide with the labels. In swgression to the
labels’ scheme, FLD can be recovered in a straightforward manner.

3.1.1 MAXIMUM LIKELIHOOD

Parameter estimates can be found by zeroing the gradiehiwth respect to each™ andp and
solving the resulting expressions for each parameter. This leads to tietkd equations

= (1-y") co+y"e; (7)

and N
@: ) (8)
Z”:lyn( ¢ — fn ) +Zn 1(1- yn>( f(n))z

However, the values of the class centtggndc; are not known, s@& can also be maximised w.r.t.
them to obtain

N,
s _ 1 & mim
=—9Y vyq fWforqe {0,1}. (9)
Nq nzl ‘

The resultsf (™ andcq suggest applying an iterative scheme to find the maximum. This can be done
by substitutingf " andcq on the right hand sides of Equations 9 and 7, respectively, initialising one
of the variables to an arbitrary value and updating all of them until corvee

3.2 Model Equivalence

We now turn to the connections between Rayleigh’s statistic and the propossa model. In
particular, we want to show that maximum likelihood learning in our framewosdqigvalent to
maximisation of Rayleigh’s coefficient. In order to do so, we back substitetedtuescy into £
(Equation 6) compute the gradient w.and solve the resulting expression forThe substitution
of each class centre by their most probable values is indispensable rara t@ our framework.
As a result of this substitution we can create a cost function that redueesrtir around the most
probable class centres. The solutionfdeads to an expression of the form

N
a2 1 g2’
01+ 0g

p=

with og defined in Equation 3, fog € {0,1}, and where we have recognised that Equation 2 is
equivalent to Equation 9. The result above is proportional to the camstr&ersion of Rayleigh's
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quotient mentioned beford,= d? /(0% + 63), hence we can write
I ="" (10)

It is clear that this quantity monotonically increases over the donﬁéimecauseé can only take
positive values. Meanwhile the likelihood, the exponential of Equationf@essed in terms of the

estimate takes the form
éN/Z N
L(f)= (Zn)N/2 exp 5 ( (12)
which is monotonic as well on this estimate.

Therefore, as Equations 10 and 11 are monotonfﬁ; iteir maximisation with respect to this
parameter must yield equivalent results.

3.3 Parametric Noise Model

In this section we make two modifications to Equations 5 and 6 in order to parésedtez noise
model. First, the vector of targett$s replaced by a new vector filled with the estimatgstich that
t =toUt; is generated. Second, every latent variable is related to the observatiamsector of
parametersv. In a linear relation this is expressed by the inner prodi8t= w™x". Therefore
after making these changes the log-likelihood becomes

R T

Thus a new probabilistic model is obtained, which is depicted in Figure 2.

.>///

4

Figure 2: Partially modified graphical model for discriminant anadysin comparison with Figure 1, the
latent variabldé has been replaced by a vector of parametetgnoring the parametd; the graph
factorises the joint distributiop ( t,w| ©) with the producp (t| D,w) x p(w), whereD = (X, y)
is the training datat = t; Uto, the modified targets angh andy; are the class labels. The log
of the noise modep(f| Q),w) is expressed in Equation 12 while the pripfw) is specified in
Section 4.

Furthermore, we look not only to parameterise the latent variables, butidhg centres as
well. Equation 9 can be used to this purpose, substituting ef@hin it with their parametric
versionsw™x(" leads tocg = - sh yiwTx(™. The vector of parameters can be pulled out of
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the summation and leave a quantity that we recognise to be the sample meansfqy whish we
express asng. Hence we can write;"= w'mq. Therefore the log of the new noise model can be
expressed as

L= _£25 :1 [y(m (mel - WTx(”)) g (1 - y(”)> (WT mo — WTX(n)) 2] +C. (13)

As it will be seen in Section 5, most models make the assumption that class camtretass
labels coincide, that isy = yq; including the least squares support vector machine of Suykens and
Vandewalle (1999). However this approach is suboptimal becauseisheoeguarantee that class
centres should map perfectly with the labels. Instead of following this ‘ssipa to the labels’
assumption, we have preferred to make use of the maximum likelihood estim#itestzfss centres.

As we saw above, by taking this step, the class centres can be paramdedsnigell.

3.3.1 MAXIMUM LIKELIHOOD

Maximisation of this new form ofL (Equation 13) has to be carried out in a slightly different way
to the one presented in Section 3.1.1. Previously, the class centres wnareepers which we knew
beforehand were separated by some given distance. However,ahaingterisation implies that the
separation constraint must be considered explicitly. We therefore inaglllagrange multiplier
to force the projected class centres to lie at a distanéeading to the following function

A(W,A) =
B N
-5 3

2

2177 () (1) (o)

+A [WT (mo — ml) — d] +C.

A solution for this constrained optimisation problem is given by

. A__
W= =31 (mog—mjy),

B

with
Te-1 -1
A=dB|(mp—my) Z,"(mo—my)

Therefore, by lettindsm = mg — my, we can express the solution as

dz,am
AmTz,tAam’
which is equivalent to that produced by FLD up to a constant of propwatity (see Section 2).

This completes the discussion of an alternative noise model for FLD. Tleprababilistic

formulation is based on a noise model that reduces the error around skeelares, instead of the
class labels. Furthermore, we were interested on parameterising not eidyeht variables in the
model but also the centres themselves. Through the introduction of arlgegraultiplier we saw
that a constrained maximisation of the new likelihood was equivalent to sthR¢ar.
In this section we made use only of one part of the graphical models peesienFigures 1 and
2. In the next section we complete the analysis by including the prior distrilsutiaat were left

W= (14)
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unattended. First we complete the study of Figure 2 by incorporating aquésrthe parameters,
p(w), and later study the model of Figure 1 under the assumption that the pKigiiX), is a
Gaussian process.

4. Bayesian Formulation

One of the aims of discriminant analysis is to determine the group membershippiLar* outside
the training set. From a probabilistic perspective this process is only pogsAnoise model and a
prior distribution have been identified. Then the posterior over the paresypdte| ) can be found
as well as the corresponding predictive distribution. The posterior disitsibis important because
it summarises the knowledge gained after having observed the training lsetapplication of a
Bayesian probabilistic approach offers some intrinsic advantages therraethods, for example
the ability to compute ‘error bars’ and, in the context of our model, the pitiggsito introduce
Gaussian process priors in a natural way.

This section will show that the introduction of a separable Gaussian prarvoveads to a
posterior distribution that is not enough to recover FLD’s solution. Latelitawill be argued that
an additional step is required to ensure the equivalence is achievedaddiimnal step will also
include the distance constraint previously implemented through a Lagrartiplieu

4.1 Weight Space Formulation

So far we have found a maximum likelihood estimate of the parameters’ veetwEuation 14).
Now what we seek is a distribution over this vector which is obtained by combinégoise model
with a prior distribution through Bayes’ rule,

p(f|D,w) p(w)
p(t[D)
where we have usef to indicate the training s€iX,y) and have omitted the dependenceon
A common choice of prior is a separable Gaussiafw) = A (w|0,A™1), whith zero mean

and diagonal covarianc&—!. The combination of this prior with the parametric noise model of
Equation 13 gives a posterior of the form

p(wl|t, D) =

N 2

p(wlt, D) O exp —EZ [y@ (mel—wam)) ¥...
2n:l

<l—y(”)) (WTmo—WTX(n))Z] —% TAW}. (15)

In order to obtain a complete expression fofw| D) it is necessary to define the normalisation
constant. As the expression is quadrativiive know the posterior distribution will be Gaussian.
However, it is still necessary to specify the mean and covariance of tiidodin. In order to do

so, Bayesian methods take advantage of an important property of Gaisktao sets of variables
are Gaussian, like andw, then the conditional distribution of one set conditioned on the other is
Gaussian as well. On the RHS of (15), we look to condition variabten t. The process simply
consists of considering the variatilas being given and on grouping termsvin This leads to a
Gaussian posterior of the form

pP(W| D) = AL(w|0,B™Y),
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with zero mean and covariance matfx= BXTLX + A, where
L =1—N;yay] —Notyoys. (16)

The posterior obtained is not equivalent to FLD because the meaisaero. In consequence,
the posterior mean projection of ary will collapse to the origin. Nonetheless, this formulation
yields a consistent result if we consider that standard discriminant @énakfsbits a sign symmetry
for the vectomw, hence the average is zero. What our new model is missing is the inctiopor
the distance constraint. In Section 3.3.1, knowledge about the vadabbes incorporated to the
noise model in the form of a Lagrange multiplier. We look to do the same again BuBayesian
approach this requires that we deal with every variable in terms of pilapalistributions.

