
Journal of Machine Learning Research 7 (2006) 247–282 Submitted 3/05; Revised 10/05; Published 2/06

In Search of Non-Gaussian Components of a
High-Dimensional Distribution

Gilles Blanchard BLANCHAR@FIRST.FHG.DE

Fraunhofer FIRST.IDA
Kekuĺestrasse 7
12489 Berlin, Germany
and
CNRS, Universit́e Paris-Sud
Orsay, France

Motoaki Kawanabe NABE@FIRST.FHG.DE

Fraunhofer FIRST.IDA
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Abstract
Finding non-Gaussian components of high-dimensional datais an important preprocessing step for
efficient information processing. This article proposes a new linear method to identify the “non-
Gaussian subspace” within a very general semi-parametric framework. Our proposed method,
called NGCA (non-Gaussian component analysis), is based ona linear operator which, to any
arbitrary nonlinear (smooth) function, associates a vector belonging to the low dimensional non-
Gaussian target subspace, up to an estimation error. By applying this operator to a family of dif-
ferent nonlinear functions, one obtains a family of different vectors lying in a vicinity of the target
space. As a final step, the target space itself is estimated byapplying PCA to this family of vectors.
We show that this procedure is consistent in the sense that the estimaton error tends to zero at a
parametric rate, uniformly over the family, Numerical examples demonstrate the usefulness of our
method.

1. Introduction

Suppose{Xi}ni=1 are i.i.d. samples in a high dimensional spaceR
d drawn from an unknown dis-

tribution with densityp(x) . A general multivariate distribution is typically too complex to analyze
directly from the data, thus dimensionality reduction is useful to decrease thecomplexity of the
model (see Cox and Cox, 1994; Schölkopf et al., 1998; Roweis and Saul, 2000; Tenenbaum et al.,
2000; Belkin and Niyogi, 2003). Here, our point of departure is the following assumption: the high
dimensional data includes low dimensional non-Gaussian components, and the other components
are Gaussian. This assumption follows the rationale that in most real-world applications, the ‘sig-
nal’ or ‘information’ contained in the high-dimensional data is essentially non-Gaussian, while the
‘rest’ can be interpreted as high dimensional Gaussian noise.

1.1 Setting and General Principle

We want to emphasize from the beginning that we donotassume the Gaussian components to be of
smallerorder of magnitude than the signal components; all components are instead typically of the
same amplitude. This setting therefore excludes the use of dimensionality reduction methods based
on the assumption that the data lies, say, on a lower dimensional manifold, up to some small noise.
In fact, this type of methods addresses a different kind of problem altogether.

Under our modeling assumption, therefore, the task is to recover the relevant non-Gaussian
components. Once such components are identified and extracted, varioustasks can be applied in the
data analysis process, say, data visualization, clustering, denoising or classification.

If the number of Gaussian components isat most oneand all the non-Gaussian components are
mutually independent,independent component analysis (ICA)techniques (see, e.g., Comon, 1994;
Hyvärinen et al., 2001) are relevant to identify the non-Gaussian subspace. Unfortunately, however,
this is often a too strict assumption on the data.

The framework we consider is on the other hand very close to that ofprojection pursuit(denoted
PP in short in the sequel) algorithms (Friedman and Tukey, 1974; Huber, 1985; Hyv̈arinen et al.,
2001). The goal of projection pursuit methods is to extract non-Gaussian components in a gen-
eral setting, i.e., the number of Gaussian components can be more than one and the non-Gaussian
components can be dependent.

Projection pursuit methods typically proceed by fixing asingleindex which measures the non-
Gaussianity (or ’interessingness’) of a projection direction. This index isthen optimized over all
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possible directions of projection; the procedure can be repeated iteratively (over directions orthog-
onal to the first ones already found) to find a higher dimensional projection of the data as needed.

However, it is known that some projection indices are suitable for finding super-Gaussian com-
ponents (heavy-tailed distribution) while others are suited for identifying sub-Gaussian components
(light-tailed distribution) (Hyv̈arinen et al., 2001). Therefore, traditional PP algorithms may not
work effectively if the data contains, say, both super- and sub-Gaussian components.

To summarize: existing methods for the setting we consider typically proceed bydefining an
appropriate interestingness index, and then compute a projection that maximizes this index (projec-
tion pursuit methods, and some ICA methods). The philosophy that we would like to promote in
this paper is in a sense different: in fact, we do not specify what we are interested in, but we rather
define what isnot interesting(see also Jones and Sibson , 1987). Clearly, a multi-dimensional Gaus-
sian subspace is a reasonable candidate for an undesired component (our idea could be generalized
by defining, say, a Laplacian subspace to be uninformative). Having defined this uninteresting sub-
space, its (orthogonal) complement is by contrast interesting: this therefore precisely defines our
target space.

1.2 Presentation of the Method

Technically, our new approach to identifying the non-Gaussian subspace uses a very general semi-
parametric framework. The proposed method, callednon-Gaussian component analysis (NGCA),
is essentially based on a central property stating that there exists a linear mapping h 7→ β(h) ∈ R

d

which, to anyarbitrary (smooth) nonlinear functionh : R
d → R , associates a vectorβ lying in

the non-Gaussian target subspace. In practice, the vectorβ(h) has to be estimated from the data,
giving rise to an estimation error. However, our main consistency result shows that this estimation
error vanishes at a rate

√
log(n)/n with the sample sizen. Using a whole family of different

nonlinear functionsh then yields a family of different vectorŝβ(h) which all approximately lie in,
and span, the non-Gaussian subspace. We finally perform PCA on this family of vectors to extract
the principal directions and estimate the target space.

In practice, we consider functions of the particular formhω,a(x) = fa(〈ω,x〉) , where f is a
function class parameterized, say, by a parametera, and‖ω‖= 1. Even for a fixeda, it is infeasi-
ble to compute values ofβ(hω,a) for all possible values ofω (say, on a discretized net of the unit
sphere), because of the cardinality involved. In order to choose a relevant value forω (still for fixed
a), we then opt to use as a heuristic a well-known PP algorithm, FastICA (Hyvärinen, 1999). This
was suggested by the surprising observation that the mappingω→ β(hω,a) is thenequivalentto a
singleiteration of FastICA (although this algorithm was built using different theoretical considera-
tions); hence, in this special case, FastICA is exactly the same as iterating our mapping. In short,
we use a PP method as a proxy to select the most relevant directionω for a fixeda. This results in a
particular choice ofωa , to which we apply the mapping once more, thus yieldingβa = β(hωa,a) . Fi-
nally, we aggregate the different vectorsβa obtained when varyinga by applying PCA as indicated
previously, in order to recover the target space.

Thus, apart from the conceptual point, defining uninterestingness as the point of departure in-
stead of interestingness, another way to look at our method is to say that it allows the combination
of information coming from different indices: here the above functionfa (for fixed a) plays a role
similar to that of a non-Gaussianity index in PP, but we do combine a rich family ofsuch functions
(by varying a and even by considering several function classes at the same time). The important
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point here is that, while traditional projection pursuit does not provide a well-founded justification
for combining directions from using different indices, our framework allows to do precisely this –
thus implicitly selecting, in a given family of indices, the ones which are the most informative for
the data at hand.

In the following section we will outline the theoretical cornerstone of the method, a novel semi-
parametric theory forlinear dimension reduction. Section 3 discusses the algorithmic procedure and
is conluded with theoretical results establishing statistical consistency of the method. In Section 4,
we study on simulated and real data examples the behavior of the algorithm. A brief conclusion is
given in Section 5.

2. Theoretical Framework

In this section, we give a theoretical basis for the non-Gaussian component search within asemi-
parametricframework. We present a population analysis, where expectations can inprinciple be
calculated exactly, in order to emphasize the main idea and show how the algorithm is built. A more
rigorous statistical study of the estimation error will be exposed later in section3.5.

2.1 Motivation

Before introducing the semi-parametric density model which will be used as a foundation for devel-
oping our method, we motivate it by starting from elementary considerations. Suppose we are given
a set of observationsXi ∈ R

d, (i = 1, . . . ,n) obtained as a sum of a signalS and an independent
Gaussian noise componentN :

X = S+N , (1)

whereN ∼N (0,Γ) . Note that no particular structural assumption is made about the noise covari-
ance matrixΓ .

Assume the signalS is contained in a lower-dimensional linear subspaceE of dimensionm<
d . Loosely speaking, we would like to projectX linearly so as to eliminate as much of the noise as
possible while preserving the signal information. An important issue for the analysis of the model
(1) is a suitable representation of the density ofX which reflects the low dimensional structure of
the non-Gaussian signal. The next lemma presents a generic representationof the densityp for the
model (1).

Lemma 1 The density p(x) for the model (1) with the m-dimensional signal S and an independent
Gaussian noise N can be represented as

p(x) = g(Tx)φΓ(x)

where T is a linear operator fromRd to R
m, g(·) is some function onRm and φΓ(x) is the density

of the Gaussian component.

The formal proof of this lemma is given in the Appendix. Note that the above density represen-
tation is not unique, as the parametersg,T,Γ are not identifable from the densityp. However, the
null suspace (kernel)K(T) of the linear operatorT is an identifiable parameter. In particular, is
useful to notice that if the noiseN is standard normal, then the operatorT can be taken equal to the
projector on the signal spaceE . Therefore, in this case,K(T) coincides withE⊥ , the orthogonal
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complementary subspace toE . In the general situation with “colored” Gaussian noise, the signal
spaceE does not coincide with the orthogonal complementary of the kernelI = K(T)⊥ of the
operatorT . However, the density representation of Lemma 1 shows that the the subspace K(T)
is non-informative and contains only noise. The original data can then be projected orthogonally
onto I , which we call thenon-Gaussian subspace, without loss of information. This way, we are
preserving the totality of the signal information. This definition implements the general point of
view outlined in the introduction, namely: we define what is considereduninteresting; the target
space is then defined indirectly as the orthogonal of the uninteresting component.

