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Abstract

Finding non-Gaussian components of high-dimensionalidata important preprocessing step for
efficient information processing. This article proposesw hinear method to identify the “non-
Gaussian subspace” within a very general semi-parametrineiwork. Our proposed method,
called NGCA (non-Gaussian component analysis), is based limear operator which, to any
arbitrary nonlinear (smooth) function, associates a veotdonging to the low dimensional non-
Gaussian target subspace, up to an estimation error. Byiagphis operator to a family of dif-
ferent nonlinear functions, one obtains a family of differeectors lying in a vicinity of the target
space. As a final step, the target space itself is estimataglying PCA to this family of vectors.
We show that this procedure is consistent in the sense thagstimaton error tends to zero at a
parametric rate, uniformly over the family, Numerical exaes demonstrate the usefulness of our
method.

1. Introduction

Suppose{X;}' , are i.i.d. samples in a high dimensional sp&<% drawn from an unknown dis-
tribution with densityp(x). A general multivariate distribution is typically too complex to analyze
directly from the data, thus dimensionality reduction is useful to decreaseothplexity of the
model (see Cox and Cox, 1994; Stkopf et al., 1998; Roweis and Saul, 2000; Tenenbaum et al.,
2000; Belkin and Niyogi, 2003). Here, our point of departure is the fatig assumption: the high
dimensional data includes low dimensional non-Gaussian components,eaathén components
are Gaussian. This assumption follows the rationale that in most real-wgliidatpns, the ‘sig-
nal’ or ‘information’ contained in the high-dimensional data is essentially @aassian, while the
‘rest’ can be interpreted as high dimensional Gaussian noise.

1.1 Setting and General Principle

We want to emphasize from the beginning that wendtassume the Gaussian components to be of
smallerorder of magnitude than the signal components; all components are ingbézadlyyof the
same amplitudeThis setting therefore excludes the use of dimensionality reduction methedd b
on the assumption that the data lies, say, on a lower dimensional manifold, upécssaall noise.

In fact, this type of methods addresses a different kind of problem altege

Under our modeling assumption, therefore, the task is to recover the nelema-Gaussian
components. Once such components are identified and extracted, vasksisan be applied in the
data analysis process, say, data visualization, clustering, denoisitagsification.

If the number of Gaussian componentsiisnost onend all the non-Gaussian components are
mutually independentndependent component analysis (IG&¢hniques (see, e.g., Comon, 1994;
Hyvarinen et al., 2001) are relevant to identify the non-Gaussian subdpafmatunately, however,
this is often a too strict assumption on the data.

The framework we consider is on the other hand very close to thmbgEction pursuit(denoted
PP in short in the sequel) algorithms (Friedman and Tukey, 1974; Hu®&5, Hyvarinen et al.,
2001). The goal of projection pursuit methods is to extract non-Gaussiaponents in a gen-
eral setting, i.e., the number of Gaussian components can be more thandahe aon-Gaussian
components can be dependent.

Projection pursuit methods typically proceed by fixingiagleindex which measures the non-
Gaussianity (or ’interessingness’) of a projection direction. This indelkeéa optimized over all
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possible directions of projection; the procedure can be repeated iedydidwver directions orthog-
onal to the first ones already found) to find a higher dimensional profeofithe data as needed.

However, it is known that some projection indices are suitable for findingrsBpussian com-
ponents (heavy-tailed distribution) while others are suited for identifyibgGaussian components
(light-tailed distribution) (Hywarinen et al., 2001). Therefore, traditional PP algorithms may not
work effectively if the data contains, say, both super- and sub-Gaussmponents.

To summarize: existing methods for the setting we consider typically procedéfning an
appropriate interestingness index, and then compute a projection that maxihigzimdex (projec-
tion pursuit methods, and some ICA methods). The philosophy that we woelddigromote in
this paper is in a sense different: in fact, we do not specify what we seited in, but we rather
define what is10t interestingsee also Jones and Sibson , 1987). Clearly, a multi-dimensional Gaus-
sian subspace is a reasonable candidate for an undesired compmmadéé could be generalized
by defining, say, a Laplacian subspace to be uninformative). Haviiigedethis uninteresting sub-
space, its (orthogonal) complement is by contrast interesting: this thenefecisely defines our
target space.

1.2 Presentation of the Method

Technically, our new approach to identifying the non-Gaussian subspsss a very general semi-
parametric framework. The proposed method, caftled-Gaussian component analysis (NGCA)
is essentially based on a central property stating that there exists a lingainmap— B(h) € RY
which, to anyarbitrary (smooth) nonlinear functiom : R — R, associates a vectd@ lying in
the non-Gaussian target subspace. In practice, the vB@grhas to be estimated from the data,
giving rise to an estimation error. However, our main consistency resmlissthat this estimation
error vanishes at a ratg/log(n)/n with the sample sizen. Using a whole family of different

nonlinear functionsh then yields a family of different vector[AS(h) which all approximately lie in,
and span, the non-Gaussian subspace. We finally perform PCA omamhily Df vectors to extract
the principal directions and estimate the target space.

In practice, we consider functions of the particular fohga(x) = fa((w,x)), where f is a
function class parameterized, say, by a paramet@nd ||w|| = 1. Even for a fixeda, it is infeasi-
ble to compute values d3(h,a) for all possible values oo (say, on a discretized net of the unit
sphere), because of the cardinality involved. In order to choosewarghealue forw (still for fixed
a), we then opt to use as a heuristic a well-known PP algorithm, FastICAZtihen, 1999). This
was suggested by the surprising observation that the magpingB(h,a) is thenequivalento a
singleiteration of FastICA (although this algorithm was built using different thecakconsidera-
tions); hence, in this special case, FastICA is exactly the same as iteratingapping. In short,
we use a PP method as a proxy to select the most relevant direcfiona fixeda. This resultsin a
particular choice oto,, to which we apply the mapping once more, thus yieldiag= B(he,a) - Fi-
nally, we aggregate the different vect@s obtained when varying by applying PCA as indicated
previously, in order to recover the target space.

Thus, apart from the conceptual point, defining uninterestingnes® gmtht of departure in-
stead of interestingness, another way to look at our method is to say thawis dfle combination
of information coming from different indices: here the above functfgr{for fixed a) plays a role
similar to that of a non-Gaussianity index in PP, but we do combine a rich fam#yaf functions
(by varying a and even by considering several function classes at the same time). Towantp
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point here is that, while traditional projection pursuit does not providelbfaxgnded justification

for combining directions from using different indices, our frameworkvedido do precisely this —
thus implicitly selecting, in a given family of indices, the ones which are the mostriretive for

the data at hand.

In the following section we will outline the theoretical cornerstone of the methodvel semi-
parametric theory fdinear dimension reduction. Section 3 discusses the algorithmic procedure and
is conluded with theoretical results establishing statistical consistency of tiednén Section 4,
we study on simulated and real data examples the behavior of the algorithnefA&dmclusion is
given in Section 5.

2. Theoretical Framework

In this section, we give a theoretical basis for the non-Gaussian comipsearch within asemi-
parametricframework. We present a population analysis, where expectations gamaiple be
calculated exactly, in order to emphasize the main idea and show how the atyisrithilt. A more
rigorous statistical study of the estimation error will be exposed later in setion

2.1 Motivation

Before introducing the semi-parametric density model which will be usedasaétion for devel-
oping our method, we motivate it by starting from elementary consideratiamppdSe we are given
a set of observation¥; € RY, (i = 1,...,n) obtained as a sum of a sign@land an independent
Gaussian noise component:

X=S+N, Q)

whereN ~ A’(0,T). Note that no particular structural assumption is made about the noise-covar
ance matrixi- .

Assume the signa$ is contained in a lower-dimensional linear subspkcef dimensionm <
d. Loosely speaking, we would like to projext linearly so as to eliminate as much of the noise as
possible while preserving the signal information. An important issue forrhé/sis of the model
(1) is a suitable representation of the densityXofvhich reflects the low dimensional structure of
the non-Gaussian signal. The next lemma presents a generic represesftdimdensityp for the
model (1).

Lemma 1 The density {x) for the model (1) with the m-dimensional signal S and an independent
Gaussian noise N can be represented as

P(X) = g(TX)er (x)

where T is alinear operator frorR? to R™, g(-) is some function o™ and ¢r (x) is the density
of the Gaussian component.

