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Abstract

We propose Sparse Boosting (the SpagB®ost algorithm), a variant on boosting with the squared
error loss. SparéeBoost yields sparser solutions than the previously prapas8oosting by
minimizing some penalizet,-loss functions, thé-PE model selection criteria, through small-
step gradient descent. Although boosting may give alreeldyively sparse solutions, for example
corresponding to the soft-thresholding estimator in aythmal linear models, there is sometimes a
desire for more sparseness to increase prediction accanacgbility for better variable selection:
such goals can be achieved with Spapgoost.

We prove an equivalence of SpatsBoost to Breiman’s nonnegative garrote estimator for
orthogonal linear models and demonstrate the genericanafuparsk;Boost for nonparametric
interaction modeling. For an automatic selection of thartgrparameter in SparkgBoost we
propose to employ the gMDL model selection criterion whieln @lso be used for early stopping
of LoBoosting. Consequently, we can select between SpgBs®st and_,Boosting by comparing
their gMDL scores.

Keywords: lasso, minimum description length (MDL), model selectiomnnegative garrote,
regression

1. Introduction

Since its inception in a practical form in Freund and Schapire (1996 ktingphas obtained and
maintained its outstanding performance in numerous empirical studies both in¢henmkearning
and statistics literatures. The gradient descent view of boosting as adatutaBreiman (1998,
1999), Friedman et al. (2000) ané&®Rch et al. (2001) provides a springboard for the understanding
of boosting to leap forward and at the same time serves as the base foamamsof boosting to be
generated. In particular, theBoosting (Friedman, 2001) takes the simple form of refitting a base
learner to residuals of the previous iteration. It coincides with Tuke@Z ) twicing at its second
iteration and reproduces matching pursuit of Mallat and Zhang (1998 w&hplied to a dictionary

or collection of fixed basis functions. A somewhat different approashideen suggested bych

et al. (2002). Bhimann and Yu (2003) investigatédBoosting for linear base procedures (weak
learners) and showed that in such cases, the variance or complexitg bbdsted procedure is
bounded and increases at an increment which is exponentially diminishiteyans run — this
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BUHLMANN AND YU

special case calculation implies that the resistance to the over-fitting beb&wioosting could be
due to the fact that the complexity of boosting increases at an extremely atmyv p

Recently Efron et al. (2004) made an intriguing connection for linear mba#eeen_,Boosting
and Lasso (Tibshirani, 1996) which is &rpenalized least squares method. They consider a modi-
fication ofL,Boosting, called forward stagewise least squares (FSLR) and theytehbfor some
special cases, FSLR with infinitesimally small step-sizes produces a statidss which coincides
with the set of Lasso solutions when varying the regularization parametexsisol. Furthermore,
Efron et al. (2004) proposed the least angle regression (LARS}itigowhose variants give a
clever computational short-cut for FSLR and Lasso.

For high-dimensional linear regression (or classification) problems witty imeffective pre-
dictor variables, the Lasso estimate can be very poor in terms of predictioreay and as a variable
selection method, see Meinshausen (2005). There is a need for mose spéutions than pro-
duced by the Lasso. Our new Spadrsgoost algorithm achieves a higher degree of sparsity while
still being computationally feasible, in contrast to all subset selection in liregaession whose
computational complexity would generally be exponential in the number of poedrariables.
For the special case of orthogonal linear models, we prove here aralemee of SpardeBoost
to Breiman’s (1995) nonnegative garrote estimator. This demonstratesciieased sparsity of
Sparse,Boost ovell,Boosting which is equivalent to soft-thresholding (due to Efron et aD420
and Theorem 2 in this article).

Unlike Lasso or the nonnegative garrote estimator, which are restrictedjemaralized) linear
model or basis expansion using a fixed dictionary, SpaBeost enjoys much more generic appli-
cability while still being computationally feasible in high-dimensional problems aglding more
sparse solutions than boosting/éregularized versions thereof (se&tBch et al., 2002; Lugosi and
Vayatis, 2004). In particular, we demonstrate its use in the context ofanamtric second-order
interaction modeling with a base procedure (weak learner) using thin platesspmproving upon
Friedman’s (1991) MARS.

Since our SparéeBoost is based on the final prediction error criterion, it opens up thgi{pos
bility of bypassing the computationally intensive cross-validation by stoppanty éased on the
model selection score. The gMDL model selection criterion (Hansen an@0fil) uses a data-
driven penalty to thé.,-loss and as a consequence bridges between the two well-known AIC and
BIC criteria. We use it in the SpansgBoost algorithm and for early stopping bfBoosting. Fur-
thermore, we can select between SpagBeost and_,Boosting by comparing their gMDL scores.

2. Boosting with the Squared Error Loss

We assume that the data are realizations from

(X17Y1)7 sy (Xn;Yn)v

whereX; € RP denotes gp-dimensional predictor variable anl € R a univariate response. In
the sequel, we denote by} the jth component of a vector € RP. We usually assume that the
pairs(X,Y;) are i.i.d. or from a stationary process. The goal is to estimate the regrégsaiion
F(x) = E[Y|X = x] which is well known to be the (population) minimizer of the expected squared
error lossE[(Y — F(X))?].

The boosting methodology in general builds on a user-determined basedpre or weak
learner and uses it repeatedly on modified data which are typically outputstifi® previous it-
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SPARSEBOOSTING

erations. The final boosted procedure takes the form of linear combisaifdhe base procedures.
For L,Boosting, based on the squared error loss, one simply fits the baselprede the original
data to start with, then uses the residuals from the previous iteration asttresponse vector and
refits the base procedure, and so on. As we will see in sectio.ZBdosting is a “constrained”
minimization of the empirical squared error risk! S, (Y; — F (X;))? (with respect td=(-)) which
yields an estimatol?(‘). The regularization of the empirical risk minimization comes in implicitly
by the choice of a base procedure and by algorithmical constraints s@ehlg stopping or penalty
barriers.

2.1 Base Procedures Which Do Variable Selection

To be more precise, a base procedure is in our setting a function estimatat ba the data

{(X,Ui); i =1,...,n}, whereU,...,U, denote some (pseudo-) response variables which are not
necessarily the origindd, . .., Y,. We denote the base procedure function estimator by
4() = Gx.u) (), 1)

whereX = (Xi,...,Xy) andU = (Uy,...,Up).

Many base procedures involve some variable selection. That is, only aiine components
of the p-dimensional predictor variable§ are actually contributing in (1). In fact, almost all of
the successful boosting algorithms in practice involve base procedtiels do variable selection:
examples include decision trees (see Freund and Schapire, 1996; Brdid®8; Friedman et al.,
2000; Friedman, 2001), componentwise smoothing splines which involaiselef the best single
predictor variable (see ilmann and Yu, 2003), or componentwise linear least squares in linear
models with selection of the best single predictor variable (see Mallat anthZh893; BRihimann,
2006).

