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Abstract
In this paper we consider a novel Bayesian interpretation ofFisher’s discriminant analysis. We re-
late Rayleigh’s coefficient to a noise model that minimises acost based on the most probable class
centres and that abandons the ‘regression to the labels’ assumption used by other algorithms. Opti-
misation of the noise model yields a direction of discrimination equivalent to Fisher’s discriminant,
and with the incorporation of a prior we can apply Bayes’ ruleto infer the posterior distribution of
the direction of discrimination. Nonetheless, we argue that an additional constraining distribution
has to be included if sensible results are to be obtained. Going further, with the use of a Gaussian
process prior we show the equivalence of our model to a regularised kernel Fisher’s discriminant. A
key advantage of our approach is the facility to determine kernel parameters and the regularisation
coefficient through the optimisation of the marginal log-likelihood of the data. An added bonus of
the new formulation is that it enables us to link the regularisation coefficient with the generalisation
error.

1. Introduction

Data analysis typically requires a preprocessing stage to give a more parsimonious representation
of data, such preprocessing consists of selecting a group of characteristic features according to an
optimality criterion. Tasks such as data description or discrimination commonly relyon this prepro-
cessing stage. For example, Principal Component Analysis (PCA) describes data more efficiently
by projecting it onto the principal components and then by minimising the reconstruction error, see
e.g. (Jolliffe, 1986). In contrast, Fisher’s linear discriminant (Fisher,1936) separates classes of data
by selecting the features1 that maximise the ratio of projected class means to projected intraclass
variances.

The intuition behind Fisher’s linear discriminant (FLD) consists of looking for a vector of com-
poundsw such that, when a set of training samples are projected on to it, the class centres are far
apart while the spread within each class is small, consequently producing a small overlap between
classes (Schölkopf and Smola, 2002). This is done by maximising a cost function known in some
contexts as Rayleigh’s coefficient,J(w). Kernel Fisher’s discriminant (KFD) is a nonlinearisation

1. In Fisher’s terminology the features are grouped into a vector of ‘compounds’.
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that follows the same principle but in a typically high-dimensional feature space F . In this case,
the algorithm is reformulated in terms ofJ(α), whereα is the new direction of discrimination. The
theory of reproducing kernels in Hilbert spaces (Aronszajn, 1950) gives the relation between vectors
w andα, see Section 5.1. In either case, the objective is to determine the most ‘plausible’ direction
according to the statisticJ.

Mika et al. (1999) demonstrated that KFD can be applied to classification problems with com-
petitive results. KFD shares many of the virtues of other kernel based algorithms: the appealing
interpretation of a kernel as a mapping of an input to a high dimensional space and good perfor-
mance in real life applications, among the most important. However, it also suffers from some of the
deficiencies of kernelised algorithms: the solution will typically include a regularisation coefficient
to limit model complexity and parameter estimation will rely on some form of cross validation.
Unfortunately, there is no principled approach to set the former, while the latter precludes the use
of richer models.

In this paper we introduce a novel probabilistic interpretation of Fisher’s discriminant. Classical
FLD is revised in Section 2 while an alternative noise model is outlined in Section 3. We build
on the model in Section 4 by first applying priors over the direction of discrimination to develop a
BayesianFisher discriminant and later we use a Gaussian process prior to reformulate the problem.
In Section 5, we compare our model to other approaches. We explore the connections of our model
to the expected generalisation error in Section 6. Section 7 details an EM-based algorithm for
estimating the parameters of the model (kernel and regularisation coefficients) by optimising the
marginal log likelihood. We present the results of our approach by applying it on toy data and by
classifying benchmark data sets, in Section 8. Finally we address future directions of our work in
Section 9.

2. Fisher’s Discriminant Analysis

As mentioned above, discriminant analysis involves finding a vector of compoundsw ∈ R
d×1 for

which class separation will be maximised according to some defined statistic. Considering a set

of training data and labels,D = (X,y) =
{

x(n),y(n)
}N

n=1 ∈ R
N×(d+1), the discriminant reduces the

dimensionality of the data through a linear combination, such that a set of singlevariates
{(

µ1,σ2
1

)

,
(

µ0,σ2
0

)}

is produced; where we define
(

µq,σ2
q

)

as the sample mean and variance of each projected
group. The hope is that both groups will be distinguished from one another by using this new set.
Fisher was the first to conclude that the compounds should be given by maximising the ratio of
between to within class variances,

J =
(µ1−µ0)

2

σ2
1 +σ2

0

. (1)

We will use the following definitions. A vector of projections is generated by taking the product
f = Xw ∈ R

N×1 and the sample means for each class aremq = N−1
q ∑n∈Nq

x(n)
q , hence the projected

mean and variance are given by

µq = N−1
q wTmq

= N−1
q fTyq, (2)
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and

σ2
q = ∑

n∈Nq

(

wTx(n)
q −µq

)2

= ∑
n∈Nq

(

f (n)−µq

)2
, (3)

respectively. Abusing the notation, we have split the training data into two disjoint groups(X,y) =

(X0,y0)∪(X1,y1), with y(n)
q ∈ {0,1}. The coefficientNq is the cardinality of each group,q∈ {0,1}.

Modern texts on pattern recognition and machine learning (Fukunaga, 1990; Duda and Hart,
1973; Bishop, 1995; Ripley, 1996) prefer to make explicit the dependence of this statistic on the
vector of compounds. Hence, with some manipulation and the introduction of a couple of matrices
we arrive at

J(w) =
wTΣBw
wTΣww

, (4)

whereΣB = (m1−m0)(m1−m0)
T andΣw = ∑q∈{0,1} ∑Nq

n=1

(

x(n)
q −mq

)(

x(n)
q −mq

)T
, are between

and within covariance matrices respectively. MatrixΣB measures the separation between class
means whileΣw gives an estimation of the spread around them. A solution for this problem consists
of taking the derivative of Equation 4 w.r.t.w and solving. This leads to a generalised eigenvalue
problem of the formΣ−1

w ΣBw = λw, with λ being the eigenvalues. A solution for the discriminant
can also be derived from geometric arguments. Given a test pointx?, the discriminant is a hyper-
planeD(x?) = wTx? +b, that outputs a number according to the class membership of the test point,
whereb is a bias term. In this contextw is a vector that represents the direction of discrimina-
tion. Following this line, the solutionw ∝ Σ−1

w (m0−m1) is sometimes easier to interpret than the
eigenvalue problem.

As it was demonstrated by Mika (2001), a more detailed analysis of FLD allowsit to be cast as
a quadratic programming problem. In order to do so, we observe that the magnitude of the solution
is not relevant, so for example, the numerator of Equation 1 can be fixed to an arbitrary scalar while
the denominator is minimised. In other words, the variance of the projections is minimised while
the distance between projected means is kept at, sayd = µ0−µ1. Rayleigh’s statistic can then be
written asJ = d2

/(

σ2
1 +σ2

0

)

. The subsequent discussion will make use of this ‘average distance’
constraint to reformulate the discriminant problem.

3. Probabilistic Interpretation

We introduce some notation that will be used throughout the rest of the paper. The set of variables
D = (X,y) ∈ R

N×(d+1) is observed or instantiated,f ∈ R
N×1 is a dependent or latent variable and

t ∈ R
N×1 is a vector of targets that have been observed as well. The random variables will follow

some probability law and in this model, in particular, we study the relationship between observed
and latent variables: the noise model. From Section 2, we know that every observation inD is
projected into a single variate that ideally can take only two values which are theprojected class
centres, where the variance around the projections tries to be minimised. We define the parameters
c0 andc1 as the true class centres in the projected space. Additionally, we introduce aprecisionβ
that corresponds to the variance around the projected data. Because of the nature of the mapping
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process, it is convenient to define some auxiliary variables as well,t1 is a vector filled withc1’s
whenevery(n) = 1 and filled with zeros otherwise;t0 is a vector filled withc0’s whenevery(n) = 0
and with zeros otherwise. We also takey1 = y and y0 = 1− y and denote bŷv the maximum
likelihood estimate of a vector/scalarv.

3.1 The Noise Model

Figure 1 models the causal relationship between the observationsD and the variablesf andt, such
that the distributionp( f, t|D,) can be decomposed into noise modelp( t|y, f) and priorp( f|X),
disregarding the parameterβ. For the moment, we will ignore the prior and consider only the noise
model. In graphical notation every fully shaded circle corresponds to anobserved variable and a
blank circle indicates a latent variable. We make use as well of partially shaded circles to indicate
the binary nature of the discriminant, that is, that targets should only take oneof two different
values. In Figure 1 the variablet(n)

1 is observed whenevery(n) = 1; andt(n)
0 , whenevery(n) = 0. Both

variablest0 andt1 are discrete, with each of their elements being given by the class centresc0 andc1,
nevertheless, we will make a Gaussian2 approximation such that every elementt(n)

q ∼N
(

f (n),β−1
)

.
From this approximation the noise model can be defined as

p(t|y, f,β) =
β N

2

(2π)
N
2

exp

{

−β
2 ∑

q∈{0,1}
(tq− f)T diag(yq)(tq− f)

}

. (5)
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Figure 1: The proposed graphical model for discriminant analysis. The graph models the joint distribution
over the latent variablesf and the targetst = t0∪ t1, which have been decomposed into their two
possible types. Disregarding the parameterβ, the joint probability is factorised asp( f, t|D) =
p( t|y, f) p( f|X), where the noise model is given byp( t|y, f) and the prior byp( f|X). Note that
we express the labels into two different groupsy0 andy1. Shaded nodes indicate instantiated
variables, blank ones correspond to latent variables and partially shaded (t0 and t1) nodes are
only observed according to the values of the labels (y0 andy1, respectively). We assume that

every observed target is distributed according tot(n)
q ∼ N

(

f (n),β−1
)

, whereβ is the precision
parameter.