We propose to use the posterpfw| D) as the prior for a new model that is depicted in Figure 3.
In the new formulationd is considered an extra random variable that has been observed and tha
depends on the distribution over D. From the figure we can deduce that the joint factorises as
p(d,w|D,y) = p(d|D,w,y) p(w| D), with y being a positive parameter. Note that this time we

A~

have madeD = (t,X,y).

S

Figure 3: Graphical model to constrain the projected distadce The graph specifies the distribution
p(d,w|D,y) which is composed by the distributiomg w| D) and p(d|D,w,y). The former
is the posterior over the direction of discrimination, désed in Section 4.1, and the latter is the
constraining distribution, defined in Equation 17.

One of our main concerns is to keep the model tractable at all stages, laneabtso interested
in having a realistic representation of the discriminant. In order to guaréotieconditions we
assumal is Gaussian with infinite precision

¥2 y 2
: T
p(d|D,w,y) \Ilmo\/ﬁexp< 2(d w'Am) > (17)
We can see that this distribution introduces the same effect as the Lagrarfiggaction 3.3.1 by
placing all its mass at the poidt= pp — py when the limity — oo is taken.

The process to determine a postepdw| D, d) is based on combining(w| D) with p(d| D, w,Y)
and then conditioningy ond. However, a final step needs to be added to work out the limit to elim-
inate the dependence over As a partial result, the conditional distributigr{w| D, d,y) will be
A (w|w, X) with mean

w = limydZAm,

y*>00

and covariance .
> = lim (B+yAmAmT) .

y—00
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With some algebraic manipulations and the application of the Morrison-Wogditumula (Golub
and Van Loan, 1996) we can arrive to the desired result. See AppAridithe detailed derivation.
After taking the limit, the resulting distribution will be a Gaussian

p(wW|D,d) = A (w W, %)
with parameters

oo dB~Am
~ AmTB—1Am
and

B-lAmAm™B-1
AMTB—1Am

s = B 1-

Noticing thatB = BXTLX + A, the mean of the new posterior coincides with the maximum likeli-
hood solution of Section 3.3 when an improper prior is used f.e- limy_..0l). Note that the
matrix X is positive semidefinite and therefore not invertible, this is a consequéitlse fact that
any vectorw which does not satisfy the constraint imposed by the distribuicd| 2, w,y) has a
posterior probability of zero. Nevertheless, variances associated withoterior projections can
still be computed by applying

1 X'B7lAmAmTB1x
AmTB-1Am

var(w'x) =x"B

which will be zero if the poink is on the direction oAm.

The Bayesian approach we have outlined leads to a posterior distributtonh@vdirection of
discrimination which can be used to compute expected outputs and their ssdaisances for
any given inputx. However, the limitation imposed by applying a linear model is a strong one.
There is an extensive amount of literature explaining why linear modelsoa@ways convenient.
A common solution is to use a set of nonlinear basis functipsisch that the new function is linear
in the parameters but nonlinear in the input spfce w' @(x), see for example (Ruppert et al.,
2003) and (Bishop, 1995). However the problem is shifted to that dfifgfieg which and what
number of basis functions to use. In the next section we shall considaltéhneative approach of
placing a prior directly over the vector of projectidnsuch that we will be working with a possibly
infinite amount of basis functions. This approach will lead to a regularisesion of kernel Fisher’s
discriminant and ultimately to an alternative strategy to select model parameters.

4.2 Gaussian Process Formulation

The choice of a Gaussian probability measure over functions has beifiegusy the study of the
limiting prior distribution in the neural network case when the number of hidaéts treaches’
infinity, (Neal, 1996). A Gaussian process (GP) is a type of stochastaeps that is defined by a
mean and a covariance function. By stochastic process we undersgrdabuntable infinite set
of observationg f1,..., fn} has been sampled from a common probability distribution.

In GP’s (O’'Hagan, 1978) a prior is placed directly over the latent viggabuch that a posterior
distribution over them can be inferred. Although there are many GP’s wiggaivalent ‘weight
space’ prior, there exists a large class of them for which no finite dimeaistapansion exists. In
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this regard, a covariance function (or kernel) measaresiori the expected correlation between
any two pair of point(™ andx(™ in the training set. For example, in a function parameterised as

£(n) :WT(p(Xm)) ,

with a prior overw specified by a spherical Gaussian with zero meew) = A (w|0,a—1l ) the
implied correlation between two points is

E {f(”)7 f(m)’W} _ O(fl(p(X(n))T(p(X(m)) _

In other words, provided that the product is positive and symmetric, threlation between the
two points will lead to a Mercer kernel; see (Schélkopf and Smola, 2008)veder, under these
circumstances it no longer makes sense to talk about a prior over the wedbat rather a prior
over instantiations of the functions is considered.

4.2.1 REDICTIONOVER A TESTPOINT

In order to adopt GP’s we need to go back to the formulation of the discrimgmasented in Figure
1. In this figure the graph models the joint distributipfif, t| 2) with the product of noise model
p(t|y,f) and priorp(f|X). In this section we need to make two assumptions before doing any kind
of prediction. First of all, the joint distribution over every instarnfcbelonging to the training set
or not will be a multivariate Gaussian, that is a GP. Secondly, we will contioweork with the
maximum likelihood estimates of the class centres, which were deogtdd other words, if we
use Equation 9 to form a vectbrand substitute it into Equation 5 we will obtain the distribution
p(t|y,f).

( Follgwing the steps of the previous section, we could work out the postsimibutionp (f| t, Q)) .
However, this is not what we are looking for because what we truly vgantmake predictions out
of new test data. Therefore, what we seek ultimately is the distribyt{drf| D,d), where the dis-
tance variablel has been included. In order to do so, first we propose to compute theélistiribu-
tion p(t.d,f.|y,y), where the variablg, is given by an extended vector of the fofm= [fT, f*] T
with f* being a point outside the training set. Second, the distribytiof| D,d) can be found
from p (f,d,f+ y,y) by marginalising out the variablésand conditioning the resulting distribution
on the variables andd. Lastly, the dependence on the paramgtegin be eliminated by taking the
limit y — oo.