It will be useful to represent the base procedure estimator (at thevelospredictorsX) as a
hat-operator, mapping the (pseudo-) response to the fitted values:

H U= (Gx,u) (K1), -+, Gx,u) (%)), U= (Ug,...,Up).

If the base procedure selects from a set of predictor variables, neteléhe selected predictor
variable index bys C {1,..., p}, wheres has been estimated from a specifiedlsef subsets of
variables. To emphasize this, we write for the hat operator of a basedwnee

’7{3 ‘U (g(x(§)7u)(xl); s 7Q(X(~§),U) (Xn))7 U= (U17 s ,Un), (2)

where the base procedug u)(-) = Q(x(3>_u)(-) depends only on the componem@ from X. The
examples below illustrate this formalism.
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Componentwise linear least squares in linear modelsee Mallat and Zhang, 1993 UBImann,
2006)

We select only single variables at atime from- {1,2,..., p}. The selectos chooses the predictor
variable which reduces the residual sum of squares most when usstgdggres fitting:

: O — ZP:1U|XI<J) (

" ; &y (D)2 :
S = argmin._; Ui =X ¥ i=1....p.
SJSpi; I JXI J zin:1<xi<1))2

The base procedure is then
G0y (X) = §5x),
and its hat operator is given by the matrix
at; = XSO (XENT X0 = (x| x{IT.

LoBoosting with this base procedure yields a linear model with model selectiompanaaneter
estimates which are shrunken towards zero. More details are givertiornse?.2 and 2.4.

Componentwise smoothing splinésee Bihlmann and Yu, 2003)

Similarly to a componentwise linear least squares fit, we select only one siaghble at a time
froml={1,2,...,p}. The selectos chooses the predictor variable which reduces residual sum of
squares most when using a smoothing spline fit. That is, for a given smosthling operator with
fixed degrees of freedom£. (which is the trace of the corresponding hat matrix)

n

§ = argminj<p 3 (U ~g;x"))?,

|
g;(-) is the fit from the smoothing spline td versusx ) with d.£.

Note that we use the same degrees of freedamfor all componentg’s. The hat-matrix corre-
sponding togj(-) is denoted by which is symmetric; the exact from is not of particular interest
here but is well known, see Green and Silverman (1994). The basedune is

o) (X) = G; (x),

and its hat operator is then given by a matrix. Boosting with this base procedure yields an
additive model fit based on selected variables (s@&Bann and Yu, 2003).

Pairwise thin plate splines

Generalizing the componentwise smoothing spline, we select pairs of varedite™ = {(j,k); 1 <
j<k<p}. The selectos chooses the two predictor variables which reduce residual sum afesqua
most when using thin plate splines with two arguments:

n

gj k(-,) is an estimated thin plate spline basedwandX 1), X with 4.f.,
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where the degrees of freedant. is the same for all componenis< k. The hat-matrix correspond-
ing to gj k is denoted by| x which is symmetric; again the exact from is not of particular interest
but can be found in Green and Silverman (1994). The base procsdure

dix,u)(X) = G; (X(S))y

wherex(®) denotes the 2-dimensional vector corresponding to the selected pairaimd the hat
operator is then given by a matr#;. Boosting with this base procedure yields a nonparametric fit
with second order interactions based on selected pairs of variables;sratilon is given in section
3.4.

In all the examples above, the selector is given by

n

$ = argmin ,Z(Ui — (75U);)? 3)

Also (small) regression trees can be cast into this framework. For exampstumps,” =
{(i-cjk); 1=1,...,p, k=1,...,n—1}, wherec;j 1 < ... < Cjn_1 are the mid-points between (non-
tied) observed value)s(‘) (i=1,...,n). Thatis,I' denotes here the set of selected single predictor
variables and corresponding split-points. The parameter values for theetminal nodes in the
stump are then given by ordinary least squares which implies a linear hak MK, ). Note
however, that for mid-size or large regression trees, the optimizationtiogeset” is usually not
done exhaustively.

2.2 L,Boosting

Before introducing our new Spatsd#oost algorithm, we describe first its less sparse counterpart
Lo,Boosting, a boosting procedure based on the squared error lossavhizints to repeated fitting

of residuals with the base procedgg () (-). Its derivation from a more general functional gradient
descent algorithm using the squared error loss has been descrilneahlyyauthors, see Friedman
(2001).

Lo,Boosting

Step 1 (initialization) Fy(-) = 0 and sem = 0.

Step 2.Increasenby 1.

Compute residualg; =Y; — Ifm,l(xi) (i=1,...,n) and fit the base procedure to the current resid-
uals. The fit is denoted bim(-) = Gix u) (-)-

Update

Fin(*) = Fn-1() +v (),
where O< v < 1 is a pre-specified step-size parameter.

Step 3 (iteration).Repeat Steps 2 and 3 until some stopping value for the number of iterations is
reached.
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With m= 2 andv = 1, L,Boosting has already been proposed by Tukey (1977) under the name
“twicing”. The number of iterations is the main tuning parameterlfgBoosting. Empirical ev-
idence suggests that the choice for the step-gimemuch less crucial as long asis small; we
usually use» = 0.1. The number of boosting iterations may be estimated by cross-validatiom As a
alternative, we will develop in section 2.5 an approach which allows to use soodel selection
criteria to bypass cross-validation.

2.3 Sparsé,Boost

As described abové,,Boosting proceeds in a greedy way: if in Step2 the base procedure is fitted
by least squares and when using- 1, LoBoosting pursues the best reduction of residual sum of
squares in every iteration.

Alternatively, we may want to proceed such that the out-of-sample predietior would be
most reduced, that is we would like to fit a functiggy (from the class of weak learner estimates)
such that the out-of-sample prediction error becomes minimal. This is natyegaabievable since
the out-sample prediction error is unknown. However, we can estimate it madel selection
criterion. To do so, we need a measure of complexity of boosting. Usingotlagion as in (2), the
L,Boosting operator in iteratiomis easily shown to be (sediBImann and Yu, 2003)

Bn=1—(1=Vv3l; ) - (1 =), 4)

where s, denotes the selector in iteration Moreover, if all thess; are linear (that is the hat
matrix), as in all the examples given in section A.3Boosting has an approximately linear rep-
resentation, where only the data-driven selestdirings in some additional nonlinearity. Thus, in
many situations (for example the examples in the previous section 2.1 and dem&idase pro-
cedures), the boosting operator has a corresponding matrix-form wugieg in (4) the hat-matrices
for #;. The degrees of freedom for boosting are then defined as

traceBm) = tracel — (I —vsf; )--- (1 =v#; ).