2.2 Relation to ICA

An equivalent view of the same model is to decompose the noiseN appearing in Eq.(1) into a
componentN1 belonging to the signal spaceE and anindependentcomponentN2 ; it can then be
shown thatN2 belongs to the subspaceK(T) defined above. In this view, the spaceI is orthogonal
to the independent noise component, and projecting the data ontoI amounts to cancelling this
independent noise component by an orthogonal projection.

In the present paper, we assume that we wish to project the dataorthogonally, i.e., that the
Euclidean geometry of the input space is meaningful for the data at hand, and that we want to
respect it while projecting. An alternative point of view would be to disregard the input space
geometry altogether, and to first map the data linearly to a reference space where it has covariance
identity (“whitening” transform), which would be closer to a traditional ICA analysis. This would
have on the one hand the advantage of resulting in an affine invariant procedure, but, on the other
hand, the disadvantage of losing the information of the original space geometry. It is relatively
straightforward to adapt the procedure to fit into this framework. For simplicity, we will stick to our
original goal of orthogonal projection in the original space.

2.3 Main Model

Based on the above motivation, we assume to be dealing with an unknown probability density
function p(x) on R

d which can put under the form

p(x) = g(Tx)φΓ(x), (2)

whereT is an unknown linear mapping fromRd to R
m with m≤ d , g is an unknown function on

R
m, andφΓ is a centered1 Gaussian density with covariance matrixΓ .

Note that thesemi-parametricmodel (2) includes as particular cases both the pure parametric
(m = 0) and purely non-parametric (m = d ) models. For practical purposes, however, we are
effectively interested in an intermediate case whered is large andm is relatively small. In what
follows, we denote byI the m-dimensionallinear subspace inRd generated by the adjoint operator
T∗ :

I = K(T)⊥ = ℑ(T∗) ,

whereℑ(·) denotes the range of an operator. We callI thenon-Gaussian subspace.
The proposed goal is therefore to estimateI by some subspacêI computed from an i.i.d. sam-

ple {Xi}ni=1 following the distribution with densityp(x) . In this paper, we assume the effective

1. It is possible to handle a more general situation where the Gaussian part has an unknown mean parameterθ in
addition to the unknown covarianceΓ . For simplicity of exposition, we consider here only the caseθ = 0.
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dimensionm to be known or fixeda priori by the user. Note that we donot estimateΓ nor g
when estimatingI . We measure the closeness of the two subspacesÎ andI by the following error
function:

E(Î ,I ) = (2m)−1
∥∥ΠI −Π

Î

∥∥2
Frob = m−1

m

∑
i=1

‖(Id−Π
Î
)vi‖2, (3)

where ΠI denotes the orthogonal projection onI , ‖·‖Frob is the Frobenius norm,{vi}mi=1 is an
orthonormal basis ofI and Id is the identity matrix.

2.4 Key Result

The main idea underlying our approach is summed up in the following Proposition(the proof is
given in Appendix A.2). Whenever variableX has covariance2 matrix identity, this result allows,
from anarbitrary smooth real functionh on R

d , to find a vectorβ(h) ∈ I .

Proposition 2 Let X be a random variable whose density function p(x) satisfies Eq.(2) and sup-
pose that h(x) is a smooth real function onRd . Assume furthermore thatΣ = E

[
XX>

]
= Id . Then,

under mild regularity conditions on h, the following vectorβ(h) belongs to the target spaceI :

β(h) = E [Xh(X)−∇h(X)] . (4)

In the general case where the covariance matrixΣ is different from identity, provided it is non-
degenerated, we can apply a whitening operation (also known as Mahalanobis transform). Namely,
let us putY = Σ− 1

2 X the “whitened” data; the covariance matrix ofY is then identity. Note that if
the density function ofX is of the form

p(x) = g(Tx)φΓ(x),

then by change of variable the density function ofZ = AX is given by

q(z) = cAg(TA−1z)φAΓA>(z),

wherecA is a normalization constant depending onA.
This identity applied toA = Σ− 1

2 and the previous proposition allow to conclude that

βY(h) = E [∇h(y)−yh(y)] ∈ J = ℑ(Σ
1
2 T∗)

and therefore that

γ(h) = Σ−
1
2 βY(h) ∈ I = ℑ(T∗) ,

whereI is the non-Gaussian index space for the initial variableX , and J = Σ 1
2 I the transformed

non-Gaussian space for the whitened variableY .

2. Here and in the sequel, with some abuse we callΣ = E
[
XX>

]
thecovariance matrix, even though we do not assume

the non-Gaussian part of the data to be centered.
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Figure 1: The NGCA main idea: from a varied family of real functions, compute a family of vectors
belonging to the target space up to small estimation error.

3. Procedure

We now use the key proposition established in the previous section to design apractical algorithm
in order to identify the non-Gaussian subspace. The first step is to apply the whitening transform to
the data (where the true covariance matrixΣ is estimated by the empirical covarianceΣ̂ ). We then
estimate the “whitened” non-Gaussian spaceJ by someĴ (this will be described next); this space
is then finally pulled back in the original space by application ofΣ̂− 1

2 . To simplify the exposition,
in this section we will forget about the whitening/dewhitening steps and always implicitly assume
that we are dealing directly with the whitened data: every time we refer to the non-Gaussian space
it is therefore to be understood that we refer toJ = Σ 1

2 I , corresponding to the whitened dataY .

3.1 Principle of the Method

In the previous section, we have proved that for an arbitrary functionh satisfying mild smoothness
conditions, it is possible to construct a vectorβ(h) which lies in the non-Gaussian subspace. How-
ever, since the unknown densityp(x) is used (via the expectation operator) to defineβ by Eq.(2),
one cannot directly use this formula in practice: it is then natural to approximate it by replacing the
true expectation by the empirical expectation. This gives rise to the estimated vector

β̂(h) =
1
n

n

∑
i=1

Yih(Yi)−∇h(Yi) , (5)

which we expect to be close to the non-Gaussian subspace up to some estimation error. At this
point, the natural next step is to consider a whole family of functions{hi}ni=1 , giving rise to an

associated vector family of{β̂i}Li=1 , all lying close to the target subspace, whereβ̂i := β̂(hi) . The
final step is to recover the non-Gaussian subspace from this set. For thispurpose, we suggest to
use the principal directions of this family, i.e. to apply PCA (although other algorithmic options are
certainly avalaible for this task). This general idea is illustrated on Figure 1.

3.2 Normalization of the Vectors

When extracting information on the target subspace from the set of vectors {β̂i}Li=1 , attention should
be paid to how the functions{hi}Li=1 are normalized. As can be seen from its definition, the opera-

tor which maps a functionh to β(h) (and also its empirical counterpartβ̂(h) ) is linear. Therefore,
if, for example, one of the functions{hi}Li=1 is multiplied by an arbitrarily large scalar, the associ-
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Figure 2: For the same estimation error represented as a confidence ball of radius ε , estimated
vectors with higher norm give a more precise information about the true target space.

ated β̂(h) could have an arbitrarily large norm: this is likely to influence heavily the procedure of
principal direction extraction applied to the whole family.

To prevent this problem, the functions{hi}Li=1 should be normalized in some way or other.
Several possibilities can come to mind, like using the supremum orL2 norm of h or of ∇h. We
argue here that a sensible way to normalize functions is such that the average squared deviation
(estimation error) of̂β(h) to its mean is of the same order for all functionsh considered. This
has a first direct intuitive interpretation in terms of making the length of each estimated vector
proportional to its associated signal-to-noise ratio. We argue in more detail that the norm of̂β(h)
after normalization is directly linked to the amount of information brought by this vector about the
target subspace.

Namely, if we measure the information that is brought by a certain vectorβ̂(h) about the target
spaceJ through the angleθ(β̂(h)) between the vector and the space, we have

‖β̂(h)−β(h)‖ ≥ dist(β̂(h),J ) = sin(θ(β̂(h)))‖β̂(h)‖ . (6)

Suppose we have ensured by renormalization thatσ(h)2 = E

[
‖β̂(h)−β(h)‖2

]
is constant and in-

dependent ofh, and assume that this results in‖β̂(h)−β(h)‖2 being bounded by some constant
with high probability. It entails that sin(θ(β̂(h)))‖β̂(h)‖ is bounded independently ofh. We expect,
in this situation, that the bigger‖β̂‖ , the smaller is sin(θ) , and therefore the more reliable the infor-
mation aboutJ . This intuition is illustrated in Figure 2, where the estimation error is represented
by a confidence ball of equal size for all vectors.3

Therefore, at least at an intuitive level, it appears appropriate to useσ(h) as a renormalization.
Note that this is just the square root of the trace of the covariance matrix ofβ̂(h) , and therefore
easy to estimate in practice from its empirical counterpart. In section 3.5, we give actual theoretical
confidence bounds for‖β− β̂‖ which justify this intuition in a more rigorous manner.