This process is facilitated if the joint distribution is factorised into well knowetdes. For
example,p(i,d.f+|y,y), can be given by the product of noise mode(f|y,f); Gaussian process
prior p(f); and constraining distributiop(d|y,f,y). Firstly, the modified noise model is defined
in terms off by applying the values af;'and rearranging, (see Appendix B). The result is

p(tly.f) O exp(—ngLf>, (18)

with L defined in Equation 16. Secondly, let the augmented véctoe correlated with a covariance
matrixK . € RMDx(1D) 'then the prior is a GP of the form

1 _
p(fy) O exp<—§fIK+1f+> : (19)
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For future reference, the inverselof. is partitioned as
C c
-1
e = (cT c*)

e = (k—KkK %)™

with

c = -—-cKk,

C K14+c K 1kkTK1,

Note that the vectok € RN*1 is filled with scalars = K (xV,x) for x € X.
Finally, the model still needs to consider that projected class means mugtdrateel by the dis-
tanced. The introduction of a constraining distribution of the form of Equation 17hatis needed.
We can express this distribution in termsf &y replacing the ternw" Am inside the exponential by
fTA9, whereA§ = Ny tyo — Ny ys1. Therefore the constraint becomes
1
Y2 Y T AG) 2
p(d|y,f,v>—¢mﬁexp(—§(d—f 29)%). (20)

Hence we can write the marginal distribution (after marginalisatian aé

p(f+t.dly.y) /p ty.f) p(dly.f,y) p(f)of.
This is a Gaussian integral that can be solved straightforwardly by agplion example) the ma-

terial on exponential integrals (Bishop, 1995) that we present in Agip&h After conditioningf*
on botht andd, the solution is a Gaussian of the form

p(f*D,d,y) O exp{—z(;)z (= f_*)z}

with mean

f* = lim —yd (6%)%c"Q1Ay.

Y—00

and variance

(*)2=1im (c,—c'Q ) 7,

Yy—00
where we have defined the matfX= L + C + yAJAYT.

Just asin Section 4.1, the dependencgisreliminated by taking the limit as— c. This procedure
is detailed in Appendix C. The parameters of the distribution are

_ Ta-1 'S
o QA KA (21)
AYTKA ~1KAY
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and
(6*)? =k, —kT (K1 =D 1)Kk, (22)

with the matrices
_ -1
D= (A—l_A—lKAy (B9TKA ~K AF) 1A9TKA—1)

and
A =BKLK +K. (23)

The predictive mean is given by a linear combination of the observed ldbdlss case ex-
pressed byly. Additionally, the predictive variance is composed by two terms, one reptieg
the test point and the other representing the observed data. Theks aesisimilar to those of
typical GP regression, described in (Williams, 1999). The scheme pedmizove will be termed
Bayesian Fisher’s discriminant (BFD) to facilitate its referencing.

5. Relationship with Other Models

There are several well known connections between discriminant @malyd other techniques. In
the statistics community, FLD is equivalent tb-eest orF-test for significant difference between the
mean of discriminants for two sampled classes, in fact, the statistic is designadetohie largest
possible value (Michie et al., 1994). In this section, however, we ptefexplore the connections
of our approach to some algorithms that have been applied to machine leprobigms, namely
kernel Fisher’s discriminant and the least-squares and proximal gygmbor machines.

5.1 Kernel Fisher’s Discriminant

The algorithm known as kernel Fisher’s discriminant consists of a twe gtegcedure. The first
consists of embedding the data spacento a possibly infinite dimensional reproducing kernel
Hilbert spacef via a kernel functiork. The second simply consists of applying FLD in this new
data space. As the second stage is exactly the same as standard linéairdiatr many of the
properties for FLD observed ix will hold also in F; for example, some form of regularisation
needs to be included. However there is an extra effort involved in greptne original data for a
new data representation in the induced space, namely in terms of the kercibm.

Data embedding is carried out by applying a non-linear transformetioti— ¥ that induces
a positive definite kernel function. From the theory of reproducingddsr(Aronszajn, 1950) it is
well known that the vector of compounds is a weighted combination of the tgag@mples, such
thatw = 31 ;ae(x). The application of this property plus the decomposition of the kernel into
its spectrum:

d
Kxx) = 3 N (@ ()

leads to the formulation of the Rayleigh coefficient in the feature space viiotjdhe path of other
kernel methods, the novelty in (Mika et al., 1999) resides in defining theekéunction directly
and working without any reference to the spectral-based formulation.

A direct implication of working in an infinite dimensional space is that there isanm fto
express directly the matric&s, andZg. Nonetheless, the discriminant function can still be written
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as the ruled (x*) = s, aWk (x*,x1)) + b with the coefficients)’s being obtained as the solution
of maximizing a new form of the statistic

() = a"™™Ma
~ o'Na”’

WhereM = (mg -~ mf) (mg —mf)T, N =KLK andm{ = N;!Ky,. Justas in FLD, in KFD
the ‘within scatter’ matrix is not full rank. This implies that some form of regsktion will need
to be applied when invertiny and this will generally be done by applyifds = N + 8C, with C
being the identity or the kernel matrices. Therefore the solution can be caurippsther solving
a generalised eigenproblem or by taking

Okep U (N —I—6C)71 (mg — mf) . (24)

We are now in position to show the equivalence of KFD and our scheme, BFD

Demonstration Disregarding the bias term, the projection of a new test point under KFD &vill b

Our claim is that Equation 21 is equivalent to Equation 25. In other wordsthbarojection of a
new test point in KFD is equal to the mean of the predictive distribution fortatest under BFD.
As in both equations the vecthris the same, we can write Equation 21 as

O
f* = agepk,

with the vector
agep O dATIKAY (26)

and the constant of proportionality being given by the denominator of {218n our proof reduces
to showing that the coefficientscep andaggp are the same.

On one hand, we start by analysing KFD’s main result which is given lyafion 24. From the
definition ofm{ , the differencel m —m7 ) can be written a& A, with Ay = (Ny tyo — N ty1),
and by regularising\ with a multiple of the kernel matrix we obtain

akeo 0 (KLK +B~1K) 'Kay,

where B~1 is the regularisation coefficient.
On the other hand, substituting the valuefofEquation 23) into Equation 26, premultiplying By
and ignoringd we get
agro 0 (KLK +B7K) KA,
which clearly is the regularised version of KFD that we were talking about.
As an additional insight, we observe that the coefficiemsp have an equivalemikrp if and

only if KFD uses a regularisation based on a multiple of the kernel matrix. Thivaence is lost
if the regulariser is based on the identity matrix.
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5.2 Least Squares Support Vector Machines

A least squares support vector machine (LS-SVM) implements a two-nostriunctiorf and uses
equality constraints instead of the inequalities present in the standard Safdhiky 1995). This
greatly simplifies the way to obtain the solution as the resulting system of equeilimsar. Un-
fortunately the sparseness which is characteristic of the SVM is lost. U@'sSNave been related
to ridge regression with modified targets, discriminant analysis in the fegiaoe $KFD) and, as
many other kernelised algorithms, to GP’s.

Given a set of training dat® = (X,y) with labelsy) € {—1,1} Vi, the primal optimisation
problem for an LS-SVM is expressed as

R W A
min C—ZWW—i-Z <e)

st. e = (yW—wTxM) vn,

with pandd being positive coefficients. This formulation in particular was given by&astel et al.
(2002) to elaborate the Bayesian framework of the LS-SVM. Such framieis nothing else but
the recognition that the primal problem implements a regularised least squetefsinction with
regression to the labels. This cost function arises from the model depidtgglire 4. In this figure,
the joint distribution over labels and parameters factorisgs(gsw| X) = p(y|X,w) x p(w), with

noise modep (y|X,w) = AL (Xw,{ 1) and priorp(w) = AL (O[ut1).

Figure 4: LS-SVM noise model assumes a regularised least squarekiootibn. The model depicted can
be interpreted as the joint distributiqr{y, w) = p(y|X,w) p(w), whereby the noise is Gaussian,
p(y|X,w) = A (Xw,Z1), as is the priop (w) = A (0| u~11). In this model the targets and the
labels are the sante=y.

It is clear from the figure that LS-SVM employs a different noise model 8@&D. In practice,
the regression to the labels assumption can work well. However, it sdiftersthe fundamental
missconception that the class labed$ have to coincide with the projected class centgesThe
main difference with our algorithm is that the LS-SVM assumes that targetabeld are the same,

t =y, but we do not.