This is a standard definition for degrees of freedom (see Green aretr8dn, 1994) and it has
been used in the context of boosting idtBmann (2006). An estimate for the prediction error of
L>Boosting in iterationm can then be given in terms of the final prediction error critefd?E,
(Akaike, 1970):

n

Zl(Yi —Fin(X))? + Y- trace Bp). (5)

2.3.1 THE SPARSH ,BOOSTALGORITHM

For Sparsk,Boost, the penalized residual sum of squares in (5) becomes the criteri@mve from
iterationm— 1 to iterationm. More precisely, fors a (boosting) operator, mapping the response
vectorY to the fitted variables, and a criteri@RSSk), we use the following objective function to
boost:

T(Y,8)=C (_i(vi — (fBY)i)z,trace{fB)> . (6)
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For example, the criterion could IBePE, for somey > 0 which corresponds to
C,(RSSk) = RSStvy-k. (7)

An alternative which does not require the specification of a parametsrin (7) is advocated in
section 2.5.

The algorithm is then as follows.

Sparsd_,Boost

Step 1 (initialization) Fy(-) = 0 and sem = 0.

Step 2.Increasenby 1.
Search for the best selector

Sm = argmin, . T(Y, trace Bm(s))),
Bm(S)=1—(1 — 2 )(l _Vﬂgm,l)"'“ —Vﬂfgl),
(form=1: 81(5) = #).

Fit the residuald); =Y, — lfm,l(m) with the base procedure using the selegtgdvhich yields a
function estimate

fm(-) = @Em;(x,U)('%

wheredj.x u)(+) corresponds to the hat operatwy from the base procedure.

Step 3 (update)Jpdate,

Fn(-) = Fn-1.(-) + V().

Step 4 (iteration)Repeat Steps 2 and 3 for a large number of iterathdns

Step 5 (stopping)Estimate the stopping iteration by
Mm=argminm T (Y,trac€3m)), Bm=1—(1—-va; )---(I =V ).

The final estimate i&(-).

The only difference td.,Boosting is that the selection in Step 2 yields a differgpthan in (3).
Whileﬁm in (3) minimizes the residual sum of squares, the selegtdd SparsezBoost minimizes

a model selection criterion over all possible selectors. Since the sel;ﬁmkarpends not only on the
current residual&) but also explicitly on all previous boosting iterations throughss, . .., Sm-1
via the trace of8y,(s), the estimatef(-) in Sparsé,Boost is not a function of the current resid-
ualsU only. This implies that we cannot represent SpagB@ost as a linear combination of base
procedures, each of them acting on residuals only.
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2.4 Connections to the Nonnegative Garrote Estimator

Sparsé;Boost based o€, as in (7) enjoys a surprising equivalence to the nonnegative garrote
estimator (Breiman, 1995) in an orthogonal linear model. This special dases @&xplicit expres-
sions to reveal clearly that SpaksBoost (aka honnegative-garrote) is sparser thdoosting (aka
soft-thresholding).

Consider a linear model with orthonormal predictor variables,

ilel(i)xl( K _ = ik, (8)

wheredj, denotes the Kronecker symbol, agd.. ., €, are i.i.d. random variables with[gj] = 0
and Varg) = 02 < ». We assume here the predictor variables as fixed and non-random. tbising
standard regression notation, we can re-write model (8) as

Y =XB+e, XTX=XXT=1, 9)

with then x ndesign matrixX = (xi(”)i,jzlwn, the parameter vect@= (By,...,Bn)", the response
vectorY = (Y,...,Yn)T and the error vectc = (g1,...,€y)". The predictors could also be basis
functionsg;(t;) at observed valudgswith the property that they build an orthonormal system.

The nonnegative garrote estimator has been proposed by Breimar) {@®8%inear regression
model to improve over subset selection. It shrinks each ordinary lgasres (OLS) estimated
coefficient by a nonnegative amount whose sum is subject to an upped lconstraint (the garrote).
For a given response vectdyrand a design matriX (see (9)), the nonnegative garrote estimator
takes the form

BNnga;j = Cj BOLSj

such that
n . p

'EL(Yi - (X[B,\,ngar)i)2 is minimized, subject tac; > 0, Zlcj <s, (10)
i= j=

for somes > 0. In the orthonormal case from (8), since the ordinary least sqesténator is
simply BoLsj = (XTY); = Z;, the nonnegative garrote minimization problem becomes findjisg
such that

n n
Z | —¢jZ;)? is minimized, subject tacj > 0, Z cj<s.

Introducing a Lagrange multipliar> O for the sum constraint gives the dual optimization problem:
minimizing

n

n
Z(Zj_cjzj)z‘HZCh c;>0(j=1,..,n). (11)
=1
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This minimization problem has an explicit solution (Breiman, 1995):
cj=(1-MZj)" A=1/2,
whereu™ = max0, u). HenceﬁNnga;j = (1-A/|Zj[»)*Z; or equivalently,

A Zj—M\/|Z;|, if sign(Zj)ijz)\,
Bnngarj = 4 O, if Z2 <A, ,  wherez; = (XTY);. (12)
Zi+\/|zj|, ifsign(Z)Z? < —A.

We show in Figure 1 the nonnegative garrote threshold function in conepatashard- and soft-
thresholding, the former corresponding to subset variable selectiotharakter to the Lasso (Tib-
shirani, 1996). Hard-thresholding either yields the value zero or theamdleast squares estima-
tor; the nonnegative garrote and soft-thresholding either yield the vahaeor a shrunken ordinary
least squares estimate, where the shrinkage towards zero is strontier $oft-threshold than for
the nonnegative garrote estimator. Therefore, for the same amourdraptexity” or “degrees of
freedom” (which is in case of hard-thresholding the number of ordinast Equares estimated vari-
ables), hard-thresholding (corresponding to subset selection) witktjypselect the fewest number
of variables (non-zero coefficient estimates) while the nonnegativetgawill include more vari-
ables and the soft-thresholding will be the least sparse in terms of the nofrdedected variables;
the reason is that for the non-zero coefficient estimates, the shrinKage which is slight in the
nonnegative garotte and stronger for soft-thresholding, causes teygrees of freedom for every

threshold functions

- hard-thresholding
—— nn-garrote
- - soft-thresholding

Figure 1: Threshold functions for subset selection or hard-threstgp(dashed-dotted line), non-
negative garrote (solid line) and lasso or soft-thresholding (dashéd line

selected variable. This observation can also be compared with some numesnides in section 3.
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The following result shows the equivalence of the nonnegative gagstiteator and SparkgBoost

with componentwise linear least squares (usirigerations) yielding coefficient estimatéggarseBoost.