As it can be observed from both the figure and Equation 5, there is a conditional independence
assumption on the observed targets giveny and f; in other words, the noise model can be further

2. We use the notationN (x|m,Σ) to indicate a multivariate Gaussian distribution overx with meanm and covariance
Σ.
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decomposed asp( t|y, f) = p( t0|y0, f) p( t1|y1, f), where we have disregarded the dependence on
β.

We can substitute every elementt(n)
q by its class centrecq and take the log of (5) to obtain

L (f,β) = −β
2

N

∑
n=1

[

y(n)
(

c1− f (n)
)2

+
(

1−y(n)
)(

c0− f (n)
)2
]

+C, (6)

where C=
N
2

log
β
2π

.

Note that the class centres can be made to coincide with the labels. In such a ‘regression to the
labels’ scheme, FLD can be recovered in a straightforward manner.

3.1.1 MAXIMUM L IKELIHOOD

Parameter estimates can be found by zeroing the gradient ofL with respect to eachf (n) andβ and
solving the resulting expressions for each parameter. This leads to the fixed point equations

f̂
(n)

=
(

1−y(n)
)

c0 +y(n)c1 (7)

and

β̂ =
N

∑N
n=1yn

(

c1− f (n)
)2

+∑N
n=1(1−yn)

(

c0− f (n)
)2 . (8)

However, the values of the class centresc0 andc1 are not known, soL can also be maximised w.r.t.
them to obtain

ĉq =
1
Nq

Nq

∑
n=1

y(n)
q f (n) forq∈ {0,1} . (9)

The resultsf̂ (n) andĉq suggest applying an iterative scheme to find the maximum. This can be done
by substitutingf̂ (n) andĉq on the right hand sides of Equations 9 and 7, respectively, initialising one
of the variables to an arbitrary value and updating all of them until convergence.

3.2 Model Equivalence

We now turn to the connections between Rayleigh’s statistic and the proposednoise model. In
particular, we want to show that maximum likelihood learning in our framework isequivalent to
maximisation of Rayleigh’s coefficient. In order to do so, we back substitute the values ˆcq into L
(Equation 6) compute the gradient w.r.tβ and solve the resulting expression forβ. The substitution
of each class centre by their most probable values is indispensable and central to our framework.
As a result of this substitution we can create a cost function that reduces the error around the most
probable class centres. The solution forβ leads to an expression of the form

β̂ =
N

σ2
1 +σ2

0

,

with σ2
q defined in Equation 3, forq ∈ {0,1}, and where we have recognised that Equation 2 is

equivalent to Equation 9. The result above is proportional to the constrained version of Rayleigh’s
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quotient mentioned before,J = d2
/(

σ2
1 +σ2

0

)

, hence we can write

J(f) =
d2β̂
N

. (10)

It is clear that this quantity monotonically increases over the domainR
+ becausêβ can only take

positive values. Meanwhile the likelihood, the exponential of Equation 6, expressed in terms of the
estimatêβ takes the form

L(f) =
β̂N/2

(2π)N/2
exp

{

−N
2

}

, (11)

which is monotonic as well on this estimate.
Therefore, as Equations 10 and 11 are monotonic inβ̂, their maximisation with respect to this

parameter must yield equivalent results.

3.3 Parametric Noise Model

In this section we make two modifications to Equations 5 and 6 in order to parameterise the noise
model. First, the vector of targetst is replaced by a new vector filled with the estimates ˆcq such that
t̂ = t̂0∪ t̂1 is generated. Second, every latent variable is related to the observationsvia a vector of
parametersw. In a linear relation this is expressed by the inner productf (n) = wTx(n). Therefore
after making these changes the log-likelihood becomes

L = −β
2

N

∑
n=1

[

y(n)
(

ĉ1−wTx(n)
)2

+
(

1−y(n)
)(

ĉ0−wTx(n)
)2
]

+C. (12)

Thus a new probabilistic model is obtained, which is depicted in Figure 2.
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Figure 2: Partially modified graphical model for discriminant analysis. In comparison with Figure 1, the
latent variablef has been replaced by a vector of parametersw. Ignoring the parameterβ, the graph
factorises the joint distributionp

(

t̂,w
∣

∣D
)

with the productp
(

t̂
∣

∣D,w
)

× p(w), whereD = (X,y)

is the training data;̂t = t̂1∪ t̂0, the modified targets andy0 andy1 are the class labels. The log
of the noise modelp

(

t̂
∣

∣D,w
)

is expressed in Equation 12 while the priorp(w) is specified in
Section 4.

Furthermore, we look not only to parameterise the latent variables, but the class centres as
well. Equation 9 can be used to this purpose, substituting everyf (n) in it with their parametric
versionswTx(n) leads to ˆcq = 1

Nq
∑Nq

n=1y(n)
q wTx(n). The vector of parameters can be pulled out of
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the summation and leave a quantity that we recognise to be the sample mean for class q, which we
express asmq. Hence we can write ˆcq = wTmq. Therefore the log of the new noise model can be
expressed as

L = −β
2

N

∑
n=1

[

y(n)
(

wTm1−wTx(n)
)2

+
(

1−y(n)
)(

wTm0−wTx(n)
)2
]

+C. (13)

As it will be seen in Section 5, most models make the assumption that class centresand class
labels coincide, that iscq = yq; including the least squares support vector machine of Suykens and
Vandewalle (1999). However this approach is suboptimal because thereis no guarantee that class
centres should map perfectly with the labels. Instead of following this ‘regression to the labels’
assumption, we have preferred to make use of the maximum likelihood estimates ofthe class centres.
As we saw above, by taking this step, the class centres can be parameterised as well.

3.3.1 MAXIMUM L IKELIHOOD

Maximisation of this new form ofL (Equation 13) has to be carried out in a slightly different way
to the one presented in Section 3.1.1. Previously, the class centres were parameters which we knew
beforehand were separated by some given distance. However, their parameterisation implies that the
separation constraint must be considered explicitly. We therefore introduce a Lagrange multiplier
to force the projected class centres to lie at a distanced, leading to the following function

Λ(w,λ) =

−β
2

N

∑
n=1

[

y(n)
(

wTm1−wTx(n)
)2

+
(

1−y(n)
)(

wTm0−wTx(n)
)2
]

+λ
[

wT (m0−m1)−d
]

+C.

A solution for this constrained optimisation problem is given by

ŵ =
λ
β

Σ−1
w (m0−m1) ,

with

λ = dβ
[

(m0−m1)
T Σ−1

w (m0−m1)
]−1

.

Therefore, by letting∆m = m0−m1, we can express the solution as

ŵ =
dΣ−1

w ∆m

∆mTΣ−1
w ∆m

, (14)

which is equivalent to that produced by FLD up to a constant of proportionality (see Section 2).
This completes the discussion of an alternative noise model for FLD. The new probabilistic

formulation is based on a noise model that reduces the error around the class centres, instead of the
class labels. Furthermore, we were interested on parameterising not only the latent variables in the
model but also the centres themselves. Through the introduction of a Lagrange multiplier we saw
that a constrained maximisation of the new likelihood was equivalent to standard FLD.
In this section we made use only of one part of the graphical models presented in Figures 1 and
2. In the next section we complete the analysis by including the prior distributions that were left
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unattended. First we complete the study of Figure 2 by incorporating a priorover the parameters,
p(w), and later study the model of Figure 1 under the assumption that the prior,p( f|X), is a
Gaussian process.

4. Bayesian Formulation

One of the aims of discriminant analysis is to determine the group membership of aninputx? outside
the training set. From a probabilistic perspective this process is only possible if a noise model and a
prior distribution have been identified. Then the posterior over the parameters p(w|D) can be found
as well as the corresponding predictive distribution. The posterior distribution is important because
it summarises the knowledge gained after having observed the training set. The application of a
Bayesian probabilistic approach offers some intrinsic advantages over other methods, for example
the ability to compute ‘error bars’ and, in the context of our model, the possibility to introduce
Gaussian process priors in a natural way.

This section will show that the introduction of a separable Gaussian prior over w leads to a
posterior distribution that is not enough to recover FLD’s solution. Later on, it will be argued that
an additional step is required to ensure the equivalence is achieved. Thisadditional step will also
include the distance constraint previously implemented through a Lagrange multiplier.

4.1 Weight Space Formulation

So far we have found a maximum likelihood estimate of the parameters’ vector (see Equation 14).
Now what we seek is a distribution over this vector which is obtained by combiningthe noise model
with a prior distribution through Bayes’ rule,

p
(

w| t̂,D
)

=
p
(

t̂
∣

∣D,w
)

p(w)

p
(

t̂
∣

∣D
) ,

where we have usedD to indicate the training set(X,y) and have omitted the dependence onβ.
A common choice of prior is a separable Gaussian,p(w) = N

(

w|0,A−1
)

, whith zero mean
and diagonal covarianceA−1. The combination of this prior with the parametric noise model of
Equation 13 gives a posterior of the form

p(w| t̂,D) ∝ exp

{

−β
2

N

∑
n=1

[

y(n)
(

wTm1−wTx(n)
)2

+ . . .