Van Gestel et al. (2002) were aware of this limitafiand relaxed the assumptidns y by
modelling the distributiomnp (fq] X,w) by application of Bayes' rule. In other words, they computed
p(tq|X,w) O p(X|tg,w) p(tg). Thisis in marked contrast with the strategy adopted in this paper.
As is shown by Equation 12, in BFD we model directly the distribup’x{riq} X,y,w). Hence it can

3. This is instead of the tradition&.
4. See Section 3.2 of their paper.
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be seen that in our approaghis used as a conditioning value whereas in Van Gestel's paper it is
not.

5.2.1 RROXIMAL SUPPORTVECTORMACHINES

Another related approach is known as the proximal support vector neachP-SVM, proposed by
Fung and Mangasarian (2001). A P-SVM is very close to LS-SVM in tinses¢hat both of them
consider equality constraints and implement regularised least squatdarmi®ns. However, P-
SVM’s have been interpreted from the point of view of classifying poigtslbstering data around
two parallel hyperplanes; whereas LS-SVM’s have been interpreded the more classical point
of view of maximising the margin around a single hyperplane. P-SVM’s hisedgeen approached
from a probabilistic point of view by Agarwal (2002). Indeed, by follogy Agarwal’s work it
is possible to see that they also implement the graphical model depicted in Bigexeept for a
few changes in parameters. Ignoring the bias term, in P-SVM’s the jointtdisom p(y,w|X) is
factorised according to the noise moggly| X, w) = A (Xw,c?l) and the prior distributiom (w) =
AL (0,va?l). The parametes? is the variance of the residualshile v is known as ridge parameter.
In many applications, such as data mining, the ridge parameter is choseoshkyvatidation. It is
clear that this task becomes unfeasible if the ridge parameter is taken to gmmexti considering
one parameter for every ‘predictor’, in other words, if we take as rgglameter a matrix of the
formdiag(vy,...,Vq).

In (Agarwal, 2002) the problem of tuning the ridge parameter is addidnsstudying its effects
on ridge regression. This can be observed by writing up the reguld?isdM cost function

1 1
CpsymM= o2 (y —Xw)T (y — Xw) + GWTW .
Whenevew becomes small, the ridge part takes over, but if it becomes large the ‘paigekill
dominate. Nevertheless, it is clear that BFD implements a different type of modgklel when
compared to LS-SVM's and P-SVM’s.

6. Connections with the Generalisation Error

In Section 3.1.1 we saw that optimisation of the proposed noise model and Raylefigh’s coef-
ficient give equivalent results. In both cases the solution to the discritjmablem was given by
adjusting the level of. In order to understand better the physical significance that this e
is useful to analyse the problem from the point of view of classification offapulations. Specif-
ically, during this section we will refer to the plot in Figure 5 and always mssthat both classes
have the same cost of misclassification.

In Figure 5, it can be observed that both mapping distributions sharertree@@cision. Under
this assumption, for fixed, we can see that the generalisation error will decreagkiasreases,
i.e. asP~1/2 decreases. From the point of view of projected data, the problem kftedsinom
computing the direction of discrimination to that of minimising the generalisation #mrough the
adjustment of the variablg

The likelihood functiorL (f) defined in Equation 11 allows us to think @fas an extra random
variable. Hence placing a prior over it not only places a prior over tinergdisation error but on

5. The residuals are defined@® =y —wTx(M wvn.
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Figure 5: Generalisation error as it relatesf@ndd. The shaded area gives the generalisation error if the
true densities conform to those given by two Gaussians wgtlakprecisiorf3. The class centres
have been denoted oy with g € {1,0}.

Rayleigh’s coefficient as well. Consider, for example, the case wher@ and the class priors are
equal: if the data does truly map to the mixture distribution, then the generalisatiwwal be

Let Equation 11 be a ‘likelihood function’, then by considering a gamma digtab G (3| a,b) as
a prior,

p(B) = rt();ﬁ“exp(—bB%

the MAP solution for3 will be (see Appendix D)

N+2a—2

. 27
02+05+2b @

BMAP =

By settinga = b = 0.5 we indirectly obtain a uniform distribution ov&eg, which is also a chi-
square distribution with one degree of freedom. This special case leadsetw expression of the
form

N—1

, 28
of+of+1 (28)

BMAP =

which can be viewed as a regularised version of Equation 8. The pritat atso be used to bigds
towards low or high generalisation errors if this is thought appropriate.

From the discussion of Section 5.1, taking the limitfas»> « leads to the standard kernel

Fisher’s discriminant. From Figure 5 it can be seen tha griori setting of3~* to zero is equiva-
lent to assuming that we can achieve a generalisation error of zero.
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OTHER SPECIAL CASES

Taking the limit asp — 0 causes the mean prediction fbr and its variance to take on a much
simpler form,

f* = agk
where "
q.— 94y
B~ AYTKAY’
and

*\ 2 T AyTAy
(o) =k, —k mk.
This result is remarkable for the absence of any requirement to invekettmel matrix, which
greatly reduces the computational requirements of this algorithm. In facinglfs to zero leads
to the well known Parzen windows classifier, sometimes known as probabilesfi@l network,
(Duda and Hart, 1973). See the work of Schélkopf and Smola (200Rotn (2005) for some
related studies in limiting cases.

7. Optimising Kernel Parameters

One key advantage of our formulation is that it leads to a principled apprfoacetermining all
the model parameters. In the Bayesian formalism it is quite common to make useroétginal
likelihood to reach this purpose, therefore we look to optimise

L(6) =logp(t|D,6y),

with respect to the model paramet&s Recall in Section 3.1 that we optimised the likelihood with
respect to the parametaggandc; leading to a new encoding of the targets

. nyq)
tqg= Yg-
q ( Nq q

We back substituted these values into the likelihood in order to demonstrateuivalegce with
maximisation of Rayleigh's coefficient. Unfortunately, one side effect &f fiocess is that it
makes the new targetsdependent on the inputs. As a consequence, the targets will shift when-
ever the kernel parameters are changed. As expressed in SectignoB4. dolution could be to
iterate between determinirig, t1 and optimising the rest of the parameters. This approach is sim-
ple, but it may be difficult to prove convergence properties. We thexgboefer to rely on an
expectation-maximisation (EM) algorithm (Dempster et al., 1977) which fisdhseissue and for
which convergence is proved.

7.1 EM Algorithm

We denote the parameters of the prior@sand the complete set of model parameter®©as-
{©x,B}. Then the goal is to §o|ve the problem arg iydeg p (f\ X,@t), where we have made use
again of the modified targets In order to solve the problem, a variational lower bound on the
marginal log-likelihood is imposed

(1] y.f.B) p(f|X,6x)
q(f)

(@)= [aflog” df, (29)
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whereq(f) is a distribution over the latent variables that is independent on the cwakm@©;.
EM consists of the alternation of the maximisation/ofvith respect tay(f) and©;, respectively,
by holding the other fixed. This procedure repeated iteratively guas@tdocal maxima for the
marginal likelihood will be found. Thus our algorithm will be composed of theraation of the
following steps:

E-step Given the current paramete@‘, approximate the posterior with
() O sy
g (f) Dexp| —5F 27 ),

where
Sp= (K 14pL) . (30)

M-step Fix g (f) to its current value and make the update

o+l =arg rgtaxL, (31)

where the evidence is computedzas- (logp (t|y,f,B) p(f|X, G)k)>q . We have used the notation
() pix to indicate an expectation under the distributipix).

Maximisation with respect t®y, the kernel parameters, cannot be done in closed form and
has to rely on some optimisation routine, for example gradient descent,dteeiefs necessary
to specify the gradients of Equation 29 w.i@x. An update for3 can be worked out quite easily
because the maximisation d@f with respect to this parameter has a closed form solution. The

expression obtained is of the form

®

Bit_ N
— 2 =2’
01%—00

whereo? = S yn <( fn— u1)2> and the expectatiofi) is computed under the predictive distribution
for thenth training point, see Equation 21. An expressionc_féis given in a similar way.