Theorem 1 Consider the model in (8) and any sequefgnen. For SparsekBoost with compo-
nentwise linear least squares, based Qn&s in (7) and using a step-sizeas described in section
2.3, we have

(1 ~ . . 1
B(Sn;)arseBoosj = BNngacj n (12) with parameteP\n = Eyn(l"‘ € (V))7
max|ej(v)| <v/(1-v) — 0 (v —0).

1<i<n

A proof is given in section 5. Note that the seque(ggney can be arbitrary and does not need
to depend om (and likewise for the correspondirdg). For the orthogonal case, Theorem 1 yields
the interesting interpretation of SpaksBoost as the nonnegative garrote estimator.

We also describe here for the orthogonal case the equivaleng@obsting with component-
wise linear least squares (yielding coefficient estiméﬁ;%stj) to soft-thresholding. A closely re-
lated result has been given in Efron et al. (2004) for the forwardesisg linear regression method
which is similar toL,Boosting. However, our result is for (non-modifidd)Boosting and brings
out more explicitly the role of the step-size.

The soft-threshold estimator for the unknown parameter v tisr

Zi—\, ifZj>A,
Bsoftj =4 O, if Zj] <A,  wherezj=(XTY);. (13)
Zi+A, ifZj <A

Theorem 2 Consider the model in (8) and a threshald in (13) for any sequenc@\n)nen. For
L,Boosting with componentwise linear least squares and using a step;sigelescribed in section
2.2, there exists a boosting iteration m, typically dependingQiv and the data, such that

Biest = Psottj in (13) with threshold of the forrn(1+€;(v)), where
1rgj_251§>§|ej-(\))| <v/(1-v)—0(v—D0).

A proof is given in section 5. We emphasize that the sequéhgren can be arbitrary: in
particular,A,, does not need to depend on sample gize

2.5 The gMDL choice for the criterion function

TheFPE criterion functiorC(-, -) in (7) requires in practice the choice of a paramgtén principle,
we could tune this parameter using some cross-validation scheme. Altelyaiive could use a
parameter value corresponding to well-known model selection criteriaashC y = 2) or BIC
(y=logn). However, in general, the answer to whether to use AIC or BIC dependhe true
underlying model being finite or not (see Speed and Yu, 1993, and theenees therein). In
practice, it is difficult to know which situation one is in and thus hard to chdeteieen AIC
and BIC. We employ here instead a relatively new minimum description lengthi@niteyMDL
(see Hansen and Yu, 2001), developed for linear models. For eactl slass, roughly speaking,
gMDL is derived as a mixture code length based on a linear model with arsen@amma prior
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(with a shape hyperparameter) for the variance and conditioning on tizee@, the linear model
parametep follows an independent multivariate normal prior with the given variance nlieltifpy

a scale hyperparameter. The two hyperparameters are then optimizedbabe MDL principle
and their coding costs are included in the code length. Because of thévadaices of the
hyperparameters, the resulted gMDL criterion has a data-dependeaityp®r each dimension,
instead of the fixed penalty 2 or lagor AIC or BIC, respectively. In other words, gMDL bridges
the AIC and BIC criteria by having a data-dependent penaltyHo@s given below in (14). The
F in the gMDL penalty is related to the signal to noise ratio (SNR), as shown iisdétaand Yu
(1999). Moreover, the gMDL criterion has an explicit analytical exgi@swhich depends only on
the residual sum of squares and the model dimension or complexity. It ik woting that we will
not need to tune the criterion function as it will be explicitly given as a funatibtihe data only.
The gMDL criterion function takes the form

Cauor (RSSK) = 10g(S) + < log(F),

_ RSS _  yM.Y?-RSS
S= n—k’ F= kS ’
Here,RSSJenotes again the residual sum of squares as in formula (6) (firshargwf the function

In the Sparsie,Boost algorithm in section 2.3.1, if we take

T(Y, 13) = CgMDL(RSStI'aCE(Q )),

then we arrive at thgMDL-Sparsel,Boost algorithm. Often though, we simply refer to it as
Sparsé,Boost.

The gMDL criterion in (14) can also be used to give a new stopping ruledfBoosting. That
is, we propose

(14)

M= argmin ., CgmpL(RSS,, trace Bm)), (15)

whereM is a large numbeRS, the residual sum of squares aftaiboosting iterations and, is
the boosting operator described in (4). If the minimizer is not unique, wéhesainimalm which
minimizes the criterion. Boosting can now be run without tuning any paramegetyfically do not
tune over the step-siaebut rather take a value suchwas- 0.1), and we call such an automatically
stopped boosting methaMDL- L,Boosting In the sequel, it is simply referred to BsBoosting.
There will be no overall superiority of either SparsBoost orL,Boosting as shown in Section
3.1. But it is straightforward to do a data-driven selection: we chooskitde model which has the
smaller gMDL-score between gMDL-Spaks8&oost and the gMDL stoppdd,Boosting. We term
this methodgMDL-sel-L,Boostwhich does not rely on cross-validation and thus could bring much
computational savings.

3. Numerical Results

In this section, we investigate and compare SpaaiBeost withL,Boosting (both with their data-
driven gMDL-criterion), and evaluate gMDL-sebBoost. The step-size in both boosting methods

is fixed atv = 0.1. The simulation models are based on two high-dimensional linear models and
one nonparametric model. Except for two real data sets, all our compsaidsal results are based

on 50 independent model simulations.
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3.1 High-Dimensional Linear Models
3.1.1 /°-SPARSE MODELS

Consider the model

Y =1+5X1+2X+ X9+ €,

X = (Xla'”7xp—1) ~ ND—1(072)7 €~ N(Oa 1)7 (16)

whereg is independent fronX. The sample size is chosenras: 50 and the predictor-dimension is
p € {50,100 1000}. For the covariance structure of the predicXgmwe consider two cases:

(17)
(18)

2= Ip—l7
[=)i; = 0.8l

The models aré®-sparse, since th€-norm of the true regression coefficients (the number of effec-
tive variables including an intercept) is 4.

