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Abstract

This paper introduces a learning method for two-layer ferufrd neural networks based on sen-
sitivity analysis, which uses a linear training algorithar €ach of the two layers. First, random
values are assigned to the outputs of the first layer; ldtesd initial values are updated based on
sensitivity formulas, which use the weights in each of tlyets; the process is repeated until con-
vergence. Since these weights are learnt solving a linedeisyof equations, there is an important
saving in computational time. The method also gives thd kmasitivities of the least square errors
with respect to input and output data, with no extra companat cost, because the necessary in-
formation becomes available without extra calculatiortsis Tmethod, called the Sensitivity-Based
Linear Learning Method, can also be used to provide an irsgaof weights, which significantly
improves the behavior of other learning algorithms. Thetégcal basis for the method is given
and its performance is illustrated by its application taesal’examples in which it is compared with
several learning algorithms and well known data sets. Todtehave shown a learning speed gen-
erally faster than other existing methods. In additionait be used as an initialization tool for other
well known methods with significant improvements.

Keywords: supervised learning, neural networks, linear optimizgtieast-squares, initialization
method, sensitivity analysis
1. Introduction

There are many alternative learning methods and variants for neurainkstvin the case of feedfor-
ward multilayer networks the first successful algorithm was the classac&ijoopagation (Rumel-
hart et al., 1986). Although this approach is very useful for the legrpiocess of this kind of
neural networks it has two main drawbacks:

e Convergence to local minima.

e Slow learning speed.
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In order to solve these problems, several variations of the initial algoritidraéso new methods
have been proposed. Focusing the attention on the problem of the slmwm@eapeed, some algo-
rithms have been developed to accelerate it:

e Modifications of the standard algorithmSome relevant modifications of the backpropaga-
tion method have been proposed. Sperduti and Antonina (1993) exehdtkpropagation
framework by adding a gradient descent to the sigmoids steepness amartten and Park
(1999) present a novel fast learning algorithm to avoid the slow cgemee due to weight
oscillations at the error surface narrow valleys. To overcome this diffichey derive a
new gradient term by modifying the original one with an estimated downwaesttibn at
valleys. Also, stochastic backpropagation—which is opposite to batchrigaaind updates
the weights in each iteration—often decreases the convergence time, getiallg rec-
ommended when dealing with large data sets on classification problems (sae &eél.,
1998).

e Methods based on linear least-squar&€®sme algorithms based on linear least-squares meth-
ods have been proposed to initialize or train feedforward neural nketviBiegler-Konig and
Barmann, 1993; Pethel et al., 1993; Yam et al., 1997; Cherkassky aldrML998; Castillo
et al., 2002; Fontenla-Romero et al., 2003). These methods are mostty draseinimiz-
ing the mean squared error (MSE) between the signal of an outputmédigfore the output
nonlinearity, and a modified desired output, which is exactly the actual desitput passed
through the inverse of the nonlinearity. Specifically, in (Castillo et al., 2@0&j)ethod for
learning a single layer neural network by solving a linear system of equsaisoproposed.
This method is also used in (Fontenla-Romero et al., 2003) to learn the lasbfayaeural
network, while the rest of the layers are updated employing any othelimear-algorithm
(for example, conjugate gradient). Again, the linear method in (Castillo etG0d2)3s the
basis for the learning algorithm proposed in this article, although in this dbkgers are
learnt by using a system of linear equations.

e Second order method¥he use of second derivatives has been proposed to increasmnthe ¢
vergence speed in several works (Battiti, 1992; Buntine and Weig®98, Parker, 1987). It
has been demonstrated (LeCun et al., 1991) that these methods arefiomnet eih terms of
learning speed, than the methods based only on the gradient descaiguechn fact, second
order methods are among the fastest learning algorithms. Some of the meshrebeam-
ples of this type of methods are the quasi-Newton, Levenberg-Marg(ldagan and Men-
haj, 1994; Levenberg, 1944; Marquardt, 1963) and the conjugatiayt algorithms (Beale,
1972). Quasi-Newton methods use a local quadratic approximation ofrthre@nction, like
the Newton’s method, but they employ an approximation of the inverse of Swdmematrix
to update the weights, thus getting a lowest computational cost. The two most coapmo
dating procedures are the Davidson-Fletcher-Powell (DFP) anddBreffletcher-Goldfarb-
Shanno (BFGS) (Dennis and Schnabel, 1983). The Levenbergudait method combines,
in the same weight updating rule, both the gradient and the Gauss-Newimxapation of
the hessian of the error function. The influence of each term is deterrbinad adaptive
parameter, which is automatically updated. Regarding the conjugate gradiémids, they
use, at each iteration of the algorithm, different search directions in alvedythe compo-
nent of the gradient is parallel to the previous search direction. Sealgmaithms based on
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conjugate directions were proposed such as the Fletcher-Reevefi¢Fketc Reeves, 1964;
Hagan et al., 1996), Polak-Réie (Fletcher and Reeves, 1964; Hagan et al., 1996), Powell-
Beale (Powell, 1977) and scaled conjugate gradient algorithms (MolleB)1®lso, based

on these previous approaches, several new algorithms have bedopdel like those of
Chella et al. (1993) and Wilamowski et al. (2001). Nevertheless, secofer methods are
not practicable for large neural networks trained in batch mode, althsoigie attempts to
reduce their computational cost or to obtain stochastic versions havaraggéeCun et al.,
1998; Schraudolph, 2002).