The formal proof of this lemma is given in the Appendix. Note that the abomsityerepresen-
tation is not unique, as the parametgr$,I" are not identifable from the density However, the
null suspace (kernelR(T) of the linear operatoil is an identifiable parameter. In particular, is
useful to notice that if the noisl is standard normal, then the operalorcan be taken equal to the
projector on the signal spade. Therefore, in this casei(T) coincides withE~, the orthogonal
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complementary subspace Eo. In the general situation with “colored” Gaussian noise, the signal
spaceE does not coincide with the orthogonal complementary of the kefnel &(T)* of the
operatorT . However, the density representation of Lemma 1 shows that the the seb8(B)

is non-informative and contains only noise. The original data can themdpecped orthogonally
onto 7, which we call thenon-Gaussian subspaceithout loss of information. This way, we are
preserving the totality of the signal information. This definition implements thergkpeint of
view outlined in the introduction, namely: we define what is consider@dteresting the target
space is then defined indirectly as the orthogonal of the uninteresting cemipo

2.2 Relation to ICA

An equivalent view of the same model is to decompose the ndisgppearing in Eqg.(1) into a
componentN; belonging to the signal spade and anindependentomponentN, ; it can then be
shown that\, belongs to the subspad¥T) defined above. In this view, the spagés orthogonal
to the independent noise component, and projecting the data lomimounts to cancelling this
independent noise component by an orthogonal projection.

In the present paper, we assume that we wish to project theoddwagonally i.e., that the
Euclidean geometry of the input space is meaningful for the data at haddhat we want to
respect it while projecting. An alternative point of view would be to disréghe input space
geometry altogether, and to first map the data linearly to a reference space iivhas covariance
identity (“whitening” transform), which would be closer to a traditional ICAabysis. This would
have on the one hand the advantage of resulting in an affine invariazgcanee, but, on the other
hand, the disadvantage of losing the information of the original space geonieis relatively
straightforward to adapt the procedure to fit into this framework. For siityplge will stick to our
original goal of orthogonal projection in the original space.

2.3 Main Model

Based on the above motivation, we assume to be dealing with an unknowabpitybdensity
function p(x) on RY which can put under the form

P(X) = 9(TX)¢r (x), (2)

whereT is an unknown linear mapping froR® to R™ with m< d, g is an unknown function on
R™, and@r is a centeretiGaussian density with covariance matfix

Note that thesemi-parametrianodel (2) includes as particular cases both the pure parametric
(m= 0) and purely non-parametriar{= d) models. For practical purposes, however, we are
effectively interested in an intermediate case wheris large andm is relatively small. In what
follows, we denote byl the m-dimensionalinear subspace ifRY generated by the adjoint operator
T*:

I=R/(T)r=0(T"),

where[(-) denotes the range of an operator. We dathenon-Gaussian subspace

The proposed goal is therefore to estimatby some subspac% computed from an i.i.d. sam-
ple {Xi}; following the distribution with densityp(x). In this paper, we assume the effective

1. It is possible to handle a more general situation where the Gaussiahgsaan unknown mean parameterin
addition to the unknown covariande. For simplicity of exposition, we consider here only the c@se0.
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dimensionm to be known or fixeda priori by the user. Note that we duot estimatel” nor g
when estimatingl . We measure the closeness of the two subspaaasd I by the following error
function:

£(1,0) = @)1 =My ey =m* 3 ll0a=Mpu, @)

where I1; denotes the orthogonal projection dn |||, is the Frobenius norm{v;}", is an
orthonormal basis of andly is the identity matrix.

2.4 Key Result

The main idea underlying our approach is summed up in the following Propositierproof is
given in Appendix A.2). Whenever variab has covariancematrix identity, this result allows,
from anarbitrary smooth real functiorn on RY, to find a vector3(h) € 1.

Proposition 2 Let X be a random variable whose density functidx) psatisfies Eq2) and sup-
pose that kx) is a smooth real function oR?. Assume furthermore tha=E [XX"] =1q. Then,
under mild regularity conditions on h, the following vecfh) belongs to the target space:

B(h) = E [Xh(X) —Oh(X)] . (4)
In the general case where the covariance matrig different from identity, provided it is non-
degenerated, we can apply a whitening operation (also known as Mahadransform). Namely,

let us putY = >-3X the “whitened” data; the covariance matrix 6fis then identity. Note that if
the density function oK is of the form

pP(X) = g(Tx)ar (x),
then by change of variable the density functionZof AX is given by
A(2) = cad(TA ' 2)@urar (2),

whereca is a normalization constant depending An
This identity applied toA = >~2 and the previous proposition allow to conclude that

Bv(h) = E[Oh(y) —yh(y)] € J = O(£T%)

and therefore that

where I is the non-Gaussian index space for the initial variableand 7 = >3 1 the transformed
non-Gaussian space for the whitened variable

2. Here and in the sequel, with some abuse weZXallE [XXT] thecovariance matrixeven though we do not assume
the non-Gaussian part of the data to be centered.

252



NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

h(x)

= = & &

X

Figure 1: The NGCA main idea: from a varied family of real functions, cormpfamily of vectors
belonging to the target space up to small estimation error.

3. Procedure

We now use the key proposition established in the previous section to degigntical algorithm
in order to identify the non-Gaussian subspace. The first step is to agplyhitening transform to
the data (where the true covariance makixs estimated by the empirical covarianﬁ&. We then
estimate the “whitened” non-Gaussian spgcby some’ (this will be described next); this space
is then finally pulled back in the original space by applicatiorfoé . To simplify the exposition,
in this section we will forget about the whitening/dewhitening steps and ahivaglicitly assume
that we are dealing directly with the whitened data: every time we refer to th&aossian space
it is therefore to be understood that we referfte= 2 1, corresponding to the whitened data

3.1 Principle of the Method

In the previous section, we have proved that for an arbitrary fundtisatisfying mild smoothness
conditions, it is possible to construct a vecfi{h) which lies in the non-Gaussian subspace. How-
ever, since the unknown densip(x) is used (via the expectation operator) to defihby Eq.(2),
one cannot directly use this formula in practice: it is then natural to appraeiiriay replacing the
true expectation by the empirical expectation. This gives rise to the estimatied ve

B = 1 5 h(Y) ~On(v), ®

which we expect to be close to the non-Gaussian subspace up to some estienatio At this
point, the natural next step is to consider a whole family of functipng!_,, giving rise to an
associated vector family o{fﬁi}}:l, all lying close to the target subspace, whére: ﬁ(hi). The
final step is to recover the non-Gaussian subspace from this set. Fputpisse, we suggest to
use the principal directions of this family, i.e. to apply PCA (although otherdkgoic options are
certainly avalaible for this task). This general idea is illustrated on Figure 1.

3.2 Normalization of the Vectors

When extracting information on the target subspace from the set of se{qiq*le, attention should

be paid to how the functiongh }-_; are normalized. As can be seen from its definition, the opera-
tor which maps a functioi to B(h) (and also its empirical counterpgsth)) is linear. Therefore,

if, for example, one of the functionﬁli}iL:l is multiplied by an arbitrarily large scalar, the associ-
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Figure 2: For the same estimation error represented as a confidencd tadius €, estimated
vectors with higher norm give a more precise information about the truettspgce.

atedﬁ(h) could have an arbitrarily large norm: this is likely to influence heavily the ghoce of
principal direction extraction applied to the whole family.

To prevent this problem, the functiondy }-_; should be normalized in some way or other.
Several possibilities can come to mind, like using the supremuixp arorm of h or of h. We
argue here that a sensible way to normalize functions is such that theyevszraared deviation
(estimation error) of(h) to its mean is of the same order for all functiohsconsidered. This
has a first direct intuitive interpretation in terms of making the length of eatimated vector
proportional to its associated signal-to-noise ratio. We argue in more detaththnorm ofﬁ(h)
after normalization is directly linked to the amount of information brought by taitor about the
target subspace.