(

1−y(n)
)(

wTm0−wTx(n)
)2
]

− 1
2

wTAw
}

. (15)

In order to obtain a complete expression forp(w|D) it is necessary to define the normalisation
constant. As the expression is quadratic inw we know the posterior distribution will be Gaussian.
However, it is still necessary to specify the mean and covariance of the distribution. In order to do
so, Bayesian methods take advantage of an important property of Gaussians: if two sets of variables
are Gaussian, likêt andw, then the conditional distribution of one set conditioned on the other is
Gaussian as well. On the RHS of (15), we look to condition variablew on t̂. The process simply
consists of considering the variablet̂ as being given and on grouping terms inw. This leads to a
Gaussian posterior of the form

p(w|D) = N
(

w|0,B−1) ,
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with zeromean and covariance matrixB = βXTLX +A, where

L = I −N−1
1 y1yT

1 −N−1
0 y0yT

0 . (16)

The posterior obtained is not equivalent to FLD because the mean ofw is zero. In consequence,
the posterior mean projection of anyx? will collapse to the origin. Nonetheless, this formulation
yields a consistent result if we consider that standard discriminant analysis exhibits a sign symmetry
for the vectorw, hence the average is zero. What our new model is missing is the incorporation of
the distance constraint. In Section 3.3.1, knowledge about the variabled was incorporated to the
noise model in the form of a Lagrange multiplier. We look to do the same again butin a Bayesian
approach this requires that we deal with every variable in terms of probability distributions.

We propose to use the posteriorp(w|D) as the prior for a new model that is depicted in Figure 3.
In the new formulation,d is considered an extra random variable that has been observed and that
depends on the distribution overw|D. From the figure we can deduce that the joint factorises as
p(d,w|D,γ) = p(d|D,w,γ) p(w|D), with γ being a positive parameter. Note that this time we
have madeD =

(

t̂,X,y
)

.

d

D

γ

w

Figure 3: Graphical model to constrain the projected distanced. The graph specifies the distribution
p(d,w|D,γ) which is composed by the distributionsp(w|D) and p(d|D,w,γ). The former
is the posterior over the direction of discrimination, described in Section 4.1, and the latter is the
constraining distribution, defined in Equation 17.

One of our main concerns is to keep the model tractable at all stages, but weare also interested
in having a realistic representation of the discriminant. In order to guaranteeboth conditions we
assumed is Gaussian with infinite precisionγ,

p(d|D,w,γ) = lim
γ→∞

γ 1
2

√
2π

exp
(

− γ
2

(

d−wT∆m
)2
)

. (17)

We can see that this distribution introduces the same effect as the Lagrangian of Section 3.3.1 by
placing all its mass at the pointd = µ0−µ1 when the limitγ → ∞ is taken.

The process to determine a posteriorp(w|D,d) is based on combiningp(w|D) with p(d|D,w,γ)
and then conditioningw ond. However, a final step needs to be added to work out the limit to elim-
inate the dependence overγ. As a partial result, the conditional distributionp(w|D,d,γ) will be
N (w| w̄,Σ) with mean

w̄ = lim
γ→∞

γdΣ∆m,

and covariance
Σ = lim

γ→∞

(

B+ γ∆m∆mT)−1
.
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With some algebraic manipulations and the application of the Morrison-Woodbury formula (Golub
and Van Loan, 1996) we can arrive to the desired result. See AppendixA for the detailed derivation.
After taking the limit, the resulting distribution will be a Gaussian

p(w|D,d) = N (w |w̄ ,Σ)

with parameters

w̄ =
dB−1∆m

∆mTB−1∆m

and

Σ = B−1− B−1∆m∆mTB−1

∆mTB−1∆m
.

Noticing thatB = βXTLX +A, the mean of the new posterior coincides with the maximum likeli-
hood solution of Section 3.3 when an improper prior is used (i.e.A = limα→∞ αI ). Note that the
matrix Σ is positive semidefinite and therefore not invertible, this is a consequence of the fact that
any vectorw which does not satisfy the constraint imposed by the distributionp(d|D,w,γ) has a
posterior probability of zero. Nevertheless, variances associated with the posterior projections can
still be computed by applying

var
(

wTx
)

= xTB−1x− xTB−1∆m∆mTB−1x
∆mTB−1∆m

,

which will be zero if the pointx is on the direction of∆m.
The Bayesian approach we have outlined leads to a posterior distribution over the direction of

discrimination which can be used to compute expected outputs and their associated variances for
any given inputx. However, the limitation imposed by applying a linear model is a strong one.
There is an extensive amount of literature explaining why linear models are not always convenient.
A common solution is to use a set of nonlinear basis functionsφ such that the new function is linear
in the parameters but nonlinear in the input spacef = wTφ(x), see for example (Ruppert et al.,
2003) and (Bishop, 1995). However the problem is shifted to that of specifying which and what
number of basis functions to use. In the next section we shall consider thealternative approach of
placing a prior directly over the vector of projectionsf, such that we will be working with a possibly
infinite amount of basis functions. This approach will lead to a regularised version of kernel Fisher’s
discriminant and ultimately to an alternative strategy to select model parameters.

4.2 Gaussian Process Formulation

The choice of a Gaussian probability measure over functions has been justified by the study of the
limiting prior distribution in the neural network case when the number of hidden units ‘reaches’
infinity, (Neal, 1996). A Gaussian process (GP) is a type of stochastic process that is defined by a
mean and a covariance function. By stochastic process we understand that a countable infinite set
of observations{ f1, . . . , fN} has been sampled from a common probability distribution.

In GP’s (O’Hagan, 1978) a prior is placed directly over the latent variables such that a posterior
distribution over them can be inferred. Although there are many GP’s with anequivalent ‘weight
space’ prior, there exists a large class of them for which no finite dimensional expansion exists. In
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this regard, a covariance function (or kernel) measuresa priori the expected correlation between
any two pair of pointsx(n) andx(m) in the training set. For example, in a function parameterised as

f (n) = wTφ
(

x(n)
)

,

with a prior overw specified by a spherical Gaussian with zero mean,p(w) = N
(

w|0,α−1I
)

, the
implied correlation between two points is

E
[

f (n), f (m)
∣

∣

∣
w
]

= α−1φ
(

x(n)
)T

φ
(

x(m)
)

.

In other words, provided that the product is positive and symmetric, the correlation between the
two points will lead to a Mercer kernel; see (Schölkopf and Smola, 2002). However, under these
circumstances it no longer makes sense to talk about a prior over the vectorw, but rather a prior
over instantiations of the functions is considered.

4.2.1 PREDICTION OVER A TEST POINT

In order to adopt GP’s we need to go back to the formulation of the discriminant presented in Figure
1. In this figure the graph models the joint distributionp( f, t|D) with the product of noise model
p( t|y, f) and priorp( f|X). In this section we need to make two assumptions before doing any kind
of prediction. First of all, the joint distribution over every instancef belonging to the training set
or not will be a multivariate Gaussian, that is a GP. Secondly, we will continueto work with the
maximum likelihood estimates of the class centres, which were denoted ˆcq. In other words, if we
use Equation 9 to form a vectort̂ and substitute it into Equation 5 we will obtain the distribution
p
(

t̂
∣

∣y, f
)

.
Following the steps of the previous section, we could work out the posteriordistributionp

(

f| t̂,D
)

.
However, this is not what we are looking for because what we truly wantis to make predictions out
of new test data. Therefore, what we seek ultimately is the distributionp( f ?|D,d), where the dis-
tance variabled has been included. In order to do so, first we propose to compute the jointdistribu-
tion p

(

t̂,d, f+
∣

∣y,γ
)

, where the variablef+ is given by an extended vector of the formf+ =
[

fT , f ?
]T

,
with f ? being a point outside the training set. Second, the distributionp( f ?|D,d) can be found
from p

(

t̂,d, f+
∣

∣y,γ
)

by marginalising out the variablesf and conditioning the resulting distribution
on the variableŝt andd. Lastly, the dependence on the parameterγ can be eliminated by taking the
limit γ → ∞.

This process is facilitated if the joint distribution is factorised into well known factors. For
example,p

(

t̂,d, f+
∣

∣y,γ
)

, can be given by the product of noise model,p
(

t̂|y, f
)

; Gaussian process
prior p(f+); and constraining distributionp(d|y, f,γ). Firstly, the modified noise model is defined
in terms off by applying the values of ˆcq and rearranging, (see Appendix B). The result is

p
(

t̂|y, f
)

∝ exp

(

−β
2

fTLf
)

, (18)

with L defined in Equation 16. Secondly, let the augmented vectorf+ be correlated with a covariance
matrixK+ ∈ R

(n+1)×(n+1), then the prior is a GP of the form

p(f+) ∝ exp

(

−1
2

fT
+K−1

+ f+

)

. (19)
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For future reference, the inverse ofK+ is partitioned as

K−1
+ =

(

C c
cT c?

)

,

with
c? =

(

k?−kTK−1k
)−1

,

c = −c?K−1k,

C = K−1 +c?K−1kkTK−1.

Note that the vectork ∈ R
N×1 is filled with scalarsk(n) = K

(

x(n),x
)

for x ∈ X .
Finally, the model still needs to consider that projected class means must be separated by the dis-
tanced. The introduction of a constraining distribution of the form of Equation 17 is what is needed.
We can express this distribution in terms off by replacing the termwT∆m inside the exponential by
fT∆ŷ, where∆ŷ = N−1

0 y0−N−1
1 y1. Therefore the constraint becomes

p(d|y, f,γ) = lim
γ→∞

γ 1
2

√
2π

exp
(

− γ
2

(

d− fT∆ŷ
)2
)

. (20)

Hence we can write the marginal distribution (after marginalisation off) as

p
(

f ?, t̂,d
∣

∣y,γ
)

=
Z

p
(

t̂
∣

∣y, f
)

p(d|y, f,γ) p(f+)∂f.

This is a Gaussian integral that can be solved straightforwardly by applying (for example) the ma-
terial on exponential integrals (Bishop, 1995) that we present in Appendix C. After conditioningf ?

on botht̂ andd, the solution is a Gaussian of the form

p( f ?|D,d,γ) ∝ exp

{

− 1

2(σ?)2

(

f ?− f̄ ?
)2

}

with mean

f̄ ? = lim
γ→∞

−γd(σ?)2cTQ−1∆ŷ.

and variance

(σ?)2 = lim
γ→∞

(

c?−cTQ−1c
)−1

,

where we have defined the matrixQ = βL +C+ γ∆ŷ∆ŷT .