The predictive performance is summarized in Table 1. Fof%tsparse model (16), Spats@oost
outperformsL,Boosting. Furthermore, in comparison to the oracle performance (debytad
asterisk« in Table 1), the gMDL rule for the stopping iteratiomworks very well for the lower-
dimensional cases withe {50,100} and it is still reasonably accurate for the very high-dimensional
case withp = 1000. Finally, both boosting methods are essentially insensitive when siogethe

>, dim. Sparsé,Boost| L,Boosting || Sparsé,Boost* | Lo,Boosting*
(17),p=50 0.16 (0.018) | 0.46 (0.041)| 0.16(0.018) | 0.46 (0.036)
(17),p=100 0.14 (0.015) | 0.52 (0.043)| 0.14(0.015) | 0.48(0.045)
(17),p=1000| 0.77(0.070) | 1.39(0.102)| 0.55(0.064) | 1.27 (0.105)
(18), p=50 0.21 (0.024) | 0.31(0.027)| 0.21(0.024) | 0.30 (0.026)
(18),p=100 0.22 (0.024) | 0.39(0.028)| 0.22(0.024) | 0.39(0.028)
(18), p=1000| 0.45(0.035) | 0.97 (0.052)| 0.38(0.030) | 0.72 (0.049)

Table 1: Mean squared error (MSHE|(f(X) — f(X))3 (f(x) = E[Y|X = x]), in model (16) for
gMDL-Sparsé,Boost and gMDL early stoppddBoosting using the estimated stopping
iterationm. The performance using the oractewhich minimizes MSE is denoted by an
asterisk *. Estimated standard errors are given in parentheses. Sérepkns= 50.

number of ineffective variables from 4§ = 50) to 96 (p = 100). However, with very many, that
is 996 (p = 1000, ineffective variables, a significant loss in accuracy shows up in ttrego-
nal design (17) and there is an indication that the relative differendesbe Sparde:Boost and
L,Boosting become smaller. For the positive dependent design in (18), thanlascuracy in the
p = 1000 case is not as significant as in the orthogonal design case iraitirthe relative differ-
ences between Spats®oost and_,Boosting actually become larger.

It is also worth pointing out that the resulting mean squared errors (Mi8E®sign (17) and
(18) are not really comparable even for the same nunpbefr predictors. This is because, even
though the noise level i&|e|? = 1 for both designs, the signal levélsf (X)|? are different, that is
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31 for the uncorrelated design in (17) and 49.5 for the correlated desid®). If we would like
to compare the performances among the two designs, we should rathet tbeksggnal-adjusted
mean squared error

E|f(X)— f(X)?
E[f(X)[?

which is the test-set analogue of-IR? in linear models. This signal adjusted error measure can
be computed from the results in Table 1 and the signal levels given abavé¢hef¥ obtain for the
lower dimensional cases with e {50,100} that the prediction accuracies are about the same for
the correlated and the uncorrelated design (for ShaBsmost and fol.,Boosting). However, for
the high-dimensional case wifh= 1000, the performance (of Spaks8oost and oflL,Boosting)
is significantly better in the correlated than the uncorrelated design.

Next, we consider the ability of selecting the correct variables: the reselgivwen in Table 2.

>, dim. Sparsé,Boost| LyBoosting

(17), p=50: O-norm | 5.00(0.125) | 13.68 (0.438)
non-selected T 0.00 (0.000) | 0.00 (0.000)

selected § 1.00 (0.125) | 9.68 (0.438)

(17), p= 100: ®-norm| 5.78(0.211) | 21.20 (0.811)
non-selected T 0.00 (0.000) | 0.00 (0.000)

selected § 1.78(0.211) | 17.20 (0.811)

(17), p= 1000: O-norm | 23.70(0.704) | 78.80 (0.628)
non-selected T 0.02 (0.020) | 0.02 (0.020)

selected H 19.72 (0.706) | 74.82 (0.630)

(18), p=50: MO-norm| 4.98(0.129) | 9.12(0.356)
non-selected T 0.00 (0.000) | 0.00 (0.000)

selected § 0.98 (0.129) | 5.12 (0.356)

(18), p= 100: ®-norm| 5.50(0.170) | 12.44 (0.398)
non-selected T 0.00 (0.000) | 0.00 (0.000)

selected § 1.50 (0.170) | 8.44 (0.398)

(18), p= 1000: ®-norm| 13.08 (0.517) | 71.68 (1.018)
non-selected T 0.00 (0.000) | 0.00 (0.000)

selected § 9.08 (0.517) | 67.68 (1.018)

Table 2: Model (16): expected number of selected varialifeagrm), expected number of non-
selected true effective variables (non-selected T) which is in the raih{4), and ex-
pected number of selected non-effective (false) variables (selertei¢h is in the range
of [0, p—4]. Methods: SpardeBoost and.,Boosting using the estimated stopping itera-
tion m (Step 5 in the SpargeBoost algorithm and (15) respectively). Estimated standard
errors are given in parentheses. Sample sipe450.

In the orthogonal case, we have argued that SpaBsmst has a tendency for sparser results than
Lo,Boosting; see the discussion of different threshold functions in sectbnirais is confirmed in
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all our numerical experiments. In particular, for d3rsparse model (16), the detailed results are
reported in Table 2. SpaisgBoost selects much fewer predictors thaBoosting. Moreover, for

this model, SpardeBoost is a good model selector as long as the dimensionality is not very large,
that is forp € {50,100}, while L,Boosting is much worse selecting too many false predictors (that
is too many false positives). For the very high-dimensional casepvtl1000, the selected models
are clearly too large when compared with the true model size, even whem Sigarske,Boost.
However, the results are pretty good considering the fact that we afimglevith a much harder
problem of getting rid of 996 irrelevant predictors based on only 50 sapgitgs. To summarize,

for this synthetic example, Spats@®oost works significantly better thdrBoosting both in terms

of MSE, model selection and sparsity, due to the sparsity of the true model.

3.1.2 A NON-SPARSEMODEL WITH RESPECT TO THE?-NORM

We provide here an example whdrgBoosting will be better than SpatsdBoost. Consider the
model

P 1
Y = JZlgBij + €,
X]_,...,XpNNp(o,lp)7 SNN(071)7 (19)

wherefy,...,Bp are fixed values from i.i.d. realizations of the double-exponential depsity=
exp(—|x|)/2. The magnitude of the coefficier)f| /5 is chosen to vary the signal to noise ratio from
model (16), making it about 5 times smaller than for (19). Since Lasso (daugavith LoBoosting

in the orthogonal case) is the maximum a-posteriori (MAP) method when #féatents are from

a double-exponential distribution and the observations from a Gausstaibution, as in (19), we
expectL,Boosting to be better than SpaksBoost for this example (even though we understand
that MAP is not the Bayesian estimator under itRdoss). The squared error performance is given
in Table 3, supporting our expectations. Sphg8most nevertheless still has the virtue of sparsity
with only about 1/3 of the number of selected predictors but with an MSE wibieinger by a factor
1.7 when compared with,Boosting.

| Sparse,Boost| LpBoosting || Sparse;Boost* | L,Boosting*
MSE 3.64(0.188) | 2.19(0.083)[ 3.61(0.189) | 2.08 (0.078)

-norm | 11.78 (0.524) | 29.16 (0.676) 11.14 (0.434) | 35.76 (0.382)

Table 3: Mean squared error (MSE) and expected number of seletiatites (°-norm) in model
(19) with p = 50. Estimated standard errors are given in parentheses. All otheficpec
tions are described in the caption of Table 1.