7.2 Updating3

Following our discussion in Section 6, we propose (and in fact usedatieoqu28 to update the
value of3 at every iteration. We repeat the expression here
Ait N—-1

R 32
MAP 6%—1—6(2)—1—1 ( )

The resulting optimisation framework is outlined in Algorithm 1.

8. Experiments

In this section we report the results of experiments that we carried outttouealgorithmic ap-
proach. A first batch of experiments was carried out on classificati@mymthetic data with the
purpose of understanding better the behaviour of the algorithm, andéntrtest it more realisti-
cally, a second batch of experiments was carried out on benchmark data.
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Algorithm 1 A possible ordering of the updates.
SelectConvergence toleranceg andne,.

Setlnitial values®” andB©.

Require Data-setD = (X,y).

while change ir®) < ng and change i|®|((it) <ne, do

e Compute kernel matrik usinge,((it).

e UpdateZ, with Equation 30

e Use scale conjugate gradients to maximiseith respect tcest). Apply Equation 31

e UpdateB™, use Equation 32.
end

8.1 Toy Data

As a first experiment, we compared the KFD, LS-SVM and BFD algorithm®ondynthetic data
sets using an RBF kernel. Additionally, as a second experiment, we ud2davigiy an ARD prior

on the same data sets to observe some of the capabilities of our approamtuenrio facilitate
further reference, each data set will be named according to its chasticse Firstly,Spiral® can

only be separated by highly non-linear decision boundar@gerlap comes from two Gaussian
distributions with equal covariance, and is expected to be separated bgaa fitane. Bumpy
comes from two Gaussians but by being rotated at 90 degrees, quddnatidaries are called for.
Finally, Relevanceis a case where only one dimension of the data is relevant to separate the data

We hypothesized BFD would perform better than LS-SVM and KFD in all tees because
it models directly the class conditional densities. In order to compare the dipfgeaches, we
trained KFD, LS-SVM and BFD classifiers with a standard RBF kernelpasied in Appendix E.
Model parameters for KFD and LS-SVM were selected by 10-fold evatidation whereas BFD
was trained by maximising the evidence, using Algorithm 1.

In Figure 6 we present a comparison of the three algorithms. We carnvelessimilar perfor-
mance in the case @piral; however it is encouraging to observe that BFD gives more accurate
results in the rest of the cases. Despite not producing a straight line,afEBFD give accu-
rate results irDverlap, whereas LS-SVM overfits. If none of the algorithms separates this data
set with a line it is because obtaining a linear boundary from an RBF kermeetremely difficult
(see Gramacy and Lee, 2005). Bumpy, the three algorithms give arguably the same solution,
with BFD having the smoothest boundary. LastlyRalevanceall the algorithms provide accurate
results, with BFD giving the smoothest solution. In all these experiments ihesaitial ©; = 1
for BFD and furthermore, observed that BFD did not present any inidis problems. In all our
simulations, we let the algorithm stop whenexgr< 1 x 107 or the change img, < 1x 107°.

As a second experiment, we were interested in training BFD to test the diffiieets of the
following kernel

k(x',x}) = elexp<—e—22 (x! —xj)T Oard (X —xj)> +03 (xi)T OaraX! 4 84+ 855ij, (33)

6. This was first used by Lang and Witbrock (1988).
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Figure 6: Comparison of classification of synthetic data sets usingBig kernel. Two classes are shown as
pluses and circles. The separating lines were obtaineddjgqting test data over a grid. The lines
in blue (dark), magenta (dashed) and cyan (gray) were aatavith BFD, KFD and LS-SVM
respectively. Kernel and regularisation parameters fob Kid LS-SVM were obtained by 10-
fold cross validation, whereas BFD related parameters wietaned by evidence maximisation.
We trained BFD using Algorithm 1; details of our implemeidas are given in Appendix E.

whered;; is the Kronecker delta and the mat®gq = diag(6e, . . .,06.4-1) With d being the di-
mension ofX. This kernel has four components: an RBF part compos€8106,,044); a linear
part, composed off3,Oaq); a bias term given by, and the so-called ‘nugget’ ter@s which,
for a large enough valugs, ensures thak is positive definite and therefore invertible at all times.
Therefore, the parameters of the model@ye= (O, 3), with ©x = (041,...,06+4d-1).

On this occassion, BFD got stuck into local minima so we resorted to do mdeéetiea to
choose the best solution. This process was carried out by traininglateket with three different
initial values forB, while the remaining;.., were always initialised to 1. In the casesBafmpy and
Relevancewe made the initiah, = [10—2, 101, 1} , for Spiral we made it equal tfl, 10, 100 and
for Overlap, [1.5x 102, 10-%, 1]. From the resulting solutions (three per data set), we selected the
model that produced the highest marginal likeliha@dn all our simulations, we let the algorithm
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stop wheneveng < 1 x 10-° or the change img, < 1 x 10°%. The parametep was always
initialised to 1. The selected models for each set are summarised in Figure 7.

The results are promising. I8piral, the separating plane is highly non-linear as expected.
Meanwhile, we observe i@verlap that the predominating decision boundary in the solution is
linear. InBumpy, the boundary starts to resemble a quadratic and, finallRéevance only one
dimension of the data is used to classify the data. Note that the valu®g, fsummarised in Table 1,
go in accordance with these observations. For exampl®yerlap andRelevance the value of
O6 is significantly lower thar®, indicating that only one dimension of the data is relevant for the
solution. This is markedly different to the casesSyiral and Bumpy, where both dimensions
(66 andB7) have been given relatively the same weights. Hence, for every casave obtained
sensible solutions. All the kernel parameters determined by the algoriththgféour experiments,
are given in Table 1.
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Bumpy (L = 636.8) Relevance £ = 9989)

Figure 7: Classification results on toy data sets using an ARD prioro Tlasses are shown as pluses and
circles. The decision boundary is given by the solid line ttBalines indicate points at/4 of
the distance (as measured in the projected space) from tigateboundary to the class mean.
Log-likelihood values appear enclosed by brackets.
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Figure 8 shows an example of the result of train8gral with a poor initialisation. It can be
seen that the value of the marginal likelihood in this case is smaller to the oremfreésn Figure 7.
However, this behaviour is not exclusive of BFD, indeed we obseawasty similar situation with
a poorly initialised Bayesian LS-SVM and with KFD cross-validated with a badlgcted grid.
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Figure 8: The solution for the spiral data with a poor initialisatién= 1. Associated log-likelihood. =

5627.
Experiment In6; In6, InB3 N6, InB5 InBg In 67
Spiral 8.5015| —-9.5588| 1.0139| —4.9759| —10.6373 —2.78 | —2.9609
Overlap | 0.5011| -—7.9801| 1.1455| —4.8319| —-8.5990| —6.9953| —0.1026
Bumpy | 4.9836| —10.8222| 1.1660| —4.7495| —135996 | —3.9131| —3.7030
Relevance| 4.6004| —9.5036| 1.2734| —4.9351| —13.8155| —6.9968 | —1.5386

Table 1: log-values of the parameters learnt with BFD for the differeyt éxperiments. IDverlap and
Relevancethe weights of the featuf@; are low if compared with the featufg. This is in contrast
with Spiral andBumpy, where both features have been given relatively the samghigei

8.2 Benchmark Data Sets

In order to evaluate the performance of our approach, we tested fieeedif algorithms on well
known problems. The algorithms used were: linear and quadratic discritai(laDA and QDA),
KFD, LS-SVM and BFD. The last two algorithms provided the opportunity #® ARD priors so
they were reported as well. We used a synthetictsaigna) along with 12 other real world data sets
coming from theUCI, DELVE andSTATLOG repositories. In particular, we used instances of
these data that had been preprocessed an organised by Ratschd&@)Itq do binary classification
tests. The main difference between the original data and Réatsch’s is thatverted every problem

7. Thebreast cancerdomain was obtained from the University Medical Center, Institute of @ggo Ljubljana,
Yugoslavia. Thanks to M. Zwitter and M. Soklic for the data.
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into binary classes and randomly partitioned every data set into 100 tramihigsting instances.
In addition, every instance was normalised to have zero mean and uniataeliation. More
details can be found at (Ratsch et al., 1998).