Just as in Section 4.1, the dependence onγ is eliminated by taking the limit asγ→∞. This procedure
is detailed in Appendix C. The parameters of the distribution are

f̄ ? =
dkTA−1K∆ŷ

∆ŷTKA −1K∆ŷ
, (21)
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and
(σ?)2 = k?−kT (K−1−D−1)k, (22)

with the matrices

D =
(

A−1−A−1K∆ŷ
(

∆ŷTKA −1K∆ŷ
)−1 ∆ŷTKA −1

)−1

and
A = βKLK +K . (23)

The predictive mean is given by a linear combination of the observed labels,in this case ex-
pressed by∆ŷ. Additionally, the predictive variance is composed by two terms, one representing
the test point and the other representing the observed data. These results are similar to those of
typical GP regression, described in (Williams, 1999). The scheme proposed above will be termed
Bayesian Fisher’s discriminant (BFD) to facilitate its referencing.

5. Relationship with Other Models

There are several well known connections between discriminant analysis and other techniques. In
the statistics community, FLD is equivalent to at-test orF-test for significant difference between the
mean of discriminants for two sampled classes, in fact, the statistic is designed to have the largest
possible value (Michie et al., 1994). In this section, however, we preferto explore the connections
of our approach to some algorithms that have been applied to machine learningproblems, namely
kernel Fisher’s discriminant and the least-squares and proximal support vector machines.

5.1 Kernel Fisher’s Discriminant

The algorithm known as kernel Fisher’s discriminant consists of a two stage procedure. The first
consists of embedding the data spaceX into a possibly infinite dimensional reproducing kernel
Hilbert spaceF via a kernel functionk. The second simply consists of applying FLD in this new
data space. As the second stage is exactly the same as standard linear discriminant, many of the
properties for FLD observed inX will hold also in F ; for example, some form of regularisation
needs to be included. However there is an extra effort involved in preparing the original data for a
new data representation in the induced space, namely in terms of the kernel function.

Data embedding is carried out by applying a non-linear transformationφ : X → F that induces
a positive definite kernel function. From the theory of reproducing kernels (Aronszajn, 1950) it is
well known that the vector of compounds is a weighted combination of the training samples, such
thatw = ∑N

i=1α(i)φ
(

x(i)
)

. The application of this property plus the decomposition of the kernel into
its spectrum:

k(x,x′) =
d

∑
i=1

λiφi (x)φi
(

x′
)

leads to the formulation of the Rayleigh coefficient in the feature space. Following the path of other
kernel methods, the novelty in (Mika et al., 1999) resides in defining the kernel function directly
and working without any reference to the spectral-based formulation.

A direct implication of working in an infinite dimensional space is that there is no form to
express directly the matricesΣw andΣB. Nonetheless, the discriminant function can still be written
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as the ruleD(x?) = ∑N
i=1 α(i)k

(

x?,x(i)
)

+b with the coefficientsα(i)’s being obtained as the solution
of maximizing a new form of the statistic

J(α) =
αTMα
αTNα

.

WhereM =
(

mF
0 −mF

1

)(

mF
0 −mF

1

)T
, N = KLK andmF

q = N−1
q Kyq. Just as in FLD, in KFD

the ‘within scatter’ matrix is not full rank. This implies that some form of regularisation will need
to be applied when invertingN and this will generally be done by applyingNδ = N + δC, with C
being the identity or the kernel matrices. Therefore the solution can be computed by either solving
a generalised eigenproblem or by taking

αKFD ∝ (N+δC)−1
(

mF
0 −mF

1

)

. (24)

We are now in position to show the equivalence of KFD and our scheme, BFD.

Demonstration Disregarding the bias term, the projection of a new test point under KFD will be

f̄ ? = αT
KFDk. (25)

Our claim is that Equation 21 is equivalent to Equation 25. In other words, that the projection of a
new test point in KFD is equal to the mean of the predictive distribution for a test point under BFD.
As in both equations the vectork is the same, we can write Equation 21 as

f̄ ? = αT
BFDk,

with the vector
αBFD ∝ dA−1K∆ŷ (26)

and the constant of proportionality being given by the denominator of (21). Then our proof reduces
to showing that the coefficientsαKFD andαBFD are the same.

On one hand, we start by analysing KFD’s main result which is given by Equation 24. From the

definition ofmF
q , the difference

(

mF
0 −mF

1

)

can be written asK∆ŷ, with ∆ŷ =
(

N−1
0 y0−N−1

1 y1
)

,

and by regularisingN with a multiple of the kernel matrix we obtain

αKFD ∝
(

KLK +β−1K
)−1

K∆ŷ,

where β−1 is the regularisation coefficient.
On the other hand, substituting the value ofA (Equation 23) into Equation 26, premultiplying byβ
and ignoringd we get

αBFD ∝
(

KLK +β−1K
)−1

K∆ŷ,

which clearly is the regularised version of KFD that we were talking about.
As an additional insight, we observe that the coefficientsαBFD have an equivalentαKFD if and

only if KFD uses a regularisation based on a multiple of the kernel matrix. This equivalence is lost
if the regulariser is based on the identity matrix.
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5.2 Least Squares Support Vector Machines

A least squares support vector machine (LS-SVM) implements a two-norm cost function3 and uses
equality constraints instead of the inequalities present in the standard SVM (Vapnik, 1995). This
greatly simplifies the way to obtain the solution as the resulting system of equationsis linear. Un-
fortunately the sparseness which is characteristic of the SVM is lost. LS-SVM’s have been related
to ridge regression with modified targets, discriminant analysis in the feature space (KFD) and, as
many other kernelised algorithms, to GP’s.

Given a set of training dataD = (X,y) with labelsy(i) ∈ {−1,1}∀i, the primal optimisation
problem for an LS-SVM is expressed as

min C =
µ
2

wTw+
ζ
2

N

∑
n=1

(

e(n)
)2

s.t. e(n) =
(

y(n)−wTx(n)
)

∀n,

with µandζ being positive coefficients. This formulation in particular was given by VanGestel et al.
(2002) to elaborate the Bayesian framework of the LS-SVM. Such framework is nothing else but
the recognition that the primal problem implements a regularised least squarescost function with
regression to the labels. This cost function arises from the model depictedin Figure 4. In this figure,
the joint distribution over labels and parameters factorises asp(y,w|X) = p(y|X,w)× p(w), with
noise modelp(y|X,w) = N

(

Xw,ζ−1I
)

and priorp(w) = N
(

0|µ−1I
)

.

y

X wµ

ζ

Figure 4: LS-SVM noise model assumes a regularised least squares costfunction. The model depicted can
be interpreted as the joint distributionp(y,w) = p(y|X,w) p(w), whereby the noise is Gaussian,
p(y|X,w) = N

(

Xw,ζ−1I
)

, as is the priorp(w) = N
(

0|µ−1I
)

. In this model the targets and the
labels are the samet ≡ y.

It is clear from the figure that LS-SVM employs a different noise model thanBFD. In practice,
the regression to the labels assumption can work well. However, it suffersfrom the fundamental
missconception that the class labels±1 have to coincide with the projected class centrescq. The
main difference with our algorithm is that the LS-SVM assumes that targets andlabels are the same,
t ≡ y, but we do not.

Van Gestel et al. (2002) were aware of this limitation4 and relaxed the assumptiont ≡ y by
modelling the distributionp

(

t̂q
∣

∣X,w
)

by application of Bayes’ rule. In other words, they computed
p
(

t̂q
∣

∣X,w
)

∝ p
(

X| t̂q,w
)

p
(

t̂q
)

. This is in marked contrast with the strategy adopted in this paper.
As is shown by Equation 12, in BFD we model directly the distributionp

(

t̂q
∣

∣X,y,w
)

. Hence it can

3. This is instead of the traditional`1.
4. See Section 3.2 of their paper.
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be seen that in our approachy is used as a conditioning value whereas in Van Gestel’s paper it is
not.

5.2.1 PROXIMAL SUPPORTVECTORMACHINES

Another related approach is known as the proximal support vector machine or P-SVM, proposed by
Fung and Mangasarian (2001). A P-SVM is very close to LS-SVM in the sense that both of them
consider equality constraints and implement regularised least squares cost functions. However, P-
SVM’s have been interpreted from the point of view of classifying points by clustering data around
two parallel hyperplanes; whereas LS-SVM’s have been interpreted from the more classical point
of view of maximising the margin around a single hyperplane. P-SVM’s have also been approached
from a probabilistic point of view by Agarwal (2002). Indeed, by following Agarwal’s work it
is possible to see that they also implement the graphical model depicted in Figure4, except for a
few changes in parameters. Ignoring the bias term, in P-SVM’s the joint distribution p(y,w|X) is
factorised according to the noise modelp(y|X,w)= N

(

Xw,σ2I
)

and the prior distributionp(w)=
N
(

0,νσ2I
)

. The parameterσ2 is the variance of the residuals5 while ν is known as ridge parameter.
In many applications, such as data mining, the ridge parameter is chosen by cross-validation. It is
clear that this task becomes unfeasible if the ridge parameter is taken to the extreme of considering
one parameter for every ‘predictor’, in other words, if we take as rigdeparameter a matrix of the
form diag(ν1, . . . ,νd).

In (Agarwal, 2002) the problem of tuning the ridge parameter is addressed by studying its effects
on ridge regression. This can be observed by writing up the regularisedP-SVM cost function

CPSVM=
1

σ2

[

(y−Xw)T (y−Xw)+
1
ν

wTw
]

.

Wheneverν becomes small, the ridge part takes over, but if it becomes large the ‘noise’part will
dominate. Nevertheless, it is clear that BFD implements a different type of noise model when
compared to LS-SVM’s and P-SVM’s.