e Adaptive step sizeln the standard backpropagation method the learning rate, which deter-
mines the magnitude of the changes in the weights for each iteration of the algdstfixed
at the beginning of the learning process. Several heuristic methodsfdyttamical adapta-
tion of the learning rate have been developed (Hush and Salas, 188BsJ4988; Vogl et al.,
1988). Other interesting algorithm is the superSAB, proposed by Tollen@ellenaere,
1990). This method is an adaptive acceleration strategy for error tugudgation learning
that converges faster than the gradient descent with optimal step siee reducing the sen-
sitivity to parameter values. Moreover, in (Weir, 1991) a method for thedstdrmination of
this parameter has also been presented. More recently, in Orr and1936),(an algorithm
for fast stochastic gradient descent, which uses a nonlinear adajatimentum scheme to op-
timize the slow convergence rate was proposed. Also, in Almeida et al. ), 1®868w method
for step size adaptation in stochastic gradient optimization was presentsdndtinod uses
independent step sizes for all parameters and adapts them employingitabla\derivatives
estimates in the gradient optimization procedure. Additionally, a new onlineitgofor
local learning rate adaptation was proposed (Schraudolph, 2002).

e Appropriate weights initialization The starting point of the algorithm, determined by the
initial set of weights, also influences the method convergence speed, Séueral solutions
for the appropriate initialization of weights have been proposed. NguygMAdrow assign
each hidden processing element an approximate portion of the ranged#dined response
(Nguyen and Widrow, 1990), and Drago and Ridella use the statisticaltyadlenl activation
weight initialization, which aims to prevent neurons from saturation durincattagptation
process by estimating the maximum value that the weights should take initially (Rrefjo
Ridella, 1992). Also, in (Ridella et al., 1997), an analytical technique, toliziéighe weights
of a multilayer perceptron with vector quantization (VQ) prototypes given thevalence
between circular backpropagation networks and VQ classifiers, leaisgseposed.

e Rescaling of variablesThe error signal involves the derivative of the neural function, Wwhic
is multiplied in each layer. Therefore, the elements of the Jacobian matrix ¢angtéatly
in magnitude for different layers. To solve this problem Rigler et al. (19@%e proposed a
rescaling of these elements.

On the other hand, sensitivity analysis is a very useful technique forimghow and how
much the solution to a given problem depends on data (see, for examsid|oCet al., 1997,
1999, 2000). However, in this paper we show that sensitivity formulasisa be used for learning,
and a novel supervised learning algorithm for two-layer feedforwardal networks that presents a
high convergence speed is proposed. This algorithm, the SensitivigdBasear Learning Method
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(SBLLM), is based on the use of the sensitivities of each layer’s parasneih respect to its inputs
and outputs, and also on the use of independent systems of linear egfiatieach layer, to obtain
the optimal values of its parameters. In addition, this algorithm gives the sérestof the sum of
squared errors with respect to the input and output data.

The paper is structured as follows. In Section 2 a method for learning peeriaural networks
that consists of solving a system of linear equations is presented, andlésrfor the sensitivities
of the sum of squared errors with respect to the input and output datieaved. In Section 3 the
SBLLM method, which uses the previous linear method to learn the paraméters-tayer neural
networks and the sensitivities of the total sum of squared errors witlecesp the intermediate
output layer values, which are modified using a standard gradient foramtilaconvergence, is
presented. In Section 4 the proposed method is illustrated by its applicationet@lspractical
problems, and also it is compared with some other fast learning methodsctlarSe the SBLLM
method is presented as an initialization tool to be used with other learning metno8sction 6
these results are discussed and some future work lines are preseimaidly, b Section 7 some
conclusions and recommendations are given.

2. One-Layer Neural Networks

Consider the one-layer network in Figure 1. The set of equations relapats and outputs is given
by

|
Yjs = fj <Z)Wjixis>; i=12...,J;, s=12,....S
i=

wherel is the number of inputs] the number of outputsses = 1, wji are the weights associated
with neuronj andSis the number of data points.

Y1s

Yas

Yis

Xis

Figure 1: One-layer feedforward neural network.