Namely, if we measure the information that is brought by a certain veﬁﬂm)r about the target

o~

spaceJ through the angl®(B(h)) between the vector and the space, we have
[B(h) — B(h) | > dist(B(h),7) = sin@(B(h))I[B(h)]| . (6)
Suppose we have ensured by renormalization ¢i{a?> = E [Hﬁ(h) - B(h)”z] is constant and in-

dependent oh, and assume that this results\lﬁ(h) —B(h)||? being bounded by some constant
with high probability. It entails that s(@(ﬁ(h))) HE(h)H is bounded independently bf. We expect,

in this situation, that the bigge}kﬁ” , the smaller is sif®), and therefore the more reliable the infor-
mation about. This intuition is illustrated in Figure 2, where the estimation error is represented
by a confidence ball of equal size for all vectérs.

Therefore, at least at an intuitive level, it appears appropriate ta(lseas a renormalization.
Note that this is just the square root of the trace of the covariance matﬁ;(h)t and therefore
easy to estimate in practice from its empirical counterpart. In section 3.5weagiual theoretical
confidence bounds fat3 —ﬁ|| which justify this intuition in a more rigorous manner.

Finally, to confirm this idea on actual data, we plot in the top row Figure 3 thahiiton of
ﬁ on an illustrative data set using the normalization scheme just describedddnto investigate

3. Of course, the situation depicted in Figure 2 is idealized: we actually exjpem the Central Limit Theorem)
that ,E has approximately a Gaussian distribution with some non-spherical garigiving rise to a confidence
ellipsoid rather than a confidence ball. To obtain a spherical error ballyowgd have to apply a (linear) error
whitening transform separately to eaﬁfh) . However, in that case the error whitening transform would be differen
for each h, and the information of the vector family about the target subspace wbald be lost. To preserve
this information, only a scalar normalization is adequate, which is why weameend the normalization scheme
explained here.
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the relation between the norm of the (normaliz@)and the amount of information on | the non-
Gaussian subspace brought[B)ywe plotin the rlght part of Figure 3 the relation betweHsBj] and
||FI][3H/||B|] = cos(e( )). As expected, the vectorfs with highest norm are indeed much closer
to the non-Gaussian subspace in general. Furthermore, veﬁ:twrth norm close to zero appear
to bear almost no information about the non-Gaussian space, which istemnsvith the setting
depicted in Figure 2: whenever an estimated veﬁtzblas norm smaller than the estimation ergor
its confidence ball contains the origin, which means that it brings no usedbtenation about the
direction of the non-Gaussian subspace.

These findings motivate two important points for the algorithm:

1. It should be beneficial tactively searcHor functionsh which yield an estimate&(h) with
higher norm, since these are more informative about the target shace

2. The vectorsﬁ with norm below a certain thresholel can be discarded as they are non-
informative. So far, the theoretical bounds presented below in sectioar8.Bot precise
enough to give a canonical value for this threshold: we thereforememmd that it be de-
termined by a preliminary calibration procedure. For this, we consider et Gaussian
data: in this case} = 0 for any h and thus||EH represents pure estimation noise. A reason-
able choice for the threshold is therefore the 95th percentile (say) ofigtigdtion, which
we expect to reject a large majority of the noninformative vectors.

3.3 Using FastICA as Preprocessing to Find Promising Functions

When considering a parametrized family of functiofts,}, it is a desirable goal to search the

parameter space to find indicessuch that3(h,,) has a high norm, as proposed in the last section.
From now on we will restrict our attention to functions of the form

ho(X) = ({w,%)), (7)

wherewe RY, ||w|| = 1, andf is a smooth real function of a real variable. Clearly, it is not feasible
to sample the entire parameter spaceubas soon as it has more than a few dimensions, and it is not
obviousa priori to find parameterso such thatﬁ(hw) has a high norm. Remember however that we
do not need to find aexact maximurof this norm over the parameter space. We merely want to find
parameters such that the associated norm is preferably high, becayd®itly more information;
this may also involve heuristics. Naturally, good heuristics should be abledtpdirameters giving
rise to vectors with higher norm, bringing more information on the subspateltmately better
practical results; nevertheless, the underlying theoretical motivation staghanged regardless of
the way the functions are picked.

A particularly relevant heuristic for choosing comes naturally with a closer look at Eq.(5)
when we plug in functions of the specific form given by Eq.(7):

12 ,
B(hy) = nZ(Yf(<°~)7Yi>)_f ({0, Y))0) . 8
1=

It is interesting to notice that this equation precisely coincides wiithiteration of a well-known
projection pursuit algorithm, FastiCA (H@vinen, 1999). More precisely, FastICA consists in iter-
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Figure 3: lllustrative plots of the method, applied to toy data of tife(See section 4.1). Left
column: Distribution ofﬁ projected on a direction belonging to the target spadab-
scissa) and a direction orthogonal to it (ordinate). Right columt (after normaliza-
tion) vs. co$6(§,j)). From top to bottom rows: random draw of functions, after 1-step,
and after 4-step of FastiICA preprocessirfg’s are normalized as described in section
3.2.
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ating the following update rule to form a sequeneg. .., wr:
1 n
umDHZ(\H(M,W)—I"(M,W)M) ©)
i=

where the sigri] indicates that vectoty . 1 is renormalized to be of unit norm.

Note that the FastlCA procedure is derived from quite a different gimat setting of what
we considered here (see, e.g., Hyimen et al., 2001); its goal is in principle to optimize a non-
Gaussianity measur® [F ((w,x))] (whereF is such that=’ formally coincides with ourf above)
and the solution is reached by an approximate Newton method giving rise t@dtageurule of
Eq.(9), repeated until convergence.

This formal identity leads us to adopt the FastiICA methodology as a heuristiufanethod.
Since finding an actual optimum point is not needed, convergence isinssie, so that we only
iterate the update rule of Eq.(9) for a fixed number of iterati®nt find a relevant directiomnor .
Finally we apply Eq.(8) one more time to this choice of parameter, so that thecanexfinally
outputsB(h, ). On Figure 3, we plot the effect of a few iterations of this preprocesinghe
method, applied on toy data and see that it leads to a significant improvement.

Paradoxically, if tfle convergence of this FastICA preprocessing isdod,ghere is in principle
a risk that all vector3 end up in the vicinity of one single “best” direction instead of spanning
the whole target space: the preprocessing would then have the opgtesiteoéwhat is wished,
namely impoverishing the vector family. One possible remedy against this is tp spualled
batch FastICA, which consists in iterating equation (9) omalimensional system of vectors,
which is orthonormalized anew before each new iteration. In our praciqariments we did
not observe any significant change in the results when using this refiheseewe mention this
possibility only as a matter of precaution. We suspect two mitigating factorssidghia possible
unwished behavior are that (1) it is known that FastlICA does not cgeve a global maximum, so
that we probably find vectors in the vicinity of different local optima andli2)‘optimal” directions
depend on the functior used and we combine a large number of such functions.

In the next section, we will describe the full algorithm, which consists in apglghe procedure
just described to different choices of the functién Since we are using projection pursuit as a
heuristic to find suitable parametecs for a fixed f, the theoretical setting proposed here can
therefore also be seen as a suitable framework for combining projectisnipresults when using
different index functionsf .

3.4 Full Procedure

The previous sections have been devoted to detailing some key points obtiesipre. We now
gather these points and describe the full algorithm. We previously coedidlee case of a basis
function family he,(y) = f({w,y)). We now consider a finite family of possible choic&}L_;
which are then combined.

In the implementation tested, we have used the following forms of the funcfians

(1) _ z
fs'(2) = z3exp<—2?2> , (Gauss-Pow3)
fi?) () = tanh(b2), (Hyperbolic Tangent)
£¥(2) = exp(iaz) , (Fourief!)
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More precisely, we consider discretized rangesdaf [Omin,Omaxl, b € [0,B], anda € [0,A],
giving rise to a finite collection{ fx} (which therefore includesimultaneouslyfunctions of the
three different above families). Note that usinyand Hyperbolic Tangent functions is inspired by
the classical PP algorithms (including FastiCA) where these indices aite WeemultipliedZ by
a Gaussian factor in order to satisfy the boundedness assumption rieexbedrol the estimation
error (see Theorem 3 and 4 below). Furthermore, the introduction qfaiseneteic? allows for a
richer family. Finally, the Fourier functions were introduced as they constitwich and important
family. A pseudocode for the NGCA algorithm is described in Figure 4.