Finally, to confirm this idea on actual data, we plot in the top row Figure 3 the distribution of
β̂ on an illustrative data set using the normalization scheme just described. In order to investigate

3. Of course, the situation depicted in Figure 2 is idealized: we actually expect (from the Central Limit Theorem)
that β− β̂ has approximately a Gaussian distribution with some non-spherical variance, giving rise to a confidence
ellipsoid rather than a confidence ball. To obtain a spherical error ball, wewould have to apply a (linear) error
whitening transform separately to eachβ̂(h) . However, in that case the error whitening transform would be different
for each h, and the information of the vector family about the target subspace wouldthen be lost. To preserve
this information, only a scalar normalization is adequate, which is why we recommend the normalization scheme
explained here.
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the relation between the norm of the (normalized)β̂ and the amount of information on the non-
Gaussian subspace brought byβ̂ , we plot in the right part of Figure 3 the relation between‖β̂‖ and
‖ΠJ β̂‖/‖β̂‖ = cos(θ(β̂)) . As expected, the vectorŝβ with highest norm are indeed much closer

to the non-Gaussian subspace in general. Furthermore, vectorsβ̂ with norm close to zero appear
to bear almost no information about the non-Gaussian space, which is consistent with the setting
depicted in Figure 2: whenever an estimated vectorβ̂ has norm smaller than the estimation errorε ,
its confidence ball contains the origin, which means that it brings no useableinformation about the
direction of the non-Gaussian subspace.

These findings motivate two important points for the algorithm:

1. It should be beneficial toactively searchfor functionsh which yield an estimated̂β(h) with
higher norm, since these are more informative about the target spaceJ ;

2. The vectorsβ̂ with norm below a certain thresholdε can be discarded as they are non-
informative. So far, the theoretical bounds presented below in section 3.5are not precise
enough to give a canonical value for this threshold: we therefore recommend that it be de-
termined by a preliminary calibration procedure. For this, we consider independent Gaussian
data: in this case,β = 0 for any h and thus‖β̂‖ represents pure estimation noise. A reason-
able choice for the threshold is therefore the 95th percentile (say) of this distribution, which
we expect to reject a large majority of the noninformative vectors.

3.3 Using FastICA as Preprocessing to Find Promising Functions

When considering a parametrized family of functions{hω} , it is a desirable goal to search the
parameter space to find indicesω such that̂β(hω) has a high norm, as proposed in the last section.
From now on we will restrict our attention to functions of the form

hω(x) = f (〈ω,x〉) , (7)

whereω∈R
d , ‖ω‖= 1, and f is a smooth real function of a real variable. Clearly, it is not feasible

to sample the entire parameter space forω as soon as it has more than a few dimensions, and it is not
obviousa priori to find parametersω such that̂β(hω) has a high norm. Remember however that we
do not need to find anexact maximumof this norm over the parameter space. We merely want to find
parameters such that the associated norm is preferably high, because they bring more information;
this may also involve heuristics. Naturally, good heuristics should be able to find parameters giving
rise to vectors with higher norm, bringing more information on the subspace and ultimately better
practical results; nevertheless, the underlying theoretical motivation stays unchanged regardless of
the way the functions are picked.

A particularly relevant heuristic for choosingω comes naturally with a closer look at Eq.(5)
when we plug in functions of the specific form given by Eq.(7):

β̂(hω) =
1
n

n

∑
i=1

(
Yi f (〈ω,Yi〉)− f ′(〈ω,Yi〉)ω

)
. (8)

It is interesting to notice that this equation precisely coincides withone iteration of a well-known
projection pursuit algorithm, FastICA (Hyvärinen, 1999). More precisely, FastICA consists in iter-
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Figure 3: Illustrative plots of the method, applied to toy data of type(A) (See section 4.1). Left
column: Distribution ofβ̂ projected on a direction belonging to the target spaceJ (ab-
scissa) and a direction orthogonal to it (ordinate). Right column:‖β̂‖ (after normaliza-
tion) vs. cos(θ(β̂,J )) . From top to bottom rows: random draw of functions, after 1-step,
and after 4-step of FastICA preprocessing.β̂ ’s are normalized as described in section
3.2.
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ating the following update rule to form a sequenceω1, . . . ,ωT :

ωt+1 ∝
1
n

n

∑
i=1

(
Yi f (〈ωt ,Yi〉)− f ′(〈ωt ,Yi〉)ωt

)
(9)

where the sign∝ indicates that vectorωt+1 is renormalized to be of unit norm.
Note that the FastICA procedure is derived from quite a different theoretical setting of what

we considered here (see, e.g., Hyvärinen et al., 2001); its goal is in principle to optimize a non-
Gaussianity measureE [F(〈ω,x〉)] (whereF is such thatF ′ formally coincides with ourf above)
and the solution is reached by an approximate Newton method giving rise to the update rule of
Eq.(9), repeated until convergence.

This formal identity leads us to adopt the FastICA methodology as a heuristic for our method.
Since finding an actual optimum point is not needed, convergence is not an issue, so that we only
iterate the update rule of Eq.(9) for a fixed number of iterationsT to find a relevant directionωT .
Finally we apply Eq.(8) one more time to this choice of parameter, so that the procedure finally
outputs β̂(hωT ) . On Figure 3, we plot the effect of a few iterations of this preprocessingfor the
method, applied on toy data and see that it leads to a significant improvement.

Paradoxically, if the convergence of this FastICA preprocessing is too good, there is in principle
a risk that all vectorŝβ end up in the vicinity of one single “best” direction instead of spanning
the whole target space: the preprocessing would then have the opposite effect of what is wished,
namely impoverishing the vector family. One possible remedy against this is to apply so-called
batch FastICA, which consists in iterating equation (9) on am-dimensional system of vectors,
which is orthonormalized anew before each new iteration. In our practicalexperiments we did
not observe any significant change in the results when using this refinement, so we mention this
possibility only as a matter of precaution. We suspect two mitigating factors against this possible
unwished behavior are that (1) it is known that FastICA does not converge to a global maximum, so
that we probably find vectors in the vicinity of different local optima and (2)the “optimal” directions
depend on the functionf used and we combine a large number of such functions.

In the next section, we will describe the full algorithm, which consists in applying the procedure
just described to different choices of the functionf . Since we are using projection pursuit as a
heuristic to find suitable parametersω for a fixed f , the theoretical setting proposed here can
therefore also be seen as a suitable framework for combining projection pursuit results when using
different index functionsf .

3.4 Full Procedure

The previous sections have been devoted to detailing some key points of the procedure. We now
gather these points and describe the full algorithm. We previously considered the case of a basis
function family hω(y) = f (〈ω,y〉) . We now consider a finite family of possible choices{ fk}Lk=1
which are then combined.

In the implementation tested, we have used the following forms of the functionsfk :

f (1)
σ (z) = z3exp

(
− z2

2σ2

)
, (Gauss-Pow3)

f (2)
b (z) = tanh(bz), (Hyperbolic Tangent)

f (3)
a (z) = exp(iaz) , (Fourier4)
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More precisely, we consider discretized ranges forσ ∈ [σmin,σmax] , b∈ [0,B] , anda∈ [0,A] ,
giving rise to a finite collection{ fk} (which therefore includessimultaneouslyfunctions of the
three different above families). Note that usingz3 and Hyperbolic Tangent functions is inspired by
the classical PP algorithms (including FastICA) where these indices are used. We multipliedz3 by
a Gaussian factor in order to satisfy the boundedness assumption neededto control the estimation
error (see Theorem 3 and 4 below). Furthermore, the introduction of theparameterσ2 allows for a
richer family. Finally, the Fourier functions were introduced as they constitute a rich and important
family. A pseudocode for the NGCA algorithm is described in Figure 4.

3.5 Theoretical Bounds on the Statistical Estimation Error

In this section we tackle the question of controlling the estimation error when approximating the
vectorsβ(h) by their empirical estimationŝβ(h) from a rigorous theoretical point of view. These
results were derived with the following goals in mind:

• A cornerstone of the algorithm is that we consider a whole familyh1, . . . ,hL of functions and
pick selected members from it. In order to justify this from a statistical point of view, we
therefore need to control the estimation error not for a single functionh and the associated
β̂(h) , but instead uniformly over the function family. For this, a simple control of, e.g., the

averaged squared deviationE
[
‖β− β̂‖2

]
for each individualh is not sufficient: we need a

stronger result, namely an exponential control of the deviation probability.This allows, by
the union bound, to obtain a uniform control over the whole family with a mild (logarithmic)
dependence on the cardinality of the family.

• We aim at making the covariance tracêσ2 directly appear into the main bounding terms
of our error control. This provides a more solid justification to the renormalization scheme
developed in section 3.2, where we have used arguments based on a non rigorous intuition.
The choice to involve directly theempiricalcovariance in the bound instead of the population
one was made to emphasize that estimation error for the covariance itself is alsotaken into
account for the bound.

• While the control of the deviation of an empirical average of the form givenin Eq.(5) is a
very classical problem, we want to explicitly take into account the effect ofthe empirical
whitening/dewhitening using the empirical covariance matrixΣ̂ . This complicates matters
noticeably since this whitening is itself data-dependent.

• Our goal wasnot to obtain tight confidence intervals or even exact asymptotical behavior.
There is a number of ways in which our results could be substantially refined, for example
obtaining uniform bounds over continuous (instead of finite) families of functions using cov-
ering number arguments; showing asymptotical uniform central limit properties for a precise
study of the typical deviations, etc. Here, we tried to obtain simple, while still mathemati-
cally rigorous, results, covering essential statistical foundations of ourmethod: consistency
and order of the convergence rate.

In the sequel, for a matrixA, we denote‖A‖ its operator norm.

4. In practice, separated into real and complex parts (sine and cosine).
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Input: Data points(Xi) ∈ R
d , dimensionm of target subspace.

Parameters:NumberT of FastICA iterations; thresholdε .