To learn the weightsvji, the following sum of squared errors between the real and the desired

output of the networks is usually minimized:
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Assuming that the nonlinear activation functiofis,are invertible (as it is the case for the most
commonly employed functions), alternatively, one can minimize the sum of edjearors before

the nonlinear activation functions (Castillo et al., 2002), that is,

S J 1 2
Q= Z 28 = Sgljzl<zwju><.s f (Yjs)> ) 1)

s=1j=1 i=0

which leads to the system of equations:

aij Z(%le)ﬁs yJS)>XpS = 0; p=01,...,1; Vj,
that is,
[ s s
Wii ) XisXps = f (Yis)Xpss P=0,1,....1; Vj
i; JISZL isAps S;J js)”ps
or
I .
;Apiwji = bp;; p=01,...,I; Vj, 2)
i=
where
s
Ay = XisXpss P=0,1,...,1; Vi
| S;I
s _
S=

Moreover, for the neural network shown in Figure 1, the sensitivities (Zastillo et al., 2001,
2004, 2006) of the new cost functio, with respect to the output and input data can be obtained

as.
|
2 (_Z WhpiXig — fl(qu))
Q_ s i . Vpq (3)
0Ypq f5(Ypa)
0 J
axch = 2}21<;w“xm yjq)>ij; vp,q. (4)
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3. The Proposed Sensitivity-Based Linear Learning Method

The learning method and the sensitivity formulas given in the previous sawimbe used to de-
velop a new learning method for two-layer feedforward neural netsy@ it is described below.
Consider the two-layer feedforward neural network in Figure 2 whes¢he number of inputs,
J the number of output the number of hidden unitggs = 1, zps = 1, Sthe number of data samples
and the superscriptd) and(2) are used to refer to the first and second layer, respectively. This
network can be considered to be composed of two one-layer neuranketvl herefore, assuming
that the intermediate layer outputsare known, using equation (1), a new cost function for this
network is defined as

Qz) = QP(2)+Q?(z) =
S| s (5w £V A 2, _ @7 ’
- SZL kZl i;)Wki o h (ad +;1 k;)WJ'k s 1 (Yjs) .

Thus, using the outputas we can learn, for each layer independently, the Weig\bﬁj% and

WE? by solving the corresponding linear system of equations (2). After thatsehsitivities (see
equations (3) and (4)) with respectg are calculated as:

0Q QM 9Q®@
= — + —
0%s 0%s 0%s
| 1 1)t
2 (izowl((i)Xis fk( ) (st)> J ( K 2 2 2
= +2 Wi zs— T, (Yjs) | Wi
ia AP |
withk=1,... K, aszps=1,Vs.

Figure 2: Two-layer feedforward neural network.

Next, the values of the intermediate outpmigre modified using the Taylor series approxima-
tion:

¢ < 9Q(2)

k=1s= 0%

Q(z+42) = Q(z) + Nzs~ 0,
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which leads to the following increments

_ Q@

wherep is a relaxation factor or step size.
The proposed method is summarized in the following algorithm.

Algorithm SBLLM

Input. The data set (inputys, and desired datay;s), two threshold errorse(ande’) to control
convergence, and a step sfze

Output. The weights of the two layers and the sensitivities of the sum of squarecs ewith
respect to input and output data.

Step 0: Initialization. Assign to the outputs of the intermediate layer the output associated with
some random weights'! (0) plus a small random error, that is:

|
Zs= T (%Wﬂin(o)xis) +eks  Eks~U(—n,n)k=1,...,K,
i=

wheren is a small number, and initializ@previous aNd MSEprevious t0 SOMe large number, where
MSE measures the error between the obtained and the desired output.

Step 1. Subproblem solution.Learn the weights of layers 1 and 2 and the associated sensitivities
solving the corresponding systems of equations, that is,

S s _
WhereAg)li) = leisxps? bd — S fk(l) l(zks)xps; p=0,1...,1; k=12....K
S=

S S -1 .

Step 2: Evaluate the sum of squared errors.EvaluateQ using

Q2 =QY2+Q%(2)
=5 |y (3w 10 @) 2+ < (S Wz 2y 2
szi kZl i;) Ks Tk S 2 Zo kST Is

and evaluate also tHdSE
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Step 3: Convergence checkinglf |Q — Qprevioud < € OF [MSEprevious— MSE| < €’ stop and return
the weights and the sensitivities. Otherwise, continue with Step 4.

Step 4: Check improvement ofQ. If Q > Qpreviousreduce the value of, that is,p = p/2, and
return to the previous position, that is, restore the weightszprevious Q = Qpreviousand go to Step
5. Otherwise, store the values@fandz, that is,Qprevious= Q, MSEprevious= MSEandzprevious= z
and obtain the sensitivities using:

2<'Zw<”m — 1 (&)

aQ N (e @, @ 2

- < _ _ . +2 Wz — £ (yis) | Wi k=1,... K.
0Zs fk(l)(zks) ;1 rZO jr 4s J Is ik

Step 5: Update intermediate outputs. Using the Taylor series approximation in equation (5),
update the intermediate outputs as

Q(2)
10Q[2

z=2z-p

0Q

and go to Step 1.

The complexity of this method is determined by the complexity of Step 1 which soluesaa
system of equations for each network’s layer. Several efficient rdetban be used to solve this
kind of systems with a complexity @d(n?), wheren is the number of unknowns. Therefore, the
resulting complexity of the proposed learning method is @6w), beingn the number of weights
of the network.