3.5 Theoretical Bounds on the Statistical Estimation Error

In this section we tackle the question of controlling the estimation error whemxpyating the
vectorsf3(h) by their empirical estimationf(h) from a rigorous theoretical point of view. These
results were derived with the following goals in mind:

e A cornerstone of the algorithm is that we consider a whole fammjly. ., h_ of functions and
pick selected members from it. In order to justify this from a statistical pointi@f,vwe
therefore need to control the estimation error not for a single fundtiamd the associated
E(h), but instead uniformly over the function family. For this, a simple control af,,éhe
averaged squared deviatidm[HB—[ASHZ} for each individualh is not sufficient: we need a

stronger result, namely an exponential control of the deviation probablitis allows, by
the union bound, to obtain a uniform control over the whole family with a mild (itigaic)
dependence on the cardinality of the family.

e We aim at making the covariance trac@ directly appear into the main bounding terms
of our error control. This provides a more solid justification to the renormadizacheme
developed in section 3.2, where we have used arguments based onigarons intuition.
The choice to involve directly thempiricalcovariance in the bound instead of the population
one was made to emphasize that estimation error for the covariance itself tal@santo
account for the bound.

e While the control of the deviation of an empirical average of the form giwelgq.(5) is a
very classical problem, we want to explicitly take into account the effe¢h@fempirical
whitening/dewhitening using the empirical covariance makix This complicates matters
noticeably since this whitening is itself data-dependent.

e Our goal wasnot to obtain tight confidence intervals or even exact asymptotical behavior.
There is a number of ways in which our results could be substantially refioedxample
obtaining uniform bounds over continuous (instead of finite) families oftions using cov-
ering number arguments; showing asymptotical uniform central limit progdtrea precise
study of the typical deviations, etc. Here, we tried to obtain simple, while still matie
cally rigorous, results, covering essential statistical foundations ofratinod: consistency
and order of the convergence rate.

In the sequel, for a matri, we denotel|A|| its operator norm.

4. In practice, separated into real and complex parts (sine and cosine)
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Input: Data points(X;) € RY, dimensionm of target subspace.
ParametersNumberT of FastICA iterations; thresholel.

Whitening.
The dataX; is recentered by subtracting the empirical mean.
Let S denote the empirical covariance matrix of the data sarfile;
put Y = i—%x the empirically whitened data.
Main Procedure.
Looponk=1,...,L:
Draw oy at random on the unit sphere BF .
Loopont=1,...,T: [FastICA loop]
n
Putpy — - > (Wt (%)~ fifr a5 s).
=
Putax < Be/||Be]l -
End Loop ont
Let Nk be the trace of the empirical covarariance matriﬁ@f.

LINTPN ~ ~ 2~ 12
Ny = %21 ti((wr1.%)) ~ fulfor - Teor | B
i=
Storevk — Br « /n/N¢. [Normalization]
End Loop onk
Thresholding.
From the familyv(¥) , throw away vectors having norm smaller than threstol
PCA step.
Perform PCA on the set of remaining¢ .
Let 7 be the space spanned by the finsprincipal directions.
Pull back in original space.

T=%17.

Output 1.

Figure 4: Pseudocode of the NGCA algorithm.
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Analysis of the estimation error with exact whitening. We start bylconsidering an idealized
case where whitening is done using the true covariance matrix =72 X.
In this case we have the following control of the estimation error:

Theorem 3 Let {h}t_, be a family of smooth functions frolRY to R. Assume that
sug,max(||Chi(y)[l, [[hk(y)|]) < B and that X has covariance matri with ||| <K?, and is
such that for somé > 0 the following inequality holds:

Elexp(Aol|X]))] < o < e. (10)

Denoteh(y) = yh(y) — Oh(y). Suppose X..., X, are i.i.d. copies of X and let; ¥ >-2X. If we
define

B = £ 3/ F0) = 5 i) ~CheY). a
and
. 10 2
50 =5 3 [[Aco) —Br(m[ (12)

then for anyd < ;11, with probability at leastl — 4% the following bounds hold simultaneously for
allke{1,...,L}:

log(L&~1) + logd log(nLd 1) log(L&™ 1)
N +C 3 ,

dist (Ey(hk), y) < 2\/ 62 (hy)

and

~ —1 -1 -1
dist (Z*%Bv(hk), I) . 2K\/8$(hk) log(L3 ™) +logd <Iog(nL6 )3Iog(L6 )) |
n na
where disty, I) denotes the distance between a vegt@nd the subspacé, and CC' are con-
stants depending only on the parametédsio, ap, B,K) .

Comments.

1. The above inequality tells us that the rate of convergence of the estimatedsweche target
space is in this case of order/2 (classical “parametric” rate). Furthermore, the theorem
gives us an estimation of the relative size of the estimation error for difféueations h
through the empirical factooy (h) in the principal term of the bound. As announced in our
initial goals, this therefore gives a rigorous foundation to the intuition eegh@s section 3.2
for vector renormalization.

2. Also following our goals, we obtained a uniform control of the estimationresver a finite
family with a logarithmic dependence in the cardinality. This does not cornespxactly to
the continuous families we use in practice but comes close enough if we epasiequate
parameter discretization. We will comment on this in more detail after the nexttineo
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Whitening using empirical covariance. When X is unknown (which is in general the case), we
use instead the empirical covariance maﬁixHere, we will show that, under a somewhat stronger
assumption on the distribution &f and on the function&, we are still able to obtain a convergence
rate of order at most/log(n)/n towards the index space.

Let us denote¥, = S-2X; the empirically whitened datapoints(y) = yh(y) — Oh(y) as previ-
ously, and

By (h) = Zx Zth — Oh(Y); (13)
finally, let us denote
s-13 R 10 .
— 5 3By(h) and G\z?(h):ﬁi; h(Yi) — A(h)H

We then have the following theorem:

Theorem 4 Let us assume the following :
(i) There exists\g > 0,89 > 0 such that

E [exp(xo quz)} —a < ;

(ii) The covariance matrixz of X is such thaf|= || < K2;
(iii) supy max(||Ch(y) |, [[he(y)l) <B;
(iv) The functionshvk(y) = Ohk(y) —yh(y) are all Lipschitz with constant M
Then for big enough n, with probability at leagt— ‘ﬁ‘ — 43 the following bounds hold true
simultaneously for all ke {1,...,L} :

dist(B (), J <C“/dlogn \/Az log(L&" )+Iogd L ¢, 'ognts” )Slog(Lé 1)
N4

1
dist(§(h). 1) < C, \/W oK \/Az log(L3~ )+Iogd 4 cy/00nts Ylog(LE )

3
na

and

where G,C; are constants depending on parametes,ap,B,K,M) only and G,C, on
(da)\OaaOvB>K7M) .

Comments.

1. Theorem 4 implies that the vectoyghy) obtained from anyh(x) converge to the unknown
non-Gaussian subspadeuniformlyat a rate of order/log(n)/n.

2. The condition (i) is a restrictive assumption as it excludes some densities \ait tals. We
are considering weakening this assumption in future developments.
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3. In the actual algorithm, we consider a family of functions of the fdug{x) = f((w,X)),
with w on the unit sphere aRY. Suppose we approximate by its nearest neighbabp on a
regular grid of scale. Then we only have to apply the bound to a discretized family of size
L = 0(g1~9), giving rise only to an additional factor in the bound of ordédloge—1. Taking
for examplee = 1/n (the fact that the function family depends aris not a problem since
the bounds are valid for any fixeul), this ensures convergence of the discretized functions
to the initial continuous family while introducing only in an additional factgdlogn in
the bound: this does not change fundamentally the order of the bouraltbigre is already
another,/dlogn term present.

4. For both Theorems 3 and 4, we have given bounds for estimation of batid 7, that is,
in terms of the initial data and of the “whitened” data. The result in terms of thelidia
ensures the overall consistency of the approach, but the coneergetine whitened space is
equally interesting since we use it as the main working space for the algonitththe bound
itself is more precise.

5. Comparing to Theorem 3 obtained for exact whitening, we see in the pregssnthat there
is an additional term of principal order in coming from the estimation error &, with
a multiplicative factor which unfortunately is not known accurately. This redaat the
renormalization scheme is not completely justified in this case, although we éddethlized
situation of Theorem 3 already provides some strong argument in this diredtiowever,
the present result suggests that the accuracy of the normalization coblabfy be further
improved.