6. Connections with the Generalisation Error

In Section 3.1.1 we saw that optimisation of the proposed noise model and that ofRayleigh’s coef-
ficient give equivalent results. In both cases the solution to the discriminant problem was given by
adjusting the level ofβ. In order to understand better the physical significance that this represents, it
is useful to analyse the problem from the point of view of classification of two populations. Specif-
ically, during this section we will refer to the plot in Figure 5 and always assume that both classes
have the same cost of misclassification.

In Figure 5, it can be observed that both mapping distributions share the same precision. Under
this assumption, for fixedd, we can see that the generalisation error will decrease asβ increases,
i.e. asβ−1/2 decreases. From the point of view of projected data, the problem has shifted from
computing the direction of discrimination to that of minimising the generalisation errorthrough the
adjustment of the variableβ.

The likelihood functionL(f) defined in Equation 11 allows us to think ofβ as an extra random
variable. Hence placing a prior over it not only places a prior over the generalisation error but on

5. The residuals are defined ase(n) = y(n) −wTx(n),∀n.
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Figure 5: Generalisation error as it relates toβ andd. The shaded area gives the generalisation error if the
true densities conform to those given by two Gaussians with equal precisionβ. The class centres
have been denoted bycq with q∈ {1,0}.

Rayleigh’s coefficient as well. Consider, for example, the case whered = 2 and the class priors are
equal: if the data does truly map to the mixture distribution, then the generalisation error will be

Eeq =
1
2
− 1

2
erf

(
√

β
2

)

.

Let Equation 11 be a ‘likelihood function’, then by considering a gamma distribution G (β|a,b) as
a prior,

p(β) =
ba

Γ(a)
βa−1exp(−bβ) ,

the MAP solution forβ will be (see Appendix D)

β̂MAP =
N+2a−2

σ2
1 +σ2

0 +2b
. (27)

By settinga = b = 0.5 we indirectly obtain a uniform distribution overEeq, which is also a chi-
square distribution with one degree of freedom. This special case leads toa new expression of the
form

β̂MAP =
N−1

σ2
1 +σ2

0 +1
, (28)

which can be viewed as a regularised version of Equation 8. The prior could also be used to biasβ
towards low or high generalisation errors if this is thought appropriate.

From the discussion of Section 5.1, taking the limit asβ → ∞ leads to the standard kernel
Fisher’s discriminant. From Figure 5 it can be seen that ana priori setting ofβ−1 to zero is equiva-
lent to assuming that we can achieve a generalisation error of zero.
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OTHER SPECIAL CASES

Taking the limit asβ → 0 causes the mean prediction forf ? and its variance to take on a much
simpler form,

f̄ ? = αT
β k

where

αβ =
d∆ŷ

∆ŷTK∆ŷ
,

and

(σ?)2 = k?−kT ∆ŷT∆ŷ
∆ŷTK∆ŷ

k.

This result is remarkable for the absence of any requirement to invert thekernel matrix, which
greatly reduces the computational requirements of this algorithm. In fact, driving β to zero leads
to the well known Parzen windows classifier, sometimes known as probabilisticneural network,
(Duda and Hart, 1973). See the work of Schölkopf and Smola (2002) orRoth (2005) for some
related studies in limiting cases.

7. Optimising Kernel Parameters

One key advantage of our formulation is that it leads to a principled approach for determining all
the model parameters. In the Bayesian formalism it is quite common to make use of the marginal
likelihood to reach this purpose, therefore we look to optimise

L (Θt) = logp(t|D,Θt) ,

with respect to the model parametersΘt . Recall in Section 3.1 that we optimised the likelihood with
respect to the parametersc0 andc1 leading to a new encoding of the targets

t̂q =

(

fTyq

Nq

)

yq.

We back substituted these values into the likelihood in order to demonstrate the equivalence with
maximisation of Rayleigh’s coefficient. Unfortunately, one side effect of this process is that it
makes the new targetst̂ dependent on the inputs. As a consequence, the targets will shift when-
ever the kernel parameters are changed. As expressed in Section 3.1.1, one solution could be to
iterate between determiningt0, t1 and optimising the rest of the parameters. This approach is sim-
ple, but it may be difficult to prove convergence properties. We therefore prefer to rely on an
expectation-maximisation (EM) algorithm (Dempster et al., 1977) which finesses this issue and for
which convergence is proved.

7.1 EM Algorithm

We denote the parameters of the prior asΘk and the complete set of model parameters asΘt =
{Θk,β}. Then the goal is to solve the problem argmaxΘt logp

(

t̂
∣

∣X,Θt
)

, where we have made use
again of the modified targetŝt. In order to solve the problem, a variational lower bound on the
marginal log-likelihood is imposed

L (Θt) ≥
Z

q(f) log
p
(

t̂
∣

∣y, f,β
)

p( f|X,Θk)

q(f)
df, (29)
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whereq(f) is a distribution over the latent variables that is independent on the currentvalueΘt .
EM consists of the alternation of the maximisation ofL with respect toq(f) andΘt , respectively,
by holding the other fixed. This procedure repeated iteratively guarantees a local maxima for the
marginal likelihood will be found. Thus our algorithm will be composed of the alternation of the
following steps:

E-step Given the current parametersΘit
t , approximate the posterior with

qit (f) ∝ exp

(

−1
2

fTΣ−1
p f
)

,

where
Σp =

(

K−1 +βL
)−1

. (30)

M-step Fix qit (f) to its current value and make the update

Θit+1
t = argmax

Θt

L , (31)

where the evidence is computed asL =
〈

logp
(

t̂
∣

∣y, f,β
)

p(f|X,Θk)
〉

q(f). We have used the notation

〈·〉p(x) to indicate an expectation under the distributionp(x).
Maximisation with respect toΘk, the kernel parameters, cannot be done in closed form and

has to rely on some optimisation routine, for example gradient descent, therefore it is necessary
to specify the gradients of Equation 29 w.r.t.Θk. An update forβ can be worked out quite easily
because the maximisation ofL with respect to this parameter has a closed form solution. The
expression obtained is of the form

β̂it =
N

σ̄2
1 + σ̄2

0

,

whereσ̄2
1 = ∑yn

〈

( fn−µ1)
2
〉

and the expectation〈·〉 is computed under the predictive distribution

for thenth training point, see Equation 21. An expression forσ̄2
0 is given in a similar way.

7.2 Updatingβ

Following our discussion in Section 6, we propose (and in fact used) Equation 28 to update the
value ofβ at every iteration. We repeat the expression here

β̂it
MAP =

N−1

σ̄2
1 + σ̄2

0 +1
. (32)

The resulting optimisation framework is outlined in Algorithm 1.

8. Experiments

In this section we report the results of experiments that we carried out to test our algorithmic ap-
proach. A first batch of experiments was carried out on classification ofsynthetic data with the
purpose of understanding better the behaviour of the algorithm, and in order to test it more realisti-
cally, a second batch of experiments was carried out on benchmark data.
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Algorithm 1 A possible ordering of the updates.
SelectConvergence tolerancesηβ andηΘk.

SetInitial valuesΘ(0)
k andβ̂(0).

Require Data-setD = (X,y).

while change in̂β(it ) < ηβ and change inΘ(it )
k < ηΘk do

• Compute kernel matrixK usingΘ(it )
k .

• UpdateΣp with Equation 30

• Use scale conjugate gradients to maximiseL with respect toΘ(it )
k . Apply Equation 31

• Updateβ̂(it ), use Equation 32.
end

8.1 Toy Data

As a first experiment, we compared the KFD, LS-SVM and BFD algorithms on four synthetic data
sets using an RBF kernel. Additionally, as a second experiment, we used BFD with an ARD prior
on the same data sets to observe some of the capabilities of our approach. Inorder to facilitate
further reference, each data set will be named according to its characteristics. Firstly,Spiral6 can
only be separated by highly non-linear decision boundaries.Overlap comes from two Gaussian
distributions with equal covariance, and is expected to be separated by a linear plane. Bumpy
comes from two Gaussians but by being rotated at 90 degrees, quadraticboundaries are called for.
Finally, Relevanceis a case where only one dimension of the data is relevant to separate the data.

We hypothesized BFD would perform better than LS-SVM and KFD in all the cases because
it models directly the class conditional densities. In order to compare the threeapproaches, we
trained KFD, LS-SVM and BFD classifiers with a standard RBF kernel, as specified in Appendix E.
Model parameters for KFD and LS-SVM were selected by 10-fold cross-validation whereas BFD
was trained by maximising the evidence, using Algorithm 1.

In Figure 6 we present a comparison of the three algorithms. We can observe a similar perfor-
mance in the case ofSpiral; however it is encouraging to observe that BFD gives more accurate
results in the rest of the cases. Despite not producing a straight line, KFDand BFD give accu-
rate results inOverlap, whereas LS-SVM overfits. If none of the algorithms separates this data
set with a line it is because obtaining a linear boundary from an RBF kernelis extremely difficult
(see Gramacy and Lee, 2005). InBumpy, the three algorithms give arguably the same solution,
with BFD having the smoothest boundary. Lastly, inRelevanceall the algorithms provide accurate
results, with BFD giving the smoothest solution. In all these experiments we set the initial Θt = 1
for BFD and furthermore, observed that BFD did not present any initialisation problems. In all our
simulations, we let the algorithm stop wheneverηβ < 1×10−6 or the change inηΘk < 1×10−6.