4. Examples of Applications of the SBLLM to Train Neural Networks

In this section the proposed method, SBLIN% illustrated by its application to five system iden-
tification problems. Two of them are small/medium size problems (Dow-Jonelseaveéin compe-
tition time series), while the other three used large data sets and networksflione series, and
the MNIST and UCI Forest databases). Also, in order to check themeahce of the SBLLM,

it was compared with five of the most popular learning methods. Three & thethods are the
gradient descent (GD), the gradient descent with adaptive momentdirstem sizes (GDX), and
the stochastic gradient descent (SGD), whose complex@yng. The other methods are the scaled
conjugated gradient (SCG), with complexity ©fn?), and the Levenberg-Marquardt (LM) (com-
plexity of O(n%)). All experiments were carried out in MATLA® running on a Compaq HPC 320
with an Alpha EV68 1 GHz processor and 4GB of memory. For each expetiatiehe learning
methods shared the following conditions:

e The network topology and neural functions. In all cases, the logistictiom was used for
hidden neurons, while for output neurons the linear function was wseddression problems
and the logistic function was used for classification problems. It is importamiark that
the aim here is not to investigate the optimal topology, but to check the perioera the
algorithms in both small and large networks.

1. MATLAB ® demo code available at http://www.dc.fi.udc.es/lidia/downloads/SBLLM.
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e Initial step size equal t0.05, except for the stochastic gradient descent. In this last case, we
used a step size in the intenj@l0050.2]. These step sizes were tuned in order to obtain
good results.

e The input data set was normalized (mean = 0 and standard deviation = 1).

e Several simulations were performed using for each one a differeof getial weights. This
initial set was the same for all the algorithms (except for the SBLLM), ansl etdiained by
the Nguyen-Widrow (Nguyen and Widrow, 1990) initialization method.

¢ Finally, statistical tests were performed in order to check whether theaetiffes in accuracy
and speed were significant among the different training algorithms. Syadlgififirst the
non-parametric Kruskal-Wallis test (Hollander and Wolfe, 1973) wadiegppo check the
hypothesis that all mean performances are equal. When this hypotheggisdea multiple
comparison test of means based on the Tukey’s honestly significameditie criterion (Hsu,
1996) was applied to know which pairs of means are different. In allsgassignificance
level of 0.05 was used.

4.1 Dow-Jones Time Series

The first data set is the time series corresponding to the Dow-Jones ialles\or years 1994-
1996 (Ley, 1996). The goal of the network in this case is to predict thexifat a given day based
on the index of five previous days. For this data set a 5-7-1 topologyp(8sn7 hidden neurons
and 1 output neuron) was used. Also, 900 samples were employed feathang process. In order
to obtain the MSE curves during the learning process 100 simulations ofitéd@ons each, were
done.

Figure 3(a) shows, for each method, the mean error curve calculagéedhe/100 simulations.
Also, in Figure 3(b) the box-whisker plots are shown for the 100 MSEasionéd by each method at
the end of the training. In this graphic the box corresponds to the intéilguange, the bar inside
the box represents the median, the whiskers extend to the farthest potrasetimot outliers, and
outliers are represented by the plus sign.

Also, different measures were calculated and collected in Table 4.1e Theassures are:

e M1: Mean and standard deviation of the minimum MSEs obtained by each methotheve
100 simulations.

e My: Mean epoch and corresponding standard deviation in which each othbe methods
reaches the minimum MSE obtained by the SBLLM.

e M3: MSE and standard deviation for each of the other methods at the epodhich the
SBLLM gets its minimum.

In this case, the best mean MSE is achieved by the LM methodMser Table 4.1). Also,
applying the multiple comparison test, it was found that the difference bettiesamean and those
from the others methods was statistically significant.

Finally, the mean CPU times and the corresponding standard deviationgfoofedae methods
are shown in Table 4.1. In this table, the variallepochean andtepochyy are the mean and
standard deviation CPU time (in seconds) per epoch, respectively, whilatiablestotalneanand
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ttotalsyq correspond to the mean and standard deviation of the time needed to reacimithem
MSE. TheRatio column contains the relation between tietalnean Of each algorithm and the
fastest one. Again, the multiple comparison test applied ovett tialn.anrevealed that the speed

of the fastest method, that is the SBLLM, was only comparable to that of tkee SC

10°F

SBLLM

107
10

(@) Mean error curves over 100 simulations

10* 10° 10°
Epoch

=

=

GD

scG GDX [ SBLLM SGD

(b) Boxplot of the 100 MSE values obtained at the

end of the training

Figure 3: Results of the learning process for the Dow-Jones data.