4. Numerical Results

We now turn to numerical evaluations of the NGCA method: first on simulated déigre the
generating distribution is precisely known, then on exemplary, realistic A#taf the experiments
presented below, without exception, where obtained with exactlgdhseset of parametersa
[0,4] for the Fourier functionsb € [0, 5] for the Hyperbolic Tangent functions? € [0.5,5] for the
Gauss-pow3 functions. Each of these ranges was divided into 10@paged values, thus yielding
afamily { fx} of size 4000 (Fourier functions count twice because of the sine afkgoarts). The
preliminary calibration procedure described in the end of section 3.2 stggh® takee = 1.5 as
the threshold under which vectors are not informative (strictly speakiregthreshold should be
calibrated separately for each functidnbut we opted here for a single threshold for simplicity).
Finally we fixed the number of FastICA iteratiofis= 10. With this choice of parameters and 1000
data points in the sample, the computation time is typically of the order of less thatddds on

a modern PC under our Matlab implementation.

4.1 Tests in a Controlled Setting

For testing our algorithm and comparing it with PP, we performed numerigararents using
various synthetic data. Here, we report exemplary results using the fiofjofvdata sets. Each data
setincludes 1000 samplesin 10 dimensions. The generating distributiadatsans8 independent
standard Gaussian components and 2 non-Gaussian componentsageaefallows:
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(A)

(B)

©

(D)

Figure 5: Densities of non-Gaussian components. The data sets a2® if@ependent Gaussian
mixtures, (b) 2D isotropic super-Gaussian, (c) 2D isotropic uniform (@hdlependent
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Figure 7: Performance comparison plots (for error criterﬁ‘)ﬁ, I)) of NGCA versus FastICA;
top: versus powa3 index; bottom: versus tanh index.
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(A) Simple Gaussian Mixture: 2-dimensional independent Gaussian mixtures, with the density
of each component given by

203100+ 203100 (14

(B) Dependent super-Gaussian:2 -dimensional isotropic distribution with density proportional to

exp(—[[x[)-

(C) Dependent sub-Gaussian:2 -dimensional isotropic uniform with constant positive density for
||| <1 and O otherwise.

(D) Dependent super- and sub-Gaussianl -dimensional Laplacian with density proportional to
exp(—|XLap|) and 1-dimensional dependent unifot{c,c+ 1), wherec =0 for |X_ap| <
log2 andc = —1 otherwise.

For each of these situations, the non-Gaussian components are additiesedlied coordinatewise
by a fixed factor so that each coordinate has unit variance. The grofite density functions of
the non-Gaussian components in the above data sets are described égrigur

We compare the following three methods in the experiments: PP with ‘pow3’ min’tadexX’
(denoted by PP(pow3) and PP(tanh), respectively), and the oS CA.

Figure 6 shows boxplots of the error criteria®(7, I) defined in Eq.(3) obtained from 100
runs. Figure 7 shows comparison of the errors obtained by differetitatie for each individual
trial. Because PP tends to get trapped into local optima of the index functiggtiibines, we
restarted it 10 times with random starting points and took the subspace obttiaibgst index
value. However, even when it is restarted 10 times, PP (especially withdha*pndex) still gets
caught in local optima in a small percentage of cases (we also tried up toeS@ts but it led to
negligible improvement).

For the simplest data set (A), NGCA is comparable or slightly better than PP dsetHb
is known that PP(tanh) is suitable for finding super-Gaussian comporedsy(tailed distribu-
tion) while PP(pow3) is suitable for finding sub-Gaussian components (kgbt distribution)
(Hyvarinen et al., 2001). This can be observed in the data sets (B) andR@anR) works well for
the data set (B) and PP(pow3) works well for the data set (C), alththeybpper-quantile is very
large for the data set (C) (because of PP getting trapped in local minima)sarhple-wise plots of
Figure 7 confirm that NGCA is on average on par with, or slightly better tRBnyith the ‘correct’
non-Gaussianity index, without having to prefix such a non-Gaussiawigxirf-or the data set (C),
NGCA appears to be marginally worse than PP(pow3) (excluding thoss edsere PP fails due
to local minima: the corresponding points are outside the range of the fiduredhe difference
appears hardly significant. The superiority of the index adaptation teaflMGCA can be clearly
observed in the data set (D), which includes both sub- and supesi@au®mponents. Because of
this composition, there is no single best non-Gaussianity index for this datnskthe proposed
NGCA gives significantly lower error than that of either PP method.

5. We used the deflation mode of the FastICA algorithm @finen et al., 2001) as an implementation of PP. The
‘pow3’ flavor is equivalent to a kurtosis based index: in other wordghimcase, FastICA iteratively maximizes the
kurtosis. On the other hand, the ‘tanh’ flavor uses a robust index vi$ighpropriate in particular for heavy-tailed
data.
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Failure modes. We now try to explore the limits of the method and the conditions under which
estimation of the target space will fail. First, we study the behaviour of NG@anacompared
with PP as the total dimension of the data increases. We use the same syntizetietslavith 2-
dimensional non-Gaussian components, while the number of Gaussian camgotreases. The
averaged errors over 100 experiments are depicted in Figure 8. lasalfcwe seem to observe a
sharp phase transition between a good behaviour regime and a failurewhede the procedure

is unable to estimate the correct subspace. In 3 out of 4 cases, hpwewanserve that the phase
transition to the failure mode occurs for a higher dimension for NGCA thathi®PP methods,
which indicates better robustness of NGCA.

1r 0.9r,
e — NGCA — NGCA
0.9f N R PP(pow3) o8l PP(pow3)
- - PP(tanh) - - PP(tanh)
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Figure 8: Results when the total dimension of the data increases.

In the synthetic data sets used so far, the data was always generatedcaitdriance matrix
equal to identity. Another interesting setting to study is the robustness withatetgpbad condi-
tioning of the covariance matrix. We consider again a fixed-dimension seitithg2 non-Gaussian
and 8 gaussian dimensions.

While the non-Gaussian coordinates always have variance unity, tttastageviation of the 8
Gaussian dimensions now follows the geometrical progressioh 10"+2/7 ... 10. Thus, the
higherr, the worse conditioned is the total covariance matrix.

265



BLANCHARD, KAWANABE, SUGIYAMA , SPOKOINY AND MULLER

04r . o9r
NeeA o] SS(CA 3)
L[ PP(pow3) ) 8[| PP(pow
0351 .. PP(tanh) - -+ PP(tanh) L2
0.7}
03}
0.6f
025
_ 5 05
g 02F 5
w 0.4F
0.5}
03}
0.1f 02l
0.051 0.1F
o o ‘ ‘ ‘ ‘
0 05 N 0 05 E 2
Log, , noise scaling range Log, , noise scaling range
07r 07r
— NGCA — NGCA
 PP(pow3) 4 o PP(pow3) B
061 - -. pp(tanh) v 067 | - -. PP(tanh) e
05f 05f
0.4r 0.4r
g g
] ]
03f 03}
0.2f 0.2f
0.1f 0.1f
0 , 0
0 0 2 0

1
Log10 noise scaling range

(©

1
Log 10 noise scaling range

(D)

Figure 9: Results when the Gaussian (noise) components have diffesdas (the standard devi-
ations follow a geometrical progression @0, 107], wherer is the parameter on the
abscissa).
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The results are depicted in Figure 9, where we observe again a transitifailtoc@mode when
the covariance matrix is too badly conditioned. Although NGCA still appeatBeabest method,
we observe that, on 3 out of 4 data sets, the transition to failure mode seeapEniroughly at
the same point as for PP methods. This suggests that there is no or only ligle rdidistness of
NGCA with respect to PP in this regard. However, this result is not entitgfyrising, as we expect
this type of failure mode to be caused by a too large estimation error in theaosamatrix and
therefore in the whitening/dewhitening steps. Since these steps are comm@GC® &hd the PP
algorithms, it seems logical to expect a parallel evolution of their errors.

4.2 Example of Application for Realistic Data: Visualization and Clustering

We now give an example of application of our methodology to visualization lrstiecing of real-
istic data. We consider here “oil flow” data, which has been obtained merigal simulation of
a complex physical model. This data was already used before for testimgdaes of dimension
reduction (Bishop et al., 1998). The data is 12-dimensional and it is rewkra priori if some
dimensions are more relevant. Here our goal is to visualize the data arnidlyessibit a clustered
structure. Furthermore, it is known that the data is divided into 3 classesshdiv classes with
different marker types but the class information is not used in finding teetibns (i.e., the process
is unsupervised).