Whitening.
The dataXi is recentered by subtracting the empirical mean.
Let Σ̂ denote the empirical covariance matrix of the data sample(Xi) ;
put Ŷi = Σ̂− 1

2 Xi the empirically whitened data.
Main Procedure.

Loop onk = 1, . . . ,L :
Draw ω0 at random on the unit sphere ofR

d .
Loop on t = 1, . . . ,T : [FastICA loop]

Put β̂t ←
1
n

n

∑
i=1

(
Ŷi fk(〈ωt−1,Ŷi〉)− f ′k(〈ωt−1,Ŷi〉)ωt−1

)
.

Put ωt ← β̂t/‖β̂t‖ .
End Loop ont

Let Nk be the trace of the empirical covarariance matrix ofβ̂T :

Nk =
1
n

n

∑
i=1

∥∥∥Ŷi fk(〈ωT−1,Ŷi〉)− f ′k(〈ωT−1,Ŷi〉)ωT−1

∥∥∥
2
−
∥∥∥β̂T

∥∥∥
2
.

Storev(k)← β̂T ∗
√

n/Nk. [Normalization]
End Loop onk

Thresholding.
From the familyv(k) , throw away vectors having norm smaller than thresholdε .

PCA step.
Perform PCA on the set of remainingv(k) .
Let Ĵ be the space spanned by the firstm principal directions.

Pull back in original space.
Î = Σ̂− 1

2 Ĵ .

Output: Î .

Figure 4: Pseudocode of the NGCA algorithm.
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Analysis of the estimation error with exact whitening. We start by considering an idealized
case where whitening is done using the true covariance matrixΣ : Y = Σ− 1

2 X .
In this case we have the following control of the estimation error:

Theorem 3 Let {hk}Lk=1 be a family of smooth functions fromRd to R . Assume that
supy,k max(‖∇hk(y)‖ ,‖hk(y)‖) < B and that X has covariance matrixΣ with

∥∥Σ−1
∥∥≤ K2 , and is

such that for someλ0 > 0 the following inequality holds:

E [exp(λ0‖X‖)]≤ a0 < ∞. (10)

Denoteh̃(y) = yh(y)−∇h(y) . Suppose X1, . . . ,Xn are i.i.d. copies of X and let Yi = Σ− 1
2 Xi . If we

define

β̂Y(h) =
1
n

n

∑
i=1

h̃(Yi) =
1
n

n

∑
i=1

Yih(Yi)−∇h(Yi) , (11)

and

σ̂2
Y(h) =

1
n

n

∑
i=1

∥∥∥h̃(Yi)− β̂Y(h)
∥∥∥

2
, (12)

then for anyδ < 1
4 , with probability at least1−4δ the following bounds hold simultaneously for

all k ∈ {1, . . . ,L} :

dist
(

β̂Y(hk),J
)
≤ 2

√
σ̂2

Y(hk)
log(Lδ−1)+ logd

n
+C

(
log(nLδ−1) log(Lδ−1)

n
3
4

)
,

and

dist
(

Σ−
1
2 β̂Y(hk),I

)
≤ 2K

√
σ̂2

Y(hk)
log(Lδ−1)+ logd

n
+C′

(
log(nLδ−1) log(Lδ−1)

n
3
4

)
,

where dist(γ,I ) denotes the distance between a vectorγ and the subspaceI , and C,C′ are con-
stants depending only on the parameters(d,λ0,a0,B,K) .

Comments.

1. The above inequality tells us that the rate of convergence of the estimated vectors to the target
space is in this case of ordern−1/2 (classical “parametric” rate). Furthermore, the theorem
gives us an estimation of the relative size of the estimation error for different functions h
through the empirical factor̂σY(h) in the principal term of the bound. As announced in our
initial goals, this therefore gives a rigorous foundation to the intuition exposed in section 3.2
for vector renormalization.

2. Also following our goals, we obtained a uniform control of the estimation error over a finite
family with a logarithmic dependence in the cardinality. This does not correspond exactly to
the continuous families we use in practice but comes close enough if we consider adequate
parameter discretization. We will comment on this in more detail after the next theorem.

260



NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

Whitening using empirical covariance. When Σ is unknown (which is in general the case), we
use instead the empirical covariance matrixΣ̂ . Here, we will show that, under a somewhat stronger
assumption on the distribution ofX and on the functionsh, we are still able to obtain a convergence
rate of order at most

√
log(n)/n towards the index spaceI .

Let us denotêYi = Σ̂− 1
2 Xi the empirically whitened datapoints,h̃(y) = yh(y)−∇h(y) as previ-

ously, and

β̂Ŷ(h) =
1
n

n

∑
i=1

h̃(Ŷi) =
1
n

n

∑
i=1

Ŷih(Ŷi)−∇h(Ŷi) ; (13)

finally, let us denote

γ̂(h) = Σ̂−
1
2 β̂Ŷ(h) , and σ̂2

Ŷ
(h) =

1
n

n

∑
i=1

∥∥∥h̃(Ŷi)− β̂Ŷ(h)
∥∥∥

2
.

We then have the following theorem:

Theorem 4 Let us assume the following :
(i) There existsλ0 > 0,a0 > 0 such that

E

[
exp
(

λ0‖X‖2
)]

= a0 < ∞ ;

(ii) The covariance matrixΣ of X is such that
∥∥Σ−1

∥∥≤ K2 ;
(iii) supk,ymax(‖∇hk(y)‖ ,‖hk(y)‖) < B;

(iv) The functions̃hk(y) = ∇hk(y)−yhk(y) are all Lipschitz with constant M.
Then for big enough n, with probability at least1− 4

n − 4δ the following bounds hold true
simultaneously for all k∈ {1, . . . ,L} :

dist(β̂Ŷ(hk),J )≤C1

√
d logn

n
+2

√
σ̂2

Ŷ
(hk)

log(Lδ−1)+ logd
n

+C2
log(nLδ−1) log(Lδ−1)

n
3
4

,

and

dist(̂γ(hk),I )≤C′1

√
d logn

n
+2K

√
σ̂2

Ŷ
(hk)

log(Lδ−1)+ logd
n

+C′2
log(nLδ−1) log(Lδ−1)

n
3
4

,

where C1,C′1 are constants depending on parameters(λ0,a0,B,K,M) only and C2,C′2 on
(d,λ0,a0,B,K,M) .

Comments.

1. Theorem 4 implies that the vectorŝγ(hk) obtained from anyh(x) converge to the unknown
non-Gaussian subspaceI uniformlyat a rate of order

√
log(n)/n.

2. The condition (i) is a restrictive assumption as it excludes some densities with heavy tails. We
are considering weakening this assumption in future developments.
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3. In the actual algorithm, we consider a family of functions of the formhω(x) = f (〈ω,x〉) ,
with ω on the unit sphere ofRd . Suppose we approximateω by its nearest neighbor̃ω on a
regular grid of scaleε . Then we only have to apply the bound to a discretized family of size
L = O(ε1−d) , giving rise only to an additional factor in the bound of order

√
d logε−1 . Taking

for exampleε = 1/n (the fact that the function family depends onn is not a problem since
the bounds are valid for any fixedn), this ensures convergence of the discretized functions
to the initial continuous family while introducing only in an additional factor

√
d logn in

the bound: this does not change fundamentally the order of the bound since there is already
another

√
d logn term present.

4. For both Theorems 3 and 4, we have given bounds for estimation of bothI and J , that is,
in terms of the initial data and of the “whitened” data. The result in terms of the initial data
ensures the overall consistency of the approach, but the convergence in the whitened space is
equally interesting since we use it as the main working space for the algorithm and the bound
itself is more precise.

5. Comparing to Theorem 3 obtained for exact whitening, we see in the present case that there
is an additional term of principal order inn coming from the estimation error ofΣ , with
a multiplicative factor which unfortunately is not known accurately. This means that the
renormalization scheme is not completely justified in this case, although we feel the idealized
situation of Theorem 3 already provides some strong argument in this direction. However,
the present result suggests that the accuracy of the normalization could probably be further
improved.

4. Numerical Results

We now turn to numerical evaluations of the NGCA method: first on simulated data, where the
generating distribution is precisely known, then on exemplary, realistic data.All of the experiments
presented below, without exception, where obtained with exactly thesameset of parameters:a∈
[0,4] for the Fourier functions;b∈ [0,5] for the Hyperbolic Tangent functions;σ2 ∈ [0.5,5] for the
Gauss-pow3 functions. Each of these ranges was divided into 1000 equispaced values, thus yielding
a family { fk} of size 4000 (Fourier functions count twice because of the sine and cosine parts). The
preliminary calibration procedure described in the end of section 3.2 suggested to takeε = 1.5 as
the threshold under which vectors are not informative (strictly speaking,the threshold should be
calibrated separately for each functionf but we opted here for a single threshold for simplicity).
Finally we fixed the number of FastICA iterationsT = 10. With this choice of parameters and 1000
data points in the sample, the computation time is typically of the order of less than 10 seconds on
a modern PC under our Matlab implementation.