As a second experiment, we were interested in training BFD to test the different facets of the
following kernel

k
(

xi ,x j)= θ1exp

(

−θ2

2

(

xi −x j)T Θard
(

xi −x j)
)

+θ3
(

xi)T Θardx j +θ4 +θ5δi j , (33)

6. This was first used by Lang and Witbrock (1988).
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Figure 6: Comparison of classification of synthetic data sets using anRBF kernel. Two classes are shown as
pluses and circles. The separating lines were obtained by projecting test data over a grid. The lines
in blue (dark), magenta (dashed) and cyan (gray) were obtained with BFD, KFD and LS-SVM
respectively. Kernel and regularisation parameters for KFD and LS-SVM were obtained by 10-
fold cross validation, whereas BFD related parameters wereobtained by evidence maximisation.
We trained BFD using Algorithm 1; details of our implementations are given in Appendix E.

whereδi j is the Kronecker delta and the matrixΘard = diag(θ6, . . . ,θ6+d−1) with d being the di-
mension ofX. This kernel has four components: an RBF part composed of(θ1,θ2,Θard); a linear
part, composed of(θ3,Θard); a bias term given byθ4 and the so-called ‘nugget’ termθ5 which,
for a large enough valueθ5, ensures thatK is positive definite and therefore invertible at all times.
Therefore, the parameters of the model areΘt = (Θk,β), with Θk = (θ1, . . . ,θ6+d−1).

On this occassion, BFD got stuck into local minima so we resorted to do model selection to
choose the best solution. This process was carried out by training eachdata set with three different
initial values forθ2 while the remainingθi6=2 were always initialised to 1. In the cases ofBumpy and
Relevancewe made the initialθ2 =

[

10−2, 10−1, 1
]

, for Spiral we made it equal to[1, 10, 100] and
for Overlap,

[

1.5×10−2, 10−1, 1
]

. From the resulting solutions (three per data set), we selected the
model that produced the highest marginal likelihoodL . In all our simulations, we let the algorithm
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stop wheneverηβ < 1× 10−6 or the change inηΘk < 1× 10−6. The parameterβ was always
initialised to 1. The selected models for each set are summarised in Figure 7.

The results are promising. InSpiral, the separating plane is highly non-linear as expected.
Meanwhile, we observe inOverlap that the predominating decision boundary in the solution is
linear. InBumpy, the boundary starts to resemble a quadratic and, finally, forRelevance, only one
dimension of the data is used to classify the data. Note that the values forΘk, summarised in Table 1,
go in accordance with these observations. For example, inOverlap andRelevance, the value of
θ6 is significantly lower thanθ7, indicating that only one dimension of the data is relevant for the
solution. This is markedly different to the cases ofSpiral andBumpy, where both dimensions
(θ6 andθ7) have been given relatively the same weights. Hence, for every case we have obtained
sensible solutions. All the kernel parameters determined by the algorithm, forthe four experiments,
are given in Table 1.
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Figure 7: Classification results on toy data sets using an ARD prior. Two classes are shown as pluses and
circles. The decision boundary is given by the solid line. Dotted lines indicate points at 1/4 of
the distance (as measured in the projected space) from the decision boundary to the class mean.
Log-likelihood values appear enclosed by brackets.
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Figure 8 shows an example of the result of trainingSpiral with a poor initialisation. It can be
seen that the value of the marginal likelihood in this case is smaller to the one presented in Figure 7.
However, this behaviour is not exclusive of BFD, indeed we observeda very similar situation with
a poorly initialised Bayesian LS-SVM and with KFD cross-validated with a badlyselected grid.
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Figure 8: The solution for the spiral data with a poor initialisationθ2 = 1. Associated log-likelihoodL =
562.7.

Experiment lnθ1 lnθ2 lnθ3 lnθ4 lnθ5 lnθ6 lnθ7

Spiral 8.5015 −9.5588 1.0139 −4.9759 −10.6373 −2.78 −2.9609
Overlap 0.5011 −7.9801 1.1455 −4.8319 −8.5990 −6.9953 −0.1026
Bumpy 4.9836 −10.8222 1.1660 −4.7495 −13.5996 −3.9131 −3.7030

Relevance 4.6004 −9.5036 1.2734 −4.9351 −13.8155 −6.9968 −1.5386

Table 1: log-values of the parameters learnt with BFD for the different toy experiments. InOverlap and
Relevance, the weights of the featureθ6 are low if compared with the featureθ7. This is in contrast
with Spiral andBumpy, where both features have been given relatively the same weights.

8.2 Benchmark Data Sets

In order to evaluate the performance of our approach, we tested five different algorithms on well
known problems. The algorithms used were: linear and quadratic discriminants (LDA and QDA),
KFD, LS-SVM and BFD. The last two algorithms provided the opportunity to use ARD priors so
they were reported as well. We used a synthetic set (banana) along with 12 other real world data sets
coming from theUCI , DELVE andSTATLOG repositories.7 In particular, we used instances of
these data that had been preprocessed an organised by Rätsch et al. (1998) to do binary classification
tests. The main difference between the original data and Rätsch’s is that heconverted every problem

7. The breast cancerdomain was obtained from the University Medical Center, Institute of Oncology, Ljubljana,
Yugoslavia. Thanks to M. Zwitter and M. Soklic for the data.
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into binary classes and randomly partitioned every data set into 100 training and testing instances.8

In addition, every instance was normalised to have zero mean and unit standard deviation. More
details can be found at (Rätsch et al., 1998).

Mika et al. (1999) and Van Gestel et al. (2002) have given two of the most in depth comparisons
of algorithms related to FLD. Unfortunately, the reported performance in both cases is given in
terms of test-set accuracy (or error rates), which implied not only the adjustment of the bias term
but also the implicit assumption that the misclassification costs of each class wereknown. Given
that discriminant methods operate independently of the method of bias choice,we felt it more
appropriate to use a bias independent measure like the area under the ROCcurve (AUC).

The LDA and QDA classifiers were provided by the Matlab functionclassify with the options
‘linear’ and ‘quadratic’, respectively. In both cases, no training phase was required, as described
by Michie et al. (1994). The output probabilities were used as latent values to trace the curves.
Meanwhile, for KFD’s parameter selection we made use of the parameters obtained previously by
Mika et al. (1999) and which are available athttp://mlg.anu.edu.au/˜raetsch . The ROC
curves for KFD were thus generated by projecting every instance of thetest set over the direction of
discrimination.
Mika trained a KFD on the first five training partitions of a given data set andselected the model
parameters to be the median over those five estimates. A detailed explanation of the experimental
setup for KFD and related approaches can be found in Rätsch et al. (1998) and Mika et al. (1999).
In the case of LS-SVM, we tried to follow a similar process to estimate the parameters, hence we
trained LS-SVM’s on the first five realisations of the training data and then selected the median of
the resulting parameters as estimates. In the same way, projections of test datawere used to generate
the ROC curves.
Finally, for BFD we also tried to follow the same procedure. We trained a BFD model with Nx = 8
different initialisations over the first five training instances of each data set. Hence we obtained an
array of parameters of dimensions 8×5 where the rows were the initialisations, the columns were
the partitions and each element a vectorΘt . For each column, we selected the results that gave the
highest marginal likelihood, so that the array reduced from 40 to only 5 elements. Then we followed
the KFD procedure of selecting the median over those parameters. In theseexperiments, we used
the tolerancesηβ andηΘk to be less than 1×10−6. More details of the experimental setup are given
in Appendix E.

In Table 2 we report the averages of the AUC’s over all the testing instances of a given data set.
In the cases of KFD, LS-SVM and BFD we used the RBF kernel of Appendix E. Computation of
the ROC curves were done with the functionROC provided by Pelckmans et al. (2003) and Suykens
et al. (2002) and no further processing of the curves was required,for instance removing convexities
was unnecessary.
It can be observed that BFD outperforms all the other methods in 6

/

13 data sets, comes second in 3
cases and third in the remaining 4. In particular, it is remarkable to see BFD performing consistently
better than KFD across most of the problem domains. It seems that leaving the‘regression to the
labels’ assumption pays-off in terms of areas under the ROC curves. It isalso interesting to observe
that LDA performs well in almost all the problems (exceptbanana) and it thus indicates that most
of these data sets could be separated with a linear hyperplane with acceptable results. From these
results we can conclude that the better designed noise model in BFD allows it tooutperform ‘similar’

8. Data sets can be obtained fromhttp://mlg.anu.edu.au/~raetsch .
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state of the art approaches. The P-SVM was not included in the experiments because it is a ‘type-of’
LS-SVM.

RBF Banana Breast Diabetis German Heart Image

LDA 53.7 (1.3) 71.2 (5.2) 82.7(1.6) 78.5 (2.5) 90.1 (2.6) 87.9 (0.7)

QDA 64.7 (2.5) 70.8 (5.5) 80.3 (2.0) 76.5 (2.6) 86.9 (3.1) 91.2 (1.5)

KFD 96.1(0.4) 70.9 (5.8) 76.7 (2.3) 69.9 (4.7) 88.8 (3.0) 99.5(0.1)
LS-SVM 95.5 (0.4) 61.1 (5.2) 73.7 (2.3) 74.0 (2.8) 89.9 (2.8) 98.8 (0.3)

BFD 95.1 (0.6) 73.4(5.3) 81.1 (1.9) 79.0(2.5) 90.9(2.7) 98.2 (0.4)

RBF Ringnorm Flare S. Splice Thyroid Titanic Twonorm Waveform

LDA 80.0 (0.8) 73.9(1.9) 91.8 (0.4) 86.6 (5.8) 70.8 (1.0) 99.7 (0.0) 92.5(0.7)
QDA 99.8 (0.0) 61.6 (1.8) 93.0(0.4) 97.5 (1.7) 71.4 (2.0) 99.5 (0.0) 91.2 (0.4)

KFD 99.8 (0.0) 65.6 (2.5) 91.3 (0.5) 97.4 (3.6) 70.9 (1.0) 99.8(0.0) 88.6 (0.5)

LS-SVM 99.6 (0.1) 73.8 (1.6) 88.2 (0.7) 97.8 (1.4) 73.8(2.4) 93.8 (0.8) 83.3 (1.2)

BFD 99.9(0.0) 72.9 (2.0) 91.6 (0.5) 98.5(1.1) 71.6 (0.6) 99.8(0.0) 91.6 (0.8)

Table 2: Average classification results of benchmark data. We reportmean and standard deviations (within
brackets) of the AUC over all testing instances. The compared algorithms are: linear discriminant
(LDA), quadratic discriminant (QDA), kernel Fisher’s discriminant (KFD), least squares support
vector machine (LS-SVM) and Bayesian Fisher’s discriminant (BFD). In all the experiments an
RBF kernel was used. It can be observed that BFD performs better in 6 out of 13 problem domains.