3.1.3 DATA-DRIVEN CHOICE BETWEEN SPARSH »,BOOST ANDL,BOOSTING:
GMDL-SEL-L,BoOST

We illustrate here the gMDL-sél-Boost proposal from section 2.5 that uses the gMDL model
selection score to choose in a data-driven way between 3p&wsest andL,Boosting. As an
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illustration, we consider again the models in (16)-(17) and (19) with50 andn = 50. Figure 2
displays the results in the form of boxplots across 50 rounds of simulations.

model (16) model (19)
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Figure 2: Out-of-sample squared error lossesyBéX) — f(X))?] (f(x) = E[Y|X = X)), from the
50 simulations for the models in (16)-(17) and (19) wjik= 50. gMDL-selL,Boost
(gMDL-sel), LoBoosting (L2B0o0) and SparsgBoost (SparseBoo). Sample sizenis-
50.

The gMDL-selt,Boost method performs between the better and the worse of the two boosting
algorithms, but closer to the better performer in each situation (the latter is woNyrkfor simulated
data sets). For model (19), there is essentially no degraded perfamémen doing a data-driven
selection between the two boosting algorithms (in comparison to the bestrperjor

3.2 Ozone Data with Interactions Terms

We consider a real data set about ozone concentration in the Los Argpdin. There arp =8
meteorological predictors and a real-valued response about dailg cpocentration; see Breiman
(1996). We constructed second-order interaction and quadratic téenbkaving centered the orig-
inal predictors. We then obtain a model wiph= 45 predictors (including an intercept) and a re-
sponse. We used 10-fold cross-validation to estimate the out-of-sampleedqurediction error and
the average number of selected predictor variables. When scaling thietprevariables (and their
interactions) to zero mean and variance one, the performances wgrsivdar. Our results are
comparable to the analysis of bagging in Breiman (1996) which yielded a-vatislated squared
error of 188 for bagging trees based on the original eight predictors.

We also run SparéeBoost and_,Boosting on the whole data set and choose the method accord-
ing to the better gMDL-score, that is gMDL-skefBoost (see section 2.5). Some rgsults are given
in Table 5. Based on Spatsd3oost, an estimate for the error variancais Zin:1(Yi —Yi)2 = 1556
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| Sparsé,Boost | L,Boosting
10-fold CV squared error 16.52 16.57

10-fold CV /°-norm 10.20 16.10

Table 4: Boosting with componentwise linear least squares for ozone d#itafivet order-
interactions It = 330, p = 45). Squared prediction error and average number of selected
predictor variables using 10-fold cross-validation.

and the goodness of fit equa® = S, (Y —Y)?/3M (Y —Y)? = 0.71, whereY, = F(X) and
Y=n"t3lY.

| Sparsé,Boost (#) | LoBoosting

gMDL-score 2.853 2.862
RSS 15.56 15.24
?%-norm 10 18

Table 5: Boosting with componentwise linear least squares for ozone dttafivgt order-
interactions it = 330, p = 45). gMDL-scoren"!x residual sum of squares (RSS) and
number of selected term&’norm). (#) gMDL-selk,Boost selects SparsgBoost as the
better method.

In summary, while SparseBoost is about as good &sBoosting in terms of predictive accu-
racy, see Table 4, it yields a sparser model fit, see Tables 4 and 5.

3.3 Binary Tumor Classification Using Gene Expressions

We consider a real data set which contgins 7129 gene expressions in 49 breast tumor samples
using the Affymetrix technology, see West et al. (2001). After threshgltb a floor of 100 and a
ceiling of 16,000 expression units, we applied a base 10 log-transfornaatibatandardized each
experiment to zero mean and unit variance. For each sample, a binpoysesvariabléy € {0,1}

is available, describing the status of lymph node involvement in breastrcdiineedata are available
athttp://mgm duke. edu/ genone/ dna_mi cr o/ wor k/ .

Although the data has the structure of a binary classification problem, tlaeeshjarror loss is
quite often employed for estimation. We usgBoosting and SparteBoost with componentwise
linear least squares. We classify the label (i) = P[Y + 1|X = x] > 1/2 and zero otherwise. The
estimate fomp(-) is obtained as follows:

Pm(-) = 1/24 Fm(-),
Ifm(-) theL,- or Sparsk,Boost estimate using =Y —1/2. (20)

Note thatFy(-) is an estimate ofy(-) —1/2. Using this procedure amounts to modelling and esti-
mating the deviation from the boundary value 1/2 (we do not use an inteésreptinymore in our
model). This is usually much better becauseltpieor Sparse,Boost estimate is shrunken towards
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zero. When using.»- or Sparsk;Boost onY € {0,1} directly, with an intercept term, we would
obtain a shrunken boosting estimate of the intercept introducing a biagirengé) to be system-
atically too small. The latter approach has been usedimmBann (2006) yielding worse results for
Lo,Boosting than what we report here flofBoosting using (20).

Since the gMDL criterion is relatively new, its classification counterpart tsypowell devel-
oped (see Hansen and Yu, 2002). Instead of the gMLD criterion ingfid)(15), we use the BIC
score for the Bernoulli-likelihood in a binary classification:

BIC(m) = —2-log-likelihood+ log(n) - trace 3y).

The AIC criterion would be another option: it yields similar, a bit less spa¥salts for our tumor
classification problem.

We estimate the classification performance by a cross-validation scheme whaandomly
divide the 49 samples into balanced training- and test-data of sig@sahdn/3, respectively, and
we repeat this 50 times. We also report on the average of selected predicédles. The reports
are given in Table 6.

| Sparsé;Boost | LoBoosting
CV misclassification erro 21.88% 23.13%
CV O-norm 12.90 15.30

Table 6: Boosting with componentwise linear least squares for tumor classificdata f =
46, p=7129). Misclassification error and average number of selected predaiables
using cross-validation (with random 2/3 training and 1/3 test sets).