Mika et al. (1999) and Van Gestel et al. (2002) have given two of thé¢ maepth comparisons
of algorithms related to FLD. Unfortunately, the reported performance ih bases is given in
terms of test-set accuracy (or error rates), which implied not only thes@a@nt of the bias term
but also the implicit assumption that the misclassification costs of each clas&kneva. Given
that discriminant methods operate independently of the method of bias chactelt it more
appropriate to use a bias independent measure like the area under trUR@CAUC).

The LDA and QDA classifiers were provided by the Matlab functieassify with the options
‘linear’ and ‘quadratic’, respectively. In both cases, no trainingsehaas required, as described
by Michie et al. (1994). The output probabilities were used as latent ydatu&ace the curves.
Meanwhile, for KFD’s parameter selection we made use of the parametmaiged previously by
Mika et al. (1999) and which are available Hdtp://mlg.anu.edu.au/"raetsch . The ROC
curves for KFD were thus generated by projecting every instance téshset over the direction of
discrimination.

Mika trained a KFD on the first five training partitions of a given data setsatelcted the model
parameters to be the median over those five estimates. A detailed explanatieregpérimental
setup for KFD and related approaches can be found in Ratsch et @8)(a8d Mika et al. (1999).

In the case of LS-SVM, we tried to follow a similar process to estimate the paresnb@nce we
trained LS-SVM’s on the first five realisations of the training data and tetcted the median of
the resulting parameters as estimates. In the same way, projections of testdatesed to generate
the ROC curves.

Finally, for BFD we also tried to follow the same procedure. We trained a BFBeinwith Ny, = 8
different initialisations over the first five training instances of each ddtaHsnce we obtained an
array of parameters of dimensionx® where the rows were the initialisations, the columns were
the partitions and each element a ved@gpr For each column, we selected the results that gave the
highest marginal likelihood, so that the array reduced from 40 to onlyrbezies. Then we followed
the KFD procedure of selecting the median over those parameters. Inetkeesgments, we used
the tolerancegg andng, to be less than & 10-6. More details of the experimental setup are given
in Appendix E.

In Table 2 we report the averages of the AUC’s over all the testing inssanica given data set.
In the cases of KFD, LS-SVM and BFD we used the RBF kernel of AdpeB. Computation of
the ROC curves were done with the functiReC provided by Pelckmans et al. (2003) and Suykens
et al. (2002) and no further processing of the curves was reqtineidstance removing convexities
was unnecessary.

It can be observed that BFD outperforms all the other methods iB@lata sets, comes second in 3
cases and third in the remaining 4. In particular, it is remarkable to see Bff@méng consistently
better than KFD across most of the problem domains. It seems that leavifrgdhession to the
labels’ assumption pays-off in terms of areas under the ROC curvesl$bisnteresting to observe
that LDA performs well in almost all the problems (excbphang and it thus indicates that most
of these data sets could be separated with a linear hyperplane with ateeptalits. From these
results we can conclude that the better designed noise model in BFD allowsiip&rform ‘similar’

8. Data sets can be obtained frattp://mig.anu.edu.au/~raetsch
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state of the art approaches. The P-SVM was not included in the expésibvegause it is a ‘type-of’
LS-SVM.

RBF Banana Breast Diabetis | German Heart Image
LDA | 53.7(1.3)| 71.2(5.2)| 82.7(1.6) | 78.5(2.5)| 90.1 (2.6)| 87.9 (0.7)
QDA 64.7 (2.5)| 70.8 (5.5)| 80.3(2.0)| 76.5(2.6)| 86.9(3.1)| 91.2 (1.5)
KFD 96.1(0.4) | 70.9(5.8)| 76.7 (2.3)| 69.9 (4.7)| 88.8 (3.0)| 99.5(0.1)
LS-SVM | 95.5(0.4)| 61.1 (5.2)| 73.7 (2.3)| 74.0(2.8)| 89.9 (2.8)| 98.8 (0.3)
BFD 95.1(0.6)| 73.4(5.3 | 81.1(1.9)| 79.0(2.5 | 90.9(2.7) | 98.2(0.4)
RBF Ringnorm | Flare S. Splice Thyroid Titanic | Twonorm | Waveform
LDA 80.0(0.8) | 73.9(1.9 | 91.8(0.4)| 86.6 (5.8)| 70.8 (1.0)| 99.7 (0.0)| 92.5(0.7)
QDA 99.8(0.0)| 61.6 (1.8)| 93.0(0.4) | 97.5(1.7)| 71.4(2.0)| 99.5(0.0)| 91.2(0.4)
KFD 99.8 (0.0) | 65.6 (2.5)| 91.3(0.5)| 97.4(3.6)| 70.9 (1.0)| 99.8(0.0) | 88.6 (0.5)
LS-SVM | 99.6 (0.1) | 73.8(1.6)| 88.2(0.7)| 97.8 (1.4)| 73.8(2.4) | 93.8(0.8)| 83.3(1.2)
BFD 99.9(0.0) | 72.9(2.0)| 91.6 (0.5)| 98.5(1.1) | 71.6 (0.6)| 99.8(0.0) | 91.6 (0.8)

Table 2: Average classification results of benchmark data. We rapegn and standard deviations (within
brackets) of the AUC over all testing instances. The contpatgorithms are: linear discriminant
(LDA), quadratic discriminant (QDA), kernel Fisher’s disninant (KFD), least squares support
vector machine (LS-SVM) and Bayesian Fisher’s discrimin@#D). In all the experiments an
RBF kernel was used. It can be observed that BFD performerbet6 out of 13 problem domains.

The BFD framework allows for the inclusion of some type of ARD priors. ohporation of
this type of prior performs feature selection by assigning very high weigls#sme of the posterior
values of the hyperparameters and hence prunning out featuresMgémekay, 1995). We were
interested in comparing our approach with the Bayesian version of theviMg-&hich can also
make use of ARD priors. Our results are presented in Table 3. In thisttasever, the comparison
is tighter with LS-SVM performing narrowly better than BFD in 7 out of the 18qems. The EM
algorithm we proposed is slower to converge than direct optimisation of thgimahlikelihood as
can be applied to the LS-SVM. Our use of the EM algorithm is necessarjodhe nature of the
moving targets, this is a disadvantage of our approach. Hence to obtdutiarsin a reasonable
time, we were obliged to reduce the number of initialisationse- 3 and to increase the tolerances
ng andne, to be less than £ 10° and 1x 10-%, respectively.