M1 M, M3
SBLLM | 4.866x 10 #+2.252x 106 | 2.08+0.394 | 4.866x 10 ¥+2.252x 10°°
LM 4.601x 104+1.369x 10°° 20+115 9.099x 102+2.190x 101
SCG | 1.928x103+8959%x 103 | 354+150*V | 5517x 10 2+6.034x 103
GDX | 7.747x103+1.802x 102 | 2,180+635*2 | 4.717x 10 1 +£5.962x 101
GD | 2.020x 102+2.369x 102 > 3000 5.517x 102+5.950%x 101
SGD | 5.995x 102+1.360x 103 > 3000 9.001x 102+1.356x 102

(¥1) 4% of the curves did not get the minimum of SBLLM
(x2) 99.5% of the curves did not get the minimum of SBLLM

Table 1: Comparative measures for the Dow-Jones data.

tepoChnean| tepochiy | ttotalmean | ttotalyy | Ratio
GD 0.0077 [ 9.883x10°| 23.125 | 0.297 | 223.4
GDX 0.0078 | 1.548<10°% | 22.764 | 3.548 | 219.9
SBLLM 0.0089 | 1.600x10°3| 0.104 0.115 1
SCG 0.0165 | 2.800x10° 3| 15.461 | 8.595 | 149.4
LM 0.0395 | 3.460<10°2 | 115.619 | 106.068| 1,117.1
SGD 0.2521 | 1.814x10°3 | 756.570 | 5.445 | 7,274.7

Table 2: CPU time comparison for the Dow-Jones data.
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4.2 K.U. Leuven Competition Data

The K.U. Leuven time series prediction competition data (Suykens and Vailded998) were
generated from a computer simulated 5-scroll attractor, resulting fromexrgleeed Chua’s circuit
which is a paradigm for chaos. 1800 data points of this time series wergfarsgdining. The

aim of the neural network is to predict the current sample using only 4quevata points. Thus
the training set is reduced to 1796 input patterns corresponding to theenafrdb-samples sliding
windows over the initial training set. For this problem a 4-8-1 topology wasl.usAs for the

previous experiment 100 simulations of 3000 iterations each were cauieResults are shown in
Figure 4, and Tables 4.2 and 4.2.

In this case, the best mean MSE is achieved by the LM method{s&e Table 4.2). However,
the multiple comparison test did not show any significant difference withectdp the means of
the SCG and the SBLLM. Regarding thetalnean, the multiple comparison test showed that the
speed of the fastest method, that is the SBLLM, was only comparable todhtts= GDX and the
GD.

¢
o)
<]
B
o}
]
MSE

10
t
- =

—

SBLLM
10° L L L —_—

SBLLM SGD

(b) Boxplot of the 100 MSE values obtained at the
end of the training

Epoch GD sce GDX [

(@) Mean error curves over 100 simulations

Figure 4: Results of the learning process for the Leuven competition data.

M1 M, M3
SBLLM | 3.639x 10 °+2098x 107 | 2.2+0.471 | 3.639x 10 °+2.098x 10’
LM 2.7064x 10 °+2439x 10 % | 235+163 | 1.323x101+3.143x 101
SCG | 3517x10°4+9.549x 107 | 2160+445®) | 1.949x 10 1+2.083x 10!
GDX | 8.121x104+4.504x 104 > 3000 7.190x 101 +6.651x 101
GD 3.280x 10 3+1.698x 1073 > 3000 1.949%x 10 1+6.621x 101
SGD | 4.748x10°+9.397x 106 > 3000 8.458x 103 +5.292x 103

(x) 9.8% of the curves did not get the minimum of SBLLM

Table 3: Comparative measures for the Leuven competition data.
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tepoChhean | tepochiy | ttotalnean | ttotalsq Ratio
GDX 0.0114 | 3.256x10* | 34.309 0.977 710.3
GD 0.0117 | 3.208<10“4 | 35.018 0.963 725
SBLLM 0.0173 | 2.362x10°3 0.048 0.017 1
SCG 0.0238 | 6.271x10“4 | 69.571 5.022 | 1440.4
LM 0.0669 | 5.440<10°2 | 196.816 | 164.539| 4074.9
SGD 0.5083 | 2.982<10°3 | 1,525.34| 8.949 | 31,777.9

Table 4: CPU time comparison for the Leuven competition data.

4.3 Lorenz Time Series

A Lorenz system (Lorenz, 1963) is described by the solution of threeltsineous differential
equations:

dx/dt = —ox-+ oy

dy/dt = —xz+rx—y

dz/dt =xy—bz

whereao, r andb are constants. For this work, we employee- 10,r = 28, andb = 8/3, for which
the system presents a chaotic dynamics. The goal of the network is totgredimurrent sample
based on the four previous samples. For this data set a 8-100-1 topwdsgysed. Also, 150000
samples were employed for the learning process. In this case, and deddogen size of both the
data set and the neural networks, the conditions of the experiments wdoddlving:

e The number of simulations, which were carried out to obtain the MSE cunmsgdthe
learning process was reduced to 30, of 1000 iterations each.

e Neither the GD nor the LM methods were used. The results of the GD will nptémented
because the method performed poorly, and the LM is impractical in these asgtds highly
computationally demanding (LeCun et al., 1998).

Results are shown in Figure 5, and Tables 4.3 and 4.3. In this case, theVBB&s the best
both in mean MSE and total CPU time, confirmed by the multiple comparison test.
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107F

Mean MSE

107E
10° o - 1 ‘z 3
10 10 10° 10 L L

Epoch scG GDX SBLLM SGD

(a) Mean error curves over 30 simulations (b) Boxplot of the 30 MSE values obtained at the
end of the training

Figure 5: Results of the learning process for the Lorenz data.