The predictive performance &b- and Sparde,Boosting compares favourably with four other
methods, namely 1-nearest neighbors, diagonal linear discriminansanalypport vector machine
with radial basis kernel (from the R-packag#071 and using its default values), and a forward
selection penalized logistic regression model (using some reasonabliy pamameter and number
of selected genes). For 1-nearest neighbors, diagonal lineaintisant analysis and support vector
machine, we pre-select the 200 genes which have the best Wilcoxanis@two-sample problem
(estimated from the training data set only), which is recommended to improvdatsefication
performance. Forward selection penalized logistic regression is run wiphewselection of genes.
The results are given in Table 5 which is taken frohBnann (2006).

| FPLR | 1-NN | DLDA | SVM
CV misclassification errof 35.25% | 43.25%| 36.12% | 36.88%

Table 7: Cross-validated misclassification rates for lymph nodestreancer data. Forward variable selec-
tion penalized logistic regression (FPLR), 1-nearestmeor rule (1-NN), diagonal linear discrim-
inant analysis (DLDA) and a support vector machine (SVM)

When using SparéeBoost and_,Boosting on the whole data set, we get the following results
displayed in Table 8. The 12 variables (genes) which are selected bydSjizwost are a subset

1017



BUHLMANN AND YU

of the 14 selected variables (genes) frogBoosting. Analogously as in sectior1 3.2, we give some
ANOVA-type numbers of SparkeBoosting: the error variability ia‘li{‘:l(Yi —Y;)?2=10.052 and
the goodness of fit equaR® = S, (Y —Y)?/SM (Y —Y)? = 0.57, whereY, = F(X) andY =
iyl Y

| Sparsé,Boost (#) | LoBoosting

BIC score 35.09 37.19
RSS 0.052 0.061
?%-norm 12 14

Table 8: Boosting with componentwise linear least squares for tumor clasisifigh = 49, p =
7129). BIC scoren 1x residual sum of squares (RSS) and number of selected terms
(¢%-norm). (#) BIC-selk,Boost selects SparsgBoost as the better method.

In summary, the predictive performance of SpagSoost is slightly better than df,Boosting,
see Table 6, and Spats@oost selects a bit fewer variables (genes) thgBoosting, see Tables 7
and 8.

3.4 Nonparametric Function Estimation with Second-Order Interacions

Consider the Friedman #1 model Friedman (1991),

Y = 10sinTX %) + 20(X3 — 0.5)2 + 10X4 + 5X5 + &,
X ~ Unif.([0,1]P), &€ ~ A (0,1), (21)

whereg is independent fronX. The sample size is chosenras: 50 and the predictor dimension is
p € {10,20} which is still large relative tm for a nonparametric problem.

Sparsé,Boost andL,Boosting with a pairwise thin plate spline, which selects the best pair
of predictor variables yielding lowest residual sum of squares (wla@ing the same degrees of
freedomd.f. = 5 for every thin plate spline), yields a second-order interaction modelalsee
section 2.1. We demonstrate in Table 9 the effectiveness of these presedlso in comparison
with the MARS Friedman (1991) fit constrained to second-order interatgions. SpardeBoost
is a bit better thah.,Boosting. But the estimation of the boosting iterations by gMDL did not do as
well as in section 3.1 since the oracle methods perform significantly betterreBison is that this
example has a high signal to noise ratio. From (Hansen and Yu, 1999),ithéne gMDL penalty
(see (14)) is related to the signal to noise ratio (SNR). Thus, when SNiBtisthe lodF) is high
too, leading to too small models in both Sparggoost and_,Boosting: that is, this large penalty
forces both SparéeBoost andL,Boosting to stop too early in comparison to the oracle stopping
iteration which minimizes MSE. However, both boosting methods neverthelesside a bit better
than MARS.

When increasing the noise level, using Mgr= 16, we obtain the following MSEs fqu = 10:
11.70 for Sparde,Boost, 11.65 for SparggBoost* with the oracle stopping rule and 24.11 for
MARS. Thus, for lower signal to noise ratios, stopping the boosting itemtwith the gMDL
criterion works very well, and our Spats#oost algorithm is much better than MARS.

1018



SPARSEBOOSTING

dim. | SparsezBoost| L,Boosting| MARS || Sparse;Boost* | LoBoosting*
p—10| 3.71(0.241) | 4.10 (0.239) 5.79 (0.538)| 2.22 (0.220) | 2.69 (0.185)
p=20| 4.36(0.238) | 4.81(0.197)| 5.82 (0.527)| 2.68 (0.240) | 3.56 (0.159)

Table 9: Mean squared error (MSE) in model (21). All other specifioatiare described in the
caption of Table 1, except for MARS which is constrained to secondradrderaction
terms.

4. Conclusions

We propose SparkgBoost, a gradient descent algorithm on a penalized squared errawtiss
yields sparser solutions thdnBoosting or/!-regularized versions thereof. The new method is
mainly useful for high-dimensional problems with many ineffective predicémiables (noise vari-
ables). Moreover, it is computationally feasible in high dimensions, for elaimgving linear
complexity in the number of predictor variablpsvhen using componentwise linear least squares
or componentwise smoothing splines (see section 2.1).

Sparsk,Boost is essentially as genericlagBoosting and can be used in connection with non-
parametric base procedures (weak learners). The idea of sparstnigacould also be transferred
to boosting algorithms with other loss functions, leading to sparser variadtdaBdoost and Log-
itBoost.

There is no general superiority of sparse boosting over boosting tewagh we did find in four
out of our five examples (two real data and two synthetic data sets) thaeSg2wost outperforms
L,Boosting in terms of sparsity and SpdrsBoost is as good or better thanBoosting in terms
of predictive performance. In the synthetic data example in section 3.1028egHho be the ideal
situation forL,Boosting, SpardeBoost loses 70% in terms of MSE, but uses only 1/3 of the pre-
dictors. Hence if one cares about sparsity, SpaiBeost seems a better choice thaBoosting. In
our framework, the boosting approach automatically comes with a reasoralaa for statistical
complexity or degrees of freedom, namely the trace of the boosting opevheor it can be ex-
pressed in hat matrix form. This trace complexity is well defined for manylpopase procedures
(weak learners) including componentwise linear least squares andodeirees, see also section
2.1. Sparsie;Boost gives rise to a direct, fast computable estimate of the out-of-samptendren
combined with the gMDL model selection criterion (and thus, by-passingeragation). This
out-of-sample error estimate can also be used for choosing the stoppatpiténL,Boosting and
for selecting between sparse and traditional boosting, resulting in the gdéBll,Boost algorithm.