In Figure 9 we show a comparison of the weights assigned to each feattwe mlata sets,
Ringnorm and Splice. We were interested on showing if there was anglation on the degree
of importance assigned to each feature by the two algorithms. Ringnormpdind ®ere specially
selected because they were examples in which BFD performed better (allgigamd worse than
LS-SVM, respectively. In the figure, we report the values of the swaveights©,q, for BFD
while for LS-SVM we report the ‘ranking’ coefficients produced by tt#&-SVM implementation
we used (see Appendix E). These coefficients are related to the jges-or identical results we
expected to observe a high degree of correlation between BFD weightsSa8VM rankings. As a
first example, in Figure 9 we observe that Ringnorm is assigned varieelsay BFD and LS-SVM.
In fact, for feature$3 — 6] and 18, there is a reasonable degree of overlap between assigresi valu
and this could help to explain why both algorithms performed similarly well. Thismlasion goes
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in accordance with our intuition. It is noticeable that none of the feature& i IBas been driven to

zero, which indicates that this algorithm required all of the features to keaatution. The second

case corresponds to Splice. In this data set, LS-SVM performed betteB&ia by a wide margin

and this could well be explained by the aggressive pruning of featuae8&D performed; as it is
shown in the figure.

ARD Banana Breast Diabetis | German Heart Image
LS-SVM | 91.6 (1.0)| 72.3 (5.4)| 83.3(1.7) | 79.5(2.5 | 90.5(2.6)| 98.9(0.6)
BFD 95.1(0.6) | 74.2(5.1) | 81.1(1.6)| 77.9 (2.6)| 90.9(2.7) | 76.8 (0.9)
ARD Ringnorm| Flare S. Splice Thyroid Titanic Twonorm | Waveform
LS-SVM | 99.8 (0.0) | 66.0(3.3)| 95.7(0.3) | 99.5(0.5 | 73.6(2.6) | 99.6 (0.0) | 96.4(0.2
BFD 99.9(0.0) | 73.2(1.7) | 88.8(0.5)| 98.9(0.8)| 71.9(1.1)| 99.7(0.0) | 94.0(0.1)

Table 3: Average classification results of benchmark data.
brackets) of the AUC over all testing instances. This tablagares the BFD algorithm against an

We repesn and standard deviations (within

LS-SVM, both employing ARD based kernels. In this case BiayekS-SVM outperforms BFD
in 7 out of 13 cases.
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Figure 9: Plot of the feature values learned by BFD and LS-SVM on Rimgnand Splice data sets. For

both algorithms we used an ARD kernel. The weights learnddSi&§VM are plotted in cyan
(gray) and correspond to the lgfaxis, whereas the weights learned in BFD are plotted in blue

(dark) and correspond to the rigyvaxis. We report weight values for BFD while for LS-SVM,

‘ranking’ coefficients. These coefficients are related towleights,4. Ideally we would expect
to see a perfect match between feature values of BFD andigski LS-SVM. As it is shown in

Table 3, BFD performed better in Ringnorm while LS-SVM didtbein Splice.

8.2.1 HSTOGRAMS OFPROJECTEDDATA

A good way to visualize whether an FLD-based algorithm is performing adetyconsists of gen-
erating histograms of projected data. We briefly compare the output distrisigenerated by BFD

and KFD on training and test instances of the Waveform and Twonornsdega\We used the data

produced from the experiments with an RBF kernel to generate FigurasdlD1.
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In the Figure 10, BFD produced very consistent outputs between traamidgest sets for both
Twonorm and Waveform. In particular, it is encouraging to see that dworprojects very close
to two Gaussian distributions because this data set comes from two multivasiassiéns. Mean-
while, in Figure 11, KFD produced very consistent output distributionsvaniorm but failed to do
so in Waveform. Following similar arguments to those of Mika (2002), we betl@gds one of the
reasons for BFD performing better than KFD, in terms of AUC.

Twonorm train set Waveform train set
0.12¢

0.1r 0.08- —
0.08-
0.06r
0.04-

0.02-

0 [1
1 2 3 1 2 3
Twonorm test set Waveform test set
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0.09-
0.1+ - 0.08 -
[ 0.07- -
0.08- _ I
M 0.06r M
0.06 0.05r
0.04-
0.04- 0.03
0.02-
0.02-
0.01
0 [l 0 = ‘
1 2 3 1 2 3

Figure 10: Comparison of output distributions on training and tess $et BFD. The data sets depicted
are Twonorm and Waveform, respectively. It is clearly oleable that training and test set
distributions for BFD are quite consistent.

9. Conclusions and Future Work

We have presented a Bayesian probabilistic approach to discriminans@nlgt can correspond
to kernel Fisher’s discriminant. Regularisation of the discriminant arisesaily in the proposed
framework and through maximisation of the marginal likelihood we were ableterdane kernel
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Twonorm train set Waveform train set
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Figure 11: Comparison of output distributions on training and tess $et KFD. The data sets depicted
are Twonorm and Waveform. Observe that training and testilolisions for Waveform are
noticeably different; this might explain KFD’s lower clé#sation performance if compared to
BFD, see Table 2.

parameters. This paper has established the theoretical foundationsapipitteich and has shown
that for a range of simple toy problems the methodology does discover eekasibel parameters.
The optimisation is only guaranteed to find a local minimum and therefore the quititg eolu-
tion can be sensitive to the initialisation. We performed experiments on rell daia obtaining
results which are competitive with the state of the art, moreover, we were atestume relevance
determination on the data set features.

Future directions of this work will be centred on sparsifying the kernel imatwe intend
to adapt the informative vector machine model to our framework (Lawrehed., 2003). This
should make larger data sets practical because at present, we aceckbir theO (N3) complexity
associated with inverting the kernel matrix. Another direction of reseaiiticansist of allowing
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the model to learn in the presence of label noise, building on work by lresgrand Schoélkopf
(2001).
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Appendix A. Weight Space Approach

In order to derive the distribution af under the constraird, we first realise that the combination
of p(w|D) andp(d|D,w,y) yields a Gaussian distribution. Therefore, after conditionind,ahe
resulting distribution will be Gaussian with the fonpiw| D, d,y) = \I/im A (w, %) and parameters

= limydZAm (34)

Y—00
and

:\I/irrgo(B +yAmAmT)71. (35)

Inversion of% through Morrison-Woodbury formula allows us to take the limit, such as is show
below

1 Tp-1
s — im (Bt B~*AmAm'B 7
y—o y 14+AmTB-1Am
hence
~1 Tp-1
s _ B*l—B AmAmM' B .
AmTB—1Am

The mearw can be obtained by substituting Equation 35 (without evaluating the limit) into Equatio
34. Then, the application of Morrison-Woodbury formula and some extrapukations will lead
to a form suitable for taking the limit.

Appendix B. Expressingp (|f,y) in terms of fand L

Disregarding an additive constant, the log of the modified noise mm@fqaf,y) is

I\)l'@

N
Zl {Yn C1— fn +(1—yn) (Co— fn)z} )

L(Co,61) =
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where we have used Equation 6 as base. From Equation 9, we substitvaigeof each estimate
Cq SO that
_ Bl 1 ? 1 g ;
L = _Enzl Yn N—lY1f— fn) +(1—Yn) N—OYOf— fn

_ Bler 1 1ot 1 rer
= 75 ff —N—1Y1ff }’1—|\l—03/0f'f Yo
_ B

= Z(f Lf).

Appendix C. Gaussian Process Approach

In this section we find the parameters of a new projected data point, namely isf tesad variance
(0*)?, as specified in Equations 21 and 22. In the model we have three typéstritiutions:

p (f y,f), the noise modelp (f.. ), an extended GP prior that includes the pdinand the constraint
p(d|y,f,y). In order to derive the distributiop( f*| D, d,y) we first compute the joint distribution

p(f..t.d|y.y) = p(t|y.f) p(dly.f,y) p(fs),

and then take advantage of the separability,ointo [fT, f*]T to be able to marginalise the latent
variabled, which are associated with the training set. In other words we do

p(fidlyy) = [p(fLidy.y)af (36)

The rest of the process consists of conditionfrigon the target$ and the distance and on taking
the limity — co. In the remaining part of this section we detail this process.

C.1 Derivations

Grouping Equations 18, 19 and 20 gives

p(f+7f7d

y,y) O exp{—é 5 >

s Lk~ Y(d —fTAy)Z} .