We compare the NGCA methodology described in the previous section, {oojquirsuit
(“vanilla” FastICA) using the tanh or the pow3 index, and Isomap (noralipgojection method,
see Tenenbaum et al., 2000). The results are shown on Figure 10. pkoeztion of the data
was computed using these methods, which was in turn projected in 2D to drdiguies this last
projection was chosen manually so as to make the cluster structure as visgesitsle in each
case.

We see that the NGCA methodology gives a much more relevant projectioREhasing either
tanh or pow3 alone: we can distinguish 10-11 clusters versus at mostiefBP methods and 7-8
for Isomap. Furthermore, the classes are clearly separated only on&8é rojection; on the
other ones, they are partially confounded in one single cluster. Finallgpnirm, by applying the
projection found to held-out test data (i.e., data not used to determine fleetwn), that the cluster
structure is relevant and not due to some overfitting artifact. This, in ppsiows one advantage
of a linear projection method, namely that it can be extended to new data inglnstavard way.

Presumably, an important difference between the NGCA projection andtteescomes from
the Fourier functions, since they are not present in either of the PP nsethtathn be confirmed
by looking at the vector norms that Fourier functions are more relevanthif®data set; they gave
rise to estimated vectors with generally higher norms and had consequerghbke snfluence of
the choice of the projection. One could object that we have been merelyfiucthis specific data
because Fourier functions happened to be more relevant, and neithetRed uses this index. A
possible suggestion for a fair comparison is to use the PP algorithm with eeFimaex. However,
beside the fact that this index is not generally used in classical PP methed®sults would be
highly dependent of the specific frequency parameter chosen, sadwsotimake experiments
in that direction (by contrast, the NGCA methodology allows to combine vectatesreed from
different frequencies). On the other hand, another route to investigatelevance of this objection
is to look at the results obtained by the NGCA method if Fourier functions@iresed — thus only
considering Gauss-pow3 and tanh. In this case, we still expect an igrpent over PP because
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Figure 10: 2D projection of the “oil flow” data obtained by different aifuns. Different marker
types/colors indicate the different classes (this information was not useditthe pro-
jections). For the middle right panel, the 2D projection found from the middigefel
was used to visualize additional held out test data.
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NGCA is combining indices (as well as combining over the parameters rasfgesid b). This
is confirmed in Figure 10: even without the relevant Fourier functionsCN®ields a projection
where 8 clusters can be distinguished, and the classes are much mdyeselparated than with PP
methods. Finally, a visual comparison with the results obtained by Bishod#98B) demonstrated
that the projection found by our algorithm exhibits a clearer clustered steyctwreover, ours is a
purelylinear projection whereas the latter reference was a nonlinear data reptesenta

Further analysis on clustering performance with additional data setsvame igithe Appendix
and underline the usefulness of our method.

5. Conclusion

We proposed a new semi-parametric framework for constructing a linegaction to separate an
uninteresting multivariate Gaussian ‘noise’ subspace of possibly largktasepfrom the ‘signal-
of-interest’ subspace. Our theory provides generic consistengigses how well the non-Gaussian
directions can be identified (Theorem 4). To estimate the non-Gaussiapaggbfrom the set of
vectors obtained, PCA is finally performed after suitable renormalizatioelamdhation of uninfor-
mative vectors. The key ingredient of our NGCA method is to make use afritéentcomputed
for the nonlinear basis functioh(x) in Eq.(11) after data whitening. Once the low-dimensional
‘signal’ part is extracted, we can use it for a variety of applications sisathata visualization, clus-
tering, denoising or classification.

Numerically, we found comparable or superior performance to, e.g. GAsgtldeflation mode
as a generic representative of the family of PP algorithms. Note that, inadeR& methods need
to pre-specify a projection index used to search for non-Gaussiana@nis. By contrast, an
important advantage of our method is that we are able to simultaneously wsaldamilies of
nonlinear functions; moreover, inside a same function family, we are ablectaugntire range
of parameters (such as frequency for Fourier functions). Thuspew method provides higher
flexibility, and less restricting assumptioagriori on the data. In a sense, the functional indices
that are the most relevant for the data at hand are automatically selected.

Future research will adapt the theory to simultaneously estimate the dimensiba obn-
Gaussian subspace. Extending the proposed framework to non-linogeatipn scenarios (Cox and
Cox, 1994; Schlkopf et al., 1998; Roweis and Saul, 2000; Tenenbaum et al., 200RinBand
Niyogi, 2003; Harmeling et al., 2003) and to finding the most discriminativectiines using labels
are examples for which the current theory could be taken as a basis.
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Appendix A. Proofs of the Theorems
A.1 Proof of Lemma 1

Suppose first that the noigé is standard normal. Denote Hye the projector fromRY to R™
which corresponds to the subspdgeLet alsoE+ be the subspace complementany&and Mg
mean the projector o&~. The standard normal noise can be decomposed asN; + N, where
N1 =MeN and N = Mg N are independent noise components. Similarly, the sigh&an be
decomposed as

X = (HES—I- N]_) —I— N2

where we have used the model assumption that the signsiconcentrated irE and it is inde-
pendent ofN. It is clear that the density dfleS+ N; in R™ can be represented as the product
g(x1)@(x1) for some functiong and the standard normal densigyx1), x; € R™. The indepen-
dence ofN; and N; yields the in the similar way fok = (X,X) with X3 = Mgx and Xz = Mg.X
that p(x) = g(x1)@(x1)®(x2) = g(x1)®(x) . Note that for the linear mapping = Mg characterizes
the signal subspacE. Namely, E is the imageJ(T*) of the dual operatoff * while E* is the
null subspace (kernel) 6f : E+ = &(T).

Next we drop the assumption of the standard normal noise and assumeairihgeticovariance
matrix I of the noise is nondegenerated. Multiplying the both sides of the equatiohy(1)
the matrix [~%/2 leads tol ~%/2X = I~1/2S4+ N where N = /2N s standard normal. The
transformed signaX = I ~/2S belongs to the subspade = "Y/2E. Therefore, the density
of X can be represented a%x) = g(MNgX)e(X) where Mg is the projector corresponding .
Coming ba/ck the variable yields the density ofX in the form p(x) = g(TX)@(I ~%/2x) where
T=nNgr-%2. [ |

A.2 Proof of Proposition 2
For any functiong(x), it holds that

[ woxupOodx= [ wep(x-wdx

if the integrals exists. Under mild regularity conditions pfx) and Y(x) allowing differentiation
under the integral sign, differentiating this with respectitgives

[ Bwipxdx=~ [ wDp(x)dx (15)
Let us take the following function
Wn(x) == h(x) —x E[Xh(X)],

whose gradient is
Own(x) = Oh(x) — E [Xh(X)].

The vectorf(h) is the expectation of-OWp. From Eq.(15) and using p(x) = Olog p(x) p(X) , we
have

B(h) = [ Yn(xCllog p(x) p(xdx
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Applying Eg.(2) to the above equation yields

B = [ wn()0Iogg(T) pdx— [ k(T x pixdx
= T [ Wn000a(T0g0r (9= 2/ (P (16)
Under the assumptioR [XX'] =14, we get
E[XWn(X)] = E[Xh(X)] —E [xxﬂ E[Xh(X)] = 0,

that is, the second term of Eq.(16) vanishes. Since the first term of@d€longs tol by the
definition of I, we finally haveB(h) € I. [ |

A.3 Proof of Theorem 3

For a fixed functiorh, we will essentially apply Lemma 5 stated below for each coordinafy 1) .
Denoting thek-th coordinate of a vector by v¥, andy = 3~2x, we have

A9 (x) = [[0h(y) — yhy)] | < B+ ) < BL+K X))

It follows that hK) (x) is such that

E [exp(%ﬁ(k)(x)ﬂ < aoexp(%) ,

and hence satisfies the assumption of Lemma 5. Denotir@.zklyue sample variance i, we
apply the lemma witl®' = d/d, obtaining by the union bound that with probability at least 45,
forall 1<k<d:

log?(nd1)log? &1
ns

~10\? _log(ds?
<|:BY_BYi| > §4OE¥ +Cl()\07a07Bad7K) )
where we have used the inequalig+b)? < 2(a+b?), andC; denotes some function depending
only on the indicated quantities. Now summing over the coordinates, taking tlaeesgpot and

usingva+b < \/a+ /b leads to:

) ~1 -1
logd n+Iogd log(nd+)logd )7 17)

HBY*/B\YH SZ\/CAF\Z((h) +C2()\o,ao,B,d,K)< "
i)

with probability at least 4. To turn this into a uniform bound over the fami{ylk}kzl, we

simply apply this inequality separately to each function in the family With- 3/L. This leads to

the first announced inequality of theorem. We obtain the second one by malgigghe first by

32 to the left and using the assumption (aped [ |
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Lemma5 Let X be areal random variable such that for somg> 0:
E [exp(Ao|X|)] < a0 < c.