4.1 Tests in a Controlled Setting

For testing our algorithm and comparing it with PP, we performed numerical experiments using
various synthetic data. Here, we report exemplary results using the following 4 data sets. Each data
set includes 1000 samples in 10 dimensions. The generating distribution consists in 8 independent
standard Gaussian components and 2 non-Gaussian components generated as follows:
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(A) (B) (C) (D)

Figure 5: Densities of non-Gaussian components. The data sets are: (a)2D independent Gaussian
mixtures, (b) 2D isotropic super-Gaussian, (c) 2D isotropic uniform and(d) dependent
1D Laplacian + 1D uniform.
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Figure 6: Boxplots of the error criterionE(Î ,I ) .
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Figure 7: Performance comparison plots (for error criterionE(Î ,I ) ) of NGCA versus FastICA;
top: versus pow3 index; bottom: versus tanh index.
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(A) Simple Gaussian Mixture: 2-dimensional independent Gaussian mixtures, with the density
of each component given by

1
2

φ−3,1(x)+
1
2

φ3,1(x) . (14)

(B) Dependent super-Gaussian:2-dimensional isotropic distribution with density proportional to
exp(−‖x‖) .

(C) Dependent sub-Gaussian:2-dimensional isotropic uniform with constant positive density for
‖x‖ ≤ 1 and 0 otherwise.

(D) Dependent super- and sub-Gaussian:1-dimensional Laplacian with density proportional to
exp(−|xLap|) and 1-dimensional dependent uniformU(c,c+ 1) , wherec = 0 for |xLap| ≤
log2 andc =−1 otherwise.

For each of these situations, the non-Gaussian components are additionallyrescaled coordinatewise
by a fixed factor so that each coordinate has unit variance. The profiles of the density functions of
the non-Gaussian components in the above data sets are described in Figure 5.

We compare the following three methods in the experiments: PP with ‘pow3’ or ‘tanh’ index5

(denoted by PP(pow3) and PP(tanh), respectively), and the proposed NGCA.
Figure 6 shows boxplots of the error criterionE(Î ,I ) defined in Eq.(3) obtained from 100

runs. Figure 7 shows comparison of the errors obtained by different methods for each individual
trial. Because PP tends to get trapped into local optima of the index function it optimizes, we
restarted it 10 times with random starting points and took the subspace obtainingthe best index
value. However, even when it is restarted 10 times, PP (especially with the ‘pow3’ index) still gets
caught in local optima in a small percentage of cases (we also tried up to 500 restarts but it led to
negligible improvement).

For the simplest data set (A), NGCA is comparable or slightly better than PP methods. It
is known that PP(tanh) is suitable for finding super-Gaussian components (heavy-tailed distribu-
tion) while PP(pow3) is suitable for finding sub-Gaussian components (light-tailed distribution)
(Hyvärinen et al., 2001). This can be observed in the data sets (B) and (C): PP(tanh) works well for
the data set (B) and PP(pow3) works well for the data set (C), althoughthe upper-quantile is very
large for the data set (C) (because of PP getting trapped in local minima). The sample-wise plots of
Figure 7 confirm that NGCA is on average on par with, or slightly better than,PP with the ‘correct’
non-Gaussianity index, without having to prefix such a non-Gaussianity index. For the data set (C),
NGCA appears to be marginally worse than PP(pow3) (excluding those cases where PP fails due
to local minima: the corresponding points are outside the range of the figure), but the difference
appears hardly significant. The superiority of the index adaptation feature of NGCA can be clearly
observed in the data set (D), which includes both sub- and super-Gaussian components. Because of
this composition, there is no single best non-Gaussianity index for this data set, and the proposed
NGCA gives significantly lower error than that of either PP method.

5. We used the deflation mode of the FastICA algorithm (Hyvärinen et al., 2001) as an implementation of PP. The
‘pow3’ flavor is equivalent to a kurtosis based index: in other words, inthis case, FastICA iteratively maximizes the
kurtosis. On the other hand, the ‘tanh’ flavor uses a robust index whichis appropriate in particular for heavy-tailed
data.
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Failure modes. We now try to explore the limits of the method and the conditions under which
estimation of the target space will fail. First, we study the behaviour of NGCA again compared
with PP as the total dimension of the data increases. We use the same synthetic data sets with 2-
dimensional non-Gaussian components, while the number of Gaussian components increases. The
averaged errors over 100 experiments are depicted in Figure 8. In all cases, we seem to observe a
sharp phase transition between a good behaviour regime and a failure modewhere the procedure
is unable to estimate the correct subspace. In 3 out of 4 cases, however, we observe that the phase
transition to the failure mode occurs for a higher dimension for NGCA than forthe PP methods,
which indicates better robustness of NGCA.
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Figure 8: Results when the total dimension of the data increases.

In the synthetic data sets used so far, the data was always generated with acovariance matrix
equal to identity. Another interesting setting to study is the robustness with respect to bad condi-
tioning of the covariance matrix. We consider again a fixed-dimension setting,with 2 non-Gaussian
and 8 gaussian dimensions.

While the non-Gaussian coordinates always have variance unity, the standard deviation of the 8
Gaussian dimensions now follows the geometrical progression 10−r ,10−r+2r/7, . . . ,10r . Thus, the
higher r , the worse conditioned is the total covariance matrix.
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Figure 9: Results when the Gaussian (noise) components have differentscales (the standard devi-
ations follow a geometrical progression on[10−r ,10r ] , wherer is the parameter on the
abscissa).
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The results are depicted in Figure 9, where we observe again a transition to afailure mode when
the covariance matrix is too badly conditioned. Although NGCA still appears asthe best method,
we observe that, on 3 out of 4 data sets, the transition to failure mode seems to happen roughly at
the same point as for PP methods. This suggests that there is no or only little added robustness of
NGCA with respect to PP in this regard. However, this result is not entirely surprising, as we expect
this type of failure mode to be caused by a too large estimation error in the covariance matrix and
therefore in the whitening/dewhitening steps. Since these steps are common to NGCA and the PP
algorithms, it seems logical to expect a parallel evolution of their errors.

4.2 Example of Application for Realistic Data: Visualization and Clustering

We now give an example of application of our methodology to visualization and clustering of real-
istic data. We consider here “oil flow” data, which has been obtained by numerical simulation of
a complex physical model. This data was already used before for testing techniques of dimension
reduction (Bishop et al., 1998). The data is 12-dimensional and it is not known a priori if some
dimensions are more relevant. Here our goal is to visualize the data and possibly exhibit a clustered
structure. Furthermore, it is known that the data is divided into 3 classes. We show classes with
different marker types but the class information is not used in finding the directions (i.e., the process
is unsupervised).

We compare the NGCA methodology described in the previous section, projection pursuit
(“vanilla” FastICA) using the tanh or the pow3 index, and Isomap (non-linear projection method,
see Tenenbaum et al., 2000). The results are shown on Figure 10. A 3Dprojection of the data
was computed using these methods, which was in turn projected in 2D to draw thefigure; this last
projection was chosen manually so as to make the cluster structure as visible aspossible in each
case.

We see that the NGCA methodology gives a much more relevant projection thanPP using either
tanh or pow3 alone: we can distinguish 10-11 clusters versus at most 5 for the PP methods and 7-8
for Isomap. Furthermore, the classes are clearly separated only on the NGCA projection; on the
other ones, they are partially confounded in one single cluster. Finally, weconfirm, by applying the
projection found to held-out test data (i.e., data not used to determine the projection), that the cluster
structure is relevant and not due to some overfitting artifact. This, in passing, shows one advantage
of a linear projection method, namely that it can be extended to new data in a straightforward way.

Presumably, an important difference between the NGCA projection and the others comes from
the Fourier functions, since they are not present in either of the PP methods. It can be confirmed
by looking at the vector norms that Fourier functions are more relevant for this data set; they gave
rise to estimated vectors with generally higher norms and had consequently a sizable influence of
the choice of the projection. One could object that we have been merely lucky for this specific data
because Fourier functions happened to be more relevant, and neither PPmethod uses this index. A
possible suggestion for a fair comparison is to use the PP algorithm with a Fourier index. However,
beside the fact that this index is not generally used in classical PP methods,the results would be
highly dependent of the specific frequency parameter chosen, so we did not make experiments
in that direction (by contrast, the NGCA methodology allows to combine vectors obtained from
different frequencies). On the other hand, another route to investigatethe relevance of this objection
is to look at the results obtained by the NGCA method if Fourier functions arenot used – thus only
considering Gauss-pow3 and tanh. In this case, we still expect an improvement over PP because
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FastICA, tanh index FastICA, pow3 index

NGCA (training data) NGCA (held-out test data)

NGCA without Fourier functions Isomap

Figure 10: 2D projection of the “oil flow” data obtained by different algorithms. Different marker
types/colors indicate the different classes (this information was not used tofind the pro-
jections). For the middle right panel, the 2D projection found from the middle left panel
was used to visualize additional held out test data.
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NGCA is combining indices (as well as combining over the parameters rangesσ2 and b). This
is confirmed in Figure 10: even without the relevant Fourier functions, NGCA yields a projection
where 8 clusters can be distinguished, and the classes are much more clearly separated than with PP
methods. Finally, a visual comparison with the results obtained by Bishop et al.(1998) demonstrated
that the projection found by our algorithm exhibits a clearer clustered structure; moreover, ours is a
purely linear projection whereas the latter reference was a nonlinear data representation

Further analysis on clustering performance with additional data sets are given in the Appendix
and underline the usefulness of our method.

5. Conclusion

We proposed a new semi-parametric framework for constructing a linear projection to separate an
uninteresting multivariate Gaussian ‘noise’ subspace of possibly large amplitude from the ‘signal-
of-interest’ subspace. Our theory provides generic consistency results on how well the non-Gaussian
directions can be identified (Theorem 4). To estimate the non-Gaussian subspace from the set of
vectors obtained, PCA is finally performed after suitable renormalization andelimination of uninfor-
mative vectors. The key ingredient of our NGCA method is to make use of thegradientcomputed
for the nonlinear basis functionh(x) in Eq.(11) after data whitening. Once the low-dimensional
‘signal’ part is extracted, we can use it for a variety of applications suchas data visualization, clus-
tering, denoising or classification.