The idea consists of expanding and collecting termisand f*. In order to do so, we partition the

inverse of the extended kernel by makiitig1 = { c? CC* ] . Thus we know that the product

fIKIY, = fTCf+2f*cTf+c, ()%
Hence we get

p(ff.dly.y) O exp{-3TQf ~(frc—ydag)"f - dc. (1%} 37)

with
Q= (BL +C+yAJAYT). (38)
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MARGINALISING LATENT VARIABLES

We are now in position to determine the distribution for a new mapping he marginalisation of
f is done by computing the integral of Equation 36 using as integrand thessiqmen (37). First

we observe that the tenfk%c*(f*)Z) will be required when computing the distribution ovier
and when taking the limit, so it will be kept apart from the integral and usedater stage.

The integral in Equation 36 is of exponential form, so we know how to solvedtstraightfor-
ward way. See below that

/exp(—:—ZLfTQer hTf> of O exp(%hTth> ,

where we recognise that
h = —(f'c—yday)™ .

Therefore the result, after incorporatiﬁgt%c*(f*f), is

(1~ Edlyy) O exp{ 370 - Ze. (12} (39)

OBTAINING CONDITIONAL DISTRIBUTION

The distributionp( f*| D,d,y), with D = (f,y), is obtained by conditioning the expression in (39)
ont andd. Therefore we will work with the argument inside tbeponentialof (39) and group
terms inf*, ignoring the rest. We begin by substitutihgnd expanding

3 (Fc—ydg)TQ (f*cydag) — 5o (1) =

2ydc’Q 1Ay ] 1 2 n 6T O-1AG
C*—CTQflcf :| + E [(yd) AyTQ 1Ay} .

Completing the squares dri gives a Gaussian

1 — *
~3(e—cTQo) (7

p( f*’Q)Jdvy) 0 exp{_z(;‘*)Z (f*_ F()Z}

where the variance is

(0%) = lim (e, — c'Q o) " (40)
and the mean, B
fr=— lim yd (0*)?cTQ 1ay. (41)

WORKING OUT (0*)?

We now determine the limit— o in Equation 40. First, we express each of the terms that form the
inverse of the kernel matrix:

¢, = (k. —K"K k), (42)
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c=—c, Kk, (43)

and
C=K '+ K kkTK ™. (44)

Partitioning the kernel matrix implies that

K k
Substituting (38) and (43) into Equation 40 gives
(0*)2 = fim (c* — AT [BKLK +yKAGAFTK +KCK ] ™ k) )

The producKCK can be worked out by using Equation 44. Therefore

(0*)? = ylingo (c* — 2k [BKLK +YKAJAYTK +K +c.kk ] _lk) o

Defining
Dy = YKAJAYTK +A, (45)
with A = BKLK +K leads to
_ -1
(@) = lim e — T (Dy+ckk™) k|
= ¢ '+k'D, k.

Using Equation 42, we arrive to an expression for wr(i(xh)2 only depends og by the termD,,

(0%)? = lim ke —KkT (K™t —Dy1)k]. (46)

Working with D \71 Inversion ofDy (Equation 45) through the Morrison-Woodbury lemma allows
us to obtairD by taking the limit. See below.

(1 N
D, t=A"T-ATKAY <y +AYTKA 1KAy> AYTKA L
Therefore, by taking — o we obtain

-1
LAyTKA —1)

D= (A™1-ATIKAY (A9TKAIKAY)
Substituting this expression into (46) gives the desired result,

(0*)? =k, —kT (K"1-D1)k.
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WORKING OUT THE MEAN

Substituting Equations 38 and 43, the valueQdandc, into Equation 41 leads to

f* = limyd (0%)2c.k™ (Dy+c.kkT) T KA.

Y—00

Inverting the matrix(Dy+ c*kkT) and substituting the value of gives

> . * _ _ -1 _ I,
f* = limyd (o )? [ke—KT (K1 =Dy ) k] "kTDyKAY.

Using (46) implies that

f. = limydk "Dy 'K Ay.

Yy—o00

Substituting (45) and inverting gives

-1
fr= y|im d (\—1/ +A9TKA1KA§/> kTA~IKAY.
Taking the limit gives the desired result

— dkTA—KAY

fom o
T AYTKA -IKAY

Appendix D. Obtaining MAP Solution for 3

Making
Vo= Shayn(6— )+ 31 (1 Yn) (Go— fn)?,
= 02+03%

the modified noise mod&becomes
R B BN/Z B
p(tif,B) = Wexp _EV .

Then combining it with a gamma pri@ (3| a,b) gives a posterior of the form
G(BIN/2+4a,(V/2+b)), thatis

p(BIt.f) O BN/Z*alexp{—B<\§/+b)}.

Taking the derivative of the log of this distribution, equating the result to aad solving will give
Equation 27.

Appendix E. Experimental Setup

In this section we give more details on the way we carried out our experiroenity and real data.

9. Use Equation 6 and substitute the class cemy&y their estimatesg”
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E.1 Toy Data

In all our experiments with synthetic data we used an RBF kernel of the form
92 i j 2
K(Xi,Xj) = 61exp —EHX —xI||7) + 63;j. (47)

For KFD and LS-SVM we worked with the bandwidth of the keraek 1/6,, whereas for BFD we
usedo, itself. The nugget paramet8g ensures thak can be inverted at all times.

Regarding model training, we used the matlab implementation of Baudat anchA(RA00)
to solve the generalized eigenvalue problem, see their funBtiemdGDA. Furthermore, we used
the functioncrossvalidate, provided by Pelckmans et al. (2003) and Suykens et al. (2002), to
cross-validate the values ofand of the ‘threshold’ of the mininum accepted eigenvalue. The latter
was used instead of the regularisation coefficient because of the wagigirevalue problem is
solved, see Baudat's implementation for more details. In the LS-SVM casasedgethe toolbox
LS-SVMlab of Pelckmans et al. (2003) and Suykens et al. (2002) to eleldssifications. The
values ofo andC were cross-validated, with the latter being the coefficient associated with the
support vector formulation. Lastly, in BFD, we used our own implementatidniwik available at

http:/fwww.dcs.shef.ac.uk/ neil/bfd

In this case, the functioscg provided in Netlab’s toolbox (Nabney, 2002) was used to adapt kernel
parameters.

E.2 Benchmark Data Sets

In the BFD experiments with an RBF kernel, we udigd-= 8 different initialisations of the parameter
8, (Equation 47) during the training phase. The initialisations selected rangedlfx 10~ to 1 x
10% initialisations that produced numerical errors were ignored. We trainélaadfirst 5 realisations
(partitions) of each data set and computed their marginal loglikelihood. Invdys an array of
Ny x 5 elements was obtained. See below.

Init. Part.l1 ... Part.5
o7 o .. o
o< o™ ... o™

For each partition, we selected the vecﬁﬂp) with highest associated marginal likelihood, with
p € [1,5] andi € [1,8]. Hence the original array of 40 eleme®@¥ was reduced to an array of 5
elements. The final vector of parameters was determined by extractingitfedtialue, from
each element of the reduced array and taking the median over them. Ttte@eflector@tse' was
the one associated with the median valu®-of

For the ARD experiments, we changdgd= 3. The initialisations were given liy. x 10731, 10] .

The Bayesian LS-SVM experiments were carried out using the toolbd3\V/4Lab (see Suykens
et al., 2002). We trained LS-SVM'’s on the first five realisations of theitngidata and selected the
median of the parameters. We observed that this algorithm was suscept#dlaritmflocal minima
so in order to avoid this problem, we used the functiap_initlssvm to have good initialisations.
The ARD rankings were obtained by applying the functiay_1ssvmARD.
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