M1 Mo M3

SBLLM | 3.118x 10 8+2.151x 10 8 | 2.47+0.776 | 3.118x 10 8+2.151x 10 8
SGD | 1.426x 10 %+2.710x 10~/ >1000 | 2512x102+1.345x 102
SCG | 1.545x10°+3.922x 10 > 1000 1.286x 10t +5.538
GDX | 3.774x103+8.409x 104 > 1000 7.722x 10" +1.960x 10t

Table 5: Comparative measures for the Lorenz data.

tepocChnean | tepochiy | ttotalmean | ttotalsy | Ratio

GDX 9.75 0.04 9,750.92| 42.65 | 849.7

SCG 21.01 0.63 21,111.2| 633.62 | 1830.9

SGD 56.56 0.39 56,611.9| 395.15| 986.6
SBLLM 22.55 0.40 57.38 20.57 1

Table 6: CPU time comparison for the Lorenz data.

4.4 MNIST Data Set

The MNIST database, available at http://yann.lecun.com/exdb/mnist/, containkegel images of
handwritten digits of 2& 28 pixels. It is a real classification problem whose goal is to determine
the written number which is always an integer in the range between 0 and i8.ddtabase is
originally divided into a training set of 60,000 examples, and a test set,00Q@xamples. Further
we extracted 10,000 samples from the training set to be used as a validation set.

For this data set we used 784 inputs neurons fed by theZBpixels of each input pattern, and
one output neuron per class. Specifically a 784-800-10 topology s&k Un this case, and due to
the large size of both the data set and the neural network, the conditidine experiments were
the following:

e The number of simulations, which were carried out to obtain the classification was
reduced to 20.
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¢ Allowing a maximum of 200 iterations per simulation, the early stopping criteria ubieg
validation set was employed to halt learning.

e The LM method was not used, since it is impractical in these cases as it is bighlyuta-
tionally demanding (LeCun et al., 1998).

e Concerning the other batch methods only the SCG was used since it is theabotetly
obtains the best results and convergence speed in the previous expsrime

Results are shown in Tables 4.4 and 4.4. As mentioned, the training prétesstoee methods
were halted using the stop learning criteria. In this case, as can be eth$bevSGD achieved the
best mean test accuracy, confirmed by the multiple comparison test. Besidésimulations the
SBLLM always stops in iteration 75 achieving a worse accuracy than tielsGemploying a total
time lesser than the other methods. In order to check if this result could bevietbwe did some
other experiments allowing the SBLLM to run as long as the Stochastic Grdogstent (SGD).
However, results were not improved. Therefore, the presented tsleg the most favourable
situation for each algorithm.

Regarding the total CPU time, again the fastest method is the SBLLM, withalneanSignifi-
cantly different from the other two methods.

TraiNmeantstd | Validationmeantstd | T€Sheantstd

SGD 99.93+0.04 97.87+0.09 97.70+0.08
SCG | 7812+2246 77.21+21.97 77.03+22.05
SBLLM | 85.73+0.03 86.52+0.15 86.08+0.26

Table 7: Classification accuracy for the MNIST data.

tepocheantstd ttotalneantstd iterationSneancstd | Ratio

SGD | 1,20986+6.70 | 87,607.1+48541 72.44+16.99 2.73

SCG 31064+293 | 61,3114+1,537 1974+5.81 1.92
SBLLM | 42282+1.28 32,1344+97 75+0 1

Table 8: CPU time comparison for the MNIST data.

4.5 Forest

The Forest CoverType database, on-line at http://kdd.ics.uci.edu/desédmasertype/covertype.html,
contains data describing the wilderness areas and soil types f@@theter cells obtained from US
Forest Service Region 2 Resource Information System data. It is aés0 elassification problem
whose goal is to determine the forest cover type from 54 input varialeginally, the problem
consider 7 cover classes, although in this case we have employed tres 2-aision of the problem
that consist of distinguishing the most frequent class from the other siffofgert et al., 2003).
This database contains 500,000 examples from which we built a trainin§ =&t @41 examples, a
validation set of 10,123 and a test set of 50,620 examples. These sas/prthe same proportion
of samples for each of the seven classes as in the original data set.
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For this data set a 54-500-2 topology was used. Regarding the numdiardétions, stopping
criteria and learning methods, the conditions were the same as those of tr&TMMperiment
described in the previous section.

As in the previous section, the most favourable results for each algoritlishawn in Tables
4.5 and 4.5. In this data set, the SGD achieved the best mean test accardayned by the
multiple comparison test. Regarding the total CPU time, the fastest method is the SBlittva
ttotalmeansignificantly different from the other two methods. It is important to remarkatiaough
in this case the SBLLM is the fastest method, this is due to the stop of the leamuiogsp in an
early stage. This does not allow the SBLLM to achieve a good accuraiyissshown in Table 4.5.
These results confirm that, for classification problems the SGD seems tétbeiberror than the
SBLLM, which is similar in error but faster than the SCG.