The BFD framework allows for the inclusion of some type of ARD priors. Incorporation of
this type of prior performs feature selection by assigning very high weightsto some of the posterior
values of the hyperparameters and hence prunning out features, (see Mackay, 1995). We were
interested in comparing our approach with the Bayesian version of the LS-SVM, which can also
make use of ARD priors. Our results are presented in Table 3. In this case, however, the comparison
is tighter with LS-SVM performing narrowly better than BFD in 7 out of the 13 problems. The EM
algorithm we proposed is slower to converge than direct optimisation of the marginal likelihood as
can be applied to the LS-SVM. Our use of the EM algorithm is necessary dueto the nature of the
moving targets, this is a disadvantage of our approach. Hence to obtain a solution in a reasonable
time, we were obliged to reduce the number of initialisations toNx = 3 and to increase the tolerances
ηβ andηΘk to be less than 1×10−5 and 1×10−6, respectively.

In Figure 9 we show a comparison of the weights assigned to each feature intwo data sets,
Ringnorm and Splice. We were interested on showing if there was any correlation on the degree
of importance assigned to each feature by the two algorithms. Ringnorm and Splice were specially
selected because they were examples in which BFD performed better (marginally) and worse than
LS-SVM, respectively. In the figure, we report the values of the inverse weights,Θard, for BFD
while for LS-SVM we report the ‘ranking’ coefficients produced by theLS-SVM implementation
we used (see Appendix E). These coefficients are related to the valuesΘard. For identical results we
expected to observe a high degree of correlation between BFD weights and LS-SVM rankings. As a
first example, in Figure 9 we observe that Ringnorm is assigned varied values by BFD and LS-SVM.
In fact, for features[3−6] and 18, there is a reasonable degree of overlap between assigned values,
and this could help to explain why both algorithms performed similarly well. This observation goes

479



PEÑA CENTENO AND LAWRENCE

in accordance with our intuition. It is noticeable that none of the features in BFD has been driven to
zero, which indicates that this algorithm required all of the features to learna solution. The second
case corresponds to Splice. In this data set, LS-SVM performed better than BFD by a wide margin
and this could well be explained by the aggressive pruning of features that BFD performed; as it is
shown in the figure.

ARD Banana Breast Diabetis German Heart Image

LS-SVM 91.6 (1.0) 72.3 (5.4) 83.3(1.7) 79.5(2.5) 90.5 (2.6) 98.9(0.6)
BFD 95.1(0.6) 74.2(5.1) 81.1 (1.6) 77.9 (2.6) 90.9(2.7) 76.8 (0.9)

ARD Ringnorm Flare S. Splice Thyroid Titanic Twonorm Waveform

LS-SVM 99.8 (0.0) 66.0 (3.3) 95.7(0.3) 99.5(0.5) 73.6(2.6) 99.6 (0.0) 96.4(0.2)
BFD 99.9(0.0) 73.2(1.7) 88.8 (0.5) 98.9 (0.8) 71.9 (1.1) 99.7(0.0) 94.0 (0.1)

Table 3: Average classification results of benchmark data. We reportmean and standard deviations (within
brackets) of the AUC over all testing instances. This table compares the BFD algorithm against an
LS-SVM, both employing ARD based kernels. In this case Bayesian LS-SVM outperforms BFD
in 7 out of 13 cases.
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Figure 9: Plot of the feature values learned by BFD and LS-SVM on Ringnorm and Splice data sets. For
both algorithms we used an ARD kernel. The weights learned inLS-SVM are plotted in cyan
(gray) and correspond to the lefty-axis, whereas the weights learned in BFD are plotted in blue
(dark) and correspond to the righty-axis. We report weight values for BFD while for LS-SVM,
‘ranking’ coefficients. These coefficients are related to the weightsΘard. Ideally we would expect
to see a perfect match between feature values of BFD and rankings in LS-SVM. As it is shown in
Table 3, BFD performed better in Ringnorm while LS-SVM did better in Splice.

8.2.1 HISTOGRAMS OFPROJECTEDDATA

A good way to visualize whether an FLD-based algorithm is performing adequately consists of gen-
erating histograms of projected data. We briefly compare the output distributions generated by BFD
and KFD on training and test instances of the Waveform and Twonorm datasets. We used the data
produced from the experiments with an RBF kernel to generate Figures 10and 11.
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In the Figure 10, BFD produced very consistent outputs between trainingand test sets for both
Twonorm and Waveform. In particular, it is encouraging to see that Twonorm projects very close
to two Gaussian distributions because this data set comes from two multivariate Gaussians. Mean-
while, in Figure 11, KFD produced very consistent output distributions in Twonorm but failed to do
so in Waveform. Following similar arguments to those of Mika (2002), we believethis is one of the
reasons for BFD performing better than KFD, in terms of AUC.
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Figure 10: Comparison of output distributions on training and test sets for BFD. The data sets depicted
are Twonorm and Waveform, respectively. It is clearly observable that training and test set
distributions for BFD are quite consistent.

9. Conclusions and Future Work

We have presented a Bayesian probabilistic approach to discriminant analysis that can correspond
to kernel Fisher’s discriminant. Regularisation of the discriminant arises naturally in the proposed
framework and through maximisation of the marginal likelihood we were able to determine kernel
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Figure 11: Comparison of output distributions on training and test sets for KFD. The data sets depicted
are Twonorm and Waveform. Observe that training and test distributions for Waveform are
noticeably different; this might explain KFD’s lower classification performance if compared to
BFD, see Table 2.

parameters. This paper has established the theoretical foundations of theapproach and has shown
that for a range of simple toy problems the methodology does discover sensible kernel parameters.
The optimisation is only guaranteed to find a local minimum and therefore the quality of the solu-
tion can be sensitive to the initialisation. We performed experiments on real world data obtaining
results which are competitive with the state of the art, moreover, we were able todo some relevance
determination on the data set features.

Future directions of this work will be centred on sparsifying the kernel matrix. We intend
to adapt the informative vector machine model to our framework (Lawrenceet al., 2003). This
should make larger data sets practical because at present, we are restricted by theO

(

N3
)

complexity
associated with inverting the kernel matrix. Another direction of research will consist of allowing
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the model to learn in the presence of label noise, building on work by Lawrence and Schölkopf
(2001).
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Appendix A. Weight Space Approach

In order to derive the distribution ofw under the constraintd, we first realise that the combination
of p(w |D ) andp(d |D,w,γ) yields a Gaussian distribution. Therefore, after conditioning ond, the
resulting distribution will be Gaussian with the formp(w|D,d,γ) = lim

γ→∞
N (w̄,Σ) and parameters

w̄ = lim
γ→∞

γdΣ∆m (34)

and

Σ = lim
γ→∞

(

B+ γ∆m∆mT)−1
. (35)

Inversion ofΣ through Morrison-Woodbury formula allows us to take the limit, such as is shown
below

Σ = lim
γ→∞

(

B−1− B−1∆m∆mTB−1

γ−1 +∆mTB−1∆m

)

,

hence

Σ = B−1− B−1∆m∆mTB−1

∆mTB−1∆m
.

The mean̄w can be obtained by substituting Equation 35 (without evaluating the limit) into Equation
34. Then, the application of Morrison-Woodbury formula and some extra manipulations will lead
to a form suitable for taking the limit.

Appendix B. Expressingp
(

t̂
∣

∣ f,y
)

in terms of f and L

Disregarding an additive constant, the log of the modified noise modelp
(

t̂
∣

∣ f,y
)

is

L (ĉ0, ĉ1) = −β
2

N

∑
n=1

[

yn(ĉ1− fn)
2 +(1−yn)(ĉ0− fn)

2
]

,
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where we have used Equation 6 as base. From Equation 9, we substitute thevalues of each estimate
ĉq so that

L = −β
2

N

∑
n=1

[

yn

(

1
N1

yT
1 f− fn

)2

+(1−yn)

(

1
N0

yT
0 f− fn

)2
]

= −β
2

(

ffT − 1
N1

yT
1 ffTy1−

1
N0

yT
0 ffTy0

)

= −β
2

(

fTLf
)

.

Appendix C. Gaussian Process Approach

In this section we find the parameters of a new projected data point, namely its mean f̄ ? and variance
(σ?)2, as specified in Equations 21 and 22. In the model we have three types of distributions:
p
(

t̂
∣

∣y, f
)

, the noise model;p(f+), an extended GP prior that includes the pointf ? and the constraint
p(d|y, f,γ). In order to derive the distributionp( f ?|D,d,γ) we first compute the joint distribution

p
(

f+, t̂,d
∣

∣y,γ
)

= p
(

t̂
∣

∣y, f
)

p(d|y, f,γ) p(f+) ,

and then take advantage of the separability off+ into
[

fT , f ?
]T

to be able to marginalise the latent
variablesf, which are associated with the training set. In other words we do

p
(

f ?, t̂,d
∣

∣y,γ
)

=
Z

p
(

f ?, f, t̂,d
∣

∣y,γ
)

∂f (36)

The rest of the process consists of conditioningf ? on the targetŝt and the distanced and on taking
the limit γ → ∞. In the remaining part of this section we detail this process.