Numerically, we found comparable or superior performance to, e.g., FastICA in deflation mode
as a generic representative of the family of PP algorithms. Note that, in general, PP methods need
to pre-specify a projection index used to search for non-Gaussian components. By contrast, an
important advantage of our method is that we are able to simultaneously use several families of
nonlinear functions; moreover, inside a same function family, we are able to use an entire range
of parameters (such as frequency for Fourier functions). Thus, our new method provides higher
flexibility, and less restricting assumptionsa priori on the data. In a sense, the functional indices
that are the most relevant for the data at hand are automatically selected.

Future research will adapt the theory to simultaneously estimate the dimension ofthe non-
Gaussian subspace. Extending the proposed framework to non-linear projection scenarios (Cox and
Cox, 1994; Scḧolkopf et al., 1998; Roweis and Saul, 2000; Tenenbaum et al., 2000; Belkin and
Niyogi, 2003; Harmeling et al., 2003) and to finding the most discriminative directions using labels
are examples for which the current theory could be taken as a basis.
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Appendix A. Proofs of the Theorems

A.1 Proof of Lemma 1

Suppose first that the noiseN is standard normal. Denote byΠE the projector fromR
d to R

m

which corresponds to the subspaceE . Let alsoE⊥ be the subspace complementary toE andΠE⊥

mean the projector onE⊥ . The standard normal noise can be decomposed asN = N1 uN2 where
N1 = ΠEN and N2 = ΠE⊥N are independent noise components. Similarly, the signalX can be
decomposed as

X = (ΠES+N1)uN2

where we have used the model assumption that the signalS is concentrated inE and it is inde-
pendent ofN . It is clear that the density ofΠES+ N1 in R

m can be represented as the product
g(x1)φ(x1) for some functiong and the standard normal densityφ(x1) , x1 ∈ R

m. The indepen-
dence ofN1 and N2 yields the in the similar way forx = (x1,x2) with x1 = ΠEx and x2 = ΠE⊥x
that p(x) = g(x1)φ(x1)φ(x2) = g(x1)φ(x) . Note that for the linear mappingT = ΠE characterizes
the signal subspaceE . Namely, E is the imageℑ(T∗) of the dual operatorT∗ while E⊥ is the
null subspace (kernel) ofT : E⊥ = K(T) .

Next we drop the assumption of the standard normal noise and assume only that the covariance
matrix Γ of the noise is nondegenerated. Multiplying the both sides of the equation (1)by
the matrix Γ−1/2 leads toΓ−1/2X = Γ−1/2S+ Ñ where Ñ = Γ−1/2N is standard normal. The
transformed signal̃X = Γ−1/2S belongs to the subspacẽE = Γ−1/2E . Therefore, the density
of X̃ can be represented asp(x̃) = g̃(ΠẼx̃)φ(x̃) where ΠẼ is the projector corresponding tõE .
Coming back the variablex yields the density ofX in the form p(x) = g(Tx)φ(Γ−1/2x) where
T = ΠẼΓ−1/2 .

A.2 Proof of Proposition 2

For any functionψ(x) , it holds that
Z

ψ(x+u)p(x)dx=
Z

ψ(x)p(x−u)dx,

if the integrals exists. Under mild regularity conditions onp(x) and ψ(x) allowing differentiation
under the integral sign, differentiating this with respect tou gives

Z

∇ψ(x)p(x)dx=−
Z

ψ(x)∇p(x)dx. (15)

Let us take the following function

ψh(x) := h(x)−x>E [Xh(X)] ,

whose gradient is
∇ψh(x) = ∇h(x)−E [Xh(X)] .

The vectorβ(h) is the expectation of−∇ψh . From Eq.(15) and using∇p(x) = ∇ logp(x) p(x) , we
have

β(h) =
Z

ψh(x)∇ logp(x) p(x)dx.
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Applying Eq.(2) to the above equation yields

β(h) =
Z

ψh(x)∇ logg(Tx) p(x)dx−
Z

ψh(x)Γ−1x p(x)dx

= T∗
Z

ψh(x)∇g(Tx)φθ,Γ(x)dx−Γ−1
Z

xψh(x)p(x)dx. (16)

Under the assumptionE
[
XX>

]
= Id , we get

E [Xψh(X)] = E [Xh(X)]−E

[
XX>

]
E [Xh(X)] = 0,

that is, the second term of Eq.(16) vanishes. Since the first term of Eq.(16) belongs toI by the
definition of I , we finally haveβ(h) ∈ I .

A.3 Proof of Theorem 3

For a fixed functionh, we will essentially apply Lemma 5 stated below for each coordinate ofβY(h) .
Denoting thek-th coordinate of a vectorv by v(k) , andy = Σ− 1

2 x, we have

h̃(k)(x) =
∣∣∣[∇h(y)−yh(y)](k)

∣∣∣≤ B(1+‖y‖)≤ B(1+K ‖x‖) .

It follows that h̃(k)(x) is such that

E

[
exp

(
λ0

BK
h̃(k)(x)

)]
≤ a0exp

(
λ0

K

)
,

and hence satisfies the assumption of Lemma 5. Denoting byσ̂2
k the sample variance of̃h(k) , we

apply the lemma withδ′ = δ/d , obtaining by the union bound that with probability at least 1−4δ ,
for all 1≤ k≤ d :

([
βY− β̂Y

](k))2

≤ 4σ̂2
k
log
(
dδ−1

)

n
+C1(λ0,a0,B,d,K)

log2(nδ−1) log2 δ−1

n
3
2

,

where we have used the inequality(a+b)2≤ 2(a2+b2) , andC1 denotes some function depending
only on the indicated quantities. Now summing over the coordinates, taking the square root and
using

√
a+b≤√a+

√
b leads to:

∥∥∥βY− β̂Y

∥∥∥≤ 2

√
σ̂2

Y(h)
logδ−1 + logd

n
+C2(λ0,a0,B,d,K)

(
log(nδ−1) logδ−1

n
3
4

)
, (17)

with probability at least 1− 4δ . To turn this into a uniform bound over the family{hk}Lk=1, we
simply apply this inequality separately to each function in the family withδ′′ = δ/L. This leads to
the first announced inequality of theorem. We obtain the second one by multiplying the first by
Σ− 1

2 to the left and using the assumption on
∥∥Σ−1

∥∥.
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Lemma 5 Let X be a real random variable such that for someλ0 > 0:

E [exp(λ0 |X|)]≤ a0 < ∞.

Let X1, . . . ,Xn denote an i.i.d. sequence of copies of X . Let µ= E [X] , µ̂ = 1
n ∑n

i=1Xi and σ̂2 =
1

2n(n−1) ∑i 6= j(Xi−Xj)
2 be the sample variance.

Then for anyδ < 1
4 the following holds with probability at least1−4δ , where c is a universal

constant:

|µ− µ̂| ≤
√

2σ̂2 logδ−1

n
+cλ−1

0 max
(
1, log

(
na0δ−1))

((
logδ−1

n

) 3
4

+
logδ−1

n

)
.

Proof For A > 0 denoteXA = X1{|X| ≤ A} . We decompose
∣∣∣∣∣
1
n

n

∑
i=1

Xi−µ

∣∣∣∣∣≤
∣∣∣∣∣
1
n

n

∑
i=1

(
Xi−XA

i

)
∣∣∣∣∣+
∣∣∣∣∣
1
n

n

∑
i=1

XA
i −E

[
XA]

∣∣∣∣∣+
∣∣E
[
X−XA]∣∣ ;

these three terms will be denoted byT1,T2,T3 . By Markov’s inequality, it holds that

P [|X|> t]≤ a0exp(−λ0t) ,

Fixing A = log
(
nδ−1a0

)
/λ0 for the rest of the proof, it follows by takingt = A in the above

inequality that for any 1≤ i ≤ n:

P
[
XA

i 6= Xi
]
≤ δ

n
.

By the union bound, we then haveXA
i = Xi for all i , and thereforeT1 = 0, except for a setΩA of

probability bounded byδ .
We now deal with the third term: we have

T3 = |E [X1{|X|> A}]| ≤ E [X1{X > A}] =
Z ∞

0
P [X1{X > A}> t]dt

≤ AP [X > A]+
Z ∞

A
a0exp(−λ0t)dt

≤ a0
(
A+λ−1

0

)
exp(−λ0A)

=
δ

nλ0

(
1+ log

(
nδ−1a0

))
.

Finally, for the second term, since
∣∣XA
∣∣≤ A= λ−1

0 log
(
nδ−1a0

)
, Bernstein’s inequality ensures

that with probability as least 1−2δ the following holds:
∣∣∣∣∣
1
n

n

∑
i=1

XA
i −E

[
XA]

∣∣∣∣∣≤
√

2Var[XA] logδ−1

n
+2

log
(
nδ−1a0

)
logδ−1

λ0n
.

We finally turn to the estimation of Var
[
XA
]
. The sample variance ofXA is given by

(σ̂A)2 =
1

2n(n−1) ∑
i6= j

(
XA

i −XA
j

)2
.
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Note that(σ̂A)2 is an unbiased estimator of Var
[
XA
]
. Furthermore, replacingXA

i by X′Ai in the
above expression changes this quantity at most of 4A2/n sinceXA

i appears only in 2(n−1) terms.
Therefore, application of the bounded difference (a.k.a. McDiarmid’s)inequality (McDiarmid ,
1989) to the random variablêσA yields that with probability 1−δ we have

∣∣(σ̂A)2−Var
[
XA]∣∣≤ 4A2

√
logδ−1

n
;

finally, except for samples in the setΩA which we have already excluded above, we haveσ̂A = σ̂ .
Gathering these inequalities lead to the conclusion.