Trainmean:std | Validationmeantstd | T€Skeantstd
SGD 89.60+0.92 88.21+0.69 88.224+0.56
SCG 79.03+1.29 7869+ 1.15 79.08+1.16

SBLLM | 79.874+1.05 79.65+0.22 79.92+0.15

Table 9: Classification accuracy for the forest cover type data.

tepocheantstd ttotalneantstd iterationSneantstd | Ratio
SGD 10695+1.92 | 1521063427334 142245536 | 109.14
SCG 10020+3.40 | 17,90366+306392 | 17860+29.66 | 92.58

SBLLM | 13937+0.72 13937+0.72 1+0 1

Table 10: CPU time comparison for the forest cover type data.

5. The SBLLM as Initialization Method

As has been shown in the previous section, the SBLLM achieves a snwllrate in very few
epochs. Although this error rate is very small and, in general, better tieaartbrs obtained by
other learning methods, as can be seen in Figures 3(a), 4(a) andi¢a)the SBLLM gets this
point the variation in the MSE in further epochs is not significant. For thisagaan interesting
alternative is to combine the SBLLM with other learning methods.

In this section, the results of the SBLLM used as an initialization method insteaddéarning
algorithm are presented. Thus, several experiments were accomplisingdthe SBLLM only to
get the initial values of the weights of the neural network. Afterwardsl.Mend SCG were used
as learning methods from these initial values. The experiments were cautiesing the Dow-
Jones, Leuven and Lorenz time series. For these three data sets thimerpa conditions were
the same as those described in Section 4.

For every experiment 100 simulations were done of 3000 iterations eachll tases, the
SBLLM performed at most three iterations to get the initial weights. Moredweorder to ac-
complish a comparative study, the obtained results were confronted witinéseaghieved by the
same learning methods (LM and SCG) but using the Nguyen-Widrow (NW)lin#ttaon method
(Nguyen and Widrow, 1990), one of the most popular, to obtain the initiajvi®.
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Figures 6(a), 7(a) and 8(a) show the corresponding mean curvesstfe 100 simulations) of
the learning process using the SBLLM and the NW as initialization methods aridvttes the
learning algorithm. Figures 6(b), 7(b) and 8(b) show the same meanscoitiee learning process
using this time the SCG as learning algorithm.

10 : : : 10"
10° B 10° E
L W 107 J
w
g NW + LM g
= 107t 3 = w7 ]
NW + SCG
10°F SaiimeLm 1 107 SBLLM + SCG 1
10" : . 10" . . .
10° 10" 10° 10° 10* 10° 10t 10° 10° 10"
Epoch Epoch
(a) Mean error curves for the LM method (b) Mean error curves for the SCG method

Figure 6: Mean error curves over 100 simulations for the Dow-Jones gnmsausing the SBLLM
and the NW as initialization methods.

N NW + SCG

Mean MSE
Mean MSE

SBLLM + SCG

Epoch

Epoch

(a) Mean error curves for the LM method (b) Mean error curves for the SCG method

Figure 7: Mean error curves over 100 simulations for the Leuven competiitiee series using the
SBLLM and the NW as initialization methods.
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Figure 8: Mean error curves over 100 simulations for the Lorenz timessasiag the SBLLM and
the NW as initialization methods.

Figures 9(a), 10(a) and 11(a) contain the boxplots of the methods in theplash of training
(3000) using the SBLLM and NW as initialization methods and the LM as the leaaigorithm.
Figures 9(b), 10(b) and 11(b) depict the same boxplots when usingQfeaS the learning algo-
rithm.

x10" x10™
B 4.85F ‘
I
! |
I | I
! — |
47 | + |
48t |
4.6 N ‘
45+ :
| : 4.75F |
! | |
4.4+ | I i
I PR S—
I
I
43k | ‘ il
| , 47k
— +
Nw l LM SBLLI\‘/I +LM NwW +‘SCG SBLLM‘ +SCG
(a) Boxplot for the LM method (b) Boxplot for the SCG method

Figure 9: Boxplot of the 100 MSE values at the last epoch of training obihw-Jones time series
using the SBLLM and NW as initialization methods.
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Figure 10: Boxplot of the 100 MSE values at the last epoch of traininthist.euven competition
time series using the SBLLM and NW as initialization methods.
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Figure 11: Boxplot of the 100 MSE values at the last epoch of trainingh#i_orenz time series
using the SBLLM and NW as initialization methods.

6. Discussion

Regarding the behavior of the SBLLM a$e@rning algorithm and from the experiments made and
the results presented in Section 4, there are three main features of thé/3Bat stand out:

1. High speed in reaching the minimum errdior the first three problems (Dow-Jones, Leuven
and Lorenz time series), this feature can be observed in Figures gapmt 5(a), and the
measureM, in Tables 4.1, 4.2 and 4.3, where it can be seen that in all cases the SBLLM
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obtains its minimum MSE (minMSE) just before the first 4 iterations and also sdbae
the rest of the algorithms. Moreover, and generally speaking, meb&ureflects that the
SBLLM gets its minimum in an epoch for which the other algorithms are far from simila
MSE values.