Let X,...,X, denote an i.i.d. sequence of copies of X. Let H[X], i= %z{‘zlxi and 62 =
ann=s) 2i (% — Xj)? be the sample variance.

Then for anyd < % the following holds with probability at least— 45, where c is a universal
constant:

3
- — 1\ 17 -1

Proof For A >0 denoteX” = X1{|X| < A}. We decompose

S X

these three terms will be denoted By, T,, T3. By Markov’s inequality, it holds that

< + + B X=X

n

DA

P[[X] > t] < apexp(—Aot) ,

Fixing A = Iog(néflao) /Ao for the rest of the proof, it follows by taking = A in the above
inequality that for any X i <n:

P AX] <2,

By the union bound, we then ha\)e’* =X for all i, and thereforel; = 0, except for a seQp of
probability bounded by.
We now deal with the third term: we have

Tz = |[E[XL{|X]| > A}]| < E[XL{X > A}] = /OwIP’[Xl{X > A} > t]dt
<AP[X > A +/Awaoexp(—)\ot)dt
<ag (A+Ay1) exp(—hoA)

o
= e (1+log (ndtap)) .

Finally, for the second term, sin@(’*\ <A=2;'log (nd~'ap) , Bernstein's inequality ensures
that with probability as least 4 26 the following holds:

1 AR x| < \/ZVar[XA]IogB—l+2log(n6‘1ao)log€>—1
nizi)<1 o n )\on :

We finally turn to the estimation of V@(A] . The sample variance of” is given by

~ 1
O = g 3 X0
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Note that(G")? is an unbiased estimator of Vit”|. Furthermore, replacing/* by X in the
above expression changes this quantity at mostsf/@ since X* appears only in ¢gh— 1) terms.
Therefore, application of the bounded difference (a.k.a. McDiarmid&sjuality (McDiarmid ,
1989) to the random variablé” yields that with probability - & we have

SAV2 A 2 [logdt
|(6")? — Var[X*]| < 4A ‘/T’

finally, except for samples in the s® which we have already excluded above, we hafe=G.
Gathering these inequalities lead to the conclusion. |

A.4 Proof of Theorem 4

In this proof we will denote byC(-) a factor depending only on the quantities inside the parentheses,
and whose exact value can vary from line to line.

From Lemmas 9 and 10 below, we conclude that for big enaugthe following inequality is

satisfied with probability +-2/n:
< Clao, o, K) 1 729", (19

also, it is a a weaker consequence of Lemmas 7 and 8 that the followingalitesguhold with
probability at least + 1/n each (again fon big enough):

iz

1 n
03 Il < e Mo, (19
3. IXIP < C(ao o) (20

Let us denotd&) the set of samples where (18), (19) and (20) are satisfied simultangfrasiythe
above, we conclude that for large enougfthe setQ contains the sample with probability at least
1—4/n. For the remainder of the proof, we suppose that this condition is satisfied.

For any functiorh, we have

Note that (up to some changes in the constants) the assumption on the Lapiabarin is stronger
than the assumption of Theorem 3; hence equation (17) in the proof of #usetin holds and we
have with probability at least 4 43, for any function in the famil;{hk}k:1 :

b5 <[]+ [ -

log(Ld-1) + logd
0g( n)+ ogd

|3 =By < 2J6$<h>

C(ho, 20, B.d.K) (Iog(nLé—l);og(L6—1)> e

n
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On the other hand, conditions (18) and (19) imply that for any fundtionthe family,

B = [, (R0 -Fon) < T3 [

< M Hz*% _53
n

n

[1%]]
2,
gC(ao,)\o,K)M\/dI?]gn.

where in the first inequality, we have used the Lispchitz assumption on thédaoh.

One remaining technicality is to replace the teoy(h) (which cannot be evaluated from the
data since it depends on the exactly whitened dfa}an (21) by 6 (h), which can be evaluated
from the data. For this use the following, holding for any functidn the family:

3 [[pew H)|* - [ —ﬁ<v,.)H2' ;
i#]

let us now focus on one term of the above sum:

- 2n(n—1)

oo =i |~ ) e
= (ROv) — R~ +R)) - (Rev) v + %) - )
< M2 (=] + v =] ) (v =l + 5=

<m2|z b8 (=2 + 2 2]) (e il

dlogn
< MZC(%,AO,K)F(\|x” +HXJH )

where we have used the Cauchy-Schwarz inequality, the triangularalitygand the Lipschitz
assumption orh at the third line. Summing this expression ove# j, and using condition (20),

we obtain
~ ~ dlogn
6%(n) —82(h)| < M2C(ao, Mo, K)y/ o,

so that we can effectively replacey by Gy in (21) up to additional lower-order terms. This
concludes the proof of the first inequality in the theorem.
For the second inequality, we additionally write

dist(y(h), 1) < ||2 3By — = 2y
<=2 -5 Byl + ||z~

|+ i -2

e
we now conclude using (18), the previous inequalities control”ﬁg — BYH, the assumption on

HZ—% and the fact that

1By [ = [IE[Xh(X) — Oh(X)]|| < B(1+E[|]|]) < C(a0,A0,B).
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Appendix B. Additional Proofs and Results

We have used Bernstein’s inequality, which we recall here for completemeder the following
form:

Theorem 6 (Bernstein’'s inequality) Suppose X..., X, are i.i.d. real random variables such that

IX| < b and VarX= ¢?. Then
>\ J202% 1 2p
n n

]:P) [
The following results concern the estimationf2 , needed in the proof of Theorem 4. We divide
this into 4 lemmas.

< 2exp—X).

ety X —E(X)

Lemma7 Letéy,...,&, beii.d. withE[€;] = m and assumégE [expu(&1 —m)] < cif/2 holds
for all p < P, for some positive constants ¢ ang. (Then for sufficiently large n

P lnl/z_i(a —m) > Z] < e ¢ '?/2

Proof This is an application of Chernoff’s bounding method:

n

R, = logP [n‘l/z_zl(ii -m) > z]

eXpiiu(Ei - m)]

— —pz/n+nlogE [expu(&; —m)],

< —pz/n+logE

where the above inequality is Markov’s. We selget zn1/2¢c—1. For n sufficiently large, it holds
that 4 < pp and by the lemma condition

Ry < —pzy/n+ncif/2=—Z2c /2.

The goal of the following Lemma is merely to replace the assumption about thaedeapans-
form (in the previous Lemma) by a simpler assumption (existence of some exjimirmoment).
This allows a simpler statement — as far as we are not really interested in tisepcenstants
involved.
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Lemma 8 Let X be areal random variable such that for somg>{0:
E [exp(ko X|)] = & < .
Then there exists & 0 (depending only onquand & ) such that
VHER  |W| < Ho/2= logE[exp(u(X —E[X]))] < cif /2
Proof Note thatX has finite expectation sind| < pglexppo |X| . Taylor's expansion gives that

VX e R, VUER, |4 < Ho/2 = exp(px) < 1+ ux+ %szexp(\po\ x| /2). (22)
There exists some constamt- 0 (depending ony) such that
vx e R, x2exp(|uox| /2) < c(exp(|uox])) -
Using this and the assumption, taking expectation in (22) yields that ﬁ@r%ca >0

VHER, |W < Ho/2 = E[exp(uX)] < 14 HE[X] + ¢l < exp(HE [X] +¢'}?)

implying
E [exp(u(X —E[X]))] < exp(c/}f) ;
taking logarithms on both sides yields the conclusion. |
The next two Lemmas, once combined, provide the confidence bouvﬁdb%—%% which
we need for the proof of Theorem 4.
Lemma 9 Let X, ..., %, bei.i.d. vectors inRY. Assume that, for somey p 0,
E |exp(hoX|1?)] = & < oo; (23)

denotez =K [X XT] and S it empirical counterpart. Then for some constantdepending only on

(Mo, o) , and for big enough n,
HZ_EH S /Kdlogn] <g
n -n

Proof Along this proofC,c will denote constants depending only gg ep; their exact value can
change from line to line. Note that by definition Bfand % ,

72| = sup 3 (x7o- | (x76)) ).