A.4 Proof of Theorem 4

In this proof we will denote byC(·) a factor depending only on the quantities inside the parentheses,
and whose exact value can vary from line to line.

From Lemmas 9 and 10 below, we conclude that for big enoughn, the following inequality is
satisfied with probability 1−2/n:

∥∥∥Σ−
1
2 − Σ̂−

1
2

∥∥∥≤C(a0,λ0,K)

√
d logn

n
; (18)

also, it is a a weaker consequence of Lemmas 7 and 8 that the following inequalities hold with
probability at least 1−1/n each (again forn big enough):

1
n

n

∑
i=1

‖Xi‖ ≤C(a0,λ0) , (19)

1
n

n

∑
i=1

‖Xi‖2≤C(a0,λ0) . (20)

Let us denoteΩ the set of samples where (18), (19) and (20) are satisfied simultaneously; from the
above, we conclude that for large enoughn , the setΩ contains the sample with probability at least
1−4/n. For the remainder of the proof, we suppose that this condition is satisfied.

For any functionh, we have

∥∥∥β̂Ŷ−βY

∥∥∥≤
∥∥∥β̂Ŷ− β̂Y

∥∥∥+
∥∥∥β̂Y−βY

∥∥∥ .

Note that (up to some changes in the constants) the assumption on the Laplace transform is stronger
than the assumption of Theorem 3; hence equation (17) in the proof of this theorem holds and we
have with probability at least 1−4δ , for any function in the family{hk}Lk=1 :

∥∥∥βY− β̂Y

∥∥∥≤ 2

√
σ̂2

Y(h)
log(Lδ−1)+ logd

n
+C(λ0,a0,B,d,K)

(
log(nLδ−1) log

(
Lδ−1

)

n
3
4

)
. (21)
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On the other hand, conditions (18) and (19) imply that for any functionh in the family,

∥∥∥β̂Ŷ− β̂Y

∥∥∥=

∥∥∥∥∥
1
n

n

∑
i=1

(
h̃(Ŷi)− h̃(Yi)

)∥∥∥∥∥≤
M
n

n

∑
i=1

∥∥∥Ŷi−Yi

∥∥∥

≤ M
n

∥∥∥Σ−
1
2 − Σ̂−

1
2

∥∥∥
n

∑
i=1

‖Xi‖

≤C(a0,λ0,K)M

√
d logn

n
.

where in the first inequality, we have used the Lispchitz assumption on the functionh.
One remaining technicality is to replace the term̂σY(h) (which cannot be evaluated from the

data since it depends on the exactly whitened dataYi ) in (21) by σ̂Ŷ(h) , which can be evaluated
from the data. For this use the following, holding for any functionh in the family:

∣∣∣σ̂2
Y(h)− σ̂2

Ŷ
(h)
∣∣∣=

1
2n(n−1)

∣∣∣∣∣∑i6= j

∥∥∥h̃(Yi)− h̃(Yj)
∥∥∥

2
−
∥∥∥h̃(Ŷi)− h̃(Ŷj)

∥∥∥
2
∣∣∣∣∣ ;

let us now focus on one term of the above sum:
∥∥∥h̃(Yi)− h̃(Yj)

∥∥∥
2
−
∥∥∥h̃(Ŷi)− h̃(Ŷj)

∥∥∥
2

=
(

h̃(Yi)− h̃(Ŷi)− h̃(Yj)+ h̃(Ŷj)
)>(

h̃(Yi)− h̃(Yj)+ h̃(Ŷi)− h̃(Ŷj)
)

≤M2
(∥∥∥Yi−Ŷi

∥∥∥+
∥∥∥Yj −Ŷj

∥∥∥
)(∥∥Yi−Yj

∥∥+
∥∥∥Ŷi−Ŷj

∥∥∥
)

≤M2
∥∥∥Σ−

1
2 − Σ̂−

1
2

∥∥∥
(∥∥∥Σ−

1
2

∥∥∥+
∥∥∥Σ̂−

1
2

∥∥∥
)(
‖Xi‖+

∥∥Xj
∥∥)2

≤M2C(a0,λ0,K)

√
d logn

n

(
‖Xi‖2 +

∥∥Xj
∥∥2
)

,

where we have used the Cauchy-Schwarz inequality, the triangular inequality and the Lipschitz
assumption oñh at the third line. Summing this expression overi 6= j , and using condition (20),
we obtain ∣∣∣σ̂2

Y(h)− σ̂2
Ŷ
(h)
∣∣∣≤M2C(a0,λ0,K)

√
d logn

n
,

so that we can effectively replacêσY by σ̂Ŷ in (21) up to additional lower-order terms. This
concludes the proof of the first inequality in the theorem.

For the second inequality, we additionally write

dist(̂γ(h),I )≤
∥∥∥Σ̂−

1
2 β̂Ŷ−Σ−

1
2 βY

∥∥∥

≤
∥∥∥Σ−

1
2 − Σ̂−

1
2

∥∥∥‖βY‖+
∥∥∥Σ−

1
2

∥∥∥
∥∥∥β̂Ŷ−βY

∥∥∥+
∥∥∥Σ−

1
2 − Σ̂−

1
2

∥∥∥
∥∥∥β̂Ŷ−βY

∥∥∥ ;

we now conclude using (18), the previous inequalities controlling
∥∥∥β̂Ŷ−βY

∥∥∥ , the assumption on
∥∥∥Σ− 1

2

∥∥∥ and the fact that

‖βY‖= ‖E [Xh(X)−∇h(X)]‖ ≤ B(1+E [‖x‖])≤C(a0,λ0,B) .
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Appendix B. Additional Proofs and Results

We have used Bernstein’s inequality, which we recall here for completeness under the following
form:

Theorem 6 (Bernstein’s inequality) Suppose X1, . . . ,Xn are i.i.d. real random variables such that
|X| ≤ b and VarX= σ2 . Then

P

[∣∣∣∣∣n
−1∑

i

Xi−E(Xi)

∣∣∣∣∣>
√

2σ2 x
n

+2b
x
n

]
≤ 2exp(−x).

The following results concern the estimation ofΣ− 1
2 , needed in the proof of Theorem 4. We divide

this into 4 lemmas.

Lemma 7 Let ξ1, . . . ,ξn be i.i.d. withE [ξ1] = m and assumelogE [expµ(ξ1−m)]≤ cµ2/2 holds
for all µ≤ µ0 , for some positive constants c and µ0 . Then for sufficiently large n

P

[
n−1/2

n

∑
i=1

(ξi−m) > z

]
≤ e−c−1z2/2.

Proof This is an application of Chernoff’s bounding method:

Rn := logP

[
n−1/2

n

∑
i=1

(ξi−m) > z

]

≤ −µz
√

n+ logE

[
exp

n

∑
i=1

µ(ξi−m)

]

= −µz
√

n+nlogE [expµ(ξ1−m)] ,

where the above inequality is Markov’s. We selectµ= zn−1/2c−1 . For n sufficiently large, it holds
that µ≤ µ0 and by the lemma condition

Rn≤−µz
√

n+ncµ2/2 =−z2c−1/2.

The goal of the following Lemma is merely to replace the assumption about the Laplace trans-
form (in the previous Lemma) by a simpler assumption (existence of some exponential moment).
This allows a simpler statement – as far as we are not really interested in the precise constants
involved.
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Lemma 8 Let X be a real random variable such that for some µ0 > 0:

E [exp(µ0 |X|)] = e0 < ∞.

Then there exists c> 0 (depending only on µ0 and e0 ) such that

∀µ∈ R |µ| ≤ µ0/2⇒ logE [exp(µ(X−E [X]))]≤ cµ2/2.

Proof Note thatX has finite expectation since|X| ≤ µ−1
0 expµ0 |X| . Taylor’s expansion gives that

∀x∈ R, ∀µ∈ R, |µ|< µ0/2⇒ exp(µx)≤ 1+µx+
µ2

2
x2exp(|µ0| |x|/2). (22)

There exists some constantc > 0 (depending onµ0 ) such that

∀x∈ R, x2exp(|µ0x|/2)≤ c(exp(|µ0x|)) .

Using this and the assumption, taking expectation in (22) yields that forc′ = 1
2ce0 > 0

∀µ∈ R, |µ|< µ0/2⇒ E [exp(µX)]≤ 1+µE [X]+c′µ2≤ exp
(
µE [X]+c′µ2) ,

implying
E [exp(µ(X−E [X]))]≤ exp

(
c′µ2) ;

taking logarithms on both sides yields the conclusion.

The next two Lemmas, once combined, provide the confidence bound on
∥∥∥Σ− 1

2 − Σ̂− 1
2

∥∥∥ which

we need for the proof of Theorem 4.

Lemma 9 Let X1, . . . ,Xn be i.i.d. vectors inRd . Assume that, for some µ0 > 0,

E

[
exp
(

µ0‖X‖2
)]

= e0 < ∞ ; (23)

denoteΣ = E
[
XX>

]
and Σ̂ it empirical counterpart. Then for some constantκ depending only on

(µ0,e0) , and for big enough n,

R∗n := P

[∥∥∥Σ− Σ̂
∥∥∥>

√
κd logn

n

]
≤ 2

n
.