Theoretical results in the orthogonal linear regression model as welhmagasion and data
experiments are provided to demonstrate that the SpgBsest indeed gives sparser model fits
thanL,Boosting and that gMDL-sdl>Boost automatically chooses between the two to give a rather
satisfactory performance in terms of sparsity and prediction.

5. Proofs

We first give the proof of Theorem 2. It then serves as a basis tmimy Theorem 1.
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Proof of Theorem 2. We represent the componentwise linear least squares base proascaire
hat operatory; with 7 = x(x)T, wherex()) = (x(1’>,...,x§,”)T; see also section 2.1. The
Lo,Boosting operator in iteratiomis then given by the matrix

Bm= | — (l —Vﬂ'[l)ml(| —Vﬂ-[z)mz...(| —Vﬂ-[n)m‘,

wherem;, equals the number of times that tik predictor variable has been selected duringnthe
boosting iterations; and henoe= Y ; m. The derivation of the formula above is straightforward
because of the orthogonality of the predicte8 andx®) which implies the commutationj #y =
Hy#Hj. Moreover,8n, can be diagonalized

B = XDpXT with XTX = XXT =, Dy, = diag(dm1, - .-, dmpn), Ami = 1— (1 —v)™.
Therefore, the residual sum of squares inrtitle boosting iteration is:
RSS =Y = Y[ = [XTY = X" 3mY||> = |Z - DmZ||* = ||(I - Dm)Z]|?,

whereZ = XTY.

The RS$, decreases monotonically m. Moreover, the amount of decreaR& S, — RSGy11
is decaying monotonously im, becausd.,Boosting proceeds to decrease R8Sas much as
possible in every step (by selecting the most reducing predi¢tyrand due to the structure of
(1—dmj) = (1—v)™. Thus, every stopping of boosting with an iteration numieorresponds to
a toleranceé? such that

RS$—RS%,1 >, k=1,2,....m—1,
RS$— RSG1 < &, (22)

that is, the iteration numben corresponds to a numerical tolerance where the differ&&g, —
RS$, 1 is smaller thard?.

SincelL,Boosting changes only one of the summandR8#, in the boosting iteratiom+ 1,
the criterion in (22) implies that for alle {1,...,n}

(1=v)*mY - (1-v)*™)Z? > &,
(L=v)?™ — (1—v)2MH)Z2 < &2, (23)

If m =0, only the second line in the above expression is relevant.LJBeosting solution with
toleranced? is thus characterized by (23).

Let us first, for the sake of insight, replace the™in (23) by “~": we will deal later in which
sense such an approximate equality holdsy If 1, we get

(1=v)*" = (1)) Z2 = (1) (1~ (1-v)})Z* ~ &,

and hence
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In case wheren = 0, we obviously have that1 (1—v)™ = 0. Therefore,

A5 M7 7 o o
=Zi=dni=1-(1-v)"™)Z~Z - Z ifm>1,
BBoostl i m,i ( ( ) ) i i 1_(1_\))2’2” i i Rt
Boossi =0 if m =0.
Sincem = 0 happens only ifZ;| < 7\/@, we can write the estimator as
Zi—\, ifZ >N,
Boooss = § O, it [zi] <A, (25)

Zi+A, ifzZ<-—A

whereh = 6 B (note thatmis connected t®, and hence ta via the criterion in (22)). This

is the soft-threshold estimator with threshaldas in (13). By choosing = Any/1— (1—V)2, we
get the desired thresholgh.

We will now deal with the approximation in (24). By the choiceddfvo lines above, we would
like that

(1—v)™ =~ \n/|Z].

As we will see, this approximation is accurate when choosisgall. We only have to deal with
the case wher&Z;| > A,; if |Z| < A,, we know thatm = 0 andf; = 0 exactly, as claimed in the
right hand side of (25). Denote by

A
Vi=V(z)= =% €(0,1).
|Zi|
(The rang€g0, 1) holds for the case we are considering here). According to the stopgpiagan in
(23), the derivation as for (24) and the choicedpthis says that
(l_v)m > \/i7
(1-v)™t <V, (26)
and hence
AWM = (L=v)M=W) < (1-v)" = (1-v)™ )
Y

\%
= —(1-v" i< " v
1—v( s 1-v "

by using (26). Thus,

(1-=V)"=Vi+((1-v)™ V) =Vi(1+A(V,Vi)) /M) =Vi(1+&(v)),
& (V)| = AV V) M| <V/(1-V). (27)

Thus, when multiplying wit{ —1)Z; and addingz;,
Boooss = (1—(1-V)™Z =Z —ZM(1+a(v)
soft-threshold estimator with threshald(1+ & (v)),
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where max<ij<n|&(v)| <v/(1—v) asin (27). O

Proof of Theorem 1. The proof is based on similar ideas as for Theorem 2. The Spdeest in
iterationm aims to minimize

MSBy = RSS+ Yntrace Bm) = [|Y — XB™ 12+ Yntrace Bm).

When using the orthogonal transformation by multiplying with, the criterion above becomes

MSB“:”Z_ﬁ$QMMMz+W”mH$m%

where tracésm) = Si_1(1— (1—v)™). Moreover, we run SparkeBoost until the stopping itera-
tion m satisfies the following:

MSB—MSB.1 >0, k=1,2,...,m—1,
MSBn— MSBy.1 < 0. (28)

It is straightforward to see for the orthonormal case, that such @vincides with the definition for
min section 2.3. Since Spaits#dBoost changes only one of the summand&8Sand the trace of
Bm, the criterion above implies that for al=1,. .., n, using the definition oMSB

(L-v)#MHZH(1— (1-v)?) —yv(1-v)" >0,

(1—v)2MZ2(1— (1—v)?) —yv(1—v)™ < 0. (29)
Note that if|Z|? < y,v/(1— (1—Vv)?), thenmy = 0. This also implies uniqueness of the iteration
such that (28) holds or of the such that (29) holds.

Similarly to the proof of Theorem 2, we look at this expression first in ternaapproximate
equality to zero, that isz 0. We then immediately find that

YnV

1—v)™ ~ )
A=V~ T ma—vozre
Hence,
B poosti = (XTBmY)i = (XTXDrXTY); = (Dm2)i = (1 (1-v)™)Z
~ Zi— WNZi ::Zr—ggdzo ¥n JE*

(1-(1-v)?)|z? 2-v|z|

The right-hand side is the nonnegative garrote estimator as in (12) witththdeg/(2— V).
Dealing with the approximation=2” can be done similarly as in the proof of Theorem 2. We
define here
YnV
(1-(1-v)?)|z>

Vi=V(z)=

We then definé\(v,V;) ande(v) as in the proof of Theorem 2, and we complete the proof as for
Theorem 2. |
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