If we take into account the CPU times in Tables 4.1, 4.2, 4.3, 4.4 and 4.5 weeeahd,

as expected, the CPU time per epoch of the SBLLM is similar to that of the SC6& ¢o
O(nz)), and when we consider the total CPU time per simulation the SBLLM is, in thetwors
case, more than 150 times faster than the fastest algorithm for the regregaioples and
approximately 2 times faster for the classification examples. It is also importaeitark
that despite of the advantages of the LM method, it could not be applied ixpeziments
that involved large data sets and neural networks as it is impractical ¢brcases (LeCun
etal., 1998).

2. A good performancda-rom Figures 3(a), 4(a) and 5(a), and the meablyran Tables 4.1, 4.2
and 4.3, it can be deduced that not only the SBLLM stabilizes soon, mutredsnminMSE that
it reaches is quite good and comparable to that obtained by the secondnettieds. On the
other hand, the GD and the GDX learning methods never succeeded in gtthisiminMSE
before the maximum number of epochs, as reflected in med&uf€ables 4.1, 4.2 and 4.3).
Finally, the SCG algorithm presents an intermediate behavior, although selttuaves the
levels of performance of the LM and SBLLM.

Regarding the classification problems, from Tables 4.4 and 4.5, it cancheelt that the
SBLLM performs similar or better than the other batch method, that is the SCi& thk
stochastic method (SGD) is the best algorithm for this kind of problems (LeCaln, 1998).

Although the ability of the proposed algorithm to get a minimum in just very fewckpo
is usually an advantage, it can also be noticed that once it achieves this mir(iozah
or global) it gets stuck in this point. This causes that, sometimes like in the claisifica
examples included, the algorithm is not able to obtain a high accuracy. Théwibe could
be explained by the initialization method and the updating rule for the step sizeyadplo

3. Homogeneous behaviorhis feature comprehends several aspects:

e The SBLLM learning curve stabilizes soon, as can be observed in Big(ag 4(a) and
5(a).

e Regarding the minimum MSE reached at the end of the learning process ieca
observed from Figures 3(b), 4(b) and 5(b) that, in any case, ther@G®X algorithms
present a wider dispersion, given even place to the appearancdiefsouOn the other
hand, the SGD, SCG, LM and SBLLM algorithms tend to always obtain neafees
of MSE. This fact is also reflected by the standard deviations of med&ure

e The SBLLM behaves homogeneously not only if we consider just the &theé ¢earning
process, as commented, but also during the whole process, in suchtlavagry sim-
ilar learning curves where obtained for all iterations of the first threemx@nts. This
is, in a certain way, reflected in the standard deviation of medggivehich corresponds
to the MSE value taken at some intermediate point of the learning process.

1177



CASTILLO, GUIJARRO-BERDINAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

e Finally, from Tables 4.4 and 4.5 it can be observed that for these lastperiments
(MNIST and Forest databases) this homogeneus behaviour starttie 8GD and the
SBLLM, while the SCG presents a wider dispersion in its classification errors

With respect to the use of the SBLLM amstialization methodas it can be observed in Figures
6, 7 and 8, the SBLLM combined with the LM or the SCG achieves a fasteecgence speed than
the same methods using the NW as initialization method. Also, the SBLLM obtainy @yoed
initial point, and thus a very low MSE in a few epochs of training. Moreoirethis case, most
of the times the final MSE achieved is smaller than the one obtained using the NWzititisn
method. This result is better illustrated in the boxplots of the corresponding ¢ines svhere it can
be observed, in addition, that the final MSE obtained with NW presents @&higtiability than
that achieved by the SBLLM, that is, the SBLLM helps the learning algorithnebtain a more
homogeneous MSE at the end of the training process. Thus, experinoafitencthe utility of the
SBLLM as an initialization method, which effect is to speed up the conveegenc

7. Conclusions and Future Work

The main conclusions that can be drawn from this paper are:

1. The sensitivities of the sum of squared errors with respect to thetsuipthe intermediate
layer allow an efficient and fast gradient method to be applied.

2. Over the experiments made the SBLLM offers an interesting combinatiorefisyeliability
and simplicity.

3. Regarding the employed regression problems only second order meg#mstimore specifi-
cally the LM, seem to obtain similar results although at a higher computatiortal cos

4. With respect to the employed classification problems, the SBLLM perfoimitas or bet-
ter than the other batch method, although requiring less computational time.e8etid
stochastic gradient (SGD) is the one that obtains the lowest classificationEris result is
in accordance with that obtained by other authors (LeCun et al., 1998)¢tt@mmend this
method for large data sets and networks in classification tasks.

5. The SBLLM used as an initialization method significantly improves the periocmaf a
learning algorithm.

Finally, there are some aspects of the proposed algorithm that need grthrstledy, and will
be addressed in a future work:

1. A more appropriate method to set the initial values of the outpatdidden neurons (step 0
of the proposed algorithm).

2. A more efficient updating rule for the step sjzdike a method based on a line search (hard
or soft).

3. An adaptation of the algorithm to improve its performance on classificatagms, specif-
ically for large data sets.
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