C.1 Derivations

Grouping Equations 18, 19 and 20 gives

p( f+, t̂,d
∣

∣y,γ) ∝ exp

{

−β
2

fTLf − 1
2

f+K−1
+ f+− γ

2

(

d− fT∆ŷ
)2
}

.

The idea consists of expanding and collecting terms inf and f ?. In order to do so, we partition the

inverse of the extended kernel by makingK−1
+ =

[

C c
cT c?

]

. Thus we know that the product

fT
+K−1

+ f+ = fTCf +2 f ?cT f +c? ( f ?)2.

Hence we get

p( f ?, f, t̂,d
∣

∣y,γ) ∝ exp
{

−1
2fTQf− ( f ?c− γd∆ŷ)T f− 1

2c? ( f ?)2
}

(37)

with
Q =

(

βL +C+ γ∆ŷ∆ŷT) . (38)
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MARGINALISING LATENT VARIABLES

We are now in position to determine the distribution for a new mappingf ?. The marginalisation of
f is done by computing the integral of Equation 36 using as integrand the expression in (37). First

we observe that the term
(

−1
2c? ( f ?)2

)

will be required when computing the distribution overf ?

and when taking the limit, so it will be kept apart from the integral and used ata later stage.
The integral in Equation 36 is of exponential form, so we know how to solve itin a straightfor-

ward way. See below that

Z

exp

(

−1
2

fTQf +hT f
)

∂f ∝ exp

(

1
2

hTQ−1h
)

,

where we recognise that
h = −( f ?c− γd∆ŷ)T .

Therefore the result, after incorporating
(

−1
2c? ( f ?)2

)

, is

p( f ?, t̂,d
∣

∣y,γ) ∝ exp

{

1
2

hTQ−1h− 1
2

c? ( f ?)2
}

. (39)

OBTAINING CONDITIONAL DISTRIBUTION

The distributionp( f ?|D,d,γ), with D =
(

t̂,y
)

, is obtained by conditioning the expression in (39)
on t̂ andd. Therefore we will work with the argument inside theexponentialof (39) and group
terms in f ?, ignoring the rest. We begin by substitutingh and expanding

1
2

( f ?c− γd∆ŷ)T Q−1( f ?c− γd∆ŷ)− 1
2

c? ( f ?)2 =

−1
2

(

c?−cTQ−1c
)

[

( f ?)2+
2γdcTQ−1∆ŷ
c?−cTQ−1c

f ?

]

+
1
2

[

(γd)2 ∆ŷTQ−1∆ŷ
]

.

Completing the squares onf ? gives a Gaussian

p( f ?|D,d,γ) ∝ exp
{

− 1
2(σ?)2

(

f ?− f̄ ?
)2
}

where the variance is
(σ?)2 = lim

γ→∞

(

c?−cTQ−1c
)−1

(40)

and the mean,
f̄ ? = − lim

γ→∞
γd(σ?)2cTQ−1∆ŷ. (41)

WORKING OUT (σ?)2

We now determine the limitγ → ∞ in Equation 40. First, we express each of the terms that form the
inverse of the kernel matrix:

c? =
(

k?−kTK−1k
)−1

, (42)
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c = −c?K−1k, (43)

and
C = K−1 +c?K−1kkTK−1. (44)

Partitioning the kernel matrix implies that

K+ =

(

K k
kT k?

)

.

Substituting (38) and (43) into Equation 40 gives

(σ?)2 = lim
γ→∞

(

c?−c2
?kT [βKLK + γK∆ŷ∆ŷTK +KCK

]−1
k
)−1

.

The productKCK can be worked out by using Equation 44. Therefore

(σ?)2 = lim
γ→∞

(

c?−c2
?kT [βKLK + γK∆ŷ∆ŷTK +K +c?kkT]−1

k
)−1

.

Defining
Dγ = γK∆ŷ∆ŷTK +A, (45)

with A = βKLK +K leads to

(σ?)2 = lim
γ→∞

[

c?−c2
?kT (Dγ +c?kkT)−1

k
]−1

,

= c−1
? +kTD−1

γ k.

Using Equation 42, we arrive to an expression for which(σ?)2 only depends onγ by the termDγ,

(σ?)2 = lim
γ→∞

[

k?−kT (K−1−D−1
γ
)

k
]

. (46)

Working with D −1
γ Inversion ofDγ (Equation 45) through the Morrison-Woodbury lemma allows

us to obtainD by taking the limit. See below.

D−1
γ = A−1−A−1K∆ŷ

(

1
γ

+∆ŷTKA −1K∆ŷ
)−1

∆ŷTKA −1.

Therefore, by takingγ → ∞ we obtain

D =
(

A−1−A−1K∆ŷ
(

∆ŷTKA −1K∆ŷ
)−1 ∆ŷTKA −1

)−1
.

Substituting this expression into (46) gives the desired result,

(σ?)2 = k?−kT (K−1−D−1)k.
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WORKING OUT THE MEAN

Substituting Equations 38 and 43, the values ofQ andc, into Equation 41 leads to

f̄ ? = lim
γ→∞

γd(σ?)2c?kT (Dγ +c?kkT)−1
K∆ŷ.

Inverting the matrix
(

Dγ +c?kkT
)

and substituting the value ofc? gives

f̄ ? = lim
γ→∞

γd(σ?)2[k?−kT (K−1−D−1
γ
)

k
]−1

kTD−1
γ K∆ŷ.

Using (46) implies that
f̄? = lim

γ→∞
γdkTD−1

γ K∆ȳ.

Substituting (45) and inverting gives

f̄ ? = lim
γ→∞

d

(

1
γ

+∆ŷTKA −1K∆ŷ
)−1

kTA−1K∆ŷ.

Taking the limit gives the desired result

f̄? =
dkTA−1K∆ŷ

∆ŷTKA −1K∆ŷ
.

Appendix D. Obtaining MAP Solution for β

Making
V = ∑N

n=1yn(ĉ1− fn)
2 +∑N

n=1(1−yn)(ĉ0− fn)
2 ,

= σ2
1 +σ2

0.

the modified noise model9 becomes

p
(

t̂ |f,β
)

=
βN/2

(2π)N/2
exp

{

−β
2

V

}

.

Then combining it with a gamma priorG(β|a,b) gives a posterior of the form
G(β|N/2+a,(V/2+b)), that is

p
(

β| t̂, f
)

∝ βN/2+a−1exp

{

−β
(

V
2

+b

)}

.

Taking the derivative of the log of this distribution, equating the result to zero and solving will give
Equation 27.

Appendix E. Experimental Setup

In this section we give more details on the way we carried out our experimentson toy and real data.

9. Use Equation 6 and substitute the class centrescq by their estimates ˆcq.
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E.1 Toy Data

In all our experiments with synthetic data we used an RBF kernel of the form

k(xi ,x j) = θ1exp

(

−θ2

2

∣

∣

∣

∣xi −x j
∣

∣

∣

∣

2
)

+θ3δi j . (47)

For KFD and LS-SVM we worked with the bandwidth of the kernelσ = 1/θ2, whereas for BFD we
usedθ2 itself. The nugget parameterθ3 ensures thatK can be inverted at all times.

Regarding model training, we used the matlab implementation of Baudat and Anouar (2000)
to solve the generalized eigenvalue problem, see their functionBuildGDA. Furthermore, we used
the functioncrossvalidate, provided by Pelckmans et al. (2003) and Suykens et al. (2002), to
cross-validate the values ofσ and of the ‘threshold’ of the mininum accepted eigenvalue. The latter
was used instead of the regularisation coefficient because of the way theeigenvalue problem is
solved, see Baudat’s implementation for more details. In the LS-SVM case, weused the toolbox
LS-SVMlab of Pelckmans et al. (2003) and Suykens et al. (2002) to do the classifications. The
values ofσ andC were cross-validated, with the latter being the coefficient associated with the
support vector formulation. Lastly, in BFD, we used our own implementation which is available at

http://www.dcs.shef.ac.uk/˜neil/bfd .

In this case, the functionscg provided in Netlab’s toolbox (Nabney, 2002) was used to adapt kernel
parameters.

E.2 Benchmark Data Sets

In the BFD experiments with an RBF kernel, we usedNx = 8 different initialisations of the parameter
θ2 (Equation 47) during the training phase. The initialisations selected ranged from 1×10−4 to 1×
104; initialisations that produced numerical errors were ignored. We trained on the first 5 realisations
(partitions) of each data set and computed their marginal loglikelihood. In thisway, an array of
Nx×5 elements was obtained. See below.

Init . Part.1 . . . Part.5

θ1
2 Θ(11)

t . . . Θ(15)
t

...
...

...
...

θNx
2 Θ(Nx1)

t . . . Θ(Nx5)
t

For each partition, we selected the vectorΘ(ip)
t with highest associated marginal likelihood, with

p ∈ [1,5] and i ∈ [1,8]. Hence the original array of 40 elementsΘip
t was reduced to an array of 5

elements. The final vector of parameters was determined by extracting the trained valuesθ2 from
each element of the reduced array and taking the median over them. The selected vectorΘsel

t was
the one associated with the median value ofθ2.

For the ARD experiments, we changedNx = 3. The initialisations were given by
[

1×10−3,1,10
]

.
The Bayesian LS-SVM experiments were carried out using the toolbox LS-SVMLab (see Suykens

et al., 2002). We trained LS-SVM’s on the first five realisations of the training data and selected the
median of the parameters. We observed that this algorithm was susceptible to fall into local minima
so in order to avoid this problem, we used the functionbay_initlssvm to have good initialisations.
The ARD rankings were obtained by applying the functionbay_lssvmARD.
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