0By n =

R,:=P

where B4 denotes the unit ball oRY . Fore < 1, let By denote &-packing set ofBy, that is,
a discretee-separated set of points @y of maximum cardinality. By the maximality assumption
and the triangle inequalityBy ¢ is also a 2-covering net ofB4. On the other hand, theballs
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centered on these points are disjoint, and their union is included in the batiokf1+¢€), so that
a volume comparison allows us to conclude thd@d##)e? < (1+¢)9 < 29. This shows tha, 2
is a Z-covering set ofBy of cardinality bounded bg 9.

Now, if 8,08’ € By are such thaf|6 — 6’| < 4¢, then we have

_ioqef—i(ﬁe’)z _i(ﬁ(e—e’>>w<e+e’>>‘

n
<8y IIX|?,
2

where we have applied the Cauchy-Schwarz inequality at the last line.
Now application of Lemmas 7 and 8 yields that forlarge enough, with probability at least

1-1/n,
n
1 12 < 5 clogn <
n Y X< B [IX)E] S <c

The above implies that with probability at least-1/n,
T2 = T2
ZlOﬁ 6) —ZlOﬁ o)

sup /2 < Cey/n.

0,0/cBy:|0-0/| <2

We can also show a similar inequality about the corresponding expectation

sup n~%/2 ‘]E [(XTG)Z} —E [(XTG’)Z} ‘ < Ceyn.
0,6'cBy:|6—0'||<2¢

We now seleck = n—z. Therefore, approximating ar/c By by its nearest neighbour By o
and using the above inequalitites, we obtain that

< nfagrg o]
< %Jreegd,klp n—l/ziil <(XiTe)2_IE {(X%)ZD > (K—C)dlogn]
< % + #(Ba 2e) exp{ ~0.5¢ ( — C)dlogn} < r—21

provided thatk is chosen so that™(k —C)d/2 > d/2+ 1. Here we have again used Lemmas 7
and 8, noting that for an§ € By it holds thatE [expio |67 X|] < E [expio||X|[] < exp(o) + € by
assumption. [ |

Lemma 10 Let AB be two real positive definite symmetric matrices satisfyiAg- B|| < € with
£ < (2||A7Y|)~t. Then there exists a constant C such that

|at s <claie.
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Proof
Note that for||M|| < 1, it holds that

1
(I=M)"2 =5 yMK,
kgo

with (yk) > 0 the coefficients of the power series development of the functjignil- x.

DenoteAmaxM),Amin(M) the biggest and smallest eigenvalue of a malix PutK = ||A|| =
Amax(A) andL = ||A1| =Amin(A) 1. Note thatLK > 1 . PutA’ = A/K,B'=B/K. All eigenvalues
of A’ belong to(0,1] and therefore

1= A = Amax(l —=A) = 1= Apin(A) = 1— (LK) ™.

By the assumption that < (2L)~1, it holds that

Amax(B) = K™ |[B]| < K™*(||All +€) <1+ (2LK) ™t <

NI W

and that
Amin(B/) > K_l()\min(A) —£) > (ZKL)_17

from this we deduce that
1
1 = B/|| = max(Amax(B') — 1,1 Amin(B))) < max(é,l— <2u<>-1) =1—(2K) .
PuttingA=1—A',B=1-B', we have ensured thfA|| < 1 and||B|| < 1; we can thus write
1 1 . -1 _ 1
A2 _B 2= (I —A) 2 (I —B) 2
K =k
= > WA -B).
&1

Noticing that

R - |5 A8 | < kma( A ) -]

we obtain

AN":_B:

e g

1
:55(2|_K)% —cL

Nlw

A
Nl

m

From this we deduce that

HA*% _ B3|l =K 3
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Appendix C. Clustering Results

The goal of NGCA is to discover interesting structure in the data. It is natwalifficult task to
quantify this property precisely. In this appendix we try to make this appasemng clustering tech-
niques. We apply a mean distance linkage clustering algorithm to data prajettectr dimension
using various techniques: NGCA, FastICA, PCA, local linear embeddibg,(Roweis and Saul,
2000), Isomap (Tenenbaum et al., 2000).

There is no single well-defined performance measure for the perfosrardustering. Here
we resort to indirect criteria that should however allow a comparativeysiu consider the two
following criteria:

(1) Label cross-information. We apply clustering to benchmark data for which label informa-
tion Y is available. Although this information is not used in determining the clusteringyilze
use it as a yardstick to measure whether the clustering gives rise to testmarture discovery.
We measure this by the scaled mutual informatié@,Y)/H(Y), whereC is the cluster labelling
and the normalization ensures that the quantity lies between 0 and 1. Notecttegitsthpriori no
mathematical reason why clustering should be related to label information it tfiten the case
for real data, so this can be a relevant criterion of structure disco¥ehigher score indicates a
better match between discovered cluster structure and label structure.

(2) Stability. Recent attempts at formalizing criteria for clustering have proposed tistédhg
stability should be a relevant criterion for data clustering (see, e.g., Maraal. , 2002; Lange
et al., 2004). Again, this is only an indirect criterion, as, for exampleyatrilustering algorithm
dividing the space without actually looking at the data would be very stahiewBh this caveat in
mind, it provides a relevant diagnostic tool. Here, we measured stability irotlogving way: the
data is divided randomly into 2 groups of equal size on which we apply cingteThen, the cluster
labels obtained on group 1 are extended to group 2 by the nearest-neighdband vice-versa.
This thus gives rise to two different cluster labellingg C, of the whole data and we measure their
agreement through relative mutual informatibi€;,C,)/H(C1,Cy). Again, this score lies in the
interval [0, 1] and a high score indicates better stability.

Table 1: Description of data sets

Data set| Nb. of Classes Nb. of samples Total dimension| Projection Dim.
Oil 3 2000 12 3

Wine 3 178 13 3

Vowel 11 528 10 3

USPS 10 7291 30 10

We consider the “oil flow” data already presented in section 4.2, and adalititata sets from
the UCI classification repository, for which the features all take contisyalues. (When there are
features taking only discrete values, NGCA is inappropriate since thesgeniirally be picked up
as strongly non-Gaussian). Size and dimension of these data setsarénghable 1.

The results are depicted in Figure 11. On the Oil data set, NGCA worksmadhjor both cri-
teria (as was expected from the good visualization results of section /haheQVine data set, the
different algorithms appear to be divided in two clear groups, with thepednce in the first group
(NGCA, Isomap, LLE) noticeably better than in the second (PCA, FastiN&CA belongs to the
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Oil Data: Class Label Information

Oil Data: stability criterion
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Figure 11: Clustering results
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better group although the best methods appear to be the non-linear prggectie and Isomap.
The results of the Vowel data set are probably the most difficult to integsenost methods appear
to be relatively close. Isomap appears as the winner method in this case, @@ Nuite close
in terms of label cross-information and in the middle range for stability. Finalhthife USPS data
set we used the 30 first principal components obtained by Kernel-P@& aolynomial kernel of
degree 3. In this case, PCA gives better results in terms of label criossiation with NGCA a
close second, while NGCA is the clear winner in terms of stability.

To summarize: NGCA performed very well in 2 of the 4 data sets tried (Oil dat&JSPS), and
was in the best group of methods for the Wine Data and had averagempanfce on the last data set.
Even when NGCA is outperformed by nonlinear methods LLE and Isomapnérglly achieves a
comparable performance though being a linear method, which has otteattages such as clearer
geometrical interpretation, direct extension to additional data if needeghaasible assessment of
variable importance in original space.
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