Proof Along this proofC,c will denote constants depending only onµ0,e0 ; their exact value can
change from line to line. Note that by definition ofΣ and Σ̂ ,

∥∥∥Σ− Σ̂
∥∥∥= sup

θ∈Bd

1
n

n

∑
i=1

(
(X>i θ)2−E

[(
X>θ

)2
])

,

where Bd denotes the unit ball ofRd . For ε < 1 , let Bd,ε denote aε-packing set ofBd, that is,
a discreteε -separated set of points ofBd of maximum cardinality. By the maximality assumption
and the triangle inequality,Bd,ε is also a 2ε-covering net ofBd. On the other hand, theε-balls
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centered on these points are disjoint, and their union is included in the ball of radius(1+ε) , so that
a volume comparison allows us to conclude that #(Bd,ε)εd ≤ (1+ ε)d ≤ 2d . This shows thatBd,2ε
is a 4ε-covering set ofBd of cardinality bounded byε−d.

Now, if θ,θ′ ∈ Bd are such that‖θ−θ′‖ ≤ 4ε , then we have
∣∣∣∣∣

n

∑
i=1

(X>i θ)2−
n

∑
i=1

(X>i θ′)2

∣∣∣∣∣=
∣∣∣∣∣

n

∑
i=1

(X>i (θ−θ′))(X>i (θ+θ′))

∣∣∣∣∣

≤ 8ε
n

∑
i=1

‖Xi‖2 ,

where we have applied the Cauchy-Schwarz inequality at the last line.
Now application of Lemmas 7 and 8 yields that forn large enough, with probability at least

1−1/n,

n−1
n

∑
i=1

‖Xi‖2≤ E

[
‖X‖2

]
+

√
clogn

n
≤C.

The above implies that with probability at least 1−1/n,

sup
θ,θ′∈Bd:‖θ−θ′‖≤2ε

n−1/2

∣∣∣∣∣
n

∑
i=1

(X>i θ)2−
n

∑
i=1

(X>i θ′)2

∣∣∣∣∣≤Cε
√

n.

We can also show a similar inequality about the corresponding expectation

sup
θ,θ′∈Bd:‖θ−θ′‖≤2ε

n−1/2
∣∣∣E
[
(X>θ)2

]
−E

[
(X>θ′)2

]∣∣∣≤Cε
√

n.

We now selectε = n−
1
2 . Therefore, approximating anyθ ∈ Bd by its nearest neighbour inBd,2ε

and using the above inequalitites, we obtain that

R∗n ≤ 1
n

+P

[
sup

θ∈Bd,2ε

n−1/2
n

∑
i=1

(
(X>i θ)2−E

[(
X>θ

)2
])

>
√

κd logn−C

]

≤ 1
n

+ ∑
θ∈Bd,2ε

P

[
n−1/2

n

∑
i=1

(
(X>i θ)2−E

[(
X>θ

)2
])

>
√

(κ−C)d logn

]

≤ 1
n

+#(Bd,2ε)exp{−0.5c−1(κ−C)d logn} ≤ 2
n

provided thatκ is chosen so thatc−1(κ−C)d/2 > d/2+1. Here we have again used Lemmas 7
and 8, noting that for anyθ ∈ Bd it holds thatE

[
expµ0

∣∣θ>X
∣∣]≤ E [expµ0‖X‖] < exp(µ0)+e0 by

assumption.

Lemma 10 Let A,B be two real positive definite symmetric matrices satisfying‖A−B‖ ≤ ε with
ε≤ (2

∥∥A−1
∥∥)−1 . Then there exists a constant C such that

∥∥∥A−
1
2 −B−

1
2

∥∥∥≤C
∥∥A−1

∥∥ 3
2 ε .

277



BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

Proof
Note that for‖M‖< 1, it holds that

(I −M)−
1
2 = ∑

k≥0

γkM
k ,

with (γk)≥ 0 the coefficients of the power series development of the function 1/
√

1−x.
Denoteλmax(M),λmin(M) the biggest and smallest eigenvalue of a matrixM . Put K = ‖A‖ =

λmax(A) andL =
∥∥A−1

∥∥= λmin(A)−1 . Note thatLK≥ 1 . PutA′= A/K,B′= B/K . All eigenvalues
of A′ belong to(0,1] and therefore

∥∥I −A′
∥∥= λmax(I −A′) = 1−λmin(A

′) = 1− (LK)−1 .

By the assumption thatε≤ (2L)−1 , it holds that

λmax(B
′) = K−1‖B‖ ≤ K−1(‖A‖+ ε)≤ 1+(2LK)−1≤ 3

2
,

and that
λmin(B

′)≥ K−1(λmin(A)− ε)≥ (2KL)−1 ,

from this we deduce that

∥∥I −B′
∥∥= max(λmax(B

′)−1,1−λmin(B
′))≤max

(
1
2
,1− (2LK)−1

)
= 1− (2LK)−1 .

PuttingA = I −A′,B = I −B′ , we have ensured that
∥∥A
∥∥< 1 and

∥∥B
∥∥< 1; we can thus write

A′−
1
2 −B′−

1
2 =

(
I −A

)− 1
2 −
(
I −B

)− 1
2

= ∑
k≥1

γk(A
k−B

k
) .

Noticing that

∥∥∥A
k−B

k
∥∥∥=

∥∥∥∥∥
k−1

∑
i=0

A
i
(A−B)B

k−1−i

∥∥∥∥∥≤ kmax
(∥∥A

∥∥ ,
∥∥B
∥∥)k−1∥∥A′−B′

∥∥ ,

we obtain
∥∥∥A′−

1
2 −B′−

1
2

∥∥∥≤
∥∥A′−B′

∥∥∑
k≥1

kγk
(
1− (2LK)−1)k−1

=
ε
K

1
2
(2LK)

3
2 = CL

3
2 K

1
2 ε .

From this we deduce that
∥∥∥A−

1
2 −B−

1
2

∥∥∥= K−
1
2

∥∥∥A′−
1
2 −B′−

1
2

∥∥∥≤CL
3
2 ε.
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Appendix C. Clustering Results

The goal of NGCA is to discover interesting structure in the data. It is naturally a difficult task to
quantify this property precisely. In this appendix we try to make this apparent using clustering tech-
niques. We apply a mean distance linkage clustering algorithm to data projectedin lower dimension
using various techniques: NGCA, FastICA, PCA, local linear embedding (LLE, Roweis and Saul,
2000), Isomap (Tenenbaum et al., 2000).

There is no single well-defined performance measure for the performance of clustering. Here
we resort to indirect criteria that should however allow a comparative study. We consider the two
following criteria:

(1) Label cross-information. We apply clustering to benchmark data for which label informa-
tion Y is available. Although this information is not used in determining the clustering, wewill
use it as a yardstick to measure whether the clustering gives rise to relevant structure discovery.
We measure this by the scaled mutual informationI(C,Y)/H(Y), whereC is the cluster labelling
and the normalization ensures that the quantity lies between 0 and 1. Note that there isa priori no
mathematical reason why clustering should be related to label information, but this is often the case
for real data, so this can be a relevant criterion of structure discovery. A higher score indicates a
better match between discovered cluster structure and label structure.

(2) Stability. Recent attempts at formalizing criteria for clustering have proposed that clustering
stability should be a relevant criterion for data clustering (see, e.g., Meinecke et al. , 2002; Lange
et al., 2004). Again, this is only an indirect criterion, as, for example, a trivial clustering algorithm
dividing the space without actually looking at the data would be very stable. But with this caveat in
mind, it provides a relevant diagnostic tool. Here, we measured stability in the following way: the
data is divided randomly into 2 groups of equal size on which we apply clustering. Then, the cluster
labels obtained on group 1 are extended to group 2 by the nearest-neighbor rule and vice-versa.
This thus gives rise to two different cluster labellingsC1,C2 of the whole data and we measure their
agreement through relative mutual informationI(C1,C2)/H(C1,C2) . Again, this score lies in the
interval[0,1] and a high score indicates better stability.

Table 1: Description of data sets
Data set Nb. of Classes Nb. of samples Total dimension Projection Dim.

Oil 3 2000 12 3
Wine 3 178 13 3
Vowel 11 528 10 3
USPS 10 7291 30 10

We consider the “oil flow” data already presented in section 4.2, and additional data sets from
the UCI classification repository, for which the features all take continuous values. (When there are
features taking only discrete values, NGCA is inappropriate since these willgenerally be picked up
as strongly non-Gaussian). Size and dimension of these data sets are given in Table 1.

The results are depicted in Figure 11. On the Oil data set, NGCA works verywell for both cri-
teria (as was expected from the good visualization results of section 4.2). On the Wine data set, the
different algorithms appear to be divided in two clear groups, with the performance in the first group
(NGCA, Isomap, LLE) noticeably better than in the second (PCA, FastICA). NGCA belongs to the
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Figure 11: Clustering results
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better group although the best methods appear to be the non-linear projections LLE and Isomap.
The results of the Vowel data set are probably the most difficult to interpret, as most methods appear
to be relatively close. Isomap appears as the winner method in this case, with NGCA quite close
in terms of label cross-information and in the middle range for stability. Finally, for the USPS data
set we used the 30 first principal components obtained by Kernel-PCA and a polynomial kernel of
degree 3. In this case, PCA gives better results in terms of label cross-information with NGCA a
close second, while NGCA is the clear winner in terms of stability.

To summarize: NGCA performed very well in 2 of the 4 data sets tried (Oil data and USPS), and
was in the best group of methods for the Wine Data and had average performance on the last data set.
Even when NGCA is outperformed by nonlinear methods LLE and Isomap, it generally achieves a
comparable performance though being a linear method, which has other advantages such as clearer
geometrical interpretation, direct extension to additional data if needed, andpossible assessment of
variable importance in original space.
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